
Secure and Efficient Federated Learning
in Edge Computing

Submitted by Rui Jin
to the University of Exeter as a thesis for the degree of

Doctor of Philosophy in Computer Science, November 2023.

This thesis is available for Library use on the understanding that it is
copyright material and that no quotation from the thesis may be published

without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been
identified and that any material that has previously been submitted and

approved for the award of a degree by this or any other University has been
acknowledged.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university.

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisors Prof. Jia Hu
and Prof. Geyong Min, for their continuous support and guidance throughout my PhD. I
have been continuously inspired by their passion, knowledge, kindness, creativity, and hard
working attitude. Working with them has been one of the best experiences in my life.

I would like to thank my labmates over the years, Dr. Zhengxin Yu, Dr. Zi Wang, Dr.
Jin Wang, Dr. Wang Miao, Dr. Haozhe Wang, Dr. Jed Mills, Zhe Wang, Yuhong Jiang,
Songyuan Li, Jialin Tian, Jie Gao, and Jiazhen Zhang, for their help during my PhD study.
I want to thank my friends Joey, Min, Jiahui, Ying, and Yalan for being there during both
joyful and difficult times.

Last but not least, I would like to express my love and gratitude to Yongchao, my dad, and
my mum for their encouragement and support in my life. They always support my dreams
and ambitions, academically and otherwise, while keeping me grounded. I am so grateful
that I have them in my life.

List of Publications

1 R. Jin, J. Hu, G. Min and J. Mills, "Lightweight Blockchain-empowered Secure and
Efficient Federated Edge Learning," in IEEE Transactions on Computers, vol. 72, no. 11,
pp. 3314-3325, 2023.

2 R. Jin, J. Hu, G. Min and H. Lin, "Byzantine-Robust and Efficient Federated Learning for
the Internet of Things," in IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 114-118,
2022.

3 R. Jin, J. Hu, and G. Min, Robust and Fair Federated Learning based on Shapley Value,
(to be submitted to IEEE/ACM Transactions on Networking)

4 J. Mills, J. Hu, G. Min, R. Jin, S. Zheng and J. Wang, "Accelerating Federated Learning
With a Global Biased Optimiser," in IEEE Transactions on Computers, vol. 72, no. 6, pp.
1804-1814, 2023.

5 Y. Hou, S. Garg, L. Hui, D. N. K. Jayakody, R. Jin and M. S. Hossain, "A Data Security
Enhanced Access Control Mechanism in Mobile Edge Computing," in IEEE Access, vol.
8, pp. 136119-136130, 2020.

Abstract

Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving
Machine Learning (ML). It enables distributed end devices (clients) to collaboratively train
a shared global model without exposing their local data. However, FL typically assumes
that all clients are benign and trust the coordinating central server, which is unrealistic for
many real-world scenarios. In practice, clients can harm the FL process by sharing poisonous
model updates (known as poisoning attack) or sending counterfeit yet harmless parameters
to the central server to obtain the trained global model without actual contribution (known
as free-riding attack), while the central server could malfunction or misbehave. Moreover,
the deployment of FL for real-world applications is hindered by the high communication
overhead between the server and clients that are often at the network edge with limited
bandwidth.

This thesis aims to develop novel FL approaches toward secure and efficient FL in edge
computing. First, a novel lightweight blockchain-based FL framework is devised to mitigate
the single point of failure of traditional FL. This is achieved by removing the centralized
model aggregation to the distributed blockchain nodes. Incorporating the Inter-Planetary
File System and Verifiable Random Function, the proposed framework is energy-efficient
and scalable with the blockchain network size. Next, a secure and efficient federated edge
learning system is proposed, based on the developed blockchain-based FL framework, with
a communication-efficient training scheme to reduce the communication cost of clients
and a secure model aggregation protocol to build defense against poisoning attacks. Then,
an original Shapley value-based defense mechanism is designed to further enhance the
robustness of FL, not only against adversarial poisoning attack but also the stealthy free-
riding attack. Extensive experiments show that the proposed approach can detect typical
free-riding attacks with high precision and is resistant to poisoning attacks launched by
adversarial clients.

Table of contents

List of figures 8

List of tables 9

Nomenclature 11

1 Introduction 13
1.1 Edge computing . 13
1.2 Federated Learning . 16
1.3 Research Challenges and Objectives . 18
1.4 Thesis Organisation and Contributions . 19

2 Backgrounds and Literature Review 21
2.1 Blockchain technology . 21

2.1.1 Consensus protocol . 22
2.1.2 Blockchain topology . 24

2.2 Federated learning objective and optimization 25
2.3 Vulnerabilities of federated learning . 26

2.3.1 Threats from clients . 27
2.3.2 Threats from central server . 29

2.4 Related work . 29
2.4.1 Blockchain-based federated learning 30
2.4.2 Robust federated learning . 31
2.4.3 Communication-efficient federated learning 33

2.5 Summary . 34

3 Lightweight Blockchain-based Federated Learning Framework 35
3.1 Prelimilary . 35

3.1.1 IPFS . 35

Table of contents 7

3.1.2 VRF . 36
3.2 LBFL Design . 36

3.2.1 Transaction and Block Design . 37
3.2.2 Consensus Design . 38

3.3 Implementation . 41
3.3.1 Chain module . 41
3.3.2 Node module . 41
3.3.3 Consensus module . 42
3.3.4 Network module . 42

3.4 Evaluation . 42
3.4.1 Security Analysis . 43
3.4.2 Scalability Analysis . 43

3.5 Summary . 46

4 Blockchain-empowered Secure and Efficient Federated Edge Learning 47
4.1 System Design . 47

4.1.1 Communication-efficient Distributed Training 48
4.1.2 Secure Aggregation Protocol . 50

4.2 Performance Evaluation . 52
4.2.1 Communication efficiency . 53
4.2.2 Resistance to poisoning attacks 54
4.2.3 Blockchain performance . 57

4.3 Summary . 58

5 Shapley Value-based Robust Federated Learning 59
5.1 Preliminaries . 59

5.1.1 Shapley Value . 59
5.2 Threat model . 60
5.3 SVRFL design . 61

5.3.1 Free-riding attack detection: . 62
5.3.2 Poisonous model update mitigation 64
5.3.3 Complete SVRFL . 65
5.3.4 Theoretical analysis . 65

5.4 Evaluation . 69
5.4.1 Defense against free-riding attack 73
5.4.2 Defense against poisoning attacks 73

5.5 Summary . 76

6 Conclusion and Future Work 77
6.1 Thesis summary . 77
6.2 Future work . 79

References 80

Appendix A Chapter 5 Supplementary Material 91
A.1 Proof of Theorem 1 . 91
A.2 Proof of Theorem 2 . 95

List of figures

1.1 Edge Computing Architecture . 14
1.2 Federated learning process . 17

2.1 The structure of a typical block . 22
2.2 Poisoning attacks in FL . 27

3.1 Overview of LBFL framework . 36
3.2 Block structure . 37
3.3 Modules in LBFL . 41
3.4 Test accuracy of LBFL under honest clients setting for FEMNIST task . . . 44
3.5 Test accuracy of LBFL under honest clients setting for CIFAR10 task . . . 44
3.6 The averaged total time of per verified block generation and distribution with

varied committee sizes for CIFAR10 and FEMNIST tasks 45
3.7 The averaged total time of per verified block generation and distribution with

varied blockchain network size for CIFAR10 and FEMNIST tasks 46

4.1 Overview of BEFL framework . 48
4.2 Test accuracy of FedAvg, Biscotti and BEFL over CIFAR10 and FEMNIST

datasets when there is no attack. Curves are averages over 3 random trials,
shaded regions represent 95% CIs . 55

4.3 Test accuracy of FedAvg, Biscotti and BEFL over CIFAR10 and FEMNIST
datasets when adversaries perform LF and BF attacks. Curves are averages
over 3 random trials, shaded regions represent 95% CIs 56

5.1 Left: the Shapley value of free rider and the averaged Shapley value of
benign clients. Right: the d values of 10 clients (1 free rider and 9 benign
clients). Experiment run on non-i.i.d MNIST dataset 63

5.2 Test accuracy of SVRFL and RFFL when free riders perform free-riding
attack. Curves are averages over 5 random trials, shaded regions represent
95% confidence intervals. 72

5.3 Reputation values of free riders and benign clients in MNIST and CIFAR10
task. 73

5.4 Test accuracy of algorithms in first 100 rounds in MNIST and first 300
rounds in CIFAR10 when adversaries perform sign-flipping and ALIE attack.
Curves are averages over 5 random trials, shaded regions represent 95%
confidence intervals. 74

List of tables

3.1 The default parameters of LBFL . 43

4.1 The default parameters of BEFL . 53
4.2 Communication cost per round . 53
4.3 Breakdown of time in different phases of BEFL under different settings when

processing FEMNIST task . 57
4.4 Breakdown of time in different phases of BEFL under different settings when

processing CIFAR10 task . 57

5.1 Hyperparameters . 70
5.2 The performance of free rider detection when all clients participate in each

training round . 72

10 List of tables

5.3 The performance of free rider detection when a subset of clients participates
in each training round . 72

5.4 The average test accuracy[%] (95% confidence intervals in brackets) of the
learnt global model with different algorithms under sign-flipping and ALIE
attack, and the average ASR[%] and TACC[%] (95% confidence intervals in
brackets) achieved by different algorithms under label-flipping attack. . . . 75

Nomenclature

BSs Base Stations

ECDSA Elliptic Curve Digital Signature Algorithm

FedAvg Federated Averaging

FL Federated Learning

GDPR General Data Protection Regulation

GHOST Greedy Heaviest-Observed SubTree

IPFS Inter-Planetary File System

IoT Internet of Things

LAG Lazily Aggregated Gradient

LBFL Lightweight Blockchain-based FL

ALIE A Little is Enough

BEFT Blockchain-Empowered Federated Learning

LAN Local Area Network

ML Machine Learning

MEC Multi-access Edge Computing

MI Mutual Information

PoA Proof-of-Authority

PoS proof-of-stake

12 Nomenclature

PoW Proof-of-Work

SVRFL Shapley Value-based Robust Federated Learning

SGD Stochastic Gradient Descent

VRF Verifiable Random Function

BFT Byzantine Fault Tolerant

CS Central Server

DL Deep Learning

DPoS Delegate PoS

DP Differentially Private

DAG Directed Acyclic Graph

DHT Distributed Hash Table

Chapter 1

Introduction

The last few decades have witnessed the rapid development of Machine Learning (ML),
which has revolutionized nearly all walks of our lives, including entertainment, transportation,
healthcare, and education [106, 84]. This progression in ML is intrinsically tied to the surge in
available data and enhanced computational capabilities. ML models, particularly those within
the realm of Deep Learning (DL), often demand a large volume of data to train. However,
the increasing concern regarding ownership and privacy of personal data, and regulations
like the General Data Protection Regulation (GDPR) [103], have spurred the pursuit of
privacy-preserving ML. Federated Learning (FL), a distributed ML training paradigm, has
emerged as a promising solution. It enables multiple data owners to collaboratively train
a shared ML model without disclosing their local data. Furthermore, the advances in edge
computing, which facilitate the ease of computation at the network edge, open up numerous
opportunities for FL-based applications. This thesis focuses on developing secure and
efficient FL approaches at the network edge.

This chapter is organized as follows. Section 1.1 introduces edge computing paradigm.
Section 1.2 describes FL in detail. Section 1.3 points out the research challenges and objec-
tives of this thesis. In Section 1.4, I present the outline of this thesis and the contributions.

1.1 Edge computing

With the exponential growth of the Internet of Things (IoT) and the widespread adoption of
4G/5G networks, the public’s habit of accessing and processing data has gradually changed,
which brings fast-growing demand for low-latency applications[82]. However, traditional
cloud computing, characterized by centralized data processing in remote data centers, faces
limitations in meeting these demands. The sheer volume and speed of data generated by
IoT devices, ranging from smartphones, smart wearables, and home automation systems to

14 Introduction

Cloud layer

Edge layer

Device layer

Edge node Edge node

Fig. 1.1 Edge Computing Architecture

industrial sensors and autonomous vehicles, strain the linear scalability of cloud infrastructure,
leading to latency issues and bandwidth constraints.

In response to these challenges, a groundbreaking computing paradigm, edge computing,
has emerged. Edge computing redistributes computational resources to the edge of the
network, closer to where data is generated [111]. The primary goal of edge computing is
to reduce latency in data processing and transmission, save bandwidth, and provide a more
efficient system for producing insights from data. As shown in Fig 1.1, edge computing could
be structured into three hierarchical layers: cloud layer, edge layer, and device layer. The
cloud layer is composed of cloud servers equipped with extensive computational resources
and storage capabilities [72]. It serves as the backbone of the computing infrastructure,
capable of handling large-scale data processing tasks, complex analytics, and long-term
data storage. The cloud layer is ideal for non-latency-sensitive applications that require
significant computational power and where data locality is not a primary concern. The edge
layer contains edge servers that are distributed geographically closer to the data sources.
These servers provide localized computational power, allowing for quicker data processing
than the cloud layer due to their proximity to the end-users. There are also specialized nodes

1.1 Edge computing 15

for particular tasks like data aggregation, security functions, and network switching, which
facilitate the efficient transfer of data between the cloud layer and the device layer. The
device layer includes a wide range of IoT devices, smartphones, sensors, and actuators –
essentially, any endpoint that generates or consumes data. The devices in this layer can
perform basic data processing tasks, such as data collection and preliminary analysis. They
are often limited by their computational power and battery life, which makes the edge layer’s
support crucial. The hierarchical architecture of edge computing offers a flexible, scalable,
and efficient solution to cater to the diverse demands of modern computing.

Various edge computing paradigms have been developed, such as cloudlet, fog computing,
and multi-access edge computing.

• Cloudlets, initially proposed by Satyanarayanan et al. [110], serve as a middle
layer between end devices and the cloud. They are lightweight, resource-rich servers
positioned at the edge, offering a proximal computing environment for resource-
intensive tasks. Meanwhile, cloudlet can also serve users as an independent cloud,
making it a "mini-cloud" or a small-scale data center with adequate computing and
storage resources. By processing data locally at the edge, rather than in a distant
centralized cloud, cloudlets can significantly reduce latency, which is particularly
beneficial for real-time applications.

• Fog Computing was first coined by Cisco [16], aiming to bring the benefits of cloud
closer to end devices. It is a distributed computing paradigm and highly integrated
with the cloud, but with the processing tasks also being carried out at the network edge
[31]. Fog nodes can encompass various devices, ranging from switches and routers
to base stations and resource-rich data centers, with fewer resources than the cloud,
but could provide higher bandwidth with less latency for IoT devices as they can be
accessed via Local Area Network (LAN) [45, 138, 115].

• Multi-access Edge Computing (MEC) was formally introduced by the European
Telecommunication Standards Institute to deploy cloud-like computing in the proximity
of mobile users [87, 105]. Closely related to fog computing, emphasizes on placing
computing capabilities and service environments at the edge of cellular networks[51,
87]. Typically, MEC servers are deployed at macro or micro base stations [105]. By
pushing data-intensive tasks toward the edge and locally processing data in proximity
to the users, MEC can reduce traffic bottlenecks in the core and backhaul network
[115].

16 Introduction

With edge computing, data can be processed locally without always needing to be transferred
to a centralized cloud, potentially reducing exposure to breaches and yielding enhanced
privacy advantages over centralized cloud computing.

1.2 Federated Learning

The vast amounts of data generated by modern devices have propelled the growth of ML
models and algorithms that are designed to extract knowledge and derive valuable insights.
However, the traditional centralized learning paradigm of ML which requires data to be
collected and trained in a single location, often a large-scale data center, becomes harder to
deploy, as people are increasingly concerned about data privacy and the inevitable communi-
cation cost and security threat in transmitting data to the central server. Federated Learning,
first introduced by McMahan et. al.[88], becomes a promising solution, which pushes model
training back to the data source, with only model updates communicated and aggregated
centrally, thereby mitigating the privacy risks and reducing the communication overhead
associated with data communication.

The applications of FL roughly fall into two categories: "cross-device" and "cross-silo"
[56]. In the "cross-device" setting, FL primarily involves a large number of devices, typically
owned by individual users, which contribute to the training of a shared ML model. The
"cross-device" aspect refers to the participation of multiple, often heterogeneous devices like
smartphones, tablets, wearables, or IoT devices that are distributed across different locations.
Several giant companies have applied the cross-device FL to enhance their services, for
example, Google has applied FL in android Gboard for next word prediction [1], and Apple
leverages FL for applications like the QuickType keyboard and the vocal classifier for “Hey
Siri” [10]. In the "cross-silo" setting, a number of organizations or institutions, often referred
to as "silos", collaboratively train an ML model while keeping their data localized within
their own infrastructure. This is particularly important for industries where data sharing is
restricted due to regulatory, competitive, or privacy concerns. Unlike cross-device settings,
where there can be significant variability in device capabilities, cross-silo FL usually occurs
between participants with more comparable computational resources. The cross-silo FL has
attracted substantial attention and has been employed in several industries. For example,
WeBank utilized FL for credit risk prediction [3], and ten leading pharmaceutical companies
leveraged FL for drug discovery without disclosing proprietary information [89]. This thesis
focuses on cross-device FL, where edge computing plays an important role, as real-world FL
deployments with a large number of collaborating user devices rely heavily on computing
resources available at their devices and inter-device communications [96]. The intermediate

1.2 Federated Learning 17

…

∆𝑤!,# ∆𝑤$,# ∆𝑤%,# ∆𝑤&,#

Client 1 Client 2 Client 3 Client k

Central Server

𝑊'#

…
Aggregation

𝑊'# 𝑊'# 𝑊'#

Fig. 1.2 Federated learning process

edge nodes (i.e., Base Stations) equipped with computation, communication, and storage
capacity work together with the remote central server to perform large-scale FL tasks [123].

In FL, a central server (CS) orchestrates the collaborative training process. As shown in
Fig. 1.2, the general process of FL could be described as follows:

Step 1 Initialization of task and global model: In the initial phase, the CS setups the
targeted task with its requirements (i.e., network condition and computation capacity
of participating devices) and broadcasts the initialized global model to the selected
clients.

Step 2 Local model update: Given the received global model, each selected client runs
local training steps over the private training dataset to update the local model by
minimizing the objective loss function and sends the model update back to the CS in
parallel.

Step 3 Global model aggregation: After receiving model updates from selected clients, the
CS performs the aggregation process according to a certain aggregation rule (i.e., the
widely adopted FedAvg [88]) and sends the updated global model to newly selected
clients.

18 Introduction

The step 2 and step 3 iterate until certain criteria have been met (i.e., the global model
converges or the maximum training round is reached). Through this distributed learning
process, FL manages to achieve collective intelligence while preserving participants’ data
privacy.

1.3 Research Challenges and Objectives

FL has been shown as a promising approach for efficiently harnessing user data while
upholding a strong privacy guarantee. Alongside, edge computing has undergone rapid
development, which opens up numerous possibilities for FL applications. However, the real-
world deployment of FL encounters significant challenges, in terms of efficiency, security,
and reliability.

• Efficiency: One of the primary efficiency challenges in FL is the communication
overhead incurred when clients send their model updates to a central server for aggre-
gation, and the high communication rounds. Transmitting these updates, especially
over wireless networks, can be bandwidth-intensive and thus is non-negligible.

• Security: FL is vulnerable to byzantine clients who behave arbitrarily [133]. These
can include adversarial clients with the aim of impairing global model performance
(a.k.a poisoning attack) and free riders who intend to obtain the global model without
actually contributing any data or training efforts (a.k.a free-riding attack).

• Reliability: The centralized orchestration and aggregation of FL put the CS at a
dominant position, rendering the whole learning process to be highly vulnerable to
malfunction or misbehaviour of the server. This single point of failure greatly impacts
the reliability of the collaborative learning process.

To address these challenges, this thesis aims to develop novel techniques and algorithms
to improve the efficiency, security, and reliability of FL, making it more practicable for
real-world deployments. In particular, this research aims to:

1. Propose a lightweight blockchain-based FL framework to mitigate the single point of
failure of traditional FL.

2. Develop a blockchain-empowered secure and efficient FL system that is robust against
poisoning attacks, and cost-efficient to resource-constrained clients.

3. Devise a robust FL mechanism that is not only robust to poisoning attack but also the
stealthy free-riding attack.

1.4 Thesis Organisation and Contributions 19

1.4 Thesis Organisation and Contributions

To achieve the objectives listed in Section 1.3, this thesis makes the following original
contributions:

• A lightweight blockchain-based federated learning framework which moves the model
aggregation work from the FL server to the blockchain nodes, thus eliminating the
single point of failure in traditional FL. This framework also incorporates the Inter-
Planetary File System (IPFS) to store the global model with its address recorded on
the chain instead of the whole model, to reduce the communication cost of block
propagation and the storage cost of the ever-growing blockchain. Moreover, instead of
the conventional computation-intensive PoW mechanisms to achieve the consensus
in the blockchain, an energy-efficient committee-based consensus protocol using
Verifiable Random Function (VRF) is integrated. This new protocol selects committee
members with probabilities proportional to their stakes to protect against malicious
blockchain nodes and to validate a candidate block that contains the IPFS address of
the global model.

• A blockchain-empowered secure and efficient federated learning system based on
the proposed framework with a a novel byzantine-resilient communication-efficient
training scheme leveraging the Mutual Information (MI) between clients and the state-
of-the-art compression method, to protect against poisonous model updates whilst
reducing the communication overhead. This new training scheme is embedded in the
operating process of the blockchain system.

• A Shapley Value-based Robust Federated Learning (SVRFL) method to build defense
against not only poisoning attacks but also the stealthy free-riding attack in FL, with
theoretical convergence guarantee. SVRFL leverages Shapley value and cosine simi-
larity to detect free riders in the collaborative learning process and excludes them from
the FL system, ensuring the basic fairness of FL. It further employs Shapley value to
calculate utility scores of local model updates to filter out potential poisonous ones.

The rest of the thesis is organised as follows:

• Chapter 2 first introduces the background of this thesis, including blockchain technol-
ogy and the objective, optimization, and vulnerabilities of FL. Next, a comprehensive
review of blockchain-based FL, defense mechanisms that are designed to secure FL,
and strategies for communication-efficient FL are presented.

20 Introduction

• Chapter 3 develops an origin blockchain-based federated learning framework to reduce
the computation and communication cost of conventional Proof-of-Work (PoW)-based
blockchain and mitigate the single point of failure of traditional FL.

• Chapter 4 presents a novel blockchain-empowered federated learning system based
on the framework developed in Chapter 3, which is robust to poisoning attacks and
communication-efficient for participating clients in FL.

• Chapter 5 proposes a new mechanism that can defend against both free riders and
adversarial clients without imposing any additional cost on clients.

• Chapter 6 concludes the thesis and outlines the future works.

Chapter 2

Backgrounds and Literature Review

This chapter provides a thorough background on blockchain technology and FL, encom-
passing blockchain consensus and topology, along with the objective, optimization, and
vulnerabilities of FL. It then presents related work focusing on blockchain-based FL, robust
FL approaches, and strategies for communication-efficient FL.

2.1 Blockchain technology

Since the inception of Bitcoin, the underlying blockchain technology has received con-
siderable attention from both academia and industry for its distributed, transparent, and
tampering-resistant features [95]. At its core, blockchain is a decentralized ledger or database
that maintains a growing list of records, termed as blocks, which are linked using crypto-
graphic hashes. As shown in Fig 2.1, the block is composed of block header and block body.
Previous hash value, index, timestamp, difficulty value, nonce, and root hash constitute the
block header, while the block body contains transactions. The root hash is the hash value
of all transactions which guarantees that the transactions contained in the block cannot be
tampered. The unique structure and the underlying consensus mechanism offered blockchain
system decentralization, traceability, anonymity, and immutability.

• Decentralization: The decentralized peer-to-peer blockchain system is achieved by the
joint efforts of nodes in the network. Every node in the blockchain network maintains a
copy of the chain locally and tries to get the right to add a new block to the blockchain
to win the reward.

• Traceability: The blockchain maintained and stored in every blockchain node provides
traceable historical transactions as every historical block is kept with the chain.

22 Backgrounds and Literature Review

Fig. 2.1 The structure of a typical block

• Anonymity: Nodes in the blockchain system have their own private key and public
key that conceal their identity in the real world.

• Immutability: The consensus mechanism deployed in the blockchain system makes
the transactions hard to tamper, as the majority of nodes in the system are independent
and honest. Thus, the adversary has to pay a lot in a proof-of-stake (PoS) based
consensus network or compromise half of the nodes in a proof-of-work (PoW) based
consensus network.

Owing to these features, blockchain technology has been extended from public to private,
permissioned blockchain (private blockchain and consortium blockchain) emerged. The
private blockchain has access control and is usually managed by a single authority or
organization, while the consortium blockchain is controlled by multiple predefined authorities
and organizations.

2.1.1 Consensus protocol

Consensus protocol, as the defining technology behind the security and performance of
blockchain, has attracted increasing interest from both academia and industry. PoW, the
underlying consensus of bitcoin, raised the following concerns: 1) unsustainable energy
consumption, 2) low transaction capacity and long confirmation latency. In response to the
above limitations, blockchain researchers have been investigating new blockchain protocols
such as PoS, Proof-of-Authority (PoA), Casper FFG [18], Hyperledger Fabric [7], Algorand

2.1 Blockchain technology 23

[44], and Tendermint [17] etc. All blockchain consensus can be generally treated as PoW-
based and BFT-based. PoW-based protocols scale well with network size and are suited
for permissionless blockchains, but yield very limited throughput and long confirmation
latency while Byzantine Fault Tolerant (BFT) protocols have built-in consensus finality and
achieve much higher transaction capacity, but incur high messaging complexity per block
(O(N2) versus PoW’s O(N), N is network size) and need a permissioned network for identity
management, thus they do not scale with network size [131].

• PoW-based protocols: PoW, as the security guarantee of bitcoin, has proved its
capability and capacity in past years. Without changing the way that miners mine a
block, protocols like the greedy heaviest-observed subtree (GHOST) [113] and bitcoin-
NG have been proposed [36]. The longest-chain rule is the rule adopted in the bitcoin
network. Every node (i.e., miner) in the network always admits the longest chain.
According to this rule, all unconfirmed blocks due to the fork would be orphaned,
resulting in a waste of honest mining power which could otherwise contribute to the
efficiency and security of the chain. GHOST is an alternative to the longest-chain
rule, it allows orphan blocks to be accepted, thus more transactions in the same time
interval would appear in the network, which effectively saves the honest mining effort.
GHOST requires that given a tree of blocks with the genesis block being the root, the
longest chain within the heaviest subtree shall be used as the main chain. Inspired by
this, bitcoin-NG was proposed. It decouples block generation into two planes: leader-
election and transaction serialization, which respectively correspond to two types of
blocks: key blocks and micro blocks. Once a key block is mined, all subsequent
microblocks shall be generated by the current key block miner until the generation
of the next key block. The longest-chain rule is still applied to key blocks, while the
heaviest-chain rule is adopted to microblocks.

• BFT-based protocols: Instead of calculating a meaningless hash of the block to meet
the specific target, researchers have been investigating other energy-efficient ways
to generate blocks. PoS is the one commonly adopted to partly or entirely replace
PoW for block proposing. A stake refers to the coins or network tokens owned by a
participant that can be invested in the blockchain consensus process. From the security
point of view, PoS leverages token ownership for Sybil attack mitigation. Compared
to a PoW miner whose chance to propose a block is proportional to its brute-force
computation power, the chance to propose a block for a PoS miner is proportional
to its stake value. Along with PoS, BFT is usually utilized for block finalization
to achieve the security guarantee of the chain. Tendermint, Algorand, Casper FFG,
and EOSIO [2] are well-adopted cases. Tendermint is the first public blockchain

24 Backgrounds and Literature Review

project to incorporate a BFT consensus layer. It works in consensus cycles, each
cycle involves a multi-round BFT consensus process to finalize one block [131]. Each
round consists of three phases: Propose, Prevote, and Precommit. In the proposed
phase, a validator is designated by a deterministic algorithm as block proposer in a
round-robin fashion such that validators are chosen with a frequency proportional to
the value of their deposited stakes (tockens). A validator continuously runs the three
phases until more than 2/3 Precommits are received in one block. The validator would
then broadcast Commit votes for the block and listen for other validators’ Commit
votes. When a block receives more than 2/3 of Commit votes, it will be finalized in
the blockchain. Unlike Tendermint, the validator in Algorand is selected using MPC,
a special verifiable random function (VRF) scheme has been applied, ensuring that
only the stakeholder himself/herself knows if him/her gets elected into the committee.
Casper FFG is a lightweight PoS consensus layer built on top of Ethereum’s current
PoW-based block proposing mechanism (Ethash). EOSIO is an example of delegate
PoS (DPoS) protocol, it is the democratic form of Algorand without VRF, with the top
21 joining the consensus group, among whom the right of block proposal is equally
shared. Although PoS is heralded as the most promising mechanism to replace PoW, it
still owns vulnerabilities for its costless simulation and centralization risk.

2.1.2 Blockchain topology

In order to make blockchain more deployable in real world, especially for resource-constrained
devices, researchers proposed a new structure of blockchain – DAG, which enables multi-
ple blocks to be appended in the network concurrently, thus achieving a balance between
asynchronization and speed. There are two types of DAG ledger, block-based DAG and
transaction-based DAG. In a block-based DAG, every vertex contains a collection of transac-
tions which is similar to the block concept in bitcoin, the only difference is that one block
can be hash-pointed to multiple parent blocks. SPECTRE [112] is one of the block-based
DAG protocols, requiring any node who wants to mine a new block to find all blocks of zero
in-degree (i.e., “tips”) in the DAG and hash-point the new block header to these tips before
starting the PoW mining for the new block. A recursive voting procedure is employed to
determine the order of any two blocks in concurrent DAG, but may not extend to fully linear
ordering. To address this issue, PHANTOM [114] was proposed. Every node in PHANTOM
searches for the largest k-cluster of blocks. k denotes the node degree in the cluster and is a
predefined security number that rarely k or more honest blocks are created simultaneously.
The k-cluster is regarded as honest and all blocks within are linearly ordered. The transactions
covered by the cluster are then validated in the new order. Differentiating from the two,

2.2 Federated learning objective and optimization 25

Conflux [71] incorporates a specific blockchain as a main chain, reflecting a similar idea as
the GHOST rule. It introduces the parent edge and reference edge and maintains the pivot
chain to keep the full order of the blockchain. This scheme yields high transaction throughput
but also higher confirmation latency [131]. Though the transaction capacity of block-based
DAG is much higher than that of traditional chain-structured blockchain, it can still hold
overlapped transactions and takes extra bandwidth and processing power to solve conflicts.

Unlike block-based DAG, every transaction in transaction-based DAG forms a vertex and
is hash-pointed to previous transactions. IOTA Tangle is one of the transaction-based DAG
schemes, which applies a two-tip rule to add transactions to the chain. That is every user
needs to validate two unapproved transactions (tips) of the DAG to append a new transaction.
Markov-chain Monte Carlo is employed to solve the conflicting tips. Though Tangle is
a transaction-based DAG, its transaction capacity is still capped by link-/physical-layer
communication bandwidth. Differentiate with Tangle, an arbitrary tip number is set in
Byteball [29]. A witness group scheme (12 reputable entities) is deployed for determining
the MC and transaction finalization. The TPS of Byteball increased but with decentralization
compromised. Nano [69] is another transaction-based DAG proposal. It is built upon a
parallel blockchain with a block-lattice structure. The key insight of Nano is that forks and
other faulty transactions only affect the accounts referenced in the said transactions, which
allows Nano to provide stable and fast transaction confirmation.

2.2 Federated learning objective and optimization

FL is a privacy-preserving ML training paradigm. In FL tasks, the goal is to learn a single
model that minimizes the empirical risk function over a union of clients’ training data that is
kept locally within their devices. Consider a typical FL setting with n clients and a CS, the
objective function F(w) (w is the shared model) could be written as:

F(w) = ED∼X f (D,w) =
1
n

n

∑
i=1

Eξi∼Di[F(ξi,w)] (2.1)

where ξi is the training data sampled from its local training dataset Di, D =
⋃n

1 Di, X is the
training data distribution, and f is the loss function that clients use to train w.

To learn the optimal model, various optimization approaches have been proposed. McMa-
han et. al. [88] introduced Federated Averaging (FedAvg) which is the most popular one
and has been widely deployed. As shown in algorithm 1, in each communication round,
selected clients perform a number of Stochastic Gradient Descent (SGD) steps locally and
send updated local models to the CS. Through averaging the received model updates, the CS

26 Backgrounds and Literature Review

creates the global model for the next round of training. Typically, FedAvg is executed over a
predefined number of communication rounds or a predetermined time allocation [15]. The
convergence of FedAvg over independent and identically distributed (i.i.d) [123, 144, 62]
and non-i.i.d [76, 77] data have been theoretically analyzed in the literature. While FedAvg
has shown empirical success, it does not fully address the underlying challenges associated
with heterogeneity that arises from data across different devices and the computation and
communication capabilities of participating devices [75]. To tackle the heterogeneity issue
and accelerate convergence, many FedAvg variants have been proposed. For example, Li
et. al.[75] introduced FedProx which adds a regularization term to client’s local objective
function, restricting the local update to be closer to the global model. Sai Praneeth et. al.
[60] devised SCAFFOLD which reduces the variance between clients to reduce client drift
and accelerate convergence. Adaptive optimization methods in traditional centralized ML,
such as SGD with Momentum, Adam, and AdaGrad, have been adapted to FL for faster
learning [134, 91, 102]. The optimization of FL remains an active area of research, seeking
to enhance the effectiveness and applicability of FL in diverse real-world scenarios.

Algorithm 1 FedAvg
Sever executes:
Initialize w0
for each round t = 1,2, . . . ,T do

St ← randomly select client set
for each client i ∈ St in parallel do

wi
t+1←ClientU pdate

end for
wt+1← ∑

|St |
i

1
|St |w

i
t+1

end for

ClientUpdate(i,w):
for local step j = 1,2, . . . ,K do

w← w−η∇ f (ξi,w) for xii Di
end for
return w

2.3 Vulnerabilities of federated learning

The privacy-preserving principle and the centralized orchestration inherent in FL render it
susceptible to the threats posed by unreliable clients and potential malfunction or misbehavior

2.3 Vulnerabilities of federated learning 27

Fig. 2.2 Poisoning attacks in FL

of the central server. These vulnerabilities give rise to a diverse array of attack vectors and
security concerns.

2.3.1 Threats from clients

FL is particularly vulnerable to byzantine clients, named after the Byzantine Generals Prob-
lem in distributed system, referring to clients who don’t act in the system’s best interest.
Recent study shows that even a single byzantine client can degrade the global model sig-
nificantly [40]. Within the context of FL, such clients can exploit the system’s trust in a
multitude of ways:

• Poisoning attacks: These attacks involve byzantine clients sending manipulated or
falsified model updates to the server. By doing so, these clients aim to adversely affect
the aggregated global model. Such detrimental updates can skew the model’s learning
trajectory, leading to suboptimal or entirely incorrect predictions. Poisoning attacks
could be roughly classified as data poisoning and model poisoning, as shown in Fig
2.2.

– Data poisoning attack: Data poisoning happens during the training data collection
phase. Adversaries can inject poisonous data samples into the training dataset.
The ways of generating poisonous data could roughly be classified as feature-
altering and label-altering. In feature-altering, the adversary is assumed to have
no control over the labeling process but can craft the specific feature of training
examples. While in label-altering, adversaries replace the targeted label with
the desired one without touching the training examples. One common data
poisoning attack in FL scenario is label-flipping [40]. During a label-flipping

28 Backgrounds and Literature Review

attack, an adversary deliberately alters the labels of their local data prior to
training. For instance, in an image classification task, to force the global model
to misclassify images labeled ”1” as ”7”, the adversary would flip the labels from
”1” to ”7” in their training data. Data poisoning attack could be carried out by
any participating clients in a FL task, the strength of the attack depends on the
number of adversaries in a training round and the proportion of the poisoned data
samples.

– Model poisoning attack: Instead of compromising the integrity of training data
collection, model poisoning attacks compromise the integrity of the learning
process during the local training phase and are considered to be stronger than
the data poisoning attacks for their direct influence on the shared global model.
As the CS is unable to inspect the individual training, an adversary can behave
completely arbitrarily and tailor its outputs to have a similar distribution with the
correct model updates. Typical model poisoning attacks include: 1) Sign-flipping
[73] A sign-flipping attack involves the inversion of the sign of a local model
update to disrupt the convergence of the global model. Specifically, an adversarial
client i trains his/her local model using the received global model and computes
the local model update ∇gi. Rather than submitting ∇gi to the central server,
the client uploads a manipulated version u∇gi, where u is a negative constant
that inverses the gradient direction. When u = −1, this attack is also known
as bit-flipping attack. 2) A Little is Enough (ALIE) [11]: ALIE represents a
time-coupled attack capable of deceiving robust aggregation rules. In such an
attack, the adversary subtly adds small perturbations to the average of model
updates from benign clients in a single training round. These minute perturbations
accumulate over time, leading to model divergence. Specifically, the adversary
calculates the benign model updates’ average µ and standard deviation δ , and then
constructs the corrupted model update as ∇g′ = µ− zδ . Here, z is a coefficient
determined by the number of participating clients and adversaries. 3) Gaussian
attack [13]: In this attack, adversaries send the random model updates following
the Gaussian distribution to the CS. The larger the isotropic covariance of the
Gaussian distribution, the stronger the attack.

• Free-riding attack: A free-riding attack is explicitly conceived to stay undetected
while not disturbing the FL process. Fraboni et. al. [39] proposed plain free-riding
and disguised free-riding attacks with theoretical analysis of not compromising the
convergence of the global model. In plain free-riding attack, the free rider simply
returns the zero gradient, which is easy to detect. While the disguised free-riding attack

2.4 Related work 29

adds small additive noise to mimic SGD updates. Specifically, the free rider submits a
local model update g′ = ϕ(t)εt to the central server, where εt is Gaussian white noise,
and ϕ(t) is the time-varying perturbation coefficient approximated as ϕ(t) = σt−γ .
Here, t represents the current training round. The parameter σ corresponds to practical
assumptions on the parameter evolution during federated learning, and can be estimated
using the update distribution ∆wg = w1

g−w0
g after random initialization of the global

model. The parameter γ serves as the decay factor. This work assumes free riders to
conduct disguised free-riding attacks.

2.3.2 Threats from central server

Being the orchestrator of the entire process, CS aggregates model updates from clients,
ensuring that the global model benefits from the collective intelligence of all participants.
While FL preservers privacy by moving model training back to where data is generated,
the CS in FL systems still plays a pivotal role, making it a potential target and a source of
vulnerabilities.

One of the primary threats associated with the CS is the risk of a single point of failure
[79, 125]. Since the central server is responsible for aggregating model updates from multiple
clients and disseminating the updated global model back to them, any compromise in its
integrity or availability can have widespread repercussions. A malicious or compromised
central server could manipulate the aggregation process, leading to the distribution of a
corrupted global model. This could be particularly damaging in scenarios where the model
influences critical decisions, such as in healthcare or autonomous driving applications.

The central server also poses a risk in terms of privacy [98, 14]. Even though raw data
does not leave the client devices, sophisticated analysis of the aggregated updates by a
compromised server could potentially lead to privacy breaches. For instance, model inversion
techniques could be employed to infer sensitive information about the clients’ data.

In summary, while FL offers numerous advantages in terms of decentralized learning and
privacy preservation, it also brings forth unique challenges that need to be addressed. The
threats posed by byzantine clients and the vulnerabilities associated with a centralized CS
emphasize the need for robust security measures to make FL truly resilient and trustworthy.

2.4 Related work

This subsection will introduce the related work in blockchain-based FL and the robust
mechanisms designed to defend against byzantine clients in FL.

30 Backgrounds and Literature Review

2.4.1 Blockchain-based federated learning

To handle the issue brought about by an unreliable server, blockchain-based FL becomes a
promising solution. The peer-to-peer distributed nature of blockchain makes the decentralized
aggregation of global model available, shedding new light on handling the single point of
failure in conventional FL. Research works [109, 78, 145, 80, 83, 24, 101, 38, 147, 128, 37]
move the aggregation step from the server to the blockchain nodes, while Qu et al.[100]
and Mugunthan et al.[93] eliminate the role of the aggregator by letting clients themselves
aggregate model updates obtained from the blockchain network. To ensure the reliability of
the global model, most blockchained FL frameworks embed local model update verification
into their design. Under different assumptions on blockchain nodes, the verification methods
vary. Several blockchain-integrated FL frameworks assume that clients join the blockchain
network and participate in FL task simultaneously, so that their training data could be used
as the validation datasets [78, 83, 24], thus the validation accuracy of local model updates
(recorded in the transaction) could be further utilized in the aggregation process. Li et al.
[78] introduced K-fold cross-validation where K committee members test the model update
on their training data and take the median of the accuracy values as the score of the update.
Model updates with qualified scores would be selected for global model aggregation. Lu et
al.[83] applied a similar strategy to select model updates with accuracy lying within a certain
range to update the global model. This accuracy-based validation mechanism has also been
utilized in blockchain-based FL systems where nodes have no access to the training data.
Mugunthan et al.[93] implemented smart contract with a cross-verification procedure that
clients cross-verify others’ model updates by testing them over their local training datasets,
and send the accuracy values back for the calculation of contribution scores, which would be
used in the weighted aggregation stage.

Instead of evaluating model updates with the help of clients, which would inevitably
increase the communication burden and be restricted with clients’ active status, recent
blockchain-based FL frameworks reaped recent advances in Robust FL to protect against
malicious clients. Biscotti [109], SPDL [137] and Omnilytics [80] applied the Multi-krum as
the validation mechanism and give passes to model updates with closer Euclidean distances.
Biscotti introduces noiser, verifier and aggregator nodes, where noisers produce differentially
private (DP) Gaussian noise to be added to the model updates, verifiers run Multi-krum to
sign commitments for passed updates, and aggregators aggregate unmasked passed model
updates via a secure protocol. Similar to Biscotti, SPDL leverages DP Gaussian noise to local
model update and Multi-krum in model updates aggregation to provide private and secure FL
with theoretical convergence guarantee. Omnilytics was implemented using smart contract
with incentives and punishments to honest and malicious clients respectively. However,

2.4 Related work 31

the proposed designs have only been tested using i.i.d datasets, so their performance under
non-i.i.d FL setting has not been explored.

The deployments of proposed blockchain-based FL systems in the research community
roughly fall into three categories: to client devices [109, 78, 24, 101], to edge nodes [145,
57, 48], and to the existing blockchain platform Ethereum with smart contracts [80, 93].
Considering the limited resources of client devices, running and maintaining blockchain
locally is costly in terms of communication and storage for the large propagated block in the
network and the ever-growing blockchain. For PoW-based blockchain systems [101], the
additional computation cost of running the blockchain is also non-negligible. The existing
mature platform, Ethereum, that enables smart applications running on the blockchain
provides secure execution of FL tasks but is monetary costly in terms of the gas fee induced
by every interaction with the blockchain. The deployment to edge nodes is promising for
their broad capacity in terms of computation, communication and storage, but existing
blockchain-based FL works targeting this scenario fail to address the security issue brought
by malicious clients and an unreliable server, and the high communication overhead for
resource-constrained clients concurrently.

2.4.2 Robust federated learning

In FL, the FedAvg algorithm [88] is widely used for federated model training which takes
either the model average or the gradient average of model updates from clients for its
compelling performance under honest settings [65]. However, this mean aggregation rule is
not robust in adversarial situations. Specifically, an attacker can arbitrarily manipulate the
parameters of the shared global model since this simplified average operation with only one
worker device being compromised [13, 142]. To mitigate the adverse impact of byzantine
clients in FL, various research endeavors have been devoted to byzantine-robust FL.

However, most studies focus on the adversarial setting of FL where adversaries launch
poisoning attacks. A subset of these works aims to mitigate the impact of poisoning attacks
by comparing each client’s local model update and discarding statistical outliers before
incorporating them into the global model update [13, 142, 46, 99, 41]. For example, Blan-
chard et al. [13] proposed the Multi-Krum, a Euclidean-distance-based aggregation rule,
that is resilient to f Byzantine workers. Following the Krum, the CS calculates the sum
of Euclidean distance of every model update to others as scores and chooses the smallest
n− f −2 ones for final averaging aggregation, where n is the total number of local model
updates in a single communication round. Theoretical convergence of the global model
has been approved when f < n−2

2 . Differentiate from Krum, TM, and CM [142] perform
element-wise aggregation. In TM, for each ith model parameter, CS sorts the ith parameter of

32 Backgrounds and Literature Review

n local model updates (i.e., g1,i,g2,i,g3,i, . . . ,gn,i) and removes the largest and the smallest β

of them before computing the average value of the remaining n−2β ones. This aggregation
rule achieves an order-optimal error rate (the optimal growth rate of the distance between the
calculated solution and the theoretical optimal solution) when f ≤ β < n

2 and the objective
function is strongly convex. Instead of calculating the trimmed mean of the model updates,
CM takes the median of the ith model parameter of all local model updates as the relative
ith gradient for updating the global model. Similar to the CM, Pillutla et al. [99] applied a
“middle-seeking” strategy and proposed the RFA by approximating the geometric median of
local model updates vectors for global model update. However, additional twice communica-
tion overhead is required to solve the approximation of the geometric median. Another type
of works seeks to identify adversarial clients in poisoning attacks [74, 146]. For example,
FLDetector [146] uses Cauchy mean value theorem to predict clients’ model updates and
check their consistency across rounds for the detection of malicious clients. Another line
of work aims to provide certifiable robustness under specific constraints, such as when the
number of adversarial clients does not exceed a certain threshold [21], or when the change in
training data from malicious clients is bounded [132].

Research on defense against free riders in FL is still in a nascent stage. A limited number
of works have been done[81, 52, 139, 121]. Lin et al. [81] and Huang et al. [52] utilize
DAGMM for free riding attack detection based on the statistics of evolving model updates.
However, they may not be effective, as there is no further punishment to free riders, enabling
their continuous access to the global model throughout the learning process. Wang et al.
[121] move further towards building the defense mechanism, based on contribution scores.
It calculates the contribution score of each client with the help from all other participating
clients through cross-validating model updates. Nevertheless, it induces extra computational
and communication overhead for clients, and its functionality depends on clients’ active
participation. Despite these efforts. few works can defend against both the poisoning and
free-riding attacks simultaneously due to their distinctive attacking patterns. Recently, Xu et
al. [139] proposed RFFL with reputation scores to build the defense, which are calculated
based on the cosine similarity between client’s local model update and the global model
update. However, it has a restricted scenario of full client participation and is sensitive to the
diversity of the local model updates.

As FL continues to evolve, ensuring the security, authenticity, and reliability of the
collaborative training process is of utmost importance. Defense mechanisms in FL are not
just ancillary tools but are foundational to ensuring the viability and trustworthiness of FL in
real-world applications.

2.4 Related work 33

2.4.3 Communication-efficient federated learning

One of the major bottlenecks hindering the real-world FL application is the high commu-
nication cost to clients that arises from sending around model updates. The participating
clients are often edge devices with limited bandwidth. Addressing this challenge is crucial to
harness the valuable user data for FL, enabling the realization of privacy-preserving collective
intelligence across diverse applications. Previous works targeting communication-efficient
FL can be broadly categorized into two approaches: 1) reducing the communication overhead
for clients in stable FL environments and 2) optimizing resources for FL deployment in
practical, unreliable environments.

To reduce the communication overhead, various gradient compression methods have
been proposed and shown significant reductions in communication cost with minimal impact
on training accuracy [64, 5, 104, 4, 118, 107]. This compression can take various forms,
such as quantization, where the model weights are represented using fewer bits, effectively
reducing the size of the updates with minimal impact on the model performance. Another
strategy involves sparsification of the updates, where only a subset of the model parameters,
typically those with significant changes, are transmitted [65]. This selective transmission
ensures that only the most impactful updates are communicated, thereby conservatively
using the available bandwidth. Another line of work focuses on reducing the number of
communication rounds [91, 129, 26, 23]. Mills et al. [91] proposed to use a distributed
form of Adam optimization to accelerate the convergence speed and reduce the number of
communication rounds. Wu et al. [129] used client selection where adverse local model
updates are excluded in the aggregation stage to propel the convergence of the global model.
Chen et al. incorporated meta-learning with MAML and META-SGD to speed up the model
training. Apart from these methods, Chen el al. proposed Lazily Aggregated Gradient (LAG),
where the reuse of outdated gradients is applied, thus reducing the communication rounds to
achieve a target accuracy.

To facilitate the practical deployment of FL in edge environments, where clients are
often wirelessly connected to the central server and the network conditions are dynamic and
unreliable, various approaches have been proposed. One line of work focuses on mitigating
the impact of noise in the model update transmissions, aiming to reduce the number of
communication rounds required to achieve the desired model performance. For example,
Yang et. al. [141] proposed a noise-aware scheduling policy to prioritize model updates
with better channel conditions. Ang et. al. [8] proposed an alternative approach to tackle
noise by adjusting the loss function of each client through the addition of a regularization
term. Some other works introduce efficient client scheduling strategies. Amiri et. al. [6]
investigated the trade-off between the number of participating clients in each round and

34 Backgrounds and Literature Review

the allocated resources per client, and proposed a client scheduling approach that jointly
considers the channel condition and the importance of local model update. However, this
work assumes perfect channel state information, which may not hold true in real-world
deployments. To address this, Wadu et. al.[119] developed a client scheduling approach
according to the predicted channel conditions by utilizing Gaussian process regression under
imperfect channel state information.

In summary, these strategies enhance the feasibility of FL, particularly in bandwidth-
constrained environments, and pave the way for its broader adoption across various domains
where data privacy is paramount.

2.5 Summary

This chapter presents an overview of the background knowledge related to this thesis. It
begins with an introduction to blockchain technology and FL with a focus on its objective,
optimization, and vulnerabilities. It then presents state-of-the-art research work towards
secure FL using blockchain, robust FL with defense mechanisms, and communication-
efficient FL with different strategies.

Chapter 3

Lightweight Blockchain-based Federated
Learning Framework

The fusion of blockchain and FL appears a promising solution to realize the reliability and
integrity of the shared global model in the collaborative learning process. There have been
a number of research works dedicated to blockchain-based FL. However, as described in
Section 2.4, they are either costly in terms of communication and storage due to the large
block size (within the ever-growing blockchain) or costly to operate, as every interaction
with the blockchain (i.e., Ethereum) consumes a monetary gas fee. Thus, there is a lack of
a cost-effective and reliable blockchain-based FL system that runs at vulnerable network
edge with resource-constrained devices. To fill this gap, this chapter proposes a novel
lightweight blockchain-based FL (LBFL) framework, tailored for FL applications in edge
computing enviroment. Incorporating Inter-Planetary File System (IPFS) and Verifiable
Random Function (VRF), LBFL is scalable to a large number of blockchain nodes, storage
and communication-efficient at the network edge.

3.1 Prelimilary

3.1.1 IPFS

Inter-Planetary File System is a peer-to-peer distributed file system that provides a high
throughput content-addressed block storage model with content-addressed hyperlinks (the
unique hash values) [12]. Its Distributed Hash Table (DHT) and Merkle Directed Acyclic
Graph (DAG) make efficient data storage and file retrieval. Any modification of a file would
result in a different hash value, thus the integrity of the stored file is ensured. Although the
alternative peer-to-peer file system exists (i.e., Maidsafe [97] which is also a decentralized

36 Lightweight Blockchain-based Federated Learning Framework

Client 1 Client 2 Client 𝑲

...

Node Node Node Node
...

Blockchain Network

Task Publisher

FL Task

FL Collaborative
Training

𝐺!"#$ 𝐺!"#$ 𝐺!"#$

Committee (VRF)

Aggregator
Candidate block

Verified block

⑦
①

②

③

④

⑤

⑥

① Publish FL task
③ Local training with private dataset
⑤ Aggregate local model updates via aggregation rule to generate candidate block
⑦ Miners add newly verified block to the local chain

BS BS BS BS

② Get the IPFS address of the global model
④ Send the local model update to the nearest miner (blockchain node)
⑥ Committee members verify the candidate block to produce the confirmed verified block

𝑔

Fig. 3.1 Overview of LBFL framework

and autonomous network for secure data storage and retrieval with content-address hash
values stored in the DHT), IPFS has been widely applied in blockchain system development
[148, 58, 63, 66]. In this regard, LBFL incorporates IPFS to store the global model on the
blockchain nodes, thereby reducing the storage cost of the blockchain and ensuring the
integrity of the global model.

3.1.2 VRF

Verifiable Random Function [90] is a public-key pseudorandom function that provides proof
for its random outputs with certain inputs. VRF provides blockchain nodes a non-interactive
way to independently determine if they were chosen to be the committee members [44].
These unique characteristics of VRF allow us to use it to allocate the blockchain committee
in LBFL.

3.2 LBFL Design

As shown in Fig. 3.1, LBFL is assumed to be deployed and run at the network edge with edge
nodes (i.e., Base Stations (BSs)) to be the blockchain nodes. The task publisher first publishes
the FL task with the initial global model stored in the IPFS to the blockchain network (Step
①). The blockchain nodes retrieve the task information from the network. Clients then
could get the IPFS address of the global model via querying the nearest active node (Step

3.2 LBFL Design 37

𝑮𝑰𝑷𝑭𝑺𝒕&𝟏
𝑺𝒊𝒈𝒂𝒈𝒈

𝑆𝑖𝑔*#

…

Verified Block

𝑆𝑖𝑔*$

𝑆𝑖𝑔*%

Block Index
Timestamp
Previous block hash

𝑮𝑰𝑷𝑭𝑺_𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝒕&𝟏
𝑺𝒊𝒈𝒂𝒈𝒈

𝑔12 3451

…

Candidate Block

𝑔62 3456

𝑔72 3457

Block Index
Timestamp
Previous block hash

Fig. 3.2 Block structure

②). Utilising the content-addressed IPFS, the global model could be easily downloaded.
Starting with this global model, clients run local training steps using their private datasets.
Once the local training is complete, clients send the model updates (gradients) together
with their signatures as transactions to the nearest active node (Step ③ and ④). Receiving
a model update from a client, the blockchain node first verifies whether it is issued by the
client via checking the signature. If the requirement is met, the node disseminates this
transaction to the network. Once enough pending transactions (local model updates) are
received, nodes competitively calculate the global model for the next round following the
aggregation protocol specified, generate the candidate block, and send it to the committee
that was allocated with VRF (Step ⑤). Committee members then verify if the global model
is aggregated correctly with their "Yes" or "No" votes. If the candidate block receives more
than 2

3 agreements from the committee, it is regarded as a verified block and propagated
to the network. After receiving the newly verified block, nodes check the signatures of the
committee members and add it to the local chain (Step ⑥).

3.2.1 Transaction and Block Design

A blockchain is a list of blocks linked with hash pointers. Each block has a block header,
consisting of the index of the block, timestamp, and the hash string of the previous block, and
a block body that contains transactions. As shown in Fig. 3.2, each model update with the
signature signed by the client forms the transaction. Model updates utilized for global model
aggregation together with the IPFS address of the aggregated model W t+1

g signed by the
aggregator would be packed into the body of the candidate block. Once the candidate block
has been confirmed, local model updates contained in this block will be removed for their
uselessness to future rounds of the learning process and the benefit of storage saving. Instead,

38 Lightweight Blockchain-based Federated Learning Framework

signatures of the block header and IPFS address of the confirmed global model issued by
committee members who vote "Yes" to the candidate block would be recorded.

3.2.2 Consensus Design

Stake-based Committee Constitution

Using VRF, LBFL selects committee members in a private and non-interactive manner. Based
on VRF, a novel sortition algorithm for choosing a random subset of nodes to constitute the
committee is proposed. Each node runs the sortition algorithm independently with a public
seed (the latest block of blockchain) as its input to see if itself is selected as a candidate
committee member. It is non-trivial that the sortition selects nodes in proportion to their

Algorithm 2 Sortition
Input: the latest block seed, stake value of node i si, the total stake of blockchain system

S, hyperparameter α and the committee size K.
Output: select,hash, proo f

1: hash, proo f ←V RFSKi(seed)
2: r = hash

2hashlen

3: if r
si
< αK

S then
4: select = true
5: else
6: select = false
7: end if

owned stakes; otherwise, it would be vulnerable to Sybil attack [34], where a single faulty
entity presents multiple entities, thus controlling a substantial fraction of the system. As
shown in the Sortition algorithm, if the generated unique random hash, determined by the
secret key SKi and the input seed, satisfies the condition, the node i becomes a candidate
committee member and sends the eligible information (hash and proo f) to the network. The
r generated via VRF is a unique uniform random value that lies within the range of [0,1],
thus its probability density function is f (r) = 1. The probability of blockchain node i being
chosen to be a committee member could be computed as follows:

pi = Pr(
r
si
<

αK
S

) = Pr(r <
αKsi

S
) =

αKsi

S
, (3.1)

it can be seen from the above equation that the more stake the node owns, the higher
probability of it being chosen for the committee. The committee constitution phase ends
when the correct size of the committee is achieved, first K committee members become the

3.2 LBFL Design 39

authoritative ones. Any node could get the committee information from the network and
verify the identity of committee members using their public keys of VRF, the latest block
of the blockchain, and the stakes they owned. The hyperparameter α controls the expected
number of nodes that could be chosen to become the candidate committee members. As each
node of being a candidate committee member follows the Bernoulli distribution, we let Xi

denote the trial of node i, where Xi = 1 with probability pi denoting success trial, and Xi = 0
with probability 1− pi indicating unsuccessful one, thus the successful trials X = ∑

n
i=1 Xi.

The expectation of X is computed as follows:

E(X) =
n

∑
i=1

pi = αK. (3.2)

According to the Chernoff bound on the sum of independent Bernoulli trials, the following
can be obtained

Pr(X ≤ (1−δ)αK)≤ e−αKδ 2/2, (3.3)

for any 0≤ δ ≤ 1. Taking δ = α−1
α

, where α lies within (1, n
K], then

Pr(X ≤ K)≤ e−K(α−1)2/2α . (3.4)

To ensure enough candidate committee members exist in each committee constitution phase,
the probability equation (3.4), indicating not having K +1 candidate committee members
should be small to 0. The choice of K and α will be discussed in the Evaluation section.

Consensus Achievement

As the defining technology behind the security of blockchain, the consensus protocol is
of significant importance. The VRF-enabled committee constitution guarantees resistance
against Sybil attacks as no blockchain node can predict the next generated block in advance,
and there are limited stakes that malicious nodes could hold. As shown in Algorithm 3, when
a new candidate block is distributed to the network, committee members that are in charge of
verifying candidate blocks first check whether enough pending transactions are collected for
global model aggregation and the signature of the IPFS address is issued by the aggregator
using its public key pkagg. If the aforementioned condition is met, committee members
calculate the global model following the predefined aggregation protocol (provided by the
task publisher) and compare it with the one obtained from the IPFS. If the results are the
same as the aggregator’s, committee members vote "Yes" to the candidate block with their
signatures regarding the block header and the signed IPFS address. We use the Elliptic Curve
Digital Signature Algorithm (ECDSA) to make the signature commitment which is utilized

40 Lightweight Blockchain-based Federated Learning Framework

Algorithm 3 Consensus
Candidate Block cBlock, maximum vote round MaxStep, maximum voting time
MaxVoteDuration.
step← 1
while step < MaxStep do

if voting time is within MaxVoteDuration then
votes,sigs←Committee members vote on cBlock
if "Yes" votes are more than 2K

3 then
vBlock← cBlock,sigs
return vBlock

else
step++; wait for new candidate block

end if
end if

end while
Committee reconstruction; wait for new candidate block.

in Bitcoin. If more than 2
3 agreements from committee members are received, the candidate

block is regarded as the valid verified block with transactions replaced by signatures from
supported committee members. This 2

3 consensus threshold is based on the concept of the
Byzantine Fault Tolerance (BFT) [68]. In a distributed system like a blockchain, some of
the nodes (or validators) may be faulty and behave maliciously or erroneously, leading to
inconsistencies in the system. The BFT consensus algorithm is designed to tolerate up to
one-third of the nodes being faulty. Setting the consensus threshold to 2

3 ensures that LBFL
can tolerate up to one-third of the committee members being faulty (either due to malicious
intent or technical issues), while still achieving consensus on the verified block. In LBFL, the
voting process for each candidate block occurs only for a specified duration. Any candidate
block that fails to receive enough agreements during the time duration will be dropped and
the committee will verify the next candidate block. For the committee constituted each time,
LBFL specifies its maximum voting step. If there is no candidate block being confirmed
during these voting rounds, a new committee will be constituted to verify the new candidate
block.

Once the block is confirmed, stake reward will be distributed to both the committee
members and the block generator. Any transactions in the pending transaction pool will be
cleared: LBFL does not append stale updates to the model.

3.3 Implementation 41

chain node consensus

network

client

gopy helper

modules
written in
Go

module written
in python

Fig. 3.3 Modules in LBFL

3.3 Implementation

The implementation of LBFL can be divided into two parts: blockchain and FL, consisting
of chain, node, consensus, and network modules written in go, and client module written
in python, as shown in Fig 3.3. The FL part (client) interfaces the blockchain part with a
gopy helper package based on go-python3 library[33]. Client operations, including global
model retrieving and model training using local data, are implemented in the client module.
Go-ipfs-api [53] was used to connect with the IPFS. The cryptography part of the design is
implemented with Coniks [30] library which is used for VRF implementation and the built-in
crypto package of Go that contains ECDSA implementation.

3.3.1 Chain module

The block and transaction structures are defined in this module, together with their calling
functions including: block generation, block validation, block accessing and retrieving,
transaction generation, transaction validation, and chain validation, etc.

3.3.2 Node module

The actions of a blockchain node are defined in this module, such as: voting if being selected
as a committee member, getting the chain information from a peer, getting transactions in the
transaction pool, sending transactions in the network, and sending the latest global model to
the client who requested, etc.

42 Lightweight Blockchain-based Federated Learning Framework

3.3.3 Consensus module

The proposed VRF-based consensus mechanism is implemented in this module. Through
calling the role function implemented in this module, a blockchain node is able to know
whether it becomes a committee member in a new block generation round. Once a candidate
block is published in the network, the voting function will be triggered and active committee
members will vote for the candidate block upon receiving the notification.

3.3.4 Network module

This module enables the communication between nodes over TCP layer. A super node is
introduced to mimic the broadcasting channel. Through implementing remote procedure
calls, FL task publisher is able to publish the FL task and clients can interact with the
blockchain network.

3.4 Evaluation

LBFL was deployed to a machine with one NVIDIA Getforce GTX 1080 Ti GPU, one
Intel (R) Xeon (R) CPU E5-2630 v3 @ 2.40GHz and 64GB of RAM. All experiments were
executed over non-i.i.d datasets: FEMNIST and CIFAR10. FEMNIST was preprocessed
using the Leaf federated benchmark tool [19] consisting of 62 different classes (numbers
and letters). The non-i.i.d CIFAR10 partition constructed from LotteryFL [70] was used,
where clients can have different classes of unbalanced data with different degrees. This
evaluation assigned each CIFAR10 client 10 classes of data with an unbalanced degree of
0.75. All FL tasks were loaded with 50 workers and 20 of them were selected randomly to
participate in each FL training round. The parameter values of LBFL are presented in Table
1 unless stated otherwise. To ensure enough candidate committee members exist in each
committee constitution phase, this evaluation set committee size K and control parameter α

with 15 and 3 respectively, so that the probability of not having K +1 candidate committee
members is smaller than 4.54× 10−5 according to the equation (3.4), indicating it would
barely happen. This evaluation used the secure aggregation rule proposed in Chapter 4 as
the aggregation protocol. A custom CNN was implemented for the FMNIST task, which
comprises a convolutional layer with relu, a max-pooling layer, a convolutional layer with
relu, a max-pooling layer, a fully connected layer with relu, and the output layer with softmax.
For the CIFAR10 task, this evaluation used ResNet14[49]. Each experiment was repeated 3
times.

3.4 Evaluation 43

Table 3.1 The default parameters of LBFL

Parameter Value
Committee size K 15

Control parameter α 3

Maximum voting round MaxVoteStep 5

Voting time out MaxVoteDuration 200 seconds

Number of blockchain nodes 100

Learning rate of client’s SGD 0.1

Batch size of client’s model training 64 samples

Local steps of client’s model training 5

Initial stake uniform, 1 each

Stake update linear, +1

3.4.1 Security Analysis

The safety of LBFL is guarded by the committee-based consensus protocol, but proving
this experimentally requires testing all possible attack strategies which is infeasible. This
subsection measures the resistance of LBFL to byzantine blockchain nodes with the specified
attacking strategy: the byzantine blockchain nodes actively participate in both committee
constitution and candidate block generation. If the byzantine blockchain node gets the chance
to be a committee member, it votes "No" to the correct candidate block and votes "Yes" to
the incorrect one. For generating the candidate block, instead of aggregating local model
updates following the predefined aggregation protocol, byzantine blockchain nodes perform
a Gaussian attack by setting random values following the standard Gaussian distribution as
global model parameters. 1

3 blockchain nodes are assigned to be malicious and colluded
together to mislead the learning process, which is 33 out of 100. This is the maximum
number of byzantine faulty nodes in the distributed system to make sure all non-faulty nodes
can reach a consensus [68]. As shown in Fig. 3.4 and 3.5, the performance of BEFL was
unharmed by these byzantine nodes, demonstrating that BEFL is robust to this kind of attack
scenario.

3.4.2 Scalability Analysis

To measure the scalability of LBFL, this evaluation varied committee size with a fixed 100
blockchain nodes, and varied the number of blockchain nodes with a fixed committee size

44 Lightweight Blockchain-based Federated Learning Framework

0 100 200 300 400 500
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

LBFL with byzantine
LBFL without byzantine

Fig. 3.4 Test accuracy of LBFL under honest clients setting for FEMNIST task

0 100 200 300 400 500
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

LBFL with byzantine
LBFL without byzantine

Fig. 3.5 Test accuracy of LBFL under honest clients setting for CIFAR10 task

3.4 Evaluation 45

15 20 25 30
Committee size

0

50

100

150

200
To

ta
l t

im
e/

se
co

nd
s

CIFAR10
FEMNIST

Fig. 3.6 The averaged total time of per verified block generation and distribution with varied
committee sizes for CIFAR10 and FEMNIST tasks

of 15. The CIFAR10 and FEMNIST tasks were rerun under different LBFL system settings
for 50 training rounds. As shown in Fig. 3.6, the average total time per verified block
generation and distribution grows almost linearly with the committee size as the dominant
voting time increases. The overall time for generating and distributing a valid block for
the FEMNIST task is shorter than that of the CIFAR10 as the smaller transmitted model
updates in the network. Although the larger the committee size, the more certainty of having
enough candidate committee members in each committee constitution phase, and the higher
credibility of the generated block as more agreements obtained, the additional communication
overhead for reaching consensus on candidate block is non-negligible. Fig. 3.7 shows the
performance of LBFL as the network size grows. It can be seen that the total time of block
finalization and distribution barely increases in CIFAR10 task and the increment is almost
negligible in FEMNIST task when the number of blockchain nodes increases from 50 to
800. Instead of saving the full shared global model and local model updates in a block, the
recorded IPFS address and the removal of unnecessary stale model updates reduces the block
size significantly, thus enabling fast block transmission in the network.

46 Lightweight Blockchain-based Federated Learning Framework

50 100 200 400 800
Nodes

0

20

40

60

80

100

To
ta

l t
im

e/
se

co
nd

s

CIFAR10
FEMNIST

Fig. 3.7 The averaged total time of per verified block generation and distribution with varied
blockchain network size for CIFAR10 and FEMNIST tasks

3.5 Summary

This chapter introduces LBFL, a novel lightweight blockchain framework tailored for FL. To
reduce the communication cost of block propagation, and the storage cost of maintaining the
blockchain, LBFL incorporates the IPFS to store the global model with its address recorded
in the block. Instead of the conventional computation-intensive PoW mechanisms to achieve
the consensus in the blockchain, an energy-efficient committee-based consensus protocol
using VRF was proposed. Experiment results show that LBFL is secure and scalable.

Chapter 4

Blockchain-empowered Secure and
Efficient Federated Edge Learning

Blockchain-based FL system is able to mitigate the single point of failure of conventional
FL and guarantee the integrity of the shared global model during the learning process
owing to its secure and tamper-resistant feature. However, it is unable to promise the
reliability of the global model if adversarial clients exist, who may send poisonous model
updates to degrade the performance of the shared model, which is possible in real-world
scenarios. Moreover, the deployment of FL for real-world applications is hindered by the high
communication overhead between the server and clients that are often at the network edge
with limited bandwidth. To address these issues, this chapter proposes a secure and efficient
Blockchain-Empowered Federated Learning (BEFL) system based on LBFL, leveraging
the state-of-the-art compression mechanism PowerSGD [118] and Mutual Information (MI)
between clients’ models to capture their inherent correlation and choose reliable updates
according to their MI values. Extensive experiments were conducted with benchmark non-
independent identically distributed (non-i.i.d) datasets (FEMNIST and CIFAR10) for FL
under both honest and adversarial settings. Experimental results show that BEFL is resistant
to clients acting maliciously and launching data poisoning and model poisoning attacks.
BEFL also achieves better performance than baselines under the benign setting with reduced
communication overhead.

4.1 System Design

Based on LBFL, BEFL aims to reduce the communication cost of clients without degrading
the global model performance and mitigate the influence of potential malicious clients. As

48 Blockchain-empowered Secure and Efficient Federated Edge Learning

Client 1 Client 2 Client 𝑲

...

Node Node Node Node
...

Blockchain Network

Task Publisher

Initial model

Unlabelled data

FL Task

FL Collaborative
Training

𝐶𝑜𝑚𝑝 ∆𝑤! 𝐶𝑜𝑚𝑝 ∆𝑤" 𝐶𝑜𝑚𝑝 ∆𝑤#

𝐺$%&' 𝐺$%&' 𝐺$%&'

Committee (VRF)

Aggregator
Candidate block

Verified block

⑦
①

②

③

④

⑤

⑥

① Publish FL task
③ Local training with private dataset
⑤ Aggregate local model updates via secure aggregation rule to generate candidate block
⑦ Miners add newly verified block to the local chain

BS BS BS BS

② Get the IPFS address of the global model
④ Send the compressed local model update to the nearest miner (blockchain node)
⑥ Committee members verify the candidate block to produce the confirmed verified block

Fig. 4.1 Overview of BEFL framework

shown in Fig. 4.1, BEFL adopts the overall architecture of LBFL. Instead of sending original
model updates, clients in BEFL compressed their model updates and send the compressed
ones to the blockchain network. BEFL assumes that the task publisher has access to a set of
unlabeled data containing all the classes of training data on clients, which is used to calculate
the MI between clients. This assumption is easily satisfied, as in FL, the task publisher (or
the server) usually collects its own data for model validation, which contains all the classes
and is i.i.d, while collecting unlabeled data is simpler than labeled ones [25].

4.1.1 Communication-efficient Distributed Training

Instead of obtaining global model from the server, BEFL enables participating clients to
get the latest global model from the nearest active blockchain node through sending their
requests. The node then returns the IPFS address of the latest global model with its recorded
relative training round, so that the client can check whether the global model is the newly
updated one. Taking advantage of the content-addressed IPFS, clients can download the
global model efficiently as the file is provided by the available nearest IPFS servers. Upon
obtaining the global model W t

g , new local model wt is trained using conventional Stochastic
Gradient Descent (SGD) algorithm on the private training data D.

To save the communication cost of uploading the model update ∆wt = wt−W t
g for global

aggregation, BEFL applies the state-of-the-art gradient compression mechanism PowerSGD,
which incorporates error-feedback [118], to compress the transmitted update. As shown

4.1 System Design 49

in Algorithm 4, the low-rank PowerSGD decomposes the gradient matrix M ∈ Rn×m into
P̂ ∈ Rn×r and Q ∈ Rm×r. Compared to traditional FedAvg [88], the additional computation
cost brought by compression is relatively low, which involves one left multiplication, one
right multiplication, and an orthogonalization (achieved by Gram-Schmidt procedure with
O(mn2), where m and n are the dimensions of the matrix) on each matrix in gradient vector
∆w.

Algorithm 4 Distributed model update with PowerSGD

1: The error e is initialized with 0 ∈ Rd , ∆w ∈ Rd . In the compression phase, vector ∆w
would be reshaped into matrices. For each matrix M ∈ Rm×n, a corresponding Q ∈ Rm×r

is initialized from an i.i.d standard normal distribution
2: Client execute:
3: at each training round r = 0, ... do
4: Compute a stochastic gradient gw
5: ∆w = gw + e
6: P̂,Q←COMPRESS(∆w)
7: e← ∆w−DECOMPRESS(P̂,Q)

8: upload P̂,Q
9:

10: function COMPRESS(∆w)
11: {M1,M2, ...MW}← ∆w
12: for i = 1,2, ..,W do
13: Pi←MiQi
14: P̂i← ORT HOGONALIZE(Pi)
15: Qi←MT P̂i
16: end for
17: P̂ =

{
P̂1, P̂2, ..., P̂W

}
18: Q = {Q1,Q2, ...,QW}
19: return compressed representation (P̂,Q)
20: end function
21:
22: function DECOMPRESS(P̂,Q)
23: for P̂ in P̂, Q in Q do
24: M = P̂QT

25: ∆w∗←M
26: return ∆w∗

27: end function

50 Blockchain-empowered Secure and Efficient Federated Edge Learning

4.1.2 Secure Aggregation Protocol

The privacy-preserving principle of FL makes it susceptible to malicious clients who may
send poisonous model updates to corrupt the joint learning process. The low-rank approxi-
mated model update inevitably introduces biases to the raw model update, thus making the
identification and mitigation of potential malicious model updates more difficult. As shown
in [130], the MI between honest clients shows an increasing trend with training round, instead
of the Euclidean distance. We propose a novel robust aggregation mechanism leveraging
the underlying MI between clients to capture the differences between honest and malicious
clients.

MI is a powerful statistic for measuring the degree of dependence [32], it captures the
amount of shared information between two random variables. BEFL treats the output of
client’s local model as a random vector due to the stochastic property of SGD. BEFL assumes
that the output Fi of local model wi from client i and output Fj of local model w j from client
j follow Gaussian functions with respective variances σ2

i and σ2
j . The MI between client i

and j, denoted by MIi, j could be calculated as [116]:

MIi, j = MI(Fi,Fj) = H(Fi)+H(Fj)−H(Fi,Fj), (4.1)

where H(Fi) is the entropy of Fi, H(Fj) is the entropy of Fj, and H(Fi,Fj) is joint entropy of
Fi and Fj, which are defined as:

H (Fi) =
1
2 [1+ log

(
2πσ2

i
)
]

H
(
Fj
)
= 1

2 [1+ log
(

2πσ2
j

)
]

H
(
Fi,Fj

)
= 1+ log(2π)+ 1

2 log[σ2
i σ2

j

(
1−ρ2

i j

)
]

 . (4.2)

In Eq. (4.2) the correlation coefficient ρi j is defined as:

ρi j =
E[(Fi−E[Fi])]E[(Fj−E[Fj])]

σ2
i σ2

j
, (4.3)

where E[·] denotes the mathematical expectation. From Eq. (4.1) and (4.2), we could get

MIi, j =−
1
2

log(1−ρ
2
i j). (4.4)

It can be seen from Eq. (4.4) that, 1) when the outputs Fi and Fj are highly correlated, the
correlation coefficient ρi j is close to 1 and thus the MI value would be noticeably large; 2)
when Fi and Fj are barely correlated, the correlation coefficient ρi j is close to 0 and their MI

4.1 System Design 51

becomes very small. The outputs of clients’ local model are obtained from decompressing
their model updates and the unlabeled dataset provided by the FL task publisher.

Algorithm 5 BEFL aggregation

The global model W t
g and momentum value mt of last round, unlabeled dataset of FL task X ,

and the received valid model updates set S = {Comp(∆w1),Comp(∆w2), . . . ,Comp(∆wk)}

for each compressed model update Comp(∆wi) in S do
∆wi← DECOMPRESS(Comp(∆wi))
wi = ∆wi +Wg

end for
for each wi do

Compute MIi, j, (j = (1, . . . ,k), j ̸= i)
MIi = mean

{
MIi, j : j = (1, . . . ,k), j ̸= i

}
end for
MImad ←MAD(MI)
MImadn =

MImad
0.6745

∆w← 0
for i = 1, . . . ,K do

ti =
|MIi−Median(MI)|

MImadn
count = 0
if ti ≤ 2 then

∆w = ∆w+∆wi
count ++

end if
end for
mt+1 = βmt−η

∆w
count

W t+1
g =W t

g−βmt +(1+β)mt+1

As shown in Algorithm 5, the MI values between different clients calculated via Eq. (4.4)
are leveraged to the secure aggregation process. The correlation coefficient ρi j is:

ρi j =
∑

N
q=1

(
Fi
(
xq
)
−E

[
Fi
(
xq
)])(

Fj
(
xq
)
−E

[
Fj

(
xq
)])√

∑
N
q=1

(
Fi
(
xq
)
−E

[
Fi
(
xq
)])2 (Fj

(
xq
)
−E

[
Fj

(
xq
)])2

, (4.5)

where xq denotes the unlabeled data sample and N is the number of data samples. To
quantify the correlation of each model update to others, the MI values between each other
model update are averaged to produce the MI score. Similar to the Multi-krum [13] robust
aggregation rule, our method selects model updates "close to the barycenter". Model updates
with excessively low MI scores are suspected to be malicious for the intrinsic large difference,
while the one with a very high score tends to increase the redundancy in model aggregation

52 Blockchain-empowered Secure and Efficient Federated Edge Learning

which may slow down the convergence speed. To capture the distance of each MI score to
the barycenter, BEFL utilises the standard deviation (SD) robust alternative, median absolute
deviation about the median (MAD) which is computed as:

MImad = MAD(MI) = Median(|MI−Median(MI)|), (4.6)

where MI = {MI1,MI2, . . . ,MIk} and k is the number of received valid pending transactions
that contain the model updates from clients. To make MAD comparable to SD, BEFL
normalizes the MAD as:

MImadn =
MImad

0.6745
, (4.7)

where 0.6745 is the MAD value of a standard normal distribution. To filter out potential
malicious model updates as well as less contributive ones, BEFL uses the standard heuristic
of taking all values lying within two SDs of the mean (95% probability) as empirically useful.
BEFL replaces mean and SD here to median and normalized MAD (MADN) as robust
location and dispersion measures [24]. Model updates with MI scores lie within the 95%
confidence level are selected for aggregation. The global model is updated with Nesterov’s
momentum using the selected gradients.

After the aggregation, the updated global model W t+1
g and momentum mt+1 will be

uploaded to the IPFS by the aggregator, with a unique hash string denoting the storage
address returned back. The aggregator could then generate the candidate block with obtained
IPFS address and pending transactions and send it to the committee for verification.

4.2 Performance Evaluation

Experiment setup: All experiments were executed over non-i.i.d datasets: FEMNIST
and CIFAR10. FEMNIST was preprocessed using the Leaf federated benchmark tool [19]
consisting of 62 different classes (numbers and letters). The non-i.i.d CIFAR10 partition
constructed from LotteryFL [70] was used, where clients can have different classes of
unbalanced data with different degrees. This evaluation assigned each CIFAR10 client
10 classes of data with an unbalanced degree of 0.75. All FL tasks were loaded with 50
workers and 20 of them were selected randomly to participate in each FL training round. The
parameter values of BEFL are presented in Table 4.1 unless stated otherwise. The number of
blockchain nodes is set to 100, mirroring the default setting of LBFL. The rank values are set
to 2 for FEMNIST task and 4 for CIFAR10 task, respectively, as these values yield the best
performance among the tested values of 2, 4, 6, and 8. The β parameter is set to 0.9, which
is optimal among the tested values of 0.3, 0.6, 0.9, and 0.99. The learning rate is set to 0.1,

4.2 Performance Evaluation 53

Table 4.1 The default parameters of BEFL

Parameter Value
Number of blockchain nodes 100

Rank of FEMNIST SGD update 2

Rank of CIFAR10 SGD update 4

Beta β 0.9

Eta η 1

Learning rate of client’s SGD 0.1

Batch size of client’s model training 64 samples

Local steps of client’s model training 5

Table 4.2 Communication cost per round

Raw size (Kb) Compressed size (Kb)

FEMNIST 3399.742 50.727 (67×′)

CIFAR10 764.602 151.070 (5×′)

as this value exhibits the best performance among the tested learning rates of 0.001, 0.01,
0.1, and 0.3. The batch size is set to 64 samples, and the local step is set to 5. The unlabeled
dataset was constituted of 1000 random samples without their labels in the test dataset. A
custom CNN was implemented for the FMNIST task, which comprises a convolutional layer
with relu, a max-pooling layer, a convolutional layer with relu, a max-pooling layer, a fully
connected layer with relu, and the output layer with softmax. For the CIFAR10 task, this
evaluation used ResNet14[49]. Each experiment was repeated 3 times, with the mean and
95% confidence interval (CI) plotted in the relevant figures.

This evaluation compares BEFL with FedAvg and Biscotti. Biscotti shares the same
objective of defending against malicious clients and solving the centralized server bottleneck
issue in federated learning using blockchain technology.

4.2.1 Communication efficiency

This subsection evaluates the communication cost of each client for participating in a training
round. As shown in Table 4.2, the sizes of transmitted model updates for both FEMNIST
and CIFAR10 tasks are reduced significantly, from 3399.742kb to 50.727kb in FEMNIST,
and 764.602kb to 151.070kb in CIFAR10. By compressing the model updates into low-rank

54 Blockchain-empowered Secure and Efficient Federated Edge Learning

matrices, the uploading message became 67×′ smaller of FEMNIST task and 5×′ smaller
of CIFAR10 task. To measure the difference between the decompressed model update and
the original model update, this subsection utilizes average absolute error per parameter and
Euclidean distance which can be computed with the following formula:

Euclidean(∆wo,∆wd) =

√
n

∑
k=1

(∆wo,k−∆wd,k)2, (4.8)

where ∆wo is the original model update, ∆wd is the decompressed model update, and n is the
total number of model parameters. The experiments were rerun for FEMNIST and CIFAR10
tasks with 20 clients participating in each training round. The mean of average absolute error
per parameter of decompressed model update for CIFAR10 is 0.00103 while the maximum
is 0.00146. For FEMNIST, the mean is 0.00162, while the maximum is 0.02085. The
mean Euclidean distance between the decompressed model update and the original model
update for CIFAR10 is 1.496404, while the maximum is 2.429850. For FEMNIST, the mean
Euclidean distance is 1.771408, while the maximum is 21.806949. From the calculated
numerical results, we can observe that the average values are much smaller than the maximum
ones, indicating that there is not a significant difference between the decompressed data and
the original data from an overall perspective.

As shown in Fig. 4.2, BEFL achieves equivalent performance compared to conventional
FedAvg [88] under the honest setting. Due to non-i.i.d data, Biscotti filtered out partial
contributive model updates in terms of their long Euclidean distances to others resulting
in 3.55% and 3.92% accuracy dropping down for the FEMNIST and the CIFAR10 task
respectively. Moreover, BEFL converges faster than traditional FedAvg and Biscotti due
to the intrinsic model update selection and momentum update of the global model. Model
updates with excessively high MI scores tend to increase the redundancy in the aggregation
process and ones with very low MI scores are suspected to induce high variance. Using
momentum of SGD updates has proven to accelerate the network training [50] and the
oscillations brought by compression could be dampened.

4.2.2 Resistance to poisoning attacks

This subsection evaluates BEFL’s performance against both data poisoning and model
poisoning attacks. Data poisoning happens during the data collection phase. Malicious
clients inject data samples into the training dataset. One common data poisoning attack in the
FL scenario is the Label-Flipping (LF) [40] attack in which adversaries replace the targeted
label with the desired one. In model poisoning attacks, adversaries adjust the training model

4.2 Performance Evaluation 55

0 100 200 300 400 500
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CIFAR10

FedAvg
Biscotti
BEFL

0 100 200 300 400 500
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FEMNIST

FedAvg
Biscotti
BEFL

Fig. 4.2 Test accuracy of FedAvg, Biscotti and BEFL over CIFAR10 and FEMNIST datasets
when there is no attack. Curves are averages over 3 random trials, shaded regions represent
95% CIs

56 Blockchain-empowered Secure and Efficient Federated Edge Learning

0 100 200 300 400 500
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CIAFR10, Label Flipping (LF) Attack

0 100 200 300 400 500
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

CIAFR10, Bit Flipping (BF) Attack

0 100 200 300 400 500
Round

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FEMNIST, Label Flipping (LF) Attack

0 100 200 300 400 500
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

FEMNIST, Bit Flipping (BF) Attack

FedAvg
Biscotti
BEFL

Fig. 4.3 Test accuracy of FedAvg, Biscotti and BEFL over CIFAR10 and FEMNIST datasets
when adversaries perform LF and BF attacks. Curves are averages over 3 random trials,
shaded regions represent 95% CIs

directly and tailor its output to have a similar distribution with the correct model updates.
Bit-Flipping (BF) attack [59] (also known as sign-flipping) is one of the common model
poisoning attacks in which adversaries send the negative of the gradients to the master. 20%
malicious clients launching LF and BF attacks are simulated in CIFAR10 AND FEMNIST
tasks. In particular, malicious clients flipped the label lc to 9− lc in CIFAR10 and l f to 61− l f

in FEMNIST for the LF attack and multiplied by −1 their gradients before compression in
the BF attack. Uncompressed model updates were uploaded when performing FedAvg and
Biscotti aggregation. As presented in Fig. 4, BEFL is resilient to both LF and BF attacks as
conventional FedAvg struggles to converge. BEFL shows superior performance than Biscotti
in FEMNIST task under both attacks. The accuracy achieved by BEFL is higher than that of
Biscotti. For CIFAR10 task, it also performed better when adversaries launching LF attack.
The performance of BEFL and Biscotti under BF attack is comparable as they achieved
nearly the same accuracy.

4.2 Performance Evaluation 57

Table 4.3 Breakdown of time in different phases of BEFL under different settings when
processing FEMNIST task

(”number of blockchain nodes”,
”committee size”) (100, 15) (100, 30) (200,15) (200,30)

committee constitution 0.115 0.185 0.154 0.257
candidate block generation 7.233 7.221 7.445 7.492
voting 80.272 160.619 81.568 162.968
verified block propagation 0.298 0.570 0.632 1.139
total time 87.918 168.595 89.800 171.857

Table 4.4 Breakdown of time in different phases of BEFL under different settings when
processing CIFAR10 task

(”number of blockchain nodes”,
”committee size”) (100, 15) (100, 30) (200,15) (200,30)

committee constitution 0.115 0.207 0.170 0.256
candidate block generation 7.719 7.592 7.449 7.562
voting 92.448 185.005 93.899 186.360
verified block propagation 0.312 0.587 0.609 1.180
total time 100.595 193.391 102.128 195.358

4.2.3 Blockchain performance

This section evaluates the overhead of each stage in BEFL and measures the performance of
BEFL when scaling up committee size and joining of more nodes.

Overhead breakdown: To measure the overhead of each main stage of our design, we
simulated BEFL over a varying number of blockchain nodes with varied committee sizes.
We captured the amount of time spent in major stages: 1) committee constitution: blockchain
nodes run the Sortition algorithm to constitute the committee; 2) candidate block generation:
blockchain nodes (except committee members) collect model updates and aggregate them
following the BEFL aggregation rule to generate a block; 3) voting: committee members
vote for the candidate block and 4) verified block propagation: the distribution of the verified
block to each node. As shown in Table 4.3 and 4.4, BEFL was deployed with 100 and
200 nodes with committee sizes of 15 and 30. When K = 30, the probability of not having
enough candidate committee members is smaller than 2.07×10−9, according to equation
(3.4). The values recorded in the table are the averaged time (seconds) of 50 training rounds.
Voting takes the longest time among the four stages and it doubles with the committee size
since there are twice as many "yes" votes required to confirm the legitimacy of candidate
block. The voting time needed in FEMNIST task is lower than that of CIFAR10 task since

58 Blockchain-empowered Secure and Efficient Federated Edge Learning

the compressed model size of FEMNIST update is smaller than CIFAR10’s, thus it takes
less time to transmit the candidate block to each committee member. The time needed for
committee constitution and verified block propagation is almost the same in the two tasks,
both remain very low. The committee constitution time doubles with the committee size,
while propagation time doubles with the number of blockchain nodes.

4.3 Summary

This chapter introduces BEFL, a novel lightweight blockchain system for secure, efficient and
practical FL at the wireless edge. To reduce the communication cost for participating clients
and defend against malicious ones that send poisonous model updates, the communication-
efficient MI-guarded training scheme exploiting PowerSGD is proposed. The reliability of
the global model is ensured by LBFL which guarantees the secure aggregation execution.
The performance results show that BEFL achieves communication efficiency with byzantine
robustness, and the reliability of the global model is ensured by the blockchain system.

Chapter 5

Shapley Value-based Robust Federated
Learning

The privacy preservation principle makes FL a promising approach in achieving privacy-
preserving collaborative intelligence. However, it also brings FL vulnerability to free-riding
and poisoning attacks, where free riders dissimulate their participation of training by sending
counterfeit yet harmless parameters to the central server, while adversarial clients send
poisonous model updates to the central server to degrade the global model performance.
These distinctive attacking patterns make the simultaneous defense against both attacks
very challenging. To tackle this issue, this chapter introduces a novel Shapley value-based
robust federated learning method (SVRFL), which models FL as a cooperative game and
leverages Shapley values of model updates to defend against free riders and adversarial
clients. Specifically, a client reputation score and a model utility score are computed using
the Shapley value. Based on these scores, SVRFL ensures the basic fairness within FL by
identifying and eliminating free riders, and realizes adversarial robustness through discarding
poisonous model updates, with theoretical convergence guaranteed. Extensive experimental
results show that SVRFL can detect typical free-riding attacks with up to 100% precision
and is resistant to poisoning attacks launched by adversarial clients.

5.1 Preliminaries

5.1.1 Shapley Value

Shapley value is a classic game theory solution for fairly distributing rewards to players in a
cooperative game, which has been widely applied in economics [47, 85] and management
science [35]. It averages the marginal contribution of one player to all possible coalitions.

60 Shapley Value-based Robust Federated Learning

Consider a set of N players I and a value function v that assigns a real value to each coalition,
representing the total reward achieved by that coalition. The Shapley value of player i is
calculated as:

φi(v) = ∑
S⊆I\{i}

| S |!(N− | S | −1)!
N!

[v(S∪{i})− v(S)] . (5.1)

As originally shown by Shapley [108], the Shapley value enjoys several desirable properties:

• Efficiency: for any value function v, ∑i⊆I φi(v) = v(I).

• Symmetry: for player i and j, if v(S∪ i) = v(S∪ j) for every coalition S that contains
neither i or j, then φi(v) = φ j(v).

• Null player: for any v, if i is a null player, then for all S⊆ I \{i}: v(S∪ i) = v(S), such
that φi(v) = 0.

• Linearity: if value function v could be write as v = v1 +v2, then φi(v1 +v2) = φi(v1)+

φi(v2). For a ∈ R, φi(av) = aφi(v).

Unique in natural properties of fairness in cooperative game theory, Shapley value has been
increasingly applied in machine learning for data valuation [43, 67, 54]. It has also attracted
increasing attention in FL as a fair contribution evaluation measurement [120, 122].

5.2 Threat model

Grounded in the principle of privacy preservation, FL inherently opens the door to vulnerabil-
ities to free riders and adversarial clients. This work investigates the defense strategy against
recently emerging free-riding attack [39], and poisoning attacks, including untargeted attack
which is designed to degrade the overall performance of the global model (i.e., sign-flipping
[73] attack and a little is enough (ALIE) attack[11]) and targeted attack that is designed to
manipulate the global model to serve a specific detrimental objective (i.e., label-flipping
attack [40]).

Free-riding: A free-riding attack is explicitly conceived to stay undetected while not
disturbing the FL process. Fraboni et. al. [39] proposed plain free-riding and disguised
free-riding attacks with theoretical analysis of not compromising the convergence of the
global model. In plain free-riding attack, the free rider simply returns the zero gradient,
which is easy to detect. While the disguised free-riding attack adds small additive noise to
mimic SGD updates. Specifically, the free rider submits a local model update g′ = ϕ(t)εt to
the central server, where εt is Gaussian white noise, and ϕ(t) is the time-varying perturbation

5.3 SVRFL design 61

coefficient approximated as ϕ(t) = σt−γ . Here, t represents the current training round.
The parameter σ corresponds to practical assumptions on the parameter evolution during
federated learning, and can be estimated using the update distribution ∆wg = w1

g−w0
g after

random initialization of the global model. The parameter γ serves as the decay factor. In this
work, we assume free riders to conduct disguised free-riding attacks.

Sign-flipping: A sign-flipping attack involves the inversion of the sign of a local model
update to disrupt the convergence of the global model. Specifically, an adversarial client i
trains their local model using the received global model and computes the gradient gi. Rather
than submitting gi to the central server, the client uploads a manipulated version ugi, where u
is a negative constant that inverses the gradient direction.

A Little is Enough (ALIE): ALIE represents a time-coupled attack capable of deceiving
robust aggregation rules such as Krum, TM, and Bulyan. In such an attack, the adversary
subtly adds small perturbations to the average of model updates from benign clients in a
single training round. These minute perturbations accumulate over time, leading to model
divergence. Specifically, the adversary calculates the benign model updates’ average µ and
standard deviation δ , and then constructs the corrupted model update as g′ = µ− zδ . Here, z
is a coefficient determined by the number of participating clients and adversaries.

Label-flipping: During a label-flipping attack, an adversary deliberately alters the labels
of their local data prior to training. For instance, in an image classification task, to force the
global model to misclassify images labeled "1" as "7", the adversary would flip the labels
from "1" to "7" in their training data.

5.3 SVRFL design

In response to these free riders and adversarial clients, SVRFL is proposed with the following
goals:

• Accurate detection of free-riding attacks. SVRFL should be able to identify free riders
with low false positive rate and exclude them in the FL process to ensure the basic
fairness in FL.

• Resilience against poisoning attacks. SVRFL should withstand both untargeted and
targeted attacks from adversarial clients. It is able to mitigate the impact of malicious
model updates.

• Effectiveness in non-i.i.d FL setting. SVRFL should be effective in non-i.i.d FL
environment as clients’ data are heterogenous in real-world scenarios.

62 Shapley Value-based Robust Federated Learning

Design overview: SVRFL follows the general steps of FL discussed in Section 1.2. In step 3,
instead of performing the widely used FedAvg [88] aggregation rule, SVRFL introduces the
reputation score and model utility score to defend against free riders and adversarial clients
leveraging Shapley value and cosine similarity. This work assumes that the central server
could collect a small validation dataset Dv (i.e., 100 validation samples) for Shapley value
calculation, which is reasonable as the required validation dataset is quite small (i.e., 100
validation samples), manual collection and labeling are usually feasible for the server [20].
For example, Google enlists its staff to generate validation dataset for its federated next word
prediction via typing with Gboard [1]. This work also assumes the byzantine clients (free
riders and adversarial clients) consistently perform attacks during the whole global model
training period.

5.3.1 Free-riding attack detection:

Aiming to obtain the aggregated model of benign clients, free riders engage in FL by
disseminating deceptive parameters. These parameters, which are small in magnitude, adapt
and evolve with the progress of the global model training. This strategic mode of attack
cleverly imitates the general form of benign model updates, posing a huge challenge for
accurate attack detection. In order to tackle this issue, Shapley value and cosine similarity
are leveraged to design an effective detection mechanism.

Shapley value has been applied in data valuation [124], contribution evaluation [120, 122],
and relevant client selection [94] in FL. The main idea is that a client’s model update with
a higher Shapley value often suggests higher quality of data, thus contributing more to the
global model performance improvement. Inspired by this, this work investigated the Shapley
value of free rider and benign client. FL can be regarded as a cooperative game, wherein
participating clients in the collaborative training process are players of the game. They work
together to bring the best global model. Suppose there are n clients in the FL task, and k of
them would be randomly selected in each training round which constitutes the set It . The
value function for Shapley value calculation is defined as the validation loss decrease,

v(S,Dv) = F(wt
g,Dv)−F(wt

S,Dv), (5.2)

where wt
g is the global model of current round t and the aggregated model parameter wt

S is
computed as:

wt
S = wt

g−
η

|S|∑i∈S
gt

i. (5.3)

5.3 SVRFL design 63

0 20 40 60 80 100
round

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Sh
ap

le
y

va
lu

e

Free rider
Benign client

0 20 40 60 80 100
round

10 1

101

103

105

107

d

Benign clients
Free rider

Fig. 5.1 Left: the Shapley value of free rider and the averaged Shapley value of benign
clients. Right: the d values of 10 clients (1 free rider and 9 benign clients). Experiment run
on non-i.i.d MNIST dataset

The set S⊆ It and η is the server-side learning rate. Given the value function, the Shapley
value of client i at round t, denoted as svt

i, could be calculated according to equation (5.1).
Intriguingly, as shown in Figure 1, the empirical findings suggest that the Shapley value

of a free rider is generally larger than that of benign clients. This may seem counterintuitive
at first glance, but it makes sense when considering the strategies employed by free riders.
Their disguised model update g f is deliberately small in magnitude to avoid impairing the
aggregated model performance of benign clients. Thus, for a coalition S ∈ It and a free rider
f , we can approximate the aggregated model

wt
S+ f = wt

g−
η

|S|+1
(∑

i∈S
gt

i +g f)≈ wt
g−

η

|S|+1 ∑
i∈S

gt
i. (5.4)

The model update from the free rider essentially acts as a counterbalance, pulling the
aggregated model, built from updates from S, closer to the global model. This subtle
influence helps to limit the impact of diverse model updates that arise due to heterogeneity
in local data across clients. This "balancing act" performed by the free rider consequently
increases their Shapley value, since they seemingly contribute to maintaining the stability
of the global model, and hence are perceived as "valuable" in the coalition. Given this
observation, the cosine similarity between client’s local model and the global model to is
employed to discern the nuances between a free rider and a benign client. Notably, a free
rider’s local model tends to exhibit higher cosine similarity with the global model compared

64 Shapley Value-based Robust Federated Learning

to a benign client. Thus, SVRFL calculates a feature value di of client i as:

di =
|svi|

1− <wi,wg>
||wi||||wg||

, (5.5)

where wi is the local model of client i, and wg is the global model. As shown in Figure 5.1,
the d value of the free rider is significantly larger than that of the benign client. SVRFL
applies the classic clustering method, K-means, to cluster d values into 2 clusters, c1 and
c2, and denote their corresponding center positions as Pc1 and Pc2. In each training round,
if the positions of the two cluster centers have an order-of-magnitude difference, which is
max(Pc1,Pc2)> h ·min(Pc1,Pc2), where h is the threshold, the client with a d value lying in
the cluster with a numerically larger average d value would be regarded as a free-rider.

5.3.2 Poisonous model update mitigation

Unlike free riders, adversarial clients work towards deteriorating the performance of global
model by sending poisonous model updates to the central server. To counter these harmful
influences, SVRFL further exploits Shapley value to measure the utility of client’s local
model update, as it represents the averaged marginal contribution to model improvement on
all coalitions of participating clients.

Let U = (u1,u2, · · · ,un) be the utility vector that is private to the central server, wherein
ui represents the utility score of the model update sent from client i. These utility scores are
initialized to 0 at the onset of the FL task. In each training round, the utility score of the
received model update from client i is computed as:

ui = αui +(1−α)svi;∀i ∈ It , (5.6)

where α ∈ (0,1]. SVRFL incorporates the past Shapley values in utility measurement to
1) prioritize model update from client who consistently has a high Shapley value across
multiple rounds, 2) be less responsive to sudden changes in round contributions, and 3) learn
from history to develop a defense against time-coupled poisoning attacks (i.e., ALIE). Model
update with a positive utility score will be selected for global model aggregation. The global
model is updated as follows:

wt+1
g = wt

g−
η

∑
|It |
i∈It

s(ui)

|It |

∑
i∈It

s(ui)gt
i, (5.7)

5.3 SVRFL design 65

where

s(x) =

1, if x > 0

0, otherwise.
(5.8)

5.3.3 Complete SVRFL

Algorithm 6 shows the complete SVRFL method. All clients will be initialized with zero
reputation score and utility score. In each training round, the server will randomly choose
m = min(|I|,k) eligible clients whose reputation score is above the reputation threshold γ ,
and send the latest global model to them. Each selected client will train his/her local model
using the received global model via performing stochastic gradient descent, and send the
model update back to the server. After receiving the gradients from selected clients, the
server first calculates the Shapley values of model updates. As the exact computation of
Shapley value requires an exponential number of model inferences, this work applies Monte
Carlo simulations to approximate the Shapley value as shown in algorithm 7 [22, 86]. The
server then performs free rider detection via calculating d values and employing K-means
algorithm. If there is a free rider detected, its reputation score will be deducted by 1 and
its Shapley value will be assigned with 0, as its zero contribution in this round. Next, the
server will compute the utility scores of model updates according to their Shapley values and
update the global model accordingly. Clients that contribute model updates with positive
utility scores are rewarded with an increment in reputation by 1

∑
|It |
i∈It

s(ui)
. Only clients with

positive reputation scores could obtain the well-trained global model at the end of FL training
process.

5.3.4 Theoretical analysis

This section theoretically analyzes the difference of the global model learned by SVRFL and
the optimal global model w∗ = arg minw∈ΘF(w) under no attack is bounded, where Θ is the
model parameter space. As discussed in Section 2.2, F(w) = 1

n ∑
n
i=1Eξi∼Di[F(ξi,w)], where

ξi is the training samples sampled from client i’s training data Di. The following assumptions
which are made, which are commonly used in the literature [143, 61, 92, 20].
Assumption 1. The expected loss function F(w) is µ-strongly convex and differentiable over
Θ with L-Lipschitz gradient. That is, for all w,w′ ∈Θ,

F(w′)≥ F(w)+ ⟨∇F(w),w′−w⟩+ µ

2
∥w′−w∥ (5.9)

∥∇F(w)−∇F(w′)∥ ≤ L∥w−w′∥ (5.10)

66 Shapley Value-based Robust Federated Learning

Algorithm 6 SVRFL
Input: The client set I consists of n clients, the number of selected clients in each training

round k, a small validation dataset Dv, the server-side learning rate η , the number of training
round T , reputation threshold γ , cluster distance threshold h, the number of Monte Carlo
simulations R, and utility update parameter α .

Output: The trained global model wg.

1: wg← random initialization
2: ri← 0,∀i ∈ I, reputation score initialization
3: ui← 0,∀i ∈ I, utility score initialization
4: for round t = 0,1,2, · · · ,T do
5: server executes:
6: for each client i in I do
7: if ri < γ then
8: I\{i}; //remove client i from FL task
9: end if

10: end for
11: m = min(|I|,k)
12: It ← random sample m clients from I
13:
14: client executes:
15: for each client i in It do
16: compute gradient gt

i using received global model wt
g

17: communicate gi to the server
18: end for
19:
20: server executes:
21: gt ←{gt

i}; //collect clients’ updates
22: svt = SV Estimate(gt ,wt

g,Dv,η ,R)
23: wt

i = wt
g−gt

i,∀i ∈ It , //reconstruct clients’ local models

24: di =
|svt

i |
1−cos(wt

i ,w
t
g)
,∀i ∈ It

25: cluster c1,c2← K-means(d = (d1,d2, · · · ,dm))
26: cluster center position Pc1,Pc2← c1,c2
27: if max(Pc1,Pc2)> h ·min(Pc1,Pc2) then
28: for client i whose di in the cluster of which center

position is max(Pc1,Pc2) do
29: ri = ri−1
30: svi = 0
31: end for
32: end if
33: ui = αui +(1−α)svi,∀i ∈ It , //update utility score
34: if max({ui,∀i ∈ It})> 0 then
35: wt+1

g = wt
g−

η

∑
|It |
i∈It

s(ui)
∑
|It |
i∈It

s(ui)gt
i

36: ri = ri + s(ui)
1

∑
|It |
i∈It

s(ui)
,∀i ∈ It , //update reputation.

37: end if
38: end for

5.3 SVRFL design 67

Algorithm 7 SVEstimate
Input: Model updates from clients gt , global model wt

g, validation dataset Dv, server-side
learning rate η , and the number of Monte Carlo simulations R.

Output: The Shapley values of the received model updates sv.

1: M← set of clients in gt

2: P← set of R permutations of gt

3: svi = 0,∀i ∈M
4: for each permutation p ∈ P do
5: Sp,i = { j| j ∈M

∧
p(j)≤ i}

6: svi = svi +
1
R(v(Sp,i

⋃
i,Dv)− v(Sp,i,Dv))

7: end for
8: sv←{svi}i∈M

Assumption 2. For each client, the stochastic gradient is locally unbiased:

Eξi∼Di[F(ξi,w)] = Fi(w). (5.11)

Assumption 3. The stochastic gradient of each client has a bounded variance uniformly, and
the deviation between local and global gradient is bounded:

Eξi∼Di[∥∇F(ξi,w)−∇Fi(w)∥2]≤ σ
2 (5.12)

∥∇Fi(w)−∇F(w)∥ ≤ τ
2 (5.13)

Since free riders will not impair the convergence of the global model, this subsection here
investigates the scenario where a β fraction of clients are adversarial in the FL system. In
SVRFL, there may exist a certain part of malicious gradients that have positive utility scores
in a training round, similar to [136], this subsection here makes another assumption about
the defense capability of the aggregation:
Assumption 4. For problem (2.1) with βn adversarial clients and (1−β)n benign clients,
suppose that at most δm (0 ≤ δ ≤ β ≤ 0.5) adversarial clients can circumvent SVRFL
at each training round, where m is the number of selected clients in each round. Let G

denote the set of benign clients in a training round, E|G |= (1−β)m. The averaged benign
gradients is ḡt = 1

|G |∑i∈G gt
i. We assume that there exist positive constant c and b, such that

ĝt = 1
∑
|It |
i∈It

s(ui)
∑
|It |
i∈It

s(ui)gt
i satisfies:

[E∥ĝt− ḡt∥]2 ≤ cδ sup
i, j∈G

E[∥gt
i−gt

j∥2] (5.14)

68 Shapley Value-based Robust Federated Learning

var[∥ĝt∥]≤ b2 (5.15)

Theorem 1. Suppose Assumption 1-4 hold and SVRFL uses learning rate η that
√

1
2L2 +

µ2

4L4 +

µ

2L2 < η <
√

1
L2 +

µ2

4L4 +
µ

2L2 . For any number of adversarial clients, the difference between
the global model learnt by SVRFL and the optimal global model w∗ under no attacks is
bounded. We have the following:

E[∥wt−w∗∥2]≤ (1−q)tE[∥w0−w∗∥2]+
η2∆1

q
, (5.16)

where ∆1 = 8cδ (σ2 +τ2)+4b2 + 2β 2τ2

(1−β)2 +
2σ2

(1−β)m , and q = 2ηµ−2η2L2−1. By choosing

η ∈ (
√

1
2L2 +

µ2

4L4 +
µ

2L2 ,
√

1
L2 +

µ2

4L4 +
µ

2L2), 0 < 1−q < 1, we have limt→∞E[∥wt−w∗∥2]≤
η2∆1

q .
Proof. The detailed proof is in the A.1

This section also investigates the convergence of SVRFL in the honest setting, where all
clients are benign. With the following assumptions, it can be proved that the global model
learnt by SVRFL and the optimal global model w∗ is bounded.
Assumption 5. For any subset of clients’ gradients, and any δ ∈ (1,0), there exists a positive
L1 such that,

P

 sup
w,w′∈Θ;w̸=w′;S∈I

∥ 1
|S|

|S|
∑

i=1
(∇ f (Di,w)−∇ f (Di,w′))∥

∥w−w′∥ ≤ L1

≥ 1− δ

3
, (5.17)

where I is the set of clients.
Definition 1. (Sub-exponential). Random variable X with mean µ is sub-exponential if
∃v > 0 and α > 0 such that,

E[exp(λ (X−µ))]≤ e
v2λ2

2 ,∀|λ | ≤ 1
α1

(5.18)

Assumption 6. The gradient of empirical loss function is bounded at the optimal global
model w∗. Specifically, there exist positive σ1 and α1 such that for any unit vector v ∈ B,
⟨∇ f (D,w∗),v⟩ is sub-exponential with scaling parameters (σ1,α1),

sup
v∈B

E[exp(λ ⟨∇ f (D,w∗),v⟩)]≤ e
σ2

1 λ2

2 ,∀|λ | ≤ 1
α1

, (5.19)

where B denotes the unit sphere {v : ∥v∥2 = 1}.
Assumption 7. There exist positive constants σ2 and α2 such that for any w ∈Θ with w ̸= w∗

5.4 Evaluation 69

and unit vector v ∈ B, the gradient difference h(D,w)≜ ∇ f (D,w)−∇ f (D,w∗) normalized
by ∥w−w∗∥ is sub-exponential with scaling parameters (σ2,α2),

sup
v∈B;θ∈Θ

E
[
exp

(
λ ⟨h(D,w)−E[h(D,w)],v⟩

∥w−w∗∥

)]
≤ e

σ2
2 λ2

2 ,∀|λ | ≤ 1
α2

. (5.20)

Assumption 8. Each client’s local training dataset Di(i = 1,2, · · · ,n) is sampled indepen-
dently from the distribution X .
Theorem 2. Suppose Assumption 1, 5-8 hold. When there is no attacker, the difference be-
tween the global model learnt by SVRFL and the optimal global model is bounded. Formally,
we have the following with probability at least 1−δ :

∥wt−w∗∥ ≤ (1− p)t∥w0−w∗∥2 +
2∆1η +4∆3τη

p
(5.21)

where p = 1− (
√

1− µ2

4L2 +8∆3η),

∆1 =

{√
2σ1

√
d log6+ log 3

δ
, if K ≤ σ1

α1

2α1(d log6+ log 3
δ
), otherwise

, (5.22)

∆3 =

√

2σ2

√
d log 18K1

K2
+ 1

2 d log n
d + log 6σ2

2 r
√

n
α2σ1δ

, if K3 ≤ K4

2α2(d log 18K1
K2

+ 1
2 d log n

d + log 6σ2
2 r
√

n
α2σ1δ

), otherwise
, (5.23)

K1 = max(L,L1), K2 = min(α2,σ2), K3 = d log(18K1) +
1
2d log n

d + log 6r
√

n
σ1,δ

, and K4 =

d logK2− log δ 2
2

α2
+

σ2
2

2α2
2
, τ = α2σ1

2σ2
2

√
d
n , d is the dimension of w.

Proof. The detailed proof is in the A.2

5.4 Evaluation

Datasets and Models: Two widely used benchmark datasets, MNIST and CIFAR10, were
used. Both consist of images in 10 classes to evaluate SVRFL. MNIST contains 60000
training samples and 10000 test samples. CIFAR10 has 50000 training samples and 10000
test samples. This evaluation considered n = 20 clients and distributed the training samples
to clients following the previous work [21]. Specifically, these clients will be uniformly
split into 10 groups. A training sample with label l will be assigned to the lth group with
probability p, to each other group with probability 1−p

9 . Data are uniformly distributed to

70 Shapley Value-based Robust Federated Learning

Table 5.1 Hyperparameters

MNIST CIFAR10
Client’s learning rate 0.1 0.12
Server learning rate η = 1
Local training step 5 10
Batch size 64

RFFL
α = 0.98,
β = 1

5n ,γ = 0.5
α = 0.975,
β = 1

500n ,γ = 1
Multi-Krum f = 6
TM β = 0.3
SVRFL γ =−2,h = 50,R = 2m,α = 0.2

each client within the same group. The parameter p is the controlling factor of the distribution
difference among clients’ training data, p = 0.1 means clients’ data are i.i.d. This evaluation
sets p = 0.5 by default. 100 randomly selected samples from test data of a dataset is the
validation dataset. A convolutional neural network (CNN) architecture is used for MNIST
task, which comprises a convolutional layer with relu, a max-pooling layer, a convolutional
layer with relu, a max-pooling layer, a fully connected layer with relu, and the output layer
with softmax. For CIFAR10 task, the ResNet20 [49] is used.

Baselines: SVRFL is compared with classic FedAvg[88], free-riding defense mechanism
(RFFL), and popular robust aggregation rules as follows:

RFFL: RFFL leverages the cosine similarity between local model update and the aggre-
gated global model update to calculate the reputation score of a client, and removes client
with reputation score lower than the threshold β . The reputation of client i in round t is
computed as rt

i = αrt−1
i +(1−α)cos(gt

i,gt), where α is the moving average coefficient,
and gt =

1
∑i∈I rt−1

i
∑i∈I rt−1

i gt
i×

γ

||gt
i ||

is the aggregated gradient, where γ is the normalization
coefficient to prevent gradient explosion. Instead of getting the full aggregated gradient,
clients obtain the sparsified version of the aggregated gradient and update the local model for
the next round of training. The degree of sparsification is determined by their reputation, the
higher their reputation, the less sparsified gradient downloaded.

FLTrust[20]: FLTrust uses a small clean validation dataset on the server side to train
the model simultaneously with clients. Leveraging cosine similarity between client’s model
update and server model update, FLTrust computes a trust score T Si = Relu(cos(gi,g0)),
where gi is the model update from client i and g0 is the server model update, and performs trust
score-weighted aggregation to update the global model wg = wg−η

1
∑

k
i=1 T Si

∑
k
i=1 T Si

||g0||
||gi|| ·gi.

Multi-Krum[13]: Instead of using the cosine similarity, Multi-Krum utilizes the Eu-
clidean distance between local model updates to filter out potential malicious ones. Specifi-

5.4 Evaluation 71

cally, Multi-Krum computes the score of each model update. For model update gi from client
i, its scorei = ∑

j
i→ j ||gi−g j||2, where sum runs over k− f −2 closest model updates to gi

and f is the number of malicious model updates. Multi-Krum sorts these scores and selects
smallest k− f ones for final averaging aggregation.

TM[142]: TM performs element-wise aggregation. For each coordinates d, TM sorts the
coordinate values of all received model updates ∏d and computes the trimmed average of
them, which could be expressed as: xd = 1

(1−2β)k ∑
k−βk
i=βk ∏d(i).

Coordinate Median (CM)[142]: Similar to TM, CM performs coordinate-wise operation
as well. It takes the median of coordinate values of all received model updates. The dth

parameter value of aggregated gradient is computed as xd = median(∏d).
FL settings: For MNIST task, the training round T = 100 was set for all algorithms,

except FLTrust which requires T = 1000 to achieve its best performance. For CIFAR10 task,
T = 2000 was set for FLTrust, and T = 300 was set for the other algorithms. 6 clients out of
20 are malicious and 10 clients are randomly selected to participate in each training round.
The hyperparameters of algorithms are presented in Table 5.1 unless stated otherwise. We
randomly sample 1000 samples from the training data of a dataset as the validation dataset
for FLTrust as suggested. For attacking strategies, we set the decaying factor γ = 1 for
free-riding attack, the negative constant u =−1 for sign-flipping attack, and change the "1"
labels to "7" in malicious clients’ training data in MNIST task to forge the global model to
misclassify handwritten digit "1" as "7", and flip "1" labels to "9" in CIFAR10 task to lead
the global model to misclassify "automobile" as "truck".

Evaluation metrics: Precision is used to measure the accuracy of free rider detection,
which is computed as:

precision =
T P

T P+FP
, (5.24)

where TP stands for True Positive, indicating the free rider is correctly identified, and FP
stands for False Positive, indicating a benign client is misidentified as a free rider. We use
free rider detection rate (FRDR) to represent the fraction of free riders that are successfully
detected and excluded from the FL task. We use test accuracy to measure the performance of
the learnt global model. For the label-flipping attack, this evaluation uses attack success rate
(ASR), which is the fraction of test samples with source label that are misclassified as the
targeted ones, i.e., the sample with label "1" (source label) is predicted as "7" (target label) in
MNIST task, and target accuracy (TACC), which is the target label accuracy, to measure the
defense performance of the algorithms.

72 Shapley Value-based Robust Federated Learning

Table 5.2 The performance of free rider detection when all clients participate in each training
round

MNIST CIFAR10
Precision FRDR Precision FRDR

SVRFL 100% 100% 100% 100%
RFFL 93.80% 100% 32.60% 100%

Table 5.3 The performance of free rider detection when a subset of clients participates in
each training round

(a) MNIST
Participation rate 0.3 0.5 0.7 0.9

FRDR 100% 100% 100% 100%
Precision 100% 100% 100% 100%

(b) CIFAR10
Participation rate 0.3 0.5 0.7 0.9

FRDR 100% 100% 100% 100%
Precision 87.5% 100% 100% 100%

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MNIST

SVRFL
RFFL

0 50 100 150 200 250 300
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

CIFAR10

SVRFL
RFFL

Fig. 5.2 Test accuracy of SVRFL and RFFL when free riders perform free-riding attack.
Curves are averages over 5 random trials, shaded regions represent 95% confidence intervals.

5.4 Evaluation 73

0 20 40 60 80 100
Round

2

0

2

4

6

8

10

Re
pu

ta
tio

n
MNIST

Free riders
Benign clients

0 50 100 150 200 250 300
Round

0

10

20

30

40

Re
pu

ta
tio

n

CIFAR10
Free riders
Benign clients

Fig. 5.3 Reputation values of free riders and benign clients in MNIST and CIFAR10 task.

5.4.1 Defense against free-riding attack

This subsection compares SVRFL with RFFL. In this experiment, the number of participating
clients in each training round was set to 20, mirroring the operational condition of RFFL,
which presupposes the participation of clients in every round. As shown in Table 5.2, both
defense mechanisms accomplish 100% FRDR in two tasks. SVRFL outperforms RFFL in
terms of precision, achieving 100% in both tasks. While RFFL performs commendably on
MNIST, it struggles to accurately distinguish between free riders and benign clients in the
CIFAR10 task. This is because the non-i.i.d data distribution together with the more complex
model architecture of CIFAR10, resulting in diverse model updates and low reputations of
benign clients due to their negative cosine similarity values with the aggregated gradient.
As reflected in Figure 5.2, RFFL filtered out too many benign clients with free riders,
leading to significantly degraded global model performance. In contrast, SVRFL successfully
identifies and removes free riders at an early stage of the FL task, as depicted in Figure 5.3.
The reputations of free riders rapidly plummet beyond the established threshold. For this
experiment, we set the threshold value γ to -2, implying that if a free rider attempts to obtain
the global model without real contribution twice, they will be promptly barred from the FL
system. Moreover, as shown in Table 5.3, SVRFL also performs well in the scenario where
partial clients participate in each training round – a condition that more accurately reflects
real-world circumstances.

5.4.2 Defense against poisoning attacks

This subsection evaluates the performance of SVRFL under untargeted and targeted attacks.
SVRFL is compared with byzantine-robust FLTrust, Multi-Krum, TM, and CM, and conven-

74 Shapley Value-based Robust Federated Learning

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Sign-flipping, MNIST

0 50 100 150 200 250 300
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

Sign-flipping, CIFAR10

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ALIE, MNIST

0 50 100 150 200 250 300
Round

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

ALIE, CIFAR10

SVRFL
FLTrust
Multi-Krum
TM
CM
FedAvg

80 85 90 95 100
0.93

0.94

0.95

0.96

260 280 300
0.65

0.70

0.75

80 85 90 95 100
0.90

0.95

Fig. 5.4 Test accuracy of algorithms in first 100 rounds in MNIST and first 300 rounds in
CIFAR10 when adversaries perform sign-flipping and ALIE attack. Curves are averages over
5 random trials, shaded regions represent 95% confidence intervals.

5.4 Evaluation 75

Table 5.4 The average test accuracy[%] (95% confidence intervals in brackets) of the learnt
global model with different algorithms under sign-flipping and ALIE attack, and the aver-
age ASR[%] and TACC[%] (95% confidence intervals in brackets) achieved by different
algorithms under label-flipping attack.

(a) MNIST
Sign-flipping ALIE Label Flipping
Test accuracy Test accuracy ASR TACC

FedAvg 65.7(±1.9) 90.7(±11.6) 28.19(±22.14) 69.57(±22.21)
SVRFL 95.4(±0.4) 95.8(±0.6) 0.21(±0.59) 97.59(±0.90)
FLTrust 95.9(±0.3) 95.7(±0.7) 0.65(±0.87) 97.06(±1.55)

Multi-Krum 94.5(±0.9) 10.0(±0.2) 0.22(±0.36) 97.92(±0.72)
TM 93.9(±0.9) 42.6(±43.4) 0.99(±0.40) 96.55(±0.64)
CM 94.0(±0.8) 26.9(±41.1) 0.88(±0.59) 96.56(±1.00)

(b) CIFAR10
Sign-flipping ALIE Label Flipping
Test accuracy Test accuracy ASR TACC

FedAvg 10.6(±3.4) 56.5(±0.9) 25.0(±5.3) 69.6(±5.3)
SVRFL 73.2(±0.5) 71.6(±1.5) 13.6(±5.3) 76.8(±5.6)
FLTrust 72.7(±0.7) 73.7(±1.5) 14.2(±5.9) 76.9(±3.9)

Multi-Krum 72.6(±1.1) 36.8(±2.6) 37.0(±14.7) 59.0(±14.8)
TM 63.6(±0.8) 39.1(±3.6) 19.5(±3.0) 75.5(±3.1)
CM 63.6(±1.0) 39.7(±3.1) 19.7(±1.0) 75.1(±0.5)

tional FedAvg in the partial client participation setting, which is more commonly encountered
in practical implementations of FL, thus the comparison with RFFL is eliminated. As shown
in Figure 5.4, SVRFL achieves the best performance under the ALIE attack in MNIST and
the Sign-flipping attack in CIFAR10. The test accuracy of the finally learnt global model with
different algorithms is compared and shown in Table 5.4. As presented, FLTrust achieves
the highest test accuracy under the sign-flipping attack in MNIST and the ALIE attack in
CIFAR10. Multi-krum achieves the best performance under the label flipping attack in
MNIST, while SVRFL and FLTrust show better performance than others in CIFAR10. As
the second-best performing algorithm, SVRFL achieves a 95.4% average test accuracy under
the sign-flipping attack in MNIST, with a 0.5% reduction compared to the best. Under the
label flipping attack in MNIST, the differences in average ASR and TACC between SVRFL
and Multi-krum are 0.01% and 0.33%, respectively.

76 Shapley Value-based Robust Federated Learning

5.5 Summary

This chapter proposes a new byzantine-robust mechanism, SVRFL, which could not only
defend against adversarial clients but also stealthy free riders. By exploiting the Shapley
value and cosine similarity, SVRFL accurately identifies free riders and expels them from
FL system, thereby ensuring fundamental fairness within FL. In the presence of adversarial
clients executing poisoning attacks, SVRFL also ensures the reliability of the global model
by measuring the model update utility according to its Shapley value. Extensive experiments
over MNIST and CIFAR10 datasets demonstrate the effectiveness of SVRFL.

Chapter 6

Conclusion and Future Work

FL has been envisioned to enable collaborative intelligence at the network edge. However,
its privacy-preserving design makes it vulnerable to unreliable clients and the Central Server
(CS) and poses a communication burden to resourced-constrained edge devices. To mitigate
these issues, this thesis focuses on designing defensive mechanisms with communication
efficiency to realize secure and efficient federated edge learning. In the following, a short
summary of the research and several directions for future work are presented.

6.1 Thesis summary

FL is a recent distributed ML model training paradigm and has shown huge potential in
realizing privacy-preserving ML. This privacy preservation feature makes it particularly
valuable in fields like healthcare, finance, and e-commerce, where data privacy is paramount.
With the broader aim of enhancing the security, reliability, and efficiency of FL, this thesis
presented novel mechanisms and theoretical contributions to FL. The major achievements of
this thesis are presented as follows:

• In traditional FL, a CS orchestrates the whole learning process, rendering it subject
to any malfunction and misbehavior of the CS. To mitigate this issue, Chapter 3
presented an origin blockchain-based FL framework which moves the centralized
model aggregation and distribution to the blockchain nodes, who communicate with
the participating clients in FL and competitively aggregate pending model updates to
generate the updated global model. The correctness of the generated global model
is ensured by the dedicated VRF-based consensus protocol which is more energy-
efficient than traditional PoW-based consensuses (i.e., the consensus of Bitcoin and
Ethereum). To make the blockchain scalable with the blockchain network size, IPFS

78 Conclusion and Future Work

has been leveraged into the block design, in which only the IPFS address of the global
model is recorded. By doing this, the block size has been greatly reduced, making
the communication and storage costs of blockchain blocks affordable to edge nodes.
Simulation results have demonstrated the security and the scalability of the proposed
blockchain framework.

• Apart from the vulnerabilities posed by the CS, FL is also vulnerable to adversarial
clients, who send poisonous model updates to the CS to degrade the global model
performance. Considering the communication burden for resource-constrained partici-
pating clients, Chapter 4 further proposed a novel blockchain-empowered FL system
with a communication-efficient distributed training scheme and a secure aggrega-
tion protocol which are embedded in the operating process of the blockchain system.
Specifically, the state-of-the-art gradient compression method PowerSGD is utilized
to reduce the communication cost of clients. Given the compressed model updates,
the mutual information (MI) between clients’ model updates is leveraged to build
the defense against poisonous ones. In particular, a model update with very low MI
and extremely high MI are discarded as a low MI value indicates the intrinsic large
difference between this local model and others, and the one with high MI value tends to
contribute little to the global model due to little new information it adds to the process.
Simulation results show that the proposed system is able to defend against 20% data
poisoning and model poisoning attacks with greatly reduced communication cost.

• In real-world FL deployment, aside from adversarial clients and benign clients, free
riders who wish to obtain the well-trained global model without any contribution may
exist as well. Chapter 5 further explored the defense not only against adversarial
clients but also free riders. To distinguish between a free rider and a benign client,
Shapley value which has been widely applied in economics and management science
for fair evaluation of contribution is leveraged for measuring the contribution of
clients. Specifically, a reputation score and a model utility score are computed using
the Shapley values of model updates. Based on these scores, the proposed method,
SVRFL, ensures the basic fairness within FL by identifying and eliminating free riders,
and realizes adversarial robustness through discarding poisonous model updates, with
theoretical convergence guaranteed. Extensive experiments show that SVRFL can
detect typical free-riding attacks with up to 100% precision and is resistant to poisoning
attacks launched by adversarial clients.

6.2 Future work 79

6.2 Future work

FL is an evolving research area, it offers default privacy preservation to clients by keeping
their data localized. However, recent studies show that even the shared model update
parameters, which are essential for the collaborative learning process in FL, can pose potential
privacy risks. These risks arise because the model updates, while not directly containing
raw data, can still carry implicit information about the underlying data used for training.
Sophisticated attackers can employ gradient inversion attacks, to extract sensitive information
from these updates [42, 55, 140]. This possibility challenges the fundamental privacy-
preserving premise of FL. Most research works try to mitigate this issue with differential
privacy by adding carefully crafted noise to model updates [127, 126] or homomorphic
encryption to protect the communicated model updates and the aggregated model [9, 28].
These strategies add different amounts of obfuscation to the shared model updates, thus
minimizing the success rate for attackers targeting private data recovery. However, it also
introduces challenges in distinguishing between malicious or free-riding model updates and
those that are benign. Exploring new FL mechanisms to defend against poisoning, free-riding,
and gradient inversion attacks can be a promising and important research direction.

In addition to ensuring the reliability of FL amidst the presence of byzantine clients,
maintaining the efficiency of the collaborative training process is also crucial. In practical FL
deployments, the majority adopts a synchronous setting, where the duration of each training
round is as fast as that of the slowest devices. This approach, while straightforward, can
lead to inefficiencies, especially in heterogeneous environments where device capabilities
and network connections vary significantly. To mitigate this issue, asynchronous FL was
proposed, where the aggregation is performed without receiving all the updates from selected
clients. However, this lack of synchronization raises concerns about the stability of the
global model due to the integration of the outdated model updates [135]. Blockchain might
be a promising approach to control the version of the asynchronously aggregated global
model since all the aggregated global models could be recorded in the blockchain. Further
exploration of blockchain-empowered asynchronous FL could be a promising and interesting
direction to realize reliable asynchronous FL.

References

[1] (2017). Federated learning: Collaborative machine learning without centralized train-
ing data. https://research.googleblog.com/2017/04/federated-learning-collaborative.html.
(Accessed: June 20, 2023).

[2] (2018). Eos.io technical white paper. https://github.com/EOSIO/Documentation/blob/
master/TechnicalWhitePaper.md. (Accessed: September 11, 2020).

[3] (2020). Utilization of fate in risk management of credit
in small and micro enterprises. https://www.fedai.org/cases/
utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/.
(Accessed: July 2, 2023).

[4] Albasyoni, A., Safaryan, M., Condat, L., and Richtárik, P. (2020). Optimal gradient
compression for distributed and federated learning. arXiv preprint arXiv:2010.03246.

[5] Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in neural
information processing systems, 30.

[6] Amiri, M. M., Gündüz, D., Kulkarni, S. R., and Poor, H. V. (2021). Convergence
of update aware device scheduling for federated learning at the wireless edge. IEEE
Transactions on Wireless Communications, 20(6):3643–3658.

[7] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al. (2018). Hyperledger fabric:
a distributed operating system for permissioned blockchains. In Proceedings of the
thirteenth EuroSys conference, pages 1–15.

[8] Ang, F., Chen, L., Zhao, N., Chen, Y., Wang, W., and Yu, F. R. (2020). Robust federated
learning with noisy communication. IEEE Transactions on Communications, 68(6):3452–
3464.

[9] Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al. (2017). Privacy-preserving deep
learning via additively homomorphic encryption. IEEE transactions on information
forensics and security, 13(5):1333–1345.

[10] Apple (2019). Designing for Privacy - WWDC19 - Videos - Apple Developer —
developer.apple.com. https://developer.apple.com/videos/play/wwdc2019/708. (Accessed:
August 5, 2023).

https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/
https://developer.apple.com/videos/play/wwdc2019/708

References 81

[11] Baruch, G., Baruch, M., and Goldberg, Y. (2019). A little is enough: Circumventing
defenses for distributed learning. Advances in Neural Information Processing Systems,
32.

[12] Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561.

[13] Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer, J. (2017). Machine
learning with adversaries: Byzantine tolerant gradient descent. Advances in neural
information processing systems, 30.

[14] Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A. S., Shumailov, I., and Papernot,
N. (2023). When the curious abandon honesty: Federated learning is not private. In
2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), pages 175–199.
IEEE.

[15] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon,
C., Konečnỳ, J., Mazzocchi, S., McMahan, B., et al. (2019). Towards federated learning
at scale: System design. Proceedings of machine learning and systems, 1:374–388.

[16] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in
the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, pages 13–16.

[17] Buchman, E. (2016). Tendermint: Byzantine fault tolerance in the age of blockchains.
PhD thesis, University of Guelph.

[18] Buterin, V. and Griffith, V. (2017). Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437.

[19] Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J., McMahan, H. B., Smith,
V., and Talwalkar, A. (2018). Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097.

[20] Cao, X., Fang, M., Liu, J., and Gong, N. (2021a). Fltrust: Byzantine-robust federated
learning via trust bootstrapping. In Proceedings of NDSS.

[21] Cao, X., Jia, J., and Gong, N. Z. (2021b). Provably secure federated learning against
malicious clients. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pages 6885–6893.

[22] Castro, J., Gómez, D., and Tejada, J. (2009). Polynomial calculation of the shapley
value based on sampling. Computers & Operations Research, 36(5):1726–1730.

[23] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. (2018a). Federated meta-learning with
fast convergence and efficient communication. arXiv preprint arXiv:1802.07876.

[24] Chen, H., Asif, S. A., Park, J., Shen, C.-C., and Bennis, M. (2021). Robust blockchained
federated learning with model validation and proof-of-stake inspired consensus. arXiv
preprint arXiv:2101.03300.

82 References

[25] Chen, H.-Y. and Chao, W.-L. (2020). Fedbe: Making bayesian model ensemble
applicable to federated learning. arXiv preprint arXiv:2009.01974.

[26] Chen, T., Giannakis, G., Sun, T., and Yin, W. (2018b). Lag: Lazily aggregated
gradient for communication-efficient distributed learning. Advances in neural information
processing systems, 31.

[27] Chen, Y., Su, L., and Xu, J. (2017). Distributed statistical machine learning in adversar-
ial settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):1–25.

[28] Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Papadopoulos, D., and Yang, Q. (2021).
Secureboost: A lossless federated learning framework. IEEE Intelligent Systems, 36(6):87–
98.

[29] Churyumov, A. (2016). Byteball: A decentralized system for storage and transfer of
value. URL https://byteball. org/Byteball. pdf, page 11.

[30] Coniks-Sys (2019). Coniks-sys/coniks-go: A coniks implementation in golang. https:
//github.com/coniks-sys/coniks-go. (Accessed: August 10, 2020).

[31] Costa, B., Bachiega Jr, J., de Carvalho, L. R., and Araujo, A. P. (2022). Orchestration in
fog computing: A comprehensive survey. ACM Computing Surveys (CSUR), 55(2):1–34.

[32] Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory. Wiley-
Interscience, USA.

[33] DataDog (2018). Datadog/go-python3: Go bindings to the cpython-3 api. https:
//github.com/DataDog/go-python3. (Accessed: January 11, 2020).

[34] Douceur, J. R. (2002). The sybil attack. In International workshop on peer-to-peer
systems, pages 251–260. Springer.

[35] Dubey, P. (1982). The shapley value as aircraft landing fees–revisited. Management
Science, 28(8):869–874.

[36] Eyal, I., Gencer, A. E., Sirer, E. G., and Van Renesse, R. (2016). {Bitcoin-NG}: A
scalable blockchain protocol. In 13th USENIX symposium on networked systems design
and implementation (NSDI 16), pages 45–59.

[37] Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., and Yu, P. (2021a). Bafl: A blockchain-
based asynchronous federated learning framework. IEEE Transactions on Computers,
71(5):1092–1103.

[38] Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., and Yu, P. (2021b). Blockchain-based
asynchronous federated learning for internet of things. IEEE Transactions on Computers.

[39] Fraboni, Y., Vidal, R., and Lorenzi, M. (2021). Free-rider attacks on model aggregation
in federated learning. In International Conference on Artificial Intelligence and Statistics,
pages 1846–1854. PMLR.

[40] Fung, C., Yoon, C. J., and Beschastnikh, I. (2018). Mitigating sybils in federated
learning poisoning. arXiv preprint arXiv:1808.04866.

https://github.com/coniks-sys/coniks-go
https://github.com/coniks-sys/coniks-go
https://github.com/DataDog/go-python3
https://github.com/DataDog/go-python3

References 83

[41] Fung, C., Yoon, C. J., and Beschastnikh, I. (2020). The limitations of federated learning
in sybil settings. In 23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020), pages 301–316.

[42] Geng, J., Mou, Y., Li, F., Li, Q., Beyan, O., Decker, S., and Rong, C. (2021). Towards
general deep leakage in federated learning. arXiv preprint arXiv:2110.09074.

[43] Ghorbani, A. and Zou, J. (2019). Data shapley: Equitable valuation of data for machine
learning. In International Conference on Machine Learning, pages 2242–2251. PMLR.

[44] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. (2017). Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium
on operating systems principles, pages 51–68.

[45] Goudarzi, M., Palaniswami, M., and Buyya, R. (2019). A fog-driven dynamic resource
allocation technique in ultra dense femtocell networks. Journal of Network and Computer
Applications, 145:102407.

[46] Guerraoui, R., Rouault, S., et al. (2018). The hidden vulnerability of distributed learning
in byzantium. In International Conference on Machine Learning, pages 3521–3530.
PMLR.

[47] Gul, F. (1989). Bargaining foundations of shapley value. Econometrica: Journal of the
Econometric Society, pages 81–95.

[48] Guo, S., Zhang, K., Gong, B., Chen, L., Ren, Y., Qi, F., and Qiu, X. (2022). Sandbox
computing: A data privacy trusted sharing paradigm via blockchain and federated learning.
IEEE Transactions on Computers.

[49] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[50] Hsu, T.-M. H., Qi, H., and Brown, M. (2019). Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335.

[51] Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., and Young, V. (2015). Mobile edge
computing—a key technology towards 5g. ETSI white paper, 11(11):1–16.

[52] Huang, H., Zhang, B., Sun, Y., Ma, C., and Qu, J. (2022). Delta-dagmm: a free rider
attack detection model in horizontal federated learning. Security and Communication
Networks, 2022.

[53] Ipfs (2017). Ipfs/go-ipfs-api: The go interface to ipfs’s http api. https://github.com/ipfs/
go-ipfs-api. (Accessed: March 2, 2020).

[54] Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gürel, N. M., Li, B., Zhang, C.,
Song, D., and Spanos, C. J. (2019). Towards efficient data valuation based on the shapley
value. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1167–1176. PMLR.

https://github.com/ipfs/go-ipfs-api
https://github.com/ipfs/go-ipfs-api

84 References

[55] Jin, X., Chen, P.-Y., Hsu, C.-Y., Yu, C.-M., and Chen, T. (2021). Cafe: Catastrophic
data leakage in vertical federated learning. Advances in Neural Information Processing
Systems, 34:994–1006.

[56] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Nitin Bhagoji, A.,
Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2019). Advances and open
problems in federated learning. arXiv e-prints, pages arXiv–1912.

[57] Kang, J., Xiong, Z., Niyato, D., Zou, Y., Zhang, Y., and Guizani, M. (2020). Reliable
federated learning for mobile networks. IEEE Wireless Communications, 27(2):72–80.

[58] Kang, P., Yang, W., and Zheng, J. (2022). Blockchain private file storage-sharing
method based on ipfs. Sensors, 22(14):5100.

[59] Karimireddy, S. P., He, L., and Jaggi, M. (2021). Learning from history for byzantine
robust optimization. In International Conference on Machine Learning, pages 5311–5319.
PMLR.

[60] Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. (2020).
Scaffold: Stochastic controlled averaging for federated learning. In International confer-
ence on machine learning, pages 5132–5143. PMLR.

[61] Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M. (2019). Error feedback fixes
signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252–3261. PMLR.

[62] Khaled, A., Mishchenko, K., and Richtárik, P. (2019). First analysis of local gd on
heterogeneous data. arXiv preprint arXiv:1909.04715.

[63] Khatal, S., Rane, J., Patel, D., Patel, P., and Busnel, Y. (2021). Fileshare: A blockchain
and ipfs framework for secure file sharing and data provenance. In Advances in Machine
Learning and Computational Intelligence: Proceedings of ICMLCI 2019, pages 825–833.
Springer.

[64] Koloskova, A., Stich, S., and Jaggi, M. (2019). Decentralized stochastic optimization
and gossip algorithms with compressed communication. In International Conference on
Machine Learning, pages 3478–3487. PMLR.

[65] Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D.
(2016). Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492.

[66] Kumar, R., Tripathi, R., Marchang, N., Srivastava, G., Gadekallu, T. R., and Xiong,
N. N. (2021). A secured distributed detection system based on ipfs and blockchain for
industrial image and video data security. Journal of Parallel and Distributed Computing,
152:128–143.

[67] Kwon, Y. and Zou, J. (2022). Beta shapley: a unified and noise-reduced data valuation
framework for machine learning. In International Conference on Artificial Intelligence
and Statistics, pages 8780–8802. PMLR.

References 85

[68] LAMPORT, L., SHOSTAK, R., and PEASE, M. (1982). The byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382–401.

[69] LeMahieu, C. (2018). Nano: A feeless distributed cryptocurrency network. Nano
[Online resource]. URL: https://nano. org/en/whitepaper, 16:17.

[70] Li, A., Sun, J., Wang, B., Duan, L., Li, S., Chen, Y., and Li, H. (2020a). Lotteryfl:
Personalized and communication-efficient federated learning with lottery ticket hypothesis
on non-iid datasets. arXiv preprint arXiv:2008.03371.

[71] Li, C., Li, P., Zhou, D., Xu, W., Long, F., and Yao, A. (2018a). Scaling nakamoto
consensus to thousands of transactions per second. arXiv preprint arXiv:1805.03870.

[72] Li, H., Ota, K., and Dong, M. (2018b). Learning iot in edge: Deep learning for the
internet of things with edge computing. IEEE network, 32(1):96–101.

[73] Li, L., Xu, W., Chen, T., Giannakis, G. B., and Ling, Q. (2019a). Rsa: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1544–1551.

[74] Li, S., Cheng, Y., Wang, W., Liu, Y., and Chen, T. (2020b). Learning to detect malicious
clients for robust federated learning. arXiv preprint arXiv:2002.00211.

[75] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020c).
Federated optimization in heterogeneous networks. Proceedings of Machine learning and
systems, 2:429–450.

[76] Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. (2020d). On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations.

[77] Li, X., Yang, W., Wang, S., and Zhang, Z. (2019b). Communication-efficient local
decentralized sgd methods. arXiv preprint arXiv:1910.09126.

[78] Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., and Yan, Q. (2020e). A blockchain-
based decentralized federated learning framework with committee consensus. IEEE
Network, 35(1):234–241.

[79] Lian, Z. and Su, C. (2022). Decentralized federated learning for internet of things
anomaly detection. In Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security, pages 1249–1251.

[80] Liang, J., Li, S., Jiang, W., Cao, B., and He, C. (2021). Omnilytics: A blockchain-based
secure data market for decentralized machine learning. arXiv preprint arXiv:2107.05252.

[81] Lin, J., Du, M., and Liu, J. (2019). Free-riders in federated learning: Attacks and
defenses. arXiv preprint arXiv:1911.12560.

[82] Liu, F., Tang, G., Li, Y., Cai, Z., Zhang, X., and Zhou, T. (2019). A survey on edge
computing systems and tools. Proceedings of the IEEE, 107(8):1537–1562.

86 References

[83] Lu, Y., Huang, X., Dai, Y., Maharjan, S., and Zhang, Y. (2019). Blockchain and
federated learning for privacy-preserved data sharing in industrial iot. IEEE Transactions
on Industrial Informatics, 16(6):4177–4186.

[84] Luan, H. and Tsai, C.-C. (2021). A review of using machine learning approaches for
precision education. Educational Technology & Society, 24(1):250–266.

[85] Ma, R. T., Chiu, D. M., Lui, J. C., Misra, V., and Rubenstein, D. (2007). Internet
economics: The use of shapley value for isp settlement. In Proceedings of the 2007 ACM
CoNEXT conference, pages 1–12.

[86] Maleki, S., Tran-Thanh, L., Hines, G., Rahwan, T., and Rogers, A. (2013). Bounding
the estimation error of sampling-based shapley value approximation. arXiv preprint
arXiv:1306.4265.

[87] Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A survey on mobile
edge computing: The communication perspective. IEEE communications surveys &
tutorials, 19(4):2322–2358.

[88] McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017).
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR.

[89] MELLODDY (2019). Machine learning ledger orchestration for drug discovery (mel-
loddy). https://www.melloddy.eu/. (Accessed: June 23, 2023).

[90] Micali, S., Rabin, M., and Vadhan, S. (1999). Verifiable random functions. In 40th
annual symposium on foundations of computer science (cat. No. 99CB37039), pages
120–130. IEEE.

[91] Mills, J., Hu, J., and Min, G. (2020). Communication-efficient federated learning for
wireless edge intelligence in iot. IEEE Internet of Things Journal, 7(7):5986–5994.

[92] Mills, J., Hu, J., and Min, G. (2023). Faster federated learning with decaying number of
local sgd steps. IEEE Transactions on Parallel and Distributed Systems, 34(7):2198–2207.

[93] Mugunthan, V., Rahman, R., and Kagal, L. (2020). Blockflow: An accountable and
privacy-preserving solution for federated learning. arXiv preprint arXiv:2007.03856.

[94] Nagalapatti, L. and Narayanam, R. (2021). Game of gradients: Mitigating irrele-
vant clients in federated learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9046–9054.

[95] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized
business review.

[96] Park, J., Samarakoon, S., Elgabli, A., Kim, J., Bennis, M., Kim, S.-L., and Debbah,
M. (2021). Communication-efficient and distributed learning over wireless networks:
Principles and applications. Proceedings of the IEEE, 109(5):796–819.

[97] Paul, G., Hutchison, F., and Irvine, J. (2014). Security of the maidsafe vault network.
In Wireless World Research Forum Meeting 32 (WWRF32).

https://www.melloddy.eu/

References 87

[98] Pichler, G., Romanelli, M., Vega, L. R., and Piantanida, P. (2023). Perfectly accu-
rate membership inference by a dishonest central server in federated learning. IEEE
Transactions on Dependable and Secure Computing.

[99] Pillutla, K., Kakade, S. M., and Harchaoui, Z. (2019). Robust aggregation for federated
learning. arXiv preprint arXiv:1912.13445.

[100] Qu, Y., Gao, L., Luan, T. H., Xiang, Y., Yu, S., Li, B., and Zheng, G. (2020a).
Decentralized privacy using blockchain-enabled federated learning in fog computing.
IEEE Internet of Things Journal, 7(6):5171–5183.

[101] Qu, Y., Pokhrel, S. R., Garg, S., Gao, L., and Xiang, Y. (2020b). A blockchained
federated learning framework for cognitive computing in industry 4.0 networks. IEEE
Transactions on Industrial Informatics, 17(4):2964–2973.

[102] Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečnỳ, J., Kumar,
S., and McMahan, H. B. (2020). Adaptive federated optimization. arXiv preprint
arXiv:2003.00295.

[103] Regulation, P. (2016). Regulation (eu) 2016/679 of the european parliament and of
the council. Regulation (eu), 679:2016.

[104] Reisizadeh, A., Mokhtari, A., Hassani, H., and Pedarsani, R. (2019). An exact quan-
tized decentralized gradient descent algorithm. IEEE Transactions on Signal Processing,
67(19):4934–4947.

[105] Ren, J., Zhang, D., He, S., Zhang, Y., and Li, T. (2019). A survey on end-edge-
cloud orchestrated network computing paradigms: Transparent computing, mobile edge
computing, fog computing, and cloudlet. ACM Computing Surveys (CSUR), 52(6):1–36.

[106] Salkuti, S. R. (2020). A survey of big data and machine learning. International
Journal of Electrical & Computer Engineering (2088-8708), 10(1).

[107] Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W. (2019). Robust and
communication-efficient federated learning from non-iid data. IEEE transactions on
neural networks and learning systems, 31(9):3400–3413.

[108] Shapley, L. S. et al. (1953). A value for n-person games.

[109] Shayan, M., Fung, C., Yoon, C. J., and Beschastnikh, I. (2020). Biscotti: A blockchain
system for private and secure federated learning. IEEE Transactions on Parallel and
Distributed Systems, 32(7):1513–1525.

[110] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing: Vision and
challenges. IEEE internet of things journal, 3(5):637–646.

[111] Shi, W. and Dustdar, S. (2016). The promise of edge computing. Computer, 49(5):78–
81.

[112] Sompolinsky, Y., Lewenberg, Y., and Zohar, A. (2016). Spectre: A fast and scalable
cryptocurrency protocol. Cryptology ePrint Archive.

88 References

[113] Sompolinsky, Y. and Zohar, A. (2015). Secure high-rate transaction processing in
bitcoin. In Financial Cryptography and Data Security: 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers 19, pages
507–527. Springer.

[114] Sompolinsky, Y. and Zohar, A. (2018). Phantom. IACR Cryptology ePrint Archive,
Report 2018/104.

[115] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and Sabella, D. (2017).
On multi-access edge computing: A survey of the emerging 5g network edge cloud
architecture and orchestration. IEEE Communications Surveys & Tutorials, 19(3):1657–
1681.

[116] Uddin, M. P., Xiang, Y., Lu, X., Yearwood, J., and Gao, L. (2020). Mutual informa-
tion driven federated learning. IEEE Transactions on Parallel and Distributed Systems,
32(7):1526–1538.

[117] Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027.

[118] Vogels, T., Karimireddy, S. P., and Jaggi, M. (2019). Powersgd: Practical low-rank
gradient compression for distributed optimization.

[119] Wadu, M. M., Samarakoon, S., and Bennis, M. (2020). Federated learning under
channel uncertainty: Joint client scheduling and resource allocation. In 2020 IEEE
Wireless Communications and Networking Conference (WCNC), pages 1–6.

[120] Wang, G., Dang, C. X., and Zhou, Z. (2019a). Measure contribution of participants in
federated learning. In 2019 IEEE international conference on big data (Big Data), pages
2597–2604. IEEE.

[121] Wang, J., Chang, X., Mišić, J., Mišić, V. B., and Wang, Y. (2023). Pass: A parameter
audit-based secure and fair federated learning scheme against free-rider attack. IEEE
Internet of Things Journal.

[122] Wang, J., Zhang, L., Li, A., You, X., and Cheng, H. (2022). Efficient participant
contribution evaluation for horizontal and vertical federated learning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE), pages 911–923. IEEE.

[123] Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., and Chan, K.
(2019b). Adaptive federated learning in resource constrained edge computing systems.
IEEE Journal on Selected Areas in Communications, 37(6):1205–1221.

[124] Wang, T., Rausch, J., Zhang, C., Jia, R., and Song, D. (2020). A principled approach
to data valuation for federated learning. Federated Learning: Privacy and Incentive, pages
153–167.

[125] Wang, Z. and Hu, Q. (2021). Blockchain-based federated learning: A comprehensive
survey. arXiv preprint arXiv:2110.02182.

References 89

[126] Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q.,
and Poor, H. V. (2020). Federated learning with differential privacy: Algorithms and
performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–
3469.

[127] Wei, W., Liu, L., Wut, Y., Su, G., and Iyengar, A. (2021). Gradient-leakage resilient
federated learning. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS), pages 797–807. IEEE.

[128] Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., and Luo, W. (2019). Deepchain:
Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE
Transactions on Dependable and Secure Computing.

[129] Wu, H. and Wang, P. (2022). Node selection toward faster convergence for federated
learning on non-iid data. IEEE Transactions on Network Science and Engineering,
9(5):3099–3111.

[130] Xiao, P., Cheng, S., Stankovic, V., and Vukobratovic, D. (2020a). Averaging is
probably not the optimum way of aggregating parameters in federated learning. Entropy,
22(3):314.

[131] Xiao, Y., Zhang, N., Lou, W., and Hou, Y. T. (2020b). A survey of distributed
consensus protocols for blockchain networks. IEEE Communications Surveys & Tutorials,
22(2):1432–1465.

[132] Xie, C., Chen, M., Chen, P.-Y., and Li, B. (2021). Crfl: Certifiably robust federated
learning against backdoor attacks. In Meila, M. and Zhang, T., editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 11372–11382. PMLR.

[133] Xie, C., Koyejo, O., and Gupta, I. (2020). Fall of empires: Breaking byzantine-
tolerant sgd by inner product manipulation. In Uncertainty in Artificial Intelligence, pages
261–270. PMLR.

[134] Xie, C., Koyejo, O., Gupta, I., and Lin, H. (2019). Local adaalter: Communication-
efficient stochastic gradient descent with adaptive learning rates. arXiv preprint
arXiv:1911.09030.

[135] Xu, C., Qu, Y., Luan, T. H., Eklund, P. W., Xiang, Y., and Gao, L. (2022a). An efficient
and reliable asynchronous federated learning scheme for smart public transportation. IEEE
Transactions on Vehicular Technology.

[136] Xu, J., Huang, S.-L., Song, L., and Lan, T. (2022b). Byzantine-robust federated learn-
ing through collaborative malicious gradient filtering. In 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS), pages 1223–1235.

[137] Xu, M., Zou, Z., Cheng, Y., Hu, Q., Yu, D., and Cheng, X. (2022c). Spdl: A
blockchain-enabled secure and privacy-preserving decentralized learning system. IEEE
Transactions on Computers.

90 References

[138] Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S., and Qi, L. (2019). A
computation offloading method over big data for iot-enabled cloud-edge computing.
Future Generation Computer Systems, 95:522–533.

[139] Xu, X. and Lyu, L. (2021). A reputation mechanism is all you need: Collaborative
fairness and adversarial robustness in federated learning.

[140] Yang, H., Ge, M., Xue, D., Xiang, K., Li, H., and Lu, R. (2023). Gradient leakage
attacks in federated learning: Research frontiers, taxonomy and future directions. IEEE
Network.

[141] Yang, H. H., Liu, Z., Quek, T. Q., and Poor, H. V. (2019). Scheduling policies
for federated learning in wireless networks. IEEE transactions on communications,
68(1):317–333.

[142] Yin, D., Chen, Y., Kannan, R., and Bartlett, P. (2018). Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine
Learning, pages 5650–5659. PMLR.

[143] Yu, H., Jin, R., and Yang, S. (2019a). On the linear speedup analysis of communication
efficient momentum SGD for distributed non-convex optimization. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 7184–7193. PMLR.

[144] Yu, H., Yang, S., and Zhu, S. (2019b). Parallel restarted sgd with faster convergence
and less communication: Demystifying why model averaging works for deep learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
5693–5700.

[145] Yuan, S., Cao, B., Peng, M., and Sun, Y. (2021). Chainsfl: Blockchain-driven
federated learning from design to realization. In 2021 IEEE Wireless Communications
and Networking Conference (WCNC), pages 1–6. IEEE.

[146] Zhang, Z., Cao, X., Jia, J., and Gong, N. Z. (2022). Fldetector: Defending federated
learning against model poisoning attacks via detecting malicious clients. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, page 2545–2555, New York, NY, USA. Association for Computing Machinery.

[147] Zhao, Y., Zhao, J., Jiang, L., Tan, R., Niyato, D., Li, Z., Lyu, L., and Liu, Y. (2020).
Privacy-preserving blockchain-based federated learning for iot devices. IEEE Internet of
Things Journal, 8(3):1817–1829.

[148] Zheng, Q., Li, Y., Chen, P., and Dong, X. (2018). An innovative ipfs-based stor-
age model for blockchain. In 2018 IEEE/WIC/ACM International Conference on Web
Intelligence (WI), pages 704–708.

Appendix A

Chapter 5 Supplementary Material

A.1 Proof of Theorem 1

Before proving Theorem 1, we first restate our SVRFL algorithm and prove some lemmas.
Recall that the global model is updated with equation (5.7), and the aggregated global gradient
is ĝt = 1

∑
|It |
i∈It

s(ui)
∑
|It |
i∈It

s(ui)gt
i, where It (|It |= m) is the set of selected clients in round t, and

gi = ∇F(ξi,wt−1
g) is the local model gradient from client i. Then the global model update

could be rewritten as wt
g = wt−1

g −η ĝt . When βn adversarial clients exist in FL system, we
denote by G (E|G|= (1−β)m) the set of benign clients in a training round. The averaged
benign gradients can be expressed by ḡt = 1

|G|∑i∈G gt
i.

Lemma 1. Suppose Assumption 1 holds, we have the following in any training round t ≥ 1:

E[∥wt−1−w∗−η∇F(wt−1)∥2]≤ (1+η
2L2−ηµ)E[∥wt−1−w∗∥2]. (A.1)

∥wt−1−w∗−η∇F(wt−1)∥ ≤
√

1− µ2

4L2∥w
t−1−w∗∥2. (A.2)

Proof. Since ∇F(w∗) = 0, we have

∥wt−1−w∗−η∇F(wt−1)∥2

= ∥wt−1−w∗−η(∇F(wt−1)−∇F(w∗))∥2

= ∥wt−1−w∗∥2 +η∥∇F(wt−1)−∇F(w∗)∥2−
2η⟨wt−1−w∗,∇F(wt−1)−∇F(w∗)⟩

. (A.3)

92 Chapter 5 Supplementary Material

E[∥wt−1−w∗−η∇F(wt−1)∥2]

= E[∥wt−1−w∗∥2 +η∥∇F(wt−1)−∇F(w∗)∥2−
2η⟨wt−1−w∗,∇F(wt−1)−∇F(w∗)⟩]

. (A.4)

According to Assumption 1, we have

∥∇F(w)−∇F(w∗)∥ ≤ L∥w−w∗∥, (A.5)

F(w)≥ F(w∗)+ ⟨∇F(w∗),w−w∗⟩+ µ

2
∥w−w∗∥2, (A.6)

F(w∗)≥ F(w)+ ⟨∇F(w),w∗−w⟩. (A.7)

Summing up inequalities (A.6) and (A.7), we could have

⟨∇F(w)−∇F(w∗),w∗−w⟩ ≤ −µ

2
∥w−w∗∥2. (A.8)

Substituting inequalities (A.5) and (A.8) into equation (A.4), according to linearity and
monotonicity of expectation,

E[∥wt−1−w∗−η∇F(wt−1)∥2]≤
(1+η

2L2−ηµ)E[∥wt−1−w∗∥2]
. (A.9)

Substituting inequalities (A.5) and (A.8) into equation (A.3), we have:

∥wt−1−w∗−η∇F(wt−1)∥2 ≤ (1+η
2L2−ηµ)∥wt−1−w∗∥ (A.10)

By choosing η = µ

2L2 , we conclude the proof.
Suppose Assumptions 2-4 hold, we have the following lemma for the aggregated gradient
using SVRFL.
Lemma 2. The deviation between the aggregated gradient ĝt and the true global gradient
∇F(wt) could be characterized as follows:

E[∥ĝt−∇F(wt)∥2]≤ 4cδ (σ2 + τ
2)+2b2 +

β 2τ2

(1−β)2+

σ2

(1−β)m

(A.11)

Proof. Given a set of selected clients in a training round, let A = ∑i∈G(gi−∇F(w)) and
B = ∑ j/∈G(gi−∇F(w)), then A and B are independent, thus E[A+B] = 0. According to

A.1 Proof of Theorem 1 93

Assumption 2 and 3, by applying Jensen’s inequality, we can have

∥E[A]∥2 =

∥∥∥∥∥E
[
∑
i∈G

(gi−∇F(w))

]∥∥∥∥∥
2

≤ E

∥∥∥∥∥∑
i∈G

(gi−∇F(w))

∥∥∥∥∥
2

≤ (1−β)m ∑
i∈G
∥∇Fi(w)−∇F(w)∥2

≤ (1−β)2m2
τ

2

. (A.12)

∥E[B]∥2 ≤ βm ∑
i/∈G
∥∇Fi(w)−∇F(w)∥2 ≤ β

2m2
τ

2. (A.13)

As E[A] =−E[A], we could obtain

∥E[A]∥2 = ∥E[B]∥2 = min{(1−β)2m2
τ

2,β 2m2
τ

2}. (A.14)

Since β < 0.5, ∥E[A]∥2 = ∥E[B]∥2 = β 2m2τ2. According to the basic relation between
expectation and variance,

E[∥A∥2] = ∥E[A]∥2 +var[A]≤ β
2m2

τ
2 +(1−β)mσ

2. (A.15)

Then, we could have

E[∥ḡ−∇F(w)∥2] = E

∥∥∥∥∥ 1
|G| ∑i∈G

gi−∇F(w)

∥∥∥∥∥
2

=
1

(1−β)2m2E[∥A∥
2]

≤ β 2τ2

(1−β)2 +
σ2

(1−β)m

. (A.16)

94 Chapter 5 Supplementary Material

Given the above inequality, we have

E[∥ĝt−∇F(wt)∥2]

= E[∥ĝt− ḡt + ḡt−∇F(wt)∥2]

≤ E[2∥ĝt− ḡt∥2 +2∥ḡt−∇F(wt)∥2]

= 2E[∥ĝt− ḡt∥2]+2E[∥ḡt−∇F(wt)∥2]

= 2[E∥ĝt− ḡt∥]2 +2var(ĝt)+2E[∥ḡt−∇F(wt)∥2]

≤ 2cδ sup
i, j∈G

E[∥gt
i−gt

j∥2]+2var(ĝt)+2E[∥ḡt−∇F(wt)∥2]

≤ 4cδ (σ2 + τ
2)+2b2 +

β 2τ2

(1−β)2 +
σ2

(1−β)m

, (A.17)

Thus we complete the proof.
Proof of Theorem 1. With the lemmas above, we prove Theorem 1 next. We have the
following for the tth training round:

E[∥wt−w∗∥2]

= E[∥wt−1−η ĝt−1−w∗∥2]

= E[∥wt−1−η∇F(wt−1)−w∗+η∇F(wt−1)−η ĝt−1∥2]

≤ E[2∥wt−1−η∇F(wt−1)−w∗∥2+

2η
2∥∇F(wt−1)− ĝt−1∥2]

= 2E[∥wt−1−η∇F(wt−1)−w∗∥2]︸ ︷︷ ︸
C1

+

2η
2E[∥ĝt−1−∇F(wt−1)∥2]︸ ︷︷ ︸

C2

(a)
≤ 2(1+η

2L2−ηµ)E[∥wt−1−w∗∥2]+

η
2 [8cδ (σ2 + τ

2)+4b2 +
2β 2τ2

(1−β)2 +
2σ2

(1−β)m
]︸ ︷︷ ︸

∆1

≤ 2(1+η
2L2−ηµ)E[∥wt−1−w∗∥2]+η

2
∆1

. (A.18)

where (a) is obtained by plugging Lemma 1 and Lemma 2 into C1 and C2 respectively. By
recursively applying the above inequality in each global iteration, we have:

E[∥wt−w∗∥2]≤ (1−q)tE[∥w0−w∗∥2]+
η2∆1

q
(A.19)

A.2 Proof of Theorem 2 95

where q = 2ηµ − 2η2L2− 1. If 0 < 1− q < 1, then 0 < 2− 2ηµ + 2η2L2 < 1, we could
obtain √

1
2L2 +

µ2

4L4 +
µ

2L2 < η <

√
1
L2 +

µ2

4L4 +
µ

2L2 . (A.20)

Thus, if the server-side learning rate η satisfies lies in (
√

1
2L2 +

µ2

4L4 +
µ

2L2 ,
√

1
L2 +

µ2

4L4 +
µ

2L2),
we could have

lim
t→∞

E[∥wt−w∗∥2]≤ η2∆1

q
, (A.21)

which finishes the proof.

A.2 Proof of Theorem 2

Recall that the global model is updated with equation (5.7), let G (wg) =
1

∑
|S|
i∈S s(ui)

∑
|S|
i∈S s(ui)gi

and q = ∑
|S|
i∈S s(ui), where S ≜ {It |∃i ∈ It ,ui > 0} and gi = ∇ f (Di,wg). Then q is the

positive integer that 1 ≤ q ≤ m ≤ n, and the global model update could be rewrited as
wt

g = wt−1
g −ηG (wt−1

g).

Lemma 2. Suppose Assumption 6 and 8 holds, for any δ ∈ (0,1), let K =
√

2(d log6+ log 3
δ
),

∆1 =

{√
2σ1

√
d log6+ log 3

δ
, if K ≤ σ1

α1

2α1(d log6+ log 3
δ
), otherwise

, (A.22)

where d is the dimension of w, then,

P{∥G (w∗)−∇F(w∗)∥ ≥ 2∆1} ≤
δ

3
(A.23)

Proof Sketch. Let V = {v1, · · · ,vN1
2
} denote an 1

2-cover of unit sphere B. As shown in [27]

that logN1
2
≤ d log6, and

∥G (w∗)−∇F(w∗)∥ ≤ 2sup
v∈V
{⟨G (w∗)−∇F(w∗),v⟩} (A.24)

96 Chapter 5 Supplementary Material

As ∇F(w∗) = 0, by Assumption 6 and the concentration inequalities for sub-exponential
random variables, for v ∈V ,

P{⟨G (w∗)−∇F(w∗),v⟩ ≥ ∆1} ≤

e
− q∆2

1
2σ2

1 , if K ≤ σ1
α1

e−
q∆1
2α1 , otherwise

≤

e
− ∆2

1
2σ2

1 , if K ≤ σ1
α1

e−
∆1

2α1 , otherwise

. (A.25)

Recall that V contains at most 6d vectors. In view of the union bound, it further yields that

P{2sup
v∈V
{⟨G (w∗)−∇F(w∗),v⟩} ≥ 2∆1}

≤

e
− ∆2

1
2σ2

1
+d log6

, if K ≤ σ1
α1

e−
∆1

2α1
+d log6

, otherwise

. (A.26)

Combining it with inequality (A.24), we have

P{∥G (w∗)−∇F(w∗)∥ ≥ 2∆1}

≤

e
− ∆2

1
2σ2

1
+d log6

, if K ≤ σ1
α1

e−
∆1

2α1
+d log6

, otherwise

. (A.27)

By choosing ∆1 as stated in equation (A.22), we conclude the proof.
Lemma 3. Suppose Assumption 7 holds, for any w ∈ Θ and any δ ∈ (0,1), let K′ =√

2(d log6+ log 3
δ
),

∆2 =

{√
2σ2

√
d log6+ log 3

δ
, if K′ ≤ σ2

α2

2α2(d log6+ log 3
δ
), otherwise

, (A.28)

then

P

∥∥∥∥∥ 1
∑
|S|
i∈S s(ui)

|S|
∑
i∈S

s(ui)h(Di,w)−E[h(D,w)]

∥∥∥∥∥
∥w−w∗∥

≥ 2∆2

≤
δ

3
(A.29)

A.2 Proof of Theorem 2 97

The proof of Lemma 3 is similar to Lemma 2, we omit it for brevity.
Proposition 1. Suppose all assumptions hold, and Θ ⊂ {w : ∥w−w∗∥ ≤ r

√
d} for some

positive parameter r. For any δ ∈ (0,1) and any integer n, we have

P{∀w ∈Θ : ∥G (w)−∇F(w)∥ ≤ 8∆3∥w−w∗∥+2∆1 +4∆3τ}

≥ 1−δ

, (A.30)

where τ = α2σ1
2σ2

2

√
d
n ,

∆3 =

√

2σ2

√
d log 18K1

K2
+ 1

2 d log n
d + log 6σ2

2 r
√

n
α2σ1δ

, if K3 ≤ K4

2α2(d log 18K1
K2

+ 1
2 d log n

d + log 6σ2
2 r
√

n
α2σ1δ

), otherwise
, (A.31)

K1 = max(L,L1), K2 = min(α2,σ2), K3 = d log(18K1) +
1
2d log n

d + log 6r
√

n
σ1,δ

, and K4 =

d logK2− log δ 2
2

α2
+

σ2
2

2α2
2
.

Proof Sketch. The proof is based on the classic ε-net argument. Let ℓ∗ = ⌈ r
√

d
τ
⌉. We as-

sume ℓ∗ is an integer. For integers 1 ≤ ℓ ≤ ℓ∗, define Θℓ ≜ {w : ∥w−w∗∥ ≤ τℓ}. For a

given ℓ, let w1, · · · ,wNεℓ
be an εℓ-cover of Θℓ, where εℓ =

K2τℓ
K1

√
d
n . According to [117],

logNεℓ
≤ d log(3τℓ

εℓ
). Fix any w ∈Θℓ. there exists a jℓ (1≤ jℓ ≤ Nεℓ

), such that

∥w−w jℓ∥2 ≤ εℓ. (A.32)

By triangle inequality, we have:

∥G (w)−∇F(w)∥ ≤ ∥∇F(w)−∇F(w jℓ)∥+∥G (w)−G (w jℓ)∥

+∥G (w jℓ)−∇F(w jℓ)∥
. (A.33)

According to Assumption 1 and inequality (A.32),

∥∇F(w)−∇F(w jℓ)∥ ≤ L∥w−w jℓ∥ ≤ Lεℓ. (A.34)

Define event

ε1 =

{
sup

w,w′∈Θ:w̸=w′

∥G (w)−G (w′)∥
∥w−w′∥

≤ L1

}
. (A.35)

98 Chapter 5 Supplementary Material

By Assumption 2, we have P{ε1} ≥ 1− δ

3 . On event ε1, we have

sup
w∈Θ

∥G (w)−G (w jℓ)∥ ≤ L1εℓ. (A.36)

According to triangle inequality,

∥G (w jℓ)−∇F(w jℓ)∥ ≤ ∥G)w∗)−∇F(w∗)∥+

∥G (w jℓ)−G (w∗)− (∇F(w jℓ)−∇F(w∗)∥
(a)
≤ ∥G)w∗)−∇F(w∗)∥+∥∥∥∥∥1

q

|S|

∑
i∈S

s(ui)h(Di,w jℓ)−E[h(D,w jℓ)]

∥∥∥∥∥
, (A.37)

where (a) is according to E[h(D,w jℓ)] = ∇F(w)−∇F(w∗). Define event ε2 and Fℓ as,

ε2 = {∥G (w∗)−∇F(w∗)∥ ≤ 2∆1}, (A.38)

Fℓ =

{
sup

1≤ j≤Nε

∥∥∥∥∥1
q

|S|

∑
i∈S

s(ui)h(Di,w jℓ)−E[h(D,w jℓ)]

∥∥∥∥∥≤ 2τℓ∆3

}
. (A.39)

According to Lemma 3 and [117], P{ε2} ≥ 1− δ

3 and P{Fℓ} ≥ 1− δ

3ℓ∗ . Therefore, on event
ε1∩ ε2∩Fℓ, we have

sup
w∈Θℓ

∥G (w)−∇F(w)∥ ≤ (L+L1)εℓ+2∆1 +2∆3τℓ

(a)
≤ 4∆3τℓ+2∆1

(A.40)

where (a) is according to (L+L1)εℓ ≤ 2K1εℓ ≤ ∆3τℓ. Let event ε = ε1 ∩ ε2 ∩ (∩ℓ
∗
ℓ=1Fℓ).

Follows the union bound, we have P{ε}= 1−δ . Suppose event ε holds, then for all w∈Θℓ∗ ,
there exists an ℓ (1≤ ℓ≤ ℓ∗) such that (ℓ−1)τ ≤ ∥w−w∗∥ ≤ ℓτ . If ℓ≥ 2, then ℓ≤ 2(ℓ−1),
thus

∥G (w)−∇F(w)∥ ≤ 4∆3τℓ+2∆1 ≤ 8∆3∥w−w∗∥+2∆1. (A.41)

If ℓ= 1, then
∥G (w)−∇F(w)∥ ≤ 4∆3τ +2∆1. (A.42)

Combining inequality (A.41) and (A.42), we have:

sup
w∈Θℓ∗

∥G (w)−∇F(w)∥ ≤ 8∆3∥w−w∗∥+2∆1 +4∆3τ. (A.43)

A.2 Proof of Theorem 2 99

We conclude the proof since Θ⊂Θℓ∗ .
Proof of Theorem 2. With the proposition and lemmas above, we prove Theorem 2 next.

We have the following for the tth training round:

∥wt−w∗∥
= ∥wt−1−ηG (wt−1)−w∗∥
= ∥wt−1−η∇F(wt−1)−w∗+η∇F(wt−1)−ηG (wt−1)∥
≤ ∥wt−1−η∇F(wt−1)−w∗∥︸ ︷︷ ︸

C1

+η∥G (wt−1)−∇F(wt−1∥︸ ︷︷ ︸
C2

(a)
≤

√
1− µ2

4L2∥w
t−1−w∗∥+η(8∆3∥wt−1−w∗∥+2∆1 +4∆3τ)

= (

√
1− µ2

4L2 +8∆3η)∥wt−1−w∗∥+2∆1η +4∆3τη

. (A.44)

where (a) is obtained by plugging Lemma 1 and Proposition 1 into C1 and C2 respectively.
By recursively applying the above inequality in each global iteration, we have:

∥wt−w∗∥ ≤ (1− p)t∥w0−w∗∥2 +
2∆1η +4∆3τη

p
(A.45)

where p = 1− (
√

1− µ2

4L2 +8∆3η). Thus, we conclude the proof.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Edge computing
	1.2 Federated Learning
	1.3 Research Challenges and Objectives
	1.4 Thesis Organisation and Contributions

	2 Backgrounds and Literature Review
	2.1 Blockchain technology
	2.1.1 Consensus protocol
	2.1.2 Blockchain topology

	2.2 Federated learning objective and optimization
	2.3 Vulnerabilities of federated learning
	2.3.1 Threats from clients
	2.3.2 Threats from central server

	2.4 Related work
	2.4.1 Blockchain-based federated learning
	2.4.2 Robust federated learning
	2.4.3 Communication-efficient federated learning

	2.5 Summary

	3 Lightweight Blockchain-based Federated Learning Framework
	3.1 Prelimilary
	3.1.1 IPFS
	3.1.2 VRF

	3.2 LBFL Design
	3.2.1 Transaction and Block Design
	3.2.2 Consensus Design

	3.3 Implementation
	3.3.1 Chain module
	3.3.2 Node module
	3.3.3 Consensus module
	3.3.4 Network module

	3.4 Evaluation
	3.4.1 Security Analysis
	3.4.2 Scalability Analysis

	3.5 Summary

	4 Blockchain-empowered Secure and Efficient Federated Edge Learning
	4.1 System Design
	4.1.1 Communication-efficient Distributed Training
	4.1.2 Secure Aggregation Protocol

	4.2 Performance Evaluation
	4.2.1 Communication efficiency
	4.2.2 Resistance to poisoning attacks
	4.2.3 Blockchain performance

	4.3 Summary

	5 Shapley Value-based Robust Federated Learning
	5.1 Preliminaries
	5.1.1 Shapley Value

	5.2 Threat model
	5.3 SVRFL design
	5.3.1 Free-riding attack detection:
	5.3.2 Poisonous model update mitigation
	5.3.3 Complete SVRFL
	5.3.4 Theoretical analysis

	5.4 Evaluation
	5.4.1 Defense against free-riding attack
	5.4.2 Defense against poisoning attacks

	5.5 Summary

	6 Conclusion and Future Work
	6.1 Thesis summary
	6.2 Future work

	References
	Appendix A Chapter 5 Supplementary Material
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2

