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Abstract
We examine sources of uncertainty in projections of Arctic amplification (AA) using the CMIP6
multi-model (MM) ensemble and single model initial-condition large ensembles of historical and
future scenario simulations. In the CMIP6 MMmean, the annual mean AA ratio is steady at
approximately 2.5, both in time and across scenarios, resulting in negligibly small scenario
uncertainty in the magnitude of AA. Deviations from the steady value can be found at the low and
high emission scenarios due to different root causes, with the latter being mostly evident in the
summer and autumn seasons. Best estimates of model uncertainty are at least an order of
magnitude larger than scenario uncertainty in CMIP6. The large ensembles reveal that irreducible
internal variability has a similar magnitude to model uncertainty for most of the 21st century,
except in the lowest emission scenario at the end of the 21st century when it could be twice as large.

1. Introduction

Arctic amplification (AA) of temperature change is an intrinsic part of a warming planet [1, 2]. It refers to
how the Arctic surface warms at a higher rate than the global surface, and is usually defined as the ratio of
Arctic mean surface warming to global mean surface warming [3], and can be sensitive to the exact definition
of the Arctic [4]. AA has been found in paleoclimate observations and modelling [5–7], simplified models of
the atmosphere [8, 9], satellite observations and reanalysis data [10–12], and in projections of future climate
[13, 14]. The causes of AA are generally understood to arise from a set of positive feedbacks, including those
related to sea-ice and snow cover [11, 15, 16], temperature [17], water vapour and clouds [18, 19], and heat
transport [20–23]. Each of these feedbacks interact with each other in complicated ways, and the relative
importance of each is debated [24].

Understanding and quantifying the factors that drive AA is important not only for explaining local
change in the Arctic, but also, as it strongly influences the equator-to-pole temperature gradient, for
predicting how the atmospheric general circulation of the planet responds to greenhouse warming. For
example, model spread in projections of the North Atlantic eddy-driven jet can be linked to the ratio of
upper-tropical warming to surface-based AA [25], and other jet metrics have been linked to lower-
tropospheric AA [26], whilst storm tracks have been shown to respond to changes in the equator-to-pole
temperature differences at upper and lower levels [27]. The impact of AA on lower latitudes remains a topic
of debate [28–30], with some arguing that addressing model deficiencies, such as a too-weak eddy feedback,
could help reconcile some of the differences between the observed link between AA and the mid-latitudes
and the lack of link in models [31–33].

Inter-model spread of AA remains large even in state-of-the-art climate models [14]. Here we use CMIP6
models and seven single model initial condition large ensembles to systematically examine the sources of
uncertainty in projections of AA: scenario uncertainty, model uncertainty, and internal variability [34], and
whether these vary seasonally. Scenario-based, or radiative forcing, uncertainty, arises from our lack of
knowledge of future greenhouse emissions. Model, or structural, uncertainty, arises from the various ways
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individual modelling centres construct and tune climate models. Finally, internal variability is the unforced
variability that arises due to natural chaotic variations in the earth system. Generally, internal variability is
understood to be irreducible, whereas inter-model spread can be reduced by gaining insight in to, and
improving the representation of, physical processes.

2. Data andmethods

Using the complete set of CMIP6 models, listed in table 1, with historical and any of the four future emission
scenarios (shared socioeconomic pathways (ssp) 126, 245, 370, and 585), we compute global mean and Arctic
mean (defined as the region poleward of 66.5◦ N, consistent with recent work [4]) area-averaged surface
temperatures for each model and scenario. The AA ratio is defined as the ratio of Arctic to global mean
warming, relative to the reference period, which we choose here to be the preindustrial period and define it
as the first 30 years of the historical run (1850–1879)

AA=
TArc (t)−TArc (tref)

TGlb (t)−TGlb (tref)
. (1)

For models with multiple ensemble members, we choose the first member only to compute the CMIP6
multi-model (MM) mean so as not to bias the results toward any particular model. All models are regridded
to a 1× 1 degree global grid before plotting, but area-averaged values are calculated on the model grid.

Seven of the models also provide large ensembles (table 1), where individual members differ from each
other by only their initial state and are otherwise subject to identical forcing. We levy these ensembles
alongside the CMIP6 MM ensemble to estimate model internal variability. With these, we also compute the
AA ratio of trends over 30 year periods in all ensemble members:

AA=
˙TArc

˙TGlb

. (2)

This AA metric does not require choice of reference period and can also be readily compared to reanalysis
products. We choose three reanalyses: ERA5 [35], MERRA2 [36], and JRA55 [37] for which we also calculate
the AA ratio of trends. For JRA55, we compute the trends over the periods 1960–1990, 1970–2000,
1980–2010, and 1990–2020, whilst for MERRA2 and ERA5 we compute the trends only over the last two
periods due to data availability.

3. Results

3.1. Scenario uncertainty
In the interest of minimizing internal variability and model differences when determining scenario
uncertainty, we first choose two long, well-separated time periods and compute the CMIP6 MMmean Arctic
and global mean warming at the end of the 21st century, 2071–2100, relative to the reference period. Figure 1
provides the MM-mean pattern of the local amplification of warming at this time. The warming at each grid
point scaled by the global surface warming reveals that each projection scenario produces consistent patterns
and magnitudes of local warming amplification. Northern Hemisphere land masses and the North Pacific
warm by between 1–2 times the global mean, while higher latitude land and Arctic ocean regions warm by
between two and more than four times faster than the global mean, with the greatest amplification of
warming found over the eastern Arctic ocean in the vicinity of the Barents Sea. The highest values spread
toward the central Arctic in the higher emission scenarios, likely due to more pan-Arctic sea-ice loss. No
regions are found in the MMmean that exhibit a negative local amplification in the Northern Hemisphere,
though some individual models do in the lower emission scenarios, generally found in the North Atlantic
warming hole region (supplemental figure 1). Figure 1 also shows more amplified warming of the Northern
Hemisphere, particularly over the land masses, in the larger forcing scenarios.

As AA is usually defined as a ratio, there can be issues, particularly when the denominator approaches
zero [38]. Here we note another consequence of this definition: pattern scaling. By normalizing local
temperature change by global mean surface temperature change, we leverage an empirical relationship
previously observed in climate models whereby the pattern of forced response in climate models is
proportional to the magnitude of surface warming, independent of the details of the forcing [39, 40]. A
consequence of this is that the magnitude of MM-mean AA is effectively independent of projection scenario,
or in other words, scenario uncertainty is negligible over the timescales and scenarios considered here, to the
extent that Arctic warming scales linearly with global warming. This is also true to a lesser extent for
individual models (table 1), but as these are given by a single ensemble member it is not clear whether
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Table 1. CMIP6 models, scenarios, and large initial condition ensembles used in this study. Emissions scenarios correspond to 1:
2.6Wm−2, 2: 4.5 Wm−2, 3: 7.0Wm−2, and 5: 8.5Wm−2 radiative forcing at the end of the 21st century. Values of AA given here
represent the mean across the 21st century, relative to the reference period 1850–1879.

Model Scenarios AA # LE members LE AA

ACCESS-CM2 1, 2, 3, 5 2.19, 2.20, 2.26, 2.13
ACCESS-ESM1-5 1, 2, 3, 5 2.43, 2.49, 2.39, 2.47 39, 40, 40, 40 2.53, 2.46, 2.42, 2.47
AWI-CM-1-1-MR 1, 2, 3, 5 2.53, 2.51, 2.43, 2.46
BCC-CSM2-MR 1, 2, 3, 5 2.28, 2.31, 2.36, 2.40
CAMS-CSM1-0 1, 2, 3, 5 1.94, 1.76, 1.88, 1.87
CanESM5 1, 2, 3, 5 2.53, 2.44, 2.34, 2.40 50, 50, 50, 50 2.71, 2.64, 2.58, 2.59
CanESM5-CanOE 1, 2, 3, 5 2.68, 2.69, 2.68, 2.69
CAS-ESM2-0 1, 2, 3, 5 2.24, 2.19, 2.01, 2.04
CESM2 1, 2, 3, 5 2.64, 2.65, 2.55, 2.62 /, /, 100, / /, /, 2.84, /
CESM2-WACCM 1, 2, 3, 5 2.31, 2.41, 2.44, 2.32
CMCC-CM2-SR5 1, 2, 3, 5 2.93, 2.86, 2.69, 2.77
CMCC-ESM2 1, 2, 3, 5 2.77, 2.78, 2.57, 2.59
CNRM-CM6-1 1, 2, 3, 5 2.24, 2.19, 2.19, 2.24
CNRM-CM6-1-HR 1, 2, 3, 5 2.59, 2.51, 2.47, 2.54
CNRM-ESM2-0 1, 2, 3, 5 1.73, 1.88, 1.95, 2.11
E3SM1-1 5 2.74
EC-Earth3 1, 2, 3, 5 3.03, 2.94, 2.96, 2.91 59, 73, 58, 59 3.26, 3.13, 3.03, 3.02
EC-Earth3-AerChem 3 2.87
EC-Earth3-CC 2, 5 3.39, 3.36
EC-Earth3-Veg 1, 2, 3, 5 3.35, 3.32, 3.23, 3.32
EC-Earth3-Veg-LR 1, 2, 3, 5 3.19, 3.02, 3.05, 3.00
FGOALS-f3-L 1, 2, 3, 5 2.71, 2.68, 2.64, 2.66
FGOALS-g3 1, 2, 3, 5 2.35, 2.43, 2.54, 2.49
FIO-ESM2-0 1, 2, 5 2.74, 2.61, 2.71
GFDL-CM4 2, 5 2.45, 2.40
GFDL-ESM4 1, 2, 3, 5 1.66, 1.77, 1.61, 1.66
GISS-E2-1-G 1, 2, 3, 5 2.52, 2.43, 2.36, 2.43 16, 25, 26, 17 2.50, 2.45, 2.40, 2.36
HadGEM3-GC31-LL 1, 2, 5 2.39, 2.38, 2.37
HadGEM3-GC31-MM 1, 5 2.79, 2.61
INM-CM4-8 1, 2, 3, 5 1.74, 1.87, 1.83, 1.93
INM-CM5-0 1, 2, 3, 5 2.57, 2.31, 2.47, 2.45
IPSL-CM5A2-INCA 1, 3 1.97, 1.87
IPSL-CM6A-LR 1, 2, 3, 5 2.78, 2.78, 2.66, 2.65
KACE-1-0-G 1, 2, 3, 5 2.60, 2.63, 2.52, 2.51
KIOST-ESM 1, 2, 5 2.53, 2.51, 2.33
MIROC6 1, 2, 3, 5 3.36, 3.21, 3.25, 3.07
MIROC-ES2L 1, 2, 3, 5 2.36, 2.35, 2.35, 2.37 10, 30, 10, 10 2.77, 2.81, 2.72, 2.70
MPI-ESM1-2-HR 1, 2, 3, 5 2.61, 2.53, 2.63, 2.41
MPI-ESM1-2-LR 1, 2, 3, 5 2.63, 2.52, 2.45, 2.53 30, 30, 30, 30 2.69, 2.66, 2.62, 2.63
MRI-ESM2-0 1, 2, 3, 5 2.98, 2.93, 2.79, 2.95
NESM3 1, 2, 5 3.26, 3.22, 3.24
NorESM2-LM 1, 2, 3, 5 2.77, 2.93, 3.04, 2.83
NorESM2-MM 1, 2, 3, 5 2.28, 2.17, 2.07, 2.14
TaiESM1 1, 2, 3, 5 2.50, 2.39, 2.34, 2.42
UKESM1-0-LL 1, 2, 3, 5 2.47, 2.41, 2.34, 2.37

differences are due to internal variability or scenario uncertainty. Averaged over the Arctic as defined above,
we find values of AA that vary from only 2.46 to 2.63 between greenhouse warming scenarios. Inter-model
standard deviation is reduced with increasing emission forcing, from 0.41 in ssp126 to 0.27 in ssp585. The
MM-mean AA scenario uncertainty can be further reduced if we include only the models for which data
from all four scenarios are available. This sampling of the CMIP6 models gives AA values of 2.53± 0.40 ,
2.50± 0.37, 2.47± 0.37, and 2.48± 0.34 at the end of the century. We investigate the small decrease in
MM-mean AA in the greater emissions scenarios in further detail in the next sections.

A reduction in AA from the lowest to highest forcing scenario is not simulated at the individual model
level when considering only a single realization. In table 1, the average of AA across the 21st century for each
model and scenario shows that no individual model for which all four scenarios were available exhibits a
monotonic decrease in AA with forcing, whilst six with either two or three of the scenarios do. On the other
hand, the majority of models have their lowest AA ratio in ssp370, as reflected by the MMmean. Two models
monotonically increase AA with forcing and many exhibit no clear tendency. On average, the across-scenario
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Figure 1. Annual-mean CMIP6 MM-mean local amplification of warming relative to global mean surface warming between the
end of the 21st century (2071-2100) and the preindustrial period (1850-1879) for (a) ssp126, (b) ssp245, (c) ssp370, (d) ssp585.
Area-weighted average of local amplification poleward of 66.5◦ N (region indicated by the green circle in (a)) and inter-model
standard deviation is indicated in the lower-left of each panel.

variation in AA in an individual model varies between 0.01 and 0.38, with an average of 0.16. This result
differs from other studies that have found scenario differences either under larger forcing than that
considered here [41] or with large ensembles of a single model [42]. This points to the potentially significant
influence of internal variability in a single realization of a model. Indeed, another study has found that one
realization per model in CMIP6 does not show a significant difference between scenarios, and at least 10
realizations is required to detect scenario differences [42]. The values of AA from each available scenario in
the large ensembles are given in the final column of table 1. Although only one of the six models
(GISS-E2-1-G) simulates a monotonic decrease of AA with forcing, the other five have generally higher AA
in the two lower forcing scenarios than in the two higher ones. Again, ssp370 exhibits typically the lowest AA.
We discuss internal variability in more detail in section 3.3.

3.2. Model uncertainty
A second consequence of the scaling of Arctic warming with global warming is that MMmean AA has little
variation in time as well as across scenarios (figure 2). We determine the AA from the temperature anomaly
for eight 30 year periods throughout the 21st century, relative to the preindustrial period. In all scenarios,
inter-model spread is reduced in time from its largest value of 3.3 (from 0.9 in GFDL-ESM4 to 4.2 in
NorESM2-LM) in the period 2000–2029. However, the spread remains significant even at the end of the
highest forcing scenario of between 1.9 (CAMS-CSM1-0) and 3.3 (MIROC6). It is worth noting that any
single model may not show the constant AA in time found in the MM-mean, and whether that is due to
model difference or internal variability is a point we return to in section 3.3. The inter-model spread when
the forcing is largest might be understood to be the best estimate of inter-model spread that can be obtained

4



Environ. Res.: Climate 3 (2024) 031003

Figure 2. Annual-mean CMIP6 AA for selected 30 year time periods relative to the pre-industrial period (1850–1879) for (a)
ssp126, (b) ssp245, (c) ssp370, (d) ssp585. The dashed grey lines indicate where AA= 1.0.

from the CMIP6 mean, as it maximises the signal-to-noise ratio, rather than the larger values found in
weaker emissions scenarios which may include a large contribution from internal variability.

The linearity upon which the scaling depends begins to break down by the end of the 21st century when
looking at the lowest and highest emission scenarios, but for different reasons. MM-mean AA begins to
increase slightly in ssp126, attributable to a slowing of the increase, or even a decrease, in some models in
global mean surface temperature as radiative forcing peaks mid-century and then decreases monotonically in
that emissions scenario (supplemental figure 2). The reason that AA increases is that while warming ceases,
local feedbacks in the Arctic, such as those related to the presence of sea ice, continue to amplify temperature
change there for some time [42]. On the other hand, in ssp585, the MM-mean AA decreases after the middle
of the century, which has been argued to arise from the loss of perennial sea-ice [41]. As the Arctic transitions
to a seasonally ice-free state in some models, this results in a weakening of the sea-ice related feedbacks,
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reducing amplification of warming over the Arctic [41]. Nevertheless, the variance in MM-mean AA across
time is only 0.03 in both ssp126 and ssp585, a factor of 100 smaller than the inter-model spread. We note that
one study has found a time dependence for AA [43], most evident when looking past the end of the 21st
century. This suggests that, past this point, we may expect a further break down of the conditions necessary
for maintaining approximately constant AA.

AA varies across seasons, reaching its maximum in wintertime and minimum in summer, generally
understood to be linked by heat storage in the warm season that is released in the cold season [44]. Heat
storage is increased as more open ocean is created by sea-ice loss in summer, which generates a feedback of
increased latent heat transport in summer that leads to more sea-ice loss [45]. The effective heat capacity of
ice, differences in lapse rate feedbacks due to the absence of summertime thermal inversions, latent and and
dry heat transports, and differences in seasonal energy exchanges have all been linked to this seasonal
asymmetry, and to model spread in simulated AA [45–47].

Given the scalability of AA previously shown, we pool the scenarios and each of the time periods
considered in figure 2 and plot as a function of global warming (figure 3), for each season. The CMIP6 MM-
mean AA in DJF is, on average, 3.33–3.42 for all four scenarios and little variation is apparent in the mean
with increasing global warming or time. At small amounts of global warming, the models simulate between 1
and 6 times more warming in the Arctic than globally, and for the models which warm the most (5 ◦C–6 ◦C
globally), there is a convergence of AA toward the MMmean. Whilst the spread in MAM is slightly smaller at
low amounts of warming, there is a similar convergence toward the mean of 2.24–2.29 for the greatest
amounts of warming. Neither of these seasons exhibit a decreasing AA in time for ssp585 that was seen in the
global mean. Convergence toward the MMmean at higher amounts of warming indicates that the models
converge toward a forced value of AA as the influence of internal variability decreases.

It is SON that accounts for the decrease in AA with time in the higher emission scenarios. The decrease is
also evident in ssp370, which was not found in the annual mean. Inter-model spread at low values of global
warming is largest in SON (0.5–6.5), and while AA remains approximately steady at 3.11 in ssp126, it begins
to decrease slightly in the other emissions scenarios in time. There is not a clear convergence toward the MM
mean as in DJF and MAM. On the other hand, AA increases in JJA with scenario and time. AA barely exceeds
1.0 at low values of warming, but increases up to 1.4 at higher values. A reduction in the seasonal amplitude
of AA with increased CO2 forcing was also found in a study using a single model [41]. That, and another
study [48], also found that the peak in AA shifted from late autumn to early winter over the 21st century,
with our results here suggesting that is caused by a decrease in autumn AA, while winter AA remains
approximately constant.

We briefly explore the role of changing mean states in these two seasons in figure 4, first focusing on the
importance of the presence of sea ice in summer. Looking only at the end of the century, the role of sea-ice on
AA in JJA is clear. By separating the models into two groups, those that remain partially ice-covered (in
purple) and those which are ‘ice-free’ (<1 million km2 remaining ice on average in JJA) (in gold) there is a
clear separation of the distribution of AA for the ssp370 and ssp585 scenarios (figure 4(a).) We hypothesise
that as sea-ice decreases, incoming solar radiation at the surface can go to warming the surface air as it no
longer used largely as input to melt the sea ice and warm the ocean surface, resulting in increased AA in JJA.
Indeed, turbulent heat fluxes averaged poleward of 66.5◦ N in summer increase in the CMIP6 mean by
0.05Wm−2 per year over the 21st century in ssp585, a potential physical mechanism for increasing AA in JJA.

In SON, somewhat surprisingly, there is only a small effect on the distribution of AA when separating
models into those that are ice-free or partially ice-covered, however only nine models remain partially
ice-covered in ssp370, and six models in ssp585 therefore a large influence of ice-free models is present when
considering all models. A smaller AA in higher emissions scenarios than in lower emissions scenarios has
generally been assumed to be driven by a reduced ice-albedo feedback [41], but here we find only a modestly
larger AA ratio in ssp370 and ssp585 at the end of the century for the partially ice-covered compared to the
ice-free models. In fact, in contrast to other seasons, model spread in the AA ratio in SON is uncorrelated
with sea-ice area, even in scenarios or during periods where all models remain partially ice-covered
(figure 4(c)). The increasing correlation between AA ratio and sea-ice area in JJA with forcing in figure 4(c) is
consistent with the findings in figure 4(a). Interestingly, model spread in sea-ice loss and AA ratio become
less correlated in time, with variance explained dropping from approximately 50% to 20% (figure 4(d)).

A second feedback that depends on the mean state is that of the Planck feedback. This is a negative
feedback that arises due to the fact that a warmer planet radiates energy back to space more effectively. Whilst
this feedback negative everywhere, it is less negative in the relatively colder poles, and hence contributes to
AA [17]. As the equator-to-pole temperature difference is reduced, its contribution to AA is reduced [49]. In
all seasons but SON, model spread in AA at the end of the century correlates with model spread in the
temperature difference between the pole and the tropics in each of the scenarios separately, explaining
between 19% and 66% of the variance, depending on scenario and season (figure 4(e)). In SON, on the other
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Figure 3. Global mean surface warming vs AA (relative to preindustrial) for all the models and 30 year time periods in figure 2
across the seasons (a) DJF, (b) MAM, (c) JJA, (d) SON. The dashed grey lines indicate where AA= 1.0.

hand, there is no statistically significant correlation across models in any scenario, and we see the correlation
switch sign in ssp585. In other words, in SON only, the smaller the magnitude of equator-to-pole
temperature difference, the smaller the AA. The equator-to-pole temperature difference is not correlated
with sea-ice loss at the end of the 21st century in SON.

The time-dependence of the relationship between the AA ratio and the change in the equator-to-pole
temperature difference (figure 4(f)) shows that the scenarios begin to separate from each another in the
middle of the 21st century. Although in both JJA and SON the correlations decrease over time, the drop in
variance explained is particularly clear in SON in the highest forcing scenario.

The steadiness of AA in DJF and MAM extends throughout the troposphere. The time evolution of AA at
the model pressure levels up to 400 hPa in JJA and SON is shown in figure 5. AA is defined at each level as the
ratio of Arctic to global warming at that level. AA has been found to extend in to the midtroposphere [50],
and it has been argued that AA away from the surface is more likely to have an influence on the circulation of
the lower latitudes (e.g. [26]). In JJA, larger values of AA first appear in the mid-troposphere in the
early-to-mid 21st century and then reach the surface only near the end of the century. The mid-tropospheric
warming in JJA is generally understood to arise from remote influences [50, 51]. The downwelling longwave
radiation from this warmer air aloft in conjunction with incoming solar radiation and lower sea-ice is what
drives the increase in surface AA with time in JJA.

The bottom-heavy structure of AA in SON is evident. In all scenarios, the depth of AA increases in time;
warming is not amplified above 550 hPa initially, but the amplified warming spreads up to 400 hPa by the
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Figure 4. AA in 2071–2100 relative to 1850–1879 in each scenario for all models in green, for models with a partially ice-covered
Arctic in purple, and those with<1 million km−2 sea ice in gold for (a) JJA, and (b) SON. Dashed grey lines indicate where
AA= 1.0. (c) The inter-model correlation between the sea-ice area and the AA ratio in the four scenarios across seasons, where
statistically significant correlations are denoted with a black circle. The thin dashed grey line indicates zero correlation. (d) JJA
(dashed coloured lines) and SON (solid coloured lines) variance explained over time by model spread in the loss of sea-ice area
and the AA ratio for the four scenarios. (e) and (f) as in (c) and (d), but for the equator-to-pole temperature difference.

end of the 21st century. This could be an important factor in the impact of AA on lower latitudes, as deeper
AA in models has been shown to be related to a larger thermodynamic response in the midlatitudes [52, 53].
Surface AA is relatively constant in ssp126 and ssp245, but notably shallower in ssp370, and becoming
shallower in ssp585 with time. However, at upper levels, AA continues to increase with time in all scenarios.

3.3. Internal variability
Next, we examine the internal variability in AA in large ensembles (figure 6). To do so, we calculate 30 year
linear trends in Arctic and global mean temperature and take their ratio only where the trend in each is
statistically significant at the 95% level via a Student’s t-test so as to prevent spurious values of AA due to a
small numerator or denominator. We use both the CMIP6 ensemble and seven large initial condition
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Figure 5. The CMIP6 MMmean vertical distribution of AA relative to preindustrial in JJA for (a) ssp126, (b) ssp245, (c) ssp370,
and (d) ssp585. (e)–(h) as in (a)–(d) but for SON.

ensembles of varying size (table 1) and plot the linear trend in global temperature against the magnitude
of AA.

As in figure 4, we note that, in some ensembles more clearly than in others, AA converges toward a value
at high magnitude of warming. The value to which the different ensembles converge varies from 2.0–2.5. For
30 year periods with small global warming trends, variability can be quite large in some ensembles,
particularly in the ssp126 scenario, in which mitigation reduces global warming to near zero. In all cases,
these 30 year periods are at the end of the century and the large values of AA arise from the slowing of global
warming while local feedbacks continue to amplify the Arctic warming. Generally, the convergence of AA
values at higher global warming trend suggests that imprint of internal variability depends on how quickly
greenhouse warming is proceeding, and that the spread in magnitude of AA can be quite large at low
warming rates. Furthermore, the converging AA at faster warming seems to imply a preferred ratio of Arctic
to global warming in each model and it is not far off from the 2.5 found for all CMIP6 models. At moderate
values of global warming, internal variability is quite similar across models, and we find values of AA of just
below 1 to approximately 4, similar to the inter-model spread. It is interesting that even during periods of
moderate warming, the AA ratio is not always greater than 1. Variability when considering shorter time
periods for trend calculations is even larger.

To better assess how much of the model spread in figure 2 can be attributed to internal variability, we
compare the ensemble-mean AA ratio for each of the large ensembles and the CMIP6 MMmean relative to
preindustrial in ssp370, for which all large ensembles have members, in figure 7(a). We note the approximate
flatness of the AA curves in time in CMIP6 is replicated by most large ensembles, except for CanESM5 which
increases until 2040 before flattening, and CESM2, which decreases over the same time period before
becoming flat. The reason for the divergent behaviour in these two models is unclear but a future study to
understand it may reveal important differences in processes leading to AA. Internal variability in each
ensemble is given by the standard deviation across ensemble members and is represented by the shaded
region surrounding each model’s curve. We find that in all large ensembles, internal variability decreases in
time. At the end of the 21st century, the large ensembles’ means are spread approximately equally around the
CMIP6 MMmean, from 2.2 in GISS-E2-1-G to in 2.8 in EC-Earth3.

If instead we define AA as in figure 6 from 30 year trends, we can plot the AA ratio, again for ssp370, as a
distribution over the 21st century for each ensemble (figure 7(b). This gives a very similar estimate for the
CMIP6 mean (2.58), as well as for the model uncertainty (2.11–2.94). Internal variability is provided by the
width of the distribution here, and we can see how over individual 30 year periods, this is larger than model
uncertainty, defined as the spread in ensemble means.

We use the large ensembles to additionally estimate the relative contributions of scenario and model
uncertainty, and internal variability to our estimates of AA. Mean scenario uncertainty is given by the MM
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Figure 6. Global mean surface warming trend vs AA determined as the ratio of 30-year trends in Arctic and global warming for
the periods considered in figure 2 for each ensemble member and scenario of (a) CanESM5 (b) MPI-ESM1-2-LR , (c)
ACCESS-ESM1-5, (d) GISS-E2-1-G, (e) EC-Earth3, (f) MIROC-ES2L, (g) CESM2, and (h) CMIP6. AA over the same periods
from three reanalysis products are indicated with black markers. The dashed line indicates where AA= 1.0, and the purple line
indicates where AA= 2.5.

ensemble-mean standard deviation of AA across the scenarios, and the different single model ensemble
means provide the spread about this estimate. Model uncertainty is defined as the standard deviation of the
ensemble- and scenario-mean AA across models, and the different scenarios provide the spread about this
estimate. Finally, internal variability is estimated by the standard deviation across members of an ensemble,
given a model and scenario, and different models and scenarios provide the spread about this estimate.

Using the large ensembles to compare sources of uncertainty in projections of the surface-based AA ratio
either defined relative to preindustrial or by 30 year trends leads to different conclusions as to the largest
sources of uncertainty in time (figure 7(c) compared to (d)). Defining AA relative to to preindustrial
(figure 7(c)), scenario uncertainty is small, but grows over time, as suggested by our earlier analysis and in
other studies (e.g. [41, 42]). Internal variability is initially the largest source of uncertainty, although an
estimate of internal variability varies depending on the ensemble considered and this gives a large spread
around our estimate, particularly in the early 21st century. Nevertheless, all ensembles agree that this source
of uncertainty is reduced in time, eventually reaching a value just larger than the uncertainty arising from
scenario uncertainty. Model uncertainty is approximately constant in time, becoming the largest source of
uncertainty by the end of the 21st century.

On the other hand, when we use shorter periods to define AA as a ratio of trends (figure 7(d)), internal
variability remains the largest source of uncertainty throughout most of the 21st century. Scenario
uncertainty grows substantially in the latter half of the century, exceeding that of internal variability by the
end of it. This is mainly due to ssp126, where large values of AA are found when global warming slows much
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Figure 7. (a) Timeseries of mean AA relative to preindustrial in ssp370 for each of the large ensembles and the CMIP6 mean. (b)
The distribution of AA determined by 30 year trends for all 30 year periods with statistically significant AA in ssp370 for all large
ensembles and the CMIP6 mean. The dashed line indicates where AA= 1. (c) Shows the uncertainty in estimates of AA relative to
preindustrial, partitioned in to scenario uncertainty (green), internal variability (orange), and model uncertainty (blue). (d) as in
(c) but for uncertainty in AA determined by 30 year trends.

more than Arctic warming does in some models (figure 6, supplemental figure 2, and [54]). This is also the
cause of the spread around estimates of model uncertainty at this time, as not all models simulate these very
high values of AA.

4. Discussion

When averaging across a sufficient number of models or by looking at large enough forcing (global
warming), in the annual mean, the Arctic warms by approximately 2.5 times the global mean. This number
varies from the summer value of just greater than 1.0 to the winter value of approximately 3.3. Scenario
uncertainty is found to be negligibly small largely due to the linear scaling of Arctic warming with global
warming, but begins to grow near the end of the 21st century as mean-state dependence of the feedbacks that
amplify temperatures in the Arctic are altered sufficiently. This is particularly apparent when calculating the
AA ratio as trends over 30 year periods. Past this point, the steady nature of AA found here may be invalid
(e.g. [43]. In particular, the sea-ice state impacts AA in the summer and potentially to a lesser degree in the
autumn, and the reduced equator-to-pole temperature difference may lead to a decrease in AA in the
autumn. Whilst model uncertainty of AA is an order of magnitude larger than scenario uncertainty at the
start of the 21st century, it nevertheless remains approximately 3 times as large at the end of the century.
Finally, uncertainty due to internal variability depends on the rate of warming, and can be quite large at low
rates of warming, such as those found at the end of the 21st century in low emissions scenarios, or at present

11



Environ. Res.: Climate 3 (2024) 031003

day warming. At higher rates of warming, where the signal is maximised relative to the noise of internal
variability, initial condition ensembles tend to converge toward a value of between 2.0–3.0 times more
warming in the Arctic than globally.

A best estimate value of an annual mean AA of approximately 2.5 seems to emerge from this analysis
repeatedly. Additionally, a similar value was found over 21 000 years of a paleoclimate simulation [5].
Another paleoclimate study based on observations [6] found a somewhat larger value of AA over four
different warming periods, but one that was consistent across periods. We ask whether the value we find here
of approximately 2.5 is reasonable, and if the models are accurately representing AA by comparing to three
reanalysis products, ERA5, JRA55, and MERRA2. By examining the same 30 year periods for which the
trends were calculated over for figure 6, AA in reanalysis varies from 1.72 to 5.32. For the same 30 year period
of 1990–2020, AA is 3.82, 4.05, and 5.23 in the three reanalyses. This is quite a large spread despite small
differences in global warming. The combination of uncertainty in the numerator, due to less
well-constrained estimate of Arctic warming (0.056, 0.092, 0.089) in reanalysis due to observational
difficulties in the harsh environment, and a small denominator (0.015, 0.018, 0.022) creates this surprisingly
large spread. However, these values of AA all fit within the distribution of AA for most ensembles, suggesting
that model internal variability is capturing the spread seen in observations. Due to high internal variability in
AA, particularly at the relatively low values of warming so far observed, it might be very difficult to constrain
AA using observations and thus understand how to reduce inter-model spread.

Finally, the inter-model correlations of AA with other metrics (e.g. sea-ice area, sea-ice loss,
equator-to-pole temperature differences) shown in figure 4 are fairly low, and decrease in time. The loss of
sea-ice area below some critical value needed to maintain sea-ice feedbacks could explain the decorrelation
with AA over the 21st century in the larger forcing scenarios, but few models go ‘ice-free’ in the lower forcing
scenarios. This, together with the low correlation between the equator-to-pole temperature difference and
AA suggests caution in using this particular metric of AA if you are interested in understanding how Arctic
change influences atmospheric circulation, particularly that which depends on local temperature gradients.
Other metrics of AA that use ratios of temperature (Arctic warming relative to mid-latitude warming or
tropical warming, for example) can be expected to exhibit a similar flat curve in time due to the linear scaling
of temperature and would suffer similar problems when the denominator approaches zero [38], but metrics
that define AA as a difference between temperature in the Arctic and elsewhere may be more suitable.

In conclusion, we have used the available CMIP6 historical and four future warming scenarios to look at
the different sources of uncertainty or spread in the AA ratio: model uncertainty, scenario uncertainty,
internal variability. For the first time, we take advantage of the linear scaling of Arctic temperature with
global warming and show that, across the CMIP6 models, the pattern and magnitude of annual mean Arctic
warming is nearly independent of scenario in the 21st century. This does not imply that the Arctic does not
undergo large changes in time or across scenarios, but rather that its change relative to the global
temperature remains approximately constant. This allows us to pool the scenarios to demonstrate a
convergence, given large enough warming, in CMIP6 and in the large ensembles toward a best estimate value
for AA. This value does not depend strongly on whether AA is defined from long-term changes or
shorter-term trends, but is subject to model uncertainty.

Model uncertainty emerges as the largest source of uncertainty, whilst scenario uncertainty is very small
and plausible physical mechanisms can be leveraged to understand how it varies in some seasons. For
example, by examining the relationship between the model spread in AA and other metrics, our results
indicate that the spread in the magnitude of AA in SON is not clearly related to either sea-ice area in that
season at the time, and becoming less correlated in time with the loss of sea-ice relative to the reference
period. On the other hand, the presence or absence of sea-ice in JJA appears to be an important factor in
determining the magnitude of AA. Significant scenario uncertainty in projections of September sea-ice area
and model uncertainty have been found by a previous study [55], with only a small contribution from
internal variability, which may help explain why JJA and SON seasons exhibit more scenario uncertainty.
Additionally, the Planck feedback may be reduced in SON in the larger forcing scenarios, leading to lower
AA. Internal variability, as measured by seven different large initial condition ensembles, is of similar
magnitude to model uncertainty in the early 21st century, but reduces in time when considering AA relative
to preindustrial. When calculating AA as the ratio of 30 year trends, internal variability is the largest source of
uncertainty throughout most of the 21st century. Crucially, this is an irreducible uncertainty and values of
the AA ratio in reanalysis products fall within the range we find for internal variability, given the relatively
low warming trend thus far observed.
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