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Abstract
The main purpose of the paper is to formulate a probabilistic model for Arakelov
class groups in families of number fields, offering a correction to the Cohen–Lenstra–
Martinet heuristic on ideal class groups. To that end, we show that Chinburg’s
�(3) conjecture implies tight restrictions on the Galois module structure of oriented
Arakelov class groups. As a consequence, we construct a new infinite series of coun-
terexamples to the Cohen–Lenstra–Martinet heuristic, which have the novel feature
that their Galois groups are non-abelian.

1 Introduction

It has been an area of active research over the past few decades to understand the
distribution of class groups ClF of “random” algebraic number fields F . Specifically,
we let K be a number field, and let G be a finite group. Let � be the quotient of the
group ring Z[ 1

2·#G ][G] by the two-sided ideal generated by
∑

g∈G g. One studies the
behaviour of the �-module � ⊗Z[G] ClF , as F runs over a “natural” family F of
G-extensions of K .

An equally classical invariant that one attaches to F is the unit group O×
F of the

ring of integers OF of F, viewed as a Z[G]-module. Its isomorphism class, unlike
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that of the class group, has only finitely many possibilities, as F ranges over F . The
statistical properties of O×

F have, however, been much less extensively studied.
In the present paper we make the case that, in this context, ClF and O×

F are most
naturally studied in combination, since their distributions need, by all appearances, not
be independent. Their dependence is best expressed by means of the Arakelov class
group. It is a compact abelian group attached to F, and we will recall its definition
in Sect. 2. For number fields it plays the rôle that the Jacobian of a curve plays for
function fields over finite fields. It can be broken up into two pieces, one being ClF
and the other coming from O×

F , but in several ways it is better than the sum of its
parts. We find it convenient to replace the Arakelov class group by its Pontryagin dual
ArF . This is a finitely generated abelian group that fits into a short exact sequence

0 −→ Hom(ClF , Q/Z) −→ ArF −→ Hom(O×
F , Z) −→ 0.

In other words, the torsion subgroup of ArF is the Pontryagin dual of the class group,
and its torsion-free part is the Z-linear dual of the unit group. This exact sequence,
being canonically associated with F, is an exact sequence of Z[G]-modules.

Let G0(�) denote the Grothendieck group of the category of finitely generated
�-modules; see Sect. 2.3 for the definition. Let F/K be a Galois extension with
Galois group G, let S∞ be the G-set of Archimedean places of F, and let Z

S∞

be the corresponding permutation module over Z[G]; it is a property of F that the
isomorphism class of the G-set S∞ is independent of F when F ∈ F . The difference
of the classes [�⊗Z[G]ArF ] and [�⊗Z[G] ZS∞] in G0(�) lies in the torsion subgroup
G0(�)tors ofG0(�), as can easily be deduced fromLemma5.10. This torsion subgroup
is a finite abelian group, which can be thought of as a “class group” of�.The following
result will be proven at the end of Sect. 6 as a consequence of Proposition 6.5.

Theorem 1.1 With the notation just introduced, suppose that Chinburg’s �(3)
conjecture, Conjecture 6.3, holds for F/K . Suppose, moreover, that for every prime
number p not dividing 2 · #G, each primitive p-th root of unity in F is in K . Then the
equality

[� ⊗Z[G] ArF ] − [� ⊗Z[G] Z
S∞] = 0

holds in G0(�)tors.

In fact, we will prove the conclusion of Theorem 1.1 under a weaker hypothesis;
see Theorem 6.7.

In Sect. 3 we will define the families F that we consider. Together, Theorem 1.1
and Propositions 3.3 and 5.3 imply that as F ranges overF , the class [�⊗Z[G]O×

F ]−
[� ⊗Z[G] ClF ] in G0(�) is conjectured to be constant. We have no reason to expect
this to be true for either of the two terms individually.

There are cases in which the conclusion of Theorem 1.1 can be proven uncondition-
ally. This includesGalois extensions ofQ of degree less than 112 (see Proposition 7.9),
but also, more interestingly, a class of fields that can be used to construct a new series
of counterexamples to the Cohen–Lenstra–Martinet heuristic [8, 10] on class groups
of number fields. Informally, this heuristic reads as follows.
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Heuristic 1.2 (Vague version) Let F vary in a natural family of Galois number fields.
Then the Galois module ArF , after inverting the “bad” prime numbers, behaves
“randomly” with respect to a probability distribution that assigns to a suitable Galois
module M a probability weight that is inversely proportional to the “size” of the
automorphism group of M .

The precise version that we shall use will be formulated as Heuristic 3.2 in Sect. 3.
The same section explains what we mean by the term “natural family”. It also allows
the ring � to be more general than the ring considered above.

Heuristic 3.2 represents, in several respects, a corrected version of the original
Cohen–Lenstra–Martinet heuristic. Nevertheless, it is known to be invalid, counterex-
amples for certain abelian Galois groups G having been provided in [4, Theorem 1.1,
Proposition 4.4]. One of the main results of the present paper is a new series of coun-
terexamples, this time with non-abelian G. The other main achievement is a proposed
correction to the heuristic.

The new counterexamples make use of groups G of order 2p · p, where p is an odd
prime number. Their abelianisations G/G ′, which are cyclic of order 2p, coincide
with the groups on which the abelian counterexamples in [4] depend. Our groups
have centres Z of order 2, and writing Z = 〈γ 〉, we shall make use of the ring
� = Z[ 1

2p ][G]/(1 + γ ). In Sect. 8 we prove the following theorem.

Theorem 1.3 For infinitely many odd prime numbers p there is a group G with the
properties just listed such that the following is true. With � as just defined, the group
G0(�)tors is non-trivial, whereas there does exist a natural family of G-extensions of
Q such that for all members F of the family the class of � ⊗Z[G] ClF in G0(�)tors is
trivial.

The families in Theorem 1.3 necessarily violate Heuristic 3.2, since the latter would
imply equidistribution of � ⊗Z[G] ClF in G0(�)tors as F ranges over the family. This
is proven in Sect. 8, to which we also refer for more information on the groups and
families appearing in Theorem 1.3.

The probability weight that is inversely proportional to the “size” of the auto-
morphism group, as referred to in Heuristic 1.2, reflects an attractive feature of the
Arakelov class groups. The general principle behind many heuristics is that algebraic
objects in natural families tend to be “as random as they can be”, with respect to a
probability distribution that assigns to an algebraic object X a probability weight that
is proportional to 1/# Aut X . The original Cohen–Lenstra–Martinet heuristic did, ini-
tially, look like an exception to the rule just mentioned, but this changed when it was
reformulated in terms of ArF . This is discussed in more detail in [4]; see also Sect. 3
below.

Theorem 1.1 restricts how random Arakelov class groups can be. We propose a
correction to Heuristic 1.2 that takes this restriction into account.

Heuristic 1.4 (Vague version) Let F vary in a natural family of Galois number fields.
Then the Galois module ArF , after inverting the “bad” prime numbers, behaves
“randomly” with respect to a probability distribution that assigns to a suitable Galois
module M a probability weight that is inversely proportional to the “size” of the
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automorphism group of M, restricted to those modules that satisfy Eq. (5.12) with M
in place of ArF .

A precise version of Heuristic 1.4 will be formulated as Heuristic 3.4 in Sect. 3.
Note that the only difference between Heuristics 1.2 and 1.4 is the reference to

(5.12). It expresses the restriction that Chinburg’s�(3) conjecture imposes on the class
of ArF in the class group of � as a consequence of Theorem 1.1. It is also important
to point out in which way Heuristic 1.4 differs from Conjecture 1.5 formulated in [4].
The latter conjecture is only concerned with the local structure of ArF at a finite set of
prime numbers; in that case, the class group of � is trivial, so that Chinburg’s �(3)
conjecture imposes no restriction. On the other hand, Heuristic 1.4 considers almost
all prime numbers, and in this global situation � may have a non-trivial class group.
In particular, one should be able to extract explicit information on the distribution of
O×

F as a Galois module from Heuristic 1.4, which is not possible with Conjecture 1.5
of [4].

The structure of the paper is as follows. After some preliminaries in Sect. 2, we for-
mulate in Sect. 3 the old and the new heuristics. Some basic material on Grothendieck
groups of orders is treated in Sect. 4. Section 5 is devoted to Arakelov class groups
as Galois modules, and Sect. 6 to the implications of Chinburg’s �(3) conjecture for
these Galois modules. In Sect. 7 we collect some cases in which the conclusion of
Theorem 1.1 is known, and use these in Sect. 8 to construct a new series of counterex-
amples to the Cohen–Lenstra–Martinet heuristic.

2 Preliminaries

In this section we recall material that we will use for the formulation of Heuristic 3.4.
In particular, we recall from [21] the definition of the Arakelov class group and of the
oriented Arakelov class group of a number field.

2.1 Pontryagin duality

Webriefly recall some facts onPontryagin duality and refer the reader to [18,Chapter 1,
§1] for a more detailed overview. If A and B are abelian topological groups, then
Homcts(A, B) denotes the group of continuous group homomorphisms from A to B.

Let C be the category of Hausdorff locally compact abelian topological groups. If A is
an object of C, then its Pontryagin dual is defined to be Homcts(A, R/Z). This defines
an anti-equivalence of C with itself, of which the square is isomorphic to the identity
functor. It induces an anti-equivalence between the full subcategories of compact
abelian groups and of discrete abelian groups. If M is a finitely generated abelian
group, then Homcts(M ⊗Z (R/Z), R/Z) is canonically isomorphic to Hom(M, Z). In
particular, we have Homcts(R/Z, R/Z) ∼= Z.
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2.2 The (oriented) Arakelov class group

Let F be a number field. Let IdF be the group of fractional ideals of the ring of
integers OF of F, let S∞ denote the set of Archimedean places of F, and let FR

denote the étale R-algebra F ⊗Q R = ∏
w∈S∞ Fw, where Fw denotes the completion

of F at w. We have canonical maps N : IdF → R>0 and |Nm| : F×
R

→ R>0, the
first given by the ideal norm, and the second given by the absolute value of the R-
algebra norm. Let IdF ×R>0 F×

R
denote the fibre product with respect to these maps.

The oriented Arakelov class group P̃ic
0
F of F is defined as the cokernel of the map

F× → IdF ×R>0 F×
R

that sends α ∈ F× to (αOF , α). It follows from Dirichlet’s unit
theorem and the finiteness of the class group of OF , that this is a compact abelian
group.

For every w ∈ S∞ we have a direct product decomposition F×
w

∼= R>0 × c(F×
w ),

where c(F×
w ) is the maximal compact subgroup of F×

w , which is equal to {±1} if
w is real, and to the circle group in Fw if w is complex. The maximal compact
subgroup c(F×

R
) = ∏

w∈S∞ c(F×
w ) of F×

R
is contained in the kernel of the map |Nm|.

Define the Arakelov class group Pic0F of F to be the quotient of P̃ic
0
F by the image of

{1} × c(F×
R

) ⊂ IdF ×R>0 F×
R

in P̃ic
0
F .

As in the introduction, we write ArF for the Pontryagin dual of Pic0F , and we write

ÃrF for the Pontryagin dual of P̃ic
0
F . Let μF denote the group of roots of unity in

F . Note that ArF , ÃrF , and μF are all finitely generated left Z[Aut F]-modules;
for ArF this will follow from the next result, and for ÃrF this follows from [21,
Proposition 5.3].

Proposition 2.1 There is a short exact sequence

0 −→ Hom(ClF , Q/Z) −→ ArF −→ Hom(O×
F /μF , Z) −→ 0.

Proof By [21, Proposition 2.2] there is an exact sequence

0 −→ (O×
F /μF ) ⊗Z (R/Z) −→ Pic0F −→ ClF −→ 0.

The desired result follows by taking the Pontryagin dual of this sequence and recalling
from Sect. 2.1 that we have an isomorphism Homcts((O×

F /μF ) ⊗Z (R/Z), R/Z) ∼=
Hom(O×

F /μF , Z). ��
Remark 2.2 Note that the canonical map Hom(O×

F /μF , Z) → Hom(O×
F , Z) is an

isomorphism.

2.3 Modules and Grothendieck groups

Henceforth all modules will be assumed to be left modules unless stated otherwise.
If G is a group, S is a finite G-set, and R is a ring, in the remainder of the paper RS

will denote the free R-module on the set S with the induced R-linear R[G]-action.
We will refer to such R[G]-modules as permutation modules.
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Recall that for a ring T , the Grothendieck group G0(T ) of the category of finitely
generated T -modules is the additive group generated by expressions [M], one for each
isomorphismclass of finitely generatedT -modules M,with a relation [L]+[N ] = [M]
whenever there exists a short exact sequence

0 −→ L −→ M −→ N −→ 0

of finitely generated T -modules.
If P is a set of prime numbers, then we define

Z(P) = {a/b : a, b ∈ Z, b /∈ ⋃
p∈P∪{0} pZ}.

If T → T ′ is a ring homomorphism such that T ′ is a flat right T -module, then
the functor T ′ ⊗T • from the category of finitely generated T -modules to that of
finitely generated T ′-modules induces a group homomorphism G0(T ) → G0(T ′).
The following two examples of this construction will be relevant to us. If G is a finite
group and P is a set of prime numbers, then the flat localisationmapZ → Z(P) induces
a group homomorphism G0(Z[G]) → G0(Z(P)[G]). Moreover, if we have a direct
product decomposition T ∼= U ×W of rings, then the right T -module W is projective,
and in particular flat, so the quotient map T → W induces a group homomorphism
G0(T ) → G0(W ).

3 Cohen–Lenstra–Martinet heuristic

In this section we propose a correction of the Cohen–Lenstra–Martinet heuristic [8,
10]. The notation and assumptions introduced in the next three paragraphs will remain
in force throughout this section.

Let G be a finite group, let P be a set of prime numbers not dividing 2 · #G, let the
Q-algebra A be a quotient of Q[G] by a two-sided ideal containing

∑
g∈G g, and let

� be the image of Z(P)[G] in A; note that the ring � in the introduction is a special
case of this. Next, let V be a finitely generated Q[G]-module, and, for brevity, set
VA = A ⊗Q[G] V . Let MV be a set of finitely generated �-modules M that satisfy
A ⊗� M ∼=A VA, and with the property that for every finitely generated �-module
M ′ satisfying A ⊗� M ′ ∼=A VA there exists a unique M ∈ MV such that M ′ ∼= M .

Note that the set MV is countable. If M is a finitely generated �-module satisfying
A ⊗� M ∼=A VA, and f is a function defined on MV , then we write f (M) for the
value of f on the unique element ofMV that is isomorphic to M . In [3] it was shown
that there is a unique “automorphism index” function ia : MV × MV → Q>0 that
behaves, in a precise sense explained in [3, Theorem 1.1], like (L, M) �→ # Aut M

# Aut L ,

even when the automorphism groups of M and of L are infinite. Fix M ∈ MV . If
N is a subset of MV and X is a positive real number, let NX be the finite set of all
L ∈ N whose torsion subgroup L tors has order less than X . For N ⊂ MV and for a
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function f : N → C, define the expected value of f on N by

EN ( f ) = lim
X→∞

⎛

⎝
∑

L∈NX

ia(L, M) f (L)
/ ∑

L∈NX

ia(L, M)

⎞

⎠

when the limit exists. One of the defining properties of the function ia is that for all
L, M, and N ∈ MV we have ia(L, M) ia(M, N ) = ia(L, N ), whence it follows that
whether or not EN ( f ) is defined is independent of the choice of M, and so is its value
when it is defined.

Remark 3.1 Expected values behave well under passing to quotients in the following
sense. Let G1 → G2 be a surjective group homomorphism, let P be a set of prime
numbers not dividing 2 · #G1, let A2 be a quotient of Q[G2] as above, and let V2
be a finitely generated Q[G2]-module; let A1 be the same as A2 but viewed as a
quotient of Q[G1], and let V1 be the same as V2 but viewed as a Q[G1]-module. For
i ∈ {1, 2}, let �i be the image of Z(P)[Gi ] in Ai . Note that in particular the map
G1 → G2 induces a ring isomorphism �1 → �2. For i ∈ {1, 2}, define setsMVi of
�i -modules as above. For brevity, writeMi = MVi for i ∈ {1, 2}. Let f2 : M2 → C

be a function, and let f1 : M1 → C be given by M �→ f2(�2 ⊗�1 M). Then one has
EM1( f1) = EM2( f2).

Let K be a number field, and let K̄ be an algebraic closure of K .Given a pair (F, i),
where F ⊂ K̄ is a Galois extension of K and i is an isomorphism between the Galois
group of F/K and G, we view Gal(F/K )-modules as G-modules via i . Let F be the
set of all such pairs (F, i) for which F contains no primitive p-th root of unity for any
prime number p ∈ P, and for which there is an isomorphismQ⊗ZO×

F
∼= V ofQ[G]-

modules. Assume that F is infinite. Such an F is what we called a “natural family”
in the introduction. Note that this family is a special case of the families considered
in [4, §2].

For (F, i) ∈ F , let cF/K be the ideal norm of the product of the prime ideals ofOK

that ramify in F/K . For a positive real number B, let Fc≤B = {(F, i) ∈ F : cF/K ≤
B}. The following version of the Cohen–Lenstra–Martinet heuristic is a variant of [4,
Heuristic 2.1] phrased in terms of Arakelov class groups. It differs in several ways
from the heuristic formulated in [8, 10], but none of those differences shall concern
us in the present paper.

Heuristic 3.2 Let f be a “reasonable” C-valued function on MV . Then the limit

lim
B→∞

∑
(F,i)∈Fc≤B

f (� ⊗Z[G] ArF )

#Fc≤B

exists, and is equal to EMV ( f ).

The notion of a reasonable function is left intentionally vague. The functions
considered in [9] give rise to many examples of presumably reasonable functions
on MV that factor through M �→ Mtors. An example of a function not of that
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form that we would consider reasonable, and which depends on the Galois mod-
ule structure of both the class group and the unit group of the ring of integers, is
M �→ # Hom�(M/Mtors, Mtors).

If the set P is infinite, then Conjecture 5.11 can be an obstruction to the conclusions
of Heuristic 3.2. For example it was shown in [4, §4], as a consequence of a proven
special case of Conjecture 5.11, that the conclusion of Heuristic 3.2 does not, in
general, hold for functions of the form M �→ χ([M]), where χ : G0(�) → C

× is
a homomorphism of finite order. In [4] a corrected heuristic was proposed in which
P was assumed to be finite. In the remainder of the section, we formulate a Cohen–
Lenstra–Martinet heuristic without the hypothesis that P be finite.

Proposition 3.3 Let (F, i) and (F ′, i ′) ∈ F , and let S∞ and S′∞ be the sets of
Archimedean places of F and F ′, respectively. Then the equality

[� ⊗Z[G] Z
S∞] = [� ⊗Z[G] Z

S′∞]

holds in G0(�).

Proof Bydefinition of the familyF ,wehave an isomorphismQ⊗ZO×
F

∼= Q⊗ZO×
F ′ of

Q[G]-modules. By a theorem of Herbrand there is an isomorphism (Q⊗ZO×
F )⊕Q ∼=

Q
S∞ of Q[G]-modules, see for example [24, Chapter I, 4.3], and similarly for O×

F ′ .

Thus, we have an isomorphism Q
S∞ ∼= Q

S′∞ .

Since all point stabilisers for S∞ and S′∞ are inertia groups at Archimedean places,
they are all cyclic. It follows from Artin’s induction theorem (e.g. by combining [22,
§13.1, Corollary 1 and Theorem 30] and comparing dimensions) that if S and S′ are
finite G-sets with cyclic point stabilisers such that there is an isomorphism Q

S ∼= Q
S′

of Q[G]-modules, then the G-sets S and S′ are isomorphic. In particular, there is
then an isomorphism Z

S ∼= Z
S′
of Z[G]-modules. The result follows by applying this

observation to the G-sets S∞ and S′∞. ��
WedefineC(F) to be the commonclass of�⊗Z[G]ZS∞ inG0(�) for all (F, i) ∈ F ,

where S∞ is the G-set of Archimedean places of F .

Heuristic 3.4 Let N = {M ∈ MV : [M] = C(F) in G0(�)}, and let f be a “rea-
sonable” C-valued function on MV . Then the limit

lim
B→∞

∑
(F,i)∈Fc≤B

f (� ⊗Z[G] ArF )

#Fc≤B

exists, and is equal to EN ( f ).

4 Grothendieck groups of orders

In this section we review some standard facts about Grothendieck groups of orders,
and examine the effect of some duality operations upon these Grothendieck groups.
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Let R be a Dedekind domain and let k be the field of fractions of R. An R-order is
an R-algebra that is finitely generated and projective as an R-module. For example if
G is a finite group, then the group ring � = R[G] is an R-order.

Let� be an R-order. A finitely generated�-module that is projective over R will be
referred to as a�-lattice. Let GR

0 (�) denote the Grothendieck group of the category of
�-lattices. By definition, GR

0 (�) is the additive group generated by expressions [M],
one for each isomorphism class of �-lattices M, with a relation [L] + [N ] = [M]
whenever there exists a short exact sequence

0 −→ L −→ M −→ N −→ 0

of �-lattices. Recall from Sect. 2.3 that if T is a ring, then we similarly define the
Grothendieck group G0(T ) of the category of finitely generated T -modules by replac-
ing, in the above definition, “�-lattice” by “finitely generated T -module”. By [13,
Theorem (38.42)], the inclusion of the category of �-lattices into the category of all
finitely generated �-modules induces a canonical isomorphism GR

0 (�) ∼= G0(�).

Let�op denote the opposite ring of�. If M is a�-lattice, then M∗ = HomR(M, R)

is a �op-lattice. This defines a contravariant functor from the category of �-lattices
to the category of �op-lattices, given on objects by M �→ M∗ for every �-lattice M,

and on morphisms by f �→ (ν �→ ν ◦ f ) ∈ M∗ for every morphism f : M → N of
�-lattices and every ν ∈ N∗. This functor is easily seen to be exact, and to induce a
group isomorphism GR

0 (�) → GR
0 (�op), and hence an isomorphism

j : G0(�) → G0(�
op).

For a�-module N ,we define N∨ = HomR(N , k/R),which is also a�op-module.
If N is a finitely generated �-module that is R-torsion, then N∨ is finitely generated
over �op and R-torsion.

In the special case that� = R[G],where G is a finite group, the ring� is equipped
with an involution ι induced by g �→ g−1 for all g ∈ G. If M is a finitely generated
R[G]-module, then we view the R[G]op-module M∗ as a finitely generated R[G]-
module via ι, and we view the map j as an automorphism of G0(R[G]). Specialising
further to R = Z, if A is a Hausdorff locally compact abelian topological group
on which G acts by continuous automorphisms, then we view its Pontryagin dual
Homcts(A, R/Z) as a Z[G]-module via ι. If N is a Z[G]-module of finite cardinality,
then so is Homcts(N , R/Z) = HomZ(N , Q/Z) = N∨.

Proposition 4.1 Let N be a finitely generated �-module that is R-torsion. Then the
equality

[N∨] = −j[N ]

holds in G0(�
op).

Proof Since R is a Dedekind domain, every �-submodule of a �-lattice is itself a
�-lattice. Hence there exists a presentation 0 → M1 → M2 → N → 0 of N by
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�-lattices, so that [N ] = [M2] − [M1] in G0(�). We claim that N∨ is canonically
isomorphic as a �op-module to M∗

1 /M∗
2 .

Since M1, M2 are projective over R, applying the functors HomR(Mi , •) for i = 1,
2 to the short exact sequence

0 −→ R −→ k −→ k/R −→ 0

yields the commutative diagram with exact rows

0 HomR(M2, R) HomR(M2, k) HomR(M2, k/R) 0

0 HomR(M1, R) HomR(M1, k) HomR(M1, k/R) 0,

where the vertical maps are induced by the injection M1 → M2. Of these, the middle
mapHomR(M2, k) → HomR(M1, k) is an isomorphism. Indeed, it is the k-linear dual
of the map k ⊗R M1 → k ⊗R M2,which is clearly an isomorphism, since the cokernel
N of M1 → M2 is R-torsion. The snake lemma therefore gives an isomorphism of
right �-modules from the kernel of HomR(M2, k/R) → HomR(M1, k/R) to the
cokernel of HomR(M2, R) → HomR(M1, R). Since HomR(•, k/R) is left exact,
that kernel is exactly N∨, while the cokernel is precisely M∗

1 /M∗
2 , as claimed. The

proposition immediately follows. ��

5 Oriented Arakelov class groups as Galois modules

In this section we prove some properties of oriented Arakelov class groups as Galois
modules, and formulate the main working hypothesis that motivates the statistical
heuristic in Sect. 3.

Lemma 5.1 Let F/K be a finite Galois extension of number fields, let G be the Galois
group, let S∞ be the set of Archimedean places of F, and let d be the degree of K
over Q. Then the equality

[Homcts(c(F×
R

), R/Z)] = d · [Z[G]] − [ZS∞]

holds in G0(Z[G]), where c(F×
R

) is as defined in Sect. 2.2.

Proof If v is an Archimedean place of K , let Iv ⊂ G denote an inertia subgroup at v,

and let τv be a Z[Iv]-module defined as follows: if v is real and Iv is the trivial group,
then τv = F2; if v is real and Iv has order 2, then τv is free over Z of rank 1, and with
the generator of Iv acting by −1; and if v is complex, so that Iv is necessarily trivial,
then τv = Z. Then it is easy to see that we have an isomorphism

Homcts(c(F×
R

), R/Z) ∼=
⊕

v

IndG
Iv τv
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of Z[G]-modules, where the direct sum runs over the Archimedean places of K , and
IndG

Iv
denotes induction from Iv to G.

If v is a real place of K such that Iv is trivial, then the exact sequence

0 −→ IndG
Iv Z

×2−→ IndG
Iv Z −→ IndG

Iv F2 −→ 0

shows that [IndG
Iv

τv] = 0 in G0(Z[G]). We deduce that for all Archimedean places v

of K we have

[ IndG
Iv τv] = δv[Z[G]] − [ZG/Iv ], (5.2)

where δv = 1 if v is real, and δv = 2 is v is complex. The result follows by summing
(5.2) over all Archimedean places v of K . ��

For every permutationZ[G]-module M,we have M ∼= M∗,where M∗ is as defined
in Sect. 4 with R = Z, and therefore j[M] = [M] in G0(Z[G]). We will repeatedly
use this observation. If S is a set of places of F containing all Archimedean places,
let OF,S denote the ring of S-integers in F, let O×

F,S denote its unit group, and let

ClF,S denote its class group. If S is G-stable, thenO×
F,S and ClF,S are Z[G]-modules.

Recall that ArF and ÃrF denote the Pontryagin duals of Pic0F and P̃ic
0
F , respectively,

and μF denotes the group of roots of unity in F .

Proposition 5.3 Let F/K be a finite Galois extension of number fields, let G be the
Galois group, let d be the degree of K over Q, and let S be a finite G-stable set
of places of F containing all Archimedean places. Then ArF and ÃrF are finitely
generated Z[G]-modules. Moreover the equalities

[ArF ] = j[O×
F /μF ] − j[ClF ],

[ÃrF ] = d · [Z[G]] − [ZS] + j[O×
F,S] − j[ClF,S]

hold in G0(Z[G]).

Proof It was already noted in Sect. 2.2 that ArF and ÃrF are finitely generated
Z[Aut F]-modules, and this immediately implies the first assertion. The expression
for [ArF ] follows from Propositions 2.1 and 4.1.

The rest of the proof is devoted to the derivation of the expression for [ÃrF ]. Let
Sf = S\S∞ denote the set of non-Archimedean places in S. The subgroup of IdF

generated by the prime ideals corresponding to the places in Sf is free abelian on
the set Sf . Below, when we write Z

Sf , we will mean that subgroup. Let IdF,S be
the quotient of IdF by the subgroup Z

Sf . It is naturally isomorphic to the group of
fractional ideals of OF,S . The preimage of

Z
Sf ×R>0 F×

R
⊂ IdF ×R>0 F×

R
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under the inclusion map F× → IdF ×R>0 F×
R

is O×
F,S . There is thus a commutative

diagram of Z[G]-modules with exact rows and columns

0 0 0

0 O×
F,S Z

Sf ×R>0 F×
R

TF,S 0

0 F× IdF ×R>0 F×
R

P̃ic
0
F 0

0 F×/O×
F,S IdF,S ClF,S 0

0 0 0,

where TF,S is defined by the exactness of the last column, and the exactness of the
first row follows from the snake lemma.

The group Z
Sf ×R>0 F×

R
can be explicitly described as follows: we have

Z
Sf ×R>0 F×

R
=

{(
(ap)p, b

) ∈ Z
Sf × FR :

∏

p∈Sf

(Np)ap = |Nm|(b)
}
,

where N and |Nm| are as defined in Sect. 2.2. That group naturally embeds into
R

Sf ×R>0 F×
R

, where the fibre product is taken with respect to the map

R
Sf −→ R>0,

(ap)p∈Sf �→
∏

p∈Sf

(Np)ap ,

and to the samemap |Nm| : F×
R

→ R>0 as before, so that we have an exact sequence

0 −→ TF,S −→ R
Sf ×R>0 F×

R

O×
F,S

−→ (R/Z)Sf −→ 0. (5.4)

The preimage of {0}× c(F×
R

) ⊂ Z
Sf×R>0 F×

R
inO×

F,S is μF . We therefore deduce
from Dirichlet’s (S-)unit theorem [16, Chapter V, §1], that the middle term of (5.4) is
an extension of the form

0 −→ c(F×
R

)/μF −→ R
Sf ×R>0 F×

R

O×
F,S

−→ (O×
F,S/μF ) ⊗Z R/Z −→ 0. (5.5)
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In particular, it is a compact abelian group whose Pontryagin dual

Homcts

(
R

Sf ×R>0 F×
R

O×
F,S

, R/Z

)

is finitely generated, therefore the same is true of the closed subgroup TF,S .

Taking the Pontryagin dual of the right column of the commutative diagram above,
we deduce that there is an equality

[ÃrF ] = [Cl∨F,S] + [Homcts(TF,S, R/Z)] (5.6)

in G0(Z[G]).
Combining (5.6) with the Pontryagin duals of (5.4) and (5.5) and applying

Lemma 5.1, we see that there is an equality

[ÃrF ] = [Cl∨F,S] + d · [Z[G]] − [ZS∞] − [μ∨
F ] + [(O×

F,S/μF )∗] − [(ZSf )∗]

in G0(Z[G]). We now deduce the result by applying Proposition 4.1 and noting that
there are Z[G]-module isomorphisms (ZSf )∗ ∼= Z

Sf and Z
S ∼= Z

S∞ ⊕ Z
Sf . ��

Corollary 5.7 Let F/K be a finite Galois extension of number fields, let G be the
Galois group, let d be the degree of K over Q, and let S be a finite G-stable set of
places of F containing all Archimedean places, and large enough for ClF,S to be
trivial. Then the equality

[ÃrF ] = d · [Z[G]] − j([ZS] − [O×
F,S])

holds in G0(Z[G]).
Proof The result follows by combining Proposition 5.3 with the observation that
j[ZS] = [ZS]. ��
Corollary 5.8 Let F/K be a finite Galois extension of number fields, let G be the Galois
group, and let S and S′ be two finite G-stable sets of places of F, both containing all
Archimedean places. Then the equality

[ZS′ ] − [O×
F,S′ ] + [ClF,S′ ] = [ZS] − [O×

F,S] + [ClF,S]

holds in G0(Z[G]).
Proof The result follows by combining Proposition 5.3 with the observation that
j[ZS] = [ZS] and j[ZS′ ] = [ZS′ ]. ��

As we will see in the next section, the �(3) conjecture, a standard conjecture in
the theory of Galois module structures, implies the following simpler expressions for
the classes of ArF and ÃrF .
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Conjecture 5.9 Let F/K be a finite Galois extension of number fields, let G be the
Galois group, let d be the degree of K over Q, let S∞ be the set of Archimedean
places of F, let μF be the group of roots of unity in F, and let j be the automorphism
of G0(Z[G]) induced by the involution g �→ g−1 on Z[G], as defined in Sect. 4. Then
the following equalities hold in G0(Z[G]):
(a) [ÃrF ] = d · [Z[G]] − [Z];
(b) [ArF ] = [ZS∞] − [Z] − j[μF ].

The next result shows that, in the two equations in Conjecture 5.9, the difference
between the left hand side and the right hand side is the same. Hence each of (a) and (b)
implies the other, and is therefore equivalent to the entire conjecture.

Lemma 5.10 With the same notation as in Conjecture 5.9, we have

[ÃrF ] − [ArF ] = d · [Z[G]] − [ZS∞] + j[μF ]

in G0(Z[G]). Moreover, the common difference between the left hand side and the
right hand side of the two equations in Conjecture 5.9 lies in the torsion subgroup
G0(Z[G])tors of G0(Z[G]).
Proof The first assertion follows from Proposition 5.3 with S = S∞.

We now prove the second assertion. By a theorem of Herbrand there is an isomor-
phism (Q ⊗Z O×

F ) ⊕ Q ∼= Q
S∞ of Q[G]-modules, see for example [24, Chapter I,

4.3]. Let θ : G0(Z[G]) → G0(Q[G]) be the map induced by the flat ring homo-
morphism Z[G] → Q[G]. For every finitely generated Z[G]-module M we have
θ(j[M]) = θ([M]). Therefore applying θ to the first equality of Proposition 5.3, we
deduce the equality

[Q ⊗Z ArF ] − [QS∞] + [Q] = [Q ⊗Z O×
F ] − [QS∞] + [Q] = 0

in G0(Q[G]). This shows that the difference between the left hand side and the right
hand side of Conjecture 5.9(b) lies in ker(θ), which is equal to G0(Z[G])tors by [13,
Theorem (39.14)]. The conclusion for Conjecture 5.9(a) follows from this and the first
assertion. ��

For every ring R that is flat over Z, the functor R ⊗Z • induces a homomorphism
G0(Z[G]) → G0(R[G]). Hence, Conjecture 5.9 implies the following conjecture,
which will suffice for the applications to the Cohen–Lenstra–Martinet heuristic in
Sect. 3.

Conjecture 5.11 Let F/K be a finite Galois extension of number fields, let G be the
Galois group, let d be the degree of K over Q, and let P be a set of prime numbers
not dividing 2 · #G. Then the equalities

[Z(P) ⊗Z ÃrF ] = d · [Z(P)[G]] − [Z(P)],
[Z(P) ⊗Z ArF ] = [(Z(P))

S∞] − [Z(P)] − j[Z(P) ⊗Z μF ] (5.12)

hold in G0(Z(P)[G]).
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Remark 5.13 Conjecture 5.11 is equivalent to an affirmative answer to [4, Ques-
tion 5.5]. Thus in the special case that G is abelian and K = Q, Conjecture 5.11
was proven unconditionally in [4, Theorem 5.4].

Remark 5.14 Let F/K be a finite Galois extension of number fields and let G be the
Galois group. Lemma 5.10 shows that if G0(Z[G])tors vanishes, then Conjecture 5.9
holds for F/K . There are many cases in which G0(Z[G])tors has been calculated, and
among these are numerous instances in which it is trivial. In the case that G is abelian,
a formula for G0(Z[G]) is given in [17]; this result has been extended to the case that
G is nilpotent in [15]. Analogous observations also apply to Conjecture 5.11.

6 The relation to Chinburg’sÄ(3) conjecture

In this section we explain that Conjecture 5.9, and a fortiori Conjecture 5.11, follow
from Conjecture 6.4 below, which is a weaker variant of Chinburg’s �(3) conjecture,
Conjecture 6.3 [6, Conjecture 3.1].

We first briefly review some material from algebraic K-theory. We refer the reader
to [13, §38, §39, §49] for further details.

Let R be a Dedekind domain and let � be an R-order. Let K0(�) denote the
Grothendieck group of the category of finitely generated projective �-modules. By
definition, K0(�) is the additive group generated by expressions [P], one for each
isomorphism class of finitely generated projective�-modules P,with relations [P1⊕
P2] = [P1] + [P2] for all such modules P1, P2. By [, 13, Theorem (38.50)] the
group K0(�) can be identified with the Grothendieck group of the category of finitely
generated �-modules of finite projective dimension.

For each maximal ideal p of R, let Rp denote the localisation of R at p, and
define �p = Rp ⊗R �. A �-lattice M is said to be locally free if �p ⊗� M is
free over �p for every such p. Note that every locally free �-lattice is projective
by [12, Proposition (8.19)]. Let K0(�) → K0(�p) be the map induced by the ring
homomorphism� → �p. Then the locally free class group Cl(�) is defined to be the
kernel of the homomorphism K0(�) → ∏

pK0(�p), where the product runs over all
maximal ideals p of R (see [13, Definition (39.12)]). By [13, (39.13)] we have

Cl(�) = {[�] − [L] ∈ K0(�) : L is a locally free �-lattice of rank 1}. (6.1)

Note that there are several equivalent definitions of Cl(�) (see [13, §49A], particularly
[13, p. 223]).

We now recall the statement of Chinburg’s �(3) conjecture. For the rest of the
section, let F/K be a finite Galois extension of number fields and let G be the Galois
group. For any finite G-stable set S of places of F, let X S be the kernel of the aug-
mentation map Z

S → Z of Z[G]-lattices. Henceforth let S be a finite G-stable set of
places of F such that

(i) S contains the set S∞ of Archimedean places of F,

(ii) S contains the ramified places of F/K , and
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(iii) for every subfield N of F containing K , the ideal class group of N is generated
by the classes {[p ∩ ON ] : p ∈ S\S∞}.

Tate [23, p. 711] defined a canonical class α = αS ∈ Ext2
Z[G](X S,O×

F,S), and
showed the existence of so-called Tate sequences [24, II, Théorème 5.1], that is, four
term exact sequences of finitely generated Z[G]-modules

0 −→ O×
F,S −→ A −→ B −→ X S −→ 0 (6.2)

representing α, where A and B are of finite projective dimension. In [6], Chinburg
defined�(F/K , 3) = [A]−[B] ∈ K0(Z[G]).Moreover, he showed that�(F/K , 3)
lies in the locally free class group Cl(Z[G]), and depends only on the extension F/K ;
in particular, it does not depend on the choice of S or on the choice of exact sequence
(6.2).

The root number class WF/K ∈ Cl(Z[G]) was defined by Ph. Cassou-Noguès in
the case that F/K is at most tamely ramified, and was generalised to wildly ramified
extensions F/K by Fröhlich [13]. It is an element of order at most 2, and is defined
in terms of the Artin root numbers of the irreducible symplectic characters of G.

Moreover, if G has no irreducible symplectic characters (for example, if G is abelian
or of odd order), then WF/K is trivial by definition.

Conjecture 6.3 (Chinburg’s �(3) conjecture) The equality

�(F/K , 3) = WF/K

holds in Cl(Z[G]).
Fix, for the rest of the section, a maximal order M in Q[G] containing Z[G], let

ρ : Cl(Z[G]) → Cl(M) be themap induced by the ring homomorphismZ[G] → M,

and define the kernel subgroup D(Z[G]) of Cl(Z[G]) to be the kernel of ρ. If M′ is
any other maximal order in Q[G] containing Z[G], and ρ′ : Cl(Z[G]) → Cl(M′) is
the analogous map, then by [25, Theorem 1.6] the kernel of ρ is equal to that of ρ′.

Conjecture 6.4 (Chinburg’s �(3) conjecture modulo the kernel group) We have
�(F/K , 3) ≡ WF/K mod D(Z[G]).

The next result will be the main ingredient in the proof of Theorem 1.1 from the
introduction.

Proposition 6.5 Conjecture 6.4 for F/K implies Conjecture 5.9 for F/K .

In order to prove this result, we will make use of the following lemma. Let


(F/K ) = [O×
F ] − [X S∞] − [ClF ] ∈ G0(Z[G]).

Lemma 6.6 Conjecture 5.9 for F/K is equivalent to the vanishing of 
(F/K ), while
Conjecture 5.11 is equivalent to the assertion that for all sets P of prime numbers not
dividing 2 · #G the image of 
(F/K ) under the map G0(Z[G]) → G0(Z(P)[G]) is
0. Moreover, we always have 
(F/K ) ∈ G0(Z[G])tors.
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Proof By Lemma 5.10, Conjectures 5.9(a) and (b) are equivalent to each other. By
Corollary 5.7, Conjecture 5.9(a) is equivalent to the assertion that we have

[Z] = j([ZS] − [O×
F,S])

in G0(Z[G]). Since j[Z] = [Z], this is equivalent to

[O×
F,S] = [ZS] − [Z] = [X S].

By Corollary 5.8 with S′ = S∞, this in turn is equivalent to 
(F/K ) = 0.
The proof of the claim regarding Conjecture 5.11 is completely analogous.
The last claim follows from Lemma 5.10. ��
In light of Lemma 6.6, Proposition 6.5 amounts to the statement that Conjecture 6.4

implies the vanishing of 
(F/K ). This statement is well known to experts in Galois
module theory; see [5, III], [11, §4, Proposition 6] or [7, §1]. We will recall the
argument in the following proof and give some additional references.

Proof of Proposition 6.5 Let μ : Cl(Z[G]) → G0(Z[G]) denote the restriction of the
Cartan map K0(Z[G]) → G0(Z[G]), which is induced by letting μ([M]) = [M] if
M is a finitely generated projective Z[G]-module.

Let ξ ∈ Cl(Z[G]). Write ξ = [Z[G]] − [L], where L is a locally free left ideal of
Z[G], which we may do by (6.1). By [12, Exercise 31.10] we have

ξ = [Z[G]] − [L] = [M] − [M ⊗Z[G] L] in G0(Z[G]).

Hence we have the following commutative diagram of abelian groups:

Cl(Z[G])
ρ

μ
G0(Z[G])

Cl(M)
μ′

G0(M),

α

where α is induced by restriction, and μ′ is defined analogously to μ.

Let A and B be as in the exact sequence (6.2). Then it follows from the definition
of �(F/K , 3), from the exact sequence (6.2), and from Corollary 5.8 with S′ = S∞,

that we have the equalities

μ(�(F/K , 3)) = [A] − [B] = [O×
F,S] − [X S] = 
(F/K ).

Moreover, a special case of a result of Queyrut [19, Proposition 2.3] shows that
μ(WF/K ) = 0.

Now suppose that Conjecture 6.4 holds for F/K . By definition of D(Z[G]), this is
equivalent to ρ(�(F/K , 3)) = ρ(WF/K ). Since μ factors via ρ, we have


(F/K ) = μ(�(F/K , 3)) = μ(WF/K ) = 0.
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The result now follows from Lemma 6.6. ��
We close the section by proving Theorem 1.1 from the introduction. In fact, we

prove the following stronger statement.

Theorem 6.7 Let F/K be a Galois extension of number fields, let G be the Galois
group, let S∞ be the G-set of Archimedean places of F, and let � be the quotient
of the group ring Z[ 1

2·#G ][G] by the two-sided ideal generated by
∑

g∈G g. Suppose
that Conjecture 6.4 holds for F/K , and that for every prime number p not dividing
2 · #G, each primitive p-th root of unity in F is in K . Then the equality

[� ⊗Z[G] ArF ] − [� ⊗Z[G] Z
S∞] = 0

holds in G0(�)tors.

Proof Note that the fact that [�⊗Z[G]ArF ]− [�⊗Z[G] Z
S∞] indeed lies in G0(�)tors

follows from Lemma 5.10.
The ring homomorphism Z[G] → � is a composition of two homomorphisms of

the types discussed at the end of Sect. 2.3, so that it induces a group homomorphism
G0(Z[G]) → G0(�). By Proposition 6.5, the hypotheses of the theorem imply that
we have the equality

[� ⊗Z[G] ArF ] = [� ⊗Z[G] Z
S∞] − [� ⊗Z[G] Z] − j[� ⊗Z[G] μF ]

in G0(�), where j is the automorphism of G0(�) induced by the involution g �→ g−1

on G. Write temporarily Z
′ = Z[ 1

2·#G ]. Since the element 1
#G

∑
g∈G g of Z

′[G] acts
trivially on theZ

′[G]-moduleZ
′, but is 0 in the quotient�,we have [�⊗Z[G] Z] = 0.

Next, the hypothesis on roots of unity implies that for all prime numbers p not
dividing 2 · #G and all k ∈ Z≥0, every pk-th root of unity in F is in K . This implies
that G acts trivially on Z

′ ⊗Z μF , hence, by the same argument as above, we have
[� ⊗Z[G] μF ] = 0. This completes the proof. ��

7 Some known cases of the conjectures

In the present section we collect some situations in which Conjecture 5.11 is known.
The main result of the section is Theorem 7.2.

Definition 7.1 For a complex irreducible character χ of a finite group G, let Q(χ)

denote the field generated by the values of χ, and let C(χ) be the narrow class group
of Q(χ) if χ is symplectic, and the usual ideal class group of Q(χ) otherwise.

Theorem 7.2 Let F/K be a finite Galois extension of number fields, let G be the Galois
group, let G ′ be its commutator subgroup, and let P be a set of prime numbers not
dividing 2 ·#G. Suppose that FG ′

/Q is abelian, and that for every complex irreducible
character χ of G satisfying χ(1) > 1, the group C(χ) is generated by the classes of the
non-zero prime ideals of OQ(χ) not dividing any element of P. Then Conjecture 5.11
holds for F/K and P.
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The rest of the section is devoted to the proof of Theorem 7.2 and some conse-
quences.

Theorem 7.3 Let F/K be a finite Galois extension of number fields and let G be the
Galois group. Suppose that F/Q is abelian. Then we have �(F/K , 3) = WF/K = 0
in Cl(Z[G]).
Proof This is a special case of [2, Corollary 1.4]. ��
Corollary 7.4 Let F/K be a finite Galois extension of number fields such that F/Q is
abelian. Then Conjecture 5.9 holds for F/K .

Proof The assertion immediately follows from Theorem 7.3 and Proposition 6.5. ��
IfG is a finite group,we denote by Irrna(G) the set of complex irreducible characters

of G of degree greater than 1, and for χ, χ ′ ∈ Irrna(G) we write χ ∼ χ ′ if χ and χ ′
are in the same Galois orbit, i.e., if there exists τ ∈ Gal(Q̄/Q) such that χ = τ ◦ χ ′.

Lemma 7.5 Let G be a finite group and let G ′ be its commutator subgroup. Then there
is a direct product decomposition of Q-algebras

Q[G] ∼= Q[G/G ′] ×
∏

χ∈Irrna(G)/∼
Aχ , (7.6)

where the product is taken over a full set of representatives of Galois orbits of non-
abelian characters of G, and each Aχ is a simple Q-algebra. Moreover, for a set P of
prime numbers not dividing#G, there is a corresponding direct product decomposition

Z(P)[G] ∼= Z(P)[G/G ′] ×
∏

χ∈Irrna(G)/∼
Rχ , (7.7)

where each Rχ is a maximal Z(P)-order in Aχ .

Proof The decomposition (7.6) is standard. By [12, Proposition (27.1)], the Z(P)-
order Z(P)[G] is maximal in Q[G], so the decomposition (7.7) follows from [20,
Theorem (10.5)]. ��
Lemma 7.8 Let G be a finite group, let P be a set of prime numbers, let χ be a complex
irreducible character of G, let Aχ be the simple quotient of Q[G] corresponding to
the Galois orbit of χ, let Rχ be the image of Z(P)[G] in Aχ , and let Q(χ) and C(χ)

be as in Definition 7.1. Then G0(Rχ )tors is isomorphic to the quotient of C(χ) by the
subgroup generated by the non-zero prime ideals of OQ(χ) not dividing any element
of P.

Proof This follows immediately from [13, Theorem (38.67)]. ��
Proof of Theorem 7.2 For an element m of G0(Z[G]), let Z(P) ⊗ m denote the image
of m in G0(Z(P)[G]). Then Lemma 6.6 implies that we have Z(P) ⊗ 
(F/K ) ∈
G0(Z(P)[G])tors, and that the claim is equivalent to the assertion that Z(P) ⊗
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(F/K ) = 0. Moreover, by Lemma 7.5, there is a direct sum decomposition of
abelian groups

G0(Z(P)[G])tors ∼= G0(Z(P)[G/G ′])tors ⊕
⊕

χ∈Irrna(G)/∼
G0(Rχ )tors.

Therefore the assertion that Z(P) ⊗ 
(F/K ) = 0 is in turn equivalent to the claim
that the image of 
(F/K ) in each of the above summands is 0.

Since P does not contain any prime divisors of #G ′, it is easily seen that the image
of 
(F/K ) in G0(Z(P)[G/G ′])tors is equal to the image of 
(FG ′

/K ). Since FG ′
/Q

is abelian, that image is 0 by Corollary 7.4.
By Lemma 7.8, the hypotheses of the theorem imply that G0(Rχ )tors is trivial for

every χ ∈ Irrna(G), so the result follows. ��
We conclude the section with a summary of what we know about Conjecture 5.11

for small groups.

Proposition 7.9 Let F/Q be a Galois extension of degree less than 112, let G be
the Galois group, and let P be a set of prime numbers not dividing 2 · #G. Then
Conjecture 5.11 holds for F/K and P, with K = Q.

Proof A direct computation, e.g. using the computational algebra systemMagma [1],
shows that the assumption that #G < 112 implies that the hypotheses of Theorem 7.2,
with K = Q and P equal to the set of prime numbers not dividing 2 ·#G, are satisfied
for F/K . A fortiori, the assumption is also satisfied with P being any smaller set. ��
Remark 7.10 There are exactly two groups of order 112 that have an irreducible char-
acter χ of degree greater than 1 such that, in the notation of the proof of Theorem 7.2,
the group G0(Rχ )tors is non-trivial. Each has exactly one Galois orbit of such char-
acters, in both cases of degree 2. The two groups are both semidirect products of a
normal cyclic subgroup C of order 56 and a group H of order 2. Let x ∈ C be an
element of order 7, and let y ∈ C be an element of order 8. In one semidirect product,
the non-trivial element of H acts on C by x �→ x−1 and y �→ y5; and in the other it
acts on C by x �→ x−1 and y �→ y3. These are the two smallest Galois groups G for
which we do not currently know Conjecture 5.11 with K = Q and with P being the
set of all prime numbers not dividing 2 · #G.

8 Counterexamples to the Cohen–Lenstra–Martinet heuristic

In this sectionweproveTheorem1.3 from the introduction and explain how it disproves
Heuristic 3.2. The following notation will remain in force throughout the section.

Notation 8.1 Let p be an odd prime number, let C2 and C p be cyclic groups of orders
2 and p, respectively, and let G = C2 � C p = C p

2 � C p, where C p acts on C p
2 via

its regular permutation action. Let Z be the centre of G, which is cyclic of order 2,
and let γ ∈ Z be the unique non-trivial central element. Let P be the set of all prime
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numbers not dividing 2p, and let � be the quotient of Z(P)[G] by the ideal generated
by 1 + γ. Let F be the family of all pairs (F, i), where F is a Galois number field
satisfying μF = {±1}, and i is an isomorphism from G to the Galois group of F
sending Z to the inertia group of every Archimedean place.

Proposition 8.2 All complex irreducible characters χ of G with χ(1) > 1 satisfy
Q(χ) = Q.

Proof Let χ be a complex irreducible character of G with χ(1) > 1. Then by [22,
§8.2] we have χ = IndG

C p
2

ψ for some irreducible character ψ of C p
2 . Every such

character ψ satisfies Q(ψ) = Q, so we also have Q(χ) = Q. ��
Corollary 8.3 Let K = Q, and let F be a Galois extension of Q with Galois group
isomorphic to G. Then Conjecture 5.11 holds for F/K and P.

Proof This follows from Proposition 8.2 and Theorem 7.2. ��
Lemma 8.4 There exist, up to isomorphism, infinitely many Galois number fields F
with Galois group isomorphic to G such that the inertia groups at infinity map to Z
and such that μF = {±1}.
Proof Let L/Q be a cyclic extension of degree p and let H be the Galois group. Since
[L : Q] is odd and L/Q is Galois, L must be totally real. Let l be a prime number that
splits completely in L, and let l be a place of L above l. By weak approximation, there
exists a ∈ L× such that a is totally negative, has l-adic normalised valuation 1, and for
all σ ∈ H\{1} has σ(l)-adic valuation 0. In particular, a has the property that for every
non-empty subset � ⊆ H the product

∏
σ∈� σ(a) is not a square in L×. The Galois

closure F = L({√σ(a) : σ ∈ H}) of L(
√

a) then has Galois group isomorphic to
G such that the inertia groups at infinity map to Z . Moreover, the maximal abelian
extension inside F is Fab = L(

√
Norm(a)) where Norm(a) = ∏

σ∈H σ(a) ∈ Q
×,

which has l-adic valuation 1. Thus Fab/Q is ramified at l, so as l varies, we obtain
infinitely many extensions F . Of these, only finitely many can contain a non-trivial
cyclotomic field, which completes the proof. ��
Proposition 8.5 For all (F, i) ∈ F the class of � ⊗Z[G] ClF in G0(�) is trivial.

Proof Let (F, i) ∈ F .Under the hypotheses the extension F/F Z is a totally imaginary
quadratic extension of a totally real field, and andwe haveμF = {±1}. These observa-
tions imply that�⊗Z[G]O×

F is trivial. NowCorollary 8.3 implies that Conjecture 5.11
holds in for F/K and P, and thus one has [Z(P) ⊗Z ArF ] = [(Z(P))

S∞] − [Z(P)]
in G0(Z(P)[G]). Since γ acts trivially on the two terms on the right, this implies that
[� ⊗Z[G] ArF ] is trivial in G0(�). By the first equality of Proposition 5.3 we have

[Z(P) ⊗Z ArF ] = j[Z(P) ⊗Z O×
F ] − j[Z(P) ⊗Z ClF ]

inG0(Z(P)[G]).Since j is the automorphismofG0(Z(P)[G]) induced by the involution
σ �→ σ−1 on Z[G], and since we have γ −1 = γ, we conclude that

[� ⊗Z[G] ClF ] = [� ⊗Z[G] O×
F ] = 0
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in G0(�), as desired. ��
Lemma 8.6 Let p > 19 be a prime number satisfying p ≡ ±3 mod 8 and let ζp

denote a primitive p-th root of unity. Then Cl(Z[ζp,
1
2p ]) is non-trivial.

Proof Let C be the class group of Q(ζp) and let C+ be the class group of the maximal
real subfieldQ(ζp)

+.By [26, Theorem 4.14], the natural mapC+ → C is an injection,
and so we can and do viewC+ as a subgroup ofC .By [26, Theorem 2.13], 2 splits into
(p − 1)/ f distinct primes in Q(ζp), where f is the multiplicative order of 2 mod p.

The condition p ≡ ±3 mod 8 is equivalent to 2 being a quadratic non-residue mod
p, and thus f must be even. Since Q(ζp)/Q is cyclic, we conclude that any prime of
Q(ζp)

+ lying above 2must be inert inQ(ζp)/Q(ζp)
+.Thus the class inC of any prime

of Q(ζp) above 2 must in fact lie in C+. Since p > 19, we have that #C/#(C+) > 1
by [26, Corollary 11.18]. Moreover, the unique prime of Q(ζp) above p is principal
(generated by 1 − ζp). Therefore the quotient of C by the subgroup generated by the
classes of primes above 2 and p is non-trivial, which gives the desired result. ��
Proposition 8.7 Let p > 19 be a prime number satisfying p ≡ ±3 mod 8. Then
G0(�)tors is non-trivial.

Proof Since G/G ′ is cyclic of order 2p, we have that

Z(P)[G/G ′] ∼= Z[ 1
2p ] × Z[ζp,

1
2p ] × Z[ 1

2p ] × Z[ζp,
1
2p ].

Let �′ be the image of � under the projection Z(P)[G] → Z(P)[G/G ′]. Then �′ is a
direct factor of � and �′ ∼= Z[ 1

2p ] × Z[ζp,
1
2p ]. Thus G0(�

′)tors is a direct summand

of G0(�)tors and G0(�
′)tors ∼= Cl(Z[ζp,

1
2p ]) by [13, Theorem (38.67)]. Therefore

the result follows from Lemma 8.6. ��
Remark 8.8 The conclusions of Lemma 8.6 and Proposition 8.7 hold under the weaker
assumption on p that p > 19 be a prime number such that 2 generates a group of even
cardinality in (Z/pZ)×, and the proofs carry over almost verbatim. The set of all such
primes has been investigated, and Hasse [14] has computed its Dirichlet density to be
17/24.

Proof of Theorem 1.3 Let p be a prime number satisfying the hypothesis of Proposi-
tion 8.7, and let G and � be as in Notation 8.1. Then G0(�)tors is non-trivial. The
family F as in Notation 8.1 is infinite by Lemma 8.4, and for all (F, i) ∈ F the class
of � ⊗Z[G] ClF in G0(�) is trivial by Proposition 8.5. ��

Finally, the next result shows that Heuristic 3.2 is false for F and � as above and
for some natural functions f .

Proposition 8.9 Suppose that for all homomorphisms φ : G0(�)tors → C
×, Heuris-

tic 3.2 holds with K = Q and with f being the function that assigns to a finite
�-module M the value of φ on the class of M in G0(�)tors. Then as (F, i) ranges
over F , the class of � ⊗Z[G] ClF in G0(�)tors is equidistributed.
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Proof By Lemma 7.5 there is a direct product decomposition

Z(P)[G] ∼= Z(P)[G/G ′] ×
∏

χ∈Irrna(G)/∼
Rχ .

Note that the group G/G ′ is cyclic of order 2p. Let γ̄ be the image of γ under the
projection map G → G/G ′, and let �̄ be the quotient of Z(P)[G/G ′] by the two-
sided ideal generated by 1 + γ̄ . Then � ∼= �̄ × T , where T is a direct factor of∏

χ∈Irrna(G)/∼ Rχ . Moreover, for χ ∈ Irrna(G), we have that Q(χ) = Q by Propo-
sition 8.2, and thus G0(Rχ )tors is trivial by Lemma 7.8. Hence there is a canonical
isomorphism G0(�)tors ∼= G0(�̄)tors. The set F is infinite by Lemma 8.4. Note that
FG ′

is an imaginary abelian number field that is a quadratic extension of a real field,
and �̄⊗Z[G]ClF is themaximal quotient ofZ(P)⊗ZClFG′ onwhich complex conjuga-
tion acts by −1. Equidistribution of minus parts of class groups in the corresponding
Grothendieck group was shown in [4, Proposition 4.4] to follow from the Cohen–
Lenstra–Martinet heuristic for families of imaginary extensions with Galois group
isomorphic to G/G ′. However, it is easy to see that the prediction is the same in the
present situation, despite the fields being ordered differently; see Remark 3.1. ��
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