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Abstract
We investigate the joint moments of derivatives of characteristic polynomi-
als over the unitary symplectic group Sp(2N) and the orthogonal ensembles
SO(2N) and O−(2N). We prove asymptotic formulae for the joint moments
of the n1th and n2th derivatives of the characteristic polynomials for all three
matrix ensembles. Our results give two explicit formulae for each of the leading
order coefficients, one in terms of determinants of hypergeometric functions
and the other as combinatorial sums over partitions. We use our results to put
forward conjectures on the joint moments of derivatives of L-functions with
symplectic and orthogonal symmetry.

Keywords: random matrix theory, joint moments, characteristic polynomials,
random symplectic matrices, random orthogonal matrices,
Riemann zeta function, L-functions

1. Introduction

Let G(2N) ∈ {Sp(2N), SO(2N), O−(2N)}, where Sp(2N) is the the group of 2N× 2N unitary
symplectic matrices and SO(2N) and O−(2N) are the subsets of 2N× 2N orthogonal matrices
with determinant +1 and −1, respectively. Also, denote the characteristic polynomial of a
matrix A ∈ G(2N) by

ΛA (s) = det(I−As) .
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In this paper we consider the joint momentsˆ
G(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA (1.1)

of the n1th and n2th derivatives of the characteristic polynomials, where n1,n2 are non-negative
integers and dA denotes the Haar measure on the relevant matrix ensemble. Using techniques
developed in [1, 12, 25], we obtain asymptotic formulae for (1.1) for each G(2N) and for all
non-negative integers k1,k2. Our main results give two explicit expressions for the leading
order coefficients for each of the matrix ensembles under consideration and are detailed in
section 2.

The problem we study here is part of a general problem to obtain exact formulae for the
complex moments of the derivatives of characteristic polynomials. A key motivation is the
link between random matrix theory and the study of families of L-functions and their value
distribution in analytic number theory. Specifically, one can use formulae obtained for charac-
teristic polynomials of the various matrix ensembles to predict formulae for the corresponding
quantities for L-functions with the same symmetry type. The complex moments of the deriv-
atives of characteristic polynomials and L-functions can then be used to infer information on
the zeros of the derivatives through Jensen’s formula. For results on the radial distribution of
the zeros of the derivative of characteristic polynomials and on the horizontal distribution of
the zeros of the derivative of the Riemann zeta function, see, for example, [14, 27] and [29,
30], respectively.

Additionally on the number theory side, the order of vanishing of an L-function at the central
point, which is controlled by the derivatives of the L-function, is widely believed to contain
deep arithmetic and geometric information. The Birch and Swinnerton-Dyer Conjecture for
example, famously states that the order of vanishing of an L-function attached to an elliptic
curve over Q is equal to the rank of the curve.

For the ensemble of random unitary matricesU(N), Conrey et al [12] proved that for integer
k⩾ 1, ˆ

U(N)
|Λ ′

A (1) |2kdA∼ ckN
k2+2k,

where

ck = (−1)k(k+1)/2
k∑

h=0

(
k
h

)(
d
dx

)k+h (
e−xx−k2/2 det

k×k

(
Ii+j−1

(
2
√
x
)))∣∣∣∣

x=0

,

with In(x) denoting the modified Bessel function of the first kind. Here, and throughout the
paper, the indices i and j of the matrix in the determinant range from 1 to k. Also proven in
[12] is a similar asymptotic formula for the 2kth moment of the derivative of an analogue of
Hardy’s Z-function. As an application, the authors use their results to make a conjecture for
the moments of the derivative of the Riemann zeta function and of the Z-function. Forrester
and Witte [16] have given alternate expressions for the leading order coefficients obtained in
[12] in terms of solutions to Painlevé III differential equations.

Concerning the joint moments over the unitary ensemble, one is interested in the quantityˆ
U(N)

|Λ(n1)
A (1) |2M|Λ(n2)

A (1) |2M−2k dA. (1.2)

When n1 = 1 and n2 = 0, Hughes [21] was able to show that the limit of (1.2)/Nk
2+2M as N→

∞ exists when k and M are integers and conjectured the result for all suitable, real k and M.
Hughes’ conjecture was then proven by Assiotis, Keating and Warren in [6] with an explicit
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expression given for the limit in terms of the expectation of a certain random variable. The
characteristic function of this random variable was shown to be connected to a Painlevé III
differential equation in the full range of real M and integer k by Assiotis et al in [4]. In [5],
Assiotis, Gunes and Soor extend the results of [6] to themost general case of the circular Jacobi
β ensemble. An asymptotic formula for (1.2) when k⩾M are both non-negative integers was
obtained by Bailey et al [7]. Basor et al [9] study the joint moments of the analogue of Hardy’s
Z-function for integer k,M and establish a connection between these and the σ-Painlevé V
equation.

In the case of general n1,n2, Barhoumi-Andréani [8] gave an asymptotic formula for (1.2)
for integer k and M with k⩾M and k⩾ 2 where the leading order coefficient is given in the
form of a certain (k− 1)-fold real integral. Recently, Keating and Wei [25] have obtained
asymptotic formulae for (1.2) and for the joint moments of the n1th and n2th of the analogue
of Hardy’s Z-function for all integers k⩾M⩾ 0. They give two explicit expressions for the
leading order coefficients, one in terms of derivatives of determinants involving the modified
Bessel function and the other as combinatorial sums involving partitions. They also use their
results to motivate conjectures for the joint moments of the n1th and n2th derivatives of the
Riemann zeta function and of the Z-function. The conjectures made in [25] are shown to agree
with the known results of [19, 20, 22]. In [26], Keating and Wei further explore the structure
and properties of their leading order coefficients. They establish recursive relations that the
coefficients satisfy and also build a connection to a solution of the σ-Painlevé III ′ equation.

Turning to the symplectic and orthogonal matrix ensembles, Altuğ et al [1] considered the
moments of the mth derivative

Mk (G(2N) ,m) :=
ˆ
G(2N)

(
Λ
(m)
A (1)

)k
dA.

Extending the results of [12] to these ensembles, they prove asymptotic formulae for
Mk(G(2N),m) as N→∞ for integer k⩾ 1 when G(2N) = Sp(2N) or G(N) = SO(2N) and
m= 2, and when G(2N) = O−(2N) with m= 3. One considers the second derivative rather
than the first in the case of Sp(2N) and SO(2N) since Λ ′

A(1) can be expressed simply in terms
ofΛA(1). Thus, the moments of the first derivative can be computed using the result of Keating
and Snaith [24] on the moments of ΛA(1). If A ∈ O−(2N), then ΛA(1) = 0 and Λ ′ ′

A (1) has as
simple expression in terms of Λ ′

A(1) Hence, in this case, it is the moments of Λ ′ ′
A

′(1) that are
of interest.

The leading order coefficients obtained in [1] are given in terms of derivatives of determin-
ants involving hypergeometric functions. These determinants are shown to satisfy a differen-
tial recurrence relation similar to a Toda lattice equation connected to τ -function theory in the
study of Painlevé differential equations. An interesting question put forward in [1] is whether
there is a differential equation in the symplectic and orthogonal cases which plays a part ana-
logous to Painlevé III in the unitary setting. Gharakhloo and Witte [17] have made promising
progress in this direction in their study of 2j− k and j− 2k bi-orthogonal polynomial systems
on the unit circle.

The authors of [1] also use their results to make conjectures for the asymptotic behaviour
of the moments of derivatives at the central point of L-functions with symplectic or orthogonal
symmetry. After stating our results in section 2, wewill extend these to give general conjectures
for the joint moments of the derivatives of L-functions with these symmetry types.
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Finally, one may also consider the characteristic polynomials on the unit circle and define
Λ̃A(θ) := ΛA(e−ıθ) where we set ı2 =−1 and the variable i will only be used as an index. In
this case, Gunes [18] has studied the joint moments

ˆ
Sp(2N)

|Λ̃A (0) |2s−h|Λ̃ ′ ′
A (0) |h dA, (1.3)

and obtained an asymptotic formula as N→∞ in the range α(s+ 3
2 )> h⩾ 0, where α(x)

denotes the greatest integer strictly less than x. The leading order coefficient for (1.3) is given
in terms of the expectation of a non-trivial random variable. Moreover, a link between this
coefficient and the σ-Painlevé III equation is established and a conjecture for the analogous
joint moments of quadratic Dirichlet L-functions is made.

1.1. Notation

Recall that an N×N matrix A is said to be unitary if AA∗ = I, where A∗ is the conjugate trans-
pose of A. The unitary symplectic group Sp(2N) is the subgroup of 2N× 2N unitary matrices
A which satisfy ATΩA=Ω, where

Ω=

(
0 I
−I 0

)
,

with I the N×N identity matrix. The special orthogonal group SO(2N) and O−(2N) are the
subsets of orthogonal 2N× 2N matrices with determinant +1 and −1, respectively. Each of
these matrix ensembles is endowed with the normalised Haar measure dA. The eigenvalues of
a matrix A in Sp(2N) or SO(2N) lie on the unit circle and come in N complex conjugate pairs.
Hence, the characteristic polynomial of A can be written as

ΛA (s) =
N∏
j=1

(
1− se−ıθj

)(
1− seıθj

)
=

N∏
j=1

(
1+ s2 − 2scosθj

)
,

and for matrices A ∈ O−(2N), the characteristic polynomial is of the form

ΛA (s) = (1− s)(1+ s)
N−1∏
j=1

(
1− se−ıθj

)(
1− seıθj

)
= (1− s)(1+ s)

N−1∏
j=1

(
1+ s2 − 2scosθj

)
,

with θj ∈ R. In particular, for all three ensembles, the characteristic polynomial ΛA(s) is real
for s ∈ R and so Λ(n)(1) ∈ R for any integer n⩾ 0. Thus, the joint moments in (1.1) that we
study here are real for integer k1,k2.

For real numbers x, we use [x] to denote the greatest integer less than or equal to x. We write
Sk for the set of permutations on {1,2, . . . ,k}. The multinomial coefficient is defined as(

n
l1, . . . , lk

)
=

n!
l1! · · · lk!

,

for integers n and l1, . . . , lk with l1 + · · ·+ lk = n. Also, for integer n, whenever we write l1 +
· · ·+ lk = n or l1 + · · ·+ lk ⩽ n, this means that li ⩾ 0 are taken to be integers.

For any w= (w1, . . . ,wk) ∈ Ck, the Vandermonde determinant is denoted by

∆(w) := det
k×k

(
wj−1
i

)
=

∏
1⩽i<j⩽k

(wi−wj) ,
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and we write w2 = (w2
i )1⩽i⩽k. We will also make use of Vandermonde determinants of differ-

ential operators, written as

∆

(
d
dx

)
:= det

k×k

(
dj−1

dxj−1
i

)
=

∏
1⩽i<j⩽k

(
d
dxi

− d
dxj

)
.

Lastly, for u ∈ C and m ∈ Z, we let

gm (u) :=
1

2π ı

˛
|w|=1

ew+u/w
2

wm+1
dw

=
1

Γ(m+ 1) 0
F2

(
;
m
2
+ 1,

m+ 1
2

;
u
4

)
. (1.4)

These hypergeometric functions will play the role that the modified Bessel function plays in
the unitary case. For negative m, say m=−l, one should interpret the above expression as the
limit as m→−l.

2. Main results

We now state our main results. Our first two theorems give an asymptotic formula for the joint
moments of derivatives of characteristic polynomials of matrices over Sp(2N).

Theorem 2.1. Let 0⩽ n1 ⩽ n2 be integers and let k1,k2 be non-negative integers, not both 0.
Set k= k1 + k2. Then, we have

ˆ
Sp(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA= bSpk1,k2 (n1,n2) · (2N)

k(k+1)/2+k1n1+k2n2
(
1+O

(
N−1

))
,

where

bSpk1,k2 (n1,n2) =
(−1)k1n1+k2n2

2k(k+1)/2+k1n1+k2n2

∑
u1+···+uP=k1

(
k1

u1 . . . ,uP

)
(n1!)

k1∏P
i=1 (ai!)

ui
(∏[n1/2]

j=1 j
∑P

i=1 ui ai,j
)

×
∑

v1+···+vQ=k2

(
k2

v1 . . . ,vQ

)
(n2!)

k2∏Q
i=1 (bi!)

vi
(∏[n2/2]

j=1 j
∑Q

i=1 vi bi,j
)

×
∑

∑k
i=1 rs,i=Ws

s=2,...,[n2/2]

[n2/2]∏
s=2

(
Ws

rs,1, . . . ,rs,k

)( d
dx

)W1

det
k×k

(
g
2i−j+2

∑[n2/2]
s=2 srs,i

(x)
)∣∣∣∣

x=0

,

5
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and, more explicitly,

∑
∑k

i=1 rs,i=Ws

s=2,...,[n2/2]

[n2/2]∏
s=2

(
Ws

rs,1, . . . ,rs,k

)( d
dx

)W1

det
k×k

(
g
2i−j+2

∑[n2/2]
s=2 srs,i

(x)

)∣∣∣∣
x=0

= (−1)k(k−1)/2
∑

∑k
i=1 rs,i=Ws

s=1,...,[n2/2]

[n2/2]∏
s=1

(
Ws

rs,1, . . . ,rs,k

)

×
k∏

j=1

1(
2k+ 2

∑[n2/2]
s=1 srs,j+ 1− 2j

)
!

∏
1⩽i<j⩽k

2
[n2/2]∑
s=1

srs,j− 2
[n2/2]∑
s=1

srs,i− 2j+ 2i

 .

Here, we define P to be the number of distinct tuples ai := (ai,0,ai,1, . . . ,ai,[n1/2]) of integers
satisfying

ai,j ⩾ 0 and ai,0 + 2
[n1/2]∑
j=1

jai,j = n1,

and we let a1, . . . ,aP be these such tuples. In other words, the tuples ai correspond to the
partitions of n1 whose parts are all even or equal to 1 and P is the number of these partitions.
Similarly, Q is defined to be the number of distinct tuples bi = (bi,0,bi,1, . . . ,bi,[n2/2]) of integers
satisfying

bi,j ⩾ 0 and bi,0 + 2
[n2/2]∑
j=1

jbi,j = n2,

and we let b1, . . . ,bQ be these tuples. We define ai! :=
∏[n1/2]

j=0 ai,j! and bi! :=
∏[n2/2]

j=0 bi,j!.

Finally, Wj :=
∑P

i=1 ui ai,j+
∑Q

i=1 vi bi,j for j = 1, . . . , [n1/2] and Wj :=
∑Q

i=1 vi bi,j for j =
[n1/2] + 1, . . . , [n2/2].

Theorem 2.2. Let 0⩽ n1 ⩽ n2 be integers and let k1,k2 be non-negative integers, not both 0.
Set k= k1 + k2. Then, we haveˆ
Sp(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA= bSpk1,k2 (n1,n2) · (2N)

k(k+1)/2+k1n1+k2n2
(
1+O

(
N−1

))
,

where

bSpk1,k2 (n1,n2) =
(−1)k(k−1)/2+k1n1+k2n2

2k(k+1)/2+k1n1+k2n2
(n1!)

k1 (n2!)
k2

×
∑

2
∑k

j=1 li,j⩽n1
i=1,...,k1

∑
2
∑k

j=1mi,j⩽n2
i=1,...,k2

 k1∏
i=1

1(
n1 − 2

∑k
j=1 li ,j

)
!



×

 k2∏
i=1

1(
n2 − 2

∑k
j=1mi,j

)
!

 k∏
j=1

1
(2k+Vj− 2j+ 1)!

∏
1⩽i<j⩽k

(Vj−Vi− 2j+ 2i) .

Here Vj := 2
∑k1

i=1 li,j+ 2
∑k2

i=1mi,j for j = 1, . . . ,k.

6
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Our next two theorems give an asymptotic formula for the joint moments over SO(2N).

Theorem 2.3. With notation as in theorem 2.1, we haveˆ
SO(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA= bSOk1,k2 (n1,n2) · (2N)

k(k−1)/2+k1n1+k2n2
(
1+O

(
N−1

))
,

where

bSOk1,k2 (n1,n2) =
1

2k(k−3)/2+k1n1+k2n2

∑
u1+···+uP=k1

(
k1

u1 . . . ,uP

)
(n1!)

k1∏P
i=1 (ai!)

ui
(∏[n1/2]

j=1 j
∑P

i=1 ui ai,j
)

×
∑

v1+···+vQ=k2

(
k2

v1 . . . ,vQ

)
(n2!)

k2∏Q
i=1 (bi!)

vi
(∏[n2/2]

j=1 j
∑Q

i=1 vi bi,j
)

×
∑

∑k
i=1 rs,i=Ws

s=2,...,[n2/2]

[n2/2]∏
s=2

(
Ws

rs,1, . . . ,rs,k

)( d
dx

)W1

det
k×k

(
g
2i−j−1+2

∑[n2/2]
s=2 srs,i

(x)
)∣∣∣∣

x=0

,

and, more explicitly,

∑
∑k

i=1 rs,i=Ws

s=2,...,[n2/2]

[n2/2]∏
s=2

(
Ws

rs,1, . . . ,rs,k

)( d
dx

)W1

det
k×k

(
g
2i−j−1+2

∑[n2/2]
s=2 srs,i

(x)

)∣∣∣∣
x=0

= (−1)k(k−1)/2
∑

∑k
i=1 rs,i=Ws

s=1,...,[n2/2]

[n2/2]∏
s=1

(
Ws

rs,1, . . . ,rs,k

)

×
k∏

j=1

1(
2k+ 2

∑[n2/2]
s=1 srs,j− 2j

)
!

∏
1⩽i<j⩽k

2
[n2/2]∑
s=1

srs,j− 2
[n2/2]∑
s=1

srs,i− 2j+ 2i

 .

Theorem 2.4. With notation as in theorem 2.2, we haveˆ
SO(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA= bSOk1,k2 (n1,n2) · (2N)

k(k−1)/2+k1n1+k2n2
(
1+O

(
N−1

))
,

where

bSOk1,k2 (n1,n2) =
(−1)k(k−1)/2

2k(k−3)/2+k1n1+k2n2
(n1!)

k1 (n2!)
k2

×
∑

2
∑k

j=1 li,j⩽n1
i=1,...,k1

∑
2
∑k

j=1mi,j⩽n2
i=1,...,k2

 k1∏
i=1

1(
n1 − 2

∑k
j=1 li ,j

)
!

 k2∏
i=1

1(
n2 − 2

∑k
j=1mi,j

)
!



×
k∏

j=1

1
(2k+Vj− 2j)!

∏
1⩽i<j⩽k

(Vj−Vi− 2j+ 2i) .

Our final theorem gives an asymptotic formula for the joint moments over O−(2N) with
the leading order coefficient expressed in terms of bSpk1,k2(n1,n2).

7
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Theorem 2.5. Let 1⩽ n1 ⩽ n2 be integers and let k1,k2 be non-negative integers, not both 0.
Set k= k1 + k2. Then, we have

ˆ
O−(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA

= bO
−

k1,k2 (n1,n2) · (2N)
k(k+1)/2+k1(n1−1)+k2(n2−1) (1+O

(
N−1

))
,

where

bO
−

k1,k2 (n1,n2) = (−1)k1(n1−1)+k2(n2−1) 2knk11 n
k2
2 b

Sp
k1,k2

(n1 − 1,n2 − 1) ,

with bSpk1,k2(n1,n2) as defined in theorems 2.1 and 2.2.

Our theorems 2.1 and 2.3 exhibit the same structure as the asymptotic formulae obtained in
[1]. Namely, the leading order coefficients are expressed in terms of derivatives of determin-
ants of the hypergeometric functions gm(u). As mentioned in the introduction, these determ-
inants were shown to satisfy a differential recurrence relation [1, theorem 1.5] which allows
the leading order coefficients to be computed much more quickly as k1,k2 get large. However,
similarly to the unitary case considered in [25], the formulae given for the leading order coef-
ficients in theorems 2.1 and 2.3 may not be computationally efficient when n1,n2 are large
since one has to compute the tuples ai and bi. Aside from giving an alternate expression for
the leading order coefficients, the advantage of theorems 2.2 and 2.4 is that the formulae are
more computationally effective when n1,n2 are large and k1,k2 are small.

Using the standard random matrix philosophy allows us to make conjectures based on our
results for the joint moments of derivatives of L-functions with symmetry type Sp, SO or O−

in the sense of [23]. We give an example conjecture for the family of quadratic Dirichlet L-
functions at s= 1/2 below. This is an example of a family with symplectic symmetry so we
use our results for Sp(2N) as a model.

Conjecture 2.6. LetD(X) = {d a fundamental discriminant : |d|< X}, and let L(s,χd) be the
Dirichlet L-function attached to the quadratic character χd. Then, for 0⩽ n1 ⩽ n2 and k1,k2 ⩾
0 integers with k1,k2 not both 0, we have that as X→∞,

1
|D (X) |

∑
d∈D(X)

L(n1) (1/2,χd)
k1 L(n2) (1/2,χd)

k2 ∼ ak · bSpk1,k2 (n1,n2) · (logX)
k(k+1)/2+k1n1+k2n2 ,

where k= k1 + k2 and b
Sp
k1,k2

(n1,n2) is the randommatrix theory coefficient defined in theorems
2.1 and 2.2. Also,

ak =
∏

p prime

(1− 1/p)k(k+1)/2

1+ 1/p

((
1− 1/

√
p
)−k

+
(
1+ 1/

√
p
)−k

2
+

1
p

)
,

is an arithmetic constant depending on the family of L-functions. We note that ak is the same
coefficient appearing in the conjectures for the moments of L(1/2,χd), see [11, 24].

To the best of our knowledge, there are no results on the moments of derivatives of these
quadratic Dirichlet L-functions over number fields. However, the moments of derivatives of
L-functions over function fields have been investigated. For this discussion, we let Fq denote
a finite field with q elements and letH2g+1 be the subset of square-free, monic polynomials of
degree 2g+ 1 in the polynomial ringFq[x]. For eachD ∈H2g+1, we have aDirichlet L-function
L(s,χD) attached to the quadratic character χD with conductor |D| := q2g+1. This family of L-
functions also exhibits symplectic symmetry. Andrade and Rajagopal [3] and subsequently

8
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Andrade and Jung [2] studied the mean values of L(n)(1/2,χD) and an asymptotic formula for
the first moment of L(n)(1/2,χD) is given in [2] which implies that for any positive integer n
as g→∞,

1
|H2g+1|

∑
D∈H2g+1

L(n) (1/2,χD)∼
(−1)n

2(n+ 1)
A(1) · (2g+ 1)n+1

. (2.1)

Here, A(1) is given as an Euler product over the monic, irreducible polynomials in Fq[x] and
is the same arithmetic factor that appears in the asymptotic formula for the first moment of
L(1/2,χD). The following proposition shows that (2.1) is indeed the asymptotic formula pre-
dicted by our conjecture in this case.

Proposition 2.7. For n⩾ 1 an integer, we have that

bSp0,1 (0,n) =
(−1)n

2(n+ 1)
.

Also, for n⩾ 1, we have

bSO0,1 (0,n) = 1.

A mixed second moment involving a second derivative of these quadratic Dirichlet L-
functions over function fields was considered by Djanković and Ðokić [13]. In particular,
theorem 1.1 and remark 1.2 in [13], along with Florea’s asymptotic formula for the second
moment of L(1/2,χD) in [15], imply that

1
|H2g+1|

∑
D∈H2g+1

L(1/2,χD)L ′ ′ (1/2,χD)

log2 q
∼
(
1− q−1

)
80

B (1/q) · (2g+ 1)5 .

Similarly to the previous asymptotic formula, B(1/q) is given as an Euler product over monic,
irreducible polynomials and it agrees with the arithmetic factor appearing in the asymptotic
formula for the second moment of L(1/2,χD). This result is therefore consistent with the
prediction of our conjecture as we compute that bSp1,1(0,2) = 1/80.

One can naturally use our theorems 2.1–2.5 to make analogous conjectures for the joint
moments of derivatives at the central point for any family of L-functions with symplectic or
orthogonal symmetry.

3. Preliminaries

We begin with the following two lemmas concerning Vandermonde determinants of differen-
tial operators. The first is quoted from [1, lemma 2.8] and follows from the definition.

Lemma 3.1. Let f1(x), . . . , fk(x) be k− 1 times differentiable. Then

∆

(
d
dx

) k∏
i=1

fi (xi) = det
k×k

(
f( j−1)
i (xi)

)
.

Lemma 3.2. Let f1(x,y), . . . , fk(x,y) be k− 1 times differentiable in x and y. Then

∆

(
d
dx

)
∆

(
d
dy

) k∏
i=1

fi (xi,yi)

∣∣∣∣∣x1=···=xk=X,
y1=···=yk=Y

=
∑
µ∈Sk

det
k×k

(
di+j−2

dXi−1dYj−1
fµ(i) (X,Y)

)
.

9
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In particular, when f1 = · · ·= fk = f, we have

∆

(
d
dx

)
∆

(
d
dy

) k∏
i=1

f(xi,yi)

∣∣∣∣∣x1=···=xk=X,
y1=···=yk=Y

= k!det
k×k

(
di+j−2

dXi−1dYj−1
f(X,Y)

)
.

Proof. The case when f1 = · · ·= fk = f is the result of [1, lemma 2.9] and the proof of the
general case follows the same lines. By lemma 3.1, we have

∆

(
d
dx

) k∏
i=1

fi (xi,yi) = det
k×k

(
dj−1

dxj−1
i

fi (xi,yi)

)
=
∑
µ∈Sk

sign(µ)
k∏

i=1

dµ(i)−1

dxµ(i)−1
i

fi (xi,yi) .

Then, by lemma 3.1 again, we have that

∆

(
d
dx

)
∆

(
d
dy

) k∏
i=1

fi (xi,yi)

∣∣∣∣∣xi=X,
yi=Y

=
∑
µ∈Sk

sign(µ) ∆

(
d
dy

) k∏
i=1

dµ(i)−1

dxµ(i)−1
i

fi (xi,yi)

∣∣∣∣∣xi=X,
yi=Y

=
∑
µ∈Sk

sign(µ) det
k×k

(
dµ(i)+j−2

dxµ(i)−1
i dyj−1

i

fi (xi,yi)

)∣∣∣∣∣xi=X,
yi=Y

=
∑
µ∈Sk

sign(µ)det
k×k

(
dµ(i)+j−2

dXµ(i)−1dYj−1
fi (X,Y)

)

=
∑
µ∈Sk

det
k×k

(
di+j−2

dXi−1dYj−1
fµ(i) (X,Y)

)
,

where we have interchanged the rows of the matrix to obtain the final line.

We next express a certain contour integral in terms of the hypergeometric functions gm(u).

Lemma 3.3. Let k ∈ Z and let n⩾ 1 be an integer. Then, for complex numbers u1, . . . ,un, we
have

1
2π ı

˛
|w|=1

exp

w+
n∑

j=1

uj
w2j

 dw
wk+1

=
∞∑

m2,...,mn=0

 n∏
j=2

umj

j

mj!

gk+2
∑n

j=2 jmj
(u1) ,

where gm(u) is the hypergeometric function defined in (1.4).

Proof. We compute the integral by determining the coefficient of wk in the exponential factor
of the integrand. So, let an(k) be the coefficient of wk in exp(w+

∑n
j=1

uj
w2j ). Then,

exp

w+
n∑

j=1

uj
w2j

= exp
( un
w2n

)
exp

w+
n−1∑
j=1

uj
w2j


=

( ∞∑
m=0

umn
m!
w−2nm

)( ∞∑
m=−∞

an−1 (m)w
m

)
.

10
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From this it follows that

an (k) =
∞∑

mn=0

umn
n

mn!
an−1 (k+ 2nmn)

=
∞∑

m2,...,mn=0

 n∏
j=2

umj

j

mj!

a1

k+ 2
n∑

j=2

jmj

 .

We then see that by definition, a1(k+ 2
∑n

j=2 jmj) = gk+2
∑n

j=2 jmj
(u1) and hence

an (k) =
∞∑

m2,...,mn=0

 n∏
j=2

umj

j

mj!

gk+2
∑n

j=2 jmj
(u1) ,

as required.

The next lemma allows us to take higher order derivatives of determinants of functions.

Lemma 3.4 (lemma 13 in [25]). Let s⩾ 0, k⩾ 1 be integers and ai,j(x) be sth differentiable
functions of x. Then(

d
dx

)s

det
k×k

(ai,j (x)) =
∑

l1+···+lk=s

(
s

l1, . . . , lk

)
det
k×k

(
a(li)i,j (x)

)
,

where a(li)i,j (x) means that we take the lith derivative of ai,j(x).

We also include a lemma that allows us to explicitly evaluate certain determinants whose
entries are reciprocals of the Gamma function.

Lemma 3.5. Let k⩾ 1 and mj ⩾ 0 be integers for j = 1, . . . ,k. Then, we have

det
k×k

(
1

Γ(2k+mi− 2i− j+ 2)

)
=

k∏
j=1

1
(2k+mj− 2j)!

∏
1⩽i<j⩽k

(mj−mi− 2j+ 2i) .

Proof. With our notation, equation (4.13) in [28] can be written as

det
k×k

(
1

Γ(zi− j+ 1)

)
=

∆(z1, . . . ,zk)∏k
j=1Γ(zj)

.

We take zi = 2k+mi− 2i+ 1 for i = 1, . . . ,k. Then, we have

det
k×k

(
1

Γ(2k+mi− 2i− j+ 2)

)
=

k∏
i=1

Γ(2k+mi− 2i+ 1)−1
∏

1⩽i<j⩽k

(mj− 2j−mi+ 2i) .

Since 2k+mi− 2i+ 1⩾ 1 for 1⩽ i ⩽ k, we have that Γ(2k+mi− 2i+ 1) = (2k+mi− 2i)!
which completes the proof.

Now, the shifted moments of the characteristic polynomials are defined as

I(G(2N) ;z1, . . . ,zk) :=
ˆ
G(2N)

ΛA (z1) · · ·ΛA (zk) dA.

These shifted moments have been computed by Conrey et al [10] and can be expressed in
the form of a multiple contour integral. We will use the following approximate versions of

11
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their formulae which follow easily from the results of [10] and the fact that (1− e−x)−1 =
x−1 +O(1) for small x.

Lemma 3.6 (corollary 2.4 in [1]). Let α1, . . . ,αk be complex numbers such that |αj| � 1/N
for j = 1,2, . . . ,k. Then

I
(
Sp(2N) ;e−α1 , . . . ,e−αk

)
=

(−1)k(k−1)/2

(2π ı)k k!

˛
· · ·
˛
|wi|=1

∆(w)∆
(
w2
)
eN

∑k
i=1(wi−αi)∏

1⩽i,j⩽k

(
w2
i −α2

j

) k∏
i=1

dwi
(
1+O

(
N−1

))
.

Lemma 3.7 (corollary 2.5 in [1]). Let α1, . . . ,αk be complex numbers such that |αj| � 1/N
for j = 1,2, . . . ,k. Then

I
(
SO(2N) ;e−α1 , . . . ,e−αk

)
=

(−1)k(k−1)/2 2k

(2π ı)k k!

˛
· · ·
˛
|wi|=1

∆(w)∆
(
w2
)(∏k

i=1wi
)
eN

∑k
i=1(wi+αi)∏

1⩽i,j⩽k

(
w2
i −α2

j

)
×

k∏
i=1

dwi
(
1+O

(
N−1

))
.

Lemma 3.8 (corollary 2.6 in [1]). Let α1, . . . ,αk be complex numbers such that |αj| � 1/N
for j = 1,2, . . . ,k. Then

I
(
O− (2N) ;e−α1 , . . . ,e−αk

)
=

(−1)k(k−1)/2 2k

(2π ı)k k!

˛
· · ·
˛
|wi|=1

∆(w)∆
(
w2
)(∏k

i=1αi

)
eN

∑k
i=1(wi+αi)∏

1⩽i,j⩽k

(
w2
i −α2

j

)
×

k∏
i=1

dwi
(
1+O

(
N−1

))
.

Below we give two expressions for the derivatives of these contour integral expressions for
shifted moments with respect to the shifts αj.

Lemma 3.9. Let n⩾ 0 and k⩾ 1 be integers. Then

dn

dαn
e−Nα∏k

i=1

(
w2
i −α2

) ∣∣∣∣∣
α=0

=

(
k∏

i=1

1
w2
i

)
n∑

m=0

(
n
m

)
(−N)n−m m!

∑
l1+···+lk=m

lj even

k∏
i=1

1

wlii
.

Proof. This follows from the proof of [1, lemma 2.7] where we have corrected a typo.

Lemma 3.10. Let n⩾ 0 and k⩾ 1 be integers. Then

dn

dαn
e−Nα∏k

i=1

(
w2
i −α2

) ∣∣∣∣∣
α=0

=

(
k∏

i=1

1
w2
i

) ∑
m1+2m2+···+nmn=n

m3=m5=···=0

n!
m1! · · ·mn!

(−N)m1

×
[n/2]∏
j=1

(
1
j

k∑
i=1

1

w2j
i

)m2j

.

12
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Proof. The proof is similar to that of [25, lemma 9]. First, we have

d
dα

e−Nα∏k
i=1

(
w2
i −α2

) = e−Nα∏k
i=1

(
w2
i −α2

) f1 (α) ,
where

f1 (α) =−N+ 2α
k∑

i=1

1
w2
i −α2

.

We can then write

dn

dαn
e−Nα∏k

i=1

(
w2
i −α2

) = e−Nα∏k
i=1

(
w2
i −α2

) fn (α) , (3.1)

where fn(α) is defined recursively by

fn+1 (α) = fn (α) f1 (α)+ f ′n (α) .

Now, let g(α) be a function such that g ′(α) = f1(α). Then, we have that

dn

dαn
eg(α) = eg(α)fn (α) .

But, by Faà di Bruno’s formula, we also have that

dn

dαn
eg(α) = eg(α)

∑
m1+2m2+···+nmn=n

n!
m1! · · ·mn!

n∏
j=1

(
g( j) (α)
j!

)mj

= eg(α)
∑

m1+2m2+···+nmn=n

n!
m1! · · ·mn!

n∏
j=1

(
f( j−1)
1 (α)

j!

)mj

.

Comparing the above two expressions for (d/dα)neg(α), we see that

fn (α) =
∑

m1+2m2+···+nmn=n

n!
m1! · · ·mn!

n∏
j=1

(
f( j−1)
1 (α)

j!

)mj

.

One can check that for j⩾ 1, we have

f( j)1 (0) =

{
0 if j even,

2j!
∑k

i=1w
−(1+j)
i if j odd.

Hence, we have that

fn (0) =
∑

m1+2m2+···+nmn=n
m3=m5=···=0

n!
m1! · · ·mn!

(−N)m1

[n/2]∏
j=1

(
1
j

k∑
i=1

1

w2j
i

)m2j

.

Evaluating (3.1) at α= 0 using this expression for fn(0) yields the desired result.

In the following two propositions we will compute the main contour integrals that we need
to evaluate.

13
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Proposition 3.11. Let k⩾ 1 and n⩾ 1 be integers. Also, let (m1, . . . ,mn) be a tuple of non-
negative integers. Then, we have

1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

n∏
j=1

(
k∑

i=1

1

w2j
i

)mj k∏
i=1

dwi
w2k
i

= (−1)k(k−1)/2 k!Nk(k+1)/2+2
∑n

j=1 jmj
∑

∑k
i=1 rs,i=ms

s=2,...,n

(
n∏

s=2

(
ms

rs,1, . . . ,rs,k

))

×
(

d
du

)m1

det
k×k

(
g2i−j+2

∑n
s=2 srs,i

(u)
)∣∣∣∣
u=0

, (3.2)

and, more explicitly,

1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

n∏
j=1

(
k∑

i=1

1

w2j
i

)mj k∏
i=1

dwi
w2k
i

= k!Nk(k+1)/2+2
∑n

j=1 jmj
∑

∑k
i=1 rs,i=ms

s=1,...,n

(
n∏

s=1

(
ms

rs,1, . . . ,rs,k

))

×
k∏

j=1

1(
2k+ 2

∑n
s=1 srs,j+ 1− 2j

)
!

∏
1⩽i<j⩽k

(
2

n∑
s=1

srs,j− 2
n∑

s=1

srs,i− 2j+ 2i

)
. (3.3)

Also, we have

1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

n∏
j=1

(
k∑

i=1

1

w2j
i

)mj k∏
i=1

dwi
w2k−1
i

= (−1)k(k−1)/2 k!Nk(k−1)/2+2
∑n

j=1 jmj
∑

∑k
i=1 rs,i=ms

s=2,...,n

(
n∏

s=2

(
ms

rs,1, . . . ,rs,k

))

×
(

d
du

)m1

det
k×k

(
g2i−j−1+2

∑n
s=2 srs,i

(u)
)∣∣∣∣
u=0

, (3.4)

and, more explicitly,

1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

n∏
j=1

(
k∑

i=1

1

w2j
i

)mj k∏
i=1

dwi
w2k−1
i

= k!Nk(k−1)/2+2
∑n

j=1 jmj
∑

∑k
i=1 rs,i=ms

s=1,...,n

(
n∏

s=1

(
ms

rs,1, . . . ,rs,k

))

×
k∏

j=1

1(
2k+ 2

∑n
s=1 srs,j− 2j

)
!

∏
1⩽i<j⩽k

(
2

n∑
s=1

srs,j− 2
n∑

s=1

srs,i− 2j+ 2i

)
. (3.5)
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Proof. First, note that

∆
(
w2
)
=∆

(
d
dX

)
exp

(
k∑

i=1

w2
i Xi

)∣∣∣∣∣
Xi=0

,

and

∆(w) eN
∑k

i=1 wi =∆

(
d
dY

)
exp

(
k∑

i=1

wiYi

)∣∣∣∣∣
Yi=N

.

We may also write

n∏
j=1

(
k∑

i=1

1

w2j
i

)mj

=
n∏

j=1

(
d
dtj

)mj

exp

 n∑
j=1

tj

k∑
i=1

1

w2j
i

∣∣∣∣∣∣
tj=0

.

Then, we have that

1

(2π ı)k
˛

· · ·
˛

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

n∏
j=1

(
k∑

i=1

1

w2j
i

)mj k∏
i=1

dwi
w2k
i

=∆

(
d
dX

)
∆

(
d
dY

) n∏
j=1

(
d
dtj

)mj

× 1

(2π ı)k
˛

· · ·
˛

exp

 k∑
i=1

w2
i Xi+wiYi+

n∑
j=1

tj

w2j
i

 k∏
i=1

dwi
w2k
i

∣∣∣∣∣∣Xi=0,
Yi=N,
tj=0

=

n∏
j=1

(
d
dtj

)mj

∆

(
d
dX

)
∆

(
d
dY

) k∏
i=1

 1
2π ı

˛
|w|=1

exp

w2Xi+wYi+
n∑

j=1

tj
w2j

 dw
w2k

∣∣∣∣∣∣Xi=0,
Yi=N,
tj=0

=

n∏
j=1

(
d
dtj

)mj

k!det
k×k

(
di+j−2

dXi−1dYj−1

1
2π ı

˛
|w|=1

exp

(
w2X+wY+

n∑
l=1

tl
w2l

)
dw
w2k

)∣∣∣∣∣X=0,
Y=N,
tl=0

,

where the last line is by lemma 3.2. Now,

di+j−2

dXi−1dYj−1

1
2π ı

˛
exp

(
w2X+wY+

n∑
l=1

tl
w2l

)
dw
w2k

∣∣∣∣∣
X=0,
Y=N

=
1

2π ı

˛
exp

(
wN+

n∑
l=1

tl
w2l

)
dw

w2k−2i−j+3

=
N2k−2i−j+2

2π ı

˛
exp

(
w+

n∑
l=1

N2ltl
w2l

)
dw

w2k−2i−j+3
.
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Therefore, we have

1

(2π ı)k
˛

· · ·
˛

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

n∏
j=1

(
k∑

i=1

1

w2j
i

)mj k∏
i=1

dwi
w2k
i

= k!
n∏

j=1

(
d
dtj

)mj

det
k×k

(
N2k−2i−j+2

2π ı

˛
exp

(
w+

n∑
l=1

N2ltl
w2l

)
dw

w2k−2i−j+3

)∣∣∣∣∣
tj=0

= k!Nk(k+1)/2
n∏

j=1

(
d
dtj

)mj

det
k×k

(
1

2π ı

˛
exp

(
w+

n∑
l=1

N2ltl
w2l

)
dw

w2k−2i−j+3

)∣∣∣∣∣
tj=0

= k!Nk(k+1)/2+
∑n

j=1 2jmj

n∏
j=1

(
d
duj

)mj

det
k×k

(
1

2π ı

˛
exp

(
w+

n∑
l=1

ul
w2l

)
dw

w2k−2i−j+3

)∣∣∣∣∣
uj=0

= (−1)k(k−1)/2 k!Nk(k+1)/2+
∑n

j=1 2jmj

n∏
j=1

(
d
duj

)mj

det
k×k

(
1

2π ı

˛
exp

(
w+

n∑
l=1

ul
w2l

)
dw

w2i−j+1

)∣∣∣∣∣
uj=0

,

where we have used the fact that detk×k(N−2i−jai,j) = N−3k(k+1)/2 detk×k(ai,j). Also, the fourth
line follows from the change of variables uj = N2jtj and in the last line we have inter-
changed the rows of the matrix. Next, by lemma 3.3, the contour integral appearing in the
determinant is

1
2π ı

˛
exp

(
w+

n∑
l=1

ul
w2l

)
dw

w2i−j+1
=

∞∑
l2,...,ln=0

(
n∏

s=2

ulss
ls!

)
g2i−j+2

∑n
s=2 sls

(u1) .

We use lemma 3.4 to carry out the differentiation of the determinant with respect to u2, . . . ,un
which gives us

n∏
j=1

(
d
duj

)mj

det
k×k

(
1

2π ı

˛
exp

(
w+

n∑
l=1

ul
w2l

)
dw

w2i−j+1

)∣∣∣∣∣
uj=0

=
∑

∑k
i=1 rs,i=ms

s=2,...,n

(
n∏

s=2

(
ms

rs,1, . . . ,rs,k

))

×
(

d
du1

)m1

det
k×k

 n∏
s=2

(
d
dus

)rs,i ∞∑
l2,...,ln=0

(
n∏

s=2

ulss
ls!

)
g2i−j+2

∑n
s=2 sls

(u1)

∣∣∣∣∣∣
uj=0

=
∑

∑k
i=1 rs,i=ms

s=2,...,n

(
n∏

s=2

(
ms

rs,1, . . . ,rs,k

))(
d
du

)m1

det
k×k

(
g2i−j+2

∑n
s=2 srs,i

(u)
)∣∣∣∣
u=0

. (3.6)

Putting it all together yields (3.2). We obtain the more explicit expression of (3.3) by perform-
ing the final derivative with respect to u and computing the resulting determinant. By lemma
3.4 again,

16
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∑
∑k

i=1 rs,i=ms

s=2,...,n

(
n∏

s=2

(
ms

rs,1, . . . ,rs,k

))(
d
du

)m1

det
k×k

(
g2i−j+2

∑n
s=2 srs,i

(u)
)∣∣∣∣
u=0

=
∑

∑k
i=1 rs,i=ms

s=1,...,n

(
n∏

s=1

(
ms

rs,1, . . . ,rs,k

))
det
k×k

((
d
du

)r1,i

g2i−j+2
∑n

s=2 srs,i
(u)

)∣∣∣∣
u=0

.

By definition, for j⩾ 0 we have that(
d
du

)j

gm (u) =
1

2π ı

˛
|w|=1

ew+u/w
2

wm+2j+1
dw= gm+2j (u) ,

and

gm (0) =
1

2π ı

˛
|w|=1

ew

wm+1
dw=

1
Γ(m+ 1)

.

Thus, the sum in (3.6) is equal to

∑
∑k

i=1 rs,i=ms

s=1,...,n

(
n∏

s=1

(
ms

rs,1, . . . ,rs,k

))
det
k×k

(
1

Γ
(
2i− j+ 2

∑n
s=1 srs,i+ 1

)) .

We evaluate the determinant above by first making the change of variables i 7→ k+ 1− i and
defining r̃s,i = rs,k+1−i so that the sum becomes.

(−1)k(k−1)/2
∑

∑k
i=1 rs,i=ms

s=1,...,n

(
n∏

s=1

(
ms

rs,1, . . . ,rs,k

))
det
k×k

(
1

Γ
(
2k− 2i− j+ 2

∑n
s=1 sr̃s,i+ 3

)) .

Note that since
∑k

i=1 rs,i =
∑k

i=1 r̃s,i, we may drop the tildes and then apply lemma 3.5 to
the determinant. Using the resulting expression for the sum in (3.6) yields (3.3). The proofs
of (3.4) and (3.5) are similar.

Proposition 3.12. Let k⩾ 1 and mj be integers for j = 1, . . . ,k. Then we have

1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2) eN∑k

i=1 wi∏k
j=1w

2k+mj

j

k∏
i=1

dwi =
∑
µ∈Sk

det
k×k

(
N2k+mµ(i)−2i−j+2

Γ
(
2k+mµ(i) − 2i− j+ 3

)) .

Proof. As in the proof of proposition 3.11, we write

∆(w)∆
(
w2
)
eN

∑k
i=1 wi =∆

(
d
dX

)
∆

(
d
dY

)
exp

(
k∑

i=1

w2
i Xi+wiYi

)∣∣∣∣∣Xi=0,
Yi=N

.

Then, we have that

1

(2π ı)k
˛

· · ·
˛

∆(w)∆
(
w2
)
eN

∑k
i=1 wi∏k

j=1w
2k+mj

j

k∏
i=1

dwi =∆

(
d
dX

)
∆

(
d
dY

) k∏
i=1

fi (Xi,Yi)

∣∣∣∣∣Xi=0,
Yi=N

,

17
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where

fi (Xi,Yi) =
1

2π ı

˛
|w|=1

e(w
2Xi+wYi)

w2k+mi
dw.

So, by lemma 3.2, we have

1

(2π ı)k
˛

· · ·
˛

∆(w)∆
(
w2
)
eN

∑k
i=1 wi∏k

j=1w
2k+mj

j

k∏
i=1

dwi =
∑
µ∈Sk

det
k×k

(
di+j−2

dXi−1dYj−1
fµ(i) (X,Y)

)∣∣∣∣X=0,
Y=N

.

Now,

di+j−2

dXi−1dYj−1
fµ(i) (X,Y)

∣∣X=0,
Y=N

=
1

2π ı

˛
|w|=1

eNw

w2k+mµ(i)−2i−j+3 dw=
N2k+mµ(i)−2i−j+2

Γ
(
2k+mµ(i) − 2i− j+ 3

) ,
and the proposition follows.

4. Proofs of the main results

In this section we will present the proofs of our main results. Our strategy is to obtain the
joint moments by differentiating the corresponding shifted moments with respect to the shifts.
Indeed, one may check by induction that for G(2N) ∈ {Sp(2N), SO(2N), O−(2N)}, we have
that
ˆ
G(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA

=

k1∏
j=1

(
d
dαj

)n1 k∏
j=k1+1

(
d
dαj

)n2

I
(
G(2N) ;e−α1 , . . . ,e−αk

)∣∣
αj=0

(
1+O

(
N−1

))
,

where k= k1 + k2. Also, the error terms in lemmas 3.6–3.8 are uniform in α so we obtain an
asymptotic formula after performing the differentiation.

4.1. The unitary symplectic group Sp(2N)

Proof of theorem 2.1. By the above argument and lemma 3.6, we have that

ˆ
Sp(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA=

(−1)k(k−1)/2

k!
JSpk1,k2 (n1,n2)

(
1+O

(
N−1

))
, (4.1)

where

JSpk1,k2 (n1,n2)

=

k1∏
j=1

(
d
dαj

)n1 k∏
j=k1+1

(
d
dαj

)n2 1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2) eN∑k

i=1(wi−αi)∏
1⩽i,j⩽k

(
w2
i −α2

j

) k∏
i=1

dwi

∣∣∣∣∣∣
αj=0

.

(4.2)
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We use lemma 3.10 to carry out the differentiation and obtain

JSpk1,k2 (n1,n2)

=
1

(2π ı)k
˛

· · ·
˛
 ∑

a1+2a2+···+n1an1=n1
a3=a5=···=0

n1!
a1! · · ·an1 !

(−N)a1
[n1/2]∏
j=1

(
1
j

k∑
i=1

1

w2j
i

)a2j


k1

×

 ∑
b1+2b2+···+n2bn2=n2

b3=b5=···=0

n2!
b1! · · ·bn2 !

(−N)b1
[n2/2]∏
j=1

(
1
j

k∑
i=1

1

w2j
i

)b2j


k2

∆(w)

×∆
(
w2
)
eN

∑k
i=1 wi

k∏
i=1

dwi
w2k
i

.

Recall the definition of the tuples ai and bi defined in the statement of the theorem. Then, we
can expand the brackets in the integrand of JSpk1,k2(n1,n2) as

 ∑
a1+2a2+···+n1an1=n1

a3=a5=···=0

n1!
a1! · · ·an1 !

(−N)a1
[n1/2]∏
j=1

(
1
j

k∑
i=1

1

w2j
i

)a2j


k1

=
∑

u1+···+uP=k1

(
k1

u1, . . . ,uP

)
(n1)!k1∏P
i=1 (ai!)

ui
(−N)

∑P
i=1 ui ai,0

[n1/2]∏
j=1

(
1
j

k∑
l=1

1

w2j
l

)∑P
i=1 ui ai,j

,

with a similar expression for the bracket to the power of k2 in the integrand. Using these
expansions, our expression for JSpk1,k2(n1,n2) becomes

JSpk1,k2 (n1,n2) =
∑

u1+···+uP=k1

(
k1

u1, . . . ,uP

)
(n1)!k1∏P

i=1 (ai!)
ui
(∏[n1/2]

j=1 j
∑P

i=1 ui ai,j
) (−N)

∑P
i=1 ui ai,0

×
∑

v1+···+vQ=k2

(
k2

v1, . . . ,vQ

)
(n2)!k2∏Q

i=1 (bi!)
vi
(∏[n2/2]

j=1 j
∑Q

i=1 vi bi,j
) (−N)

∑Q
i=1 vi bi,0

× 1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

[n2/2]∏
j=1

(
k∑
l=1

1

w2j
l

)Wj k∏
i=1

dwi
w2k
i

,

where Wj :=
∑P

i=1 ui ai,j+
∑Q

i=1 vi bi,j for j = 1, . . . , [n1/2] and Wj :=
∑Q

i=1 vi bi,j for j =
[n1/2] + 1, . . . , [n2/2]. We now apply proposition 3.11 to the contour integral above with
mj =Wj. In particular, using (3.2) gives us that
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JSpk1,k2 (n1,n2) = (−1)k(k−1)/2 k!Nk(k+1)/2
∑

u1+···+uP=k1

(
k1

u1, . . . ,uP

)
(n1)!

k1 (−N)
∑P

i=1 ui ai,0∏P
i=1 (ai!)

ui
(∏[n1/2]

j=1 j
∑P

i=1 ui ai,j
)

×
∑

v1+···+vQ=k2

(
k2

v1, . . . ,vQ

)
(n2)!

k2 (−N)
∑Q

i=1 vi bi,0∏Q
i=1 (bi!)

vi
(∏[n2/2]

j=1 j
∑Q

i=1 vi bi,j
) ·N2

∑[n2/2]
j=1 jWj

×
∑

∑k
i=1 rs,i=Ws

s=2,...,[n2/2]

[n2/2]∏
s=2

(
Ws

rs,1, . . . ,rs,k

)( d
dx

)W1

det
k×k

(
g
2i−j+2

∑[n2/2]
s=2 srs,i

(x)
)∣∣∣∣

x=0

.

Using the definition of Wj, we compute the power of N in the summand as

P∑
i=1

ui ai,0 +
Q∑
i=1

vi bi,0 + 2
[n2/2]∑
j=1

jWj =

P∑
i=1

ui

ai,0 + 2
[n1/2]∑
j=1

jai,j

+

Q∑
i=1

vi

bi,0 + 2
[n2/2]∑
j=1

jbi,j


= n1

P∑
i=1

ui+ n2

Q∑
i=1

vi

= k1n1 + k2n2.

Also, since ai,0 ≡ n1 (mod 2) and bi,0 ≡ n2 (mod 2) for all i, the factor of (−1) in the
summand is

(−1)
∑P

i=1 ui ai,0+
∑Q

i=1 vi bi,0 = (−1)n1
∑P

i=1 ui+n2
∑Q

i=1 vi = (−1)k1n1+k2n2 .

Combining these two observations with our expression for JSpk1,k2(n1,n2) and using (4.1) yields
the statement of the theorem.

Proof of theorem 2.2. We begin as in the proof of theorem 2.1 with (4.1) and (4.2). We use
lemma 3.9 for the derivatives in this case which gives us that

JSpk1,k2 (n1,n2) =
1

(2π ı)k
˛

· · ·
˛
|wi|=1

 n1∑
m=0

(
n1
m

)
(−N)n1−m m!

∑
l1+···+lk=m

lj even

k∏
i=1

1

wlii


k1

×

 n2∑
m=0

(
n2
m

)
(−N)n2−m m!

∑
l1+···+lk=m

lj even

k∏
i=1

1

wlii


k2

∆(w)∆
(
w2
)
eN

∑k
i=1 wi

k∏
i=1

dwi
w2k
i

.
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Rather than expand the brackets in the integrand, we write them as

 n1∑
m=0

(
n1
m

)
(−N)n1−m m!

∑
l1+···+lk=m

lj even

k∏
i=1

1

wlii


k1

=

 ∑
∑k

j=1 lj⩽n1
lj even

(−N)n1−
∑k

j=1 lj

(
n1∑k
j=1 lj

) k∑
j=1

lj

!

k∏
j=1

1

wljj


k1

=
∑

2
∑k

j=1 li,j⩽n1
i=1,...,k1

k1∏
i=1

(−N)n1−2
∑k

j=1 li,j

(
n1

2
∑k

j=1 li,j

)2
k∑

j=1

li,j

!

 k∏
j=1

1

w
2
∑k1

i=1 li,j
j

,

with a similar expression for the second bracket to the k2. We then have that

JSpk1,k2 (n1,n2) =
∑

2
∑k

j=1 li,j⩽n1
i=1,...,k1

k1∏
i=1

(−N)n1−2
∑k

j=1 li,j

(
n1

2
∑k

j=1 li,j

)2
k∑

j=1

li,j

!



×
∑

2
∑k

j=1mi,j⩽n2
i=1,...,k2

k2∏
i=1

(−N)n2−2
∑k

j=1mi,j

(
n2

2
∑k

j=1mi,j

)2
k∑

j=1

mi,j

!



× 1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2) eN∑k

i=1 wi∏k
j=1w

2k+2
∑k1

i=1 li,j+2
∑k2

i=1mi,j

j

k∏
i=1

dwi

=
∑

2
∑k

j=1 li,j⩽n1
i=1,...,k1

∑
2
∑k

j=1mi,j⩽n2
i=1,...,k2

(n1!)
k1 (n2!)

k2 (−N)k1n1+k2n2−2
∑k

j=1

(∑k1
i=1 li,j+

∑k2
i=1mi j

)

×

 k1∏
i=1

1(
n1 − 2

∑k
j=1 li ,j

)
!

 k2∏
i=1

1(
n2 − 2

∑k
j=1mi,j

)
!


× 1

(2π ı)k
˛

· · ·
˛
|wi|=1

∆(w)∆
(
w2) eN∑k

i=1 wi∏k
j=1w

2k+2
∑k1

i=1 li,j+2
∑k2

i=1mi,j

j

k∏
i=1

dwi.

We set Vj = 2
∑k1

i=1 li,j+ 2
∑k2

i=1mi,j for j = 1, . . . ,k. Then, by proposition 3.12, the contour
integral in the last line above is equal to

∑
µ∈Sk

det
k×k

(
N2k+Vµ(i)−2i−j+2

Γ
(
2k+Vµ(i) − 2i− j+ 3

))= Nk(k+1)/2+
∑k

j=1 Vj
∑
µ∈Sk

det
k×k

(
1

Γ
(
2k+Vµ(i) − 2i− j+ 3

)) .
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Hence, our expression for JSpk1,k2(n1,n2) becomes

JSpk1,k2 (n1,n2) = (−1)k1n1+k2n2 (n1!)
k1 (n2!)

k2 Nk(k+1)/2+k1n1+k2n2

×
∑
µ∈Sk

∑
2
∑k

j=1 li,j⩽n1
i=1,...,k1

∑
2
∑k

j=1mi,j⩽n2
i=1,...,k2

 k1∏
i=1

1(
n1 − 2

∑k
j=1 li ,j

)
!



×

 k2∏
i=1

1(
n2 − 2

∑k
j=1mi,j

)
!

det
k×k

(
1

Γ
(
2k+Vµ(i) − 2i− j+ 3

)) .

Now, by an argument similar to that given at the end of the proof of [25, theorem 25], we have
that the sums over li,j andmi,j do not depend on the choice of permutation µ. Explicitly, given a
permutation µ ∈ Sk, we can make the change of variables l̃i,j = li,µ( j) and m̃i,j = mi,µ( j). Then

we have that
∑k

j=1 l̃i,j =
∑k

j=1 li,j and
∑k

j=1 m̃i,j =
∑k

j=1mi,j. Also, we have

Vµ( j) = 2
k1∑
i=1

li,µ( j) + 2
k2∑
i=1

mi,µ( j) = 2
k∑

i=1

l̃i,j+ 2
k∑

i=1

m̃i,j.

Thus, we may take µ to be the identity and replace the sum over µ ∈ Sk by k!. To finish, we
apply lemma 3.5 with mj = Vj+ 1 to the last determinant which gives us

JSpk1,k2 (n1,n2) = (−1)k1n1+k2n2 k! (n1!)
k1 (n2!)

k2 Nk(k+1)/2+k1n1+k2n2

×
∑

2
∑k

j=1 li,j⩽n1
i=1,...,k1

∑
2
∑k

j=1mi,j⩽n2
i=1,...,k2

 k1∏
i=1

1(
n1 − 2

∑k
j=1 li ,j

)
!

 k2∏
i=1

1(
n2 − 2

∑k
j=1mi,j

)
!



×
k∏

j=1

1
(2k+Vj− 2j+ 1)!

∏
1⩽i<j⩽k

(Vj−Vi− 2j+ 2i) .

The theorem follows on using this final expression for JSpk1,k2(n1,n2) in (4.1).

4.2. The special orthogonal group SO(2N) and O−(2N)

Proof of theorem 2.3. The proof is similar to that of theorem 2.1 but we now use lemma
3.7 for the shifted moments. We again use lemma 3.10 for the derivatives and apply (3.4) in
proposition 3.11 to the resulting contour integral.

Proof of theorem 2.4. We follow the proof of theorem 2.2 using lemma 3.7 for the shifted
moments and lemma 3.9 for the derivatives. We then use proposition 3.12 withmj = Vj− 1 for
the contour integral and conclude the proof similarly using lemma 3.5.

Proof of theorem 2.5. Using the argument at the beginning of the section and lemma 3.8, we
have that
ˆ
O−(2N)

(
Λ
(n1)
A (1)

)k1 (
Λ
(n2)
A (1)

)k2
dA=

(−1)k(k−1)/2 2k

k!
JO

−

k1,k2 (n1,n2)
(
1+O

(
N−1

))
,
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where

JO
−

k1,k2
(n1,n2)

=

k1∏
j=1

(
d
dαj

)n1 k∏
j=k1+1

(
d
dαj

)n2 1

(2π ı)k
˛

· · ·
˛ ∆(w)∆

(
w2
)(∏k

i=1αi

)
eN

∑k
i=1(wi+αi)∏

1⩽i,j⩽k

(
w2
i −α2

j

) k∏
i=1

dwi

∣∣∣∣∣∣
αj=0

.

For the derivatives, we use the fact that for n⩾ 1,

dn

dαn
αeNα∏k

i=1

(
w2
i −α2

) ∣∣∣∣∣
α=0

= n
dn−1

dαn−1

eNα∏k
i=1

(
w2
i −α2

) ∣∣∣∣∣
α=0

.

Hence, we have that

JO
−

k1,k2
(n1,n2) = nk11 n

k2
2

k1∏
j=1

(
d
dαj

)n1−1

×
k∏

j=k1+1

(
d
dαj

)n2−1 1

(2π ı)k
˛

· · ·
˛

∆(w)∆
(
w2
)
eN

∑k
i=1(wi+αi)∏

1⩽i,j⩽k

(
w2
i −α2

j

) k∏
i=1

dwi

∣∣∣∣∣∣
αj=0

.

This integral expression is very similar to the expression for JSpk1,k2(n1 − 1,n2 − 1) given in (4.2)
and so we can proceed as in the proof of theorem 2.1 or 2.2, simply replacing (−N) by N when
we use lemma 3.9 or 3.10. In either case, we obtain the statement of the theorem.

4.3. Proof of proposition 2.7

We conclude this section by proving proposition 2.7. Let n⩾ 1 be an integer. Then, by theorem
2.2, we have that

bSp0,1 (0,n) =
(−1)n n!
2n+1

∑
2l⩽n

1
(n− 2l)! (2l+ 1)!

=
(−1)n n!

2n+1 (n+ 1)!

∑
2l⩽n

(
n+ 1
2l+ 1

)

=
(−1)n

2n+1 (n+ 1)

∑
2l⩽n

(
n
2l

)
+
∑

2l⩽n−1

(
n

2l+ 1

)
=

(−1)n

2n+1 (n+ 1)

n∑
l=0

(
n
l

)
=

(−1)n

2(n+ 1)
,

where we have used standard properties of the binomial coefficient. In the same manner, by
theorem 2.4, we have
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bSO0,1 (0,n) = 21−nn!
∑
2l⩽n

1
(n− 2l)! (2l)!

= 21−n
∑
2l⩽n

(
n
2l

)

= 21−n

 ∑
2l⩽n−1

(
n− 1
2l

)
+
∑
2l⩽n

(
n− 1
2l− 1

)
= 21−n

n−1∑
l=0

(
n− 1
l

)
= 1.

5. Numerical results

Below we give some numerical values for bSpk1,k2(n1,n2) and bSOk1,k2(n1,n2). Values of

bO
−

k1,k2
(n1,n2) follow from theorem 2.5 so are omitted. Numerical values for bSp0,k(0,2) and

bSO0,k(0,2) for k⩽ 10 are given in [1, section 4].

The following are bSp0,k(0,3) for k= 1, . . . ,4:

− 1
23
23

27 · 3 · 5 · 7
− 1
28 · 52 · 7 · 11

233
218 · 34 · 53 · 72 · 11

.

bSp0,k(0,4) for k= 1, . . . ,4:

1
2 · 5
251

24 · 32 · 52 · 7 · 11
89 · 13103

29 · 35 · 53 · 72 · 11 · 13 · 17
1627 · 693731

210 · 35 · 55 · 73 · 112 · 132 · 17 · 19 · 23
.

We also have bSp1,1(n1,1) for n1 = 0,1:

− 1
48

,
1
96

.

bSp1,1(n1,2) for n1 = 0,1,2:

1
80

, − 1
160

,
19

5040
.
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bSp1,1(n1,3) for n1 = 0,1,2,3:

− 1
120

,
1

240
, − 17

6720
,

23
13440

.

bSp1,2(n1,1) for n1 = 0,1:

1
11520

, − 1
23040

.

bSp1,2(n1,2) for n1 = 0,1,2:

103
3628800

, − 103
7257600

,
487

59875200
.

bSp1,2(n1,3) for n1 = 0,1,2,3:

1
89600

, − 1
179200

,
19

5913600
, − 1

492800
.

The following are bSO0,k(0,3) for k= 1,2,3,4:

1

3
22 · 5
1

24 · 3 · 7
1613

29 · 3 · 52 · 72 · 11 · 13
.

bSO0,k(0,4) for k= 1,2,3,4:

1

71
2 · 32 · 5 · 7
23 · 2657

2 · 33 · 53 · 72 · 11 · 13
7159 · 316201

26 · 35 · 54 · 73 · 112 · 13 · 17 · 19
.

We also have bSO1,1(n1,1) for n1 = 0,1:

1,
1
2
.

bSO1,1(n1,2) for n1 = 0,1,2:

2
3
,
1
3
,

7
30

.

bSO1,1(n1,3) for n1 = 0,1,2,3:

1
2
,
1
4
,
11
60

,
3
20

.

25
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bSO1,2(n1,1) for n1 = 0,1:

1
12

,
1
24

.

bSO1,2(n1,2) for n1 = 0,1,2:

19
630

,
19

1260
,

26
2835

.

bSO1,2(n1,3) for n1 = 0,1,2,3:

23
1680

,
23

3360
,

43
10080

,
1

336
.
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