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A B S T R A C T   

This paper investigates price volatility and spillovers in the Nordic electricity wholesale markets. We use the 
Time-Varying Parameter Vector Autoregressive (TVP-VAR), Rolling Window-based VAR (RW-VAR), and high 
dimensional VAR with common factors (VAR-CF) methods and analyze the integration dynamics among these 
markets and impact of carbon prices on volatility spillovers. We use 107,352 hourly price data from January 
2010 to March 2022. The novelty of this research is four-fold. First, we adopt a connectedness approach to 
explore volatility interactions among the four Nordic markets, contributing to the scarce literature on volatility in 
this market. Second, we segment the Norwegian market into southern and northern regions, revealing differences 
in volatility spillover patterns. Third, we investigate the effect of carbon prices on volatility spillovers and market 
dynamics. Last, we show significant contribution of covariances to interdependence among markets. We find 
significant connectedness between the Nordic markets, with an average Total Connectedness Index of between 
50% (with a system of variance) and 90% (with a system of both variance and covariance). Sweden is the sole net 
volatility spillover transmitter, while Denmark experiences the largest shocks from the system. We further find 
that carbon prices exert a 5% significant impact on the volatility spillover index.   

1. Introduction 

Electricity is a critical service and infrastructure for economic 
development (Cramton, 2017). Due to the relative non-storable nature 
of electricity, markets find it is more difficult to match supply and de
mand than in other commodity markets (Ma et al., 2022; Uribe et al., 
2020). With its vulnerability to weather and climate-related conditions, 
the growing shares of renewables, and increasing price of carbon for 
electricity generation, the price of electricity has become one of the most 
volatile financial instruments in liberalized markets (Do et al., 2020). 

Electricity market integration can reduce idiosyncratic exposure to 
volatility risk and limit the probability of energy crises and energy 
shortages in national or regional markets. The US Energy Policy Act of 
1992 promoted electricity wholesale markets by requiring utilities to 

open the transmission systems, which was followed by formation of a 
regional network spanning 11 separate spot markets (De Vany and 
Walls, 1999; Park et al., 2006); since then the price dynamics and 
integration among 11 US markets have been extensively discussed (see 
e.g., Mjelde and Bessler, 2009). In the same vein, Australia established 
the National Electricity Market (NEM) in 1998, made up of five regional 
markets (Han et al., 2020; Nepal and Foster, 2016). In order to remove 
cross border barriers between member states, European Union elec
tricity market integration was considered and discussed as early as in 
1986 (Do et al., 2020; Jamasb and Pollitt, 2005; Pollitt, 2019), and was 
put into practice in 1990.1 

Market integration has been an objective in geographically and 
economically linked areas, as in the Nordic region. The Nordic elec
tricity market — Nord Pool — is believed to be the best-functioning 
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market in the world (Amundsen and Bergman, 2006; Haugom et al., 
2020; International Energy Agency, 2023; Sousa and Soares, 2020; 
Uribe et al., 2020). The generation mix in the Nordic region is domi
nated by renewables. The share of electricity from low carbon sources in 
Denmark, Norway, Finland, and Sweden, is 72.4, 100, 69.0 and 88.7%, 
respectively. Even with high levels of clean energy, the Nordic region is 
expected to experience faster growth in renewables in the future (Ber
trand, 2020; Jan, 2019). 

Integration of nordic electricity markets is characterized by a variety 
of renewables (e.g., wind power in Denmark, hydro power in Norway, 
and nuclear power in Sweden and Finland) and non-renewable (e.g., 
fossil fuels in Finland) generation mixes. Renewable energy, such as 
wind power and hydropower, is inherently intermittent due to climatic 
conditions that, exacerbates price volatility in the absence of feasible 
storage (Uribe et al., 2020). Actors in Nord Pool are exposed to the risk 
of price fluctuations in merchant power prices. The volatility of 
wholesale electricity prices is therefore a key issue. The Nordic market 
can shed some light on dynamics of price fluctuations in future inte
grated renewable-dominant electricity markets. 

This paper analyses volatility spillovers across the four Nordic 
countries and examines how carbon prices influence those spillover ef
fects. The study focuses on two research questions: What is the volatility 
connectedness level among the Nordic electricity markets? Whether and 
how do changes in carbon prices drive volatility spillovers in the inte
grated Nordic electricity market? 

The Nordic electricity market is formed by Denmark, Finland, Nor
way, and Sweden and includes 13 bidding areas, with price differences 
among them. Price movements in these markets enhance the arbitrage 
opportunities, and spillover effects appear among markets. Price fluc
tuation (e.g., volatilities) in the same type of market typically has a 
mutual spillover effect, which implies that the volatility of one market 
can be passed to another (Guo and Feng, 2021; Lyu and Scholtens, 
2024). Cross-spillovers between markets facilitate international 
risk-sharing. In integrated markets, changes in one local market can 
affect not only the local consumption and wholesale prices, but also 
markets of other countries via cross-border trade, as markets aggregate a 
large amount of interconnected financial transactions. For instance, the 
wholesale electricity price in Norway is affected by weather conditions, 
wind generation, and hydro output, as well as climate change policies, 
and shocks are passed on to the Swedish market. As a result, power 
companies in Sweden may bear the impact caused by non-local shocks 
contributed by Norway. Furthermore, the climate policies of, for 
instance, the European Union emissions trading system (EU ETS), as a 
well-established carbon market of EU, will increase electricity price 
levels in general (Aatola et al., 2013). The power enterprises are the 
most active traders in the EU ETS, and thus the interaction between the 
Nordic wholesale electricity markets and EU ETS is important. 

The novelty of our approach is four-fold. First, we use the connect
edness approach based on the time-varying parameter VAR (TVP-VAR, 
thereafter), rolling window-based VAR (RW-VAR, thereafter), and the 
high dimensional VAR with common factors (VAR-CF, hereafter) models 
to analyze integration in the Nordic electricity markets, contributing to 
the scarce literature in the volatility connectedness in this region. Sec
ond, we split the Norwegian market into two price regions to reflect the 
observed difference in electricity prices between the northern and 
southern regions. Thirdly, we uncover an important role of the co
variances in contributing to the spillovers among the markets, in which 
the spillovers among covariances weights for nearly half of the whole 
system’s spillover effects. Finally, we examine how carbon price in
fluences those spillover effects since the literature examining the impact 
of carbon price on electricity market integration is scant. Do et al. (2020) 
suggests that adoption of carbon price floor improves market integration 
in physically interconnected markets but sufficient empirical evidence 
to support this is lacking. 

To the best of our knowledge, this is the first study to examine the 
role of carbon price on volatility spillovers among Nordic electricity 

markets. Understanding these issues is important for electricity market 
participants (e.g., electricity producers, retailers, investors, and users) 
not only in Nordic electricity markets but globally, as they adopt 
appropriate risk management strategies to hedge against the negative 
effects of electricity price volatility. This is particularly relevent since 
the Nordic electricity market is at the heart of Europe’s energy transi
tion. It is also important for the sector regulator to devise measures to 
avoid excessive price volatility. 

The remainder of the paper is organized as follows: Section 2 reviews 
the literature. Section 3 presents the methodology to estimate electricity 
market volatility spillover effects among the study areas. Section 4 de
scribes the data and sample. Section 5 discusses the empirical results. 
Section 6 provides additional analysis by estimating a high dimensional 
VAR with common and including covariances to the interdependence 
among markets. Section 7 concludes and provides policy implications. 

2. Background 

Renewable energy (RE) penetration has been increasing globally in 
the last ten years (BP, 2022). Advanced economies, e.g., the European 
Union, have generally higher share of renewables, with 39% of gross 
electricity consumption (International Energy Agency, 2022). However, 
the source mix of power generation differs across Europe. For instance, 
Italy, Poland, and Netherlands sectors are dominated by fossil fuels, in 
France nuclear power is the main source of power generation, and the 
Nordic region largely relies on renewable energy (Eurostat, 2022). The 
Nordic countries de-regulated and introduced competition in their 
power markets in the early 1990s, merging their national markets into a 
common market – Nord Pool (Flatabo et al., 2003; Hans-Arild, 2016; 
Torstein Bye and Hope, 2005). Market integration is also progressing in 
the Baltics and the rest of Europe. Hence, power from different sources 
and countries that enter the grid can potentially cause volatility. 

Nord Pool is transitioning to a system fully based on sustainable 
energy resources. Specifically, Denmark, as a leading country in wind 
energy with a long tradition of integrating renewable energy in its 
electricity sector. The electricity from renewable sources reached 72.4% 
of the electricity supply by the end of 2020, to which wind energy 
contributed around 50% and biomass 21.2% (Danish Energy Agency, 
2021). In Norway, 100% of the electricity is from low carbon sources, 
with 98% hydropower, wind, and thermal energy (International Energy 
Agency, 2022; Ministry of Petroleum and Energy, 2016). Precipitation 
and inflows to dams and reservoirs are critical due to hydropower’s role 
especially in the Norwegian system. In Finland and Sweden, the share of 
low carbon sources in power generation is 69.0% and 88.7%, respec
tively, while the share of renewable energy is 48.8% and 66.3%. In the 
absence of viable electricity storage, electricity price in Nord Pool is 
relatively volatile (Ketterer, 2014; Kyritsis et al., 2017; Uribe et al., 
2020). 

The coupling of electricity markets has been extensively investigated 
(e.g., Amundsen and Bergman, 2006; Bunn and Gianfreda, 2010; De 
Vany and Walls, 1999; Do et al., 2020; Gugler et al., 2018; Han et al., 
2020; Ma et al., 2022; Nepal and Foster, 2016; and Park et al., 2006). 
Most studies have focused on the European and Australian electricity 
markets (Bunn and Gianfreda, 2010; Gugler et al., 2018), using daily 
spot or forward price data. The volatility spillover effects across different 
markets is well documented in the literature (e.g., Do et al., 2020; Han 
et al., 2020; Ma et al., 2022; Uribe et al., 2020). Han et al. (2020) studied 
the volatility spillovers between prices across five regions in the 
Australian National Electricity Market (NEM) and found volatility 
connectedness in this market to be 35.9%. 

Connectedness is typically more pronounced between physically 
interconnected markets. In the same vein, Do et al. (2020) investigated 
the volatility connectedness between the Irish and Great British markets. 
They found around 5% volatility connectedness between the two mar
kets over the 2009–2018 period, i.e., lower than the Australian NEM. 
The low connectedness was believed to be due to inefficient flows across 
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the two interconnectors between Britain and the Irish Single Electricity 
Market (SEM). Hasan et al. (2021) investigated time-frequency 
connectedness between Asian electricity sectors and showed that 
geographically connected markets such as China mainland, India, and 
Hong Kong are more connected than the geographically distant markets. 

Table 1 Panel A summarizes the literature on electricity market 
integration using connectedness methods. These studies generally find 
that physically and economically interconnected markets exhibit larger 
spillovers across the systems, hence larger market risks. In such systems, 
the risk propagates more easily, allowing for a decrease of idiosyncratic 
market risks, thus reducing the energy shortages in the domestic 
markets. 

Past studies have focused on the price mechanism in Nord Pool 
(Haugom et al., 2018; Hellström et al., 2012; Sotiriadis et al., 2016; 
Souhir et al., 2019), the linkage between Nord Pool electricity price and 
other energy or emission market prices (Chuliá et al., 2019; Daskalakis 
and Markellos, 2009; Ma et al., 2022), and electricity spot-forward price 
relationships in Nord Pool (Botterud et al., 2010; Weron and Zator, 
2014). Table 1 Panel B summarizes these. Few studies examine the 
linkages within the Nord Pool market (Ma et al., 2022; Uribe et al., 
2020). The Nord Pool market gives an opportunity to study a highly 
integrated market with a high share of renewables. We aim to fill this 
gap by analysing the cross-spillover between prices in the Nord Pool 
interconnected electricity wholesale market with a variety of 
renewables. 

The methodological frameworks employed in electricity market 
integration literature ranges from standard cointegration and autore
gressive distributed lag analysis (ARDL) (see, e.g., Gugler et al., 2018; 
Böckers and Heimeshoff, 2014), to time-varying cointegration tests (De 
Menezes and Houllier, 2016; Nepal and Foster, 2016). However, these 
techniques (e.g., cointegration) have not considered the dynamics of 
volatility connectedness in the markets, which is a necessity for assess
ing the progress toward higher degrees of wholesale power markets 
integration. 

The connectedness strand of literature, developed recently by Die
bold and Yilmaz (2009, 2012, 2014), is relevant for our study (hereafter 
DY method). The DY method constructs the spillover index by forecast 
error variance decomposition of the VAR model. A notable feature of the 
DY method is that can describe the direction and dynamics of spillovers. 
The DY method overcomes not only the problem of fixed parameters 
assumed in cointegration tests, but also the drawbacks of multivariate 
GARCH models in capturing time-varying features of spillover effect (Do 
et al., 2020; Han et al., 2020; Liu and Gong, 2020; Ma et al., 2022). The 
DY method has advantages, but also drawbacks, namely, i) estimation 
based on a rolling window VAR (hereafter, RW-VAR) induces loss of 
observations, ii) arbitrary in selecting window size, and iii) loss of ob
servations in first window. We first analyze connectedness in Nord Pool 
by DY rolling window VAR, then extend the model to a time-varying 
parameter VAR (TVP-VAR), following Antonakakis et al. (2020). The 
TVP-VAR-based approach has advantages such as: (i) insensitivity to 
outliers due to the underlying Kalman filter, (ii) no need to arbitrarily 
choose the rolling-window size, (iii) no loss of observations, and (iv) it 
can be used with low frequency data (Antonakakis et al., 2020; Koop and 
Korobilis, 2013). We compare the results from both methods. 

The methodologies adopted in this study have several advantages. 
First, by employing a rolling-window technique, the applied method
ology may track the degree of spillover effects over time without 

specifying a set of breakpoints or situations in advance. Second, we 
extend the DY connectedness to a dynamic approach based on TVP-VAR, 
which allows the variance-covariance matrix to vary via a Kalman filter 
estimation with forgetting factor.2 Third, the spillover measure can be 
simply aggregated by both RW-VAR and TVP-VAR, allowing for the 
quantification of diverse spillover effects. Both measures enable differ
entiating between net shock transmitters and net shock receivers, which 
in turn helps obtain a better knowledge of the underlying dynamics and 
improves the formulation of policy implications. 

A recent paper related to our study is Uribe et al. (2020). The paper 
examines the integration and propagation of shocks in the Nord Pool 
market, covering seven countries. Uribe et al. (2020) ‘s study examined 
the period from January 2013 to December 2018. Our study comple
ments and extends the findings of Uribe et al. (2020) by focusing on the 
integrated Nordic electricity market, and addresses the unique chal
lenges posed by climate change, increasing renewable energy shares, 
and carbon pricing. To the best of our knowledge, this is the first study to 
analyze price volatility spillovers and the impact of carbon prices in the 
Nordic region. Our study covers a longer period, spanning from January 
2010 to March 2022, which provides a more comprehensive under
standing of market dynamics and allows us to capture a broader range of 
events that have influenced the electricity market. The extended time
frame in our study enables us to investigate and analyze a more diverse 
set of market conditions and events, such as the transition of EU ETS 
from Phase II to Phase III in 2012, the crude oil crisis in 2014 the market 
coupling of the GB-Irish market in 2018, and the Covid-19 pandemic. 
Also, due to network congestion between southern and northern Nor
way, the Norwegian bidding prices should be separated into southern 
and northern prices (see also Section 4). 

Furthermore, we examine whether carbon price can explain 
connectedness which is ignored by Uribe et al. (2020). Our results 
indicate that Finland acted as a net transmitter of volatility shocks to 
Norway between January 2010 and June 2012. However, from June 
2012 to June 2018, Finland became a net spillover receiver, primarily 
from Sweden and Norway. This observation contrasts with Uribe et al.’s 
conclusion that Finland received volatility shocks from Norway during 
2013 and 2015. Since 2018, Finland has returned to being a spillover 
transmitter to Denmark and Norway, although the effect is less pro
nounced than during the 2010–2012 period. Notably, Sweden consis
tently transmits net spillover to Finland throughout the sample, likely 
due to its role as a net electricity importer from Sweden. These differ
ences in methodology, time period, and findings underscore the unique 
contributions of our study in providing a deeper understanding of 
volatility spillovers and market dynamics in the integrated Nordic 
electricity market. 

3. Methodology 

The central research question of our study is how volatility 
connectedness (also known as spillover) in Nordic electricity markets 
responds to carbon price changes. Following the recent connectedness 
literature (e.g., Apergis et al., 2017; Do et al., 2020; Han et al., 2020). In 
the following, we provide a brief overview of the approach. Section 3.1 
applies Diebold and Yilmaz (2009, 2012) spillover method to estimate 
volatility spillover effects in Nord Pool. Section 3.2 constructs the TVP- 
VAR to estimate the volatility spillover effects. The two methods are 
based on forecast error variance decomposition from the VAR model. 

2 Kalman filter methods have several desirable properties, e.g., they are fast because state space 

models encapsulate the Markov property and reduce to a set of recursions. Also, the forgetting factor 

approaches have been commonly used with state space models; they do not require the use of Markov 

Chain Monte Carlo, which can be computationally demanding (Antonakakis et al., 2020; Koop and 

Korobilis, 2013; Dangl and Halling, 2012). The detailed algorithm of the TVP-VAR with Kalman filter 

and forgetting factors can be found in Koop and Korobilis (2013). Different measures — e.g., the rolling 

window VAR analysis, are provided in the robustness checks. 
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Section 3.3 displays the spillover measures. Section 3.4 investigates the 
impact of carbon price on this volatility connectedness. 

3.1. Rolling window VAR model 

Diebold and Yilmaz (2012, 2014) utilized a generalized VAR 
approach to investigate interdependence across variables. This approach 
overcomes the Cholesky-type VAR in their earlier study, Diebold and 
Yilmaz (2009). The connectedness approaches are built from the vari
ance decomposition matrix of an N-variable VAR(p) approximating 
model; see Eq. (1) below. 

Xt =
∑p

i=1
ΦiXt− i + ϵt, ϵt ∼ N(0,Σϵ) (1) 

Φi is N × N matrix of polynomial coefficients. ϵt is a vector of inde
pendently and identically distributed error terms, where Σϵ is the 
variance-covariance matrix for ϵt. In our study, N = 5 for five regional 
markets and t refers to date (i.e., daily time series). The VAR(p) should 
be covariance stationary. The DY connectedness is based on generalized 
impulse response functions (GIRF) and generalized forecast error vari
ance decompositions (GFEVD), developed by Koop et al. (1996) and 
Pesaran and Shin (1998). The important step to calculate the GIRF and 
GFEVD is to transform the VAR to its moving average representation – 
VMA. The moving average coefficients are important to a VAR system’s 
dynamics, since the variance decompositions rely on transformation of 
these original parameters, hence the key to understanding the dynamics 
of the system (Diebold and Yilmaz, 2012). We transform the VAR(p) 
model to its VMA and show in Eq. (2). 

Xt =
∑∞

i=0
Aiϵt− i, (2)  

where Ai are N × N coefficient matrices, and subject to the recursion 
Ai = ϕ1Ai− 1 + ϕ2Ai− 2 + …+ ϕpAi− p, and where Ao = IN (N × N identify 
matrix) and Ai = 0 for i < 0. These moving average coefficients measure 

the effects of shocks on variables Xt at different points in time. 
The variance decompositions allow us to assess the fraction of the H- 

step-ahead error variance in forecasting Xn that is due to shocks to Xm, 
∀n ∕= m, for each n. Specifically, for each variable Xn, (n = 1, 2,…,N) we 
can analyze which fraction of the error variance in forecasting Xn can be 
attributed to shocks to variable Xm. However, the decomposition of 
forecast error variance prerequisites isolated shock, yet energy market 
data often display contemporaneously associated shocks or innovations. 
Diebold and Yilmaz (2012) adopted the generalized VAR framework of 
Koop et al. (1996) and Pesaran and Shin (1998). This approach allows 
for correlated shocks but accounts for them appropriately using the 
historically observed distribution of the errors, circumventing the vari
ables ordering problem of the identification schemes based on Cholesky 
factorization. As the shocks to each variable are not orthogonalized, the 
sum of contributions to the variance of forecast error is not always equal 
to one. Denoting the H-step-forecast error variance decompositions by 
θg

nm(H), for H = 1, 2,…,N (the contribution of variable m’s shocks to n’s 
generalized forecast error variance, θg

nm (H)), we have Eq. (3). 

θg
nm(H) =

σ− 1
mm

∑H− 1
h=0

(
e′

nAhΣϵem
)2

∑H− 1
h=0

(
e′

nAhΣϵA′
hen

) , (3)  

and normalized as 

θ̃
g
nm(H) =

θg
nm(H)

∑N
m=1θg

nm(H)
× 100%, (4)  

where g refers to the generalized variance decomposition method. Σϵ is 
the variance covariance matrix for ϵt. The moving average coefficient 
matrix corresponding to lag h is denoted as Ah. σmm is the m-th diagonal 
element in Σϵ, which denotes the standard deviation of the shocks for the 
variable m (error term for the mth equation). en and em are both the 
selection vectors; both the n-th entry for en and m-th entry for em are 
equal to 1, and 0 otherwise. Then we normalize each entry of the 

Table 1 
Relevant literature on electricity market integration and Nord Pool electricity prices.  

Panel A: Summary of studies on connectedness in electricity markets 

Reference Study area Study period Model type Data 

Ma et al. (2022) 
12 European day-ahead wholesale spot 
electricity markets 

Sep 2009 - Aug 2020 Time-frequency volatility connectedness Hourly price 

Naeem et al. (2022) Australian National Electricity Market 
(NEM) 

May 2005 - Dec 2020 RW-VAR, time and frequency, and 
asymmetric connectedness 

Daily price 

Hasan et al. (2021) Electricity sector of 10 Asian jurisdictions Apr 2007 - Aug 2020 
RW-VAR connectedness and frequency 
connectedness (Baruník and Křehlík, 2018) Daily stock price 

Han et al. (2020) Australian NEM Jan 2010 - Dec 2017 RW-VAR connectedness Daily price 

Do et al. (2020) Irish and Great Britain markets Oct 2009 - Oct 2018 
Asymmetric connectedness based on RW- 
VAR Half hourly price 

Panel B: Summary of studies on Nord Pool electricity markets 

Reference Topic Study period Model type Data 

Souhir et al. (2019) 
Electricity market variations on the Nordic 
stock market returns Jul 2017 - Dec 2017 VaR, c-DCC-FIGARCH, CVaR and ΔCVaR Hourly spot electricity price 

Sotiriadis et al. 
(2016) 

Price and volatility interrelationships in 
five European electricity markets 

Jan 2009 - Aug 2012 A novel VAR model, CCC-MGARCH model, 
DCC-MGARCH 

Daily spot electricity price 

Chuliá et al. (2019) Links between energy markets in Europe 
(including Nord Pool) 

Nov 2008 - Jun 2016 RW-VAR 17 forward price covering 
electricity, gas, coal, and carbon 

Daskalakis and 
Markellos (2009) 

Links between emission and electricity 
markets 

Sep 2006 - Oct 2007, Mar 
2005 - May 2007 Regressions 

Daily electricity and carbon 
price 

Hellström et al. 
(2012) 

Possible causes behind electricity price 
jumps in the Nord Pool 

Jan 1996 - Feb 2006 A mixed GARCH–EARJI jump model Daily spot electricity price 

Weron and Zator 
(2014) 

Relationship between spot and futures 
prices in the Nord Pool 

Jan 1998 - Dec 2010 Regression models with GARCH residuals Weekly price 

Botterud et al. 
(2010) 

Spot and futures prices relationships in 
Nord Pool 

1996–2006 Descriptive statistics and simple regression 
analysis 

Weekly price 

Haugom et al. 
(2018) 

Forward premium of futures contracts in 
the Nord Pool Jan 2004 - Dec 2013 Regressions Weekly price 

Nomikos and 
Soldatos (2010) 

Major risks (e.g., spike risk, short-term 
risk) in power prices in Nord Pool 

Jan 1993 - Feb 2004 Three-factor spike model Daily system prices  
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variance decomposition matrix by the row sum as Eq. (4), where the 
decomposition θ̃

g
nm(H) measures the spillover from Xm to Xn (Xt is a 

vector of volatility series for one of the Nordic electricity markets). Note 
that 

∑N
m=1θ̃

g
nm(H) = 1 and 

∑N
n,m=1θ̃

g
nm(H) = N by construction. The de

nominator represents the cumulative effect of all the shocks, while the 
numerator illustrates the cumulative effect of a shock in variable i. 

3.2. TVP-VAR model 

This section follows the approach of Antonakakis et al. (2020). The 
objective is to provide a flexible framework for the estimation and 
interpretation of time variation in the systematic and non-systematic 
parts of carbon prices and their effect on the rest of the markets. The 
TVP-VARs are state space models; one advantages is that statistical 
methods for state space models (based on the Kalman filter) are avail
able. To describe the dynamics of volatility spillovers, the baseline TVP- 
VAR model is set as follows: 

Xt = Zt− 1Bt + ϵt, ϵt∣Ωt− 1 ∼ N(0,Σt), (5)  

and 

vec(Bt) = vec(Bt− 1)+ ξt, ξt∣Ωt− 1 ∼ N(0,Ξt), (6)  

where Zt− 1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Xt− 1

Xt− 2

⋮

Xt− p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, and Bt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B1t

B2t

⋮

Bpt

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. 

In the above models, p is the lag order, t is the sample length of the 
model, and t = p + 1, p + 2,…,T. Ωt− 1 represents all information avail
able until T = t − 1. Xt is an N × 1 vector containing observations on N 
time series variables. Zt− 1 represents N × p matrix. Bt are N × Np 
dimensional coefficient matrices while Bit are N × N matrices. ϵt and Σt 
are N × 1 and N × N matrix, respectively. In eq. (6), vec(Bt) is the vec
torisation of Bt, which is an N × Np dimensional vector. The ξt is an 
N2p × 1 dimensional vector. Moreover, Ξt are N2p × N2p time-varying 
variance-covariance matrices; ϵt and ξs are independent of one 
another for all s and t. Eq. (6), which models the evolution of Bt, can be 
interpreted as a hierarchical prior for Bt. 

For the initialization of Kalman filter, we utilize an uninformative 
prior for parameters Σo and Bo. The mean and the variance of B0 are 
chosen to be the OLS point estimates (B̂OLS) and its variance ΣB

OLS in a 
time invariant VAR. Consequently, the Kalman filter technique relies on 
a forgetting factor that regulates the variation of estimated parameter 
coefficients with time. As proposed by Koop and Korobilis (2013), the 
forgetting factor is set at 0.99 given that our parameters do not change 
considerably across periods. The time-varying coefficients and error 
covariances are used to estimate the generalized connectedness pro
cedure of DY’s spillover index. We transformed Eq. (7) to its VMA, 

Xt =
∑∞

i=0
Υi,tϵt− i, (7)  

where Υi,t = C1,tΥi− 1,t + C2,tΥi− 2,t + …+ Cp,tΥi− p,t . Υt =
[
Υ1,t ,Υ2,t ,Υ3,t ,…,Υp,t

]′ andCt =
[
C1,t ,C2,t ,C3,t ,…,Cp,t

]′
. Both Ci,tand Υi,t 

are N × N dimensional matrices. The H-step-forecast error variance 
decompositions process can be referred to Eqs. (3) and (4) above. 

3.3. Spillover measures 

Using the GFEVD (Eqs. (3) and (4)), we construct the following 
spillover measures: 

Total connectedness index (TCIt(H) ) :
ΣN

n,m=1,n∕=mθ̃
g
nm,t(H)

ΣN
n,m=1θ̃

g
nm,t(H)

× 100, (8)  

Directional spillovers to
(
TOn→m,t(H)

)
:
∑N

n=1,n∕=m
θ̃

g
nm(H), (9)  

Directional spillovers from
(
FROMn←m,t(H)

)
:
∑N

m=1,n∕=m
θ̃

g
nm(H), (10)  

Net spillovers
(
NETnm,t

)
: TOn→m,t(H) − FROMn←m,t(H), (11)  

Net pairwise spillovers : (NPSnm(H) ) :

⎛

⎜
⎝

θ̃
g
nm(H)

ΣN
k=1θ̃

g
nk(H)

−
θ̃

g
mn(H)

ΣN
k=1θ̃

g
jk(H)

⎞

⎟
⎠× 100.

(12)  

3.4. The effect of carbon price on volatility spillovers 

Next, we build an Ordinary Least Squares (OLS) regression model to 
analyze the relationship between carbon price and the volatility spill
overs across the Nord Pool market. Other potential effects on volatility 
spillovers are controlled, namely, natural gas price and oil price. Since 
gas and crude oil prices are often highly correlated with carbon and 
electricity prices (Aatola et al., 2013; Chang et al., 2018; Duan et al., 
2021), we control the potential effect on volatility spillovers in the Nord 
Pool market. Eq. (13) provides a straightforward approach to estimate 
the impacts of these independent variables on the dependent variable, 
TCI. The linearity and additive nature of the model align well with the 
OLS estimation framework. 

yt = α+ β1Carbont + β2Gast + β1Oilt + υt, (13) 

yt denotes the total connectedness index (TCI) as calculated in Eq. 
(8). The TCI represents the cumulative effect of all the shocks, while the 
numerator illustrates the cumulative effect of a shock in variable n. 
Carbont denotes the European Union Allowances spot prices, under the 
European emission trading scheme (EU ETS). υt denotes the error term in 
the regression model. 

4. Data 

We first examine price volatility and its spillover effects across 
Nordic markets. The considered markets are in four countries, with 12 
bidding areas, which are Denmark (DK1-Western Denmark, DK2-Eastern 
Denmark), Norway (NO1-Oslo, NO2-Kristiansand, NO3-Trondheim, 
NO4-Tromsø, NO5-Bergen), Sweden (SE1-Lulea, SE2-Sundsvall, SE3- 
Stockholm, SE4-Malmo), and Finland. We use a rich sample of 107,352 
hourly price data for each region, for the period 1 January 2010 to 31 
March 2022, collected from Nord Pool.3 The carbon, oil, and gas data are 
obtained from Bloomberg. All prices are quoted in EUR/MWh and are 
aligned with the time zones. 

Uribe et al. (2020) identified an at-least-80% correlation between the 
prices of each area per country (Denmark, Sweden, and Norway), hence 
restricted their analysis to a single area and their sample range 
(2013–2018) is shorter than our sample. Electricity prices in our sample 
period may have different characteristics, so we first perform correlation 
tests across bidding areas within individual countries. The correlations 
between the hourly prices in areas of Denmark, Norway, and Sweden are 
83, 66 (average), and 77% (average), respectively.4 Specifically, DK1 
and DK2 are highly correlated, so we calculate the average hourly price 
as a proxy of price in Denmark. Similarly, we average four prices across 

3 Intraday electricity prices are obtained from Nord Pool Elspot (Day-ahead markets) and Elbas 

(Intraday markets), https://www.nordpoolgroup.com/services/power-market-data-services/.  
4 Tables for correlation tests can be found in Tables A2-A4 in Appendix A. 
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Sweden as a proxy for the Swedish electricity price. 5 

For Norway, the price difference between southern and northern/ 
central Norway is rather large, due to (i) low water reservoir in southern 
Norway, (ii) southern Norway has exported large amounts of energy to 
the continent, resulting in the supply being unable to meet demand, and 
(iii) the low transmission capacity from the north to the south. A price 
bottleneck as well as the differences appeared. Hence, we average the 
NO1, NO2, and NO5 (which are 98% correlated), and NO3 and NO4 
(which are 97% correlated) as two representatives of the Norwegian 
(southern and northern) prices, respectively. In sum, as an extension to 
the literature of Nordic market integration (e.g., Uribe et al., 2020), we 
use five regional wholesale prices in the following model. 

Table 2 presents the descriptive statistics of the calculated prices for 
the five areas – Denmark, Finland, Norway South, Norway North, and 
Sweden. 

Daily realised volatilities (RV) are estimated based on the hourly 
electricity spot price. Following Frömmel et al. (2014), the realised 
variance is defined as the summation of the squared price changes over 
day t (see, e.g., Andersen et al., 2001; Do et al., 2020). Hence, the RV is 
defined as Eq. (14): 

RVt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

j− 1
r2

t,i

√

, i = 1,…M, t = 1,…,T, (14)  

where rt,i denotes the log price change from hour i-1 to i on day t. The 
sampling frequency is 1-h and M = 24 in our case. Table 3 displays the 
descriptive statistics of daily volatilities of five areas. Fig. 1 plots the 
daily volatilities of the five market areas studied. As shown in Table 3 
and Fig. 1, price volatility in Norway is generally lower than in the other 
three countries, while volatility in Denmark is the highest. Around 95% 
of Norway’s electricity generation is from hydropower, and this has 
given Norway a stable access to inexpensive clean energy. However, for 
electricity Denmark relies largely on wind power, which is a highly 
intermittent energy resource and easily affected by weather conditions; 
hence, higher volatility is expected. All five series are tested stationary, 
by the Augmented Dickey Fuller test (Dickey and Fuller, 1979). 

5. Results 

In this section we report the results of empirical analysis by the 
methods presented in Section 3.3. In the following empirical model, we 
use fourth-order VARs (p = 4) (selected by Schwarz information crite
rion), with 10-step-ahead forecasts6 (H = 10). We define the total 
connectedness index (TCI) by summing all non-diagonal elements of the 
generalized variance matrix. We define that if this TCI rises, so does 
network member dependency, therefore higher market risk. On the 
other hand, if the TCI decreases then the dependence between the 
members decreases and in turn the market risk decreases. 

5.1. Time-varying parameter – vector autoregressive model estimation 

5.1.1. Total connectedness index 
This section reports the results by the TVP-VAR method. The out

comes corresponding to methodology provided in Sections 3.2 and 3.3 
are summarized below. Table 4 presents the averaged spillover effects 
among the markets, estimated by TVP-VAR model. Figs. 2–7 present 
dynamic total volatility connectedness, net volatility spillover connect
edness, and net pairwise volatility spillovers, estimated by both 
methods, respectively. 

The main diagonal of Table 4 shows own-variance shares of shocks, 
while the off-diagonal elements reflect the interaction across five mar
kets. The number in the bottom right corner represents the Total 
Connectedness Index (TCI) of the system. The average volatility TCI is 
52.4%, indicating that 52.4% of future volatility in Nord Pool is 
attributed to volatility shocks spreading across the markets. The internal 
cross-contribution due to individual shocks is the major driver of future 
performance across five regions in Nord Pool. Except for Denmark, all 
the “From Others” directional spillovers (Finland, Norway South, Nor
way North, and Sweden) are larger than 50%. The largest value, 60.7%, 
is for Sweden, which means that the electricity price in Sweden bears the 
largest shocks from other markets, while the Danish electricity market 
receives on average the smallest shocks, 39.9%, from other markets in 
the system. As for volatility spillover “To Others,” Sweden transmitted 
77.5% of shocks to the system while Denmark transmitted 28.8%. The 
last row of Table 4, “Net Total,” shows Sweden was a net transmitter to 
the system, at 16.8% of volatility spillovers, while the other four prices, 
as volatility spillover receivers, show negative values. Denmark as a net 
spillover receiver, bore 11.1% volatility spillovers from the system. 

Ma et al. (2022) reported a 44.2% static volatility spillover in the 
European electricity market, which is lower than our result of volatility 
spillovers in Nord Pool. Their study included, for instance, United 
Kingdom, France, Poland, Nord Pool, etc., electricity day-ahead mar
kets. The lower volatility connectedness is explained by insufficient grid 
interconnections across Europe, while Nord Pool is an integrated market 
with larger non-local risks transmitted by other markets. Ma et al. 
(2022) concluded that Denmark received the largest (40.5%) shocks 
from the system among countries in the Nord Pool. Their result differs 
from ours, where Denmark (Sweden) received the smallest (largest) 
shocks from the Nord Pool. In their study, Denmark and Finland are both 
net shock receivers while Norway and Sweden are net shock trans
mitters. In our study only Sweden is a shock transmitter. 

In most previous studies, the evolution of price and volatility spill
overs over time in electricity spot markets is attributed to changes in 
physical conditions that induce supply and demand shocks. The extent 
of price integration across European electricity markets is proved to be 
determined by market-specific factors and shocks in the short term, such 
as congestion (interconnector capacity) and extreme weather, surges in 
demand, and changes in electricity market structure in the long run, 
such as changes in renewable energy shares, total generation capacity, 
and market reforms, as well as external shocks from the financial mar
ket, geopolitical events, etc. (Frömmel et al., 2014; Han et al., 2020; 
Kyritsis et al., 2017; Chuliá et al., 2019). Hence, we plot the dynamic 
volatility spillover evolutions to relate to the spillover changes to spe
cific market events and policies (see Fig. 2). 

Fig. 2 shows that the dynamic of the TCI fluctuates significantly, 
between 20.2% and 79.6%, which confirms the necessity of using the 
TVP-VAR. Significant fluctuations of the TCI correspond to a series of 
local and global events: the transition of EU ETS from Phase II to Phase 
III in 2012, the European debt crisis in 2012, the crude oil crisis of mid- 
2014 to 2015, the surge in the EU emission allowances price in 2018, 
market coupling of the GB-Irish market in 2018, and the COVID-19 
pandemic. 

Specifically, we observe that the first plunge of the TCI happened in 
the second half of 2012 from July to September, falling from 65.2% to 
24.8%, and returned to around 55% in November. Intuitively, the 
fluctuation is contributed by the European debt crisis and the EU ETS 
transition, which was transiting from Phase II (2008–2012) to Phase III 
(2013− 2020) during the second half of 2012. Due to a large surplus of 
allowances from phase two, the demand for ETS allowances decreased, 
which caused a fall in EUA prices, from 30 Euro/emission allowance to 5 
Euro/emission allowance. The TCI is found to respond to this event, 
reflecting a lower market risk when there was a surplus of emission 
allowances. 

We observed a slight trend of increase in 2018, followed by a large 
spike in September 2018. Upon investigation, in September 2018, the 

5 Note that series of SE1- Lulea and SE2- Sundsvall have 98,315 identical 
hourly prices, hence the correlation between these two is almost equal to 1.  

6 A difference choice of lags, lag = 4, lag = 5, lag = 6, lag = 7, lag = 8 is reported in the Appendix 

B (see Figure B1). A different choice of forecasting horizon, H = 20, and H = 30, is assessed in 

Appendix B (see Figure B2). Following most of the literature (e.g., Yilmaz, 2009), we use 10-step-ahead 

horizon in the main text. 
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Nord Pool launched the GB-Ireland power market coupling, having 
played a key role in ensuring the islands of Ireland’s coupling with the 
rest of Europe. The joining of a new market typically induced more 
competition in Nord Pool, as well as in the GB-Ireland market, hence the 
rising market risk in the Nord Pool. 

The outburst of COVID-19 in the spring of 2020 increased the risk 
level among Nordic electricity markets; TCI surged from 27.2% in April 
2020 to 73.5% in October 2021. Moreover, there was an increase in TCI 
from mid-2020 to the end of 2021. In the post-COVID-19 economic re
covery period, prices of natural gas, electricity, and carbon steeply 

Table 2 
Descriptive statistics – Hourly price of 5 study areas.   

Mean Minimum Maximum Std.Dev Skewness Kurtosis Obs 

Denmark 43.06 − 200.00 1052.50 36.65 6.24 78.36 107,339 
Finland 43.18 − 1.73 1400.11 31.46 9.52 228.41 107,339 
Norway South 38.40 − 0.88 667.92 28.80 3.93 34.48 107,339 
Norway North 34.01 − 0.01 1400.11 21.12 16.20 810.27 107,339 
Sweden 38.11 − 1.97 1400.11 24.37 11.68 459.67 107,339 

Source: Own elaboration based on data from Nord Pool. Note: Sample includes electricity wholesale prices series from Denmark, Finland, Norway, and Sweden from 
January 1, 2010 - March 31, 2022. 

Table 3 
Descriptive statistics – Daily volatilities of five study areas.   

Mean Minimum Maximum Std.Dev Skewness Kurtosis ADF Obs 

Denmark 0.758 0.039 10.726 1.013 4.649 26.917 − 24.69*** 4473 
Finland 0.668 0.029 6.558 0.625 2.533 10.552 − 14.65*** 4473 
Norway South 0.222 0.007 4.150 0.298 4.707 34.438 − 22.83*** 4473 
Norway North 0.261 0.014 5.065 0.316 4.673 36.287 − 19.62*** 4473 
Sweden 0.459 0.018 6.234 0.515 3.530 19.039 − 17.80*** 4473 

Source: Own elaboration based on data from Nord Pool. Note: Daily realised volatility is measured by Eq. (14) above. The electricity daily volatilities from five regions 
– Denmark, Finland, Norway South, Norway North, and Sweden from January 1, 2010, to March 31, 2022, include 4473 daily observations. The hypothesis of the 
Augmented Dickey Fuller (ADF) test is H0: non-stationary against H1: stationary. The lag length is determined by BIC criterion. * denotes significance at 10% level, ** 
denotes significance at 5% level, *** denotes significance at 1% level.  

Fig. 1. Plots of daily volatilities of five study areas. 
Source: Own elaboration based on data from Nord Pool. 
Note: Daily realised volatility is measured by Eq. (10) above. The electricity daily volatilities from five regions – Denmark, Finland, Norway South, Norway North, 
and Sweden cover the period January 1, 2010 – March 31, 2022, including 4473 daily observations. 
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increased when energy demand rose. The surge in demand was not 
matched by increased supplies, and the importing regions competed 
with one another in the global energy market. 

The economic consequences of an electricity supply shortage wors
ened as the 2021 winter arrived, confirming that COVID-19 and the 
post-COVID economic recovery increased market risk. However, from 
the end of 2021, Nordic electricity recovered from the pandemic as wind 
generation rapidly rose there, and Norway had more rainfall, so that 
eventually some of its reservoirs reached their highest point since 2015 
(Matt, 2022). There was no acute risk of shortages or supply disruptions 
in the electricity supply in the four countries when 2022 began. 

5.1.2. Net directional spillover analysis 
To investigate the directional dynamic spillovers for each market in 

the Nord Pool, Fig. 3 plots the net spillovers with regard to Eq. (11) in 
Section 3.3 (NETnm,t = TOn→m,t(H)- FROMn←m,t(H)) and corresponding to 
the last row of Table 4, “Net Total.” Fig. 4 plots the net pairwise vola
tility spillover that corresponds to Eq. (12) in Section 3.3. The net 
pairwise volatility spillover between market n and m is the difference 
between gross volatility shocks transmitted from market n to m and gross 
volatility shocks transmitted from m to n (Diebold and Yilmaz, 2012). 

We start with Denmark. Fig. 3 indicates Denmark is net volatility 
spillover receiver over the sample, except for relatively short episodes, 
for example, briefly being a volatility transmitter at the end of 2016. 
This is consistent with the averaged results in Table 4, which shows 
Denmark is the largest receiver of volatility spillover. Fig. 4 further in
dicates Sweden as a net transmitter of shocks to Denmark (Fig. 3, 
Denmark-Sweden). From 2010 to early 2014, Denmark is net spillover 
receiver shocks from Finland, Norway south, Norway north, and Swe
den. There are, however, exceptions to when Denmark is a volatility 
spillover transmitter. For instance, it transmitted shocks to Finland in 
2016 and to Southern Norway at the end of 2016. Denmark has the 
largest share of wind power in generation mix and the effect of inter
mittent wind power on price volatility is higher. The country imported 
hydropower from Norway and Sweden, hence the evidence of shock 
receiver holds reasonably. 

The second largest volatility spillover receiver is Southern Norway 
(Table 4). Southern Norway is an interesting case in Nord Pool as, in the 
summer of 2022, its water reservoir level became incredibly low and it 
exported large amounts of electricity to the rest of Europe, resulting in 
supply and demand unbalance. It is also connected to western Denmark, 
where the power generation is based on wind while Southern Norway 
relies on hydropower. Southern Norway benefits from the flexibility of 
being a hydro producer while being connected to Danish wind power, 

Table 4 
Average connectedness matrix of the system – estimated by TVP-VAR.   

Denmark Finland Norway 
South 

Norway 
North 

Sweden From 
Others 

Denmark 60.13 11.33 7.02 6.48 15.04 39.87 
Finland 7.81 45.21 10.82 11.45 24.70 54.79 
Norway 

South 6.21 11.38 47.04 18.02 17.35 52.96 

Norway 
North 

5.35 11.15 16.77 46.30 20.41 53.70 

Sweden 9.41 20.92 13.35 17.04 39.28 60.72 
To Others 28.78 54.78 47.97 53.00 77.52 TCI ¼

52.41 Net Total − 11.10 − 0.01 − 4.99 − 0.70 16.80 

Source: This spillover table is generated from 10-step-ahead generalized VAR 
forecast error variance decomposition estimated from TVP-VAR. The nmth entry 
estimates the fraction of 10-step-ahead error variance in forecasting market n 
due to exogenous shocks to market m (the spillover from market m to market 
i: dJ

nm). According to Eq. 11 (TOn→m,t(H) - FROMn←m,t(H)), we obtain the net total 
directional connectedness,NETnm,t .  

Fig. 2. Dynamic total volatility connectedness – estimated by TVP-VAR.  
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Southern Norway imports wind electricity when the cost of import is 
lower than the opportunity cost of using own water in the reservoirs. 
Fig. 3 shows that Southern Norway was a net spillover receiver from 
2010 to 2013 and 2016 to 2022. 

Northern Norway was a small net receiver of volatility spillover at an 
aggregated level. As shown in Fig. 3 panel A4, from the second half of 
2011 to 2014, Northern Norway was a shock transmitter to the system, 
as well as during 2015 and 2018. In the rest of the sample period, 
Northern Norway was a significant shock taker; it received 93.8% 
volatility from the Nord Pool on 27 Oct 2014, for instance. As for net 
pairwise spillovers in Fig. 4, Northern Norway was mainly the shock 
transmitter to Southern Norway from 2010 to 2015 and Finland from 
2012 to 2018. In the meantime, net spillovers received by Northern 
Norway mainly came from Sweden (2010–2015), Southern Norway 
(2015–2016), and Finland (2019–2020). 

Finland is a net volatility spillover transmitter as it received 54.8% 
spillover effect from the system and transmitted 54.8% to the system 
(Table 4), showing that Finland is a net break-even, with receiving and 
transmitting just one hundredth of a percentage point apart. The dy
namic plots of net spillovers in Fig. 3 and net pairwise spillovers in Fig. 4 
indicate that the net position changed through the sample. Finland was a 
net transmitter between January 2010 and June 2012, mainly to Nor
way, then it was a net spillover receiver from June 2012 to June 2018, 
mainly from Sweden and Norway. The view is slightly different from 
Uribe et al. (2020), who concluded that Finland received volatility 
shocks from Norway during 2013 and 2015. Since 2018, Finland went 

back to being a spillover transmitter to Denmark and Norway; however, 
the effect was lower than that of 2010 to 2012. It is noteworthy that 
Sweden persistently transmits net spillover to Finland throughout the 
sample likely due to being a net importer of electricity from Sweden. 

5.2. Rolling window VAR estimation 

This section follows the Diebold and Yilmaz (2012)’s rolling window 
five-variable VAR model to estimate the volatility connectedness in 
Nord Pool markets. According to the Schwarz information criterion 
(SIC), the optimal lag length is set as p = 4. Horizon is set to 10-step- 
ahead forecasts and rolling window size 200.7 

5.2.1. Total connectedness index estimated by RW-VAR 
Table 5 shows the variance decomposition matrix. The main diago

nal of Table 5 shows own-variance shares of shocks, while the off- 
diagonal elements reflect the interaction across five markets. Table 5 
shows that the total connectedness index (TCI) is 50.9%, slightly lower 
than the TCI estimated by TVP-VAR. At aggregate level, Sweden trans
mits the largest, 11%, net volatility spillovers to the system. The Swedish 
electricity market produces and receives the most volatility spillovers to 
other markets (72.4%) and from other markets (61.4%) at an aggregated 

Fig. 3. Net volatility spillovers – estimated by TVP-VAR.  

7 A difference choice of rolling window size is reported in the robustness check in Appendix B 

(Figure B3). 
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level. Compared to the TVP-VAR estimation, Sweden transmitted 5.1% 
less net spillover to the system in an RW-VAR. Danish electricity market 
produces and receives the least volatility spillover from (33.6%) and to 
(22.3%) the system; the view is consistent with the TVP-VAR measure. 

In terms of net volatility spillover, Denmark is a net receiver 
(− 11.3%). The estimated value is almost the same as the TVP-VAR’s 
result for Denmark. Southern Norway receives 51.6% volatility spillover 
from other markets and produces 51.1% volatility spillovers to the 
system, making it a net volatility spillover receiver in an averaged 
measure (− 0.43%). However, Northern Norway is classified as a net 

volatility spillover producer; this result differs from the estimate by TVP- 
VAR, which shows Northern Norway is a net receiver of spillover. 
Finland receives the second most significant value of spillover, 54.5% 
from the other four markets, and has the second largest net volatility 
spillover in an aggregated level (− 3.4%). 

Fig. 5 presents the dynamic total connectedness measures of the 200 
days rolling-window VAR approach. We observe that the pattern of the 
TCI is less volatile than that estimated by the TVP-VAR. TCI fluctuates 
between 77.7% and 27.1%. 

Two major patterns are evident from the time variations: First, a 
trend of decrease in TCI is observed from July 2010 to May 2015. It 
shows, in general, the volatility spillovers within Nord Pool gradually 
decreased after the 2008–2010 financial crisis and the 2010–2012 Eu
ropean debt crisis. Three spikes were found during this period. The first 
(77.7%) was observed on 25 August 2011, following the European debt 
crisis. The second, reaching 60.3% on 1 October 2013, appeared after a 
large fall in price of emission allowances under the EU ETS. The fall in 
emission prices promoted thermal production of fossil fuel resources and 
affected the value of hydropower negatively. Since thermal power is the 
opportunity cost of flexible hydropower, the decline in emission prices 
drove the power prices down. It raised the short-term volatility spillover 
level in the Nord Pool (NordREG, 2014). The third spike appears on 26 
October 2014, reaching 68.9%, corresponding to the plunge in crude oil 
prices during 2014. Intuitively, we can state that the dependence on the 
Nord Pool wholesale electricity market increased when the crude oil 
market price plunged, but TCI decreased to 27% on 14 May 2015 after 
the crisis had eased. 

Fig. 4. Net pairwise volatility spillovers - estimated by TVP-VAR.  

Fig. 5. Dynamic total volatility connectedness – estimated by 200 days rolling 
window DY2012. 

C. Lyu et al.                                                                                                                                                                                                                                      



Energy Economics 134 (2024) 107559

11

Second, during the second half of the sample, the TCI mainly fluc
tuates around 40–60%, with a few exclusions. The launch of the GB- 
Ireland market coupling in September indeed raised the spillover ef
fect in Nord Pool. We observed a steep increase from September 2018 
and a spike of 68.3% on 22 November 2018. Again, the COVID-19 
outburst did not affect the volatility spillover effects in Nord Pool 
immediately but raised the level of spillovers from September 2020, 
which peaked at 66.1% in April 2021, during the post-pandemic econ
omy recovery. 

5.2.2. Net directional spillover analysis 
Next, we investigate the net spillover for each market using RW-VAR 

connectedness. Fig. 6 plots the net volatility spillover in the Nord Pool 
network with regard to Eq. (11) in Section 3.3 (NETnm,t = TOn→m,t(H)- 
FROMn←m,t(H)), and corresponding to the last row of Table 5, “Net 
Total.” Fig. 7 thus plots the net pairwise volatility spillover. We find: 

Denmark receives net volatility spillover from the system throughout 
the sample period. The volatility spillover mostly comes from Sweden 
and Southern Norway. As for the net volatility transmitter, Sweden is a 
net spillover producer to the system, especially to Denmark and Finland. 
However, the net pairwise volatility spillover between Sweden and 
Northern Norway changes from time to time. Between 2010 and 2018, 
Northern Norway was the main contributor of the volatility spillovers 
that Sweden received; however, from 2018 to 2020 Sweden transmitted 
relatively large volatility spillovers to Northern Norway. 

For Finland, the overall evolution pattern is similar to the TCI pattern 
measured by TVP-VAR. Finland was a net volatility transmitter from 
July 2010 to December 2011 and from August 2018 to January 2019. 

However, the position of a net transmitter was less powerful than that 
estimated by TVP-VAR from 2010 to 2011. For instance, the net vola
tility spillover transmitted by Finland to the system reached 66% in May 
2010 (by TVP-VAR); however, due to the loss of sample in the rolling 
window, we cannot observe that value in May using the RW-VAR. 

5.3. Effect of carbon price on volatility spillovers 

The power industry is the first regulated sector in the EU ETS and is 
the sector with the highest CO2 emissions and the most significant car
bon trading participant. Higher carbon prices encourage investment in 
clean power generation and less carbon-intensive technologies, whereas 
lower carbon prices revive the attractiveness of fossil fuel power gen
eration. Electricity price volatility and spillover effects across the inte
grated electricity market depend on the EU’s carbon price change. 

This section analyses the impact of the carbon price on the volatility 
of connectedness in Nord Pool wholesale electricity markets. Applying 
Eq. (13) in Section 3.4, Table 6 reports the result of carbon price impact 
on volatility spillover in Nord Pool electricity markets. Following the 
literature, electricity prices can easily be affected by other energy prices, 
such as gas and crude oil prices; hence we control the gas and oil prices 
in the model. All data are used on a monthly frequency, from January 
2010 to March 2022. The rolling-window estimation causes a loss in 
observation in the first window. We report the results from both 200- 
days rolling window VAR and 100-days rolling window VAR. 

The results show that the carbon price does not have a significant 
impact on TCI estimated by TVP-VAR and 100-days rolling window 
VAR. However, the carbon price has 5% significant impact on TCI 

Fig. 6. Net volatility spillovers – estimated by 200 days rolling window.  
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estimated by 200-days rolling window VAR. We find a positive rela
tionship between carbon price and total volatility spillovers estimated 
by RW-VAR. Meanwhile the crude oil price also has positive effect on 
TCI estimated by the longer 200-days rolling window VAR, significance 
in 1% level. The insignificant effect of price of gas on volatility spillover 
can be explained by the low share of gas power in the Nord Pool market. 

6. Additional analysis 

6.1. Model with representative prices 

We now select a representative price for each country, considering 

Fig. 7. Net pairwise volatility spillover – estimated by 200 days rolling window.  

Table 5 
Average connectedness matrix of the system – estimated by 200-days rolling 
window.   

Denmark Finland Norway 
South 

Norway 
North 

Sweden From 
Others 

Denmark 66.37 8.24 7.5 6.12 11.77 33.63 
Finland 6.26 45.53 10.85 13.43 23.93 54.47 
Norway 

South 4.67 10.64 48.45 19.25 16.99 51.55 

Norway 
North 4.06 12.35 17.44 46.46 19.68 53.54 

Sweden 7.31 19.85 15.32 18.89 38.62 61.38 
To Others 22.31 51.08 51.12 57.69 72.38 TCI ¼

50.92 Net Total − 11.32 − 3.39 − 0.43 4.15 10.99 

Source: This spillover table is generated using 10-step-ahead generalized VAR 
forecast error variance decomposition estimated from 200 days rolling window 
VAR. The nmth entry estimates the fraction of 10-step-ahead error variance in 
forecasting market n due to exogenous shocks to market m (the spillover from 
market m to market i: dJ

nm). According to Eq. 11 (TOn→m,t(H) - FROMn←m,t(H)), 
we obtain the net total directional connectedness,NETnm,t .  

Table 6 
Impact of carbon price on volatility spillovers in Nord Pool.   

Dependent Variable  

TCI (TVP) TCI (RW-200) TCI (RW-100) 

Carbon 0.175 
(1.033) 

0.164 ** 
(0.058) 

1.309 
(1.025) 

Gas 3.603 
(2.192) 

− 0.031 
(0.150) 

1.626 
(2.173) 

Oil − 1.594 
(3.197) 

0.100 *** 
(0.029) 

4.963 
(3.168) 

Constant 51.045 *** 
(11.624) 

39.269*** 
(2.373) 

26.515* 
(11.519) 

Observations 147 141 144 
R2 0.028 0.206 0.081 
Adjusted R2 0.008 0.189 0.061 
Residual Sta.Err 9.659 

(df = 143) 
8.274 
(df = 137) 

9.569 
(df = 140) 

F statistics 1.381 11.860*** 4.090** 

Note: *p < 0.1; **p < 0.05; ***p < 0.01. The table presents the estimates of the 
impacts of carbon prices on total volatility connectedness index across five Nord 
Pool wholesale electricity prices. The dependent variables are disaggregated 
monthly total volatility spillovers estimated from both TVP-VAR and RW-VAR. 
Standard error is reported in the parentheses. 
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one bidding zone per country with the exception of Norway, which will 
have two due to significant price differentials between its northern and 
southern regions caused by congestion issues. Our focus in selecting 
representative prices lies in the direction of electricity capacity flows 
between countries, aligning with our study’s theme on spillover effects 
in the Nord Pool markets. 

In Denmark, the DK1 bidding zone interacts with Norway’s NO1 and 
Sweden’s SE3, engaging with two countries (whereas DK2 only interacts 
with Sweden’s SE4), leading us to select DK1 as Denmark’s represen
tative price due to its broader cross-border exchange. In Sweden, the SE3 
zone stands out as the most active and interconnected region, with 
transmissions to and from other Swedish zones (SE2 and SE4), Finland, 
Norway’s NO1, and Denmark’s DK2. Consequently, we selected SE3 as 
Sweden’s representative price. In Norway, we have discussed the price 
difference between the north and south in section 4. For the northern 
zones, NO3 was chosen for its connections with SE2 and the southern 
Norwegian zones. In southern Norway, NO1 was preferred over NO5 
and NO2 because it has direct transmissions with NO3 and SE3 (actively 
connected to Finland and Denmark), and its transmission volume with 
Sweden surpasses that of NO2. Table 7 shows the descriptive statistics of 
both the original hourly prices and daily volatilities of 5 representative 
bidding zones in Nord Pool. Table 8 presents the stationary tests for the 
volatility series of the five regions. 

To further identify the long-memory characteristics of data, which is 
crucial for building accurate models, we employ the fractional differ
encing method aimed at estimating the fractional differencing param

eter. This parameter critically reflects the memory characteristics of a 
time series. Theoretically, the fractional differencing model captures the 
long memory feature of a time series using a parameter d, known as the 
fractional differencing parameter or the order of integration. When d is: 
0, the series is a regular stationary series. When it is between (0, 0.5), the 
series exhibits long memory but is still stationary. When it is exactly 0.5, 
the series behaves like a random walk. When it is between (0.5, 1), the 
series has long memory and is non-stationary, but not a random walk. 
Lastly, when d is 1 or greater, the series requires differencing to become 
stationary.8 

The results show that all five chosen volatility series exhibit long 
memory, but all are still stationary, demonstrating that these series are 
stationary over time. This stationarity is further supported by the results 
of the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Zivot- 
Andrews tests results shown in Table 8, each of which confirms the 
stationarity of the series. Such findings ensure the appropriateness of our 
model selection, underpinning the reliability of our analytical frame
work. By choosing representative prices as part of our robustness check, 
we aim to offer a more robust approach to examining the dynamics of 
price volatility and spillover effects across international electricity 
markets. 

We then observe that the TCI index in Table 9 stands at 50.40%, 
which is similar to the results in Table 4 – TCI examined to be 52.41%, 
indicating a high degree of consistency. Specifically, in Table 9, Sweden 
continues to emerge as the primary transmitter and receiver of volatility 

shocks, with Denmark exhibiting the lowest magnitude of such shocks. 
These results further reinforce the robustness of our use of average price 
in the main text. 

In sum, by choosing representative prices as part of our robustness 
check, we aim to offer a more nuanced approach to examining the dy
namics of price volatility and spillover effects across international 
electricity markets. This method allows us to more accurately capture 
the characteristics of regional electricity trading, thereby providing 
deeper insights into the complex interactions within the Nordic elec
tricity market. 

6.2. Whole system modelling - realised variances and realised covariances 

6.2.1. A time-varying parameter – vector autoregressive model estimation 
analysis 

This subsection aims to integrate covariances into the assessment of 
variance spillovers. To achieve this objective, we derive our measures of 
variance using high-frequency intra-day data. This enables us to acquire 
precise estimations of realised covariance matrices, which we dynami
cally model on a daily basis. Following Chanatásig-Niza et al. (2022) and 
Fengler and Gisler (2015), we first compute the returns of the hourly 
prices as the log return of the hourly prices, then we estimate the real
ised daily variation and covariation using the covariance matrix defi
nition, so:   

Where ri =
(
rDK,i, rFI,i, rNOS ,i, rNON ,i, rSE,i

)′ for i = 1, …,m, with m being 
the number of returns in a day. Eq. (15) denotes the covariance matrix, 
which consists of the realised variance of each market on the diagonal 
and the realised covariances between the markets on the off-diagonal. 

Table 10 shows the descriptive statistics of the realised variances and 
realised covariances of the five bidding zones. Our stationary tests 
confirm that all the variance and covariances series are stationary over 
time.9 Table 11 and Table 12 shows the spillovers in the variance system 
and covariances system, respectively. While the total variance spillover 
among markets is around 50% – which is consistent with previous an
alyses – the total covariance spillover is >80%. These results not only 
reinforce the strong interdependence among markets but also highlight 
the contributing role of covariance to their interdependence. We further 
employ TVP-VAR to estimate the full system by including all variances 
and covariances in one model. 

We present the overall spillover results in Table 13. To understand 
the contribution of the variances and covariances to the markets’ 
interdependence, we follow Fengler and Gisler (2015) to calculate own 
variance spillovers, cross variance spillovers, own covariances spillovers, and 
cross covariance spillovers based on outputs of Table 13 and present the 
results in Table 14.10 We observed that the dominant factor contributing 

ReCov =
∑m

i=1
rir′

i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ReVarDK ReCovDK− FI ReCovDK− NO S ReCovDK− NO N ReCovDK− SE
⋮ ReVarFI ReCovFI− NO S ReCovFI− NO N ReCovFI− SE
⋮ ⋮ ReVarNO S ReCovNO S− NO N ReCovNO S− SE
⋮ ⋮ ⋮ ReVarNO N ReCovNO N− SE

ReCovSE− DK ReCovSE− FI ReCovSE− NO S ⋯ ReVarSE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)   

8 The results are shown in Table A6 in Appendix A. 

9 The results of the fractional differencing tests that aimed at estimating the fractional differencing 

parameter are shown in Table A7 in Appendix A. 
10 Following Femgler and Gisler (2015), own variance spillovers is defined as spillovers among var

iances, while cross variance spillovers is the spillovers from variances to covariances. Own covariances 

spillovers, and cross covariance spillovers are defined in a similar vein. 
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to the whole system TCI is the spillover effect from own covariances, 
accounting for a significant share of 47.9%. By contrast, only 13.62% is 
explained by own variance spillovers. Chanatásig-Niza et al. (2022) 
conducted a study that examined the volatility spillover connectedness 
in Australian electricity markets by considering both variances and co
variances as a full system. 

Our findings are aligned with Chanatásig-Niza et al. (2022)’s study, 
as they also observed that the spillover effect from own covariances 
contributes the most, while own variance spillovers have the smallest 
share. The findings indicate that there is a mutual reliance between the 
markets, which is more accurately characterized when considering co
variances. This underscores the importance of including covariances in 
the model and reveals features of strong interdependence in the Nord 
Pool. 

6.2.2. High dimensional VAR with common factor 
Considering the full system of variances and covariances as in pre

vious analysis, we have a 15-dimensional VAR, which can reasonably be 
argued as a high-dimensional system. This type of system often requires 
a model specification that allows for strong cross-sectional dependence. 
In addition, as Nordic region is tightly geographical and economical 
linked, its member markets can share common factors that are unob
servable. To address this concern in the methodological approach, we 
conduct a full system (with both variances and covariances) analysis by 
employing a high-dimensional VAR with common factors (VAR-CF, 
hereafter) proposed by Miao et al. (2023) to accommodate intercon
nectedness and temporal co-variability among considered Nordic mar
kets. In a similar spirit of Uddin et al. (2023), we then adapt the 
connectedness approach proposed by Diebold and Yilmaz (2012) to 
estimate the overall connectedness matrix, followed by spillover con
tributions of variances and covariances suggested by Fengler and Gisler 

Table 7 
Descriptive statistics - hourly prices and daily volatilities of 5 bidding zones in Nord Pool.  

Panel A: Hourly prices of five representative bidding zones  

Mean Minimum Maximum St.Dev. Skewness Kurtosis Obs. 

DK1 42.00201 − 200 2000 37.58594 10.3154 341.4854 107,339 
NO1 38.73736 − 1.97 667.92 29.28268 3.871317 33.03959 107,339 
NO3 34.72078 − 0.01 1400.11 21.38077 15.64688 770.2175 107,339 
SE3 39.6184 − 1.97 1400.11 30.64654 8.989079 219.0297 107,339 
FI 43.18087 − 1.73 1400.11 31.45592 9.520567 228.4092 107,339 

Panel B: Realised volatilities of five representative bidding zones  

Mean Minimum Maximum St_Dev Skewness Kurtosis Obs 

DK1 0.967756 0.027043 14.04637 1.467855 3.548476 10.53657 4473 
NO1 0.250115 0.006893 7.440794 0.353742 6.223166 70.34513 4473 
NO3 0.296279 0.018108 5.523101 0.346071 4.601583 33.86149 4473 
SE3 0.524679 0.029414 7.042009 0.626638 3.117002 11.34313 4473 
FI 0.689955 0.029414 8.278457 0.660805 2.720139 9.74936 4473  

Table 8 
Unit root tests - daily volatilities of five representative bidding zones.   

ADF Phillips-Perron Zivot-Andrews KPSS Obs 

RV_DK1 − 27.0974*** − 47.7747*** − 37.7341*** 0.099463* 4473 
RV_NO1 − 23.7344*** − 41.9727*** − 32.6448*** 0.266849** 4473 
RV_NO3 − 18.9978*** − 38.1075*** − 28.1799*** 0.377453** 4473 
RV_SE3 − 17.232*** − 33.6582*** − 29.2809*** 1.058012*** 4473 
RV_FI − 14.8974*** − 35.1174*** − 27.1934*** 0.555588*** 4473 

Source: lag length is determined by BIC criterion. The hypothesis of the Augmented Dickey Fuller (ADF) test is H0: non-stationary against H1: stationary. The null 
hypothesis of the Phillips-Perron (PP) test is that there is a unit root, with the alternative that there is no unit root. In the Zivot-Andrews tests, the null hypothesis is that 
the series has a unit root with structural break(s) against the alternative hypothesis that they are stationary with break(s). Kwiatkowski– Phillips–Schmidt–Shin (KPSS) 
tests are used for testing a null hypothesis that an observable time series is stationary around a deterministic trend (i.e. trend-stationary) against the alternative of a unit 
root. * Denotes significance at 10% level, ** denotes significance at 5% level, *** denotes significance at 1% level.  

Table 9 
Connectedness matrix of the volatility system – estimated by TVP-VAR model.   

Denmark Finland Norway South Norway North Sweden From Others 

Denmark 67.58 9.45 7.03 5.15 10.80 32.42 
Finland 5.99 45.76 10.41 11.40 26.44 54.24 
Norway South 5.62 11.77 47.02 18.23 17.35 52.98 
Norway North 3.98 12.38 17.13 45.95 20.57 54.05 
Sweden 6.18 22.82 13.19 16.13 41.69 58.31 
To Others 21.77 56.41 47.76 50.90 75.16 TCI ¼ 50.40 
Net Total − 10.65 2.17 − 5.21 − 3.15 16.85 

Source: This spillover table is generated from 10-step-ahead generalized VAR forecast error variance decomposition estimated from TVP-VAR. Lag = 4 selected by SIC. 
The nmth entry estimates the fraction of 10-step-ahead error variance in forecasting market n due to exogenous shocks to market m (the spillover from market m to 
market i: dJ

nm). According to Eq. 11 (TOn→m,t(H) - FROMn←m,t(H)), we obtain the net total directional connectedness,NETnm,t.  
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(2015). 
The VAR-CF with a p-lag order can be specified as follows: 

Xt =
∑p

i=1
ΦiXt− i +Λft + ϵt, t = 1, 2,…, T (16)  

where Λ = (λ1, λ2,…, λN)
′ is the N × R a matrix of the factor loadings 

corresponding to the R-dimensional vector of common factors, ft . We 
follow the three-step approach of Miao et al. (2023) to estimate the 

coefficient matrices and the variance-covariance matrix of error terms (i. 
e., Φi, Λ, and Σϵ).11 These estimated outputs are then used to calculate 
the connectedness indices as presented earlier in section 3. 

We present the overall connectedness results estimated using the 
VAR-CF framework and the spillover contributions of variances and co- 
variances in Table 15 and Table 16, respectively. 

Overall, we find a consistent results with section 6.2.1 in an essence 

Table 10 
Descriptive statistics - realised variance and realised covariances of five representative bidding zones in Nord Pool.   

Mean Min Max St_Dev Skew Kurt ADF Phillips-Perron Zivot-Andrews KPSS Obs 

Panel A: Realised Variance 
RV_DK1 3.091 0.001 197.300 11.121 5.891 47.896 − 36.543*** − 51.494*** − 40.617*** 0.072 4473 
RV_NO1 0.188 0.000 55.365 1.219 28.845 1120.049 − 41.115*** − 57.598*** − 43.065*** 0.3652*** 4473 
RV_NO3 0.208 0.000 30.505 0.909 19.203 560.072 − 34.431*** − 51.287*** − 37.029*** 0.4454*** 4473 
RV_SE3 0.668 0.001 49.590 2.136 9.640 144.525 − 30.221*** − 45.579*** − 36.695*** 1.008*** 4473 
RV_FI 0.913 0.001 68.533 2.411 10.446 193.188 − 28.303*** − 46.319*** − 34.768*** 0.6065*** 4473 
Panel B: Realised Covariance 
DK1_NO1 0.190 − 0.944 42.627 1.038 22.154 722.519 − 39.135*** − 52.008*** − 41.549*** 0.3743*** 4473 
DK1_NO3 0.190 − 1.075 22.679 0.793 15.460 328.199 − 36.431*** − 47.460*** − 39.565*** 0.3292*** 4473 
DK1_SE3 0.424 − 1.325 42.533 1.679 13.692 259.661 − 36.641*** − 53.498*** − 41.519*** 0.7398*** 4473 
DK1_FI 0.403 − 2.403 38.724 1.564 14.767 295.330 − 38.002*** − 58.610*** − 43.216*** 0.5551*** 4473 
NO1_NO3 0.106 − 0.454 17.964 0.508 16.620 430.088 − 35.666*** − 44.648*** − 37.877*** 0.1979** 4473 
NO1_SE3 0.175 − 0.236 33.476 0.920 19.489 533.982 − 37.901*** − 49.252*** − 40.224*** 0.3752*** 4473 
NO1_FI 0.166 − 5.894 29.956 0.844 18.921 509.599 − 38.327*** − 58.746*** − 41.071*** 0.316*** 4473 
NO3_SE3 0.205 − 0.144 23.858 0.813 14.178 302.747 − 32.511*** − 41.442*** − 35.719*** 0.3986*** 4473 
NO3_FI 0.196 − 0.487 19.114 0.692 12.397 236.370 − 30.918*** − 46.777*** − 34.357*** 0.3627*** 4473 
SE3_FI 0.540 − 0.859 42.039 1.828 10.813 170.874 − 31.528*** − 48.658*** − 37.324*** 0.8188*** 4473 

Source: lag length is determined by BIC criterion. The hypothesis of the Augmented Dickey Fuller (ADF) test is H0: non-stationary against H1: stationary. The null 
hypothesis of the Phillips-Perron (PP) test is that there is a unit root, with the alternative that there is no unit root. In the Zivot-Andrews tests, the null hypothesis is that 
the series has a unit root with structural break(s) against the alternative hypothesis that they are stationary with break(s). Kwiatkowski– Phillips–Schmidt–Shin (KPSS) 
tests are used for testing a null hypothesis that an observable time series is stationary around a deterministic trend (i.e. trend-stationary) against the alternative of a unit 
root. * Denotes significance at 10% level, ** denotes significance at 5% level, *** denotes significance at 1% level.  

Table 11 
Connectedness matrix of the realised variance system – estimated by TVP-VAR.   

RV_DK1 RV_FI RV_NO1 RV_NO3 RV_SE3 From Others 

RV_DK1 67.52 10.58 5.22 4.09 12.59 32.48 
RV_FI 6.03 44.44 10.41 10.15 28.97 55.56 
RV_NO1 4.67 15.48 42.77 16.66 20.41 57.23 
RV_NO3 3.55 14.85 17.97 39.56 24.07 60.44 
RV_SE3 6.22 25.37 12.13 13.75 42.52 57.48 
To Others 20.48 66.28 45.73 44.65 86.04 263.19 
Net Total − 12.00 10.72 − 11.50 − 15.79 28.56 TCI ¼ 52.64  

Table 12 
Connectedness matrix of the realised covariances system – estimated by TVP-VAR.   

DK1_NO1 DK1_NO3 DK1_SE3 DK1_FI NO1_NO3 NO1_SE3 NO1_FI NO3_SE3 NO3_FI SE3_FI From Others 

DK1_NO1 16.64 8.61 9.14 7.97 9.46 13.7 12.37 7.22 6.77 8.08 83.36 
DK1_NO3 9.27 16.12 9.99 8.32 9.05 8.51 7.66 12.21 10.5 8.4 83.88 
DK1_SE3 8.97 9.09 18.24 13.92 5.57 8.65 7.82 7.68 7.03 13.04 81.76 
DK1_FI 8.7 8.68 15.32 19.02 5.27 7.91 8.11 6.89 7.32 12.77 80.98 
NO1_NO3 10.26 9.37 6.29 5.3 16.2 13 11.49 11 9.83 7.26 83.76 
NO1_SE3 12.09 7.16 7.77 6.57 10.7 16.3 14.28 8.36 7.76 9.05 83.74 
NO1_FI 11.67 7 7.43 6.99 10.3 15.2 15.85 7.87 8.35 9.35 84.15 
NO3_SE3 6.95 10.67 7.55 5.97 9.5 8.82 7.8 17.32 14.7 10.76 82.68 
NO3_FI 6.89 9.66 7.16 6.47 9 8.55 8.62 15.44 16.8 11.43 83.24 
SE3_FI 6.83 6.63 11.54 10.45 5.4 8.63 8.5 9.43 9.82 22.77 77.23 
To Others 81.64 76.88 82.2 71.95 74.2 93 86.65 86.09 82 90.15 824.78 
NET − 1.72 − 7 0.44 − 9.02 − 9.53 9.23 2.5 3.41 − 1.23 12.92 TCI ¼ 82.48  

11 We follow Uddin et al. (2023) to choose the lag order p of VAR-CF as 1 to ensure enough degree of 

freedom. We do not present the whole estimation procedure to conserve space and refer to section 3 of 

Miao et al. (2023) for a detail description. We thank the referee for a suggestion of the VAR-CF model. 
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that the Nordic electricity markets are strongly interdependence with a 
Total Connectedness of nearly 90% considering the spillovers contrib
uted by both variances and covariances. Besides, covariances have 
contributed significantly to the spillovers of the system with its own 
covariances spillovers being at nearly half (47%) of the whole system’s 
spillover. These results, again, confirm the robustness of the strong 
interdependence among considered Nordic electricity markets and the 
significant role of variances, and particularly, covariances in contrib
uting to their interrelationship. 

7. Conclusion 

This paper examines price volatility and its spillover effects across 
Nordic electricity wholesale markets. The four Nord Pool countries 
studied comprise 12 regional markets. Denmark (DK1-Western 
Denmark, DK2-Eastern Denmark), Norway (NO1-Oslo, NO2- 
Kristiansand, NO3-Trondheim, NO4-Tromsø, NO5-Bergen), Sweden 
(SE1-Lulea, SE2-Sundsvall, SE3-Stockholm, SE4-Malmo), and Finland. 
We use a rich sample of 107,352 hourly prices for each of the region, 
ranging from 1 January 2010 to 31 March 2022, collected from Nord 
Pool. The novelty of our approach is threefold. First, we use the 
connectedness approach based on both the TVP-VAR, RW-VAR, and 
VAR-CF models to analyze integration in Nordic electricity markets, 
contributing to the scarce literature in the electricity volatility 
connectedness across four countries (Sweden, Finland, Denmark, Nor
way). Second, we divide the Norwegian market due to observed differ
ences between northern and southern electricity prices. Third, we 
examine how changes in carbon price influence those spillover effects. 

Our results show that the average volatility TCI estimated by TVP- 
VAR (RW-VAR) is 52.4% (50.9%), indicating that 52.4% (50.9%) of 
the future volatility in Nord Pool is attributed to volatility shocks 
spreading across the markets. As for TVP-VAR measure, our results show 
that Sweden is the only net volatility spillover transmitter while 
Denmark bears the most significant shocks from the system. The dy
namic evolution of total connectedness index responded to the EU ETS’s 
transition from Phase II to Phase III, indicating that the decrease of 
market risk in Nord Pool corresponds to a surplus of emission allowances 
in EU ETS. In addition, the launch of GB-Irish power market coupling 
into Nord Pool increased the market risk in Nord Pool. 

The RW-VAR connectedness shows that both Sweden and Northern 
Norway are net volatility spillover transmitters at an aggregated level. 
The Danish market produces and receives the least volatility spillover 
from (33.6%) and to (22.3%) the system; the view is consistent with the 
TVP-VAR measure. A spike in total connectedness index appeared after a 
large price fall of emission allowances under EU ETS in 2013. The fall in 
emission prices promoted the thermal production of fossil fuel resources 
and affected the value of water negatively. Since thermal power is the 
opportunity cost of flexible hydropower with a reservoir, the decline in 
emission prices drove the power prices down. It raised the short-term 
volatility spillover level in the Nord Pool. The result further shows 
that carbon price does not have a significant impact on TCI estimated by 
TVP-VAR and 100-days rolling window VAR. However, the carbon price 
has 5% level significant impact on TCI estimated by 200-days rolling 
window VAR. The positive relationship between carbon price and total 
volatility spillovers estimated by RW-VAR is observed. 

The findings of our study are beneficial for electricity market par
ticipants. Our results show that volatilities in integrated Nordic whole
sale electricity markets are affected by carbon prices, market coupling, Ta
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Table 14 
Spillover contributions under TVP-VAR model.  

Cross volatility spillovers 18.78% 

Cross covariance spillovers 19.72% 
Own volatility spillovers 13.62% 
Own covariance 47.89%  
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public health events, and the production of neighboring regions. 
Another important finding emerged from the whole system (with 

both variances and covariances) analyses using TVP-VAR and VAR-CF is 
a significant role of the covariances in network spillovers. We observe 
that by including covariances in the system, the total connectedness 
increases to between 80 and 90% compared to a total connectedness of 
around 50% observed in a system of variances alone. A further analysis 
highlights a significant contribution of the own covariance spillovers, 
which accounts for nearly half of the total connectedness. 

Rolling window-based VAR connectedness estimation is defined in 
the literature as being sensitive to the choice of rolling-window size. 
Further research can be controlling more variables when testing the 
impact of carbon price on volatility spillovers in Nordic markets — for 
instance including economics policy uncertainty and extreme weather 
conditions in the control variables. Another possibility is to test at 
different frequencies of the model to obtain a more conclusive result. In 
addition, results emerged from our whole system analysis suggests that 
it is equally important to consider covariances in analysing the network 
of volatility connectedness. 
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Table 16 
Spillover contributions under VAR-CF model.  

Cross volatility spillovers 19.17% 

Cross covariance spillovers 17.62% 
Own volatility spillovers 16.25% 
Own covariance spillovers 46.96%  
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Appendix A  

Table A1 
Descriptive statistics - Hourly price of 12 bidding areas in four countries.   

Mean Minimum Maximum St.Dev. Skewness Kurtosis Obs. 

DK1 42.00201 − 200 2000 37.58594 10.3154 341.4854 107,339 
DK2 44.12143 − 200 2000 38.96399 8.750168 218.682 107,339 
NO1 38.73736 − 1.97 667.92 29.28268 3.871317 33.03959 107,339 
NO2 38.26797 − 1.97 667.92 28.6716 4.021594 35.54512 107,339 
NO3 34.72078 − 0.01 1400.11 21.38077 15.64688 770.2175 107,339 
NO4 33.30415 − 0.01 1400.11 21.14664 16.1768 807.6549 107,339 
NO5 38.20615 − 0.09 667.92 28.73403 3.929935 34.55545 107,339 
SE1 35.34896 − 1.97 1400.11 21.54276 15.34869 745.5188 107,339 
SE2 35.35997 − 1.97 1400.11 21.55098 15.33141 744.3542 107,339 
SE3 39.6184 − 1.97 1400.11 30.64654 8.989079 219.0297 107,339 
SE4 42.12483 − 1.97 1400.11 33.46208 7.729993 159.2808 107,339 
FI 43.18087 − 1.73 1400.11 31.45592 9.520567 228.4092 107,339 

Note: Some data is missing in the original data file from Nord Pool. On 28 March 2010, wholesale prices at 03:00 am were missing for all areas, resulting in a total of 13 
NA entries in our sample. Since we have a large dataset, we kept 13 NAs in our hourly data.  

Table A2 
Correlation test across bidding areas in Denmark.   

DK1 DK2 

DK1 1  
DK2 0.834 1   

Table A3 
Correlation test, bidding areas in Norway.   

NO1 NO2 NO3 NO4 NO5 

NO1 1     
NO2 0.988 1    
NO3 0.441 0.390 1   
NO4 0.427 0.374 0.972 1  
NO5 0.989 0.994 0.403 0.388 1   

Table A4 
Correlation test, bidding areas in Norway.   

SE1 SE2 SE3 SE4 

SE1 1    
SE2 1 1   
SE3 0.697 0.697 1  
SE4 0.624 0.625 0.949 1   

Table A5 
Average connectedness matrix of the system – estimated by 100 days rolling window.   

Denmark Finland Norway South Norway North Sweden From Others 

Denmark 56.33 10.33 10.09 9.20 14.05 43.67 
Finland 8.79 43.84 10.95 13.52 22.90 56.16 
Norway South 7.08 11.14 46.61 18.88 16.28 53.39 
Norway North 7.00 12.19 17.21 44.42 19.18 55.58 
Sweden 10.27 19.19 14.84 18.48 37.22 62.78 
To Others 33.14 52.84 53.09 60.08 72.41 TCI ¼ 54.31 
Net Total − 10.53 − 3.32 − 0.30 4.50 9.64 
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Source: This spillover table is generated based on 10-step-ahead generalized VAR forecast error variance decomposition estimated from 200 days rolling window VAR. 
The ijth entry estimates the fraction of 10-step-ahead error variance in forecasting market i due to exogenous shocks to market j (the spillover from market j to market i: 
dJ

ij). From Eq. 16 (Cij,t = Ci→j,t(J) − Ci←j,t(J)), we obtain the net total directional connectedness, Cij,t .  

Table A6 
Long memory characteristics of five represen
tative realised volatilities in Nord Pool.  

Realised Volatility d_value 

DK1 0.2569 
NO1 0.3656 
NO3 0.4301 
SE3 0.4242 
FI 0.4049   

Table A7 
Long memory characteristics of 5 representative 
realised variances and 10 covariances in Nord 
Pool.  

Realised Variance d_value 

DK1 0.1911 
NO1 0.1221 
NO3 0.2368 
SE3 0.3073 
FI 0.3076 
Realised Covariance d_value 
DK1_NO1 0.1874 
DK1_NO3 0.2595 
DK1_SE3 0.1933 
DK1_FI 0.1449 
NO1_NO3 0.3039 
NO1_SE3 0.2280 
NO1_FI 0.1388 
NO3_SE3 0.3655 
NO3_FI 0.3056 
SE3_FI 0.2767  

Appendix B

Fig. B1. Sensitivity of the Total Connectedness Index to TVP-VAR lag structure (lag4–8). 
Note: In the main text we used lag 4 as selected by Schwarz information criterion. Here in the robustness check we tried lag 4, lag5, lag6, lag7, and lag8 in the model 
(lag 8 was chosen by Akaike information criterion, lag7 was chosen by Hannan-Quinn Criterion). The averaged total connectedness index for lag 4, lag5, lag6, lag7, 
and lag8 are reported as 52.41%, 51.92%, 51.01%, 50.92%, and 50.62%. 
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Fig. B2. Sensitivity of the Total Connectedness Index to TVP-VAR H-step-ahead forecasts. 
Note: In the main text we used H = 10 step-ahead-forecasts. Here in the robustness check we H = 20 and H = 30 in the model. The averaged total connectedness 
index for lag 4, lag5, lag6, lag7, and lag8 are reported as 52.41%, 51.92%, 51.01%, 50.22%, and 50.62%. 

Fig. B3. Sensitivity of the Total Connectedness Index to RW-VAR rolling window size (100, 200, and 300). 
Note: The averaged total connectedness index for window size 100, 200 and 300 are reported as 54.31%, 50.22%, and 48.96%. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2024.107559. 
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Frömmel, M., Han, X., Kratochvil, S., 2014. Modeling the daily electricity price volatility 
with realized measures. Energy Econ. 44, 492–502. https://doi.org/10.1016/j. 
eneco.2014.03.001. 

Gugler, K., Haxhimusa, A., Liebensteiner, M., 2018. Integration of European electricity 
markets: evidence from spot prices. Energy J. 39 https://doi.org/10.5547/ 
01956574.39.SI2.kgug. 

Guo, L.-Y., Feng, C., 2021. Are there spillovers among China’s pilots for carbon emission 
allowances trading? Energy Econ 103, 105574. https://doi.org/10.1016/j. 
eneco.2021.105574. 

Han, L., Kordzakhia, N., Trück, S., 2020. Volatility spillovers in Australian electricity 
markets. Energy Econ. 90, 104782 https://doi.org/10.1016/j.eneco.2020.104782. 

Hans-Arild, B., 2016. The Nord Pool market model. In: ASEAN energy market integration 
(AEMI). http://www.asean-aemi.org/wp-content/uploads/2016/03/AEMI-Forum- 
November-2015-Bredesen-Feb2016.pdf. 

Hasan, M., Arif, M., Naeem, M.A., Ngo, Q.-T., Taghizadeh-Hesary, F., 2021. Time- 
frequency connectedness between Asian electricity sectors. Econ. Anal. Policy 69, 
208–224. https://doi.org/10.1016/j.eap.2020.12.008. 

Haugom, E., Hoff, G.A., Molnár, P., Mortensen, M., Westgaard, S., 2018. The forward 
premium in the Nord Pool power market. Emerg. Mark. Financ. Trade 54, 
1793–1807. https://doi.org/10.1080/1540496X.2018.1441021. 

Haugom, E., Molnár, P., Tysdahl, M., 2020. Determinants of the forward premium in the 
Nord Pool electricity market. Energies 13, 1111. https://doi.org/10.3390/ 
en13051111. 

Hellström, J., Lundgren, J., Yu, H., 2012. Why do electricity prices jump? Empirical 
evidence from the Nordic electricity market. Energy Econ. 34, 1774–1781. https:// 
doi.org/10.1016/j.eneco.2012.07.006. 

International Energy Agency, 2022. World energy statistics and balances [WWW 
Document]. URL. https://www.iea.org/countries/china (accessed 6.10.22).  

International Energy Agency, 2023. Electricity Market Report 2023. Paris. 
Jamasb, T., Pollitt, M., 2005. Electricity market reform in the European Union: review of 

progress toward liberalization & integration. Energy J. 26, 11–41. 
Jan, R., 2019. Future thinking – Empowering the market [WWW Document]. URL. htt 

ps://www.nordpoolgroup.com/4a45a1/globalassets/download-center/whit 
epaper/whitepaper_future_thinking.pdf (accessed 8.10.22).  

Ketterer, J.C., 2014. The impact of wind power generation on the electricity price in 
Germany. Energy Econ. 44, 270–280. https://doi.org/10.1016/j.eneco.2014.04.003. 

Koop, G., Korobilis, D., 2013. Large time-varying parameter VARs. J. Econ. 177, 
185–198. https://doi.org/10.1016/j.jeconom.2013.04.007. 

Koop, G., Pesaran, M.H., Potter, S.M., 1996. Impulse response analysis in nonlinear 
multivariate models. J. Econ. 74, 119–147. https://doi.org/10.1016/0304-4076(95) 
01753-4. 

Kyritsis, E., Andersson, J., Serletis, A., 2017. Electricity prices, large-scale renewable 
integration, and policy implications. Energy Policy 101, 550–560. https://doi.org/ 
10.1016/j.enpol.2016.11.014. 

Liu, T., Gong, X., 2020. Analyzing time-varying volatility spillovers between the crude oil 
markets using a new method. Energy Econ. 87, 104711 https://doi.org/10.1016/j. 
eneco.2020.104711. 

Lyu, C., Scholtens, B., 2024. Integration of the international carbon market: A time- 
varying analysis. Renew. Sustain. Energy Rev. 191, 114102. https://doi.org/ 
10.1016/j.rser.2023.114102. 

Ma, R., Liu, Z., Zhai, P., 2022. Does economic policy uncertainty drive volatility 
spillovers in electricity markets: time and frequency evidence. Energy Econ. 107, 
105848 https://doi.org/10.1016/j.eneco.2022.105848. 

Matt, F., 2022. How Norway became Europe’s biggest power exporter [WWW 
Document]. URL. https://www.power-technology.com/analysis/how-norway- 
became-europes-biggest-power-exporter/. 

Miao, K., Phillips, P.C.B., Su, L., 2023. High-dimensional VARs with common factors. 
J. Econ. 233, 155–183. https://doi.org/10.1016/j.jeconom.2022.02.002. 

Ministry of Petroleum and Energy, 2016. Renewable energy production in Norway 
[WWW Document]. URL. https://www.regjeringen.no/en/topics/energy/ren 
ewable-energy/renewable-energy-production-in-norway/id2343462/#:~:text=In% 
20Norway%2C%2098%20percent%20of,of%20most%20of%20the%20production 
(accessed 6.10.22).  

Mjelde, J.W., Bessler, D.A., 2009. Market integration among electricity markets and their 
major fuel source markets. Energy Econ. 31, 482–491. https://doi.org/10.1016/j. 
eneco.2009.02.002. 

Naeem, M.A., Karim, S., Rabbani, M.R., Nepal, R., Uddin, G.S., 2022. Market integration 
in the Australian National Electricity Market: fresh evidence from asymmetric time- 
frequency connectedness. Energy Econ. 112, 106144 https://doi.org/10.1016/j. 
eneco.2022.106144. 

Nepal, R., Foster, J., 2016. Testing for market integration in the Australian national 
electricity market. Energy J. 37 https://doi.org/10.5547/01956574.37.4.rnep. 

Nomikos, N.K., Soldatos, O.A., 2010. Modelling short and long-term risks in power 
markets: empirical evidence from Nord Pool. Energy Policy 38, 5671–5683. https:// 
doi.org/10.1016/j.enpol.2010.05.015. 

NordREG, 2014. Nordic Market Report 2014 - Development in the Nordic electricity 
market [WWW Document]. http://www.nordicenergyregulators.org/wp-content/ 
uploads/2014/06/Nordic-Market-Report-2014.pdf (accessed 8.26.22).  

Park, H., Mjelde, J.W., Bessler, D.A., 2006. Price dynamics among U.S. electricity spot 
markets. Energy Econ. 28, 81–101. https://doi.org/10.1016/j.eneco.2005.09.009. 

Pesaran, H.H., Shin, Y., 1998. Generalized impulse response analysis in linear 
multivariate models. Econ. Lett. 58, 17–29. https://doi.org/10.1016/S0165-1765 
(97)00214-0. 

Pollitt, M.G., 2019. The European single market in electricity: an economic assessment. 
Rev. Ind. Organ. 55, 63–87. https://doi.org/10.1007/s11151-019-09682-w. 

Sotiriadis, M.S., Tsotsos, R., Kosmidou, K., 2016. Price and volatility interrelationships in 
the wholesale spot electricity markets of the Central-Western European and Nordic 
region: a multivariate GARCH approach. Energy Syst. 7, 5–32. https://doi.org/ 
10.1007/s12667-014-0137-1. 

Souhir, B.A., Heni, B., Lotfi, B., 2019. Price risk and hedging strategies in Nord Pool 
electricity market evidence with sector indexes. Energy Econ. 80, 635–655. https:// 
doi.org/10.1016/j.eneco.2019.02.001. 

Sousa, J., Soares, I., 2020. Demand response, market design and risk: A literature review. 
Util. Policy 66, 101083. https://doi.org/10.1016/j.jup.2020.101083. 

Uddin, G.S., Luo, T., Yahya, M., Jayasekera, R., Rahman, M.L., Okhrin, Y., 2023. Risk 
network of global energy markets. Energy Econ. 125, 106882 https://doi.org/ 
10.1016/j.eneco.2023.106882. 
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