
1

A Continuous Time Dynamical Turing Machine
Claire M. Postlethwaite, Peter Ashwin, Matthew Egbert

Abstract—Continuous time recurrent neural networks
(CTRNN) are systems of coupled ordinary differential equations
inspired by the structure of neural networks in the brain.
CTRNN are known to be universal dynamical approximators:
given a large enough system, the parameters of a CTRNN
can be tuned to produce output that is arbitrarily close to
that of any other dynamical system. However, in practise, both
designing systems of CTRNN to have a certain output, and
the reverse—understanding the dynamics of a given system
of CTRNN—can be non-trivial. In this paper, we describe
a method for embedding any specified Turing machine in
its entirety into a CTRNN. As such, we describe in detail
a continuous-time dynamical system that performs arbitrary
discrete-state computations. We suggest that in acting as both
a continuous-time dynamical system and as a computer, the
study of such systems can help refine and advance the debate
concerning the Computational Hypothesis that cognition is
a form of computation and the Dynamical Hypothesis that
cognitive systems are dynamical systems.

Index Terms—CTRNN, Turing machine, network attractor

I. INTRODUCTION

THE DYNAMICAL HYPOTHESIS in Cognitive Science
proposes that “cognitive agents are dynamical systems”

and as such, cognition is best understood in dynamical sys-
tems terms [1]. These claims developed as a rejection of
the Computational Hypothesis that cognition is a form of
computation [2], [3], i. e. a kind of symbolic manipulation
whereby internal representations of the agent’s world are
transformed or processed by algorithms.

So which is it? Is cognition a kind of computation or is
it a dynamical system? Or is this a false dichotomy? Con-
nectionist neural networks present what some see as a middle
ground. In these systems, cognition is a kind of computational
processing of internal representations but the representations
(symbols) are not pre-determined. They instead emerge in
the dynamics of ‘sub-symbolic’ neural-network architectures
[4]. Some see this as a fully-fledged alternative to classic
computationalism, while others see the connectionist neural
networks as just an implementation of computationalist ideas
that do not give sufficient emphasis to the roles played by
the body and environment, and the rich, dynamic interaction
between these and the brain in the generation of intelligent
behaviour (see e. g. [5], [6]). The debate is ongoing. Perhaps
one reason for this is that despite efforts to be clear on what the
real differences are between the dynamical and computational
hypotheses (including those in the original presentation of
the dynamical hypothesis [1]), central terms are interpreted in

Department of Mathematics, University of Auckland, Auckland, 1142, New
Zealand. Email: c.postlethwaite@auckland.ac.nz

Department of Mathematics and Statistics, University of Exeter, Exeter EX4
4QF, UK. Email: P.Ashwin@exeter.ac.uk

Department of Computer Science, University of Auckland, Auckland, 1142,
New Zealand. Email: m.egbert@auckland.ac.nz

various ways. What counts as computation and what doesn’t?
What counts as a dynamical system and what doesn’t?

Computation is often defined as either ‘information pro-
cessing’ or the transformation of ‘inputs’ into ‘outputs,’ but
just about anything can be construed as such. Similarly, a
dynamical system is one that changes over time according
to a fixed rule. What doesn’t fit into this category? In these
broad interpretations, a real-world computer is a dynamical
system, and just about any dynamical system can be analyzed
as a system that ‘processes information.’

Despite these points and despite the fact that definitions of
both computation and dynamical systems can seem all encom-
passing, the debate is not vapid, as the different metaphors
suggest different ways for investigating cognition. If one
thinks about cognition as a form of computation (e.g., [7],
[8]) applied to solving problems, we find ourselves studying
problems that are readily presented to a computational device,
like chess and video games [9]. If, on the other hand, we
consider cognition to be the result of dynamical interplay
between coupled brain, body and world, then we find ourselves
considering cognitive tasks that can be readily formalized as
fitness functions, e. g. investigating categorical perception in a
minimal embodied robot that can use whisker-like sensors to
distinguish between circle and diamond shaped objects [10].

The different metaphors also suggest different methods for
analyzing putatively cognitive systems. As a case in point,
Beer et al. [11] demonstrate how dynamical and informational
analysis can both be applied to the same artificial cognitive
architecture. One would be forgiven for assuming that the
information theoretic analysis is associated with the Compu-
tational Hypothesis, and that the dynamical systems analysis
is similarly associated with the Dynamical Hypothesis, but as
Beer et al. argue, the different analysis methods are, in a sense
hypothesis-agnostic. Whether one embraces the computational
or dynamical hypotheses (or neither), each of these analytic
methods reveals different aspects of how the system that they
are studying operates. Each of these aspects are informative
and can be integrated into a more complete understanding of
that system.

The benefits of the debate just described are
epistemological—i. e. they relate to the ways that we
study, describe and come to understand cognition. Is there
more that the debate adds beyond these benefits? Are the
definitions of both computational and dynamical systems
so encompassing that they lose most of their meaning? Or
are there real differences between A, the set of systems
that are ‘computational’ and B, the set of systems that are
‘dynamical’? If there are such differences, what precisely
are they? To approach these questions, this paper presents a
system designed to qualify as both a computational system
and as dynamical system. The system we present is a Turing

2

machine [12] realized in its entirety in the dynamics of a
continuous time recurrent neural network (CTRNN) [13]
(using a system similar to that investigated by many others
since Hopfield [14]). The system we present is also clearly a
dynamical system as it is defined by a state space and a set of
ordinary differential equations (ODEs) that describe how the
state of the system changes over time. The only parameters
in the system are a weight matrix of interconnections and a
common threshold nonlinearity.

In qualifying as both a computational system and as a
dynamical system, we propose that the system described in this
paper can be useful as an examplar for highlighting ways that
computational systems are ‘unusual’ or different from most
other dynamical systems, hopefully clarifying positions around
the computationalist/anti-computationalist debate. After giving
an overview of the necessary background on Turing machines
and network attractors in section II, we present the model
in detail in sections III and IV. Then, in Section V, we
show how our model can be used to consider the relationship
between computation and dynamics by highlighting three
salient features of the designed computational dynamical sys-
tem: topological regularity; dynamical sparcity, and temporal
regularity. We briefly discuss how these salient properties may
be the result of design requirements (i. e. that the system must
act as a computational device) or the result of by-human
engineering and the requirements implicit in that process.

II. BACKGROUND

The dynamical system we design in this paper has the
form of a network attractor, designed within a continuous
time recurrent neural network (CTRNN). In this background
section, we give a brief overview of previous work related
to ours, then a review on how Turing machines function,
and finally we give some background on network attractors
in CTRNNs. We chose CTRNN as a dynamical medium
as they have been widely used in investigations into how
cognitive processes (e.g., associative learning [15], categorical
perception [10], and learning [16]) can be understood not as
computation, but as the interaction between brain, body and
world dynamics [6], [17].

A. Related work

Turing machines are widely accepted as the archetype of
discrete computation, and so it is fair to suggest that at
the base of the computational hypothesis is the view that
something essential is shared by cognitive systems and finite
state automata such as Turing machines. It has been known
since [18], [19] that simple networks are capable of realizing
finite automata and hence Turing-type computation in certain
senses. This line has been investigated by various authors,
for example [20], [21], [22], [23]. Universal computation can
be found in universal memcomputing machines [24], Neural
P-systems [25] and reservoir computers [26] to name a few
approaches. Recently, [27] present an algorithm to embed an
arbitrary Turing maching by means of a modular structure
of synfire chains. We note that some investigations use the
analogue nature of RNNs to perform computation that goes

beyond Turing in the sense of encoding a continuum of states
[28], [29]; however we restrict ourselves to implementation of
finite state computation.

Individual neurons are diverse. Their dynamics are complex
and varied, leading to a variety of proposals as to how neurons
could might accomplish different types of computation with
different dynamic media. Maass [30] compares the computa-
tional capabilities of spiking neurons to threshold-gate neurons
(McCulloch–Pitts) and sigmoid-gate neurons. Spiking neurons
are more complicated and more computationally powerful than
minimalistic McCulloch–Pitts neurons, and Maass investigates
how different computations can be accomplished with the
‘temporal patterns’ inherent in spiking neural dynamics. A
general point here is that some dynamic media (i.e. some basic
neural units) are more naturally suited to different kinds of
tasks than others. For example, spiking neural networks are
well suited to detecting event synchrony [30].

At a higher topological scale, a ‘cell assembly’ (CA) is
a group of neurons that tend to become excited in concert,
either in response to a particular environmental stimulus or due
to influences of other cell assemblies. Excitatory connections
within a CA can maintain its activity after the stimulus has
ended. Neuroscientific evidence suggests that CA exist in vari-
ous organisms [31] and links between CA and fundamentals of
cognition (e.g., categorisation, short-term memory and long-
term memory) have been proposed [21]. One of the most
well known CA models is the Hopfield network [14]. A CA
built from fatiguing leaky integrate-and-fire neurons (fLIF) can
be used to implement any finite state automaton (FSA) [32].
Similar constructions of FSA have been achieved in networks
of Hebbian cell assemblies (see, e.g., [23] and references
therein). This presents an algorithm for transforming any finite
state automaton into a corresponding Hodgkin—Huxley neural
network of synfire rings, proposing that synfire rings could
act as “a theoretical ground for the realization of biological
neural computers” [23] and proposes an alternative ‘Assembly
Calculus’, i.e., a set of biologically plausible operations on
CA that could realize a complete computational system.

B. Turing machines

Our construction is adapted and simplified from a previous
paper [33], and follows [34]. A finite-state single-tape Turing
computing machine consists of
• a finite set of internal states Q,
• a finite set Γ of tape symbols,
• a starting state q1 ∈ Q,
• at least one, and possibly several, halting states F ⊂ Q,
• a transition function ρ : (Q \F)×Γ→ Q×Γ×{L,R}.
Let nQ := |Q|, the number of internal states, and nΓ := |Γ|,

the number of possible symbols. We number the states and
symbols qi ∈ Q, i = 1, . . . , nQ and sj ∈ Γ, j = 1, . . . , nΓ, so
we can represent the action of the transition function ρ as

ρ(qi, sj) =: (q̃ij , s̃ij , σ̃ij)

where q̃ij ∈ Q, s̃ij ∈ Γ and σ̃ij ∈ {L,R}.
The tape consists of a discrete string of symbols γj ∈ Γ and

Turing machines usually consider an infinite tape j ∈ Z. We

3

say there is a finite loop tape if γj is defined for j modulo nt
for some nt ∈ N corresponding to the tape length. We note that
when using a finite, rather than infinite tape, a Turing machine
is not technically Turing complete, but is only equivalent to
a finite state automata. However, in systems where we can
make the tape arbitrarily long, this is often referred to as
Turing complete, even though proper simulation would require
an infinite tape. In this paper, we consider Turing machines
with only two symbols, which we label 0 (or blank) and 1.
We consider the 0 to be a ‘blank’, so in fact we are only
considering a single letter alphabet A = {1}. However, it
would also be straightforward to adapt our design technique
to allow for a larger number of symbols, and we describe how
to do this in section III-B.

Starting at tape position j = 0 and internal state q(0) = q1

suppose that the machine arrives after n steps at internal
state q(n) ∈ Q and tape position β(n). If q(n) ∈ F then
the computation has finished, while otherwise it reads the
transition function

(q̃, γ̃, σ̃) = ρ(q(n), γβ(n))

where q ∈ Q, γ̃ ∈ Γ, σ̃ ∈ {L,R}. The machine then updates
the internal state to q(n + 1) = q̃, the symbol at site β(n) is
changed to γβ(n) = γ̃ and then the machine moves along the
tape according to

β(n+ 1) = β(n) + 1 if σ̃ = R

β(n+ 1) = β(n)− 1 if σ̃ = L.

The machine repeats this either forever, or until it reaches a
halting state and computation has finished. Clearly there will
be restrictions placed by a finite loop tape that will depend
on choice of nt, but for any given computation that comes to
completion, only finitely many tape positions will be used by
the time the halting state is reached.

C. Excitable network attractors

A previous paper [33] demonstrated that it is possible to
realise a Turing machine in the dynamics of excitable or
heteroclinic networks, but with a heterogeneous of network
of nonlinear units that were designed to have ‘robust con-
nections’. In [35], we show how to embed an ‘excitable
network attractor’ of arbitrary structure within the dynamics of
a CTRNN. Note that ‘heteroclinic attractors’ have been used
to construct computational systems (see for example, [35],
[36]), but excitable network attractors are in some sense more
robust in that they link attracting states. In this section, we
give an overview of excitable network attractors, and a brief
description of how the embedding works.

In the most general terms, an excitable network attractor
is an invariant set within the phase space of a dynamical
system, consisting of a number of attractors (states) that may
be selectively sensitive to perturbations in certain directions.
Such perturbations allow the trajectory to move between the
states, but only along pre-specified connections: in this way the
network attractor realizes a directed graph, and the trajectory
in the phase space represents the directed path taken around
this directed graph.

Fig. 1. The figure shows, from left to right, a one-loop, a two-loop, and
a ∆-clique in a directed graph; sub-networks which are not allowed in the
topology of the directed graph to be embedded in a CTRNN.

CTRNNs are sets of differential equations describing the
dynamics of a set of nodes; each dependent variable in the
differential equation gives the excitation level of a single node.
Nodes are thought of as excited if the value of a nonlinear
activation function φ(.) of that node is order 1. With the choice
of weight matrix we describe in [35], excitation of nodes is
mutually exclusive: only a single node can have φ(.) order 1 at
any given time. This is in contrast to the dynamics of a typical
CTRNN (e.g. one with either a weight matrix that is either a
randomly assigned, or optimised for some purpose using, for
instance, a genetic algorithm), which would not have such a
restriction.

In [35] we showed that it is possible to choose the weight
matrix of an n-dimensional CTRNN so that, in addition to
the above restriction, the attracting dynamics can be described
in terms of a path around a directed graph with almost any
desired topology (restricted only so that the graph does not
include any one-loops, two-loops or ∆-cliques; see figure 1).
Each node in the CTRNN is associated with a vertex in the
directed graph: when node yj is excited, we say that a path
around the directed graph is at vertex j.

More specifically, for our construction, there exist stable
equilibria in the phase space, at each of which a single node
of the CTRNN is excited. When a trajectory is close to such
an equilibria, we refer to the excited node as active, and
to the remaining nodes as either leading, disconnected and
trailing, depending on the connectivity to other nodes within
the directed graph. Leading nodes have arrow heads pointing
from the active node to them, i.e. by following the arrows
in the directed graph, it is possible for them to become the
next active node. Trailing nodes have arrow heads pointed
from themselves to the active node. Disconnected nodes have
no arrows between them and the active node. The top panel
of figure 2 shows a schematic of part of a directed graph.
When the red node is active, the nodes labelled LA and LD
are leading, the node labelled TD is trailing, and the nodes
labelled DL and DT are disconnected.

In [35], it is shown that a parameter in the weight matrix
can be varied through a bifurcation such that the connections
between the different nodes can be in one of two different
dynamical regimes, which we call excitable and automatic.
When connections are excitable, perturbations, either added
at specified times, or from additive noise, are required to
push trajectories from one state to another. Parameters can be
chosen to adjust how large these perturbations need to be to
affect a transition. Alternatively, it is also possible to choose

4

TD

LD DT

DL

AT LA

LA,LD

TD,LDDT,DL

AT,DTTD

DL

AT LA

AT LA

t

t

yj

φ(yj)

Fig. 2. The figure shows (top) a schematic of part of a directed graph, and
below, schematic showing timeseries of the values of yj and φ(yj) for a
trajectory as it transitions from a state where the red node is active to one
where the blue node is active. The nodes of the directed graph are labelled with
two letters corresponding to whether they are (A)ctive, (L)eading, (T)railing
or (D)isconnected, before and after the transition.

the perturbations so that the connections between the states
is what we call automatic. In this case the transition between
states happens without any external inputs. Here, the states are
no longer stable equilibria, but are regions of phase space close
to the ghost of a saddle-node bifurcation [37] (also known as
a ‘funnel region’). The trajectory remains in the region of the
ghost for a relatively long period of time, so it appears to be
at equilibrium, before rapidly switching to the next state.

In [35] we show that parameters can be chosen so that
connections can be a mixture of excitable and automatic, as
desired by the designer of the network. The weight matrix
depends only on the topology of the directed graph, and four
parameters, as described in section III. We refer to the entire
network in phase space as a CTRNN excitable network.

III. REALISING A DYNAMICAL TURING MACHINE

The full system comprises multiple CTRNN excitable net-
works, coupled together with small perturbations (or inputs).
The perturbations are designed in such a way that in the Turing
machine realisation is an input-free CTRNN that we call a
Dynamical Turing Machine.

The sub-networks of this are:
1) A state network which describes the internal state of the

Turing machine.
2) A tape network which describes the position of the head

of the tape, and the symbol at each position of the
tape. This network actually consists of nt disjoint sub-
networks, where nt is the length of the tape, and there
is one sub-network for each position on the tape.

Each of the state network and the tape sub-networks is,
in the absence of external perturbations, a CTRNN excitable
network, and so only a single node within each of these sub-
networks can be active at any one time. Which of the nodes is
active in the state network describes the internal state of the
Turing machine, and which of the nodes is active in the tape
sub-networks describes both the symbols on the tape, and also
the position of the tapehead.

The governing equations for an infinite tape are of the form

ẏ = fy(y) + ζygy(φ(x)), (1a)
ẋj = fx(x) + ζxgx(φ(y))+

ζβ(gR(φ(xj−1)) + gL(φ(xj+1))), j ∈ Z (1b)

where the vector y describes the variables in the state network,
and x = (. . . ,x−1,x0,x1,x2, . . .) describes the variables
in the tape network, with each vector xj representing the
variables in the sub-network on the jth position of the tape.
For a finite (periodic) tape, the subscript on each xj is
taken modulo nt, and so x is finite. The parameters ζx,
ζy and ζβ are small constants and control the size of the
perturbations coupling the sub-networks. Note that each of
the tape sub-networks only receives inputs from the state
network and its immediate neighbours in the tape. Note also
that these perturbations are small enough that the structure
of the dynamics within each sub-network remains that of a
CTRNN excitable network (as described in section II): the
perturbations act only as the perturbations which move the
trajectory along the excitable connections.

The functions fx and fy have the form of a CTRNN, so,
for example,

fy(y) = −y +Wyφ(y)

where the function φ, given by

φ(x) =
1

1 + e−K(x−θ)

for parameters K and θ, is applied component-wise to the
vector y, and Wy is a matrix, the entries of which depend on
the topology of the state or tape network, as will be described
in the forthcoming sections. Each of the gα functions (α =
y, x,R, L) are linear in their arguments, and provide inputs, or
perturbations between the state network and each of the tape

5

Inputs Outputs
qi sj q̃ij s̃ij σij
q1 0 H N 0
q1 1 q2 0 R
q2 0 q3 0 R
q2 1 q2 1 R
q3 0 q4 1 L
q3 1 q3 1 R
q4 0 q5 0 L
q4 1 q4 1 L
q5 0 q1 1 R
q5 1 q5 1 L

TABLE I
TRANSITION FUNCTION ρ FOR THE COPY ROUTINE.

sub-networks. Thus, the entire system (the Dynamical Turing
Machine) has governing equations of the following form:

Ẏ = −Y +Wφ(Y) (2)

where we refer to W as the weight matrix and φ(V) is applied
component-wise.

In the following sections, we first describe the construction
of the functions fx and fy , which give the internal dynamics
of the state network and tape sub-networks. These are chosen
so each is a CTRNN excitable network with the topology of a
specified directed graph. Each has some automatic transitions,
which mean the trajectory transitions between the nodes in
the network without input, and some excitable transitions.
When the trajectory is near a node which only has excitable
transitions leaving it, an input is required to prevent the system
remaining at equilibrium; these inputs come from the other
networks. In section III-C we describe the functions gα which
provide these small inputs from one network to another.

In summary, a trajectory with appropriate initial conditions
will visit a sequence of regions of phase space which are near
equilibria and can be associated with different internal states
of the Turing machine and different configurations of the tape.
This will continue until the Turing machine reaches a halting
state.

A. State network

The first step in the construction is to express the internal
states Q and transition function ρ of the Turing machine as
a directed graph. Throughout this section, we use the ‘copy’
routine [38] as an example, but the same process can be used
for other Turing machines. The transition function for the copy
routine is shown in table I, and the associated directed graph
in figure 3. The vertices in the graph represent the internal
states Q = {1, 2, 3, 4, 5, H} (where H ∈ Q is the halting
state), and the connecting arrows are labelled with a 0/1 if
they occur when the tapehead reads a 0 or 1 respectively. The
red letters R and L indicate if the transition between states
moves the tapehead right or left, and the red 0 or 1 on the
arrows indicate if the tapehead writes a 0 or 1 to the tape.

The state network is constructed from this directed graph. In
order to generate the required perturbations to the tape network
when transitions are made in the state network, we add an
additional two vertices along each edge in the original graph.
Recall that each vertex in the directed graph corresponds to a

1

H
23

4

5

0

0

0
0

0

1

1
1

1

1

0,R

0,R

1,R

1,R

1,L

1,L 0,L

1,L

1,R

Fig. 3. The transition function ρ (table I) for the copy routine represented as
a directed graph. The states are represented by the circled numbers. The black
0s and 1s on the arrows indicate the current state on the tape for which that
arrow should be followed, and the red 1s, 0s, Rs and Ls indicate the symbol
which should be written on the tape and the direction the tape head should
move when that transition occurs.

node (or variable) in the CTRNN, and so from hereon we use
the word ‘node’ to also describe the vertices in this directed
graph. Of each pair of additional nodes, the first one (coloured
blue in figure 4) provides an input into the tape network. In
what follows, we refer to these nodes as the input nodes. The
second additional node (coloured gray) does nothing, except
allow for a time delay before the state network reaches the next
state. We refer to these as the delay nodes. We refer to the
original nodes (in this case, those labelled 1-6 and outlined in
black) as the internal nodes. The addition of these nodes also
has the additional effect of ensuring there are no one-loops,
two-loops or ∆-cliques in the state network.

In figure 4 we show this extended graph for the copy routine.
The internal dynamics of the state network are then determined
using the method described in [35] (and in section II) to
embed this directed graph as a CTRNN excitable network.
The connections leaving both the input and delay nodes are
automatic (and are coloured green in figure 4). The connec-
tions leaving the internal nodes in the state network (coloured
black and dotted in figure 4) are excitable. In the absence of
any inputs or perturbations, trajectories would remain close
to these nodes, but perturbations from the tape network will
push the trajectory away from these. Specifically, inputs from
the tape network, when the tape reads a zero or a one, as
indicated by the labels on the arrows, push the trajectory from
an internal node to the appropriate input node. The automatic
transitions then allow the trajectory to move to the next internal
node without further input. While the trajectory is close to the
input node, the state network in turn provides inputs to the tape
network so that the symbols and position of the tape head are
adjusted appropriately.

6

1

623

4

5

0

0

0

0

0

1

1
1

1

1

0,R

0,R
1,R

1,R

1,L

1,L

0,L

1,L

1,R

1,R

Fig. 4. The extended directed graph for the copy routine. The input nodes
are coloured blue, and the delay nodes are coloured gray. Further details are
in the text. Automatic transitions are indicated by green arrows, and excitable
connections by black dotted arrows. Note that we have added the instruction
(1, R) between state 1 and state 6 (the relabelled halting state) for consistency;
this does not change the outcome of the Turing machine.

We write the adjacency matrix A of this extended graph
in two parts, one which enumerates the excitable connections,
and one which enumerates the automatic connections:

A = Aa +Ae

The matrix Wy has elements (Wy)ij , which are given by

(Wy)ij = wt + (ws − wt)δij + (wa − wt)(Aa)ij+

(we − wt)((Ae)ij) + (wm − wt)((Aa)ij + (Ae)ij)
(3)

where δij is the Kronecker δ. This choice ensures that
(Wy)ii = wm, (Wy)ij = wa if there is an automatic
connection from node j to node i, (Wy)ij = we if there is an
excitable connection from node j to node i, and (Wy)ij = wt
otherwise. The parameters wt, we, wa and wm are chosen
as described in [35], to ensure the existence of an excitable
network. The numerical values we use are given in section IV.

In order to generate the appropriate inputs between the
state network and the tape network, we write down a number
of vectors which essentially enumerate the different types of
nodes in the networks. The required vectors for the state
network are as follows.
• Four vectors v0R, v0L, v1R and v1L, which enumerate

which nodes correspond to transitions that move the tape
right/left and write 0/1 on the tape. These vectors are
zeros except in the positions of the input nodes that, for
v1R say, write a one and move the tape right. For the copy
routine, for instance, the vector v1R would have ones in
the positions corresponding to the blue nodes labelled
1, R in figure 4.

• Two vectors v0 and v1 which give the positions of the
nodes which should be perturbed when the tape head

0L

0 0'

1L

0R1R

1' 1

Fig. 5. Schematic of one sub-network of the tape and symbol network. Green
arrows correspond to automatic connections, black dotted arrows correspond
to excitable connections.

reads a zero or a one. Each are zeros except for the
positions of the input nodes along the transitions which
occur when there is a 0 or 1 on the tape. For instance, v0

for the copy routine would have ones in the positions
corresponding to nodes at the heads of black arrows
labelled with a 1.

B. Tape network

The symbols on the tape and the position of the tape head
are enumerated and recorded using a set of sub-networks, one
of which is shown in figure 5. We assume a finite loop tape
with tape length nt, so that the tape network consists of nt
copies of the network shown in figure 5. Again, the internal
dynamics of each tape sub-network is such that there exists a
CTRNN excitable network with this topology.

When a 0 or 1 node is active in the sub-network in the
kth position of the tape (‘sub-network k’) this corresponds to
the symbol at the kth position on the tape being a 0 or a 1,
respectively, and that the tapehead is at position k. When a
0′ or 1′ node is active in sub-network k, this corresponds to
the symbol at the kth position on the tape being a 0 or a 1,
respectively, and that the tapehead is not at position k. As will
be seen in what follows, so long as initial conditions are chosen
appropriately, only one sub-network can have an ‘unprimed’
0 or 1 node active at any given time: these nodes are only
excited when a neighbouring tape sub-network changes from
an ‘unprimed’ 0 or 1 to a ‘primed’ 0 or 1 node.

As can be seen in figure 5, each sub-network of the tape and
symbol network has two parts consisting of four nodes, one
with ‘0’ labels and one with ‘1’ labels. To extend the system
to include more symbols, we simply add additional four-node
units to each tape sub-network, one for each additional symbol.
Additional excitable connections are added from each symbols
‘unprimed’ node to every other symbols ‘L’ and ‘R’ nodes.

The adjacency matrix of each tape sub-network is again
divided into automatic and excitable parts. The connections
between the nodes are shown in figure 5, where green arrows
correspond to automatic connections and black dotted arrows
correspond to excitable connections. Let the adjacency matrix
of the tape sub-network be the matrix B, then we write

B = Ba +Be.

7

The matrix Wx which generates the internal dynamics of each
tape sub-network has elements (Wx)ij , with

(Wx)ij = wt + (ws − wt)δij + (wa − wt)(Ba)ij+

(we − wt)((Be)ij) + (wm − wt)((Ba)ij + (Be)ij)
(4)

Again, in order to generate the appropriate perturbations
between the sub-networks, we write down a number of vectors
which enumerate certain nodes in the networks. Those vectors
for the tape sub-networks are as follows. All these vectors are
8-dimensional, consisting only of zeros or ones.
• Vectors w0 and w1 which indicate when a tape sub-

network has either of the nodes 0 or 1 active, that is,
these vectors are zeros everywhere except in the positions
corresponding to the 0 nodes (for w0) and 1 node (for w1)
in the tape sub-network. These vectors have the affect of
‘reading the tape at the position of the tapehead’.

• Four vectors w0R, w1R, w0L and w1L, which are zeros
except in the position corresponding to the 0R, 1R, 0L
and 1L nodes in each tape sub-network. These are used
so that perturbations from the state network push the tape
network to the correct node.

• wL = w0L + w1L and wR = w0R + w1R, used to
indicate whether the tape should be moved right or left,
and send perturbations from one tape sub-network to the
appropriate neighbour.

• w01 = w0 + w1, which indicates the nodes in tape sub-
network j which should be perturbed as the tapehead
moves to position j.

C. Coupling the networks

There are three classes of coupling between the networks:
1) Inputs from a tape sub-network to the state network,

when that tape sub-network has either of the nodes 0
or 1 active. This corresponds to the tapehead reading a
0 or 1, and the input pushes the trajectory in the state
network along the appropriate connection.

2) Inputs from the state network to the tape sub-networks
when the state network has an active input node. This
input both (over)writes symbols on the tape and moves
the tapehead.

3) Inputs from a tape sub-network to its immediately neigh-
bouring tape sub-networks, to affect the movement of the
tapehead.

All three of these coupling types are shown by dashed
arrows in figure 6. More details and specific equations for
each of these input types are as follows:

1) When a tape sub-network has one of the nodes 0 or
1 active, this corresponds to the tapehead being at that
position on the tape. The tape network provides an input
into all of the input nodes in the state network which
are at the end of an excitable connection labelled with
a 0 or 1, respectively. This input to the state network is
given by the expression

gy(x) =

 nt∑
j=1

φ(xj) ◦ w0

 v0 +

 nt∑
j=1

φ(xj) ◦ w1

 v1

0L

0

0'

1L

0R

1R

1'

1

4
0

1

1,L

0,L

0L

0

0'

1L

0R

1R

1'

1

0L

0

0'

1L

0R

1R

1'

1

Fig. 6. The figure shows a portion of the state network from figure 4 (top),
and three sub-networks of the tape network (bottom). The black dashed lines
represent a subset of the perturbations which occur between the sub-networks.
Each arrow indicates that when the node at the tail of the arrow is active, a
perturbation is applied to the node at the head of the arrow. If that node is
a leading node, then it will become active. All such arrows which are either
incoming or leaving the middle of the three tape sub-networks are shown.
Note that these dashed arrows are not indicative of a directed graph forming
a CTRNN excitable network.

where ◦ is the Hadamard (entry-wise) product. The first
term corresponds to the case where a tape sub-network
is at 0, the second term to when it is at 1. Since
φ(x) is close to zero unless the node corresponding to
variable x is active, and w0 has the effect of selecting
the coordinating corresponding to the 0 node, the first
term in brackets is only O(1) when one of the tape sub-
networks has a 0 node active. The vector v0 provides the
required coordinates for the input into the state network.
The second term is equivalent for the 1 nodes.

2) When the state network has an input node active, this
corresponds to a transition occuring between the original
states of the Turing machine. The input needs to both
write a symbol on the tape and moves the tapehead. For
instance, if the active node in the state network is an
input node labelled 0, R, an input is given to all the
0, R nodes in each of the tape sub-networks. For all of
the tape sub-networks which have active 0′ or 1′ nodes,
nothing will happen, but this perturbation will affect a
transition for the tape sub-network which has an active
0 or 1 node (that is, the tape position corresponding
to the position of the tapehead). Following this, in that
tape sub-network, there will be an automatic transition to
node 0′. This part of the dynamics simulates the writing
of the symbol 0 on the tape.

8

y

t

Fig. 7. A time series plot of all the states in the state network. The coordinates for the state nodes are coloured, in numerical order, red, blue, orange, yellow,
purple and green. The input nodes are all black solid lines, and the delay nodes are black dashed lines. The halting state is reached at t ≈ 1080. A zoom of
the first 100 time units is shown in figure 8(a).

This input from the state network to the tape sub-
networks is given by:

gx(y) = (v0R ◦ φ(y))w0R + (v1R ◦ φ(y))w1R+

(v0L ◦ φ(y))w0L + (v1L ◦ φ(y))w1L

(5)

where each of the vij vector selects the appropriate
dimensions from the state network, and each of the wij
vectors provides the inputs into the correct coordinates
in the tape sub-networks.

3) The movement of the tapehead along the tape is imple-
mented by inputs from the tape sub-networks to their
right or left neighbours. Specifically, when any of the
nodes 1L, 0L, 1R and 0R in the tape sub-network are
active, an input is given in the direction of nodes 0 and
1 in the tape sub-network either to the right or left,
depending on the label. This has the affect of activating
the ‘unprimed’ state 0 or 1 node in the sub-network
to the right or left, indicating the movement of the
tapehead. The input each sub-network receives from its
neighbours are given by the functions

gR(xj) = (φ(xj) ◦ wR)w01

and
gL(xj) = (φ(xj) ◦ wL)w01

IV. A NUMERICAL EXAMPLE: THE COPY ROUTINE

In this section we demonstrate that the above equations
do indeed provide an embedding of a Turing machine, again
using the copy routine [38] as an example. We use a tape
of length 10, and set initial conditions so that the tape has
initial configuration 0011100000, and the tape head starts at
tape position 3. This means that tape sub-network 3 has an
active 1’ node, tape sub-networks 4 and 5 have an active 1
node, and the remainder of the tape networks have the 0 node
active. The state network starts with node 1 active. We expect
the final configuration of the tape network to be 0011101110.

We use the following parameters in our integrations:

ws = 1, wm = −0.5, wt = −0.3,

wa = 0.31, we = 0.29,

ζx = 0.03, ζy = 0.05, ζβ = 0.02,

K = 20, θ = 0.5.

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

t

x4

x3

y

(a)

(b)

(c)

Fig. 8. The figure shows a zoom of a portion of the time series in figure 7.
Panel (a) shows the state network, with line styles as in figure 7. Panels (b)
and (c) show tape sub-networks 3 and 4, respectively. In these panels, the
coordinates are coloured as: 0: green; 1: red; 0′: light blue; 1′: blue. The
remaining coordinates are coloured black. Notice in panel (c), that when the
1′ is active, the 1 coordinate has an intermediate value - this is because it is
a leading node.

Figures 7, 8 and 9 show the results of numerical integration
of equations 1 with the above parameters and initial conditions.
Figure 7 shows a time series of the values of the coordinates
in the state network. The coordinates corresponding to the
state nodes are coloured (as detailed in the caption); the input
nodes are black solid lines, and the delay nodes are black
dashed lines. Note that the value of the coordinates can be
close to four different values, depending on whether the nodes
are active (y ≈ 1), leading (y ≈ 0.3), disconnected (y ≈ −0.3)
or trailing (y ≈ −0.5).

Figure 8 shows a time series of only the first 100 time units
of the integration, but includes the variables from the third and

9

Tape position

t

Fig. 9. The figure shows the value of the 1 node in each of the tape sub-
networks over time. The black and dark gray regions together indicate which
positions in the tape currently have the symbol 1; the light gray is the symbol
0. See text for more details.

fourth tape sub-networks as well as the state network. Here
we can see the details of the transitions between the nodes
and the inputs between the networks. Initially, the active node
in the third tape sub-network is node 1, and this provides an
input into the state network which activates the input node
labelled 0, R (see figure 4). This transition is completed at
around t = 10, at which point an input into the tape networks
cause the third sub-network to transition from node 1 to node
0, R. The input can also be seen as a perturbation in the fourth
sub-network, but there is no effect here. The transition in the
third tape sub-network to having node 0, R active is completed
around t = 13, and the corresponding input from this node into
the fourth sub-network affects a transition there from node
1’ active to node 1 active. There are subsequently automatic
transitions in the state network from the input node 0, R to
the delay node, and then to the state node 2, and also in the
third tape sub-network from node 0, R to node 0′. Node 2 in
the state network becomes active at around t = 39, with the
third tape sub-network having node 1′ active and the fourth
tape sub-network having node 1 active, and the process can
begin again.

In figure 9 we show the value of the activation level of the 1
node (i.e. the value of the variable corresponding to that node)
for each of the tape sub-networks, in grayscale. When the 1
node is active, the value is close to 1, and shows as black.
When the 1 node is leading, the value is close to 0.3 and
shows as dark grey. Because of the topology of the network
(see figure 5), if the 1 node is leading, the 1′ node must be
active, so together the black and dark grey regions indicate

when the symbol on the tape at that position is a 1. The white
regions indicate when the 1 node is trailing, which means that
one of the (0, R), (0, L), (1, R) or (1, L) nodes must be active,
which means that the tape head is (recently) at that position in
the tape. Thus, this figure gives us all the information about
the symbols on the tape, and the position of the tape head.
Note that the copy routine has worked successfully: at the end
of the integration, the 1 symbol appears in positions 3, 4, 5,
7, 8 and 9 on the tape.

A. Behaviour in presence of noise
We consider the effect of additive noise to equations (1), so

that, for example, equation (1a) becomes

dy = [fy(y) + ζygy(φ(x))] dt+ σdW(t)

where the parameter σ controls the noise amplitude and W(t)
represents i.i.d. Gaussian noise (a Wiener process) with mean 0
and variance 1 per unit time in each component. The effects of
additive noise to heteroclinic networks, which are dynamical
object closely related to the network attractors described here,
are complex; see for some examples [39], [40], [41]. In [35],
we considered the effect of noise on the CTRNN network
attractors we describe here.

The first effect, for small noise, is that the transition times
between nodes is no longer a constant but a random variable.
As noise is increased, the mean transition times typically
decrease, and the variance increases. When noise becomes
sufficiently large, the noise can act as a perturbation which can
cause the trajectory to follow an excitable connection that it
otherwise would not have followed. Thus the trajectory follows
the ‘incorrect’ route around the network and this results in an
error in the computation performed by the Turing machine.
We note that errors that give transitions of the state network
that are incorrect may be “read errors” (where the error is
equivalent to an incorrect reading of the symbol on the tape)
or “wild errors” (where the state network jumps to a state
which could not be correctly arrived at through any symbol
on the tape) — both of these error are also described in [33].
In addition, there may be “tape errors” where noise causes the
tape to malfunction by, for instance, the tape head moving in
an incorrect direction, or not moving at all.

The relative size of the noise required to cause such errors,
and the frequency and type of the errors, will depend on the
choice of parameters. A detailed investigation of this relation-
ship is beyond the scope of this paper; see [33] for a detailed
study of the effect of noise on a differently designed Turing
machine, and [42] for a study of the interaction between the
noise amplitude and parameters in a related system, including
an explanation of some non-intuitive results.

For the parameter set we use for the integrations above, we
find that for σ . 0.005 the Turing machine typically completes
the computation correctly, with the variation in transition times
becoming more obvious for larger values of the noise. When
σ & 0.01, the machine rarely completes the task successfully.

V. NETWORK AND DYNAMICAL PROPERTIES

Having presented the system, we can now return our atten-
tion to the questions raised in the introduction. The system was

10

-0.5

0

0.5

1

Fig. 10. The figure shows the relative size (as indicated by the colourbar)
of each of the elements in the weight matrix. Note that there are non-zero
elements outside of the block diagonal which are of very small magnitude
(very light grey). The matrix entries are unlabelled, but range from (1, 1) in
the top left, to (106, 106) in the bottom right, as would be expected.

designed to act as a computational device, a Turing machine.
What is the dynamical system that emerged in this design
process and what, if anything, stands out about its structure,
i. e. the ways that the state variables relate to each other? We
have identified three such salient properties which we now
outline.

A. Properties of the weight matrix

Recall, firstly, that if an entry (i, j) of the weight matrix
is zero, then node j does not directly affect node i. We can
thus consider the directed graph of connections made only by
considering the non-zero entries of the weight matrix. Then,
by ‘topology’ we mean the structure of the connections of this
graph.

There are three noteworthy features of the weight matrix. It
is highly sparse; the entries in the weight matrix can only take
one of eight different values; and it contains a high degree of
topological regularity.

All three of these aspects can be seen in figure 10, which
shows the values of the entries in the weight matrix of
equation (2), for the copy routine with a tape of length 10.
The first 26 entries correspond to the state network, and the
remaining 80 are divided into ten groups of eight, one for each
of the tape sub-networks.

The largest non-zero entries of the weight matrix can be
seen in a block diagonal form, which indicate the couplings
between the nodes in the state network and between the nodes
in each of the tape sub-networks. Within each of these blocks,
each matrix entry can take one of five different values: ws = 1
(black), wm = −0.5 (dark red), wt = −0.3 (light red), wa =

Node

t

Fig. 11. The figure shows the speed (absolute value of velocity), indicated
by the grayscale, of each of variables describing the activity of the nodes in
the trajectory shown in figure 7.

0.31 and we = 0.31 (both grey). Within the state network,
there are further regularities which can be observed in the
couplings for nodes 7-26: these are the delay and input nodes
and each pair has couplings that are chosen in a repeated and
patterned fashion. There also exists a translational symmetry
between the sub-networks of the tape network: each is coupled
to the state network in the same way, and in the same way to
the sub-networks to their left and right.

Outside of the block diagonal entries, the only non-zero
entries correspond to the couplings between the sub-networks,
and these are both sparse and small in magnitude. These can
take one of three different values (γx, γy and γβ), all of which
appear light grey in the figure.

B. Dynamical sparsity

In additional to the sparseness of the weight matrix of
connections, the dynamics of the system are also sparse, in
the sense that the majority of the variables (i.e. the excitation
levels of each node) in the system are close to being at rest for
the majority of the time. In particular, for much of the time,
the system is very close to equilibrium, and even when the

11

system is not close to equilibrium, the number of variables
that are changing is much smaller than the total dimension
of the system. This can be seen in figure 11, which plots the
absolute value of the velocity of each of the variables as a
function of time, for the same trajectory as shown in figure 7.
As in figure 10, the first 26 nodes correspond to the state
network, and the remaining 80 to the tape network. It can
clearly be seen that the maximum speed of ∼ 0.8 is attained
by isolated nodes only for short periods of time. Lower speeds
are attained by ‘nearby’ nodes in a structural sense (compare
with the weight matrix in figure 10). Nodes which are not
directly connected to the fastest moving node (e.g., those in
distant tape sub-networks) have speeds which are essentially
zero. One can criticize our realization as being sparse and
inefficient relative to activity seen in natural neural systems
and it is a very interesting and relavent question to find more
efficient and dense encoding of states that are still explictly
understandable. Nonetheless, we note that our realization is
much less sparse than for example [27] who use a synfire
chain to encode a single bit of information.

C. Temporal regularity

In addition to the structural regularities noted above, the
resulting observed dynamics also have what we refer to as
temporal regularity. This is also related to the dynamical
sparcity previously discussed. Specifically, not only are most
of the varibales at rest for much of the time, but in addition, the
timing of when variables are not at rest is highly structured:
many varibles move in some form of synchronicity, and there
is a regular waiting time of inactivity between periods of
activity.

In terms of the underlying nonlinear dynamics, the Turing
machine without the tape consists of a number of excitable
network attractors (one for the state network, and one for
each of the tape sub-networks) where intrinsic transitions
will not occur without external inputs or noise. When these
networks are coupled, the dynamics will slowly move through
“bottlenecks” in phase space that determine the timing of the
transitions between the states.

This temporal regularity can be seen in figure 7, as the
regular appearance of spikes in the timeseries, and also in
figure 11, as the regular appearance of horizontal stripes
indicating that some of the nodes are changing. During each
stripe, the first set of nodes to move are in the state network,
and these affect transitions in the tape networks in a domino-
like fashion: first to write a new symbol on the tape, and
then to move the tapehead in the correct direction. After
this period of activity, the nodes relax to near equilibrium,
eventually transitioning through the bottlenecks in phase space
that trigger the next transition.

Note that compared to implementations that need an exter-
nal clock [28], or such as [27] that dedicate a separate part
of the system as a clock, this regularity of timing, or ‘clock’
is an emergent property of the dynamics. Furthermore, the
regularity is holistic - it cannot necessarily be seen by only
observing a subset of the variables.

D. Why are these salient features present?

Having identified these features, we can consider why they
are present. We did not consciously choose to add them, so
why are they there? Why is the weight matrix of the designed
system sparse? Why do only a few of the state variables change
significantly at any given time? And why do we observe
temporal regularity—a kind of periodic pulsing of change in
the system?

One possibility is these features appeared by chance—that
if someone else were to independently implement a Turing
machine by specifying a set of ODEs, their implementation
might not include one or more of the properties just described.
This seems unlikely to us, though possible. The alternative
possibility is that the specification of what we wanted to build
(a Turing machine) and the design process that produced this
system both impose constraints that increase the likelihood
of these features appearing. We now elaborate upon these
‘specification constraints’ and ‘design-process constraints.’

For the designed system to act as a Turing machine, it must
satisfy a number of criteria. For example, it must be capable
of undergoing a variety of trajectories that correspond with
the execution of different programs and/or different inputs.
This particular specification-constraint excludes many possible
designs. As a trivial example, we can make the sweeping
generalization that any design that consists of only a single
ordinary differential equation of the form dx

dt = kx is not a
viable design as we know it fails this part of the specification,
as it is not capable of sufficiently diverse trajectories. This and
other specification-constraints are determined by how “Turing-
machineness” is defined, and so it is possible that the salient
features described above are present because to be a Turing
machine, a system must have these features.

However, the Turing-machine specification constraints do
not completely determine the design of the final system on
their own. Other, design-process constraints also influence the
set of possible final designs. In particular, some constraints
are present simply because the system is designed by people.
As argued by Thompson et al. [43], when people use classic
engineering methods, they must understand what they are
engineering and this limits the forms of things that people
can engineer. To make it possible to understand what they are
building, engineers include in their design features that limit
system complexity. They do this to be able to reason about,
predict, summarise and even prove how the system will behave
in its normal operating conditions. It is thus also possible that
the salient features described above are present not because
they are a necessary part of a dynamical system acting as a
Turing machine, but rather because they were helpful (or even
necessary) for us to understand the system well enough to
develop it.

As part of their argument, Thompson et al. [43] emphasize
the hierarchichal nature of typical by-human engineering: how
engineers take a big problem that is impossible to solve
directly and decompose this problem into sub-problems which
are in turn further decomposed into sub-problems, until the
problems are simple enough to be understood, reasoned about
and solved. It seems likely that the salient features described

12

above are (at least partially) the result of this kind of decompo-
sition. We see repeated, identical units in the tape and the state
networks. We also see limited communication between these
units (avoidance of ‘cross-talk’). This kind of modularization
and compartmentalization (also used extensively for example
in [27]) helps understandability of the construction, and the
three features, topological and dynamical sparsity and regular-
ity could be a direct result of these “so-we-could-understand”
features.

A question now presents itself: which of these features are
necessary for a system to be considered computational? All
of them? None of them? By design, the system is both a
dynamical system and a computational system. Is it possible to
have a dynamical system that is also a computational system,
but that does not have the salient dynamical properties that
we have highlighted above? This is an interesting question.
Unfortunately, at this stage, the answer is not clear, though
there are a variety of further experiments that could be done
to explore this possibility. For example, we could try to design
a dynamical Turing machines that explicitly does not have one
(or more) of the salient properties just described. These efforts
might include trying to use different other types of differential
equations, such as other forms of ODEs, partial differential
equations or delay-differential equations.

An alternative approach that might reduce the effects of
by-human design, we could use an optimization algorithm
(e. g. an evolutionary algorithm) to change the weights of
the system described above. The multi-objective optimisation
process might, for example, force the output of the system
to stay the same while also (i) minimizing the number of
nodes that are ever active (the intent here is to reduce the
dimensionality of the system) and/or (ii) optimizing of the time
spent performing the computation (without simply changing
the timescale).

Success at implementing a dynamical Turing machine with-
out one of these salient features, whether in by-human engi-
neering or via an optimization algorithm, would show that that
feature is not an essential property of a Turing machine. Such
work might also help us to understand more broadly what
kinds of systems we can consider to be Turing machines, or
more broadly as computing devices.

VI. CONCLUSION

We have presented a dynamical continuous time recurrent
neural network architecture that allows logical manipulations
of a symbolic nature and indeed universal computations in the
sense of Turing. The construction highlights that the Dynamic
Hypothesis and the Computational Hypothesis (DH/CH) are
not necessarily inherently contradictory, and we hope that the
system provides an approach that can be used productively in
the debate between dynamical and computational perspectives
of cognition, going forward.

In doing so, we highlight some limits on what can be
represented; the tape capacity is finite and computational errors
will arise when this capacity is reached. As discussed in [33],
errors during computation in a real, noisy, system may be
of various types. Transitions between states corresponding

to false interpretation of tape symbol may give rise to a
“read error” on the tape while “wild errors” can occur that
correspond to transitions not allowed by any read. In addition
to these, “tape errors” may occur in tape transport or writing
symbols to the virtual tape.

The excitable network framework for discrete state, discrete
time neural computation is also flexible in the way the timing
of transitions between states are made. As we describe in
section V, the system is free-running and self-contained, in the
sense that the timescales are determined by the network itself.
However, as discussed in [33], there is a framework under
which the transitions could be externally clocked by external
inputs. The same approach should work when modelling
systems working in parallel asynchronously [44] and only
interfacing when they arrive at some event where synchrony
is required. In addition to the timing of valid functioning of
a computational network, the framework can be helpful ex-
plaining characterizing possible errors that may arise through
stochastic perturbations in the system.

The realisation of the Turing machine we present here is
idealised in that it is an input-free (autonomous) system where
not only the machine but also the tape is embedded in the
CTRNN. This realization is comparatively compact in that
each state is directly represented as on element in the network
rather than needing synfire chains as in [27]. We suggest a
generally programmable computational system with external
inputs could be designed in a similar way, by including input-
dependence (e.g. making the “tape” external) and/or making
weights adaptive to a changing environment.

CODE AVAILABILITY

The Matlab code used to implement the system described in
this paper is available at https://github.com/mathclaire/ctrnn
turingmachine.

ACKNOWLEDGMENTS

CMP thanks the Royal Society Te Apārangi (Marsden
Fund Council, NZ Government), for funding via 21-UOA-
048. PA thanks the UK EPSRC for support via grant numbers
EP/T018178/1 and EP/T017856/1. For the purpose of open
access, the authors have applied a Creative Commons Attri-
bution (CC BY) license to any Accepted Manuscript version
arising.

REFERENCES

[1] T. van Gelder, “The dynamical hypothesis in cognitive science,” Behav-
ioral and Brain Sciences, vol. 21, no. 05, pp. 615–628, Oct. 1998.

[2] J. A. Fodor, The Language of Thought. Harvard university press, 1975,
vol. 5.

[3] A. Newell and H. A. Simon, “Computer science as empirical inquiry:
Symbols and search,” Communications of the ACM, vol. 19, no. 3, pp.
113–126, 1976.

[4] C. Buckner and J. Garson, “Connectionism,” in The Stanford Encyclope-
dia of Philosophy, fall 2019 ed., E. N. Zalta, Ed. Metaphysics Research
Lab, Stanford University, 2019.

[5] R. A. Brooks, “Intelligence without reason,” Artificial intelligence:
critical concepts, vol. 3, 1991.

[6] H. J. Chiel and R. D. Beer, “The brain has a body: Adaptive behavior
emerges from interactions of nervous system, body and environment,”
Trends in Neurosciences, vol. 20, no. 12, pp. 553–557, Dec. 1997.

13

[7] F. Lieder and T. L. Griffiths, “Resource-rational analysis: Understanding
human cognition as the optimal use of limited computational resources,”
Behavioral and Brain Sciences, vol. 43, p. e1, Jan. 2020.

[8] D. L. Barack and J. W. Krakauer, “Two views on the cognitive brain,”
Nature Reviews Neuroscience, vol. 22, no. 6, pp. 359–371, Jun. 2021.

[9] S. Risi and M. Preuss, “From Chess and Atari to StarCraft and Beyond:
How Game AI is Driving the World of AI,” KI - Künstliche Intelligenz,
vol. 34, no. 1, pp. 7–17, Mar. 2020.

[10] R. D. Beer, “The Dynamics of Active Categorical Perception in an
Evolved Model Agent,” Adaptive Behavior, vol. 11, no. 4, pp. 209–243,
Jan. 2003.

[11] R. D. Beer and P. L. Williams, “Information Processing and Dynamics
in Minimally Cognitive Agents,” Cognitive Science, pp. n/a–n/a, Jul.
2014.

[12] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[13] R. D. Beer, “On the dynamics of small continuous-time recurrent neural
networks,” Adaptive Behavior, vol. 3, no. 4, pp. 469–509, 1995.

[14] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in
optimization problems,” Biological cybernetics, vol. 52, no. 3, pp. 141–
152, 1985.

[15] E. Izquierdo, I. Harvey, and R. D. Beer, “Associative Learning on a
Continuum in Evolved Dynamical Neural Networks,” Adaptive Behav-
ior, vol. 16, no. 6, pp. 361–384, Dec. 2008.

[16] I. Harvey, E. D. Paolo, R. Wood, M. Quinn, and E. Tuci, “Evolutionary
Robotics: A New Scientific Tool for Studying Cognition,” Artificial Life,
vol. 11, no. 1-2, pp. 79–98, Jan. 2005.

[17] R. D. Beer, “Beyond Control: The Dynamics of Brain-Body-
Environment Interaction in Motor Systems,” in Progress in Motor
Control, D. Sternad, Ed. Boston, MA: Springer US, 2009, vol. 629,
pp. 7–24.

[18] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bull. Math. Biophys., vol. 5, p. 115–133., 1943.

[19] M. L. Minsky, Computation: Finite and Infinite Machines. Englewood
Cliffs, NJ,: Prentice-Hall, Inc., 1967.

[20] J. Šı́ma and P. Orponen, “Continuous-Time Symmetric Hopfield Nets
Are Computationally Universal,” Neural Computation, vol. 15, no. 3,
pp. 693–733, 03 2003. [Online]. Available: https://doi.org/10.1162/
089976603321192130

[21] E. Byrne and C. Huyck, “Processing with cell assemblies,” Neurocom-
puting, vol. 74, no. 1, pp. 76–83, 2010, artificial Brains.

[22] C. H. Papadimitriou, S. S. Vempala, D. Mitropolsky, M. Collins, and
W. Maass, “Brain computation by assemblies of neurons,” Proceedings
of the National Academy of Sciences, vol. 117, no. 25, pp. 14 464–
14 472, 2020.

[23] J. Cabessa and A. Tchaptchet, “Automata complete computation with
hodgkin–huxley neural networks composed of synfire rings,” Neural
Networks, vol. 126, pp. 312–334, 2020.

[24] F. L. Traversa and M. Di Ventra, “Universal memcomputing machines,”
IEEE transactions on neural networks and learning systems, vol. 26,
no. 11, pp. 2702–2715, 2015.

[25] T. Wu, L. Pan, Q. Yu, and K. C. Tan, “Numerical spiking neural p
systems,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 6, pp. 2443–2457, 2021.

[26] B. Paaßen, A. Schulz, T. C. Stewart, and B. Hammer, “Reservoir memory
machines as neural computers,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 6, pp. 2575–2585, 2022.

[27] J. Cabessa, “Turing computation with neural networks composed of syn-
fire rings,” in 2022 International Joint Conference on Neural Networks
(IJCNN), 2022, pp. 1–8.

[28] H. T. Siegelmann, “Computation beyond the turing limit,” Science, vol.
268, no. 5210, pp. 545–548, 1995.

[29] J. Cabessa and H. Siegelmann, “The super-turing computational power
of plastic recurrent neural networks,” Int J Neural Syst., vol. 24, 2014.

[30] W. Maass and C. M. Bishop, Pulsed neural networks, 2001.
[31] C. R. Huyck and P. J. Passmore, “A review of cell assemblies,”

Biological cybernetics, vol. 107, pp. 263–288, 2013.
[32] Y. Fan and C. Huyck, “Implementation of finite state automata using

flif neurons,” in 2008 7th IEEE International Conference on Cybernetic
Intelligent Systems. IEEE, 2008, pp. 1–5.

[33] P. Ashwin and C. Postlethwaite, “Sensitive finite-state computations
using a distributed network with a noisy network attractor,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 12,
pp. 5847–5858, 2018.

[34] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” Acm Sigact News, vol. 32, no. 1,
pp. 60–65, 2001.

[35] P. Ashwin and C. Postlethwaite, “Excitable networks for finite state
computation with continuous time recurrent neural networks,” Biological
cybernetics, vol. 115, no. 5, pp. 519–538, 2021.

[36] G. S. Carmantini, P. beim Graben, M. Desroches, and S. Rodrigues,
“A modular architecture for transparent computation in recurrent
neural networks,” Neural Networks, vol. 85, pp. 85–105, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0893608016301198

[37] S. H. Strogatz, Nonlinear dynamics and chaos: With applications to
physics, biology, chemistry, and engineering. Addison-Wesley, 1994.

[38] “Turing machine examples,” https://en.wikipedia.org/wiki/Turing
machine examples#A copy subroutine, accessed: 2023-02-22.

[39] P. Ashwin and C. M. Postlethwaite, “Quantifying Noisy Attractors:
From Heteroclinic to Excitable Networks,” SIAM J. Appl. Dynam. Syst.,
vol. 15, no. 4, pp. 1989–2016, 2016.

[40] Y. Bakhtin, “Noisy heteroclinic networks,” Probability theory and re-
lated fields, vol. 150, no. 1, pp. 1–42, 2011.

[41] E. Stone and P. Holmes, “Random perturbations of heteroclinic attrac-
tors,” SIAM Journal on Applied Mathematics, vol. 50, no. 3, pp. 726–
743, 1990.

[42] V. Jeong and C. Postlethwaite, “Effect of noise on residence times of a
heteroclinic cycle,” Dynamical Systems, pp. 1–23, 2022.

[43] A. Thompson, P. Layzell, and R. Zebulum, “Explorations in design
space: Unconventional electronics design through artificial evolution,”
IEEE Transactions on Evolutionary Computation, vol. 3, no. 3, pp. 167–
196, 1999.

[44] C. Bick and M. Field, “Asynchronous networks and event driven
dynamics,” Nonlinearity, vol. 30, no. 2, p. 558, jan 2017. [Online].
Available: https://dx.doi.org/10.1088/1361-6544/aa4f62

14

Claire Postlethwaite is an Associate Professor of
Mathematics at the University of Auckland. Her
research interests include applications of dynamical
systems and mathematical ecology. Within the area
of applied dynamical systems, one of her main inter-
ests is understanding the dynamics near heteroclinic
cycles and networks, and using them as models for
physical systems.

Peter Ashwin is Professor of Mathematics at the
University of Exeter. His research interests are es-
pecially nonlinear dynamical systems and applica-
tions, especially for systems that are coupled and/or
symmetric: in these settings it is often possible to
find attractors that have network structure. He is also
interested in ergodic properties of dynamical sys-
tems, nonautonomous dynamics and computational
modelling for a variety of applications.

Matthew Egbert is a Lecturer in the Department
of Computer Science at the University of Auck-
land. His current research involves interdisciplinary
collaborative investigation of mind and life that
emphasizes the situated, embodied, dynamical and
self-maintaining nature of these systems.

