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Abstract 

Machine learning techniques offer the potential to revolutionize the provision of metocean forecasts critical to the safe and successful 

operation of offshore infrastructure, leveraging the asset-level accuracy of point-based observations in conjunction with the benefits of 

the extended coverage (both temporally and spatially) of numerical modelling and satellite remote sensing data. Here, we adapt and 

apply a promising framework – originally proposed by the present authors for the prediction of wave conditions on the European North 

West Shelf – to the waters of the Gulf of Mexico. The approach consists of using an attention-based long short-term memory recurrent 

neural network to learn the temporal patterns from a network of available buoy observations, that is then combined with a random forest 

based spatial nowcasting model, trained on reanalysis data, to develop a complete framework for spatiotemporal prediction for the basin. 

By way of demonstration, the new method is applied for the short-range prediction of wave conditions up to 12 hours ahead, using in-

situ wave observations from the sparse network of National Data Buoy Center locations as an input, with the corresponding spatial 

mapping learned from the physics-based Met Office WAVEWATCH III global wave hindcast. The full spatiotemporal forecast system 

is assessed using independent measurements in the vicinity of the Louisiana Offshore Oil Port, previously unseen by the machine 

learning model. Results show that accurate real-time, rapidly updating wave predictions are possible, available at a fraction of the 

computational cost of traditional physics-based methods. The success of the approach, combined with the flexibility of the framework, 

further suggest its utility in related metocean challenges. While still at an early stage of development into a fully relocatable capability, 

it is intended that this contribution provides a foundation to stimulate a series of subsequent efforts to help support improved offshore 

planning and workability – including (but not limited to) applications linked with better resolving spatial variability across renewable 

energy sites, predicting ocean current regimes in the proximity of oil & gas platforms, as well as informing adaptive sampling strategies 

conducted by autonomous vessels – where the adoption of such a machine learning approach, that can be run on a laptop computer, 

having the potential to revolutionize data-driven decision-making by the industry. 

 

Introduction 

We are entering an exciting new era of data-driven weather prediction, where forecast models trained on historical data (including 

observations and reanalyses) offer an alternative to directly solving the governing equations of fluid dynamics (Schultz et al., 2021). By 

capitalizing on the vast amount of available historical data – and capturing their inherent patterns that are not easily represented via 

explicit equations – such machine learning weather prediction (MLWP) techniques have the potential to increase both forecast accuracy 

and efficiency in comparison to traditional numerical weather prediction (NWP) equivalents, where such information is more difficult 

to distil and the cost of computation is more expensive (Lam et al., 2023). Indeed, recent years have seen a succession of celebrated 

advances in the development of global MLWP models of the atmosphere – including Keisler (2022), Bi et al. (2022), Pathak et al. (2022) 

and Lam et al. (2023) – that have reported comparable performance to leading operational NWP models for a selection of variables at 

1.0° and 0.25° resolution; highlighting the emergent opportunities afforded by these types of approaches. 

Motivated primarily by the need to support the safe and successful operation of offshore infrastructure, the complementary 

development of regional MLWP models of the ocean have also been the subject of increasing research interest (Sonnewald et al. 



   

 

2021; Song et al., 2023).  While the use of machine learning techniques – loosely defined as the collection of algorithms (e.g. 

support vector machines, SVMs, random forests, RFs, and artificial neural networks, ANNs) for solving multi-variate, non-linear, 

non-parametric classification or regression problems – are themselves not new, recent advances in deep learning architectures have 

catalyzed their wider application, including forecasting of fundamental metocean parameters such as surface currents (e.g. 

Muhamed-Ali et al., 2021; Sinha & Abernathey, 2021) and waves (e.g. James et al., 2018; Fan et al. 2020). Popular deep learning 

architectures include multi-layer perceptrons (MLPs; comprising multiple sequential layers of neurons, each connected to the 

neurons of the previous and next layers), convolutional neural networks (CNNs; comprising multiple filter layers that weight its 

inputs, producing so-called ‘feature maps’), and recurrent neural networks (RNNs; comprising a hidden state to store information 

about the history of the sequences presented to its inputs; particularly useful in time-series forecasting). Reviews of some of the 

ocean-based applications of these approaches are presented in Sonnewald et al. (2021) and Song et al. (2023), however despite the 

similarity in the algorithms used, the potential for providing a standard, scalable and relocatable framework – that is both region 

and parameter agnostic – has not yet been realized. 

In this paper, we adapt and apply the promising Machine Learning for Low-Cost Offshore Modelling (MaLCOM) framework – 

originally proposed by the present authors for the prediction of wave conditions on part of the European North West Shelf (Chen et 

al., 2021, 2023) – to the waters of the Gulf of Mexico (GoM). The approach consists of using an attention-based long short-term 

memory (LSTM) RNN to learn the temporal patterns from a network of available observations, combined with an RF-based spatial 

nowcast model trained on reanalysis data, to develop a complete method for spatiotemporal forecasting for the entire region. Within 

a smaller and simpler area, Chen et al. (2023) reported equivalent performance to a leading operational NWP model under typical 

conditions, based on three locations as an input. In the present study, we are therefore motivated to test the approach within a 

different area, more than 30 times larger in size, under conditions of extreme sparsity, to better inform future developments. Here, 

forecasts are made using in-situ wave observations from six National Data Buoy Center (NDBC) buoy locations as an input, with 

the corresponding spatial mapping learned from the physics-based Met Office WAVEWATCH III global wave hindcast at 25 km 

resolution, and the performance assessed using independent measurements in the vicinity of the Louisiana Offshore Oil Port, 

previously unseen by the machine learning model. The structure and flexibility of the framework suggests its potential further utility 

in related metocean challenges, such as in enabling enhanced prediction of complex Loop Current (LC) and Loop Current Eddy 

(LCE) dynamics. While still at an early stage of refinement, it is intended that this contribution provides the basis for stimulating a 

series of subsequent efforts to directly support improved offshore planning and workability – including (but not limited to) 

applications linked with better resolving spatial variability across renewable energy sites, predicting ocean current regimes in the 

proximity of oil & gas platforms, as well as informing adaptive sampling strategies conducted by autonomous vessels – where the 

adoption of such a machine learning approach, that can be run on a laptop computer, has the potential to revolutionize data-driven 

decision-making by the industry. 

The structure of this paper is as follows: the ‘Models and Methods’ section presents an overview of the machine learning approach 

that forms the basis of the framework developed, while the ‘Application’ section presents an example of its use for short-range 

forecast purposes. The final section presents a discussion of the concept, as well as outlining opportunities for further work. 

 

Models and Methods 

The complete framework consists of combining a site-specific temporal forecasting model (Chen et al., 2023) with a spatial nowcasting 

model (Chen et al., 2021), as shown in Figure 1. Here, the key steps include the pre-processing of the real-time input data, the machine 

learning-based mapping from these observations to the spatial forecast, and the post-processing/visualization of the output data. In full 

spatiotemporal prediction mode, the machine learning component uses an attention-based LSTM-RNN to produce a temporal forecast 

of the conditions at each of the observation locations, that in turn force an RF-based spatial model driven by the conditions at these same 

locations.  The temporal model was trained using two years of historical wave buoy observations for each site, while the spatial model 

was trained using two years of physics-based hindcast wave data, with subsequent testing on a further unseen month, as described below. 

 



   

 

 

Figure 1: Overview of the MaLCOM framework, where the key steps include the pre-processing of the real-time input data, the machine learning-

based mapping from these observations to the spatial forecast, and the post-processing/visualization of the output data. In full spatiotemporal 

prediction mode, the machine learning component uses an attention-based LSTM-RNN to produce a temporal forecast of the conditions at each 

of the observation locations, that in turn force an RF-based spatial model driven by the conditions at these same locations. Here, the dashed 

lines indicate the data used for model training, while the solid lines indicate the data used in operational real-time mode. 

 

Figure 2 presents a map of the bathymetry of the GoM, corresponding to the area of the model domain. The colored markers indicate 

the position of the six input wave buoy locations (red dots), as well as the independent evaluation site (blue star), with the data 

collected by a combination of Datawell Directional Wave Rider Mk III and NDBC Self Contained Ocean Observing Payload 

(SCOOP) platforms. Coincident observations of significant wave height (Hs), mean wave direction (MDir) mean wave period (Tm), 

peak wave period (Tp) were recorded for all six input wave buoy locations during the period 1 January 2021 to 31 January 2023, 

with training conducted for the period 1 January 2021 to 31 December 2022, and subsequent testing (evaluation) conducted for the 

unseen month of January 2023. 

 



   

 

 

Figure 2: Map of the bathymetry of the GoM, corresponding to the area of the model domain. The colored markers indicate the position of the 

six input wave buoy locations (red dots), as well as independent evaluation site (blue star). Here, the gray box in the top right hand corner 

denotes the size of the area originally used in the MaLCOM framework development of Chen et al. (2021) and Chen et al. (2023). 

 

The pre-processing of the observations is particularly important for the training of the temporal model. As with all methods 

involving timeseries prediction, gap filling is necessary to maintain the continuity and coherence of the observations, as well as 

maximizing the quantity of data able to be used and minimizing the potential for skewing the statistics. Since the present in-situ 

records are largely complete (i.e. mostly only requiring alignment onto a consistent half-hourly time base) then this is achieved via 

linear interpolation of each of the four parameters from each of the six input wave buoy locations independently.  However, as 

metocean parameters are known to exhibit seasonal, annual and interannual trends, it is not necessarily always appropriate to simply 

rely on indiscriminate temporal patterns to learn the future behavior. To suitably represent this seasonality, multiple training datasets 

are therefore constructed using a multi-year rolling three-month window (within which waves are typically well correlated) for 

subsequent application based on the forecast period sharing the same month on which it is centered. To prevent high-magnitude 

variables (such as wave direction) from overwhelming low-magnitude variables (such as significant wave height), which may then 

make the model unstable and suffer from poor performance and increased sensitivity to large input values, all observations are 

rescaled to have an interval of [0, 1], using a maximum-minimum normalization process (thus requiring the output of the temporal 

model to later be transformed back to absolute values using linear rescaling).  To further support the optimal selection of forcing 

variables, an elastic net algorithm (Pirhooshyaran & Snyder, 2020) with cross-validation (Meyer et al., 2018) was employed to 

choose the best features for temporal model training, resulting in the inclusion of all of the parameters that were available from the 

observations (i.e. Hs, MDir, Tm and Tp). Finally, the training data was truncated into shorter sequences for the temporal model, using 

a sliding window, consistent with its multistep lookback / multistep forecast structure. Note that unlike with deep learning models, 

there is no requirement for the inputs to RF models to undergo any engineering, normalization or transformation of their features, 

owing to the differences in how these data are inherently handled (Molnar, 2020; Chen et al., 2021). 

The temporal model is fully described by Chen et al. (2023). This is based on an attention encoder-decoder LSTM-RNN structure, 

a type of sequence-to-sequence timeseries model, used to forecast conditions at multiple future time steps according to conditions 

at multiple previous time steps. For the present study, forecasts are generated at a half-hourly interval up to 12 hours (i.e. 24 time 

steps) ahead, considering the previous 24 hours i.e. (48 time steps) of observations, consistent with findings by Pirhooshyaran et al. 

(2020) that a lookback period of twice the length of the forecast horizon is optimal with respect to accuracy. Compared with a 

simple encoder-decoder LSTM-RNN structure (Sutskever et al., 2014) configured to read the input sequence, encode it, decode it 

and transfer it to further layers – but importantly only providing the hidden state from the last time step from the encoder – the 

attention mechanism (Luong et al., 2015) exposes the output from both the encoder and the decoder at each timestep, helping the 



   

 

network identify the parts of the input that are more correlated with the target elements of a prediction task and therefore improving 

the retention (‘memory’) of information from earlier timesteps  (Du et al., 2020). Following Chen et al. (2023), we additionally 

incorporate a time-distributed dense layer between the encoder–decoder layer and the output, further increasing the complexity and 

potentially the accuracy of the network; with the evaluation of the performance of the whole model based on its ability to regress 

the output sequence. 

The spatial model is fully described by Chen et al. (2021). This is based on an RF structure, a type of ensemble learning regression 

model, in which multiple parallel decision trees are used to infer values following a hierarchy of binary rules determined from 

training data (Breiman, 2001). For the present study, the output from the physics-based Met Office WAVEWATCH III global 

hindcast model was used to define the mapping between the individual wave buoy locations and the rest of the model domain as 

described by the coordinates of [18.12°N to 33.88°N] and [98.00°W to 77.00°W]. This hindcast is forced by atmospheric 10 m 

wind fields from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA5 Global Reanalysis at 0.25 degree 

resolution (Hersbach et al., 2020) and configured on a three-tier Spherical Multiple-Cell (SMC) grid mesh (Li, 2012; Saulter et al., 

2016), comprising 25 km-12 km-6 km resolution cells that are then regridded to a regular 20 km grid of 60 x 60 grid points for the 

convenience of application. The wave model parameterizations follow those of the other Met Office operational systems (Valiente 

et al., 2023), with a spectral resolution of 36 linearly-spaced directional bins and 30 logarithmically-spaced frequency bins covering 

a period of between 25 and 1.5 seconds, from which integrated parameters, equivalent to the observations, including Hs, MDir, Tm 

and Tp can be extracted. 

 

Application 

The application of the spatiotemporal machine learning approach is demonstrated for the short-range prediction of wave conditions up 

to 12 hours ahead in the GoM. 

Figure 3 presents an example spatial comparison of the significant wave height (Hs) output of the physics-based hindcast (‘Hc’) 

model with that of the machine learning (‘ML’) model, relative to the 12Z run on 1 January 2023. Here, the wave height from the 

hindcast model is shown in the left hand column, the wave height obtained from the machine learning model is shown in the middle 

column, and the difference between the two (calculated as ML-Hc) is shown in the right hand column, at a lead time of T+0 (top 

row), T+6 (middle row) and T+12 (bottom row) hours ahead.  Consistent with Figure 2, the colored markers indicate the position 

of the six input wave buoy locations (red dots), as well as independent evaluation site (blue star). Encouragingly, despite the extreme 

sparsity of these input data, it is seen that the machine learning model impressively resolves the spatial structure of the wave fields, 

typically within ±25 cm of the hindcast model, particularly when mapping between adjacent input wave buoy locations with similar 

site characteristics (e.g. depth and exposure). Where larger differences in wave height of up to ±75 cm occur, then this is typically 

in areas that are less well constrained/represented by the input observations and their expected spatial translation, recognizing the 

distances between these as well as large bathymetric range in the basin. While the temporal evolution of the forecast appears stable, 

it is noted there is a small increase in the resulting spatially-averaged mean absolute error (MAE) from 0.1677 m to 0.1840 m, and 

root mean squared error (RMSE) from 0.0444 m to 0.0477 m at lead times of T+0 and T+12 hours ahead, respectively.  A further 

assessment of the machine learning model performance is considered in Figure 4. 

 



   

 

 

Figure 3: Example spatial comparison of the significant wave height (Hs) output of the physics-based hindcast (‘Hc’) model with that of the 

machine learning (‘ML’) model, relative to the 12Z run on 1 January 2023. The wave height from the hindcast model is shown in the left hand 

column, the wave height obtained from the machine learning model is shown in the middle column, and the difference between the two (i.e. ML-

Hc) is shown in the right hand column, at a forecast lead time of T+0 (top row), T+6 (middle row) and T+12 (bottom row) hours ahead.  Consistent 

with Figure 2, the overlaid markers indicate the six input wave buoy locations (red dots) and independent evaluation site (blue star). 

 

Figure 4 presents an example temporal comparison of the significant wave height (Hs) output of the machine learning (‘ML’) model 

with that of the independent observations from the NDBC wave buoy (“buoy obs.”) in the vicinity of the Louisiana Offshore Oil 

Port, using one month of data from January 2023. This site (marked by the blue star in the earlier figures and previously unseen by 

the model) is near the head of the Mississippi Canyon, 55 km southeast of Port Fourchon, Louisiana. Significantly, it is 235 km 

from the nearest of the six input wave buoy locations, and on the far side of the Mississippi Riva Delta which (together with its 

coastal characteristics) combine to make it more challenging to predict. The timeseries of the T+0 (i.e. nowcast) performance (black 

line) is shown in Figure 4A, relative to that of the hindcast (solid blue line) and the buoy observations (dashed blue line). Here, it 

is seen the machine learning model suitably resolves the temporal structure of the in-situ wave data, albeit with a tendency to over-

estimate the wave height consistent with that of the hindcast data on which the spatial model was trained (e.g. 1-5 January and 21-

25 January, for example). This difference is particularly prominent during periods of low wave height (e.g. Hs < 0.5 m) and likely 

associated with the extreme sparsity of the inputs adversely affecting its ability to reconstruct the spatial field (see Appendix 1), as 

well as the quantity of previous events with similar combinations of wave characteristics seen within the training period, resulting 

in a lower coefficient of determination (r2) of 0.64 compared to 0.86 (see Appendix 2). While limited in opportunities to test this 



   

 

further due to the constraints of available in-situ data, previous work (Chen et al., 2021, 2023) suggests that increasing both the 

density of input observations and the length of the training period would increase skill, achieving parity of performance compared 

to traditional physics-based methods. To complement this assessment, scatterplots of the machine learning model forecast 

performance at a lead time of T+0 (left hand column), T+6 (middle column) and T+12 (right hand column) hours ahead are shown 

in Figure 4B, where the first of these is simply an alternative presentation of the same comparison presented in Figure 4A. As 

expected, it is noted there is a small decrease in performance with forecast horizon, largely arising from the accuracy of the 

prediction of the future Hs, MDir, Tm and Tp conditions at the input wave buoy locations, indicated by a decrease in the coefficient 

of determination (r2) from 0.64 to 0.55 at lead times T+0 and T+12 hours ahead, respectively. However, again, this is expected to 

be able to be remedied by increasing the length of the training period. 

 

 

Figure 4: Example temporal comparison of the significant wave height (Hs) output of the machine learning (‘ML’) model with that of the 

independent observations from the NDBC wave buoy (“buoy obs.”) in the vicinity of the Louisiana Offshore Oil Port, using one month of data 

from January 2023. Figure 4A: Timeseries of the machine learning model performance ( ‘ML’, black line), relative to that of the physics-based 

hindcast (‘Hc’, solid blue line) and the buoy observations (‘Buoy obs.’, dashed blue line) at a nowcast lead time of T+0. Figure 4B: Scatterplots 

of machine learning model performance, relative to the buoy observations, at a lead time of T+0 (left hand column), T+6 (middle column) and 

T+12 (right hand column) hours ahead.  The diagonal gray line shows an (ideal) 1:1 relationship. 

 

Discussion 

These results show the real potential for the application of a spatiotemporal machine learning approach, combining an LSTM-RNN and 

an RF-based surrogate model, for the improved prediction of metocean conditions in the GoM. Once trained, the persistence model can 

be run at low computational cost, taking advantage of both rapidly updating observations (which enable the model to issue more frequent 

forecasts), and existing regional physics-based hindcast data (which enable the model to achieve higher spatial resolution) (Chen et al., 

2023). While opportunities for the further development of the GoM configuration are acknowledged, this is deemed an important tool 

in supporting improved offshore planning and workability – including (but not limited to) applications linked with better resolving 



   

 

spatial variability across renewable energy sites, predicting ocean current regimes in the proximity of oil & gas platforms, as well as 

informing adaptive sampling strategies conducted by autonomous vessels – where the adoption of such a machine learning approach, 

that can be run on a laptop computer, has the potential to revolutionize data-driven decision-making by the industry. 

As with all machine learning techniques, the accuracy of the output is contingent on the availability of suitable data from which to 

learn the relevant spatial and temporal patterns.  For the present study, only two years of data (from 1 January 2021 to 31 December 

2022) were used to train both the LSTM-RNN and the RF model components, based on the conditions at only six wave buoy 

locations (to which we were constrained by the very limited available/continuous wave observations reporting Hs, MDir, Tm and Tp). 

Compared with the previous application of the framework for the prediction of wave conditions within a 49,000 km2 area of the 

European North West Shelf – that reported equivalent performance to leading operational NWP models under typical conditions – 

the 1,600,000 km2 area of the GoM is approximately 30 times larger (with considerably more complicated bathymetry and 

dynamics), yet the model for the region included only three additional input wave buoy locations, and was trained using 9 and 19 

years less data for the temporal and spatial model components, respectively.  As such, this is therefore an example of extreme 

sparsity and the performance of the machine learning model considered particularly impressive in this context. 

Increasing the quantity and quality of information available for model training, as well as the inclusion of further model forcing 

locations in more optimal positions for capturing the evolution of conditions within both deep and shallow water, are likely key to 

improving performance. Extending the amount of usable (concurrent) observations for training the temporal model may be achieved 

by more advanced methods of gap filling that exploit temporal and spatial dependencies rooted in the wave buoy data, such as a 

low rank tensor completion with truncated nuclear norm algorithm (Chen et al., 2022), with the previous validation of such 

approaches demonstrating these are capable of restoring datasets missing up to 20% of their values with a coefficient of 

determination (r2) exceeding 0.9. Extending the period of training for the spatial model may be achieved by using the full extent of 

the available hindcast (i.e. 1 January 1980 to 31 December 2022), with an additional advantage potentially able to be leveraged by 

using these data at their native spherical multiple cell resolution. It is noted that while these products generally perform very well, 

the temporal comparison of the output of the hindcast with that of the independent observations from the wave buoy in the vicinity 

of the Louisiana Offshore Oil Port shows that, particularly in coastal areas, differences (of up to ~0.5m at times) can still  exist and 

these errors will then be transferred to the (learned) spatial surrogate. In addition to maximizing the exploitation of existing data, 

both satellites and ships can also provide additional methods of expanding the observation network via remote sensing and in-situ 

measurements. For example, by processing wave-induced motions from vessels for real-time sea state estimation at their locations, 

Mounet et al (2023) recently demonstrated these can be used as an input similarly to traditional  observations. Integration of such 

response-based estimates have shown promising potential to supplement (or even replace) wave buoy records when used in nowcast-

only mode (Mounet et al., 2023), increasing the accuracy and precision of the output spatial wave data over a large extent of the 

computational domain, providing the basis for possible further application in full spatiotemporal mode (especially in locations 

where more traditional observations platforms are scarce). 

For reasons of scope and simplicity, the GoM configuration was constrained to the short-range prediction of wave conditions, 

particularly Hs, up to 12 hours ahead (recognizing that MDir, Tm and Tp are also output by the spatiotemporal model). However, the 

structure and flexibility of the framework suggests its potential further utility in related metocean challenges, such as in enabling 

enhanced prediction of complex LC/LCE dynamics within the region, by adopting the same coupled LSTM-RNN/RF machine 

learning approach. While this is still at an early stage of refinement, relevant work by Wang et al. (2019) and Muhamed-Ali et al. 

(2021) describing the development of an LSTM-RNN based model for the prediction of sea surface height and velocity structures 

in the same region have shown promising potential, hinting at the possible opportunities and benefits emerging from this type of 

approach. Indeed, within the GoM, the present authors see the application of the framework to the prediction of regional circulation 

patterns (rather than simply regional wave conditions) as being most significant in achieving real advantage for the industry from 

improved forecasts within the basin, owing jointly to the adverse impacts of LC/LCE presence on operational downtime (Steele et 

al., 2023), as well as the additional  attainable accuracy resulting from the ability to directly use the full extent of the available real-

time in-situ data to drive the model (Chen et al. 2021) – with the inclusion of new high-frequency radar-based surface current 

velocity observations across the Yucatan Channel likely of particular importance in this respect. For example, from an assessment 

of the spatiotemporal variability of the Yucatan Current (YC) using such data, DiMarco et al. (2023) established a dependence of 

the LC configuration on the location of the YC speed core, finding that the LC follows a more direct (retracted) inflow-outflow path 

when the speed core is near the channel midpoint and the LC extends further into the basin when the speed core moves toward the 

western side. Since rapid transitions in YC transports (e.g. associated with LCE shedding events) are not always well captured by 

traditional physics-based methods, the inclusion of these measurements is arguably able to be achieved most effectively and 

efficiently using data-driven approaches; crucially requiring no substantial alteration to the existing framework. 

Future applications will focus on extending forecast horizon, the integration of additional observations and training datasets for the 

prediction of a wider range of metocean parameters (particularly currents), as well as the further development of the concept into a 

fully relocatable capability, able to be readily deployed, tested and applied to support improved decision-making in other regions. 
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Appendix 1 

While the RF-based spatial model utilizes all of the available input data to define the mapping between the individual wave buoy 

locations and the rest of the model domain concurrently, from the entire sensor network rather than just that of the nearest site, it is an 

obvious fact that extreme sparsity nonetheless adversely affects its ability to reconstruct the spatial field – and this, in turn, is somewhat 

dependent on distance (i.e. locations further away will be more impacted).  Therefore, as an indication of areas where worse performance 

may be expected, Figure 5 presents a map of the mean coefficient of determination (r2) at each of the grid points for the period 1 January 

2021 to 31 December 2022, associated with its most correlated sensor in the network. Increasing the density of input observations, as 

well as optimizing the locations of their collection relative to the configuration and size of the model domain, is deemed important for 

increasing performance compared to traditional physics-based methods. 
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Figure 5: A map of the mean coefficient of determination (r2) at each of the grid points for the period 1 January 2021 to 31 December 2022, 

associated with its highest correlated sensor in the network. 

 

Appendix 2 

 

 



   

 
Figure 6: Scatterplots of physics-based hindcast model (left hand column) and machine learning model (right hand column) performance, 

relative to the buoy observations, at a lead time of T+0.  The diagonal gray line shows an (ideal) 1:1 relationship. Note that this is simply an 

alternative presentation of the same comparison presented as a timeseries in Figure 4A. 


