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Abstract

1st Supervisor: Dr. Raphaëlle D. Haywood 2nd Supervisor: Prof. Tim Naylor

In the last 20 years, the radial velocity (RV) method has successfully detected and

characterised hundreds of exoplanets, from blazing hot giants to small super-Earths. With

the recent sub-m s�1 precision reached by ultra-stable spectrographs, the signals of rocky

extra-solar planets in long-orbits have finally become detectable. The greatest challenge

for the characterisation of exoplanets is now stellar variability. The effects of activity on the

surface of stars often strongly dominate the RV budget, and can easily obscure or mimic

Keplerian signals. Gaussian Processes (GPs) have been proven to be a very successful tech-

nique for the mitigation of stellar effects, as they are able to model the variability without

making any assumption about its functional form. In this work, I introduce MAGP�-RV.

MAGP�-RV is a Gaussian process regression pipeline with Markov Chain Monte Carlo

parameter space searching algorithm I developed in the context of exoplanet detection

and characterisation. It allows to simultaneously model stellar activity, described by a GP

with the chosen covariance function, and Keplerian signals in the RVs as well as transits

in photometric data.

I then use this pipeline for the analysis of two planetary systems: TOI-2134 and

HD 48948. The moderately active, bright K5V star TOI-2134 is orbited by an inner mini-

Neptune in a 9.2292005±0.0000063 day orbit and an outer mono-transiting sub-Saturn

planet in a 95.50+0.36
�0.25 day orbit. Based on the analysis of TESS data, I determine the radii

of TOI-2134b and c to be 2.69±0.16 R� for the inner planet, and 7.27±0.42 R� for the outer

one. The masses of both planets are derived based on HARPS-N and SOPHIE RVs via

Gaussian process regression to be 9.13+0.78
�0.76 M� for TOI-2134b and 41.89+7.69

�7.83 M� for TOI-

2134c. The outer planet is computed to have a significant eccentricity of 0.67+0.05
�0.06 from a

combination of photometry and RVs.

The HD 48948 system comprises of three super-Earth planetary candidates with orbital pe-

riods of roughly 7.3, 38, and 151 days, and minimum masses estimated to be 4.96 ± 0.42 M�,
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7.45 ± 0.75 M�, and 10.67 ± 0.90 M�, respectively. The outermost planet is also found to

reside within the (temperate) habitable zone, positioned at a projected distance of 0.02900

from its star.

Both these analyses highlighted the need for caution and systematic model testing when

employing GPs to model stellar-induced signals.

In parallel, I also analyse solar data in order to develop a better understanding of the

processes driving stellar variability. The Sun is a fairly representative star of the sample of

targets that are generally selected for RV surveys, and most crucially it is the only star we

can resolve. I use the S��A���� pipeline to derive disc-integrated longitudinal magnetic

field data in order to asses its uses in radial-velocity surveys. I show that the mean longitu-

dinal magnetic field is an excellent rotation period detector and a useful tracer of the solar

magnetic cycle. In order to put these results into context, I compare the mean longitudi-

nal magnetic field to three common activity proxies derived from HARPS-N Sun-as-a-star

data: the full-width at half-maximum, the bisector span and the S-index. I find that the

mean longitudinal magnetic field cannot be used as a one-to-one proxy, but that it out-

performs all other considered indicators as a solar rotational period detector, and can be

used to inform our understanding of the physical processes happening on the surface of

the Sun.
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4.2 WASP normalised flux against Julian Date over the three years of cover-
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4.8 Phase-folded TESS light curves of TOI-2134b and c. Faint blue points are in-

dividual TESS two-minute cadence measurements, bold darker blue points

are data binned in orbital phase, and the red curves are the best-fit transit

models. The error bars on the binned points are smaller than the symbols.
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4.12 Mass-radius diagram with zoom-in for sub-Neptunian planets. The data

are taken from the EU Exoplanet catalogue at exoplanet.eu/catalog/ on 17

Feb 2023. The solid blue line shows the mass-radius relation developed

by Chen and Kipping (2017), with its categorisation of Terran (M<2M�),
Neptunian (2M�<M<0.4MJ) and Jovian worlds (M>0.4MJ). The zoomed-

in plot includes composition lines taken from Zeng et al. (2016), and the
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on results from Kopparapu et al. (2014). . . . . . . . . . . . . . . . . . . . . 121
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4.16 Top panel: The GLS periodogram of the DRS (uncorrected for activity) RVs

of HD 48948 is plotted in black. The 0.01% False Alarm Probability is indi-

cated by a horizontal dashed line. Vertical dashed lines identify the orbital

periods of the three planetary candidates. Panels 2-5: GLS periodograms

of the YV2 RVs. The most significant signal, identified by a label, is iter-

atively subtracted from the radial velocities, and the periodogram of the

remaining variability is plotted until no signal surpasses the 0.01% False

Alarm Probability level plotted as horizontal dashed lines. The dominant

Keplerian peaks are found at 38 days, 7.3 days and at 151 days. Figure taken
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4.19 Top Panel: Complete model derived after one-dimensional GP regression of
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4.25 Configuration of the proposed HD 48948 planetary system. The inner plan-

etary candidates, depicted in orange and blue, have circular orbits of 7.3 and

38 days respectively. The outer planetary candidate, illustrated in green,

has an orbit of 151 days. A selection of 100 random orbits from the MCMC

chains for each of the three planetary candidates are represented in lighter

shades. The habitable zone boundaries, shown as sky-blue shaded regions,

are calculated as outlined in Section 8.2, based on the Kopparapu et al. (2014).

Figure taken from Fig. 15 of Dalal et al. (2024). . . . . . . . . . . . . . . . . 150
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vations. The multiple trends and jumps in the data are caused by instru-
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motivated model is therefore preferred. Figure taken from Fig. 2 of Hay-

wood et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3 HARPS-N Solar telescope data. From the top, the corrected radial velocities
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the bisector span in black. Uncertainties are included but may be too small

to be visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4 Example SDO/HMI images from 2015-Jul-29. From left to right: the con-
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5.5 SDO/HMI-derived mean longitudinal magnetic field on the top, and the
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5.6 Correlation plot between the SDO/HMI-derived radial velocities and the

mean longitudinal magnetic field. The colour indicates the Julian date of

each datapoint. The computed Spearman rank correlation factor is also

included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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ies, S-index, full-width at half-maximum, and bisector span. The colour bar

indicates the BJD of each datapoint. The Spearman Rank correlation factor

for each set is also included. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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5.9 Top panel: the time series of the time-aware mean over an averaging window

of 27 days of the SDO/HMI �RVs is plotted in blue. The RMS of ⌫l over

the same window is also included in purple. Bottom panel: the time series

of the time-aware mean of the matched HARPS-N RVs is plotted in green,

of the matched bisector span in black, and the RMS of the matched ⌫l is
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RVs are in the second. From the leftmost to the rightmost column, we plot

the mean longitudinal magnetic field, the S-index, the full-width at half-

maximum, and the bisector span. The data is colour-coded based on ob-
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5.12 Generalised Lomb-Scargle Periodogram of the matched time series. On

the x-axis the period in days, on the y-axis the normalised logarithmic

Zechmeister-Kürster power (or probability). From top to bottom, the matched

time series of SDO/HMI�RVs, and mean longitudinal magnetic field, HARPS-

N RVs, S-index, FWHM, and bisector span. The Carrington Solar rotation

period is indicated by a gray dash-dotted line. The first and second har-

monics of the rotation are also highlighted by dotted lines. The False Alarm

Probability (FAP) equal to 0.1% are included as dashed gray horizontal lines.178

5.13 Autocorrelation function over a lag window of 250 days of the mean longi-

tudinal magnetic field (top row in purple), the SDO/HMI and HARPS-N

RVs (middle row in blue and green respectively), and the HARPS-N activ-

ity proxies S-index, full-width at half-maximum and bisector span (bottom

row in orange, red and black). Uncertainties are included as errorbars. . . 180

5.14 Top panel: lag plot between ⌫l and the RV time series. The lag against the

matched SDO/HMI�RVs are plotted in pale blue, while the lag against the

HARPS-N matched RVs are plotted in green. The lag between ⌫l and the
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“Constant as the stars above

Always know that you are loved

And my love shining in you

Will help you make your dreams come true.”
— Constant as the stars above,

Barbie as Rapunzel
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Chapter 1

Stellar Variability in the Extreme

Precision Radial-Velocity Regime

“Exploration is wired into our brains. If we can see the horizon, we want to know

what’s beyond.”
— Buzz Aldrin, Magnificent Desolation: The Long Journey Home from the Moon

1.1 Introduction

Humans have been longing for the stars since the beginning of time. Questions such as

"are we alone in the universe?" are a driving force in both science and general culture.

Historians report that the first person to put to text the hypothesis of other worlds in the

cosmos was Anaximander. The pre-Socratic Greek philosopher born in 610 BC in mod-

ern Turkey was one of the first to attempt to explain the cosmos with non-mythological

methods. He stated that our planet is a free-floating object in space, and that Earth simply

could not be the only one of such bodies in the universe. This thought was followed by

his contemporary Anaximenes of Miletus, who was the first to differentiate between the

burning Sun and the extinguished Earth in the categories we now refer to as stars and

planets. In the midst of the Copernican revolution, Giordano Bruno, an Italian philoso-

pher born in 1548 near Neaples, proposed the revolutionary concept that far-away stars

are Suns of their own systems, and that just like Earth was orbiting our Sun there would be
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planets orbiting those seemingly fixed stars. In his third dialogue "De l’infinito universo

et mondi" (of the infinite universe and worlds) he wrote:

"Io credo et intendo che oltre et oltre quella margine imaginata del cielo, sempre sia

eterea regione, e corpi mondani, astri, terre, soli: e tutti sensibili absolutamente, sec-

ondo sé et a quelli che vi sono dentro o da presso: benché non sieno sensibili a noi per

la lor lontanza e distanza."

I believe and I understand that beyond this imagined edge of the sky, there

will always be an ethereal region, and worlds, stars, earths, suns: and all in-

herently perceptible one to another, to those which are within or near; though

they may not be perceptible to us due to the distance.

He continues:

"Di maniera che non é un sol mondo, una sola terra, un solo sole: ma tanti son mondi,

quante veggiamo circa di noi lampade luminose"

In such way that there is not a single world, a single earth, a single sun: but

there are many worlds, as many shining lamps we see around us.

Other philosophers and later scientists supported the idea that, just like the Sun,

other stars would host their own planetary systems. This idea was further reinforced as

we started to understand more about how the Solar System formed and we began to see

the signs of opportunity in the universe. Although claims of exoplanets detected with as-

trometry were made before then (e.g., Jacob 1855; See 1896), Struve (1952) was the first to

propose a specific plan for the detection of new worlds. He asserted that planets around

other stars would orbit at similar distances as solar planets do. They therefore should

be detectable by observing the motion of the star around the common centre of mass via

Doppler spectroscopy, or by monitoring the stellar luminosity in search of periodic dim-

mings due to planetary obstruction. After 40 years of waiting, the predictions of Otto

Struve came true. The first hesitant discovery of a huge planet orbiting a star was pub-

lished by Campbell et al. (1988), using radial-velocity measurements. These results were

controversial and, although they were confirmed in 2003 with further observations, at the

time of publication the community instead believed that the detected body was a brown
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Figure 1.1: Left panel: Mass-Radius diagram of confirmed exoplanets with detected mass in Earth masses
and radius in Earth radii, colour-coded by the technique of first detection. Right panel: Period-Mass diagram
of confirmed exoplanets with detected mass in Earth masses and orbital period in days, colour-coded by the
technique of first detection. Data acquired from the Exoplanet Archive at exoplanetarchive.ipac.caltech.edu
on 2023-03-14.

dwarf rather than an exoplanet. The first accepted detection of an extrasolar planet was

published by Wolszczan and Frail (1992). They detected a super-Earth orbiting the pulsar

PSR 1257+12 by measuring changes in the pulsar period. This discovery fuelled groups

of scientists around the word and soon after with new radial-velocity data, Mayor and

Queloz (1995) presented the detection and characterisation of the first exoplanet orbiting

a main-sequence star: 51 Pegasi b.

1.1.1 How to Detect an Exoplanet

As of March 2024, the community has characterised more than 5,599 exoplanets in 4,200

planetary systems, with 10,000 more candidates in the process of being confirmed. The

first panel of Fig. 1.1 shows all the confirmed exoplanets with computed masses and radii,

colour-coded based on the technique employed for first detection, while the second panel

shows the Period-Mass diagram of all detected planets with known mass and period. Of

those, the great majority were detected using the same techniques proposed in the ’50s by

Otto Struve: radial velocity and transit photometry.

1.1.1.1 Transit Photometry

If the system is favourably aligned to our line-of-sight, a planet orbiting a star will transit

in front of its host’s bright disc. This partial obscuring of a section of the star will cause a

exoplanetarchive.ipac.caltech.edu
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Figure 1.2: Pictorial representation of the transit photometry method, including the characteristic transit
lightcurve.

momentary dimming of the total observed flux. The fraction of the light "lost" during the

transit is dependent on the relative apparent sizes of the two objects. Such dimming has

a characteristic shape in the stellar brightness time series shown in Fig. 1.2. Physically-

motivated models can then be used to fit the observational data in order to derive the

radius of the exoplanet and some of its orbital parameters. The first planet for which a

transit was observed and studied was HD 209456 b (Henry et al. 2000), closely followed

by the first ever planet detection with transit photometry of OGLE-TR-56 b (Udalski et

al. 2002). The method has since risen to prominence as the most effective at radius de-

tections, with the launches of the Convection, Rotation and planetary Transits (CoRoT:

Baglin et al. 2006) space telescope, of the Kepler/K2 mission (Borucki et al. 2010; How-

ell et al. 2014), and of the Transiting Exoplanet Survey Satellite (TESS: Ricker et al. 2015)

in 2006, 2009 and 2018 respectively. Transit photometry has incredible advantages that

make this technique the most prolific at finding planets. It allows for the observation of

multiple targets at the same time, and enables the study of stars located several thousand

light years away. It is the most direct method to estimate the radius of a planet. Via sec-

ondary eclipse it also allows for the calculation of the planetary radiation, and therefore

the temperature of the planet. Nevertheless, this technique has several drawbacks: first

and foremost, assuming a random distribution of planetary system orientations, only a
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Figure 1.3: Pictorial representation of the radial-velocity method. Figure adapted from an image produced
by Johan Jarnestad/The Royal Swedish Academy of Sciences.

small minority can actually be expected to transit the star on our line-of-sight. The proba-

bility of observing a transit of a planet with orbital period under 10 days is between 2 and

10%, and this percentage gets down to 0.46% for a planet in an Earth-like orbit (Collier

Cameron 2016). Transit photometry is also the method that yields the most false positives,

with over 35% of initial candidates detected by the Kepler mission being disproven (San-

terne et al. 2012). Moreover, this technique is heavily biased towards exoplanets orbiting

close to their star: they are more likely to transit, their apparent size relative to their star

is larger, and they require shorter observing baselines to detect multiple transit events.

Even with these downsides, transit photometry is still a powerful tool for the detection of

exoplanets, especially if paired with the radial-velocity method for mass characterisation.

1.1.1.2 Radial Velocity

Light emitted by astronomical objects in movement is subject to the Doppler effect. The

measured frequency of the emitted photons changes based on the relative motion between

the source and the observer, decreasing (redshifting) for objects moving away from the ob-

server and increasing (blueshifting) for objects moving towards the observer. By analysing
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the Doppler shift in the spectral lines of celestial objects, one can compute the body’s radial

velocity (RV), defined as the component of the object’s velocity pointing in the direction

of the observer. The presence of a planet applies a gravitational pull to the star. As the

smaller body travels in its orbit, it will also cause its star to "wobble" around the common

centre of mass, as shown in Fig. 1.3. The more massive and the closer this second object

is, the more significant this effect will be. By monitoring the Doppler shift in the stellar

spectra, we can trace the star’s motion and analytically compute the mass and orbit of the

body causing the wobble: the exoplanet. As Otto Struve predicted, the first exoplanet

orbiting a main-sequence star, 51 Pegasi b (Mayor and Queloz 1995), was in fact detected

using radial-velocity observations with the ELODIE spectrograph, installed at the Haute-

Provence Observatory in France (Baranne et al. 1996). As for 2023, roughly 20% of all

confirmed planets were first detected using this technique. The radial-velocity method

is independent of distance, but still requires good signal-to-noise ratio (SNR) for precise

detections. Differently from transit photometry, we can only observe one star at a time.

Given that the amplitude of the signal is directly proportional to the mass of the planet

and inversely proportional to its distance from the star, the radial-velocity method has

been very successful in the detection of "Hot Jupiters", giant gaseous planets with orbital

periods smaller than 10 days, but it can struggle to confirm smaller Earth-like planets,

especially those with wider orbits. In the first 20 years since 51 Peg b, the precision of

the instruments was the greatest limitation of spectroscopy as a planet-detection method.

Taking for example the planets in the Solar System, Jupiter imprints a Doppler shift on the

absorption lines in the spectra of the Sun of amplitude 12.5 m s�1, while the Earth’s signal

is only 8 cm s�1, almost 16 times smaller. This need for higher instrumental precision and

long-term stability has motivated the commissioning of a series of new high-precision,

ultra-stable spectrographs such as EXPRES and ESPRESSO, which have proven to reach

precision of 30 cm s�1 (Brewer et al. 2020) and 60 cm s�1 (Suárez Mascareño et al. 2020) re-

spectively. Tests on the soon-to-be on-sky HARPS3 (Thompson et al. 2016) show projected

precision of 10 cm s�1. New-generation spectrographs are therefore coming within reach

of the precision needed to detect Earth-analogues. However, stars are not static. They are

complex, active bodies. They exhibit many time-dependent radial-velocity perturbations

that can impact exoplanet detection by simulating the presence of a non-existent planet
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or by obscuring their signal. Stellar-induced variability, in fact, often dominates the RV

budget. Thus with the new precision, the greatest challenge for the detection and char-

acterisation of exoplanets in the Extreme Precision Radial-Velocity (EPRV) regime is now

stellar activity (Saar and Donahue 1997; Lindegren and Dravins 2003; Meunier et al. 2010;

Dumusque et al. 2011; Fischer et al. 2016; Crass et al. 2021; Meunier 2021).

1.1.2 The Objectives of this Thesis

The community has therefore now reached a stage at which effective and efficient mitiga-

tion and modelling of stellar-induced RV signals is required for the advancement of the

field. In this work, I focus on describing methods of understanding and addressing the

various sources of stellar activity affecting the radial-velocity domain for the detection of

exoplanets. The remaining Sections of Chapter 1 summarise the processes that give rise

to the most significant stellar signals, ordered by the amplitude of the imprinted RV vari-

ation. Chapter 2 provides a detailed overview of the state of the field, and the techniques

currently most used to mitigate stellar variability. Chapter 3 focuses on the definition of

Gaussian Processes (GP), and the description of the Python pipeline MAGP�-RV, a tool

that employs GP regression coupled with Markov Chain Monte Carlo parameter space

searching algorithms to model stellar variability. In Chapter 4 the described software is

applied to the detection and characterisation of two planetary systems. The first system or-

bits the star TOI-2134 and is comprised of an inner mini-Neptune and an outer sub-Saturn

in a highly eccentric orbit. I also detect three super-Earths orbiting the bright K-dwarf HD

48948. This Chapter highlights the fact that caution and systematic model testing should

always be employed when mitigating stellar signals. Chapter 5 focuses on the analysis of

solar RV observations with the aim of building a better understanding of stellar activity.

It introduces the pipeline S��A���� for the extraction of Sun-as-a-star data from resolved

solar observations. These data are then used to investigate a new stellar rotation tracer to

inform planet detection analyses: the mean longitudinal magnetic field.
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Figure 1.4: Radial-velocity scatter (black symbols) and normalised H�-index (gray circles) of the mid-M flare
star CN Leo. A flare event is recorded as the spike in both time series at roughly 20:00 local time. Figure
adapted from Fig. 8 of Reiners (2009).

1.2 Sources of Stellar Variability

Stars are incredibly complex astronomical objects. They have been the focus of study

since the conception of astronomy in one way or another. Stars are also major players in

the hunt for exoplanets. Stellar age, composition and rotation axis can be vital information

to understand the characteristics of a planet and its formation history. Most crucially stars

are active, meaning that their surface and atmosphere are in continuous motion. In the

context of exoplanet detection with the radial-velocity method, this wealth of processes

shaping the photo- and chromosphere of the host star can generate signals that mimic

or obscure the presence of a planet. This Section introduces the major sources of stellar

variability in RV data. The list is organised based on the amplitude of the injected signal.

1.2.1 Flares and Mass Ejections

Stars have magnetic fields. They are created by the motion of charged plasma in the con-

vective zone of the star. These magnetic fields generate electric currents which in turn, due

to a combination of induction, differential rotation and Coriolis force, sustain the magnetic

field. Stellar dynamos can be extremely complex, and they evolve in time. The stellar

magnetic fields interact with the convective plasma in a variety of ways. One of the most

extreme of these processes are flares. Coronal flares are intense, localised emissions of

electromagnetic radiation. They have been extensively observed in the Sun and have been

detected in stars (e.g., Fletcher et al. 2011; Davenport et al. 2019; Katsova et al. 2022). They

are caused by the interaction between charged particles and the plasma medium. Studies

have associated flare events to magnetic reconnection in solar arcades (Zhu et al. 2016).
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Figure 1.5: Section of a continuum intensity observation captured by NASA’s Solar Dynamics Observatory
of two active regions on the Sun rotating out of sight. Multiple sunspots are visible, with the temperature
gradient between umbra and penumbra clearly observed. Faculae surrounding the spots are only visible
closer to the limb, given their significantly smaller temperature difference with the quiet surface and their
tubular geometric configuration.

Flares are often accompanied by ejections of matter trapped in the unconnected magnetic

fields that violently expand outwards in the heliosphere. These occurrences are called

coronal mass ejections, or CMEs (Howard et al. 2023). These large scale events can impact

the results of RV investigations. However, flares and CMEs are dramatic and can be easily

identified as anomalies, since they generate spikes with respect to the average RV of sev-

eral tens of m s�1 (Reiners 2009). They have lifetimes of minutes to hours. Their presence

in the dataset is usually confirmed by jumps in H� and S-index values, as shown in Fig.

1.4, and their effects are mitigated by discarding the data. Overall they do not represent

a significant obstacle in typical exoplanet searches.

1.2.2 Active Regions

When the stellar magnetic field coagulates in small areas on the stellar surface, active

regions arise. In the photosphere, strong local fields manifest themselves as regions with

different luminosity than the surroundings. Magnetic fields can locally halt convective

motions, thus decreasing the temperature of the upper layer of plasma. This cooling is

expressed by a reduced brightness of the affected region as shown in Fig. 1.5, commonly
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referred to as a star spot. Spots usually appear in pairs of opposite polarities (Solanki

2003), and their temperatures range from 500 to 2000 K less than the surrounding regions

(Schrĳver 2002). Their lifetime depends on their size: smaller spots can dissipate in days,

while larger ones can last months on the stellar surface (Giles et al. 2017). In the Sun, spots

arise with varying sizes, with diameters between 1,500 and 20,000 km. Starspots are often

surrounded by bright faculae. They are regions in which narrow magnetic flux tubes are

embedded in the quiet stellar atmosphere (Walton 1987). They are usually grouped into

networks (Berger and Title 1996) and are most visible near the stellar limb, given their

tubular shape. Faculae are only 10% brighter than the surrounding quiet star as shown in

Fig. 1.5, and a few hundred Kelvin hotter (Thomas and Weiss 2008). When isolated, they

have short lifetimes, of a couple of hours, but they can persist up to years when grouped

(Foukal 1998). Faculae always anticipate, accompany and outlive starspots. In the Sun

faculae tend to dominate over spots, meaning that their filling factor (the percentage of

area they cover on the visible stellar surface) is consistently larger than the one of sunspots

(Haywood et al. 2022). In the chromosphere, strong magnetic fields can also cause areas of

increased brightness, referred to as plages. Their position often closely maps the faculae

in the photosphere below (Hall 2008). They are made of small bright points called floccule

surrounded by thin, dark up-moving jets known as spicules (Zirin and Howard 1966). The

number and size of active regions on the stellar surface changes with time and is dependent

on the star’s magnetic cycle. They generally arise at higher latitudes, migrating towards

the equator as the cycle progresses to maximum (Strassmeier 2009). While active regions

are relatively spatially stable during their lifetimes, their signal is significantly modulated

by the stellar rotation, as they contribute to the stellar activity RV signal only when they are

in view of the observer. For a full review on the birth and evolution of active regions and

their fundamental characteristics, the reader is directed to Van Driel-Gesztelyi and Green

(2015), Thomas and Weiss (2008) and similar reviews. In this work I primarily focus on

how the presence of active regions affects radial-velocity measurements.

1.2.2.1 Suppression of Convective Blueshift

As is fully addressed in Section 1.2.5, plasma motions cause an overall blueshift of the stel-

lar spectra. The strong magnetic fields that generate active regions inhibit or completely
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halt convection on the stellar surface, and therefore reduce the total blueshift observed.

This effect is commonly referred to as the suppression of convective blueshift. The ampli-

tude of the "lost signal" is dominated by the amount of surface covered by active regions. In

Sun-like stars, faculae filling factors tend to be larger than those of spots. Faculae are there-

fore the driving force of this suppression of blueshift in Sun-twins (Meunier et al. 2010;

Haywood et al. 2016; Milbourne et al. 2019). Younger, fast rotating stars are more likely

to present much stronger stellar activity and to be instead dominated by starspots, with

filling factors up to 22% of their surface (Strassmeier 2009). The suppression of convective

blueshift due to the presence of active regions can be tricky to model. In most cases this

signal is modulated by the stellar rotation period, as active regions rotate in and out of

view of the observer. Active regions however have limited lifetimes, and will dissipate

in the surrounding quiet star, as new ones emerge in different locations. The generated

signal has therefore a quasi-periodic behaviour. In the Sun, RV variations induced by the

suppression of convective blueshift have amplitudes ranging between 0.5 and 10 m s�1. In

stars, the strength of this signal is dependent on the overall activity level of the star, but it

can reach amplitudes of km s�1 in young stars. In most cases, the effects of the suppression

of convective blueshift are mitigated with the analysis of activity proxies (as addressed in

Section 2.2), or with machine learning modelling techniques such as Gaussian process

regression (further covered in Chapter 2 Section 2.3.4, and in Chapter 3).

1.2.2.2 Photometric Inhomogeneities

The brightness of active regions is different from the quiet-star average. Their increased or

significantly decreased luminosity therefore impacts the rotational profile of the star. In a

rotating object with rotational axis perpendicular to the observer’s line-of-sight, half of the

disc is moving towards the observer, and the other half is moving away. The flux emitted

by the first section is blueshifted, while the light emitted by the second is redshifted. In

a perfectly homogeneous case, these two sides will perfectly balance, leaving no net shift

in the RVs. However, the presence of bright faculae or a dark spot breaks this symmetry

by respectively enhancing or diminishing the total signal of the disc half they are on. For

example, in the case of a dark spot emerging in the field of view, the summed brightness

of the blue limb is smaller than the one of the red limb, as shown in Fig.1.6, and an overall
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Figure 1.6: Schematic illustrating the distortion caused by the presence of dark spots in the line-profile of
stars. The introduced asymmetries lead to a shift of the centre of the best-fit Gaussian function to the profile
and therefore to variations in the extracted radial velocities (more information on this last step in Section 2.1).
As the spot rotates on the visible disc, the velocity experiencing flux deficiency also travels across the profile.
Figure adapted from Kochukhov (2016).

redshift will be observed. The opposite happens as the spot rotates out of view. The RV

signal generated by these photometric inhomogeneities is mostly driven by starspots, even

in Sun-like stars. While faculae may dominate the active region filling factors, the differ-

ence in luminosity with the surroundings is much less significant than the one between

starspots and the quiet star. In the Sun, the amplitude of these variations is of the order of

tens of cm s�1 at most. Similarly to the signal due to suppression of convective blueshift,

photometric inhomogeneities are modulated by the rotation period of the star and by the

lifetime of the active regions, thus exhibiting quasi-periodic behaviours. Their effects in

the RVs are most often modelled with simultaneous photometric techniques (see Section

2.3.4.2), and with Gaussian process regression.

1.2.3 Magnetic Cycles

The Sun has been observed to experience a nearly-periodic variation in its magnetic activ-

ity expressed in the form of active regions and explosive events. Over roughly 11 years

(Hathaway 2010), solar activity increases to a maximum, then slowly decreases to a min-



�.�. SOURCES OF STELLAR VARIABILITY ��

imum, normally defined by the maximum and minimum values of sunspot count. The

solar brightness also varies over this period, and the magnetic field flips polarities (Char-

bonneau 2020). The study of the solar magnetic cycle and its prediction are some of the

most active fields of solar science (e.g., Shepherd et al. 2014; Ng 2016). Stars with internal

compositions similar to the Sun, and therefore with comparable stellar dynamo processes,

are also expected to experience magnetic cycles (Lanza 2010; Jeffers et al. 2023). These cy-

cles however have been consistently hard to measure due to the long observational base-

lines needed. Starting in 1966, various programs monitored a variety of stars, and in 1978

the first evidence of stellar magnetic cycles was published (Wilson 1978). Since then there

has been a continuous effort towards building a connection between solar observations

and stellar models. In the context of RV surveys, magnetic cycles affect the detectability of

exoplanets in a combination of ways. Most relevantly, they produce significant long-term

radial-velocity variations, of the order of tens of m s�1 (Lovis et al. 2011), with periodicities

that may mimic the presence of outer gas giants. As an example, Jupiter’s 12-year orbit

imprints roughly a 12 m s�1 RV signal on the Sun, a variation comparable to the 7 m s�1

11-year trend induced by the solar magnetic cycle. It is therefore important to distinguish

between the two. One of the ways to isolate the long-term effects of magnetic cycles is to

turn to activity proxies to isolate common trends. More complex modelling methods are

currently being developed, such as employing neural networks or non-stationary kernels

in Gaussian processes. However, the lack of training data represent a significant limita-

tion.

1.2.4 Oscillations

Stars are not static objects. They oscillate in a variety of ways. These oscillations man-

ifest themselves as motions in the stellar photosphere as well as density or temperature

changes in the full stellar body (García and Ballot 2019). Stars can be excited to oscillation

by different effects, but most main-sequence stars, sub- and red-giants undergo the same

process: turbulent motions in the external convective layers generate repeated stochastic

excitation and damping. These oscillations are known as "solar-like". Solar-like oscilla-

tions are resonances occurring at specific frequencies dependent on the characteristics of

their considered star. They therefore can be considered resonance modes. By studying the
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Figure 1.7: Schematics illustrating the propagation of oscillation modes in stars. Left panel: pressure modes
propagating through the stellar interior. Right panel: gravity modes propagating in the non-convective stellar
areas. Both diagrams are adapted from Di Mauro (2016).

Sun, an array of different modes caused by different effects has been identified. While they

all impact stellar observations in the extreme precision radial-velocity regime, most pro-

duce signals too small to be resolved with current spectrograph precision. In this work, I

only address three modes. For a more detailed description of asteroseismology as a whole,

see the following reviews: Chaplin and Miglio (2013), Hekker and Christensen-Dalsgaard

(2017), and García and Ballot (2019).

1.2.4.1 Pressure Modes

The most significant mode of oscillation is the pressure mode, or p-mode. They are acous-

tic standing waves, and arise from the pressure gradient of the star. Their resonant fre-

quencies are mainly dependent on the stellar outer layer, the section between the top of the

photosphere and a characteristic internal turning point. The left panel of Fig. 1.7 shows

a diagram of their typical behaviour. They are one of the best ways to study the interior

of stars. P-modes result in RV variations of the order of a few m s�1 (Schrĳver and Zwaan

2000) with characteristic timescales between 5 and 15 minutes. Given their stochastic na-

ture, the best way to mitigate the contribution of pressure modes to the radial velocities

relies on simple "averaging-out", by taking observations with at least 10-minute long ex-

posures (Dumusque et al. 2011; Chaplin et al. 2019).
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1.2.4.2 Gravity Modes

Gravity modes, or g-modes, are driven by buoyancy forces due to gravity and density fluc-

tuations. In Sun-like stars, they are confined to the radiative interiors or the atmosphere,

as shown in the right panel of Fig. 1.7, as they can only propagate in non-convective areas.

Due to this characteristic, they are difficult to detect and isolate. Their injected RV am-

plitude is very small, and the variations are expected to repeat with periods comparable

to hours. In current RV surveys, g-modes are not a focus of mitigation techniques, given

their minimal impact.

1.2.4.3 Quasi-toroidal Modes

Quasi-toroidal modes, or r-modes (given their connection to Rossby waves), are generated

by the rotation of the star (Papaloizou and Pringle 1978). They are driven by the Coriolis

force. The amplitude of the signal that they imprint on RV observations is directly pro-

portional to the stellar mass and inversely proportional to the square of the stellar radius

and rotation frequency (Provost et al. 1981). Variability generated by r-modes has regular

but complex behaviours, with periodicity dependent on the mode considered. In the Sun,

r-modes periods ranging from 20 to 38 days have been detected (Wolff and Blizard 1986).

Lanza et al. (2018) found that the periods of RV oscillations due to r-modes are related to

the stellar rotation rate as 3/4 and 2/5 %rot. These variations are of the order of tens of

cm s�1, and are therefore now of interest to more precise spectrographs such as HARPS3.

No mitigation technique has been developed yet to account for these signals.

1.2.5 Magnetoconvection

Matter in the outer layers of stars is in continuous motion. While radiation is the most

efficient mode of energy transport in the inner parts of the star, convection dominates

closer to the surface due to the increased opacity of plasma. In Sun-like stars, the unstable

hydrogen ionisation zone under the visible photosphere is in constant cyclical motion.

Plasma at the bottom of this area is heated up by radiative energy, and tends to expand in

order to maintain pressure-temperature equilibrium. This decrease in density forces the

hot plasma to rise towards the surface of the convective zone, driven by buoyant forces.

As it reaches the upper layers, it cools down and thus sinks back to the bottom, re-starting
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Figure 1.8: Image of the solar surface observed with the Daniel K. Inouye Solar Telescope taken at a wave-
length of 705 nm. The granulation structure is clearly visible. Image credit: NSO/NSF/AURA.

the cycle. Convective motions happen at multiple spatial and temporal scales. For a more

in-depth analysis of magnetoconvection in the Sun see Stein (2012) and Proctor and Weiss

(1982).

1.2.5.1 Granulation

The most obvious expression of magnetoconvection is granulation. The continuous rising

and sinking of plasma generates the typical "patchy" look clearly visible on the surface of

the Sun, as shown in Fig. 1.8. Bright areas with up-welling flow of hot material are re-

ferred to as granules, while the dark filament-like regions surrounding them are called

intergranular lanes and are the zones in which the cooled plasma sinks back down. The

size and lifetime of granules change based on the magnetic field that creates them, ranging

from kilometres to megametres in diameter (Del Moro 2004), with lifetimes of minutes to

days, respectively (Hall 2008). Granules are distinctly quasi-polygonal in shape (Leighton

1963). Since the intergranular lanes are dimmer and occupy a smaller fraction of the sur-

face, the Doppler shifts generated by the upward and downward motions of plasma do

not cancel out. In a radial-velocity observation, this effect leads to an overall blueshift (mo-

tion towards the observer) due to each convective cell. This blueshift measures roughly

3.5 km s�1 in the Sun (Lindegren and Dravins 2003; Dravins 1999). In the absorption lines
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Figure 1.9: Spectral line profile and bisector of the Fe I 6301.5 Å line observed in the magnetically quiet
Sun. Left panel: the intensity of the spectral line normalised to continuum is plotted as a solid black line,
the computed bisector points are shown as black asterisks and their interpolation as a solid red line. Right
panel: the same bisector line is here shown with a different x-axis (in Doppler velocity) to highlight the typical
C-shape caused by granulation. Figure taken from Fig. 13 of Löhner-Böttcher et al. (2017).

and in the cross-correlation function (CCF) of the spectrum, this general blueshift is visi-

ble as a distortion of the Gaussian shape (e.g., Gray 2005), highlighted by the tilt towards

positive velocities of the bisector. The typical C-shape of the bisector of the CCF is shown

in Fig. 1.9 (Löhner-Böttcher et al. 2017). However, the granulation pattern does not remain

constant in time. Granules have lifetimes correlated to their average size. The surface they

each cover also changes with time, tending to decrease for granules smaller than 0.76 Mm2

and increase for those above that typical size (Meunier et al. 2015). Changes in the total

number of granules and in the bright-dark balance of granules and intergranular lanes

result in RV variations of the order of m s�1. These velocity fluctuations obey Poisson

statistics, and their amplitude can be approximated to the square root of the total number

of granules. Simulations of the Sun show that granulation leads to a root mean squared

(RMS) scatter in the RVs between 0.3 and 0.8 m s�1 (Meunier et al. 2015; Collier Cameron

et al. 2019; Al Moulla et al. 2023; Dalal et al. 2023). Few RV surveys are directly assessing

the effects of granulation. Those that do aim to average out the signal by taking multiple

exposures in the same night. In the past years, more sophisticated techniques have been

proposed, mostly focused on the disentangling of the granulation contribution directly

in the stellar absorption lines (Cegla et al. 2019) or in the shape of the cross-correlation

function (Palumbo et al. 2022).
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Figure 1.10: SOHO Dopplergram observation of the solar chromosphere. The figure is colour-coded based
on the line-of-sight velocity observed. The supergranular structure is clearly evident. The mostly-horizontal
nature of the motion of plasma in supergranules is here highlighted by the radially-symmetric visibility gra-
dient from the centre of the disc towards the limb. Image credit: NASA/MSFC Hathaway.

1.2.5.2 Supergranulation

A second pattern of convection cells also introduces significant radial-velocity variations:

the supergranulation. It was first proposed by Hart (1954). They detected a fluctuating

velocity field with different irregularities and larger scales than what would have been

expected from "traditional" convective instabilities. These results were later confirmed by

Hart (1956). Since then, many separate measurements of the size and effects of this process

have been published (e.g., Leighton et al. 1962; Simon and Leighton 1964) and supergran-

ulation has been accepted as an expression of convection at larger spatial scales, as shown

in Fig. 1.10. Although the most likely origin of this convective motion is considered to

be thermal convection, building a true understanding of the causes and driving forces of

supergranulation has been extremely challenging (Rincon and Rieutord 2018). Solar su-

pergranules have been measured to have diameters of roughly 35 Mm (Cegla 2019) and

lifetimes of 1.5 to 2 days. The majority of the plasma motion is horizontal, flowing radi-

ally out from the middle of the supergranule with velocities of the order of a few hundred
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m s�1. Supergranulation has been modelled to contribute to up to 0.8 m s�1 to the stellar

activity RMS budget in RV observations (Meunier et al. 2019), and these values have been

reproduced by indirect observations (Lakeland et al. 2024). Given their long lifetimes,

granulation-like averaging-out mitigation techniques are generally unfeasible. No other

modelling method has yet been developed to directly address the effects of supergranu-

lation.

1.2.6 Meridional Circulation

Matter on the solar surface is in continuous motion from the equator to the poles. In or-

der to preserve equilibrium, a second return flow is also present underneath the surface in

order to substitute the displaced matter. These flows arise from the redistribution of an-

gular momentum due to turbulence (Meunier and Lagrange 2020). In the Sun, poleward

flows have a maximum velocity of 10-20 m s�1 that change with varying solar cycle stage

(Meunier 2021). The integrated RV contribution of solar meridional flows has been mea-

sured to be between 0.5 and 1.7 m s�1, depending on activity level and on the orientation

of the solar rotation axis (Meunier and Lagrange 2020; Markov et al. 2010). These flows

were found to be maximally significant on the descending phase of the solar cycle, and

when viewing the Sun pole-on. In other stars, the amplitude of this effect ranges between

0.1 m s�1 for quiet stars to 4 m s�1 for more active ones. Similarly to the Sun, meridional

circulation in stars has also been observed to change in time (Chou and Dai 2001; Komm

et al. 2015; Hathaway and Rightmire 2010), growing weaker with increasing sunspot num-

ber (Choudhuri 2021). Its imprinted signal on the RVs therefore also changes with time,

introducing long-term variations with periods of the order of the stellar magnetic cycle.

Meridional flows also suppress convective blueshift, and weaken the connection between

activity proxies and active regions filling factor (more information on this correlation in

Chapter 2, Section 2.2). Currently this effect is not taken into consideration in most RV

planet searches, and no mitigation technique has been widely accepted.

1.2.7 Gravitational Redshift

As photons escape the gravitational well of their star, they lose energy to the stellar grav-

itational potential. This causes an overall redshift of the absorption lines observed in the
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spectrum. This redshift has been measured to be of the order of 600 m s�1 in the Sun (Lin-

degren and Dravins 2003). The amplitude of this signal is dependent on the size of the

emitting object. Over timescales of days and longer, stars expand and contract, varying

their radius. In the Sun, a change in radius of 0.01% introduces a change in velocity of ⇠6

cm s�1 (Cegla et al. 2012). For low mass stars, Cegla et al. (2012) found that effects due to

gravitational redshift become significant over timescales of 10 days or longer. Thus, while

radius fluctuations due to pressure modes are not a significant concern, any size defor-

mation due to magnetoconvection or Wilson depression of starspots (Suzuki 1967) can

successfully mimic or obscure the signal of an Earth-analogue. Variations in the overall

gravitational redshift are currently not addressed or mitigated in any RV survey.

1.2.8 Other Effects

In this Chapter, I have covered the major sources of stellar variability, but the list is not com-

plete. There are a wealth of other processes that directly or indirectly affect radial-velocity

data. In most cases, these effects have amplitudes under the precision levels of most spec-

trographs and are therefore not accounted for in RV correction, extraction or modelling.

This is the case for small scale behaviours in and around spots, such as Evershed flows

(Evershed 1909; Rempel et al. 2009) - in which radial motion outwards from the centre of

the starspot can reach velocities of several km s�1- and differences in brightness between

umbra and penumbra that affect the way our models of photometric inhomogeneities im-

pact the RV data. Other processes, while they can produce significant signals, evolve over

timescales of the order of decades. For example, solar Gleissberg cycles (e.g., Hathaway

2010) modulate the amplitude of the solar magnetic cycle over a period of 70-100 years.

These changes are therefore too slow to be resolved in the great majority of RV surveys,

which have significantly shorter baselines. For one reason or another, while interesting

these effects are not of primary focus.
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Chapter 2

Mitigating and Modelling Stellar

Variability

“Not just beautiful, though — the stars are like the trees in the forest, alive and

breathing. And they’re watching me. What I’ve done up till now, what I’m going to

do — they know it all. Nothing gets past their watchful eyes. As I sit there under the

shining night sky, again a violent fear takes hold of me. My heart’s pounding a mile a

minute, and I can barely breathe. All these millions of stars looking down on me, and

I’ve never given them more than a passing thought before. Not just the stars — how

many other things haven’t I noticed in the world, things I know nothing about?”
— Haruki Murakami, Kafka on the Shore

In this Chapter, I list and describe the relevant mitigation and modelling techniques

that have been developed and are currently being employed to address the many sources

of non-planetary signals in RV data. In this work, I focus on highlighting techniques aimed

at the mitigation of stellar variability, instead of methods developed for the correction of

instrumental systematics. The Chapter is organised as follows: Section 2.1 covers the var-

ious techniques for the extraction of radial velocities. It is subdivided in three parts. I

fist describe the basic methodologies to derive RVs from spectral observations. I then in-

troduce techniques that include stellar activity mitigation before or simultaneously to the

RV extraction using information from either the spectra or the cross-correlation function.

Section 2.2 describes the common activity proxies and how they can be used to better un-
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derstand stellar variability in the radial velocities. Finally, Section 2.3 covers a subsection

of the most employed methods of modelling the RV time series. The Chapter concludes

with a brief summary of other independent observational data that can be studied for a

better understanding of stellar activity or used for simultaneous modelling with the radial

velocities.

2.1 Radial Velocity Extraction

The radial velocity of an object can be measured as the Doppler shift of the centre of the

absorption lines of its spectrum. With infinitely high precision, the motion in time of each

spectral line can be measured independently, each yielding the same value. However,

spectrographs are in fact not infinitely precise, and the stellar lines are affected by stellar

activity in a variety of different ways such that the derivation of RVs is not straightforward.

In this Section, I describe common methods to combine information over the spectral range

and compute radial velocities.

2.1.1 Basic Methods for RV Extraction

While there exist a large variety of techniques to extract the radial velocities starting from

spectra, only the most used ones are included in this work. All of the described extraction

methods rely on the fact that the stellar motion caused by the presence of a planet shifts

all the absorption lines in the same way and by the same amount without affecting their

shape. In this Section, I focus on methods that perform little to no modelling or correction

for stellar variability, and instead only aim to minimise its significance and to reduce the

uncertainties on the RV measurements. Generally radial-velocity extraction is performed

with three main numerical techniques: the cross-correlation function (Section 2.1.1.1),

least-squared deconvolution (Section 2.1.1.2), or least-squares template matching (Section

2.1.1.4).

2.1.1.1 Cross-Correlation Function

The most commonly accepted and widely used method to extract the RV variations from

the stellar spectrum is the cross-correlation function, or CCF, method (Baranne et al. 1996;
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Figure 2.1: Left panel: Pictorial representation of the computation of the cross-correlation function (CCF). A
weighted line mask, here in blue, is shifted over the spectral observations, shown as black dashed lines, and
their correlation is calculated for each velocity, as depicted for each step on the right. Right panel: example
diagram of a CCF in blue with its main characteristics labelled, the full-width at half-maximum (FWHM)
and the bisector (for an extended explanation, see Section 2.2.2). The radial velocity of the observation can
be computed by fitting a Gaussian function, shown as a dashed red line, to the profile and finding its peak.
Figure adapted from Roy et al. (2016) and Arpita Roy’s 2018 Sagan Summer Workshop Talk.
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Pepe et al. 2002). It requires the corrected order-by-order spectrum as well as a generic

stellar line mask. The process is simple: an appropriate numerical stellar mask of the ex-

pected absorption lines given the stellar type is superimposed to the observed spectrum

and is then shifted over all the available velocity space. At each velocity-step the cross-

correlation between the mask and the observation is measured. With this method, the

information of every line in the spectrum is condensed to a single line profile with high

signal-to-noise ratio (SNR). The diagrams in Fig. 2.1 depict this basic process and its out-

put. The RV of the observation can then be derived by finding the velocity at which the

correlation peaks. This last step is sometimes done by fitting a Gaussian function to the

profile. The CCF technique is a fast extraction method, taking minutes at most for each

observation. It generates quick and reliable RVs and a high-SNR averaged line profile that

can be further studied in the search of stellar activity proxies (see Section 2.2.2). However,

the best feature of the CCF method is also its main limitation, as by averaging over all the

spectral lines it loses the majority of the spectral information. Moreover, it relies on generic

stellar masks that are not optimised to the specific target. While new adaptations of the

CCF method are being developed to better account for stellar variability (e.g., Simola et

al. 2019), the Extreme Precision Radial-Velocity (EPRV) community is moving away from

this technique.

2.1.1.2 Multi-Mask Least-Squares Deconvolution

The Multi-Mask Least-Squares Deconvolution technique (MM-LSD: Lienhard et al. 2022)1

is a recent advancement on the Least-Squares Deconvolution (LSD) method widely ap-

plied to the extraction of weak magnetic signals in spectropolarimetric data (Donati et

al. 1997) and later to the extraction of RVs (Barnes et al. 2012). It is based on the assumption

that the stellar spectrum can be modelled via the convolution of a mask of the absorption

lines (in the form of multiple delta functions centred at the middle wavelength of each line

and weighted by their depth) and a common weak-line profile. The LSD technique there-

fore aims to find this common weak-line profile by deconvolution between the observed

spectrum and a stellar line mask. The basic method is fully detailed in Donati et al. (1997).

The technique relies on the assumption that the line profile generated by multiple over-

1. Code available at: https://github.com/florian-lienhard/MM-LSD

https://github.com/florian-lienhard/MM-LSD
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lapping lines can be described by the sum of the line profile of each separate line. This

assumption holds in most cases, as long as the lines are not intrinsically overlapping. The

major improvement of MM-LSD over LSD focuses on the introduction of a multi-mask ap-

proach: the method described in Lienhard et al. (2022) relies on several combinations of

parameters to extract the deconvolved LSD profile. The RV of the observation is extracted

by, for example, fitting a Gaussian curve to the computed common line profile to find its

peak. This technique has been shown to yield RVs with generally lower scatter than those

produced with the CCF method, and the line mask chosen for deconvolution can be easily

adapted to the stellar spectral type. However, similarly to the CCF method, the MM-LSD

method also averages out all the information of hundreds of lines into a single profile.

2.1.1.3 Line-by-Line

The Line-By-Line method (LBL: Dumusque 2018) is an intermediate solution between av-

eraging out all the spectral information into a common profile and locally measuring the

shift of each absorption line. Since its inception, the method has been further tested on

solar-type stars (Cretignier et al. 2020a) and has been expanded to the near-infrared wave-

length range (Artigau et al. 2022)2. Starting from a line mask of the appropriate stellar

type, this technique measures the RV shift of each spectral line separately, and then per-

forms a weighted mean of all the extracted values to obtain the final precise RV. It requires

the reduced 2D stellar spectrum pre-corrected of any known instrumental systematics. A

crucial part of the LBL technique is the choice of the lines used in the computation. The

ideal selection includes the maximum number of available lines while excluding those

that are sensitive to magnetic activity (such as the Ca II H and K, H� and the Mg II lines)

as well as all lines affected by tellurics (absorption features created by the passage of the

stellar light through Earth’s atmosphere). The LBL method is particularly successful at

minimising the effect of outliers that can bias the RV measurements. An effective selection

of lines can also minimise the effects of stellar activity on the extracted RVs, and reach sub-

m s�1 scatter. However, the larger the number of the rejected lines is, the more significant

the photon noise becomes, so excluding all lines affected by activity is not viable, and stel-

lar variability cannot be fully corrected for. Moreover, this technique requires the chosen

2. Code available at: https://lbl.exoplanets.ca

https://lbl.exoplanets.ca
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spectral lines to have high enough resolution that a velocity shift can be measured. This is

only possible for a subsection of lines and is successful systematically only for bright stars.

Cretignier et al. (2020a) extended the LBL method by optimising the line selection, and

by computing line centres directly from the master stellar spectrum with an extremum

localisation algorithm. The LBL technique has been shown to be very efficient at recog-

nising lines affected by stellar activity, but it is not immune to other effects such as the

propagation of uncertainties in the wavelength solution.

2.1.1.4 SERVAL

In order to remove or minimise the uncertainties derived from an imperfect fit between

the selected line mask and the observations, some methods choose to create the template

directly from the data, rather than using a pre-determined mask generated based on stel-

lar type. The SpEctrum Radial Velocity AnaLyser (������: Zechmeister et al. 2018)3 is one

of such methods. Instead of using standard pre-computed numeric masks, ������ gen-

erates its template spectrum uniquely for each star. It follows a sequential and iterative

approach: it first calculates an approximate RV shift for all observed spectra. All observa-

tions are then coadded following this preliminary shift into a master spectrum. The final

RVs are computed as the shift between this new template and each observation using a "2

minimisation approach. ������ is a fully data-driven approach that aims to use all the in-

formation in the spectral lines. It has been shown to perform well on M-dwarfs observed

with the CARMENES spectrograph (Quirrenbach et al. 2016), and has been tested on High

Accuracy Radial-velocity Planet Searcher (HARPS: Mayor et al. 2003) and NEID (Schwab

et al. 2016) data (e.g., Trifonov et al. 2020; Cañas et al. 2022). Nevertheless, ������ remains

a template-matching technique, the reliability of which is dependent on the quality of the

produced template. Further work is required to systematically show how ������ works

when applied to F-, G-, and K-type stars.

2.1.1.5 Template-free Gaussian Process Matching

Most recently a new template-free method has been proposed, which relies on the use

of Gaussian Processes (GPs) to model the spectrum (for more information on Gaussian

3. Code available at: www.github.com/mzechmeister/serval

www.github.com/mzechmeister/serval
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processes, refer to Chapter 3). Rajpaul et al. (2020) presented a starting proof-of-concept

methodology for RV extraction using this technique. They model each spectrum using a

GP described by a Matérn 5/2 kernel. By then aligning the GP model of each observation

to all other spectral models, they are able to infer the RV shifts between them. With a

large enough number of observations, this method essentially provides the perfect tem-

plate. The GP model is not limited by uncertainties such as photon noise and mismatch,

and it is not tied to pre-existing line lists or masks. At the current stage, this GP matching

method assumes that the only variation in the spectra of stars is a perfect Doppler shift

caused by the presence of exoplanets or other orbiting bodies. As has been addressed in

Section 1.2, this is not the case. Further work is therefore required to extend this formal-

ism to include stellar variability with evolving kernel hypeparameters. This technique is

also computationally limited, as modelling the entirety of the visible spectra would re-

quire prohibiting amounts of computational resources and time. Moreover, its efficacy is

directly dependent on the amount of observations available, working best with large num-

bers of data and long baselines. The GP matching method has, nevertheless, been proven

to significantly improve the RV scatter due to stellar variability even in this preliminary

version.

2.1.2 RV Extraction with Simultaneous Spectral-level Stellar Activity Mitiga-

tion

In this Section, I describe the most common and promising techniques that include spectral-

level activity mitigation before or simultaneously to RV extraction. These methods focus

on correcting for stellar variability in the wavelength-domain.

2.1.2.1 Line-by-Line Statistics

The Line-by-Line method (Section 2.1.1.3) can either enhance or minimise the contribution

of stellar variability by careful selection of lines. A basic application of the method aims

to utilise all available unblended, symmetric lines to maximise the amount of informa-

tion included. However, further work has focused on building systematic line selection

techniques which are tailored to isolate pure Doppler shifts from effects caused by stellar

activity. This push started from the incipit, at formalisation (Dumusque 2018; Cretig-
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nier et al. 2020a), but it has since gained more momentum, and a series of different line

selection approaches have been investigated (e.g., Bellotti et al. 2022). Ould-Elhkim et

al. (2023) introduced W�����, a new data-driven approach of the line-by-line method cou-

pled with weighted Principal Component Analysis (wPCA: Delchambre 2015)4 for the

correction and extraction of RV data. PCA is a method to reduce the dimensionality of

large datasets. It relies on the creation of principal components, generated as the linear

combination or mixtures of the initial dataset. These combinations are created in such

a way that the new uncorrelated variables (the principal components) summarise all the

information from the original dataset. Essentially, PCA takes #-dimensional data and

generates # principal components. In doing so, it re-organises the information budget

so that the great majority of it is assigned to the first component, then the majority of

the remaining information is assigned to the second component, and so forth. The late

components contain very little of the initial information, and therefore can be discarded

with minimum loss, going thus from #-dimensional data to generally less than 10 prin-

cipal components. By assuming that the RV time series extracted with the LBL method

is dominated by "spurious" stellar-induced signals, the W����� algorithm aims to isolate

non-Keplerian signals with wPCA reconstruction. The RVs generated by the gravitational

pull of the planet are then computed as the subtraction between the original LBL time se-

ries and the new wPCA-reconstructed stellar RVs. For this calculation W����� determines

the appropriate number of principal components that best describe only the stellar sig-

nal by permutation tests and leave-one-out cross validations (Cretignier et al. 2022). The

W����� pipeline has however only been introduced recently, and further testing on stellar

and solar data is required to properly assess its efficacy.

2.1.2.2 Temperature-dependent RVs

A complementary RV extraction approach building on the idea of measuring the radial-

velocity shift from individual spectral lines was developed by Al Moulla et al. (2022).

They assume that spectral lines formed at different temperatures in the photosphere are

affected by stellar activity differently. They therefore aim to isolate line temperatures that

are least sensitive to stellar variability and use those for RV calculation. After subdividing

4. Code available at: https://github.com/jakevdp/wpca

https://github.com/jakevdp/wpca
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Figure 2.2: Pictorial description of the temperature-dependent RV extraction method. A 15 Å section of a
corrected observed spectrum is plotted as a solid line colour-coded based on the temperature bin each line
segment is assigned to. The number of bins is arbitrary. The formation temperature of each wavelength
section is computed with spectral synthesis. The shaded areas indicate whether a spectral line has been
selected (brown) or rejected (gray) for the computation of the RVs: only absorption lines segmented over
more than three bins are chosen. Some lines are also described by a label to indicate their element and
ionisation. Figure taken from Fig. 15 of Al Moulla et al. (2022).

the temperature range in # bins (in which # is arbitrarily chosen), they perform local

thermodynamic equilibrium spectral synthesis in order to estimate which sections of each

absorption line belong to each bin based on their average formation temperature, as shown

in Fig. 2.2. Each spectral line is thus divided in up to 2# segments. To better understand

the temperature gradient, only lines that are well-modelled by the spectral synthesis and

that are divided over more than three temperature bins are selected. The mean RV of each

temperature bin is obtained as the weighted average of the RVs derived from each selected

line segment. This method is completely planet-insensitive, meaning it is not expected to

absorb the signal of the planet for any choice of temperature bins. While this technique

has been shown to be successful at isolating some effects of stellar activity such as rotation

period and magnetic cycle, the ideal temperature selection to minimise the effects of stellar

variability is still in discussion, as the dependence of stellar activity on line temperature

formation is still not well understood. Moreover, the temperature sectioning is currently

not based on physically-motivated assumptions.

2.1.2.3 W�����

In the past few years, a series of data-driven algorithms have been developed to minimise

the amount of assumptions and uncertainties introduced in RV extraction by imperfect

templates. W�����5 (pronounced like Michael Bublé) is one of these techniques (Bedell

5. Code available at: https://github.com/megbedell/wobble

https://github.com/megbedell/wobble
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et al. 2019). It is a simple linear model for the simultaneous derivation of stellar spectra,

telluric spectra and RVs. It depends on information extracted from the data, rather than on

pre-defined templates, or on physical knowledge of the star or of the Earth’s atmosphere.

W����� models the flux of spectral observations as the sum of a stellar and a telluric con-

tribution. The first is itself dependent on both magnetic activity and pure Doppler-shifts

induced by planets. With the limiting assumption that the stellar variability and the tel-

luric component do not change in time, W����� fits the flux model to the observed spectra

by maximising its logarithmic likelihood and allowing a varying Doppler-shift. The RVs

of each epoch are then extracted from this process as the shift component that best fits each

observation. This pipeline has been tested on a variety of HARPS stars, and it can produce

RVs of comparable precision to the standard CCF method. W����� has shown significant

promise in the direct correction of telluric and micro-telluric lines, which makes it ideal

for M-dwarf targets. Nevertheless, this technique assumes constant telluric and stellar

activity spectral forms, a premise that is inherently incorrect. W����� is currently being

re-worked and extended to include different algorithms to model the spectrum. Further

enhancements produced by the community are also welcome.

2.1.2.4 YARARA

Building on the success of ������, Y����� (Cretignier et al. 2021) is a recent post-processing

pipeline for the derivation of RV measurements from high-resolution spectra. The tech-

nique aims to correct the one-dimensional order-merged spectra of effects from cosmic

rays, telluric lines, instrumental systematics (such as interference patterns, point spread

function variations, fibre B contamination and ghosts), and stellar activity simultaneously

with a data-driven approach, and to extract high-precision RVs. The workflow of ������

begins with spectrum normalisation with R������ (Cretignier et al. 2020b). It then pro-

duces a master spectrum by stacking all individual observations, and uses it to derive

residual spectra for all epochs. Y����� then cleans spectral ranges that show strong resid-

uals with either physically-motivated models or by PCA and component fitting. As an ex-

ample, stellar activity can be corrected by linearly fitting a scaled version of the S-index on

the spectra time series matrix. The RVs are then extracted with the line-by-line method, us-

ing a line selection optimised for the chosen target as described in Cretignier et al. (2020a).
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A second iteration of the pipeline was published in Cretignier et al. (2023). Y����� Version

2 includes a further correction to the LBL RVs using the shell methodology, introduced by

Cretignier et al. (2022). The shell method performs variant template matching. Instead

of measuring the RV shift, it extracts the line profile distortions orthogonal to the pure

Doppler shift (and their time-domain coefficients) between each observation and a refer-

ence spectrum. The RVs generated by these distortions are then subtracted from the total

radial velocities to isolate Keplerian signals. This pipeline has been extensively tested

and is currently being implemented for the analysis of a series of targets (e.g., Stalport

et al. 2023; Dalal et al. 2024). It can both provide the RVs corrected of stellar variability

and instrumental systematics, and isolate the effects of stellar activity in a separate time

series. This method assumes that a master spectrum free of all systematics and stellar

variability can be built, although that is not always the case. Y����� is limited by the fact

that it best performs on datasets with large numbers of observations and requires high

signal-to-noise ratio in order to properly model the stellar lines.

2.1.2.5 AESTRA

Machine learning is a field of growing interest for astrophysics as a whole (e.g., Bloom

et al. 2012; Domıénguez Sánchez et al. 2018). In the context of planet detection, neural

network architectures have been successful at predictive modelling of large datasets for

the assessment of false positives in photometric surveys (e.g., Shallue and Vanderburg

2018; Osborn et al. 2020). Deep learning is a subset of machine learning that uses multiple

hidden layers in a neural network, and is generally interpreted in terms of probabilistic in-

ference. Given the ability of neural networks at identifying repeating features in data, they

have been employed to also correct stellar variability in large datasets. Liang et al. (2024),

for example, presented Auto-Encoding STellar Radial-velocity and Activity (AESTRA), a

deep learning method designed to distinguish between pure Doppler-shifts introduced

in the spectra by orbiting objects and stellar-induced perturbations in the line profiles.

In order to isolate all stellar variability patterns and derive high precision and accuracy

planetary RVs, AESTRA uses a large sample of stellar observations covering a variety of

activity levels and states. This pipeline combines deep learning methods for RV estima-

tion with a spectrum auto-encoder (�������: Melchior et al. 2023; Liang et al. 2023) for
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activity modelling. The two are jointly trained to determine the RV offsets. AESTRA does

not make any assumptions about activity and is a fully flexible framework. It however has

only been tested on simulated data, includes significant risks of overfitting and is com-

putationally expensive. Moreover, like many of the previous techniques, it is not always

clear what signals it is removing.

2.1.2.6 Other Methods

Section 2.1.2 only includes the most used methods for extracting radial-velocity measure-

ments from spectral observations with simultaneous stellar activity correction, and it is

not a complete list. Some honorable mentions are therefore due: Doppler-constrained

principal component decomposition (Jones et al. 2017), joint modelling of telluric and

stellar variability (Gilbertson and Ford 2022), and RV extraction with short-time Fourier

Transform (STFT) are all also promising methods.

2.1.3 RV Extraction with Simultaneous CCF-level Stellar Activity Mitigation

Spectrum-based computations that include activity mitigation can be extremely compu-

tationally expensive, and can take long amounts of time. In some cases, simpler methods

have been shown to perform just as well. In fact, CCF-based RV extraction still remains

the most widely used technique. Rather than fitting a simple Gaussian curve to the line

profile, stellar activity can be isolated directly in the CCF before RV computation. In this

Section, I focus on RV extraction and stellar variability mitigation techniques that rely on

information from lower-dimensional data such as the cross-correlation function.

2.1.3.1 FIESTA

In an attempt to develop more robust techniques to quantify the effect of stellar variability

in radial-velocity measurements, interest turned to methods to separate activity and pure

Doppler shifts starting from the CCF level. To do so, Zhao and Tinney (2020) introduced a

new technique for the study of CCF variability in Fourier space: FourIEr phase SpecTrum

Analysis (F����� or )����: Zhao and Tinney 2020; Zhao et al. 2022). This method relies on

the translation property of Fourier transforms. In summary, the phase change of a shifted

signal with the same power spectrum can be analytically derived in the Fourier domain.
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F����� decomposes the CCF into its orthogonal Fourier basis functions and calculates the

shift for each. It is therefore able to separate between pure shifts in the line profile, ex-

tracted as frequency modes all shifted by the same amount, and line distortions due to

activity, in which the composing frequency modes are shifted with different phases. The

original version of F����� identifies and separates regions of the line profile that are more

and less sensitive to line deformation, and uses basic algebra to derive the stellar-signal

contribution to the extracted RVs. An updated version, F����� II (Zhao et al. 2022) decom-

poses the line profile into all available Fourier modes up to the CCF sampling limit, which

facilitates the separation of effects due to multiple sources of stellar variability. Via simu-

lations, F����� has been shown to increase the detectability of planets, even in the case of

semi-amplitudes comparable to the stellar variability, and it can be used to classify rela-

tive amplitudes of planetary and stellar signals in periodogram analysis. However, F�����

works best with high-SNR observations and further modelling of the extracted time series

with techniques such as GPs (see Section 2.3.4) is often required.

2.1.3.2 SCALPELS and TWEAKS

Following a similar idea, Collier Cameron et al. (2021) presented Self-Correlation Analysis

of Line Profiles for Extracting Low-amplitude Shifts (��������), a CCF-domain method to

isolate shifts generated by Doppler effect from apparent shifts due to line profile defor-

mation. This technique relies on the translation invariant property of the autocorrelation

function (ACF, for a description see Section 2.3.3) of the CCF. Collier Cameron et al. (2021)

describe the ACF of the CCF as the expectation value of the vector cross-product of the

CCF with itself at a sequence of lags. S������� applies singular-value decomposition to

both the CCFs of the data and their ACFs to define the principal modes of variability. It

derives the orthonormal basis in the time-domain and the orthonormal modes of pro-

file variability. The appropriate number and ranking of leading principal components is

found using leave-one-out cross-validation. The radial-velocity variations due to shape

distortions, often called the shape-RVs, can then be isolated by projecting the raw RVs on

the time-domain subspace spanned by the amplitude coefficients of the derived ACF basis.

The shift-RVs, containing only the signals from pure Doppler shifts, can then be computed

as the subtraction between the raw RVs and the shape-RVs. The S������� formalism has
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been successfully applied to both solar and stellar data (Wilson et al. 2022; Anna John et

al. 2022), and it has since been extended to include exoplanet characterisation. Time and

Wavelength-domain stEllar Activity mitigation using K��� and S������� (������: Anna

John et al. 2023) was specially designed to achieve sub-m s�1 detection threshold for longer-

period exoplanets by combining stellar activity mitigation in both the wavelength- and the

time-domain. K���6 (Faria et al. 2018) is a nested-sampling (NS) package for the detection

of exoplanets and the analysis of their orbital characteristics that includes the number of

planets as a free parameter. It uses a diffusive NS algorithm (Brewer et al. 2009) to sam-

ple from the posterior distribution of the model parameters, and to ultimately extract the

Bayesian evidence for each model in order to compare various system configurations. The

T����� workflow begins with the construction of the basis vectors from the ACFs using

S�������, which represent the shape-driven components of the CCF. These vectors are

then inputted into K��� for stellar activity decorrelation, following the method in Anna

John et al. (2022). T����� has been shown to successfully achieve sub-m s�1 precision and

accurate planet characteristics (Anna John et al. 2023; Dalal et al. 2024). While fast and

able to successfully preserve any planetary signal, this method, as the one presented in

the previous Section, still shows significant quasi-periodic variations left in the "clean"

RVs, and therefore needs to be paired with other mitigation techniques.

2.1.3.3 CCF-based Deep Learning

Neural networks can also help to differentiate between Doppler shifts and stellar activity-

induced distortions at the CCF level (De Beurs et al. 2021). While the training set needed

for successful mitigation of stellar variability requires large numbers of observations, it

does not need to be well- or densely-sampled. De Beurs et al. (2021) used a Convolutional

Neural Network (CNN) to predict the difference between a simple Gaussian fit to the CCF

(as described in Section 2.1.1.1) and the true Doppler shift in the data by learning the

contribution of stellar variability to the RVs. They find that a CNN architecture works

better for this task than other NN algorithms, as they have only sparse interactions. This

means that the neural network is forced to learn local features over the entirety of the

training set at the same time, and then exploits the spatial structure. This method relies

6. Code available at: https://github.com/j-faria/kima

https://github.com/j-faria/kima
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on the fact that planets impart translational shifts to the spectrum and therefore to the

CCF, while stellar variability does not. To allow the CNN to only learn distortions of the

line profile, all the CCFs are normalised to a common zero-point velocity. All CCFs are

essentially shifted by the radial velocity measured with a simple Gaussian fit. A �CCF is

then extracted by subtracting a "quiet" reference frame. This master CCF profile is meant

to contain no effects due to stellar activity. In the case of solar data, it was selected to

be the average all observations taken on a day with no visible active region on the solar

surface. In the case of stellar data, this reference CCF is usually computed as the mean of all

observations. All the epoch of normalised�CCFs are then inputted in the neural network

as a training set. De Beurs et al. (2021) trained the CNN on both simulated data and solar

observations, and found that they successfully removed a significant amount of stellar

scatter, reaching sub-m s�1 precision. This method has however yet to be extended to

stellar observations, which could be done in one of two ways. On one hand, the technique

could be applied on single stars with large enough datasets. This would however limit the

complexity of the model, as it is unlikely that all types and levels of stellar variability would

be included in the dataset, and could lead to overfitting. On the other hand, the CNN could

be trained on multiple stellar datasets from the same instrument, and attempt to predict

stellar variability based on the whole ensemble. While this method would account for

a large variety of complexity, all planetary signals from the different systems must be

carefully completely removed before training. A further downside of this technique is

that it requires a "quiet" master CCF, the creation of which is complicated at best.

2.2 Stellar Activity Proxies

The analysis of stellar variability in radial-velocity data can be complemented by the use

of other, ideally independent, time series that directly or indirectly probe the effects due

to the various sources of activity. These measurable quantities can be used as activity

indicators, or proxies, when they are not affected by planetary interaction, and all their

variation can instead be attributed to stellar processes. Any signal present in both the

RVs and an activity indicator can therefore be attributed to stellar activity (note that how-

ever the opposite is not necessarily true). Proxies most often correlate directly to their
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contemporaneous RVs. In this Section, I describe the most commonly employed activity

indicators, and catalogue them as either derived from the spectral data, or from the shape

of the cross-correlation function.

2.2.1 Derived from the Spectrum

Stellar activity affects the spectrum of stars by introducing distortions in the profile of the

spectral lines. In some cases, strong lines can be used to compute proxies for the activity

by, for example, assessing the difference between their measured shape and the shape they

are expected to have in the case of no magnetic fields.

2.2.1.1 S-index

The S-index (Wilson 1968) is the most commonly used spectroscopic activity indicator,

and it is most often employed for removing long-term signals in the RVs due to the mag-

netic cycles of stars. It is a chromospheric index, as it relies on information derived from

chromospheric lines. Although the exact mechanisms by which the stellar chromosphere

is heated remain an argument of debate, the existence of a link between heating and mag-

netism is undeniable (Brun and Browning 2017). Therefore, the presence and intensity

of specific heating phenomena can be used as proxy for stellar magnetic activity (Luhn

et al. 2020). Long-term monitoring of the solar surface has shown that during times of

high activity the flux of various calcium absorption lines brightens significantly in nar-

row band filters centred on the near-UV Ca II wavelengths. These lines, arising at 3969

and 3934 Å from slightly ionised calcium, are the strongest spectral features observable

with ground telescopes, and were dubbed the H and K lines by Fraunhofer in 1814. The

Mount Wilson Program (1966 – 2003) established that these lines could in fact be used as

proxies of the solar activity cycle. The unit-less index (HK, or simply S-index, is defined as

the ratio between flux in the Ca II line cores and the flux in the nearby continuum regions

(Vaughan 1983). The S-index doesn’t require absolute flux calibration, and it provides

distance-independent activity information (Isaacson and Fischer 2010). Mathematically it

can be summarised as

(HK = �
 H + K
 V + R

, (2.1)
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in which H and K are the fluxes of the H and K line cores, V and R refer to the fluxes

of the continuum bands respectively on the violet and the red sides of the calcium lines,

and � is a normalisation factor.

However, the S-index contains a colour term, derived from the reference band-

passes, and is therefore dependent on spectral type of the star. It also includes a pho-

tospheric contribution, making it a difficult parameter to use when considering stellar

ensembles (Hall 2008). Although Middelkoop (1982) developed a method to remove the

colour dependence and recent works have proposed new extraction techniques (Cretignier

et al. 2024), (HK values are often parameterised in the form log('0
HK) (Noyes et al. 1984),

the logarithmic fraction of the star’s bolometric luminosity radiated as chromosperic H

and K emission (e.g., Thompson et al. 2017). log('0
HK) values range from -4.4 for very

active stars to -5.1 for inactive ones (Hall 2008). Mathematically '0
HK can be expressed as

'
0
HK =

 0
H + 0

K

�)4
eff

, (2.2)

where 0
H and 0

K are the fluxes of the H and K line cores measured at the stellar surface

(rather than by the observer as for the S-index) with chromospheric contribution of the

reference star pre-subtracted, � is the Stefan-Boltzmann constant and )eff is the effective

temperature of the star (Martıénez-Arnáiz et al. 2010). Nevertheless, the log('0
HK) still

shows dependency on stellar metallicity and luminosity. Both log('0
HK) and (HK are not

expected to fully behave as the radial velocities, as they are affected by foreshortening

and limb darkening in different ways to the observed RVs: Ca II emissions remain bright

even near the stellar limb. They are also not expected to be as effective over all levels of

activity, and they may not be sensitive enough to mitigate stellar variability in the low-

activity regime (Desort et al. 2007). Moreover, they both require high SNR for accurate

computations, as do all activity proxies derived from the spectrum.

2.2.1.2 H�-index

The Balmer H� line at 6562.808 Å is also often used as an activity indicator (Zarro 1983;

Herbst and Miller 1989). The flux of H� emission lines is, like the S-index, able to trace the

long-term trends due to stellar magnetic cycles. In particular, it is expected to be especially
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sensitive to chromospheric plages, as the brightening of H� cores due to magnetic activity

is well-established (Athay 1976). Like in the case for the S-index, the depth of H� lines

shows dependencies on chromospheric heating, and thus on the presence of magnetic

fields. Reiners et al. (2012) estimated the continuum around H� by taking the median of

two regions on either sides of the line and used this indicator to inform their analysis of

stellar activity. The H� index is most often defined as

�H� =
 H�

 R + B
, (2.3)

in which  H� is the flux computed at the centre of the H� line, and  R and  B are the

continuum fluxes at respectively the red and the blue sides of the line (Boisse et al. 2009).

The flux of the H� line is now one of the staple stellar chromospheric proxies (e.g., Robert-

son et al. 2014). Gomes da Silva et al. (2011) found a correlation between the Ca II lines

indicator and the flux of H� for high activity, but in the low-activity regime this corre-

lation disappears. In some cases, H� fluxes can be preferred to (HK values, as they are

less affected by changes in the flux of the ThAr calibration lamp in the telescope. The

H�-index still has its limitations: as a tracer of plages it is only truly effective when con-

sidering plage-dominated stars (e.g., Medina et al. 2022), and due to the photoionisation

process on which its signal depends it is more useful in M-dwarfs rather than F-, G- or

K-type stars.

A few other spectral activity indicators are worth mentioning. The flux and equiv-

alent width of N�, or Na I D lines (Andretta et al. 1997), the Balmer H& line and the He

I D line (Maldonado et al. 2019) have all been studied. For a comprehensive list, Wise

et al. (2018) presented a pipeline to extract 40 different activity indices from observational

spectra. In all cases, spectral activity proxies require high signal-to-noise ratios in order

to resolve individual line changes. Depending on the chosen line and computation tech-

nique, they are also often prone to issues due to blending effects.

2.2.2 Derived from the CCF

Alternatively, the shape distortions caused by stellar activity can be investigated starting

from the cross-correlation function. The CCF can be considered the average profile of
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Figure 2.3: Schematic of the cross-correlation function (CCF) and its common activity indicators. The CCF is
plotted as a red solid line, and a distortion caused by stellar activity can be seen in its left limb (for the sake
of visibility the stellar activity inducing this change in line shape is exaggerated as a spot covering 20% of the
stellar surface). The full-width at half-maximum (Section 2.2.2.1) of the CCF is indicated by the orange band.
The contrast is shown as a blue bar (Section 2.2.2.2). The two velocities (here in the form of wavelengths)
computed from the top and the bottom sections of the bisector (Section 2.2.2.3) are highlighted in light and
dark brown respectively. Figure adapted from Fig. 4 of Hara and Ford (2023).

all the spectral lines. Common deformations in different lines will therefore contribute

to distortions in the CCF. CCF-derived activity proxies are particularly useful in cases

where the signal-to-noise ratio is too low for the computation of the previously addressed

spectral indicators.

2.2.2.1 Full-Width at Half-Maximum

The most conventional activity proxy is the Full-Width at Half-Maximum of the CCF

(FWHM: e.g., Queloz et al. 2009; Hatzes et al. 2010). The FWHM is computed as the

difference between the two velocities (or wavelengths) on either side of the Gaussian fit

of the line profile at which the flux of the CCF is equal to half its peak value, as shown

in Fig. 2.3. The FWHM is dependent on the projected stellar rotation rate, E sin(8), and

on the intrinsic line width due to thermal and turbulent photospheric motion (Desort et

al. 2007). Most importantly, the FWHM changes as dark or bright regions traverse the vis-

ible disc of the star. Specifically, it increases in the presence of spots: as the missing flux

region crosses the profile, it reduces the depth of the normalised line while simultaneously

mostly preserving its area. The width of the CCF will thus widen to compensate (Collier
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Cameron et al. 2019). The opposite is true for bright regions, although the sensitivity of

this indicator to faculae and plages is significantly reduced due to the less drastic temper-

ature contrast. Because of this difference, the FWHM is generally considered a proxy for

spot activity, rather than for RV variability induced by all active regions. Late G- and K-

type stars present positive correlation between the FWHM of the CCF and the log('0
HK),

indicating that their rotationally modulated activity is most likely driven by dark spots

(Costes et al. 2021). For mid-G-type stars this behaviour transitions to a weak correla-

tion. Costes et al. (2021) speculated that this change in behaviour can be explained by the

shallower convective envelopes in early G- and F-type stars, resulting in weaker magnetic

fields which are less likely to form spots. They therefore confirmed that the FWHM is not

an effective activity proxy for faculae-dominated stars. The FWHM also presents other

limitations: it is instrument-dependent (being sensitive to e.g. focus drifts), it is time-

shifted with respect to the RVs, and it aims to trace distortions averaged over hundreds of

lines with different physical characteristics and different responses to stellar variability.

2.2.2.2 Contrast

The contrast of the CCF is defined as the depth of the CCF at its central wavelength (e.g.,

Lanza et al. 2019), as depicted in blue in Fig. 2.3. In the Sun, it is anticorrelated with the

stellar magnetic cycle, increasing with decreasing activity (Collier Cameron et al. 2019). It

is thought to be similarly affected by bright and dark regions. In particular, the long-term

variability of the contrast indicates that is it also sensitive to the facular network (Costes et

al. 2021). The contrast of the CCF is generally anticorrelated to the FWHM, showing sharp

dips at the passage of dark spots on the solar disc. By extension of this behaviour, the area

of the CCF does not seem to be particularly affected by rotationally modulated effects, as

changes in the width and depth of the line profile compensate each other. The contrast

shows strong anticorrelations with the log('0
HK) for more active stars, and weak to non-

existent correlations in the case of quieter stars. The observed anticorrelation between the

contrast and the log('0
HK) is expected: heightened stellar activity results in an increase

of bright region filling factor boosting the continuum (Cegla et al. 2013) and in fictitious

"emission" bumps in the line profile (Thompson et al. 2017), both of which decrease the

profile contrast and enhance the flux in the Ca II lines (Costes et al. 2021). Nevertheless,
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the contrast shares the same limitations as the FWHM, and its computed value is also

dependent on the choice of CCF line mask.

2.2.2.3 Bisector

Another way to measure the deformation of the CCF due to stellar variability is to assess

the changes in the bisector of the line profile. Generally CCF bisectors display the classic

"C" shape generated by convective blueshift due to granulation, as shown in Fig. 1.9 in

Chapter 1 (Gray 1989). The presence of active regions inhibits the convective flow and

therefore reduces the total amount of convective blueshift. Deviations from this charac-

teristic shape can therefore be used as a proxy of active-region variability in the radial

velocities. Recent works have also studied the "dance" of the bisector caused by the evolu-

tion of the granulation pattern on high-SNR observations of the Sun, and have modelled

the effects of granulation in the line profile (Palumbo et al. 2022). There are a variety of

methods to assess bisector distortions. The earliest formalism was developed by Queloz

et al. (2001). They introduced the bisector span (BIS) as a measurement of the asymmetry

of the CCF. They select two regions at the top and bottom of the line profile in order to

measure changes in the orientation of the bisector. The difference between the average

velocity of the top of the bisector,+t, and the one of the bottom section,+b, is a measure of

the inverse mean slope of the bisector, as shown in Fig. 2.3. The choice of sections of the

CCF used for this computation changes between works, but generally the top is defined

to include from 10 to 40% of the CCF based on line depth, while the bottom segment cov-

ers the 60 to 90% segment. The interpretation of this proxy is simple: any variability in

the RVs with the same periodic evolution as changes in the BIS is most likely generated

by shape distortions rather than pure shifts, and thus can be attributed to stellar activity.

In particular, the BIS is generally anticorrelated with stellar-induced signals in the RVs.

However, the computation of the BIS is particularly unreliable at low signal-to-noise ratio,

and this anticorrelation is not straightforward. In fact, the relationship between the BIS

and the RVs has been proven to not be monotonic (Boisse et al. 2011; Figueira et al. 2013).

It instead follows a tilted "8" shape, with the angle of the tilt and the width of the shape de-

pendent on the configuration of activity regions on the stellar surface. Desort et al. (2007)

also showed that in some cases the bisector span is actually less sensitive to the presence
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of deformations in the CCF than the RVs. Boisse et al. (2011) further highlighted that any

correction applied to the RVs using the BIS does not remove the periodicities due to stellar

activity, but only reduces their amplitudes. They instead proposed another approach for

the analysis of bisector asymmetry: the +span. They computed two radial velocities by

iteratively fitting Gaussian functions to the top and the bottom parts of the CCF, so that

each RV is only sensitive to distortions in its respective segment of CCF. They then defined

+span to be the subtraction of the bottom RV from the top one. This method relies on the

fact that the bottom part of the CCF is most sensitive to stellar activity. As for the BIS, the

selected ranges can change. The +span is more robust than the BIS at low signal-to-noise

ratio. Similarly to its predecessor, the+span is generally anticorrelated to the RV variations

due to stellar activity, but their relationship still maps a tilted "8", with similar properties

as the BIS-RV correlation. The calculated values of BIS and +span are very similar in most

cases, with variations proportional to the spot filling factor and to the projected rotational

velocity of the star. A further evolution of the formalism was then introduced by Figueira

et al. (2013): the �+ and the +asy. The �+ is calculated as the subtraction between the

central RV computed by fitting a bi-Gaussian curve to the CCF and the central RV com-

puted by fitting a traditional Gaussian. The bi-Gaussian function allows for the two wings

of the distribution to be characterised by different half-widths at half-maxima (Nardetto

et al. 2006), and is therefore more sensitive to line deformations. �+ is thus a measure

of the shift induced to the RVs by asymmetries in the CCF, and it shows a positive corre-

lation to activity-induced variations in the radial velocities. +asy describes the difference

of information content between the blue and the red wings of the CCF. It is spiritually

closer to an RV calculation rather than a direct line profile indicator, and it is expected to

be positively correlated to the RVs. In fact, the correlation between+asy and the radial ve-

locities is always stronger than the one between the BIS and the RVs (Figueira et al. 2013).

Although the relationship with the RVs is still not wholly monotonic, it is significantly

more linear than for all other bisector indicators. Further parametrisations have recently

been proposed such as the skew normal density (Simola et al. 2019), but they are still in

their infancy.
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2.3 Modelling the RV Time Series

As covered in Section 1.2, stellar variability affects the radial velocities in complex ways,

over multiple timescales and with different intensities. Even the most successful tech-

niques are not able to fully account for all sources of stellar variability. Further modelling

of the extracted RVs in the time-domain is therefore often recommended to at least under-

stand the structure of the remaining stellar signal. Moreover, even in cases with little to

no stellar variability present in the RVs, preliminary analysis of the time series allows for a

better understanding of the planetary signals. This Section describes the main techniques

to model and analyse radial-velocity time series.

2.3.1 Periodograms

One of the most useful and straightforward ways of investigating a variable time series is

to compute its periodogram. The aim of a periodogram analysis is to identify the leading

frequencies dominating the oscillations of the data. A periodogram is a tool that allows

for the analysis of a time series in the frequency-domain by fitting a function to the obser-

vational data. Periodograms rely on the assumption that any time series can be expressed

as a sum of cosine and sine waves of different amplitudes and periods. Scargle (1982)

introduced the periodogram as “the estimation of the spectral density of a signal”. The

algorithm for the now staple Lomb-Scargle periodogram was designed specifically for the

detection and characterisation of periodic signals, such as planet-induced radial-velocity

oscillations, in unevenly sampled time series. On a very basic level, the Lomb-Scargle pe-

riodogram is equivalent to iteratively fitting sine waves in the form H = � cos $C+⌫ sin $C

to the time series, in which � and ⌫ are amplitude coefficients and $ is every frequency

in the chosen range. The algorithm then measures how well the fitted model matches the

inputted data. A peak in the periodogram means that the observational data can be well-

modelled by a sine curve with the specified frequency. Since their inception, periodogram

algorithms have become increasingly complex and tailored to their specific function. In

this Section, I cover the most commonly employed formalisms of periodograms in the

context of exoplanet hunting and mitigation of stellar variability.



�� CHAPTER �. MITIGATING AND MODELLING STELLAR VARIABILITY

2.3.1.1 Generalised Lomb-Scargle Formalism

Zechmeister and Kürster (2009) introduced the Generalised Lomb-Scargle (GLS) peri-

odogram7. This updated formalism of the Lomb-Scargle algorithm aims to correct its two

main drawbacks: not taking into account the uncertainty values of the measurements,

and the assumption that the mean of the data and the mean of the fitted sinusoidal are

the same. The first shortcoming was solved by introducing weighted sums to the defini-

tion (Gilliland and Baliunas 1987; Irwin et al. 1989). The second was overcome with the

inclusion of an offset 2, generalising the periodogram fitting function to a weighted full

sine wave described as H = � cos $C + ⌫ sin $C + 2 (Cumming et al. 1999). The GLS is

a hybrid algorithm that employs in part an analytical solution for linearised parameters

and in part steps through non-linear parameters. An example of a periodigram computed

with the GLS formalism is shown in the top panel of Fig. 2.4, for more examples see Chap-

ter 4. However, the GLS still expresses its results in an arbitrary power, which does not

allow for easy comparison between models. In order to circumvent this drawback, a False

Alarm Probability (FAP) is estimated. FAPs are a way of expressing uncertainties in the

periodogram results and to differentiate significant peaks from the spurious background

noise. They measure the probability that a peak at the same frequency could be pro-

duced by coincidental random scatter in data (VanderPlas 2018). Periodogram powers

that exceed sufficiently small FAP levels can therefore be considered statistically signif-

icant (for further examples, see Chapter 5). There are a variety of methods to compute

false alarm probabilities, but all of them are dependent on the normalisation applied to

the periodogram. Alternatively, a False Inclusion Probability (FIP: Hara et al. 2022) has

been proposed to substitute the FAP and to better compare the probability of different

signals, in particular in the case of aliasing.

2.3.1.1.1 Bayesian Generalised Lomb-Scargle Formalism A further approach to al-

low for direct comparison between peaks is to extend the definition of the GLS to in-

clude Bayesian probability theory. Mortier et al. (2015) further generalised the GLS to the

Bayesian Generalised Lomb-Scargle periodogram (BGLS)8. The BGLS computes the prob-

7. Code included in the astrophysical Python package ������� and available at: https://github.com/
mzechmeister/GLS

8. Code available at: https://anneliesmortier.wordpress.com/sbgls/

https://github.com/mzechmeister/GLS
https://github.com/mzechmeister/GLS
https://anneliesmortier.wordpress.com/sbgls/
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Figure 2.4: Example periodograms of radial-velocity data of CoRoT-7. Top panel: Generalised Lomb-Scargle
periodogram of the 2012 CoRoT-7 RV dataset. The stellar rotation period and its harmonics are identified
by red vertical lines. The orbital period of CoRoT-7b computed via transit photometry (Barros et al. 2014) is
shown in blue, alongside the periodicities highlighted by Haywood et al. (2014). The Figure is taken from
Fig. 3 of Haywood et al. (2014). Bottom panel: Stacked Bayesian Generalised Lomb-Scargle periodogram of
the same data. The logarithmic probability of each period is depicted as a colour intensity. The ⇠8.5 days
signal found in the top GLS can here be clearly seen to be of incoherent nature, making its origin more likely
to be stellar rather than a planet. The Figure is taken from Fig. 3 of Mortier and Collier Cameron (2017).
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ability that a signal of a specific frequency is present in the data sample, therefore allowing

for direct assessment of the relative probability between multiple periods. Following the

maths in the paper, the probability power computed in a GLS is part of the exponent that

expresses the normalised probability of the BGLS. Overall, the BGLS performs compara-

bly to the GLS at recovering the correct frequencies, and it allows for a clearer comparison

between peaks.

2.3.1.1.2 Stacked Bayesian Generalised Lomb-Scargle Formalism Mortier and Col-

lier Cameron (2017) further extended the BGLS to a Stacked Bayesian Generalised Lomb-

Scargle (SBGLS) formalism. This technique aims to distinguish between periodicities gen-

erated by the presence of planets, and those due to the effects of stellar activity. It relies on

the fact that pure Doppler shifts are coherent signals, meaning that with increasing num-

ber of observations their probability power will only increase. On the other hand, most

stellar variability is inherently incoherent, with varying amplitude and phase. The prob-

ability of an incoherent signal changes with different observations and different phase

coverage. The SBGLS computes the power associated with fitting the sine wave to each

frequency for = observation epochs. Then, another random datapoint is added and the

process is repeated. This routine continues until all data have been included. Plotting

the probability power as an intensity against period and number of data points, as shown

in the bottom panel of Fig. 2.4, highlights how the significance of a signal changes with

number of observations. This "stacking" of periodograms allows to assess the coherency

of the considered best-fit signal. A peak with a probability that oscillates with number

of epochs can therefore be attributed to stellar variability. However, caution is recom-

mended and not all seemingly coherent frequency peaks can automatically be assumed

to represent the period of Keplerian oscillations. Mortier and Collier Cameron (2017) also

showed that aliases of the same periodicity behave similarly to each other and to their

true signal, allowing for easier connection between them. However, it is also of note that

all the described periodogram formalisms share a vital flaw: they assume that only one

frequency is able to fit all the variability in the data. In other words, they do not account

for the presence of multiple sources of signal. They fit one frequency at a time, and can

therefore fail to properly distinguish the correct model.
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Figure 2.5: Example of ✓1 peridogram of the HARPS-N radial-velocity data published in Rescigno et
al. (2023b) for the characterisation of the TOI-2134 system (see Chapter 4, Section 4.1). The most probable
periods are highlighted in red.

2.3.1.2 ✓1 Formalism

To overcome this limitation, Hara et al. (2017) introduced the ✓1 periodogram (Hara and

Mari 2021)9. This formulation aims to avoid the residual distortions that are generated by

iterative fitting. To do so, they use the theory of compressed sensing, adapted for handling

correlated noise. Differently from a GLS, the ✓1 periodogram searches for a representation

of the input signal as a sum of sinusoidal waves, the frequencies of which are taken from

the considered frequency range. In basic terms, it fits all frequencies at the same time. By

assuming that the number of frequencies that describe the inputted signal is much smaller

than the number of observations, they rely on "sparse recovery" tools for fast computa-

tions, more precisely on the Basis Pursuit minimisation problem (Chen et al. 1998) and

the group-LASSO (Yuan and Lin 2005). The ✓1 periodogram uses the assumption that

the noise in the data is Gaussian and that it is correlated through a weighting matrix. On

top of the usual frequency grid, this formulation thus requires the definition of a covari-

ance model to describe the noise, and of a list of unpenalised model vectors (the assumed

properties of the data, such as an offset). The resulting periodogram usually presents

much fewer peaks than a traditional Lomb-Scargle periodogram, and instead it hones-in

on the main periodicities, as shown in Fig. 2.5. Generally, ✓1 periodograms also tend to

be more robust against aliasing effects. Hara et al. (2017) recommended the use of the ✓1

periodogram as a complement to classical GLS algorithms. Most interestingly, a failure of

9. Code available at: https://github.com/nathanchara/l1periodogram

https://github.%20com/nathanchara/l1periodogram
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this formalism (meaning the presence of forests of peaks, rather than clean single-peaked

signals) can indicate that the noise in the data is either higher than expected or that it is

non-Gaussian.

2.3.1.3 Welch Formalism

A different approach to frequency searches from the traditional Lomb-Scargle algorithm

was developed by Welch (1967) building on the work of Bartlett (1948). It does spectral

density estimation based on magnitude-squared coherence. This bivariate statistic aims

to isolate oscillations that manifest in more than one observable. In the case of planet

searches, the considered time series are the RVs and the stellar activity proxies. It can be

interpreted as a frequency-dependent correlation coefficient. The Welch formalism yields

cleaner spectral windows and lower variance than the GLS, and is primarily useful for the

identification of stellar signals (Dodson-Robinson et al. 2022). For unevenly sampled data,

no direct cross-correlation can be computed. Welch’s method overcomes this problem by

utilising non-uniform fast Fourier transforms (similarly to Lomb-Scargle periodograms).

The uniqueness of this formalism lies in the preparation of the data. Given that it aims for

a variance decrease with increasing number of observations (the opposite to traditional

periodograms), the Welch formalism requires a segmentation of the dataset. While many

non-overlapping segments are ideal, this method introduces significant bias for too-small

numbers of observations in each data section. There is therefore a trade-off between re-

ducing the variance (by increasing the number of splits) and avoiding consistent bias (by

keeping the number of observations in each segment as large as possible). Welch (1967)

therefore proposed to use overlapping bins with tapered ends. A 50% overlap between

splits can significantly increase the number of datapoints, but the computed spectral esti-

mates are no longer independent. Tapers are thus added to each segment in order to min-

imise spectral leakage and most vitally to increase the independence between estimates

of overlapping sections. Tapers are also particularly useful for enhancing the detectability

of weak signals in the neighbourhood of much stronger ones. The formalism pioneered

in Welch (1967) is also fully described in Dodson-Robinson et al. (2022), and has since

been packaged as NW���� (Dodson-Robinson 2022)10. While Welch periodograms are

10. Code available at: https://github.com/sdrastro/NWelch

https://github.com/sdrastro/NWelch
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computationally cheap and can be easier to interpret than GLS periodograns, they also

present a new set of limitations. First and foremost, they generally require larger datasets

to successfully work. A split in two or more segments is recommended, with each section

including at least 100 datapoints. This formulation therefore requires times series with a

minimum of 150 epochs, assuming a 50% overlap.

2.3.2 Structure Functions

Structure functions (SF) are a technique for the analysis of time series data that comple-

ments traditional periodograms. They provide a method of variability quantification that

is not sensitive to common problems such as windowing and aliasing (Hughes et al. 1992).

They are effective even with extremely unevenly-sampled data, assuming enough vari-

ety in the epoch separations, and they are most useful to characterise aperiodic signals,

which Lomb-Scargle periodograms fail to detect. Structure functions as a tool have been

extensively used in extra-galactic work (e.g., Simonetti et al. 1985), and have recently been

introduced to the analysis of radial velocity data (Lakeland et al. 2024). On a basic level,

structure functions consider all pairs of observations 5 (C) separated by the same time �,

and for each � bin they assess the scatter within the data. A structure function is computed

as

SF(�) =
D
( 5 (C) � 5 (C � �))2

E
. (2.4)

To allow for easier interpretation, the value of the structure function is usually related

to the RMS of the time series as SF(�) = 2·RMS2 for a Gaussian noise signal. A small

value of SF means that two observations separated by the considered time lag � show lit-

tle variation, and one can be used to more precisely predict the other. Conversely, large

SF values indicate significant variance between observations spaced by the considered �.

Typically, for most types of variability, structure functions increase with increasing time

separation between the considered epochs, as sources of scatter from different processes

at different timescales are cumulative. Periodic signals are the most notable exception to

this rule: the SF of a perfectly periodic signal decreases to zero at multiples of the pe-

riod. This behaviour is straightforward to interpret, as observations separated by a full

period are equivalent in value. In most astrophysical cases, where a periodic signal is
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Figure 2.6: Diagram of the typical behaviour of structure functions, and the separation in three main regions,
described in the text. Figure adapted from Fig. 7 of Sergison et al. (2020).

either partially disrupted by measurement uncertainties or is subject to changes in time,

the SF would still decrease but not reach zero, as observations with time difference close

to the period are still more similar than those with separation of any other phase. As Ser-

gison et al. (2020) highlight, a typical structure function can be separated in three main

regimes, shown in Fig. 2.6. In the first region, the SF is dominated by the uncertainties

of the data and other uncorrelated jitter. This variability level can be interpreted as the

noise floor of the observations. In Region 2, the SF starts increasing, generally following

a power-law behaviour. In this regime, the structure function is probing the variability

of the correlated noise, and its gradient is dependent on the frequency spectrum of the

sources of scatter. Region 3 is characterised by a plateau. For timescales longer than the

starting � of this regime, no additional intrinsic variability is present. The transition point

between Regions 2 and 3 is called the knee of the structure function and represents the

characteristic timescale of the probed source of scatter. In practical terms, to effectively

sample a specific source of variability, observations should be taken with time lags within

the second region of the SF. In cases of complex signals, it is possible for the structure

functions to present multiple increasing regions followed by plateaus, each probing dif-
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Figure 2.7: Example autocorrelation function of a simulated Kepler-like lightcurve plotted as a black solid
line. The best-fit model defined as the sum of a cosine and sine multiplied by a linear decay term is shown
as a red dashed line. Figure adapted from Fig. 2 of Santos et al. (2021).

ferent sources of variability. Different signals with different characteristic timescales will

contribute to different knees in the structure function. Overall, structure functions are a

tool to assess the frequency spectrum of a variable signal. They are best used in combina-

tion to Fourier techniques, but have their advantages. In particular SFs are significantly

less dependent on sampling, as they are computed in the time-domain. Moreover, as long

as enough epoch time-differences are sampled, they are not impacted by large gaps in the

data. However, structure functions do not take into consideration the uncertainties on

the measurements, and they require a large enough number of observations so that all

timescale bins are properly populated in order to avoid small number statistics.

2.3.3 Auto-Correlation Function and Lag Analysis

The Auto-Correlation Function (ACF: McQuillan et al. 2013; Giles et al. 2017; Collier Cameron

et al. 2019) is another method to identify variability timescales in time series data. The ACF

measures the degree of self-similarity of a dataset over a range of time lags. Mathemati-

cally it is described as:

A� =

Õ
C=Ctot��
C=C0 (H(C) � H)(H(C + �) � H)Õ

C=Ctot
C=C0 (H(C) � H)2

, (2.5)
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in which A� is the auto-correlation coefficient of the time series Hwith epochs C = [C0 , ..., Ctot]
at time lag �. In practice the ACF is a measure of how well the original dataset correlates

with itself when shifted in time of �. The auto-correlation function generally requires

evenly-sampled data, but clever binning techniques have been developed to allow the

computation of ACFs for unevenly-sampled datasets (Edelson and Krolik 1988; Robertson

et al. 2015). If the considered time series includes a periodic signal, the ACF will present

repeated peaks in the correlation value at time lags regularly spaced by integer multiples

of the period of the variability, as observations separated by a period are more similar

and therefore more correlated, as shown in Fig. 2.7. For a systematic method of period

extraction, see McQuillan et al. (2013). In the case of complex signals, such as the effects

of multiple active regions rotating in and out of the visible stellar disc, the ACF can show

peaks at time lags equal to harmonics of the period. The decrease in amplitude of these

side-lobes is driven by the evolution of the signal, such as the decay of the active regions.

We can therefore relate the decay rate of the secondary peaks to the evolution timescale

of the probed variability. In an auto-correlation analysis, a varying amplitude or phase

of the periodic signal yields a steady decrease of the height of the main peaks, creating a

sort of envelope. The slope of this envelope is dependent on the magnitude of the change.

Given these behaviours, the ACF is often analytically modelled as an underdamped simple

harmonic oscillator with an added inter-pulse term (Giles et al. 2017) or as the sum of a

cosine and sine multiplied by a linear decay term (Santos et al. 2021) (plotted as a red

dashed line in Fig. 2.7). When the analysed time series is characterised by long-term

trends or includes "jumps" in the median value, a significant signal for large time lags can

be introduced in the ACF, changing the shape of the damping envelope. These signals

will however only change the amplitude of the repeated peak, not its �. They therefore

do not impact period extraction. Overall, the auto-correlation function can be a powerful

tool to identify the periodicity of a dataset, with generally clear results even with evolving

signal structure, as for RV signals dominated by the effects of active regions. ACF are

particularly good at producing robust results in cases of long instrumental systematics

and other uncorrected correlated noise, as they only affect the height of the maxima, not

their time lag.

Lag analysis follows the same formalism as ACF, but instead of computing the cor-
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relation of a dataset with itself, it calculates how a time series correlates with a second one

shifted in time. In this case, a peak in the correlation coefficient represents a likely time

lag between the two considered time series. This method has been used for example to

identify the phase difference between radial velocities and stellar activity indicators (e.g.,

Collier Cameron et al. 2019; Costes et al. 2021). Sections 5.2.3.6 and 5.2.3.7 in Chapter 5

use the ACF and lag techniques to analyse the longitudinal magnetic field of the Sun.

2.3.4 Gaussian Process Regression

Gaussian processes have been been extensively employed in astrophysical literature to

model stellar activity-induced variations and instrumental noise in both radial-velocity

and photometric surveys (e.g., Haywood et al. 2014; Faria et al. 2016; Serrano et al. 2018;

Barros et al. 2020; Barragán et al. 2022; Rescigno et al. 2023b). GPs allow the user to model

the variability of a signal without needing to assume its functional form. They only require

pre-existing knowledge of the correlation matrix of the dataset. An in-depth explanation

and analysis of Gaussian processes and GP regression for the detection and characteri-

sation of exoplanets is covered in Chapter 3. In summary, GPs represent a data-driven

approach for activity mitigation. They output a variability model built solely on a co-

variance function, and learnt from the data offered as a training set. Gaussian process

regression allows to model the stellar variability simultaneously to the planetary signals.

Within the context of mitigation methods, GPs are used in combination with parameter

space searching algorithms such as Markov Chain Monte Carlo (e.g., Foreman-Mackey et

al. 2013) or "2 optimisation in the quest to find the hyperparameters that best fit the stel-

lar variability. The quality that makes Gaussian processes the ideal tool for stellar activity

modelling is their ability to recognise patterns. The covariance hyperparameter optimi-

sation step is what is referred to as the "regression". GP regression is a very active field

of study, with multiple new developments being implemented every year (e.g., Rajpaul

et al. 2015). In this Section, I briefly cover the three main formulations to apply Gaussian

processes to the analysis of radial-velocity data.
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2.3.4.1 One-dimensional GPs

A "one-dimensional" analysis is the most straightforward application of GPs. In this for-

malism, the GP is trained only on the considered dataset, most often the RVs. I implement

this method in Chapter 4 (Sections 4.1.6 and 4.2.7.2) and Chapter 5 (Section 5.2.4.3). This

analysis is most efficient when some characteristics of the stellar signals, such as the pe-

riod, are known or can be approximated. In some cases, stellar variability and planetary

signals are modelled simultaneously with transits in the photometric data (as in Chapter

4, Section 4.1.7). While one-dimensional GPs have been successful at reducing the scatter

due to stellar activity in RV datasets, they should be used with caution. GPs have a ten-

dency towards overfitting, especially in cases in which the signals due to activity are not

well-sampled. Overfitting is in this case defined as the incorrect fitting of random scat-

ter present in the data as part of the correlated noise described by the covariance model.

In order to minimise this behaviour, in some cases a white noise jitter term is added to

the diagonal of the covariance matrix (Rescigno et al. 2023b). There are multiple pub-

licly available code packages that can perform one-dimensional GP regression, each with

their specific focus and computational algorithms. I here include a brief list of the most

commonly used: ������11 (Ambikasaran et al. 2015) focuses on efficient evaluation of the

likelihood of the GP model for large datasets, SPL���12 (Delisle et al. 2022) extends the

�������� (Foreman-Mackey et al. 2017) formalism and includes a more general class of

noise models, ������13 is a small library built in jax for GP regression (Foreman-Mackey

et al. 2024), and finally MAGP�-RV is the pipeline I developed and fully address in Chapter

3 (Rescigno et al. 2023a).

2.3.4.2 Multi-dimensional GPs

The flexibility that GPs offer often remains their major drawback. New techniques have

therefore been developed to introduce further constraints to the fitting process. In this con-

text, Rajpaul et al. (2015) pioneered the multi-dimensional Gaussian process regression.

This technique builds on the algorithms of the FF’ method (Aigrain et al. 2012), which

aims to model RV variation due to the presence of active regions on the stellar disc start-

11. Code available at: https://github.com/dfm/george
12. Code available at: https://gitlab.unige.ch/delisle/spleaf
13. Code available at: https://github.com/dfm/tinygp

https://github.com/dfm/george
https://gitlab.unige.ch/delisle/spleaf
https://github.com/dfm/tinygp
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ing from information in the photometric data. The FF’ method relies on the assumption

that, in the simplest case, a single spot on the equator imprints a signal in the photometry

which oscillates as

F(C) = cos (2�C/%rot), (2.6)

in which F(C) represents the projected area of the active region and %rot is the rotational

period of the star. In the RVs, the contribution of the same active region is two-fold (as

addressed in Section 1.2.2): the suppression of convective blueshift can be approximated

to vary as a function of cos 2�C/%rot (i.e. F), while the photometric inhomogeneities vary as

a function of sin 2�C/%rot, which is proportional to the first derivative of F. The variability

due to active regions can therefore be modelled as the sum of the two effects multiplied

by the projected spot area as

�'+ = � · F(C)F0(C) + ⌫ · F2(C), (2.7)

in which � and ⌫ are constants that can be related to physical quantities. Aigrain et

al. (2012) showed how this simple approximation can successfully mitigate and isolate

stellar activity in a variety of cases.

Multi-dimensional GPs follow a similar formalism, but instead exploit correlations

between spectroscopic activity indicators and RVs to constrain the stellar activity compo-

nent of the radial velocities. They assume that the stochastic process giving rise to the

variability is shared across multiple time series and that it can be described by a GP with

the appropriate covariance function. The radial velocities are in this context modelled by

latent GPs, rather than photometric variations. The second term of Eq. 2.7 can then be

expressed in terms of a GP model as G(C) = F2(C), and by extension its first derivative can

be written as G0(C) / F(C)F0. Following this reparametrisation, the variability in the RVs

can then be expressed as the sum of a suppression of convective blueshift term G(C) and

a photometric term G’(C) in the form

�RV = � · G(C) + ⌫ · G0(C). (2.8)

Activity indicators can also be modelled with the same Gaussian process function, de-
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pending on which physical processes the proxy is sensitive to. For example, variability in

the S-index is dominated by the suppression of blueshift, thus in this formalism it is fully

described by only the G(C) term multiplied by a different constant ⇠ as

S-index = ⇠ · G(C). (2.9)

In cases in which the variability of the activity indicator is dependent on both the pho-

tometric inhomogeneities generated by the broken red- and blueshift symmetry, and the

suppression of convective blueshift, as for the BIS, their model includes both terms as

BIS = ! · G(C) +" · G0(C). (2.10)

This formulation can be extended to any time series whose signal is dominated by the

same stellar activity processes that drive the scatter in the RVs, as long as a mathematical

relation can be found. By modelling multiple time series with the same Gaussian process,

the optimisation algorithm that finds the best covariance model parameters is less likely to

overfit the data and attempt to include white jitter in the red noise model. This method has

been shown to successfully disentangle stellar-induced variability and planetary signals

(e.g., Barragán et al. 2019; Mayo et al. 2019). Various pipelines with adaptations of this

technique are publicly available, most notably both P������14 (Barragán et al. 2022) and

P�O����15 (Malavolta et al. 2016; Malavolta et al. 2018) are able to model the stellar variabil-

ity from multiple activity indicators simultaneously to planetary signals in the RVs, and

GPLinearODEMaker16 (GLOM: Gilbertson and Ford 2022) is a Julia package aimed at like-

lihood computation for multivariate GPs which also includes terms proportional to the

second derivative of the latent GP. In all its forms, the multi-dimensional GP framework

models all inputted time series of stellar indicators simultaneously to the RVs. It "reigns

in" the flexibility of GPs by using the proxies as constraints for the stellar activity model. It

is more sensitive to shared signals and periodicities than a simple correlation analysis and

detrending. The ideal number of latent Gaussian processes needed to model RV data has

also been investigated, and using two latent GPs (the first and second derivatives of G(C))

14. Code available at: https://github.com/oscaribv/pyaneti
15. Code available at: https://github.com/LucaMalavolta/PyORBIT
16. Code available at: https://github.com/christiangil/GPLinearODEMaker.jl

https://github.com/oscaribv/pyaneti
https://github.com/LucaMalavolta/PyORBIT
https://github.com/christiangil/GPLinearODEMaker.jl
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was found to be most successful at reducing scatter (Tran et al. 2023). The main limitation

of this formalism is that it only allows to describe activity-sensitive auxiliary time series

as linear combinations of the GP and its derivatives, barring more complex relationships

and therefore limiting its adaptability to other proxies. Moreover, in all cases current for-

mulations of GPs all share a similar drawback. The ability of the GP to model the stellar

signal in the data is dependent on the quality of the covariance function chosen to describe

it. Current covariance functions such as the Quasi-Periodic kernel (QP, for a description

see Chapter 3 Section 3.1.3) have been designed to model the variability in radial-velocity

data produced by the presence of active regions. They therefore are not able to mitigate

the effects of other sources of scatter such as supergranulation.

2.3.4.3 GP Regression Network

Another of the most egregious limitations of traditional GP analysis is that it assumes

that the covariance form of the variability stays constant in time. Stationary covariance

functions are applied even to data spanning multiple years and different phases of stellar

magnetic cycles. However, recent works (e.g., Demin et al. 2018) have shown that Sun-

as-a-star RV data is not well-modelled using a single stationary kernel, and that instead

non-stationarity is required when analysing time series with longer baselines. In prac-

tice, over the course of the magnetic cycle the variability generated by activity on the Sun

changes best-fitting hyperparameters. Therefore, for more precise prediction one should

model separate chunks of the data with different GPs. However, this approach under-

mines the value of long baselines and has severe impacts on the detectability of small

long-period planets, which require consistent observations over long timescales. In this

context, Gaussian Process Regression Networks (GPRN: Wilson et al. 2012) represent the

only tested technique to overcome this limitation. GPRNs combine the structural proper-

ties of neural networks with the non-parametric flexibility of GPs. They are able to create

non-stationary linear combinations of independent stationary Gaussian processes. The

covariance form can be shared between all latent GPs, or can be assigned individually.

In the simplest case, when only two latent variables are considered, the resulting poste-

rior is defined by the product of two independent Gaussian distributions. Camacho et

al. (2023) further extended this formulation to include the possibility to use stellar activity
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indicators to constrain the GP model, following the formalism presented in the previous

Section. They show that GPRNs can model highly non-linear correlations and are signifi-

cantly more resistant to overfitting. This technique is however still in its infancy. Camacho

et al. (2023) tested a GPRN one-dimensional analysis on solar data and found that it does

yield sensible results, but when activity indicators are included in the fit the model is sig-

nificantly worse at predicting the variability in the RVs. Moreover, it is computationally

very expensive.

Overall, Gaussian processes in all their forms are a promising tool to account for

stellar activity in radial-velocity data, and are quickly evolving to address the increased

precision of new spectrographs and the renewed interest of the community in the elusive

small signals of long-period planets.

2.4 Other Sources of Information

Often information in the obtained spectra is not enough to successfully constrain the ef-

fects of stellar variability. In these cases, we can turn to other sources of data. Several

mitigation techniques in fact rely on independent observations. First of this list is the FF’

method (Aigrain et al. 2012), described in Section 2.3.4.2, which aims to constrain the RV

variations due to active regions by modelling the photometric noise due to bright faculae

and dark spots. However, in most cases, photometry is not as effective as radial velocities

to characterise the star. Moreover, in order to model activity in the RVs the photometry

needs to be near-simultaneous. The community is therefore looking to other indepen-

dent sources of information. Spectropolarimetry is a promising avenue of study, as is

addressed Section 5.2. Finally, a good understanding of not only stars but also the in-

strument is required, especially to model small long-term variations that could prevent

the detection of Earth-analogues. Solar observations can then be invaluable datasets to

study, both for their long baselines and their cadence, as is highlighted in Chapter 5, and

as testing ground for instrumental systematics.
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Chapter 3

An Analysis Toolkit: Gaussian

Processes and MAGP�-RV

“Any sufficiently advanced technology is indistinguishable from magic.”

— Arthur C. Clarke

As briefly covered in Chapter 2, Gaussian Processes (GPs) are one of the most used

tools for the mitigation and modelling of stellar variability in astrophysical literature (e.g.,

Haywood et al. 2014; Faria et al. 2016; Serrano et al. 2018; Barros et al. 2020; Rescigno

et al. 2023b). In this Chapter, I summarise the mathematical definition of GPs and in-

troduce the analysis toolkit MAGP�-RV, a pipeline for GP regression with Markov Chain

Monte Carlo parameter space searching algorithms for the detection of exoplanets and

the modelling of stellar activity signals.

3.1 Mathematical Definition of Gaussian Processes

In statistical terms, a Gaussian process can be defined as an #-dimensional collection

of random variables, such that the joint probability distribution drawn from it is a Gaus-

sian distribution in# dimensions. In other words, a Gaussian process is a non-parametric

stochastic model based on the Gaussian distribution (Rasmussen and Williams 2006; Pavli-

otis 2015). GPs are a generalisation of multivariate normal distribution theory, which is
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itself an extension to multiple dimensions of basic Gaussian distributions.

3.1.1 From Gaussian Distributions to Multivariate Normal Distribution The-

ory

A random variable is Gaussian (or normally) distributed if its probability density function

takes the form of

5 (G) = 1p
2��2

exp
✓
� 1

2�2 (G � ⇠)2
◆
, (3.1)

in which �2 represents the variance of the distribution, and ⇠ its mean. In statistical terms,

it is usually presented as

?(G) ⇠ N (⇠, �2), (3.2)

in which the ⇠ symbol means "is distributed as". Multiple independent normal distribu-

tions of correlated variables can be expressed as joint Gaussian distributions. A system

defined by multiple "characteristics" ÆG = [G1 , G2 , ..., G=] can thus be summarised as a mul-

tivariate normal distribution fully described by its mean vector Æ⇠ and its covariance matrix

K in the form

?(ÆG |Æ⇠,K) ⇠ N (Æ⇠,K), (3.3)

or more explicitly

?(ÆG |Æ⇠,K) = 1
(2�)=/2 · |K|1/2 exp

✓
�1

2 (ÆG � Æ⇠))K�1(ÆG � Æ⇠)
◆
. (3.4)

Multivariate normal distributions enjoy a variety of properties. In particular, four

are of interest to this work.

• Normalisation property: the density function normalises to unity as

æ
?(G |Æ⇠,K)3G = 1. (3.5)

• Marginalisation property: a Gaussian distribution always marginalises to a Gaus-

sian distribution. Therefore, given two variables G� and G⌫, expressed by a multi-
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variate normal distribution such that

Æ⇠ =
266664
⇠�

⇠⌫

377775
and K =

266664
K�� K�⌫

K⌫� K⌫⌫

377775
, (3.6)

then their marginals can be written in the form

?(G� |Æ⇠,K) =
æ
G⌫

?(G� , G⌫ |Æ⇠,K)3G⌫ ⇠ N (G� |⇠� ,K��) (3.7)

and

?(G⌫ |Æ⇠,K) =
æ
G�

?(G⌫ , G� |Æ⇠,K)3G� = N (G⌫ |⇠⌫ ,K⌫⌫). (3.8)

• Conditioning property: the conditional densities of multivariate normal distribu-

tions are also Gaussian, expressed as

?(G� |G⌫) =
?(G� , G⌫ |Æ⇠,K)¥

G⌫

?(G� , G⌫ |Æ⇠,K)3G�
⇠ N (⇠� + K�⌫K�1

⌫⌫
(G⌫ � ⇠⌫),K�� � K⌫�K�1

⌫⌫
K�⌫).

(3.9)

• Summation property: given two independent random variables I and I
0 with the

same dimensionality and both described by normal distributions, when summed

their resulting distribution is also Gaussian, as

for I ⇠ N (Æ⇠,K) and I
0 ⇠ N (Æ⇠0

,K0)

I + I0 ⇠ N (Æ⇠ + Æ⇠0
,K + K0).

(3.10)

3.1.2 Gaussian Processes

As mentioned, Gaussian processes are a generalisation of multivariate Gaussian distri-

butions to infinite dimensions. A multivariate normal distribution is dependent on its

finite #x# covariance matrix and mean vector. The number # of rows and columns of

the matrix is defined by the number of variables that the joint distribution includes. A GP

extends this dimensionality to infinity and is thus instead fully described by covariance

and mean functions, as

5 ⇠ ⌧%(⇠(G), :(G8 , G9)), (3.11)
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where ⇠(G) is the mean function of the GP model (often taken to be equal to zero) and

:(G8 , G9) is its covariance function. The latter is often chosen to have parametric form

and is written as a kernel function in the form :(G8 , G9 , ), in which  is the list of the

hyperparameters required to define the covariance. We define the two functions as

⇠(G) = E[ 5 (G)]

:(G8 , G9) = E[( 5 (G8) � ⇠(G8))( 5 (G9) � ⇠(G9))],
(3.12)

so that the mean model is only dependent on the set of variables G, while the covariance

depends on both the mean function and the relationship between each pair of variables

G8 and G9 . Here E can be read "as expected value of".

The probability density ?( 5 |G), in the case of parametric kernels also written as

?( 5 |G , ), can be extrapolated from the same definition as before, in the multivariate case,

to be in the form of

?( 5 |G , ) ⇠ N ( 5 |⇠, :) = (2�)�=/2 |KGG |�1/2 exp
✓
�1

2 (
Æ
5 � Æ⇠))K�1

GG
( Æ5 � Æ⇠)

◆
, (3.13)

in which KGG is the covariance matrix built by evaluating the kernel function on a finite set

of inputs ÆG, and Æ
5 and Æ⇠ are the GP function and the mean model respectively evaluated

at those same G values. 5 (G) represents the GP function that fits the behaviour of the

data. Therefore in most cases, Æ5 is actually a vector of the training data values themselves.

Equation 3.13 is often called the likelihood, L, of the derived Gaussian process model to

fit the data. The first term of the equation is a normalisation factor, dependent on the

number of known variables =, the size of the vector ÆG. The second term, the inverse of

the square root of the determinant of the covariance matrix evaluated on the training set

ÆG, is often considered an Occam Razor term, which penalises complex covariance models

against simpler ones. Most often this formula is presented in its logarithmic form

ln(L) = �=2 ln(2�) � 1
2 ln(|KGG |) �

1
2 (

Æ
5 � Æ⇠))K�1

GG
( Æ5 � Æ⇠). (3.14)
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Figure 3.1: Diagram visually describing the conceptual basis of Gaussian processes.
Left panel: representation of a two-dimensional multivariate Gaussian distribution. The joint distribution
of the two variables G1 and G2 is depicted as elliptic contours (covariance ellipse) in blue, and the marginal
distributions ?(G1) and ?(G2) that form it are also included in blue on their respective axes. Observing G1 at
the value � indicated by the red vertical line allows for a better determination of the possible G2 values based
on the pre-existing knowledge of their covariance. The conditional distribution ?(G2 |G1 = �) can therefore
be extracted and is here plotted in red.
Middle panel: alternative representation of the previous panel, presented here in a "time series" form. The
variables G1 and G2 are plotted on the same axis G, and their possible values are indicated on the vertical
axis. The marginal distributions ?(G1) and ?(G2) are still plotted in blue, and the conditional distribution
?(G2 |G1 = �) is also included in red.
Right panel: the diagram of the middle panel is then extended for an arbitrarily dense array of G values,
giving rise to a continuous marginal distribution here symbolised by the space between the two dashed blue
lines. By measuring 5 (G) at multiple G values highlighted as red dots, a continuous posterior distribution
can be derived, plotted in red, similarly to the previous panels. A Gaussian process computes the posterior
conditional distribution given the observed data G and extracts all the possible functions that can fit it. The
most probable function 5 (G) is plotted as a black line.

3.1.2.1 Intuitive Explanation

In order to exhaustively explain Gaussian processes, often a more intuitive route is pre-

ferred to the strictly mathematical one. In this Section, I follow the example of Roberts

et al. (2013) and describe GPs in more practical terms. We begin by considering a two-

dimensional Gaussian distribution of two random variables G1 and G2. The multivariate

normal distribution ?(G1 , G2) of these two variables is described as in the previous Sec-

tions by a mean vector, which for simplicity will be zero for both variables, and a 2x2

covariance matrix. We can visualise this problem in the leftmost panel of Fig. 3.1 as blue

elliptic contours for a 2D distribution, with the corresponding marginal one-dimensional

distributions, ?(G1) and ?(G2), also plotted on the respective axes in blue.

Let’s now consider the effect of observing variable G1, and assigning it the value

G1 = �. By drawing the red vertical line at value � in the left panel of Fig. 3.1, we can

refine our prediction of the most probable value of G2 given the pre-existing information

we have about their covariance relationship (the shape and orientation of the contours

of the joint distribution). We can therefore extract the resulting conditional distribution
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?(G2 |G1 = �) in red. This conditional distribution is different from its original marginal

probability distribution in blue, and has shrunken uncertainties. The middle panel of Fig.

3.1 is an alternative way of visualising the same problem using the horizontal axis to list

the variables G and the vertical axis to represent their possible values. The conditional

distribution for G2 from the knowledge of G1 and their relationship is still plotted in red.

Finally, we can extend this same concept to as many variables as we desire, to the limit

in which G8 is infinitely dense, as shown in the last panel of Fig. 3.1. Starting from a

marginal distribution here symbolised by the space between the blue dashed lines, we

can extract the conditional distributions for all G values between each of the measured

data represented by the red dots. The posterior of the GP is here depicted in red, and the

most probable function 5 (G) is plotted as a black line. The joint distribution over all these

infinite variables becomes itself of infinite-dimensions and therefore can be described by

a function space, a Gaussian process. Gaussian processes are thus a distribution over

functions.

3.1.3 Covariance Functions

A Gaussian process requires only two parameters, the mean and the kernel functions,

although the covariance is in most cases further described by hyperparameters. The role

of inference in GP models is to refine the wide and uninformed distribution of possible

functions into a subset of curves that best fit the available training data. The form of those

curves is uniquely described by the covariance function. Covariance functions map pairs

of variables into real values. They are positive, semi-definite functions over all the space

defined by each pair of variables. They have to satisfy three main criteria:

• They must be symmetric

:(G8 , G9) = :(G9 , G8). (3.15)

• They must be bilinear

:(0G8 , 1G9) = 01 · :(G8 , G9). (3.16)

• They must be positive for all values of G larger than zero, and be equal to zero for
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G = 0, mathematically written as

:(G , G) � 0 8 G

:(0, 0) = 0.
(3.17)

In practice, covariance functions are evaluated on a finite set of datapoints over which the

GP model is then interpolated. These kernel matrices all share the same property: all their

eigenvalues ÆE are positive, expressed mathematically as

ÆE)KÆE � 0 8 ÆE. (3.18)

The covariance function of the Gaussian process can be interpreted as the measure

of similarity or correlation between each point in time (Foreman-Mackey et al. 2017). How-

ever, in reality with precision limits, we cannot perfectly describe the covariance between

observations with a function, we can only approach the best description. White noise

must therefore be considered in all computations. Most often the derived kernel matrix

is therefore not only expressed by the covariance function, but also depends on a further

parameter, here �, which describes the uncertainty of the observations. White noise can

then be mapped by the diagonal elements of the matrix, while red, correlated noise is

represented by all non-diagonal elements in the form

KG8 G9
= �2⇣G8 ,G9 + :(G8 , G9). (3.19)

There are many covariance functions currently employed in GP analyses. In this

work, I only list those that have shown to be useful in the context of stellar activity mod-

elling.

• The Squared Exponential Kernel is one of the standard covariance functions. It is

also known as the Radial Basis Function Kernel or the Gaussian Kernel. It has the

form

:(G8 , G9) = �2 exp

 
�
|G8 � G9 |2

2;2

!
, (3.20)
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Figure 3.2: Collection of example visualisations of the squared exponential covariance function. In order, the
covariance matrix, functional form with respect to � = |G

8
� G

9
|, and three random samples of GP functions

described by the kernel. Figure adapted from Nayek et al. (2019), with supplementary material derived from
the interactive GP visualisation found at: github.com/st--/interactive-gp-visualization/.

in which �2 is the variance of the GP function, and ; is its lengthscale. An example

of the GP covariance matrix, its functional form with respect to � = |G8 � G9 |, and a

selection of three random GP function samples are shown in Fig. 3.2.

• The Exponential Sine Squared Kernel is the most common periodic covariance func-

tion, and is often referred to simply as the Periodic Kernel. It is defined as

:(G8 , G9) = �2 exp

� 2
;
2 sin2

✓
�|G8 � G9 |

%

◆�
, (3.21)

in which �2 is the variance, ; is the timescale of the periodicity and % is the period of

the oscillation. Fig. 3.3 shows example visualisations for this covariance function.

• The Matérn kernel is a family of stationary and isotropic covariance functions. They

are a generalisation of the squared exponential formulation. They include an extra

⇡ term and are usually written in the form

:(G8 , G9) = �2 21�⇡

�(⇡)

 p
2⇡ |G8 � G9 |

;

!⇡
K⇡

 p
2⇡ |G8 � G9 |

;

!
(3.22)

github.com/st--/interactive-gp-visualization/
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Figure 3.3: Collection of example visualisations of the exponential sine squared covariance function. In order,
the covariance matrix, functional form with respect to � = |G

8
�G

9
|, and three random samples of GP functions

described by the kernel. Figure adapted from Nayek et al. (2019), with supplementary material derived from
the interactive GP visualisation found at: github.com/st--/interactive-gp-visualization/.

Figure 3.4: Collection of example visualisations of the Matérn 3/2 covariance function. In order, the co-
variance matrix, functional form with respect to � = |G

8
� G

9
|, and three random samples of GP functions

described by the kernel. Figure adapted from Nayek et al. (2019), with supplementary material derived from
the interactive GP visualisation found at: github.com/st--/interactive-gp-visualization/.

github.com/st--/interactive-gp-visualization/
github.com/st--/interactive-gp-visualization/
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Figure 3.5: Collection of example visualisations of the quasi-periodic covariance function. In order, the co-
variance matrix, functional form with respect to � = |G

8
� G

9
|, and three random samples of GP functions

described by the kernel. Figure adapted from Nayek et al. (2019), with supplementary material derived from
the interactive GP visualisation found at: github.com/st--/interactive-gp-visualization/.

in which �2 is the variance, �(⇡) is the Gamma function, ; is the lengthscale, andK⇡

is a modified Bessel function. ⇡ can take any positive value. For ⇡ = 0 the kernel is

reduced to the Ornstein-Uhlenbeck kernel, and for ⇡ ! 1 the covariance function

recovers the squared exponential kernel. The ⇡ parameter controls the smoothness

of the function: smaller ⇡ values yield more complex functions, while larger ones

produce smoother curves. Matérn kernels with half-integers ⇡ values (⇡ = 8+1/2 for

any 8 2 N+) have simpler forms and can be expressed as the product of an exponential

and a polynomial function of order 8. In most cases ⇡ is taken to be equal to 1/2, 3/2

or 5/2. As an example, the Matérn 3/2 covariance function is defined as

:(G8 , G9) =
 
1 +

p
3|G8 � G9 |

;

!
exp

 
�
p

3|G8 � G9 |
;

!
. (3.23)

Fig. 3.4 shows an example covariance matrix and random samples of functions for

this last kernel formulation.

• The Quasi-Periodic (QP) Kernel combines a square exponential term with periodic

github.com/st--/interactive-gp-visualization/
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oscillations as

:(G8 , G9) = �2 exp

2666664
�
|G8 � G9 |2

;
2 �

sin2
⇣
�|G8�G9 |

%

⌘
⌘

2

3777775
, (3.24)

in which as before �2 is the variance, ; is the timescale of the periodicity, and % is

the period of the oscillation. The fourth hyperparameter ⌘ is the harmonic complex-

ity of the fit, and determines the "inner-period smoothness" of the output function,

its amount of high-frequency structure. Fig. 3.5 shows example visualisations for

this covariance function. Given its periodic damped behaviour, the QP kernel is the

covariance function most used to model stellar variability. Its periodic modulation

mimics the periodic signal due to active regions rotating in and out of view on the

stellar disc, and the exponential damping term accounts for the change in the signal

as the active regions dissipate into the quiet star. All hyperparameters can therefore

be directly connected to physical properties of the star: % represents the stellar ro-

tation period, ; the average lifetime of spots and faculae and ⌘ can be connected to

the distribution of active regions on the stellar disc (Nicholson and Aigrain 2022).

Building on the properties of covariance functions, new and more complex kernels

can always be developed by simple addition or multiplication of standard kernel func-

tions. This can be especially useful when one is aiming to simultaneously model signals

generated by multiple processes. As an example grounded in the field of stellar activity

mitigation, the combined variability of active regions and of the effects of the stellar mag-

netic cycle can be modelled by summing a QP kernel to describe the first, and a long-period

periodic kernel for the second.

3.1.4 Predictive Distribution

With an assigned mean function and a fully descriptive covariance matrix (with all hy-

perparameter values assigned), the Gaussian process is fully defined, meaning we can

derive the best-fit function. In practice this is done by evaluating the GP posterior distri-

bution ?( Æ58) at a series of test datapoints, G8, dense enough for interpolation. We start by
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considering

?
©≠
´
266664
Æ
5

Æ
58

377775
™Æ
¨
⇠ N ©≠

´
266664
Æ⇠(G)
Æ⇠G8

377775
™Æ
¨
,
©≠
´
266664

KGG KGG8

KG8G KG8G8

377775
™Æ
¨
. (3.25)

With some manipulation to obtain the mean Æ<8 and variance V8 of the set of datapoints

values Æ
58, we can define the GP posterior distribution as

?( Æ58) ⇠ N ( Æ<8,V8), (3.26)

in which the mean vector is

Æ<G8 = Æ⇠G8 + KG8GK�1
GG
( Æ5 (G) � Æ⇠(G)), (3.27)

and

V8 = KG8G8 � KG8GK�1
GG

K)

G8G
(3.28)

represents the matrix of the covariance. The mean values Æ<G8 of the predicted posterior

distribution are often referred to as the predictive data and used via interpolation to find

the most probable GP function to the training data G. The uncertainties on each data

prediction Æ<G8, and by extrapolation of the predicted function, can then be computed as

the square root of the diagonal of the covariance matrix V8.

Finally, let us then summarise all the previous Sections. GPs are a tool for isolating a

probability distribution of functions that describe the available observations. They require

the definition of mean and covariance functions. By assigning values to the kernel hyper-

parameters, an #x# covariance matrix can be computed, with # equal to the number of

training data fed to the GP. Equations 3.27 and 3.28 can then be used to derive the most

probable function and its uncertainty by defining a subset of epochs ÆG8 over which the

GP can be interpolated. Finally, by applying Equation 3.13, the likelihood of the derived

function can be calculated in order to assess how well it fits the observations. But how do

we find the hyperparameter values to plug in the covariance function so that we extract a

GP model that maximises the likelihood? We perform a Gaussian process regression.
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3.1.5 Gaussian Process Regression

In machine learning a regression aims to learn a function based on information derived

from some number of evaluations of said function. In the context of probabilistic studies, a

regression has the task of learning a probability distribution over all possible functions. It

is an efficient way of quantifying the uncertainty of our knowledge. In the case of Gaussian

processes, we define a GP regression as the search for the kernel hyperparameter values

which yield the GP function that best describes the available observations.

3.1.5.1 Priors

In order to perform inference we need to marginalise over hyperparamters. This can be

done by assigning a prior ?() to each hyperparameter , in order to inform the covariance

domain. In Bayesian theory, a prior is the probability distribution that best expresses

the previous knowledge about the considered quantity. In the absence of pre-existing

knowledge, these priors can be non-descriptive. From a prior, the probability of  being

equal to a value � can be computed as ?( = �). This calculated probability can then

be multiplied by the likelihood L of the GP in order to more precisely assess the quality

of the model fit based on prior knowledge of the hyperparameter in question. In other

words, we can marginalise over the known parameter  such that

?( 5 , G) =
æ
?( 5 |G , )?()3. (3.29)

There are a variety of priors, each described by their characteristic probability dis-

tribution and the related parameters. In this work I only list the most common priors,

useful in the context of stellar variability mitigation.

• A uniform prior is the simplest prior formulation. Its probability distribution ?()
looks like a rectangular top hat, in which all points in a finite interval [0 , 1] are

equally likely, in the form

?() =
8>>><
>>>:

1
1�0 8  2 [0 , 1]

0 otherwise
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For all values outside of the considered interval, the logarithmic probability ap-

proaches negative infinity, therefore applying an insurmountable penalty term to

the model.

• The Gaussian prior, also referred to as the normal prior or bell prior, can be written

in the form

?() = 1
�
p

2�
exp

"
�1

2

✓
 � ⇠
�

◆2
#
, (3.30)

in which ⇠ is the mean of the Gaussian distribution, and � is its standard deviation.

A Gaussian prior is usually applied to cases in which some approximate knowledge

is gained of the hyperparameter . ⇠ can then be set as the hyperparameter expected

value, and � its uncertainty level.

• The Jeffreys prior is a non-informative prior distribution. Its probability function is

proportional to the square root of the determinant of the Fisher information matrix.

Similarly to the uniform prior, its probability density is bound between minimum

and maximum values 0 and 1. It is usually expressed in the form

?() = 1

ln
⇣
1

0

⌘ · 1

. (3.31)

The Jeffreys prior is an improper prior, as it cannot always be normalised. It is useful

when we are ignorant about the scale of the value of, and thus require a prior which

has the same form no matter the order of magnitude.

• The modified Jeffreys prior is a modified version of the previous prior. It extends

the Jeffreys formulation for the limit case of the minimum allowed value 0 ! 0, for

which the probability function in a Jeffreys prior goes to 1. Beside a minimum 0 and

a maximum 1 it is also characterised by a knee value 2 2 [0 , 1], as

?() = 1

ln
⇣
1�2
0�2

⌘ · 1
 � 2 . (3.32)

The modified Jeffreys prior essentially behaves like a uniform prior for 0 <  < 2,

and like a traditional Jeffreys prior for 2 <  < 1.
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3.1.5.2 Markov Chain Monte Carlo

We have now defined all elements required for the computation of the GP posterior dis-

tribution ?( 5 , G), but its derivation is not straightforward. We now need a method that

can approximate the integration over posterior distributions. Markov Chain Monte Carlo

algorithms are one group of such methods. There are many techniques to perform re-

gression and find the hyperparameters that yield the function that best describes the

data. While direct optimisation methods may be applied, probabilistic inference meth-

ods are generally preferred. Markov Chain Monte Carlo algorithms are a combination of

two techniques: Monte Carlo sampling, and Markov Chain processes. In general, Monte

Carlo sampling is the typical solution for probabilistic inference. Monte Carlo methods

are a class of computational algorithms. In basic terms, they consist of drawing indepen-

dent samples from the probability distribution, and repeating this process many times

to derive the best-fit value, using randomness to approximate solving deterministic prin-

ciples which cannot be solved analytically. Monte Carlo methods are widely employed

in all areas of science to simulate complex systems (Gregory 2010). They are named af-

ter the Monte Carlo Casino in Monaco. Basic Monte Carlo sampling, however, presents

some drawbacks. Firstly, Monte Carlo methods assume that each random sample is fully

independent from the others, and therefore can be independently drawn (Bishop and

Nasrabadi 2007), but this is rarely the case. Secondly, they do not perform well in high-

dimensions, since the volume of the sample space to explore increases exponentially with

the number of parameters.

In order to address these limitations, Markov Chain Monte Carlo (MCMC) tech-

niques were developed to perform well in high-dimensional cases (Murphy 2013; Gregory

2010). They were first created around the same time as computers and were originally em-

ployed in particle physics calculations required for the development of the atomic bomb.

A Markov Chain is a type of stochastic process that aims to characterise a series of values

(Robert and Casella 2005). It is a systematic method for generating a sequence of ran-

dom sample variables, in which each new parameter value is dependent on the previous

one. Combining the two methods, MCMC algorithms allow for random sampling of high-

dimensional probability distributions while taking into consideration the dependence be-
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Figure 3.6: Flowchart representing the basic workflow of MCMC techniques. Inputs and outputs are repre-
sented by ovals. After MCMC initialisation, the algorithm goes through 5 basic steps which are iterated until
convergence is reached: perturbation step creation, likelihood computation, likelihood comparison, step ac-
ceptance/rejection (with appropriate parameter storing), and convergence assessment (for more information
on this final step, see Section 3.1.5.2.1). In the diagram the current iteration is defined as iteration :, and its
logarithmic likelihood as log(!

:
).
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tween samples. They are designed to provide sampling approximations for the posteriors

of probabilistic problems. There are many adaptations of Markov Chain Monte Carlo

routines. In the context of astrophysics, the most commonly implemented algorithms are

based on a specialised version of the Metropolis-Hastings sampler, called Gibbs sampling

(Kalos 1986). This algorithm helps the MCMC to avoid settling for local logarithmic like-

lihood maxima, and to successfully sample the entire parameter space. An example of an

MCMC workflow is summarised in Fig. 3.6. On a basic level, any MCMC routine requires

the same four steps: perturbation step creation, function probability computation, value

comparison, and step acceptance or rejection. For each iteration step, the MCMC extracts

random values to assign to the considered parameters. It then calculates the logarith-

mic likelihood of the model computed with the extracted parameters. It compares this

current value with the one of the previous step, calculated for the last accepted iteration

with the respective random set of parameters. Finally, based on a criterion defined by

the Metropolis-Hastings formulation, it either stores or rejects the set of parameter values

sampled. In most cases this acceptance/rejection criterion is the following: if the current

logarithmic likelihood is larger than the previous, the iteration is accepted and the sam-

pled values are stored. If the logarithmic likelihood is smaller, it does not directly result in

rejection. Instead a number between 0 and 1 is randomly selected. If the ratio between the

current likelihood and the one from the previous step is larger than this random number

the iteration is accepted, if it is smaller the iteration is rejected and the set of parameter

values of the previous iteration is stored instead. This means that in some cases, a func-

tion that fits the training dataset worse than the one of the previous step can be preferred,

allowing the algorithm to "escape" a local likelihood maxima in order to find the global

one. An effective MCMC chain ideally accepts 1/4 of all iterations (Ford 2006): if too few

steps are accepted, their sampling will not be representative of the target distribution; if

too many steps are accepted, the chain is performing fully random walks and is not able

to identify the target maxima.

3.1.5.2.1 Parallel Sampling Every independent run of an MCMC is called a chain. With

sufficiently large numbers of iterations a single chain can fully explore the entire param-

eter space. However, in high-dimensional cases the number of required steps can be pro-
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hibitively large. In order to increase computational efficiency, MCMC algorithms often

perform multiple independent runs simultaneously, and use multiple chains to more ef-

ficiently sample the space and build posteriors. Moreover, with a single run, it is tricky to

establish whether the chain has reached stationarity and therefore the global likelihood

maximum has been found. Running multiple chains can help diagnose multimodality,

and allows for the computation of convergence diagnostics. One of the most common

ways of monitoring and assessing whether the MCMC has converged is the Gelman-Rubin

statistic (Gelman and Rubin 1992). This convergence test relies on two estimations of the

variance of parallel chains. The intra-chain (within the same chain) variance �2
<

of each

chain < can be estimated as

�2
<
=

1
# � 1

#’
8=0

(<
8
� ̂<)2 , (3.33)

in which # is the current number of steps, <
8

represents the list of all parameter values

explored by the chain <, and ̂< is the posterior mean of the same chain. The inter-chain

variance �2
"

can be computed as the variance between the means of all chains in the form

�2
"

=
#

" � 1

"’
<=0

(̂< � ̂)2 , (3.34)

in which " is the total number of chains, and ̂ is the mean of all chains, calculated as

̂ =
1
"

"’
<=0

̂< . (3.35)

The average variance parameter value over all chains can be computed as

, =
1
"

"’
<=0

�2
<
. (3.36)

Under certain stationarity conditions, the pooled variance estimated as

+ =
# � 1
#

, + " + 1
#"

�2
"

(3.37)
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is an unbiased test of the true variance of the MCMC. With fully converged chains, so is

, . We can therefore assess the convergence by comparing + and, as

' =

r
+

,

. (3.38)

As ' decreases to approach 1, the chains are approaching full convergence. Different

works use different minimum ' thresholds to define acceptable convergence level, gener-

ally in the range of ' = 1.1 and ' = 1.01.

3.1.5.2.2 Affine Invariance The speed and efficiency at which the MCMC reaches con-

vergence is dependent on the way the parameter space is explored. The "stepping" algo-

rithm with which the chains randomly select their new values is therefore important. The

simplest method to generate the new chain position is to randomly extract a parameter

value from its prior distribution. An affine invariant sampler is a more efficient stepping

algorithm. Affine invariant methods automatically work in the best set of variables that

can be achieved via linear transformation. This specific stepping formalism is commonly

referred to as the "stretch move", and can be summarised in the form

-: ,8 ! -: ,8+1 = -9 ,8 + I · (-: ,8 � -9 ,8). (3.39)

In less mathematical terms, the new parameter -: ,8+1 of chain : at step 8 + 1 depends on

its parameter value in the previous iteration -: ,8 and the value of the same parameter -9 ,8

of a different randomly selected chain 9. I is a multiplication constant shared between all

parameters that is randomly extracted between -1 and +1 at every new iteration. With this

sampling algorithm, the size of the step changes at every iteration depending on the sep-

aration in parameter space between chains. When chains are diverging in order to more

widely explore the space, the steps at each iteration will generally be larger. When chains

are converging and a maximum in the logarithmic likelihood is identified, the steps will

be smaller. This algorithm allows for dynamical self-tuning of the step function, mak-

ing it more efficient in the context of computational expense, and less in need of human

supervision.
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3.1.5.2.3 Burn-in Phase The MCMC is generally initialised with a set of "starting" po-

sitions for the analysed parameters. These initial "guesses" are ideally based on previous

knowledge about the parameters that are being investigated, but that cannot always be en-

sured. Assuming enough steps are taken and convergence has been reached, these starting

points will not significantly affect the final posterior distribution, but they can partially

bias the results. To compensate for this, a starting burn-in phase is usually discarded. This

initial set of iterations is selected to be large enough that the chains have reached a more

stable status and are properly exploring the posterior of interest. On average, this phase

is considered to be between the first 10 to 25% of the total number of iterations, but the

number of discarded steps will change depending on the random behaviour of each run.

A common way to assess whether the chains have travelled from the initial "guess" to their

stationary regime is to plot their mixing, or their parameter value at each MCMC itera-

tion. This burn-in rejection can be done because Markov Chains have no memory outside

their final distributions. Their future positions are only dependent on where they are at

the present step (and where other chains are, in the case of affine invariant algorithms).

This means that discarding the first 10 steps is equivalent to simply starting from the 10th

iteration. In summary, burn-in phases allow the MCMC analysis to "start" from the ideal

parameter values instead of relying on initial "guesses". Burn-ins are not useful in cases in

which the MCMC is already initialised at parameter positions within the high-probability

region of the posterior.

At the end of the algorithm, after convergence has been reached, the MCMC outputs

the list of the parameter values of all accepted steps. These output distributions for each

analysed parameter represent the posteriors of the GP regression. By finding the mean

value and the dispersion of each marginalised distribution, the hyperparameters values

that best fit the training data and their uncertainties can be identified. Thus, the best-fit

GP function can be computed.

3.2 MAGP�-RV

Modelling Activity with Gaussian processes in Python in the Radial-Velocity regime (MAGP�-

RV) is a Python-based analysis pipeline for the modelling of time series with Gaussian pro-
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cess regression and affine invariant Markov Chain Monte Carlo parameter space search-

ing algorithm. I first employed this pipeline in Rescigno et al. (2023b). A basic ver-

sion of MAGP�-RV has since been made public1 and has been registered at the Astro-

physical Source Code Library (ASCL) and at NASA’s Exoplanet Modelling and Analy-

sis Centre (EMAC) (Rescigno et al. 2023a). I developed this code for planetary detec-

tion, but MAGP�-RV is flexible and can be adapted to any GP regression need. The code

requires no complex dependencies (excluding the basic Python libraries) and it is fully

self-contained. MAGP�-RV focuses on ease of use and personalisation, with adaptable

model and kernel functions. A detailed API with step-by-step tutorials can be found at

https://magpy-rv.readthedocs.io/en/latest/. An extended version of the code also in-

cludes parallelised Markov Chain handling and simultaneous transit photometry. The

various versions of the pipeline have been employed in a variety of works. For example,

in Rescigno et al. (2023b), I use MAGP�-RV to model spectral and photometric data to de-

tect and characterise a two-planet system (as covered in Chapter 4 Section 4.1). In Dalal

et al. (2024), I use the pipeline to detect a three-planet system (as addressed in Chapter

4 Section 4.2). In Rescigno et al. (2024), I employ MAGP�-RV in the study of the mean

longitudinal magnetic field (as explained in Chapter 5 Section 5.2).

My private version of MAGP�-RV includes multiple-core parallelisation as a per-

formance enhancer. Although the Gaussian process workflow is not straightforward to

parallelise, the MCMC algorithm can be sped up by performing part of the independent

chain calculations simultaneously. Instead of computing the results from each chain in

sequence, they can instead be sectioned in different smaller groups and the same calcu-

lations can be run at the same time on different computer cores. The chains cannot run

fully independently, as the affine invariant formulation requires information from all the

chains at the previous MCMC step, and convergence monitoring needs to look at the entire

ensemble of iterations and chains. The pipeline workflow is then split between multiple

cores as follows: firstly the MCMC is initialised on a single core. The perturbation step cre-

ation, the probability computation, value comparison and acceptance and rejection steps

are performed simultaneously over the number of cores assigned. Before a new iteration

is started, all information from all the chains is merged back on a single core, the new step

1. Code available at: https://github.com/frescigno/magpy_rv

https://magpy-rv.readthedocs.io/en/latest/
https://github.com/frescigno/magpy_rv
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is initialised, and the chain calculations are once again split. This formalism significantly

reduces the time taken for the computation as a function of the number of chains selected

and the number of cores assigned.

3.2.1 Simultaneous Signal Modelling

MAGP�-RV includes simultaneous signal modelling. It essentially allows to contempora-

neously find the best-fit solution of both the parameters used to define the mean model

and the hyperparameters that describe the covariance of the GP function. In planet hunt-

ing when modelling stellar observations, the variability induced by stellar processes on

the surface of the star is usually accounted for by the Gaussian process. The chosen mean

function then traces the relative RV motion induced by the gravitational pull of a planet

on a star, while the Gaussian process is used to mitigate stellar variability. In the GP for-

malism this model is referred to as ⇠, and can be as complex or as simple as necessary.

In the following Sections, I describe the most relevant mean functions implemented in

MAGP�-RV.

3.2.1.1 Zero Mean

The simplest model is the zero mean function or

Æ⇠(G) = 0 8 G. (3.40)

It essentially assumes that the considered data can be fully described by the Gaussian

process.

3.2.1.2 Constant Offset

This mean function includes an offset described by a single constant in the form

Æ⇠(G) = 0 8 G. (3.41)

It is most useful when taking into consideration two separately-derived datasets -� and

-⌫ which may not share a common mean point. In this case the constant offset is only
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applied to a subsection of the data as

Æ⇠(G) =
8>>><
>>>:
0 8 G 2 -�

1 8 G 2 -⌫

3.2.1.3 Radial-Velocity Keplerian

The RV Keplerian model aims to describe the signal imparted by the orbit of a planet

on the radial-velocity of a star. Perryman (2018) solved the equations of motion of the

multiple-body problem and described the path taken by a planet orbiting a larger body.

In this work, I focus on the radial-velocity equations employed in MAGP�-RV. The stellar

orbit around the common centre of mass can be derived with trigonometry to be

I = A(C) · sin(8) sin(⇡(C) + $8), (3.42)

where A(C) is the distance of the star from the barycentre, 8 is the inclination of the orbit

with respect to the observer (in the range of 0  8  2�), ⇡ is the true anomaly and $8

is the argument of periastron of the stellar orbit (related to the argument of periastron of

the planetary orbit as $8 = $pl + �). The radial velocity of the star can thus be found by

computing the first derivative of I as

RV =
%I
%C

= sin(8)[§A sin(⇡ + $8) + A §⇡(⇡ + $8)]. (3.43)

This equation can then be simplified and the radial-velocity signal imprinted by the planet

RVpl can be modelled as

⇠(C) = RVpl = �[cos(⇡ + $8) + 4 cos($8)], (3.44)

where � represents the semi-amplitude of the signal and 4 is the eccentricity of the plan-

etary orbit. The true anomaly ⇡ is dependent on the eccentric anomaly & as

⇡ = 2 arctan

"r
1 + 4
1 � 4 · tan

⇣ &
2

⌘#
. (3.45)
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The eccentric anomaly is itself dependent on the mean anomaly " as

" = & � 4 sin(&). (3.46)

While " can be directly computed as a function of the period of the planetary orbit % and

its time of periastron passage )? as

" =
2�
%

(C � )?), (3.47)

the relationship between & and" cannot be solved analytically for all cases with 4 < 0. The

eccentric anomaly is most often derived instead with either series expansions, or iterative

methods (as is the case in MAGP�-RV).

The semi-amplitude� of the sinusoidal signal depends on the orbital characteristics

of the planet as

� =
2�
%

08 sin(8)p
(1 � 4)2

. (3.48)

Since the orbital semi-major axis of the star 08 can be related to the orbital period of the

planet % using an extension of Kepler’s third law

%
2 =

4�2

⌧

"
3
pl

("8+"pl)2

0
3
8, (3.49)

Equation 3.48 can be rewritten in the form

� =
✓
2�⌧
%

◆1/3
"pl sin(8)

("8 +"pl)2/3 (1 � 4)�1/2
. (3.50)

Therefore finally, the minimum mass of the planet can be approximated to

"pl sin(8) ⇡ �

✓
%

2�⌧

◆1/3
"

2/3
8

p
1 � 42

, (3.51)

in the realm of "pl ⌧ "8.
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3.2.1.4 Transit Curve

MAGP�-RV also includes a model for simultaneous transit photometry fitting. It relies on

the ������ Python package2 (Kreidberg 2015), which allows for fast computation of exo-

planet transit light curves. Kreidberg (2015) computed the fraction ⇣ of stellar luminosity

obscured by the planet during transit as the integration of the sky-projected normalised

intensity of the star � over the area blocked by the planet (:

⇣ =
æ æ

�3(. (3.52)

While it is common to approximate circular shape for both bodies, the brightness of the

star cannot be considered equal in all positions of the stellar disc. Since a full numerical

evaluation for complex stellar luminosity maps is slow and often cannot reach the required

precision, ������ approximates the stellar intensity profile to be radially symmetric. They

therefore can describe ⇣ as

⇣ =
=’
8=1

�(G)
⇣
G8 + G8�1

2

⌘
[�(G8 , Apl , 3) � �(G8�1 , Apl , 3)], (3.53)

in which G is the radial coordinate normalised to be between 0 and 1, �(G) is the one-

dimensional stellar luminosity profile, Apl is the radius of the planet and 3 is the separation

between the centre of the circles representing star and planet. �(G,Apl , 3) is a piece function

that describes the area of intersection between the planet and star. An in-depth description

of this function, and the approximations required for a fast algorithm can be found in

Kreidberg (2015).

In summary, Chapter 3 focused on the description of Gaussian processes as a tool

for data analysis, and in particular in the context of simultaneous planetary RV signal

modelling and stellar activity mitigation. Section 3.1 provided a mathematical description

of GPs, their covariance functions and regression methods. Section 3.2 introduced the

pipeline I have developed, and described the relevant signal modelling functions used in

exoplanet hunting.

2. Code available at: https://github.com/lkreidberg/batman

https://github.com/lkreidberg/batman
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Chapter 4

Detecting and Characterising

Exoplanetary Systems

“A philosopher once asked, “Are we human because we gaze at the stars, or do we gaze

at them because we are human?" Pointless, really...“Do the stars gaze back?" Now,

that’s a question”
— Neil Gaiman, Stardust

In this Chapter, I present the work I have done towards the detection and character-

isation of two planetary systems. The first system orbiting the bright K-dwarf TOI-2134

is comprised of two planets, a short-orbit mini-Neptune and a long-orbit highly-eccentric

sub-Saturn, detected with TESS, LCOGT, NEOSSat and WASP photometry data, and HARPS-

N and SOPHIE radial velocities. The inner planet has since also been observed with

Keck/NIRSPEC and escaping helium has been detected in its atmosphere (Zhang et al. 2023).

In the second system, I detected three non-transiting super-Earths orbiting the nearby K-

dwarf HD 48948 with long-baseline HARPS-N observations. The outermost planet was

found to reside within the temperate habitable zone of its system, and has since been iden-

tified as a promising target for high-contrast direct imaging and high-resolution spectro-

scopic studies.



�.�. TOI-����� A MINI-NEPTUNE AND A TEMPERATE ECCENTRIC SUB-SATURN ��

4.1 TOI-2134: a Mini-Neptune and a Temperate Eccentric Sub-

Saturn1

4.1.1 Introduction

Since the discovery of the first exoplanet circa 30 years ago, more than 5000 have been

detected and confirmed. Radial-velocity surveys performed with instruments such as the

High Accuracy Radial-velocity Planet Searcher (HARPS) coupled with the Kepler photo-

metric mission started discovering a sub-population of small exoplanets in short (under

100 days) orbits (Mayor and Udry 2008; Lovis et al. 2009; Fressin et al. 2009; Borucki et

al. 2011; Batalha et al. 2013). Given their abundance in our galaxy (Chabrier et al. 2000;

Winters et al. 2015), and their low mass and size, K and M dwarf stars are prime candidates

for small-exoplanet searches and demographic-focused studies (Dressing and Charbon-

neau 2013; Crossfield et al. 2015; Astudillo-Defru et al. 2017; Pinamonti et al. 2018; West

et al. 2019; Rice et al. 2019; Burt et al. 2020).

The transition point between rocky super-Earths and gaseous Neptunes is still debated

(Fulton et al. 2017; Luque et al. 2021). Otegi et al. (2020) showed that this transition range

is between 5-25 M� and 2-3 R�, but several factors play into the composition of these

planets. Some studies report that all planets under 1.6 R� must be rocky (Rogers 2015;

López-Morales et al. 2016). Others give more importance to the effects of irradiation: less

irradiated planets are more likely to maintain a gaseous envelope, while more irradiated

ones are typically rocky (Hadden and Lithwick 2014; Jontof-Hutter et al. 2016). Owen and

Adams (2019) explored how planetary magnetic fields can also decrease their mass-loss

rates and therefore alter the composition of the planetary cores. A continuous effort in the

detection of small planets, and in the precise characterisation of their masses and sizes is

therefore vital to reach a consensus on which parameters affect planetary composition.

On the other hand, our understanding of long-period planets is also lacking. The

great majority of transit-detected exoplanets have periods shorter than 75 days (Jiang et

al. 2019). Longer-period planets are harder to detect and determining their masses can be

challenging. Moreover, the baselines of most photometric surveys also limit their detec-

1. This Section, alongside all Figures and Tables have been taken from Rescigno et al. (2023b).
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tion. This "missing" population hampers studies of planet demographics, of planet forma-

tion, and of how planetary characteristics depend on the host star (Winn 2011; Johnson et

al. 2010). Temperate giants are located in a period valley, between 10 and 100 days, where

gas planets are less frequent (Udry et al. 2003; Wittenmyer et al. 2010). Although more

challenging to study, these cooler planets are valuable sources of information. For starters,

temperate giant planets represent the middle step between the short-period Hot Jupiters

and the gas giants of our own Solar System. They therefore can serve as bridges between

their respective formation and migration theories (Huang et al. 2016). The composition of

giant planets depends not only on the composition of the protoplanetary disk, but also on

their location at birth and migration history. Consequently, studying their metal enrich-

ment levels can constrain the processes driving core formation and envelope enrichment

(Thorngren et al. 2016; Mordasini et al. 2016). Recent studies have also shown that long-

period planets are correlated to and influence the dynamical evolution of the short-period

planets within their systems (Zhu and Wu 2018; Bryan et al. 2019). Moreover, theoretical

models predict that the formation of inner Earth-like planets is significantly dependent

on the presence of quickly-accreted cold giants (Morbidelli et al. 2022). Due to their lower

effective temperatures, the atmospheres of temperate giants produce entirely different

molecular abundances and potentially can contain disequilibrium chemistry by-products

(Fortney et al. 2020), making long-period gas planets valuable targets for atmospheric

characterisation. Their atmospheres are less affected by temperature-induced inflation,

which in turn allows us to use cooling models of planet evolution to constrain atmospheric

metallicity (Ulmer-Moll et al. 2022). Additionally, there is a clear split in the eccentricity

distribution of long-period planets. They are divided into a first group of objects with sig-

nificantly high eccentricities and a second group with consistently nearly-circular orbits

(Petrovich and Tremaine 2016). No clear cause of this bimodality has been found yet.

The numerous and highly varied scientific interests in exoplanet detection and char-

acterisation have in the years motivated many space-based missions and ground-based

instruments, including the second-generation HARPS-N (Cosentino et al. 2012) and the

SOPHIE (Perruchot et al. 2008) spectrographs. Paired with space photometric missions

(e.g., Ricker et al. 2015), the combination of transit photometry and radial velocity (RV)

makes the determination of precise planetary masses and radii possible. The precision of
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Figure 4.1: TESS normalised lightcurve over 5 sectors. 14 transits of an inner planet and a mono-transit of an
outer planet can be seen and are indicated by the grey and red dashed lines respectively.

RV surveys has been steadily improving and the current uncertainty level reaches down

to the tens of centimetres per second (Jurgenson et al. 2016; Thompson et al. 2016; Pepe

et al. 2021), but the biggest obstacle remains stellar variability (Fischer et al. 2016; Crass

et al. 2021), as addressed in Chapter 1. Great care is required when accounting for and

modelling stellar activity in order to obtain accurate orbital solutions and to accurately

and precisely determine planetary masses.

In the following Sections, I characterise the high proper-motion, bright (<E=8.9

mag) K5-dwarf TOI-2134 and its planetary system. I detect a multi-transiting mini-Neptune

in a short circular orbit and an outer temperate sub-Saturn planet. I also propose these

targets for Rossiter-McLaughlin effect (Rossiter 1924; McLaughlin 1924; Queloz et al. 2000)

follow-up and for atmospheric characterisation.

4.1.2 Observations

4.1.2.1 TESS Photometry

TOI-2134, also known as TIC 75878355 in the TESS Input Catalog (Stassun et al. 2018),

was observed by NASA’s Transiting Exoplanet Survey Satellite (TESS: Ricker et al. 2015)

mission in 2-minute cadence mode over five sectors (Sectors 26, 40, 52, 53 and 54) for a

total of 88,431 datapoints between BJD 2,459,010 and 2,459,035 (2020 June 9 to July 4), BJD

2,459,390 and 2,459,418 (2021 June 24 to July 22), and BJD 2,459,718 and 2,459,797 (2022

May 18 to August 5). The data were originally processed by the TESS Science Process-

ing Operation Centre (SPOC) pipeline based at NASA Ames Research Center (Jenkins et

al. 2016). However, Sector 40 showed strong residual systematics after the SPOC correc-

tion, so further systematics correction of the SPOC Simple Aperture Photometry (SAP)
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light curves (Twicken et al. 2010; Morris et al. 2020) was required. The resulting light

curve was similar to the SPOC light curve (with slightly lower scatter) in most sectors,

and yielded a major improvement in the problematic sector 40.

The transit signature of a TOI-2134b candidate was initially identified in a transit search

conducted by the SPOC of Sector 26 on 24th July 2020 with an adaptive, noise-compensating

matched filter (Jenkins 2002; Jenkins et al. 2010). Diagnostic tests were also conducted to

help make or break the planetary nature of the signal (Twicken et al. 2010). The transit

signatures for the TOI-2134b candidate were also detected in a search of Full Frame Im-

age (FFI) data by the Quick Look Pipeline (QLP) at MIT (Huang et al. 2020b, 2020a) for

Sector 40. A larger transit was detected by both QLP and the SPOC in searches including

Sector 52. This transit was attributed to a second planetary candidate in the system, TOI-

2134c. It appears to be a mono-transit and it did not re-occur in the following 75 days.

The TESS Science Office (TSO) reviewed the vetting information and issued an alert on 7th

August 2020 for TOI-2134b and on 28th July 2022 for TOI-2134c (Guerrero et al. 2021). The

signal for the candidate TOI-2134b was repeatedly recovered as additional observations

were made in sectors 26, 40, 52, 53, and 54, and the transit signatures passed all the di-

agnostic tests presented in the Data Validation reports. The difference image centroiding

figure and difference images for the multi-sector Sector 26 - Sector 55 run for candidate

TOI-2134b show that the centroid of the transit source is consistent with the target star of

interest. The host star is located within 3.2±3.7 arcsec of the source of the transit signal

for candidate TOI-2134b and within 0.98±2.59 arcsec of the source of the transit signal

for candidate TOI-2134c. The light curve was flattened by simultaneously fitting transit

models for the two planets along with a basis spline to model long-term trends, and then

subtracting the long-term variations (a strategy similar to Vanderburg et al. 2016, except

without a simultaneous systematics model; see also Pepper et al. 2020).

The systematics-corrected and flattened TESS data are shown in Fig. 4.1. To better con-

strain the characteristics of the mono-transiting long-period planet candidate, a ground-

and space-based photometric observing campaign was launched to catch a second transit.



�.�. TOI-����� A MINI-NEPTUNE AND A TEMPERATE ECCENTRIC SUB-SATURN ��

4.1.2.2 LCOGT Photometry

The Las Cumbres Observatory Global Telescope (LCOGT: Brown et al. 2013) network ob-

served the star between BJD 2,459,808 and 2,459,818 (2022 August 17 to 27), when pre-

liminary ephemeris prediction suggested the outer planet would re-transit. Due to an

unfortunate combination of bad weather and low visibility, only a possible egress was de-

tected. However, the LCO 0m4 SBIG detectors are very susceptible to strong systematics

and several combinations of comparison stars and aperture sizes need to be examined to

assess the overall reliability of a lightcurve feature, especially for ingress- or egress-only

events. When using a different choice of comparison stars, a convincing egress was no

longer present in the data. The apparent egress was, in fact, proven to be highly depen-

dent on the choice of comparison star set. For this reason, I could not claim this egress as

a detected transit on its own and I do not include this data in the analysis.

A TRansiting Planets and PlanetesImals Small Telescope (TRAPPIST) North (Barkaoui

et al. 2017) observation of the outer planet was also attempted on 22nd August 2022, but

it was unsuccessful.

4.1.2.3 NEOSSat Photometry

The position in the sky of TOI-2134 is such that it is not observable after late-October,

which precluded the chance of a second ground-based campaign to detect a third tran-

sit of the outer planet candidate since the TESS detection. I therefore turned to space

observations. TOI-2134 is outside of the CHEOPS field of view, but it is visible to the

agile space telescope Near Earth Object Surveillance Satellite (NEOSSat: Hildebrand et

al. 2004; Fox and Wiegert 2022). NEOSSat is a Canadian microsatellite orbiting the Earth

in a Sun-synchronous orbit of approximately 100 minutes. It was originally deployed to

study near-Earth satellites, but it also performs well for follow-up observations of large

exoplanets transiting bright stars. It carries a 15cm f/6 telescope, with spectral range be-

tween 350 and 1050 nm and a field of view of 0.86⇥0.86 degrees.

NEOSSat observed TOI-2134 unevenly between BJD 2,459,898 and 2,459,910 (2022 Novem-

ber 14 to 26) with a 70s cadence for a total of 3,364 datapoints. Multiple sets of observations

through the run show significant unpredictable offsets that are usually corrected with
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Figure 4.2: WASP normalised flux against Julian Date over the three years of coverage. All datapoints are
plotted in green with errorbars, daily averages are plotted in purple. The predicted transits of TOI-2134c
are plotted as grey dashed lines, while their uncertainties are plotted as grey shaded areas. As addressed in
Section 4.1.8, no transit was detected.

calibration on reference stars. In these orbits, however, the reference stars behave differ-

ently from each other and the correction is less precise. This is probably due to image

artefacts, as the detector and readout process have quite noticeable imperfections. These

high-variance orbits have been flagged in the dataset and appear often enough to prevent

a clear confirmation of a transit.

4.1.2.4 WASP Photometry

TOI-2134 was also observed over 3 years by the Wide Angle Search for Planets (WASP:

Pollacco et al. 2006; Wilson et al. 2008) with coverage of about 120 nights per year. The

data cover similar three-month spans between BJD 2,454,580 to 2,454,690 (2008 April 23

to August 11), BJD 2,454,941 to 2,455,067 (2009 April 19 to August 23) and BJD 2,455,307

to 2,455,432 (2010 April 20 to August 23). A total of 2,3097 datapoints were obtained and

reduced with the SuperWASP pipeline (Pollacco et al. 2006). No planetary transit was de-

tected. However, the long baseline, over three years long, allows for long-term monitoring

of the stellar activity and of the rotation period of the host star, as shown in Section 4.1.4.1.

All data are shown in Fig. 4.2.

4.1.2.5 HARPS-N Spectroscopy

A total of 111 radial-velocity observations of TOI-2134 were collected over two seasons

with the High Accuracy Radial-velocity Planet Searcher for the Northern hemisphere

spectrograph (HARPS-N: Cosentino et al. 2012; Cosentino et al. 2014) installed on the
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3.6m Telescopio Nazionale Galileo (TNG) at the Observatorio del Roque de Los Mucha-

chos in La Palma, Spain. HARPS-N is an updated version of HARPS at the ESO 3.6-m

(Mayor et al. 2003). The spectrograph covers the wavelength range of 383-691 nm, with an

average resolution ' = 115,000. The first 32 spectra were collected between BJD 2,459,417

and 2,459,515 (2021 July 21 to October 27), and the next 79 were collected between BJD

2,459,638 and 2,459,890 (2022 February 27 to November 6). All data were observed under

the Guaranteed Time Observations (GTO) programme with the standard observing ap-

proach of one observation per night. The average exposure time for TOI-2134 was 900s

with an average signal-to-noise ratio (SNR) at 550 nm of ⇠100. RVs and activity indicators

were extracted using the 2.3.5 version of the Data Reduction Software (DRS) adapted from

the ESPRESSO pipeline (see Dumusque et al. 2021) and computed using a K6-type numer-

ical weighted mask. The radial-velocity data show a peak-to-peak dispersion of 35 m s�1,

with standard root mean squared (RMS) scatter of 7.3 m s�1 and mean uncertainty of 0.7

m s�1.

Several proxies are extracted by the standard DRS pipeline, including (but not limited to)

the full-width at half-maximum (FWHM) and the contrast of the cross-correlation func-

tion (CCF), and the S-index. The mentioned data are plotted in purple in Fig. 4.3. The

reasoning behind the selection of plotted proxies is addressed in Section 4.1.4.2.

4.1.2.6 SOPHIE Spectroscopy

113 radial-velocity observations of TOI-2134 were also obtained with the Spectrographe

pour l’Observation des Phénomnes des Intérieurs stellaires et des Exoplanètes (SOPHIE:

Perruchot et al. 2008) between BJD 2,459,082 and 2,459,894 (2020 August 20 to 2022 Novem-

ber 10). SOPHIE is a stabilized échelle spectrograph dedicated to high-precision RV mea-

surements in the optical wavelengths (387 to 694 nm) on the 193cm Telescope at the Ob-

servatoire de Haute-Provence, France (Bouchy et al. 2009). SOPHIE high resolution mode

(resolving power ' = 75, 000) and the fast mode of the CCD reading were used for the ob-

servations. The standard stars observed at the same epochs using the same SOPHIE mode

did not show significant instrumental drifts. Depending on the weather conditions, the

exposure times for TOI-2134 ranged from 4.5 to 30 minutes (average of 11 minutes) and

their SNR per pixel at 550 nm ranged from 21 to 77 (average of 54). Five exposures showed
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Figure 4.3: Plots of the HARPS-N and SOPHIE radial-velocity data alongside the chosen activity proxies
for each dataset (see Section 4.1.4.2). From the top: HARPS-N RVs, S-index, full-width at half-maximum
(FWHM) and contrast in purple, followed by SOPHIE RVs and their bisector span (BISS) in orange. Notice
the different time axes. All error bars are plotted, but some are too small to be clearly visible in HARPS-N
data.
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a SNR below 40 and were removed. The final dataset therefore includes 108 epochs.

The radial-velocity data were extracted with the standard SOPHIE pipeline using CCFs

(Bouchy et al. 2013) and including the CCD charge transfer inefficiency correction. The

cross-correlations were made using several numerical masks, characteristic of different

types of stars. All produced similar results in terms of RV variations. Finally, a K5-type

mask was chosen, which provided the least dispersed results.

Following the method described e.g. in Pollacco et al. (2008) and Hébrard et al. (2008), the

sky background contamination (mainly due to the Moon) was estimated and corrected us-

ing the second SOPHIE fibre aperture, which is targeted 2’ away from the first one pointing

toward the star. 14 of the 108 exposures were significantly polluted by sky background.

The final SOPHIE RVs show variations with a dispersion of 8.2 m s�1 (35 m s�1 peak to

peak), significantly larger than their typical 2 m s�1 precision. The FWHM, bisector span

and contrast of the CCF were also derived for every observation. The data are plotted in

orange in Fig. 4.3 (for more information on proxy selection see Section 4.1.4.2).

4.1.3 Stellar Characterisation

TOI-2134 is a bright, high-proper motion, mid K-dwarf. As the star falls into a parameter

space that is not optimal for several of the common stellar characterisation pipelines, the

system was characterised with multiple separate and independent methods: a spectral en-

ergy distribution (SED) analysis adapted from Mann et al. (2015), Mann et al. (2016), and

Mann et al. (2019); the ARES+MOOG method with ��������� fitting described in Mortier

et al. (2014); the Stellar Parameter Classification pipeline (SPC: Buchhave et al. 2012; Buch-

have et al. 2014); and a second SED technique developed by Morrell and Naylor (2019,

2020). For more information on the specifics of the stellar characterisation steps, see

Rescigno et al. (2023b).

Overall, all analyses agree with each other within their uncertainties. For the scope

of this work, I present the mean of all the computed values weighted by the inverse of

their errors, as compiled in Table 4.1. Their uncertainties are computed as the standard

deviation between measurements in each method, to avoid improper averaging down of

systematic effects.
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Table 4.1: Stellar parameters of TOI-2134.

Parameter Value Source

Name TOI-2134 TESS Project*
TIC 75878355 Stassun et al. (2019)

G204-45 Giclas et al. (1979)
RA [h:m:s] 18:07:44.52 Gaia Collaboration (2020)

DEC [d:m:s] +39:04:22.54 Gaia Collaboration (2020)
Spectral type K5V Stephenson (1986)
<+ [mag] 8.933±0.003 TESS Project*

<� [mag] 6.776±0.023 TESS Project*

< [mag] 6.091±0.017 TESS Project*

(⌫ �+) [mag] 1.192±0.033 TESS Project*

Parallax [mas] 44.1087± 0.0144 Gaia Collaboration (2020)
Distance [pc] 22.655±0.007 Rescigno et al. (2023b)

Proper motion [mas/yr] 288.257±0.016 Gaia Collaboration (2020)
!8 [!�] 0.192±0.008 Rescigno et al. (2023b)

�1>; [erg cm2 s�1] 1.198±0.048 Rescigno et al. (2023b)
)eff [K] 4580±50 Rescigno et al. (2023b)

log(6) [cm s�1] 4.8±0.3 Rescigno et al. (2023b)
[Fe/H] 0.12±0.02 Rescigno et al. (2023b)

Mass ["�] 0.744±0.027 Rescigno et al. (2023b)
Radius ['�] 0.709±0.017 Rescigno et al. (2023b)
Density [⌧�] 2.09±0.10 Rescigno et al. (2023b)
Age [Gyr] 3.8+5.5

�2.7 Rescigno et al. (2023b)
Esin(8) [km s�1] 0.78±0.09 Rescigno et al. (2023b)
< log'0

HK > -4.83±0.45 Rescigno et al. (2023b)
Prot [days] 45.78+5.56

�5.31 Rescigno et al. (2023b)

*See ExoFOP: https://exofop.ipac.caltech.edu/tess/target.php?id=75878355

https://exofop.ipac.caltech.edu/tess/target.php?id=75878355
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4.1.4 Stellar Activity Signal Analysis

I conducted a thorough preliminary analysis of the available data in order to search for

and to best characterise the stellar activity-induced signals in both the photometric and

the spectroscopic observations.

The projected rotational velocity Esin(8) of TOI-2134 was determined to be <2 km s�1 from

the HARPS-N spectra, and 1.5±1.0 km s�1 from the SOPHIE cross-correlation functions

(following the method in Boisse et al. 2010). No more precise measurement could be de-

rived from the spectra. I therefore calculated the minimum stellar rotation period %rot,min

associated to the lower maximum limit of Esin(8) as:

%rot,min =
2�'8

Esin(8) ⇡ 23 days. (4.1)

Using the method described in Noyes et al. (1984), I computed the average log('0
HK) to be

-4.83±0.45 dex from the S-index measurements taken by HARPS-N. There was significant

scatter in the these data which degraded the quality of the results, but the empirical rela-

tions of Noyes et al. (1984) yielded a stellar rotation period of ⇠42 days. To better identify

the stellar rotation period I performed a periodogram analysis.

4.1.4.1 Photometry

I computed the Bayesian Generalised Lomb-Scargle (BGLS) periodograms (Mortier et

al. 2015) for both the WASP and the TESS photometric data, shown respectively in green

and blue in the first and second rows of Fig. 4.4. The same periodograms in frequency

space, alongside their window functions are plotted in Fig. 4.5. The TESS data showed a

forest of peaks at⇠9.2 days (highlighted by a black dashed line), which is generated by the

repeated transits of the inner planet. As expected given the detection of no transits due

to lower precision, the WASP periodogram had no power around this period. It instead

showed two significant forests of peaks centred around ⇠29 and ⇠58 days (highlighted

by blue bands in Fig. 4.4), which were originally attributed to the stellar rotation period,

but could also be generated by the moon cycle. To further investigate this, I also plotted

the BGLS periodograms of each yearly season of WASP, as shown in the first row of Fig.

4.4 as blue, red and purple dashed lines. The BGLS periodograms of the two later years
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also presented a significant peak at 58 days, but the 2008 data did not. Instead, its most

significant peak was at 29 days. A peak at ⇠29 days was also present in the 2010 data, but

not in 2009. While some of the discrepancies could be attributed to differing coverage,

these results hinted at either a different lunar contribution over the different seasons, or

at evolving surface inhomogeneities structure trends over the years, possibly related to a

stellar magnetic cycle. After alias analysis, I found that the 29-days forest of peaks in the

full periodogram can be explained as the extended aliases generated by the 1-year sys-

tematic. The WASP data span over ⇠850 days. SOPHIE radial velocities (taken 10 years

later) also cover a similar stretch of time. Therefore, assuming these signals are of stellar

origin, the structure of the stellar variability that allows us to detect the rotation period of

the star can be expected to also evolve during the three years of radial-velocity data. This

evolution could be the reason behind the difficulties at constraining the stellar rotation

period in the further RV analyses.

4.1.4.2 Radial-Velocity Data and Proxies

Although the proxy time series present significant scatter and the average log('0
HK) also

classified the star as moderately active, both sets of RVs had little to no correlation to their

activity indicators. The specific reason for this lack of correlation is ultimately beyond

the scope of this work, as the activity indicators were only used as a starting point to the

analysis, but I propose some possible origins. As a first most likely option, the Keplerian

signals introduced by the planets in the system are large enough to "muddle" the corre-

lation to activity indicators. As the amplitude of the stellar activity computed in the next

Sections is comparable to the amplitude of the RV osciallations generated by the planets,

it is likely that these signals are significant enough to prevent a clean correlation between

RVs and activity indicators (which only map the variations induced by stellar activity). To

test this, I also computed the correlation between the activity indicators and the RVs after

subtracting the best-fit Keplerian models derived in Section 4.1.8. While the correlation

did improve by a factor of 2, it still remained low. So other reasons may be considered.

As an example, the stellar rotation axis inclination angle with respect to the observer can

influence the strength of the proxy-RV correlation, weakening it for unfavourable line-of-

sights: as the the stellar rotational axis becomes parallel to the observer line-of-sight, the
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Figure 4.4: Set of BGLS periodograms of the acquired data plotted as period vs logarithmic probability nor-
malised to 1. From the top, WASP photometry in the solid green with yearly seasons in blue for 2008, red
for 2009 and purple for 2010 as dashed lines, TESS photometry, HARPS-N RVs, HARPS-N activity prox-
ies (FWHM, S-index and contrast in respectively blue, red and green), SOPHIE RVs, SOPHIE activity proxy
(BISS), and the combined SOPHIE and HARPS-N RVs. The dashed black lines represent the periods of the
two planets at 9.2 and 95 days. The blue bands indicate the possible stellar rotation signals at 29, 48 and 58
days.
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Figure 4.5: Same set of BGLS periodograms as Fig 4.4 in frequency space. The window functions for each
dataset are also included. The dashed black lines indicate the periods of the two planet candidates. The blue
band shows the stellar rotation period.
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signal from active regions coming in and out of view becomes less rotationally modulated.

At the same time, in late K-dwarfs convective redshift may in some cases prevail against

blueshift. This can happen either due to an opacity effect (like in M-type stars), or if most

of the photospheric absorption lines used for RV measurements form in regions of convec-

tive overshoot (Norris et al. 2017). Costes et al. (2021) notes that a possible explanation for

low correlation between radial velocities and activity proxies, as is the case for our target,

is that the convective blue- and redshifts are "cancelling" out one another. The possibil-

ity of a temporal lag (Collier Cameron et al. 2019) between the radial velocities and the

proxies was also considered, but a visual inspection of their timeseries did not strongly

support this possibility.

For the analysis, I nevertheless selected and plotted the indicators with the strongest cor-

relation to their RVs. For HARPS-N I selected the S-index, the FWHM and the contrast.

Their Spearman’s rank correlation coefficients with their RVs were computed to be 0.15,

0.11 and -0.12 respectively. For SOPHIE I selected only the bisector span, with correla-

tion coefficient of -0.16, as the FWHM and contrast seem to be affected by instrumental

systematics.

I conducted a full periodogram analysis of the spectroscopic data. The last five rows

of Fig. 4.4 show the BGLS periodograms of, in order, the HARPS-N RVs, the HARPS-N

derived proxies (FWHM, S-index and contrast), the SOPHIE RVs, the SOPHIE-derived

activity indicator (bisector span, or BISS), and the combined RV data. I was able to combine

the RVs with a simple offset, as they are derived from similar wavelength windows and

therefore are probing the same section of the stellar spectra. The same periodograms in

frequency space, alongside their window functions, are once again shown in Fig. 4.5.

While the BGLS periodograms of the radial-velocity datasets did not show clear peaks

for the inner planet, there was a strong periodic signal at ⇠95 days (shown as a black

dashed line) shared between the HARPS-N and the SOPHIE RVs that was not present in

any of the HARPS-N stellar activity proxies. The SOPHIE bisector does have a peak at

⇠100 days, but its normalised logarithmic probability is comparable to most other peaks

in the periodogram and therefore does not have a strong significance. This preliminary

analysis suggested a period of ⇠95 days for the mono-transiting planet detected by TESS.

The only major peak shared between the HARPS-N radial velocities and of all its activity



��� CHAPTER �. DETECTING AND CHARACTERISING EXOPLANETARY SYSTEMS

Figure 4.6: ✓1 periodograms of from top to bottom HARPS-N, SOPHIE and combined RVs. The periods of
the major signals identified are highlighted in red.

indicators was centred around 48 days (shown as a blue band), with yearly aliases at 42

and 38 days. No such signal could be found in either the SOPHIE RVs or their indicator.

However, SOPHIE data presented a minor peak at ⇠24 days, half of the HARPS-N value.

The 48-day signal as a tentative stellar rotation period, although not in perfect agreement,

was compatible with the longer modulation of the WASP data, especially given the fact

that their baseline in each season only spans just more than twice this period.

To further understand the signals within the spectroscopic datasets, I also per-

formed an ✓1 periodogram2 analysis with correlated noise (Hara et al. 2017; Hara and Mari

2021), as shown in Fig. 4.6. This periodogram formulation was first devised to overcome

the distortions in the residuals that arise when fitting planets one by one, as described in

Chapter 2 Sections 2.3.1.2. Once again, HARPS-N and SOPHIE radial velocities on their

2. Available at https://github.com/nathanchara/l1periodogram

https://github.%20com/nathanchara/l1periodogram
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Figure 4.7: From the top, stacked BGLS periodograms of HARPS-N, SOPHIE and combined RVs. The blue
dashed blue lines identify 48 days (and 25 days for SOPHIE data). The dashed grey lines show 9.2 and 95
days, the proposed periods of the two planets.

own, as well as their combination, showed a clear peak at ⇠95 days. Similarly, the ✓1 peri-

odograms of both HARPS-N and SOPHIE also peaked at ⇠9.2 days. The ✓1 periodogram

is also able to isolate the signal of the inner planet in the combined RV dataset. Regarding

the possible stellar rotation period, HARPS-N data again showed a clear modulation at

⇠48 days, while the strongest peak in SOPHIE not attributed to planetary signals was at

half that value. The ✓1 periodograms therefore re-confirmed the previous results from the

BGLS analysis.

Finally, to probe the coherence of these signals, I plotted the Stacked Bayesian Gener-

alised Lomb-Scargle periodograms (Mortier et al. 2015; Mortier and Collier Cameron 2017)

of the three sets of RV data in Fig. 4.7. The Stacked BGLS periodogram was developed
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to better identify the signals that are generated by stellar activity, as described in Chap-

ter 2 Section 2.3.1.1.2. Planetary signals are coherent in nature, meaning their probability

should consistently increase with increasing number of observations. Signals produced

by stellar activity are incoherent, meaning that their probability will change and oscillate.

Fig. 4.7 clearly showed that the signals indicated by the blue vertical lines (respectively 24

and 48 days, as identified by the ✓1 periodograms) were incoherent. They therefore could

not be attributed to planets and were more likely generated by stellar activity. The 9.2 and

95 days signals, highlighted by the grey dashed lines, showed more coherent trends. With

the exception of a 1 day alias, no other major signals could be identified.

4.1.5 Transit Photometry

An analysis to determine the best-fit transit parameters and uncertainties for the two

planet candidates orbiting TOI-2134 was then performed. The TESS photometry (after

systematics correction and flattening as described in Section 4.1.2.1) was modelled with

a Mandel and Agol (2002) transit model, which included three parameters describing the

host star (its mean density, and both linear and quadratic @1 and @2 limb-darkening co-

efficient parametrisations sampled following Kipping 2013). The inner planet TOI-2134b

was described by six parameters (its orbital period, time of transit, orbital inclination, the

logarithm of the planet/star radius ratio log'?/'8, and combinations of the eccentricity

and argument of periastron of the planet
p
4 cos $p and

p
4 sin $p, which will be further

explained in Section 4.1.6). The transit of the outer planet TOI-2134c was described by

four parameters (time of transit, transit duration, impact parameter, and the logarithm of

the planet/star radius ratio). Finally, two parameters characterising the dataset itself (a

constant flux offset and the white noise level) were included.

4.1.5.1 Selection of Priors

An informative Gaussian prior was imposed on the stellar density based on the analysis of

the stellar parameters. All other parameters were bound by uniform priors.The inclination

of planet b was restricted to be less than 90� and the impact parameter of planet c to be

greater than 0 (to avoid the degeneracy for transit configurations with inclinations greater

90�).
p
4 cos $p and

p
4 sin $p were bound to be in the interval [-1,1] (as necessary as per
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Table 4.2: Results and uncertainties of the planetary parameters for the photometry analysis described in
Section 4.1.5.

Parameter Value

Radius ratio ('b/'8) 0.03475± 0.00038
Orbital period %b [days] 9.2292005±0.0000063
Time of transit C0,b [BJD] 2459407.54493±0.00027

Orbital inclination 8b [deg] 89.49± 0.37
Transit impact parameter 1b 0.21±0.14

Radius ratio ('c/'8) 0.09404± 0.00078
Time of transit C0,c [BJD] 2459718.96939±0.00020

Transit impact parameter 1c 0.464± 0.042

their definition), and the impact parameters (in the case of TOI-2134b after conversion

from inclination) to be in the range [0,1+'?/'8] (requiring the planets to transit the star).

log('?/'8) was allowed to vary in the range [�1, 0] (planets must be smaller than the

host star), and @1 and @2 in the range [0,1] following Kipping (2013). All other parameters

with uniform priors were allowed to explore the range [�1,1].

4.1.5.2 Transit Results

The parameter space was explored using a Markov Chain Monte Carlo (MCMC) algo-

rithm with a Differential Evolution sampler (Ter Braak 2006). 100 chains were evolved

simultaneously for 100,000 steps each, discarding the first 30,000 as burn-in. The con-

vergence was assessed by calculating the Gelman-Rubin statistic. The best-fit models are

phase-folded and plotted in Figure 4.8 and the results of the planetary fit are given in Ta-

ble 4.2. Initially eccentricity, angle of periastron and period for the outer planet candidate

were not derived, given the mono-transit. Those parameters will be extracted in a second

step, as discussed in Section 4.1.6.2. The multiple transits of the inner planet allow to pre-

cisely measure its period and planet-to-star radii ratio. The radii ratio of TOI-2134c is also

constrained to over 100�.

4.1.6 RV Analysis

To analyse the radial velocities I used the MAGP�-RV pipeline introduced in Chapter 3

Section 3.2. I modelled the RV data as a combination of two planetary signals in the form
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Figure 4.8: Phase-folded TESS light curves of TOI-2134b and c. Faint blue points are individual TESS two-
minute cadence measurements, bold darker blue points are data binned in orbital phase, and the red curves
are the best-fit transit models. The error bars on the binned points are smaller than the symbols. For the transit
of TOI-2134c, an artificial offset to the out-of-transit flux measurements is included for improved visibility.
Figure taken from Fig. 8 of Rescigno et al. (2023b) and produced by A. Vanderburg.
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of Keplerians (for the two transiting objects), and the stellar activity with a GP function

described by a Quasi-periodic kernel. We selected the QP Kernel formulated in Haywood

et al. (2014) and defined in Chapter 3 Section 3.1.3 with the inclusion of a white noise

"jitter" term, in the form

:(C= , C<) = �
2 · exp

2666664
� |C= � C< |2

;
2 �

sin2
⇣
�·|C=�C< |
%rot

⌘
⌘

2

3777775
+ ⇣= ,<�2

, (4.2)

in which C= and C< are two datapoints, the four hyperparameters are in order the maxi-

mum amplitude �, the timescale over which the quasi-periodicity evolves ;, the period of

the periodic variation %rot (mapping the stellar rotation), and the "smoothness" of the fit ⌘

(its amount of high-frequency structure) also often referred to as the harmonic complex-

ity. The "jitter" term is represented by the delta function, and � can be thought of as the

contribution of the uncertainties of the RV measurements.

While eccentricity 4, and planetary angle of periastron $p were used within the Keplerian

model, when iterating in the MCMC algorithm I instead took steps in a different set of

variables (: and ⇠: , defined as
(: =

p
4 sin $p ,

⇠: =
p
4 cos $p.

(4.3)

As explained in Eastman et al. (2013), this reparameterisation avoids a boundary condition

at zero eccentricity, allowing for a better sampling around zero while maintaining the

overall prior flat over eccentricity.

The Keplerian models also depended on time of periastron passage Cp, rather than the

time of transit C0, derived by transit photometry. However, the two variables are linked

via the following equation

Cp = C0 �
%

2� · [⇢tr � 4 · sin (⇢tr)] , (4.4)

in which % is the orbital period of the considered planet, 4 its eccentricity and the eccentric

anomaly⇢tr is computed from the argument of periastron and the eccentricity as described

in Chapter 3 Section 3.2.1.3.
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I conducted the investigation on the combined HARPS-N and SOPHIE time series,

as well as on the two datasets separately. Once again, I was able to combine the two RV time

series with a simple offset parameter and could use a single GP to describe both because

they have comparable jitters and they are extracted from similar spectral windows in the

optical range. Therefore, they are expected to map the same physical processes and to be

sensitive to Doppler-shifts in the same way.

4.1.6.1 Selections of Priors

In this Section, I describe the choices of priors for the analysis of the RV data. The same

priors are used for all three analyses. They are also summarised in Table 4.3.

Starting with the Keplerians, I imposed a strict 1� Gaussian prior on the orbital period of

the inner transiting planet, %b, derived from the posterior distribution of the same variable

in the transit photometry analysis. Similarly, I imposed a strict Gaussian prior to the time

of periastron passage, Cp,b, inflating the � to account for the uncertainties in the eccentric-

ity of the planet. The period of the outer planet was bound by a uniform prior between

[75,150], derived from the minimum period allowed by consecutive TESS photometry and

the information derived from the periodogram analysis. Given the inability to derive a

period from transit photometry, the time of periastron passage of the outer planet Cp,c was

bound by a uniform prior in the range [2,459,678.5, 2,459,773.5], determined by the pre-

liminary %c from the periodogram analysis. (: and ⇠: for both planets were also bound

by uniform priors in the range [-1, 1]. The SOPHIE-HARPS-N offset was allowed to vary

only in the [-5,5] m s�1 interval. The rest of the parameters are left with wide positive

(larger than zero) uniform priors.

Regarding the kernel hyperparameters, I applied a strict Gaussian prior to ⌘ (the "smooth-

ness" of the fit) centred on 0.5±0.1, as recommended by Jeffers and Keller (2009). This

choice is grounded in the fact that even highly complex active-region distributions aver-

age out to just two or three large active regions per rotation. I set a wide Gaussian prior

on the stellar rotation period %rot derived from the periodogram analysis centred in 48

days with �=10 days, as wide as the forest of peaks in the WASP BGLS periodogram. The

evolution timescale ; is bound by a wide Jeffreys prior. A wide positive (larger than zero)

uniform prior was applied to the GP amplitude �, and the jitter was only allowed to vary
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in the interval [0,2] m s�1.

4.1.6.2 The Eccentricity of TOI-2134c

Initial analysis of the radial-velocity data showed a significant trimodality in the distri-

bution of the eccentricity of the outer 95 day-orbit planet, 4c. After further investigation,

I found that multiple fully-converged models with different outer planet eccentricities

existed. The RVs allowed for eccentricities of TOI-2134c equal to 0.002+0.029
�0.002, 0.45 ± 0.05

and 0.67+0.05
�0.06. All the models agreed within their uncertainties for most other parame-

ters. Significantly large eccentricities have been detected before for temperate gas planets

and stability can be reached within this system, so I could not a priori exclude any of the

models. The stellar rotation period derived from the analysis is close to half the period

of TOI-2134c. I therefore postulated that an interaction between the fit of the Keplerian

model and the stellar activity-induced signal could be the reason behind the multiple

models. While the flexibility of GPs are what makes them valuable tools to model stellar

activity, in this case this flexibility allowed the Keplerian to take different accepted forms,

while absorbing any "left-over" signal into the activity model. To further compare the final

likelihoods of the three solutions, I computed the corrected Akaike Information Criterion,

AICc, (Sugiura 1978) for all converged models:

AICc = AIC + 2
✓
#free(1 + #free )
#data � #free + 1

◆
, (4.5)

where #free is the number of free parameters and #data is the number of data points. The

original Akaike Information Criterion, AIC, (Akaike 1983) is calculated as

AIC = �2 log(L) + 2#free , (4.6)

where log(L) is the logarithmic likelihood maximised after the MCMC analysis. The

larger the AICc the less likely the model. The AICcs of the combined (HARPS-N + SO-

PHIE) RV data for the low-, medium- and high-eccentricity models were respectively

1224.0 and 1195.7 and 1196.7. As a further check, and to test whether this system would

significantly benefit from a simpler analysis, I also computed the Keplerian-only best-fit

model to the data. For this analysis I only included the planetary model with a jitter term
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Figure 4.9: Posterior distribution corner of the eccentricity and the argument of periastron $p of the outer
planet c derived after MCMC model optimisation on the deep mono-transit present in the TESS data, as
explained in Section 4.1.6.2. Most notable, the eccentricity of TOI-2134c converges to a high ⇠0.7 value.

and no stellar activity or GP component. This last model struggled to converge and its

AICc was 1253.2. The AICc analysis thus strongly disfavoured the Keplerian-only model

and the circular-orbit model (with AICc difference from the best model larger than 7).

However, the AICc values for the medium and the high eccentricity cases were similar

enough that no single model was significantly favoured and no significant statistical pref-

erence could be reached.

I then turned to the obtained photometric data. The orbital period of the singly-

transiting planet candidate was estimated using only the TESS light curve, following the

procedure of Vanderburg et al. (2018). This method did not take into consideration the re-

sults from radial velocity, and derived the planetary period directly from the photometric

mono-transit. The impact parameter 1c, planet-star radius ratio 'c/'8, and total transit

duration of the single transit candidate were extracted from the MCMC posteriors of the

two-planet transit fit. I then solved for the orbital period assuming the stellar parameters

reported in Table 4.1 and an eccentricity probability distribution from Kipping (2014). The

constraint that a second transit was not observed by TESS was also imposed, which re-

quired the orbital period to be longer than about 75 days. The short duration of the transit
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and minimum period allowed by TESS ruled out circular orbits for this planet with perias-

tron passage happening near the time of transit (as expected from geometric arguments),

as the RV models comparison also had found. The eccentricity 4c and argument of pe-

riastron $p,c required to reproduce the transit data were then estimated, assuming the

orbital period larger than 75 days. The posterior probability distributions of 4c and $p,c

are shown in Fig. 4.9. The eccentricity was required to be high (⇠0.7), and the argument

of periastron was broadly identified to be near the conjunction of the orbit of the planet.

This eccentricity value derived from transit photometry was then used to constrain the

RVs. Given the high-eccentricity preference, I added a Gaussian prior centred in 0.7 with

a � of 0.1 to 4c.

4.1.6.3 RV Results

A summary of the final results of the RV analyses can be found in Table 4.3. For this MCMC

analysis I simultaneously evolved 100 chains for 100,000 iterations each, discarding a burn-

in phase of 20,000 steps. I assessed the health and convergence of the chains by computing

the Gelman-Rubin statistic and all parameters reached values under the 1.1 convergence

cut. As mentioned in the previous Section, I tested a series of models. For each set of

HARPS-N only, SOPHIE only and combined RVs I evolved Keplerian-only models with no

stellar activity (which overall struggled to converge or did not converge), forced circular-

orbit models, medium-eccentricity models, and finally high-eccentricity models bound

with an eccentricity prior derived by the photometry analysis. In this work I only present

the last set.

The HARPS-N only data could constrain the amplitude and period of the inner TOI-2134b

better than the SOPHIE data could, but conversely the SOPHIE RVs were able to better

identify the signal of the outer planet, especially its period. A combined analysis allowed

to more robustly constrain both planets with a single model. Since all three of the GP

models fully converged and reached final values consistently within 1� of each other, I

only discuss the results of the combined RV analysis.

The periods of the two planets are well-defined. Their RV amplitudes are constrained

to 12� for planet b and to 6� for planet c. The MCMC struggled to constrain the stellar

activity evolution timescale ;, as expected from the low correlation with activity indicators
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and the weak overall rotational modulation (see Section 4.1.4.2). The stellar rotation period

is derived to be 45.78+5.56
�5.31 days.
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4.1.7 Joint RV and Transit Analysis

Finally, I also modelled the TESS photometry and the radial-velocity data jointly, to more

robustly test whether the high eccentricity model was still favoured. This more complex

analysis allowed for simultaneous modelling of the orbital solutions for both planets. I

once again used the code MAGP�-RV. I modelled the RVs similarly to Section 4.1.6, as

two Keplerian signals for the planet candidates, with a GP function defined by a Quasi-

periodic kernel describing the stellar activity and an offset parameter to match the zero-

line of the HARPS-N and the SOPHIE datasets. For the TESS data, I described the transits

of both planets with six parameters each (period, time of transit, (k, ⇠k, planet to stellar

radius ratio, and orbital inclination). The photometric model also included five parame-

ters to describe the host star (its mean density, @1, @2, photometric jitter and offset). In this

analysis, I was jointly modelling the periods, time of transits, eccentricities and angles of

periastron of both planet.

4.1.7.1 Selection of Priors

I imposed similar priors on the GP hyperparameters as described in Section 4.1.6.1: Gaus-

sian priors on the stellar rotation period and the harmonic complexity, uniform priors on

amplitude and RV jitter, and a Jeffreys prior on the evolution timescale. The RV offset be-

tween SOPHIE and HARPS-N data was also similarly bound by a uniform prior between

[-5,5] m s�1. The period of the inner planet, %b, was bound by a Gaussian prior centred on

9.2 days with � of 0.2 days derived from preliminary transit analysis. The time of transit

Ctr,b was also similarly bound by a Gaussian prior. The period of the outer planet, %c, was

bound by a uniform prior between [75, 150] days, as it was in the original RV analysis.

The RV amplitude of both planets were as before bound between [0,20] m s�1. (k and ⇠k

of both planets were only allowed to vary in the interval [-1,1] by definition. For the pho-

tometry, the stellar density was bound by a Gaussian prior centred on the derived stellar

density with � equal to its uncertainty (see Table 4.1). I allowed both planet-star radii ra-

tios, 'b/'8 and 'c/'8, to only vary between [0,1] (the planets are expected smaller then

the star), @1 and @2 between [0,1] as per their definition, and I required both inclinations 8

to be less than 90�. All other priors were flat uninformative priors.



�.�. TOI-����� A MINI-NEPTUNE AND A TEMPERATE ECCENTRIC SUB-SATURN���

Table 4.4: Results and uncertainties of the planetary parameters for the joint photometry and RV analysis
described in Section 4.1.7

.

Parameter Value

GP Amplitude � [m s�1 ] 4.59+1.38
�1.29

GP Timescale ; [days] 28.01+21.31
�22.15

GP Period %rot [days] 53.87+3.14
�3.02

GP Smoothness ⌘ 0.44+0.08
�0.06

Jitter [m s�1 ] 0.85+0.95
�0.59

SOPHIE HARPS-N Offset [m/s] 2.64+0.09
�0.06

Orbital period %b [days] 9.229209+0.000006
�0.000004

Radius ratio ('b/'8) 0.02±0.01
Orbital inclination 8b [deg] 89.91+0.05

�0.06
RV Amplitude  b [m s�1 ] 3.51+0.33

�0.41
Eccentricity 4b 0.05+0.03

�0.03
Argument of periastron $p,b [rad] -0.75+0.47

�0.88
Time of periastron Cp,b [BJD] 2459407.82+0.09

�0.06
Orbital period %c [days] 94.98+0.95

�1.02
Radius ratio ('c/'8) 0.09±0.01

Orbital inclination 8b [deg] 89.91+0.02
�0.03

RV Amplitude  c [m s�1 ] 9.83+0.85
�0.89

Eccentricity 4c 0.62+0.09
�0.02

Argument of periastron $p,c [rad] 1.41+0.49
�0.48

Time of periastron Cp,c [BJD] 2459432.39+3.11
�3.01

4.1.7.2 Joint Analysis Results

I simultaneously evolved 100 chains for 100,000 iterations each, discarding once again a

burn-in phase of 20,000 steps, and I tested for convergence with the Gelman-Rubin statis-

tic. The results of the joint analysis for the combined SOPHIE and HARPS-N RVs and

the TESS photometry are listed in Table 4.4. All parameters agreed within 1� uncertainty

with the results from the previous less complex transit and RV analyses, shown in Tables

4.2 and 4.3. These results once again confirmed the high-eccentricity model for the outer

planet TOI-2134c.

Overall, both planet candidates and their periods were fully recovered. Their RV ampli-

tudes were constrained to 10� for the inner planet and 11� for the outer one. The joint

photometry and RV analysis is minorly less effective in the retrieval of the RV signal of

inner planet than the radial-velocity data on their own, but it performed better for TOI-
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Table 4.5: System Parameters for TOI-2134b. The transit and radial-velocity parameters are computed in
Sections 4.1.5 and 4.1.6. Derived parameters are addressed in Section 4.1.8 and its subsections alongside the
necessary assumptions.

Parameter Value

TOI-2134 b
Transit and Radial-Velocity Parameters

Orbital period %b [days] 9.2292005±0.0000063
Time of transit C0,b [BJD] 2459407.54493±0.00027

Radius ratio ('b/'8) 0.03475± 0.00038
Orbital inclination 8b [deg] 89.49± 0.37

Transit impact parameter 1b 0.21±0.14
Transit duration �b [hours] 2.995±0.047
RV Amplitude  b [m s�1 ] 3.40+0.28

�0.29
Eccentricity 4b 0.06+0.03

�0.04
Argument of periastron $p,b [rad] 1.91+0.32

�0.34
Time of periastron Cp,b [BJD] 2459407.89+0.45

�0.49

Derived Parameters
Radius 'b [R�] 2.69±0.16
Mass "b [M�] 9.13+0.78

�0.76
Density ⌧b [kg m�3] 2607±516

Density ⌧b [⌧�] 0.47±0.09
Scaled semi-major axis (0b/'8) 23.66±0.52

Semi-major axis 0b [AU] 0.0780±0.0009
Incident Flux �inc,b [�inc,�] 32±2

Equilibrium temperature )eq,b [K] 666±8

2134c. Once again, the stellar activity evolution timescale is not very well-constrained.

The stellar rotation period was here derived to be slightly longer (54.27+3.27
�3.23) but it was

still consistent with the previous analysis. Both planet radius ratios were fully retrieved

to 2 and 9� for TOI-2134 b and c respectively.

4.1.8 Results and Discussion

The results of the joint photometry and RV analysis fully agreed within their 1� uncer-

tainties with the results from the separate transit and RV analyses. While the joint method

successfully retrieved and characterised both planet candidates, I primarily focused the

results of the less complex, separated analyses undertaken in Sections 4.1.5 and 4.1.6. All

the final results are compiled in Tables 4.5 and 4.6. The covariance hyperparameters of
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Table 4.6: System Parameters for TOI-2134c. The transit and radial-velocity parameters are computed in
Sections 4.1.5 and 4.1.6. Derived parameters are addressed in Section 4.1.8 and its subsections alongside the
necessary assumptions.

Parameter Value

TOI-2134 c
Transit and Radial-Velocity Parameters

Orbital period %c [days] 95.50+0.36
�0.25

Time of transit C0,c [BJD] 2459718.96939±0.00020
Radius ratio ('c/'8) 0.09404± 0.00078

Transit impact parameter 1c 0.464± 0.042
Transit duration �,2 [hours] 5.267±0.028
RV Amplitude  c [m s�1 ] 9.74+1.60

�1.63
Eccentricity 4c 0.67+0.05

�0.06
Argument of periastron $p,c [rad] 02.32+0.22

�0.32
Time of periastron Cp,c [BJD] 2459721.20+1.52

�1.23

Derived Parameters
Radius 'c [R�] 7.27± 0.42
Mass "c [M�] 41.89+7.69

�7.83
Density ⌧c [kg m�3] 599±152

Density ⌧c [⌧�] 0.11±0.03
Scaled semi-major axis (0c/'8) 112±2

Semi-major axis 0c [AU] 0.371±0.004
Incident Flux �inc,c [�inc,�] 1.4±0.1

Equilibrium temperature )eq,c [K] 306±4
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Figure 4.10: Combined SOPHIE (orange) and HARPS-N (purple) radial-velocity data plotted with errorbars
(HARPS-N errorbars are too small to be clearly visible). The complete model, which includes two Keplerians
and the predicted activity, is plotted in grey, with its uncertainties as the gray shaded area. The dashed
black line represents the GP activity prediction only. On the bottom, the residuals between the data (in the
corresponding colour) and the complete model are plotted.

Figure 4.11: Phase folded activity model-subtracted plots for the inner (top) and outer (bottom) planets. In
orange are the SOPHIE RVs and in purple the HARPS-N ones with respective errorbars (some HARPS-N
errorbars may be too small to be visible). The Keplerian model is plotted as a gray line, with the residuals
shown on the bottom. The phase has also been extended on both sides.
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Figure 4.12: Mass-radius diagram with zoom-in for sub-Neptunian planets. The data are taken from the EU
Exoplanet catalogue at exoplanet.eu/catalog/ on 17 Feb 2023. The solid blue line shows the mass-radius
relation developed by Chen and Kipping (2017), with its categorisation of Terran (M<2M�), Neptunian
(2M�<M<0.4MJ) and Jovian worlds (M>0.4MJ). The zoomed-in plot includes composition lines taken from
Zeng et al. (2016), and the Radius Valley band. Solar system planets are included for scale.

the GP function used to model the stellar variability can be found in the last column of

Table 4.3. In Fig. 4.10 I plot the combined SOPHIE and HARPS-N dataset alongside the

complete best-fit model in grey, as well as the GP-predicted activity as a black dashed line.

Fig. 4.11 shows the phase folded, best-fit Keplerian orbital models, after subtracting the

stellar activity-induced signal modelled by the GP, and their residuals.

As a result of the investigation, I established the presence of an inner planet TOI-2134b,

and an outer planet TOI-2134c. All derived planetary characteristics are listed in Table 4.5

and 4.6. Fig. 4.12 shows the two planets in a mass-radius diagram.

I computed for the inner planet TOI-2134b a mass "b of 9.13+0.78
�0.76 M� and a radius

of 2.69±0.16 R�, for an orbital period of 9.2292005±0.0000063 days. Combining mass and

radius yielded a bulk density of 0.47±0.09 ⌧�. In the mass-radius diagram TOI-2134b falls

in a parameter space significantly degenerate in composition. Planet b could be a 100%

water-planet (Zeng et al. 2016). At the same time, it could also have a rocky core, a water

(or other heavy volatile elements) layer and a low-mass H/He envelope. Overall, it is

not possible to distinguish the composition of planet b without additional information.

exoplanet.eu/catalog/
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For more information about the atmospheric characteristics of TOI-2134b see Zhang et

al. (2023).

The outer planet TOI-2134c has mass "c of 41.89+7.69
�7.83 M� and a radius of 7.27±0.42 R�,

with an orbital period of 95.50+0.36
�0.25 days. The derived mass from the RVs and radius from

photometry are well-matched and further justify the association of the mono-transit and

the detected radial-velocity signal. The presence of a third planet with similar mass to TOI-

2134c that could instead explain the transit would have been detected in the radial-velocity.

The bulk density of TOI-2134c is calculated to be 0.11±0.03 ⌧� (similar to the density of

Saturn). It can therefore be considered a long-orbit mini-Saturn. Given its derived period,

I also went back to the other photometric data and computed when transits would have

occurred. The derived transit times are plotted in Fig. 4.2 as black dashed lines, and

their uncertainty windows as gray shaded regions. TOI-2134c transited 5 times over the 3

years of WASP coverage, but none of those transits was originally detected. The possible

explanation for this is twofold. On one hand, WASP is a ground instrument and therefore

only observes during dark hours; given the transit duration of ⇠5 hours, the event could

have easily been missed. At the same time, the precision of the WASP data fluctuates

significantly and a 0.01 flux deficit (as it is for TOI-2134c) is often too shallow for WASP

to reliably detect.

4.1.8.1 System Orbital Stability

As a preliminary test of the stability of the system given the high eccentricity of TOI-2134c,

I calculated the radius of the Hill Sphere (Hamilton and Burns 1992) of the outer planet

and compared it to the closest approach distance between the two planets. If the orbit of

the inner TOI-2134b at any point falls within the Hill Sphere of TOI-2134c, the two bodies

are expected to gravitationally interact enough to de-stabilise their orbits. If a body of

mass< is orbiting a larger body of mass " at semi-major axis 0 with an eccentricity 4, the

Hill Radius 'Hill of the smaller body can be approximated to be

'Hill ⇡ 0(1 � 4) 3

r
<

3" . (4.7)
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Figure 4.13: Chaos map for the outer planet TOI-2134c. The period %c and eccentricity 4c are explored on a
81x81 grid of different system configurations. After numerical integrations the NAFF indicator is computed
and plotted as a colour-scale. Blue regions correspond to weakly chaotic (more stable) planetary systems,
while red areas refer to strongly chaotic (more unstable) systems. The best-fit system position in this space
together with its 1� uncertainties indicate that both stable and unstable solutions are compatible with our
high-eccentricity fit. Figure taken from Rescigno et al. (2023b) and produced by M. Stalport.

For planet c, I computed a 'Hill,c of 0.0047±0.0008 AU. The closest approach between the

outer and inner planets is 0.048±0.026 AU. Therefore, the orbit of planet b at no point

intersects with the Hill Sphere of TOI-2134c.

To further assess the stability of the system under the high eccentricity 42 model,

the chaos map in the neighbourhood of the best-fit solution to the high-eccentricity model

were also computed, shown in Fig. 4.13. A grid of 81x81 system configurations that vary

between each other based on period %c and eccentricity 4c was created. All other param-

eters were fixed to their values derived from the MCMC best-fit estimation. Each system

defined a unique set of initial conditions that was then used for 50 kyr numerical integra-

tions with REBOUND3 (Rein and Liu 2012) with the 15th order adaptive time-step integrator

IAS15 (Rein and Spiegel 2015). After the simulations, the Numerical Analysis of Funda-

mental Frequencies (NAFF: Laskar 1990; Laskar 1993) was computed. The NAFF indicator

informs about the amount of chaos in a planetary orbit by precisely estimating its main

frequency via a technique called frequency analysis (Laskar 1988). The main frequency of

3. REBOUND is an open-source software package dedicated to N-body integrations: http://rebound.
readthedocs.org

http://rebound.readthedocs.org
http://rebound.readthedocs.org
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a planetary orbit corresponds to its mean-motion, which does not drift over time in non-

chaotic dynamics, but does drift if the system is chaotic. Therefore, frequency analysis is

applied on the two halves of each simulation, and for each planetary orbit, to estimate the

amount of drift in the mean-motions. Weakly chaotic (hence stable) orbits should only

show small differences in mean motions between the two integration halves. In this work,

the NAFF of the system is defined as the logarithmic maximum value of this drift in the

form

NAFF = max8

log10

�=8
=0

�
, (4.8)

in which 8 refers to the chosen planet, �=8 is the difference in the mean-motion of planet

8 between its estimation on the first and second halves of the integrations, and =0 is the

initial mean motion of that planet 8. In Fig. 4.13, blue regions have lower NAFF, and are

weakly chaotic. Red regions correspond to systems that undergo strong chaos, and likely

lead to rapid instability4. White regions refer to those systems which had an escape or

a close encounter between two bodies, and for which the simulation was stopped. The

area of 1� limit uncertainties on the estimates of %2 and 42 is also overplotted. Inside this

square, both chaotic and regular systems can exist. In other words, the high eccentricity

model is not incompatible with a stable system.

4.1.8.2 Planetary Incident Flux and Equilibrium Temperature

The incident flux of a planet �inc is computed from stellar luminosity !8 and planetary

semi-major axis 0 with the following formula:

�inc =
!8

4�02 =
4�'2

8 �SB )
4
eff

4�02 , (4.9)

where )eff and '8 are the stellar effective temperature and radius and �SB is the Stefan-

Boltzmann constant. This same incident flux can be expressed in Earth units as

�inc
�inc,�

=
✓
)eff
)�

◆4 ✓
'8

'�

◆2 ✓
1
0

◆2
, (4.10)

4. See Stalport et al. (2022) for details on the link between NAFF and orbital stability.
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Figure 4.14: Depiction of the configuration of the TOI-2134 system. We include the inner planet with a circular
orbit of 9.2292004 ± 0.0000063 days in blue, and the outer planet with an eccentric (4c = 0.67+0.05

�0.06) orbit of
95.50+0.36

�0.25 days in purple. Their uncertainties are depicted as lighter orbits. The habitable zone boundaries
are indicated as green shaded regions: the empirical HZ is plotted in lighter green, while the narrow HZ is
overplotted in darker green. The boundaries are computed as described in Section 4.1.8.2 based on results
from Kopparapu et al. (2014).

in which )� and '� are the solar effective temperature and radius and 0 is expressed in

AU. Given semi-major axes 01 and 02 of 0.0780±0.0009 and 0.371±0.004 AU respectively, I

computed incident fluxes of 33±2 and 1.4±0.1 �inc,� for planet b and c.

The planets’ equilibrium temperatures )eq can be derived as

)eq = )eff

r
'8

20 [ 5 (1 � �⌫)]1/4
, (4.11)

where�B is the Bond albedo of the considered planet and 5 represents the effectiveness of

atmospheric circulation. Assuming isotropic re-emission and a uniform equilibrium tem-

perature over the entire planet (therefore 5 = 1), an upper limit on)eq can be derived from

Equation 4.11 by setting �B = 0. I, therefore, calculated the upper limit of the equilibrium

temperature of planet b to be 666±8 K, and of planet c to be 305±4 K.

From this analysis, the upper limit of the equilibrium temperature of the sub-Saturn
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object would be compatible with liquid water. Planet c is a gas giant, but could host

potentially temperate rocky moons. However, the orbit of TOI-2134c is highly eccentric

and the distance of the planet from the star changes significantly during its orbit, as shown

in purple in Fig. 4.14. The boundaries of the habitable zone (HZ) of the system, AHZ,8, can

be derived from the solar luminosity !� and the stellar luminosity as:

!�
AHZ,�

=
!8

AHZ,8
, (4.12)

where AHZ,� is the radius of the boundaries of the solar HZ. The boundaries were here

determined following the two models for narrow and empirical habitable zones described

in Kopparapu et al. (2014). The narrow HZ is bound by an inner Runaway Greenhouse

limit and an outer Maximum Greenhouse limit. The boundaries of the empirical HZ are

defined by the Recent Venus and Early Mars limits. The narrow and empirical HZs for the

TOI-2134 system are shown in Fig. 4.14 respectively in dark and light green. As Fig. 4.14

clearly shows, TOI-2134c only spends less than half of its orbit within the HZ boundaries.

In fact, I also computed the incident flux and upper limit of the equilibrium temperature

of planet c at periastron to be 13±4 �inc,� and 533±8 K respectively.

4.1.9 Suggested Follow-Up Observations

4.1.9.1 Long-term RV Observations and Transit Detection for TOI-2134c

This system would foremost benefit from long-term radial-velocity observations to better

constrain the period and eccentricity of the outer planet. Both HARPS-N and SOPHIE plan

on continuing observing the star sporadically. A second photometric observing campaign

aimed at detecting another transit of the outer planet candidate would also be valuable.

In the current mission plan, TESS will re-observe TOI-2134 in Sectors 74, 79 and 80 in

2024. A transit of planet c should occur in Sector 80 (late June to early July 2024). Given

the brightness of TOI-2134 and the larger radius ratio between planet c and its host star,

transits of the outer planet can also be observed with ground-based telescopes. Another

firm detection of a transit would re-confirm its period and further inform the eccentricity

model choice. I include a list of the times of transit between the original detection and

the end of 2025 in Table 4.7. The uncertainties on the times of transit �tr increase with
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Table 4.7: List of times of transits of TOI-2134c between the detected mono-transit and the end of 2025. The
uncertainty on the dates computed as shown in Section 4.1.9.1. The transit that should be observed by TESS
in Sector 80 is highlighted in bold.

BJD UT Date (yyyy-mm-dd) UT Time (hh:mm:ss)

2459814.5±0.3 2022-08-22 23:20:35
2459910.0±0.6 2022-11-26 11:25:12
2460005.5±0.9 2023-03-01 23:29:53
2460101.0±1.2 2023-06-05 11:34:34
2460196.5±1.5 2023-09-08 23:39:11
2460292.0±1.8 2023-12-13 11:43:52
2460387.4±2.1 2024-03-17 23:48:29
2460483.0±2.4 2024-06-21 11:53:10
2460578.5±2.7 2024-09-24 23:57:50
2460674.0±3.0 2024-12-29 12:02:28
2460769.5±3.3 2025-04-04 00:07:08
2460865.0±3.6 2025-07-08 12:11:46
2460960.5±3.9 2025-10-12 00:16:26

increasing number of "missed" transits as:

�tr =
q
(=�%)2 + �C0 ⇡ =�% , (4.13)

in which = is the epoch since the observed transit, and �% and �C0 are the uncertainties on

respectively the period of the planet and its observed transit time.

4.1.9.2 Rossiter-McLaughlin Analysis

Given the presence of both the inner mini-Neptune and the outer temperate sub-Saturn,

TOI-2134 and its planets are scientifically valuable targets for follow-up Rossiter-McLaughlin

(RM: Rossiter 1924; McLaughlin 1924) analysis to determine the spin-orbit alignment of

the system. The RM amplitude  RM can be computed as

 RM = 52.8ms�1 Esin(8)
5kms�1

✓
'pl

'J

◆2 ✓
'8

'�

◆�2
, (4.14)
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in which 'pl and '8 are the radius of the considered transiting planet and the radius

of the star. Instead of using a maximum limit for Esin(8), I recomputed it starting from

the derived stellar rotation period to be 0.78±0.09 km s�1. Since both TOI-2134b and c

transit, I calculated the minimum expected RM amplitude for both:  RM,b = 0.98 ± 0.17

m s�1 and  RM,c = 7.2 ± 1.2 m s�1. Although the longer transit duration can be an ob-

stacle, RM observations of temperate gas giants as TOI-2134c are valuable to further our

understanding of planet migration. A significant fraction of hot giants are shown to have

orbits that are misaligned with the rotational axis of their star (Winn et al. 2010; Albrecht

et al. 2012). The origin of such misalignment is still unclear, but a leading hypothesis is

that high-eccentricity migration tilts the orbit of the planet away from its initial plane via

dynamical interactions (e.g., Ford and Rasio 2008; Fabrycky and Tremaine 2007; Petrovich

2015). Unlike hot giants, it is significantly more challenging to form temperate gas planets

via high-eccentricity migration (Dong et al. 2013), and it is even less likely in the case of

this system due to the presence of an inner small planet. Therefore, if high-eccentricity

migration is in fact the driving factor behind the misalignment, the majority of temperate

giants should have orbits aligned to spin of their star. However, given their lower transit

probabilities, there are only few RM observations of temperate giants. Whether the aim

is to observe a whole transit or just the ingress or egress in a shorter summer night, the

temperate sub-Saturn planet c has a large peak-to-peak amplitude (7.2 ± 1.3 m s�1) that

makes it easily detectable. With a more firmly constrained eccentricity model, TOI-2134c

would be a great candidate for RM follow-up.

4.1.9.3 Transmission Spectroscopy

I also assessed the suitability of TOI-2134b and c for follow-up atmospheric characterisa-

tion via transmission spectroscopy. Kempton et al. (2018) developed an analytic metric

to estimate the expected SNR of transmission-spectroscopy observations based on the

strength of the spectral features and the brightness of the star: the Transmission Spec-

troscopy Metric, or )(". It can be computed as

)(" = & ·
'

3
pl)eq

"pl'
2
8

· 10�<J/5
, (4.15)
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in which 'pl and "pl are the radius and mass of the considered planet in Earth radii

and masses, '8 is the stellar radius in solar radii, )eq is the equilibrium temperature of

the planet computed at zero albedo and full day-night heat redistribution (as in Section

4.1.8.2), and <J is the apparent magnitude of the host star in the J-band. The term & is

a normalisation factor to give one-to-one scaling to the JWST/NIRISS 10-hour simulated

observations described in Louie et al. (2018). This scaling constant also absorbs the unit

conversion factors so that the parameters can be in natural units. & changes depending

on the radius of the planet, and is equal to 1.26 for TOI-2134b, and 1.15 for TOI-2134c. I

computed a )("b = 172 ± 42 and a )("c = 243 ± 54. The )("s of both planets are

therefore considered well above the suggested cut-offs for their size bin. It is however

important to note that the )(" was developed for targeted JWST effort and therefore it

is not optimised for stars with <J < 9 mag, as brighter stars require the bright readout

mode and have substantially lower duty cycles. Given its brightness, TOI-2134 is currently

only observable without saturation by the JWST with NIRCam in its bright mode, with

similar observational strategies as the ones successfully proposed by Dr. Hu for 55 Cancri

e (Program ID: 1952) and by Dr. Deming for HD 189733b (Program ID: 1633). However,

higher efficiency read modes for JWST observations are being investigated (Batalha et

al. 2018) and future dedicated missions such as Ariel, and the ground-based ELTs are

suitable for brighter targets such as TOI-2134 (Danielski et al. 2022; Houllé et al. 2021).

4.1.10 Summary and Conclusions

In this work I presented the photometric light curves of five TESS sectors and of three

years of WASP monitoring, alongside 219 high-precision radial-velocity measurements

obtained with HARPS-N and SOPHIE of the star TOI-2134. After careful periodogram

analysis, I performed a transit photometry fit on the photometric data and a Gaussian

Process regression analysis on the radial-velocity data to constrain the radii and masses

of the planets in the system. To test the statistical strength of the derived models, I also

completed a joint analysis of the photometric and the RV data. The resulting planetary

parameters fully agree within 1� uncertainties with the results of the previous investiga-

tions. I therefore selected to focus on the results of the less complex, separate analyses for

the discussion. As a result, I reached the following conclusions:
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• I characterise the new multi-transiting inner TOI-2134b in a 9.2292004±0.0000063

day orbit with "b = 9.13+0.78
�0.76 M� (12� detection) and 'b = 2.69 ± 0.16 R�. Its bulk

density (⌧1 = 0.47±0.09 ⌧�) identifies the planet as either a water-world or a mini-

Neptune with a rocky core and a low-mass H/He envelope. I compute the upper

limit of the equilibrium temperature of the planet to be 666±8 K.

• I also constrain a second mono-transiting planet TOI-2134c with "c = 41.89+7.69
�7.83M�

(5� detection) and 'c = 7.27 ± 0.42 R� in a 95.50+0.36
�0.25 days orbit, with an upper limit

of the equilibrium temperature of 306±4 K. Its bulk density (⌧2 = 0.11±0.03 ⌧�) is

similar to Saturn’s.

• After GP regression, I find three possible orbital architectures for the outer TOI-2134c

that model the radial-velocity data, one with low eccentricity (0.0002+0.0025
�0.0002), one with

medium eccentricity (0.45±0.05), and one with high eccentricity (0.67+0.05
�0.06). While

the circular orbit case is disfavoured, the AICc values of the latter two solutions

are comparable, and therefore neither can statistically be preferred. I note that in all

models the rotation period of the star is half the orbital period of the outer TOI-2134c.

I postulate that fitting interactions between the Keplerian model for the planet, and

the activity-induced signal that the GP is extrapolating are the reason behind the

multiple fully-converged solutions. The flexibility of the GP allows the Keplerian to

take different accepted forms while the GP model absorbs the residual signal and

attributes it to stellar activity. As described in Section 4.1.6.2, further analysis of the

photometry data showed that, given the derived orbital period for planet c, its transit

duration time was too short to allow circular orbits. In fact, the mono-transit in the

TESS data strongly prefers the high eccentricity case. To further strengthen these

results, I also jointly model the photometric and the RV data. This investigation

yields a single converged state with an 4c=0.61+0.08
�0.03. In this work, I therefore present

the high-eccentricity model of the separate, less complex RV only analysis and use

it for all further studies. I also test the stability of the system given these results

and reach the conclusion that the high-eccentricity model is not incompatible with

a stable system.

• Since the mass-radius parameter space planet TOI-2134c resides in is not well popu-
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lated and in order to better constrain its period and eccentricity, I recommend further

RV observations and a second photometric observing campaign to detect another

transit. To further characterise the architecture of the system, I also recommend

Rossiter-McLaughlin follow-up observations. I compute the expected RM ampli-

tude of the temperate sub-Saturn TOI-2134c as 7.2 ± 1.2 m s�1, making it accessible

to ground instruments.

• I also compute the Transmission Spectroscopy Metric (TSM) of both planets of the

system for possible follow-up atmospheric characterisation via transmission spec-

troscopy. Although the derived TSMs place the planets well above the recommended

cuts, TOI-2134 is close to the bright limits of most instruments on JWST, and is cur-

rently only observable with NIRCam in its bright mode. Future missions such as

Ariel or ground-based transition spectroscopy will be suited for brighter target such

as TOI-2134.

4.2 HD 48948: a Trio of Super-Earth Candidates

4.2.1 Introduction

The primary aim of the Guaranteed Time Observation Program of the stabilised high-

precision spectrograph HARPS-N was defined to be the follow-up and mass character-

isation of Kepler/K2 (Borucki et al. 2010; Howell et al. 2014) candidates, but was later

expanded to include candidates from TESS, and synergies with the CHaracterising Ex-

OPlanets Satellite mission (CHEOPS: Benz et al. 2021). One of the main sub-missions of

the HARPS-N GTO is the Rocky Planet Search (RPS). Differently from most of the GTO

time, this science mission focuses on the detection of mostly non-transiting, low-mass

planets orbiting nearby quiet stars. In order to minimise the magnitude of stellar vari-

ability signals, the stars selected for the RPS mission are observed as often as possible,

with ideally two observations per night in order to mitigate the granulation signal, and

with 15-minute exposure times in order to average-out the effects of p-modes (Dumusque

et al. 2011; Chaplin et al. 2019). The first detected system of this program was published in

Motalebi et al. (2015): they detected four low-mass planets orbiting the nearby bright star

HD 219134. Since then, thanks to a recent upgrade in the Data Reduction Software (DRS)
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and a renewed effort to understand the instrumental systematics of HARPS-N (Dumusque

et al. 2021), multiple other RPS targets have been characterised by the collaboration (e.g.,

DiTomasso et al. 2023; Stalport et al. 2023; Anna John et al. 2023).

Within this context, in this work I detect three planetary candidates orbiting the

nearby bright K-dwarf HD 48948. I summarise the observations used in the analysis in

Section 4.2.2, and the characterisation of the host star in Section 4.2.3. To better understand

the data employed in the modelling of the signals, I include a brief description of the

reduction pipelines used to extract the radial velocities in Section 4.2.4. A Fourier analysis

of the data and of the activity indicators (Section 4.2.5), highlights three possible planetary

signals. The analysis of the RVs is included in Section 4.2.7. The results are summarised

in Section 4.2.8.

4.2.2 Observations

A total of 189 spectra, binned nightly, were obtained with the HARPS-N spectrograph

as part of the RPS program. HD 48948 was observed sporadically from 2013-Oct-6 to

2023-Apr-13. After a prilimary analysis of the long-term data, three signals of interests

were recovered. During the last observing season, a new intensive observing strategy was

implemented to better sample these signals, and thus, roughly 50% of all observations for

this target were obtained during this last season. The average signal-to-noise ratio per

pixel of the RV observations at 527 nm was 140, and ranged from 110 to 160. Observations

were taken with an average exposure time of 15 minutes.

4.2.3 Stellar Characteristics

HD 48948 is a K-dwarf star located at a distance of 52.18 light years (Gaia Collaboration

et al. 2023) from Earth. It has a B-V colour of 1.21 mag. The star is moderately active, with

a mean log('0
HK) of �4.915 dex. A first estimate of the stellar rotation period %rot, was

computed to be 48.68+7.35
�5.68 days following the log('0

HK)-period relationship of Mamajek

and Hillenbrand (2008). To identify the characteristics of the host star, three separate

stellar analysis methods were applied: ARES+MOOG (Mortier et al. 2014), SPC (Buchhave

et al. 2012; Buchhave et al. 2014) and CCFPams (Malavolta et al. 2017).
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Table 4.8: Stellar Parameters for HD 48948. Table taken from Table 1 of Dalal et al. (2024).

Parameter Value Source
RA [h m s] 06 49 57.57 Gaia DR3
DEC [d m s] +60 20 14.53 Gaia DR3
Spectral type K3V Simbad
⌫ 9.79 ± 0.14 Gaia DR3
+ 8.58 ± 0.01 Gaia DR3
� 6.33 ± 0.02 2MASS
� 5.73 ± 0.02 2MASS
 5.61 ± 0.02 2MASS
,1 5.64 ± 0.13 AllWISE
,2 5.51 ± 0.06 AllWISE
,3 5.56 ± 0.02 AllWISE
Parallax [mas] 59.393 ± 0.025 Gaia DR3
Distance [pc] 16.837± 0.007 Gaia DR3
)eff [K] 4593 ± 60 Dalal et al. (2024)
[Fe/H] [dex] �0.21 ± 0.03 Dalal et al. (2024)
⇢C [km s�1] 0.14 ± 0.03 Dalal et al. (2024)
E sin 8 [km s�1] < 2 Dalal et al. (2024)
log 6spec [dex] 4.59 ± 0.08 Dalal et al. (2024)
log 6iso [dex] 4.61 ± 0.01 Dalal et al. (2024)
Mass ["�] 0.686+0.020

�0.013 Dalal et al. (2024)
Radius ['�] 0.679+0.004

�0.004 Dalal et al. (2024)
⌧⇤ [⌧�] 2.18+0.069

�0.033 Dalal et al. (2024)
Age [Gyr] 11.48+1.93

�4.67 Dalal et al. (2024)
log'0

HK [dex] �4.915 Dalal et al. (2024)
%rot [days] 48.68+7.35

�5.68 Dalal et al. (2024)
Gaia DR3 - Gaia Collaboration et al. (2023), Simbad - Grieves et al. (2018), 2MASS -

Skrutskie et al. (2006), AllWISE - Wright et al. (2010) and Cutri et al. (2013)
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Table 4.9: Table listing the correction applied by each pipeline to produce different RV datasets. Table taken
from Table 2 of Dalal et al. (2024).

RV Dataset YV2 YVA TWEAKS
Input Spectrum Spectrum CCF
Use Section 4.2.7.1 Sections 4.2.7.2, 4.2.7.3 Section 4.2.7.4
Magnetic Cycle Yes No Yes
Rotation Modulations Yes8 No Yes8
Instrumental Systematic Yes† Yes† Yes†
Reference C21 C21 A23

8: There might still be residual rotational modulation at the harmonics of stellar rotation
periods.
†: The dataset may still exhibit long-term instrumental systematic effects. C21: Cretignier
et al. (2021), A23: Anna John et al. (2023)

The results of all three techniques were independently derived, and were all com-

patible with each other within uncertainties. The final stellar parameters were therefore

derived via a weighted average of the results from the three methods, with weights as-

signed according to their inverse variance. Finally, mass, radius and age of the host star

were derived with the code isochrones (Morton 2015). The final stellar parameters are

listed in Table 4.8. For more information on the specifics of the stellar characterisation

method, see Dalal et al. (2024).

4.2.4 Radial Velocity Extraction

In order to better understand the signals in the data and to differentiate between instru-

mental, stellar and planetary variability, the same set of spectral observations were re-

duced, and the RVs were extracted with a variety of methods.

Firstly, the data were reduced with the 2.3.5 version of the HARPS-N DRS pipeline.

These RVs were extracted employing the CCF technique (Baranne et al. 1996; Pepe et

al. 2002) described in Chapter 2 Section 2.1.1.1. The pipeline also estimated the com-

mon activity indicators, including the full-width at half-maximum, the contrast, and the

bisector span inverse slope (BIS) of the CCF. Additionally, the DRS provided measure-

ments of S-index, H�, Na, and log('0
HK) derived from the spectra. A preliminary Fourier

analysis highlighted the fact that the DRS RVs still showcased a significant signal with a

periodicity at roughly 1,400 days, a pattern of uncorrected instrumental systematics found

also in the RVs of other RPS targets (as observed in Anna John et al. 2023). Instead of a
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basic RV extraction with the DRS pipeline, two specialised post-processing tools were em-

ployed independently to correct for these unwanted effects: ������ (Cretignier et al. 2021;

Cretignier et al. 2023) and ������ (Anna John et al. 2023). Both techniques are described

in Chapter 2 Sections 2.1.2.4 and 2.1.3.2 respectively.

The radial velocities obtained from the ������ corrected spectra are referred to as

������ Version 1 (YV1) RVs. Since all corrections implemented in the pipeline can be re-

inserted at spectrum-level, a second Version 1 dataset, with re-injected stellar activity cor-

rection, was also produced. This dataset was called ������ Version 1 Activity (YVA), and

is expected to only include planetary signals and stellar variability. Further corrections

on the radial velocities can be implemented using shell time-series coefficients (Cretignier

et al. 2023) and principal component analysis. In the case of HD 48948, only six basis

vectors are considered: three related to the shell components and three associated with

instrumental-related effects. The limited SNR of the data in fact prevents optimal extrac-

tion of time-domain vectors by PCA. These six basis vectors were then used to extract

the new RVs starting from the YV1 radial velocity time series. These data were called the

������ Version 2 (YV2) RVs. The YV2 dataset is preferred over the YV1 time series because

the this approach was proven to outperform the original ������ formalism in the correc-

tion of systematics and stellar variability, especially in the case of large datasets such the

HD 48948 one. However, differently than for ������ Version 2 data, not all corrections are

applied contemporaneously on the spectra and therefore the equivalent ������ Version 1

Activity re-injected time series cannot be produced.

Finally, a final set of radial velocities was computed using the ������ pipeline (Anna

John et al. 2022; Anna John et al. 2023). All different datsets used in this work, alongside

their applied corrections are listed in Table 4.9. The analyses undertaken in this work only

employ the three datasets plotted in Fig. 4.15: YV2, YVA and TWEAKS.

4.2.5 Periodogram Analysis

In order to investigate the possible planetary signals present in the stellar-activity cor-

rected YV2 dataset, an extensive periodogram analysis was completed. In summary, two

main signals were are identified above the 0.01% False Alarm Probability level at periods
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Figure 4.15: Plot of the three RV time series analysed in this work. The YV2 RVs are represented by solid
red circles, the YVA RVs by solid blue circles, and the TWEAKS RVs by solid green circles. Uncertainties are
plotted as errorbars, but may be too small to be visible. Figure taken from Fig. 2 of Dalal et al. (2024).
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of 7.3 days and 38 days, with a third prominent peak arising after whitening at roughly

151 days, as shown in Fig. 4.16. A forest of peaks was present in the periodogram of the

residual RVs after removing the three signals of interest at around 20 to 22 days, which

was consistent with first harmonic of the stellar rotation period.

In order to assess whether the three recovered signals could possibly be attributed

to planet candidates, the GLS periodograms of the derived activity indicators were also

computed, as shown in Fig. 4.17, since signals recovered in both the RVs and the activity

proxies are more likely to be generated by stellar activity, instead of being of Keplerian

nature. The most significant peak for all activity indicators was around 42 to 43 days, as

highlighted by the orange shaded region. No power was retrieved at the periods of two

of the planet candidates at 7.3 and 151 days. The middle planet, at roughly 38 days was

harder to confirm, as its period was very close to the main stellar rotation peak. For this

reason, further model testing to assess the presence of this planet candidate was under-

taken in Section 4.2.7.

4.2.6 Gaussian Process Regression for Stellar Period Detection

In order to more precisely isolate the rotational period of HD 48948, I completed a Gaus-

sian process regression analysis on the activity indicator that best correlated to the stellar

activity time series: the log('0
HK). The signal in the activity proxy was modelled with the

MAGP�-RV pipeline with a GP function described by a Quasi-periodic kernel with added

jitter to the diagonal of the covariance matrix, as defined in Eq. 4.2 in Section 4.1.6. The

best-fit kernel hyperparameters were identified via affine invariant MCMC optimisation.

I evolved 2,000 chains over 1,000 iterations each, discarding a burn-in phase of 200 steps.

All hyperparameters were constrained with forced positive uniform priors. Additionally,

I bound the harmonic complexity to be between 0 and 1, the stellar rotation period to range

from 0 to 60 days, and the jitter to vary between 0 and the highest uncertainty value of the

log('0
HK) time series.

Fig. 4.18 shows the posterior distribution of the GP period. The results of the GP

analysis pointed to a stellar rotation period of 41.8+2.2
�1.5 days. The evolution timescale for

the log('0
HK) was not well-defined, resulting in wide uncertainties, as 171+128

�66 days. The
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Figure 4.16: Top panel: The GLS periodogram of the DRS (uncorrected for activity) RVs of HD 48948 is plotted
in black. The 0.01% False Alarm Probability is indicated by a horizontal dashed line. Vertical dashed lines
identify the orbital periods of the three planetary candidates. Panels 2-5: GLS periodograms of the YV2
RVs. The most significant signal, identified by a label, is iteratively subtracted from the radial velocities,
and the periodogram of the remaining variability is plotted until no signal surpasses the 0.01% False Alarm
Probability level plotted as horizontal dashed lines. The dominant Keplerian peaks are found at 38 days, 7.3
days and at 151 days. Figure taken from Fig. 3 of Dalal et al. (2024).
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Figure 4.17: The GLS periodograms of, in order, the YV2 RVs, the S-index, the FWHM, the bisector spane
(BIS), the N� and the H� indexes are plottted. The window function of the epochs is also included in the
bottom panel. The orbital periods of the three planetary candidates are identified by black dashed lines at
7.3, 38, and 151 days. The most significant peak shared by all indicators is highlighted by the orange band at
roughly 42 days. Figure taken from Fig. 6 of Dalal et al. (2024).
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Figure 4.18: Posterior distribution of the period of the Quasi-periodic kernel after GP regression of the
log('0

HK) time series. Figure taken from Fig. 8 of Dalal et al. (2024).

harmonic complexity was found to be 0.73 ± 0.19. Overall, the GP best-fit covariance

function for log('0
HK) agreed with the results obtained with the periodogram analysis,

confirming the stellar rotation period to be roughly equal to ⇠ 42 days.

4.2.7 Radial Velocity Analysis

The YV2 radial velocities represent the best activity-corrected dataset extracted in this

work, and are meant to only be modulated by the presence of planets. Thus, they could

be modelled simply as the sum of Keplerian signals. However, it is important to under-

line that the corrections applied by ������ are not fully understood, and are not based

on physically-motivated models. It is therefore inadvisable to solely rely on the analysis

of the YV2 dataset. In this Section, multiple RV time series were in fact analysed with

different methods, in order to more robustly characterise the planetary system. This was

especially relevant for HD 48948 due to the complexity of the stellar signal and the fact

that the predicted orbital period of the middle 38-day planet candidate falls on one of the

closest yearly aliases of the derived stellar rotation. In this work, I modelled the YV2 data

as the sum of Keplerian oscillations (addressed in Section 4.2.7.1), and the YVA time se-

ries with a one-dimensional Gaussian process (shown in Section 4.2.7.2). Although only

briefly described in this thesis, the YVA RVs were also modelled simultaneously with their

activity indicators in a multi-dimensional GP approach. T����� was also employed for a

further independent analysis to confirm the masses derived with the previous methods.
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In order to ascertain the presence of the middle planet with orbital period close

to the stellar rotation, I examined three potential system configurations: one with three

Keplerians, each having orbital periods of 7.3, 38, and 151 days, and two models with two-

Keplerian setups, with periods at 7.3 and 38 days, and at 7.3 and 151 days, respectively. As

described in Section 4.1.6.2, I compared the different models by comparing their derived

corrected Akaike Information Criterion, known as AICc (Sugiura 1978; Akaike 1983). In

this analysis, I also calculated the percentage likelihood, �, as

�(AICc,AICcref) = 100 ⇥

1 � exp

✓
�AICc � AICcref

2

◆�
. (4.16)

This percentage quantifies the relative support for the model under consideration (AICc)

compared to the reference model (AICcref). Higher values indicates stronger evidence

in favour of the considered model. I defined there being enough evidence to prefer one

model over another when a 95% confidence level was achieved, i.e., when AICc > AICcref + 6

or� > 95. Differences in AICc less than 4.5 (less than 90% confidence) are typically insuf-

ficient to reliably differentiate between models. Ideally a difference of AICc > AICcref+10

was preferred for a firm statistical model choice.

4.2.7.1 Keplerian-only Analysis

I began the analysis by assuming that the YV2 dataset had been fully and successfully

cleaned of all stellar activity signals, and it only mapped the coherent motion due to grav-

itational interactions between the star and the planets in the system. Consequently, I mod-

elled the YV2 radial-velocity dataset with MAGP�-RV by summing Keplerian signals, with

each representing an individual planet. As for Section 4.1.6, I re-parametrised eccentric-

ities, 4, and arguments of periastron, $, in the form
p
4 cos $ and

p
4 sin $ (Eastman et

al. 2013). In terms of prior information, I applied uniform priors to each planetary orbital

period based on the results of the periodogram analysis, with the width of each prior re-

lated to the width of the corresponding peak such that wider peaks corresponded to wider

priors. Additionally, I imposed a wide uniform prior equivalent to its preliminary orbital

period on the time of periastron for the innermost planet, in order to prevent multiple

global maxima results. All other parameters were bound by wide positive uniform pri-
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ors. For each of the three system configurations, I evolved 700 chains for 5,000 iterations

each, with the first 1,000 steps disregarded as burn-in. I also computed the likelihood and

AICc values for each model, as presented in Table 4.10. It was evident from both the like-

lihood values and the AICcs that the three-Keplerian model was strongly preferred. The

RV semi-amplitudes of the three planet candidates were extracted to be 1.35+0.18
�0.17 m s�1 (7�)

for Keplerian b, 1.71+0.20
�0.22 m s�1 (8�) for Keplerian c, and 1.09±0.19 m s�1 (6�) for Keplerian

d.

The semi-amplitudes calculated with this method were smaller than expected when

compared to the results of the other analyses, in particular the one for planet d, leading

to smaller overall masses. Y�����’s primary focus is the unveiling of signals obscured

by effects such as stellar variability and instrumental systematics. It is very successful

as a preliminary test, but in some cases ������ tends to overcorrect. For an accurate

mass determination, information on the oscillations induced by planetary Doppler-shifts

should thus be included in the RV extraction and spectra correction. This analysis step was

first developed for correcting for the presence of binaries or very large planetary signals

(Cretignier et al. 2021), but it has since been extended to include smaller planetary vari-

ability. Therefore, the preliminary orbital periods of the three Keplerians were included

in the pre-processing of the observational spectra, and the YV2 RVs were re-computed. I

then re-produced the same analysis as described in this Section with the newly derived

YV2 radial velocities. After MCMC parameter optimisation, I extracted the orbital param-

eters of the three planet candidates. The periods of the three Keplerians were derived to

be to be 7.34023+0.00067
�0.00065, 39.003+0.020

�0.017 and 150.83+0.42
�0.37 days, and all planet orbits were com-

puted to be circular. Their RV semi-amplitudes were found to be 1.85+0.18
�0.19 m s�1 (10�)

for Keplerian b, 2.12+0.26
�0.27 m s�1 (8�) for Keplerian c, and 1.74 ± 0.22 m s�1 (8�) for Kep-

lerian d. These semi-amplitudes were in better agreement with all other results, and the

new ������ corrections seemed to better preserve the planetary signals. I thus derived

minimum masses of 4.33 ± 0.46 M�, 8.55 ± 0.97 M�, 10.91 ± 1.39 M� for b, c and d re-

spectively. The results of this analysis are detailed in Table 4.11, under the section “Three

Keplerians-only Analysis”.
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Table 4.10: Likelihood and AICc comparison between the tested models (3 Keplerians bcd, 2 Keplerians bc,
2 Keplerians bd) in Sections 4.2.7.1, 4.2.7.2. The results of Section 4.2.7.3 are not included. The Table can be
found in its entirety as Table 5 in Dalal et al. (2024). The models highlighted in bold are the most favoured in
each analysis based on their likelihood and AICc. Table taken from Table 5 of Dalal et al. (2024).

Parameter 3 Keplerians bcd 2 Keplerians bc 2 Keplerians bd

Keplerian-Only Analysis
lnL -379.89 �482.17 �550.62
AICc 792.55 985.58 1122.48

One-dimensional GP Analysis
lnL -350.95 �361.28 �352.66
AICc 746.90 755.33 738.07

4.2.7.2 Gaussian Process Regression Analysis

I modelled the YVA radial velocities as a combination of multiple planetary signals, in

the form of Keplerians, and stellar variability, in the form of a GP function described by

a Quasi-periodic kernel which also included a white noise component as defined by Eq.

4.2.

I once again tested three distinct models combined with a stellar activity prediction in

order to better assess the structure of the system. Initially, I modelled the RVs as the

GP function added to three Keplerians, namely b, c, and d, with respective periods of

approximately 7, 38, and 151 days. To further evaluate the presence of the candidate d

and to validate the mass and orbital period of the 38-day planet, I also modelled the signal

with a GP and only two Keplerians, including only planets b and c, and only planets b

and d, respectively.

I used the same pipeline and a similar MCMC structure as in Section 4.2.7.1, with

700 chains over 5,000 iterations each and a discarded 1,000-steps burn-in. I imposed priors

derived from both the periodogram and the activity proxy GP analysis. Starting with the

kernel hyperparameters, I applied an informed uniform prior between 40 and 47 days on

the stellar rotation period, %rot, primarily to prevent any signal “bleeding” between the

modelled stellar activity and the Keplerian c. In other words, I aimed to prevent the GP

from modelling the planetary signal instead of the stellar activity, or from absorbing part

of the periodic signal at the orbital frequency of the planet candidate yielding a lower

planetary mass than expected. The harmonic complexity ⌘ was constrained with a uni-
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form prior to be between [0, 1]. I also bound the jitter term with a uniform prior between

[0, 2] m s�1. All prior information for the GP is also included in Table 4.13.
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Finally, I computed the likelihood and the AICc for the three best-fit models, as

shown in Table 4.10. Overall, although the two-Keplerian configuration including only

planets b and c could be rejected as disfavoured, no strong statistical preference between

the other models could be found. The logarithm of the likelihood function, lnL, showed

a preference for the model with three Keplerians, reinforcing the long-period signal as

a planetary candidate. However, the difference between the AICcs (which balance the

goodness of fit to the complexity of the model) of the two remaining options was less than

4, which made a statistical differentiation between the two hard to reach. The slight pref-

erence of the AICc for the two-Keplerian (b and d) model was interpreted as follows: the

flexibility of the GP allowed it to absorb the signal of the middle planet in the stellar activ-

ity model and to describe the combination of the two variabilities with a single covariance

function (Damasso et al. 2018). Each extra Keplerian introduced five new parameters to

the model. Thus assuming comparable fits to the data provided, the model without these

five extra terms will always be favoured. In this case, instead of being an assessment of

the goodness of the fit, the AICc is simply acting as an Occam Razor. Therefore further

analyses were required to fully assess the strength of this middle signal, and to confirm

whether the lack of statistical preference was in fact due to the flexibility of the GP model.

4.2.7.2.1 GP Mock Data Tests I further evaluated whether it was appropriate to di-

rectly compare likelihoods and AICc values for models in scenarios where a planet’s or-

bital period is very similar to the period of the covariance of the GP function, or instead

caution should be exercised. To accomplish this, I derived the activity signal removed by

the ������ pipeline (i.e using YVA - YV1 RVs), and then injected a Keplerian signal with a

38-day orbital period. Initially, I set the Keplerian semi-amplitude to match the results ob-

tained from the one-dimensional GP analysis for the three-Keplerian model (with a value

of  c = 1.06 m s�1). I then also examined the extreme cases by testing semi-amplitude

values of 1.75 m s�1 and 0.38 m s�1, derived from the 1� uncertainties on  c. I computed

the best fit functions to these radial velocities using two distinct models: a GP+Keplerian

model that incorporated both an activity term (with a QP kernel) and a Keplerian signal

with a 38-day period (as expected in the generated dataset), and a GP-only model that

included only the activity component. All three runs that included the Keplerian signal
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Table 4.12: Likelihood comparison between the tested models in the injected Keplerian retrieval analysis
described in Section 4.2.7.2. The runs are defined by the amplitude of the injected signal. Table taken from
Table A1 from the Appendix of Dalal et al. (2024).

0.38 m s�1 1.06 m s�1 1.75 m s�1

lnL
GP + Keplerian -282.99 -280.66 -279.84
GP only �284.49 �289.27 �295.59

AICc
GP + Keplerian 587.21 582.55 580.91
GP only 579.30 588.87 601.51

successfully recovered the parameters of the injected planetary oscillations. The semi-

amplitudes of the Keplerians for the three cases were determined to be 0.47+0.37
�0.32, 1.12+0.33

�0.45,

and 1.87+0.28
�0.31 m s�1 respectively, and were all consistent within 1� with the injected signals

(0.38, 1.06, and 1.75 m s�1). Additionally, the hyperparameters of the GP kernel, including

period and amplitude, were found to be consistent within 1� uncertainties to those recov-

ered in the previous GP analysis, confirming a correct modelling of the activity signal.

I then examined the likelihoods and AICc values for all models in all semi-amplitude

cases, detailed in Table 4.12. When comparing runs with and without the Keplerian model,

I observed that the AICc strongly favoured the GP-only approach in the case with the low-

est injected semi-amplitude of 0.38 m s�1, with a difference larger than 10. This means that

at the lower bound of the uncertainties retrieved for the semi-amplitude of planet c, a one-

dimensional GP analysis would significantly prefer a simpler planet-less model over the

“truth" (as we know that a planet is in fact present). For the intermediate semi-amplitude

level (1.06 m s�1), I could distinguish between the GP-only and GP+Keplerian models with

95% confidence, but the difference between the two values is still under the preferred 10.

Finally, I find that the GP+Keplerian model was more suitable in the case with the highest

semi-amplitude of 1.75 m s�1, where the planetary signal was most prominent. Only at

the upper level of uncertainties I was therefore able to strongly prefer the “correct" model

based only on statistical reasons. These findings indicated that when Keplerian orbital pe-

riods closely match the activity period, a GP analysis can effectively absorb the Keplerian

signal within the activity function (Damasso et al. 2018). This explained the slight pref-

erence for the two-Keplerian (b and d) system architecture over the three-planet model
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Table 4.13: Stellar activity priors and results from the Gaussian Process regression analyses undertaken in
Sections 4.2.7.2 and 4.2.7.3 (upper section and lower section). Priors have been identified as follows: U is a
uniform prior. Table adapted from Table 4 of Dalal et al. (2024).

Parameter Unit Prior Values

One-dimensional GP Analysis
GP Amplitude � m s�1 U[0, 20] 3.06+0.52

�0.36
GP Timescale ; days U[0,+1] 110.84+29.53

�23.23
GP Period %rot days U[40, 47] 42.87+0.99

�1.02
GP Smoothness ⌘ U[0, 1] 0.59+0.10

�0.09
Jitter � m s�1 U[0, 2] 0.84+0.11

�0.09

found in Section 4.2.7.2. It is therefore important to exercise caution and take into account

the astrophysical context when interpreting �AICc values in such situations.

Finally, taking into consideration these findings, alongside the periodogram analy-

sis undertaken in Section 4.2.5, I chose to present the three-Keplerian model results. The

final parameters for the three planet candidates and the GP kernel are included in Tables

4.11 and 4.13, respectively. The orbital periods of all three planetary signals are found to

be 7.34012+0.00052
�0.00046, 37.99+0.16

�0.22 and 150.28 ± 0.69 days and their eccentricities were close to

0. The radial velocity semi-amplitudes for Keplerians b, c, and d were constrained to 13�,

2� and 4� levels respectively. By modelling the activity with a GP, the detection of the

innermost planetary candidate is significantly improved with respect to the YV2 analysis,

but the constraints on the outer two planets are not as robust. The increased uncertainties

in the semi-amplitudes are reflected in the uncertainties of their masses. The GP ampli-

tude is determined to be 3.06+0.52
�0.36 m s�1, with a period of 42.87+0.99

�1.02 days. These results are

plotted in Fig. 4.19, and the phase-folded RVs for all Keplerians can be found in Fig. 4.20.

4.2.7.3 Multi-dimensional GP analysis

The YVA RV data were also modelled with a multi-dimensional GP (described in Chapter

2 Section 2.3.4.2) simultaneously to the BIS and the log('0
HK) with the code P�ORBIT5

(Malavolta et al. 2016; Malavolta et al. 2018) through the library ������6 for improved

performances (Nardiello et al. 2022; Mantovan et al. 2024). For a full description of the

5. Code available at: https://github.com/LucaMalavolta/PyORBIT, version 10
6. Code available at: https://github.com/dfm/tinygp

https://github.com/LucaMalavolta/PyORBIT
https://github.com/dfm/tinygp
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Figure 4.19: Top Panel: Complete model derived after one-dimensional GP regression of the HD 48948 data
computed as the sum of three Keplerian signals and a GP described by a QP kernel shown as a gray solid line.
The gray shaded areas represent the model’s uncertainties. The RV time series is plotted in red. Uncertainties
on the measurements are included as red errorbars but may be too small to be visible. A zoomed-in version
of the last semester of data is also provided, with the GP function describing the stellar variability is included
as a black dashed line. Bottom Panel: The residuals, or the differences between the radial velocities and the
model (grey line), are plotted alongside their uncertainties. Figure taken from Fig. 9 of Dalal et al. (2024).

Figure 4.20: Phase foldes plots of the three planetary signals identified by the one-dimensional GP analysis.
The radial velocities of each planet are plotted in orange, blue and green for the planets at periods of 7.3, 38,
and 151 days respectively. The best fit Keplerian model for each planetary candidate is plotted as a gray line.
The phase has been extended in each plot. Figure taken from Fig. 10 of Dalal et al. (2024).
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analysis, see Dalal et al. (2024). Multi-dimensional GPs can be particularly useful in cases

such as this, as modelling the stellar activity simultaneously across multiple time series

prevents the GP from absorbing the signal of a planet close to the stellar rotation period

(e.g., Rajpaul et al. 2021). To further test this, the prior boundaries of the rotation period

of the star were deliberately extended to include the orbital period of Keplerian c. As

for the previous Sections, three system architectures were compared. In this analysis, the

three-planet model was consistently preferred over other models with �AICc = 18.2 for

two-Keplerian (b and c) and �AICc = 6.2 for two-Keplerian (b and d).

The best-fit RV model is plotted in Fig. 4.21 in black with its uncertainties as gray

shaded areas. Residuals are included. A zoomed-in version of the same plot focused

on the last semester of data is also shown in Fig. 4.22. The results of this analysis are not

reported in this thesis, but can be found in Tables 3 and 4 of Dalal et al. (2024). In summary,

they agreed with the ones derived with in the previous analyses within 1� uncertainties.

Despite the lack of informed priors, the stellar rotation and the orbital period of Keplerian

c were well disentangled, with the first yielding %rot = 43.45+1.00
�0.71 days and the second

being %c = 37.92 ± 0.03 days. The RV semi-amplitude of all three Keplerian signals were

successfully recovered as  b = 2.11 ± 0.13 m s�1 (16�),  c = 1.75 ± 0.25 m s�1 (7�),  d =

1.72 ± 0.22m s�1 (8�), corresponding to the minimum masses of <b = 4.96 ± 0.32 M�,

<c = 6.9 ± 1.0 M�, and <d = 11.0 ± 1.5 M�.

4.2.7.4 Independent analysis using TWEAKS

A final analysis using the ������ method was also performed. After a blind search for

Keplerian signals in the radial velocities using ���� (Faria et al. 2018), this technique can

clearly detect two Keplerian signals at orbital periods 7.3401±0.0004 days and 38.01±0.06

days, with some spurious signals above 300 days, most likely due to instrumental system-

atics rather than genuine planetary candidates. By constraining the maximum orbital

period for the planet search to be less then 270 days, a third planetary candidate with an

orbital period of 150.98 ± 0.77 days was found, as shown in Figure 4.23. The following

RV semi-amplitudes were obtained after Gaussian Mixture modelling: 2.29 ± 0.13 (18�)

for planet b, 1.48 ± 0.39 m s�1 (4�) for planet c, and 1.55 ± 0.34 m s�1 (5�) for planet d.
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Figure 4.21: Plot illustrating the YVA RVs and the best-fit model obtained through multi-dimensional GP
regression. The black line represents the modelled activity with three Keplerians, and the gray shaded region
denotes the 1� uncertainty on the model. The residuals are also displayed. Figure adapted from Fig. A1 of
the Appendix of Dalal et al. (2024).
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Figure 4.22: Zoomed-in version of the last semester of data and the best-fit model derived from the multi-
dimensional GP regression for, from top to bottom, the YVA RVs, the log('0

HK) and the BIS. Here the black
lines in all plots represent the best-fit GP function modelling the activity, while the gray solid line in the YVA
RVs on the top shows the full model, combining the GP with the three Keplerian signals. Uncertainties on all
models are included as gray shaded regions. The dashed blue, green and orange line represent the maxima
of corresponding peaks, indicating a time lag between RVs and activity indicators. Figure taken from Fig. 12
of Dalal et al. (2024).
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Figure 4.23: Results from the ������ pipeline. The posterior distributions over periods are plotted. The
vertical lines depict the three planet detections with significant False Inclusion Probabilities, at 7.34 days,
37.98 days and 150.92 days, respectively. The clustering around the 37.98 day planet signal can be attributed
to the stellar rotation period and its one-year aliases. Figure adapted from Fig. 13 of Dalal et al. (2024).

Therefore the minimum masses of all planet candidates were extracted to be 5.43 ± 0.30

M�, 6.33 ± 1.61 M�, and 10.05 ± 2.27 M� respectively. An extended description of this

analysis and its results can be found in Dalal et al. (2024).

4.2.8 Results and Discussion

Through the analyses presented in the previous Sections, I identified three planet candi-

dates with orbital periods of roughly 7.3, 38, and 151 days. The minimum masses derived

with the separate analyses are shown in Fig. 4.24. They all agree within their uncertain-

ties. The largest variations were forund for the mass estimates of planet candidate c. This

was unsurprising, given the closeness between its orbital period and the stellar rotation

period. The results from the one-dimensional GP analysis on the YVA data in particu-

lar showed a significantly lower minimum mass with large uncertainties. This behaviour

could be explained by the fact that the GP was most likely absorbing some of the power

from the Keplerian signal and instead assigning to the stellar variability. On the oppo-

site, YV2 results yielded a larger minimum mass than all other techniques. It is possible

the discrepancy arose from either an underfittting of all techniques that model the YVA

dataset, or from remaining non-planetary (possibly stellar) variability in the YV2 data

which bolstered the planetary signal in the best-fit Keplerian model of Section 4.2.7.1.

All four different techniques presented in this analysis have their advantages and

limitations. The modelling of the YV2 data, while the simplest of the four, relies on spectra

processing which is not wholly understood. GPs have proven to be successful to model

stellar activity on short timescales, but they have not been as successful on longer base-
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Figure 4.24: The figure shows the minimum masses of three Keplerians derived from various datasets, with
the weighted mass combining all three presented at the top. Figure taken from Fig. 14 of Dalal et al. (2024).

lines. Moreover, their large flexibility both allows them to fit the stellar activity in a variety

of cases, and makes them prone to overfitting the data, therefore absorbing some of the

planetary signals. The multi-dimensional GP framework addresses this overfitting, but is

dependent on mathematical relationships between the activity indices and the radial ve-

locities that are approximations. Moreover, it works best for cases in which a good correla-

tion can be found between the RVs and the activity proxies described by the same number

of latent GPs (e.g., the log('0
HK)). The highest Person correlation coefficient between the

YVA RVs and an activity indicator was computed to be only 0.55 for the log('0
HK). Finally

the ������ method, while it allows for a dynamic modelling of the number of planets,

is still significantly sensitive to stellar activity signals and systematics, limiting its preci-

sion. I therefore calculated the final results as the weighted mean of the derived minimum

masses as 4.96±0.42 M� for planet candidate b, 7.45±0.75 M� for planet candidate c, and

10.67 ± 0.90 M� for planet candidate d respectively.

In order to fully understand the configuration of the planetary system of HD 48948,

I calculated the orbital semi-major axis of all planetary candidates. The results of this

computation are included in the derived parameter section of Table 4.11. I then derived

the incident flux of these three planetary candidates in terms of the incident flux received

by Earth from the Sun, �inc,�, following the formula described in Eq. 4.10. I also com-

puted the equilibrium temperatures of the three planetary candidates )eq using Eq. 4.11.

For simplicity, I assumed isotropic re-emission and uniform equilibrium temperature over
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Figure 4.25: Configuration of the proposed HD 48948 planetary system. The inner planetary candidates, de-
picted in orange and blue, have circular orbits of 7.3 and 38 days respectively. The outer planetary candidate,
illustrated in green, has an orbit of 151 days. A selection of 100 random orbits from the MCMC chains for each
of the three planetary candidates are represented in lighter shades. The habitable zone boundaries, shown
as sky-blue shaded regions, are calculated as outlined in Section 8.2, based on the Kopparapu et al. (2014).
Figure taken from Fig. 15 of Dalal et al. (2024).

the entire planet, setting 5 = 1, and black-body absorption, setting �B = 0, and derived

an upper limit of )eq. The calculated �inc,� and maximum equilibrium temperatures for

HD48948 b, c and d are included in Table 4.11. Finally, I determined the habitable zone

around the star. The inner and outer boundaries of the HZ were computed based on

the Recent Venus and Early Mars model, as detailed in Kopparapu et al. (2014). The or-

bits of the system from a top-down view and the calculated HZ are plotted in Fig. 4.25.

Planet d falls within the habitable zone of the system, with a orbital semi-major axis of

0.4894±0.0042 AU, incident flux of 2.46±0.12 �inc,� and an upper limit of the equilibrium

temperature of 349 ± 4 K.

4.2.9 Conclusions

In this work, I have characterised the planetary system orbiting the nearby, bright K-

dwarf HD 48948. I analysed 189 spectra observed by the HARPS-N spectrograph under

the Rocky Planet Search mission. The complexity of the system prompted the extraction
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of multiple versions of the radial velocities with different techniques: DRS, ������ and

������. After careful analysis of the activity indicators, I pinpointed the stellar rotation

period to be ⇠42 days. After Fourier analysis, evidence of the presence of 3 planetary

candidates with orbital periods of roughly 7.3 days, 38 days and 151 days was found. In

order to test and further prove the presence of the middle planet, with orbital period sim-

ilar to the stellar rotation period, I undertook systematic model testing. I compared the

AICcs of a three-Keplerian model against models only including two planetary signals

(two configurations: b and c, and b and d). The system was analysed with four indepen-

dent techniques as follows:

• I modelled the ������ Version 2 data as the sum of Keplerians and found best-fit

parameters with iterative MCMC optimisation. With this modelling technique, I

found consistent preference for the three-planet model. I however noted that the

������ correction for stellar activity and other instrumental effects is not based on

physically-motivated models and there is no profound understanding of what it

corrects.

• I then performed a one-dimensional Gaussian process regression of the ������ Ver-

sion 1 Activity re-injected data. I modelled the stellar activity with a Quasi-periodic

kernel and the planets with Keplerians using the pipeline MAGP�-RV. In this case,

there was a slight preference for one of the two-planet models (including only plan-

ets b and d). I therefore performed mock GP tests in order to understand this be-

haviour. I used the activity-only radial velocities (computed as the residuals between

the Activity re-injected RVs and the ������ Version 2 data) and manually added a

Keplerian signal at the time series level with orbital period equal to the best-fit orbital

period for planet c. I did this to test the ability of the GP to retrieve this signal I knew

existed. With this analysis I found that it was plausible that the partial (AICc differ-

ence under 10) preference for the two-planet system was due to the GP absorbing

the signal of the middle planet with orbital period close to the stellar rotation.

• The ������ Activity re-injected data was also modelled simultaneously to the BIS

and the log('0
HK) activity indicators within a multi-dimensional GP framework, in

order address the possible GP overfitting that was limiting the one-dimensional
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analysis. Lastly, the RVs were also extracted and modelled with ������. In both

analyses, a three-planet model was preferred, and the derived best-fit results were

in agreement within 1� uncertainties with each other and the previous results.

After careful comparison, I finally report the presence of three planetary candidates

orbiting HD 48948. I find their orbital periods to be roughly 7.3, 38, and 151 days, and their

minimum masses to be 4.96±0.42 M�, 7.45±0.75 M�, and 10.67 ± 0.90 M� for candidates b,

c and d respectively. The outer planet was also found to reside in the habitable zone of the

system. Overall this work is a further proof of the challenges posed by stellar variability

in the radial-velocity regime and is also an analysis of the limits of current modelling

techniques. This work emphasised the need of truly understanding stellar variability for

the positive detection of small exoplanets, in particular of those with orbital period close

to the stellar rotation.



���

Chapter 5

Solar Activity

“Even

After

All this time

The Sun never says to the Earth,

"You owe me."

Look

What happens

With a love like that,

It lights the whole sky.”
— Hafiz

One of the greatest challenges limiting the understanding of stellar activity in the

radial-velocity regime is the fact that the great majority of variability is highly degenerate

with spatial distribution. At most our resolving capabilities have to rely on maximum

entropy assumptions (as in the case of e.g. Doppler Imaging), and even in the reconstruc-

tion of simulated stellar surfaces, RV data can at best only recover the large scale structures

of the sources of variability. There is, however, a star that we are always able to resolve,

and that fits right into the target list of planet hosts that would be selected for a standard

exoplanet survey: the Sun. The Sun is a G2V-type main-sequence star. It is generally

considered a slow rotator, with a period of roughly 27 days. It formed approximately 4.6

billion years ago and is considered to be generally on the quieter side in the context of
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stellar variability in the RVs, with a mean log('0
� , 

) ⇠ �5.02 (e.g., Lubin et al. 2012). The

Sun can thus overall be considered a good starting point for modelling and mitigating

activity-induced variability for later extrapolation to other stars.

It has been observed since hundreds of years ago. Sporadic observations can be traced

back to the 1610s, when the quartet of scientists Galileo Galilei of Italy, Johannes Fabricius

of Holland, Christopher Scheiner of Germany, and Thomas Harriott of England all began

to observe the presence of dark blemished (sunspots) on the solar surface and record them

in the form of sketches. More systematic observations started in 1749, when the Zurich

Observatory started recording daily images. With the inclusion of other telescopes at dif-

ferent latitudes, they were able to obtain near-continuous observations starting in 1849.

Since then, a variety of solar telescopes and space-based missions have dedicated their

time uniquely to the study of the Sun and the wealth of physical processes taking place

on its surface, in its atmosphere and in its interior.

Scientists have used solar data in many ways. In the context of radial-velocity sur-

veys the Sun has not only become a testing ground for new mitigation techniques, but it

also is the ideal "standard star" to build a full understanding of the profile of the spec-

trograph, of its instrumental systematics and stability capabilities. RV studies can use

Sun-as-a-star data to mimic stellar observations and integrate all the solar flux into a point-

like source to scramble its signal. The HARPS-N solar telescope (Dumusque et al. 2015;

Phillips et al. 2016; Collier Cameron et al. 2019) has been taking observations since Au-

gust 2015 with a 5-minute cadence. The HARPS Experiment of Light Integrated Over the

Sun (HELIOS) is a copy of the HARPS-N solar telescope in the southern hemisphere that

started observing the Sun in September 2018, with a 1-minute cadence. The NN-explore

Exoplanet Investigations with Doppler spectroscopy instrument (NEID: Lin et al. 2022)

solar telescope followed soon after, with first-light in December 2020 observing a wider

range of wavelength with a ⇠1.4-minute cadence. A solar telescope was also connected to

the EXPRES spectrograph (Llama et al. 2022) in 2020, and it has been taking data over a

similar wavelength range as the NEID solar feed with a cadence comparable to the HARPS-

N solar telescope. Finally, the Birmingham Solar-Oscillations Network (BiSON: Hale et

al. 2020) is a collection of ground-based automated solar telescopes that have been col-

lecting continuous data since 1992 and therefore represent the longest-running RV solar
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dataset readily available to the community. The observations taken with these telescopes

have been used in a variety of ways to support stellar activity analysis for the detection of

exoplanets (e.g., Haywood et al. 2016; Collier Cameron et al. 2019; Haywood et al. 2022;

Zhao et al. 2023). Most crucially, researchers are able to directly assess the RV variability in

Sun-as-a-star data by comparing the extracted RVs with resolved observations of the solar

surface. There are a number of ground- and space-telescopes that take resolved images of

the Sun over a range of wavelengths and with a variety of techniques. The most relevant

space mission in the context of this work is the Solar Dynamics Oservatory (SDO: Pesnell

et al. 2012). The SDO spacecraft was lauched in February 2010 as a follow-up mission to

the Solar Heliospheric Observatory (SOHO: Fröhlich et al. 1995; Fröhlich et al. 1997), and

has been observing the solar disc continuously since late 2010. SDO includes three instru-

ments: the Helioseismic and Magnetic Imager (HMI: Schou et al. 2012; Scherrer et al. 2012),

the Extreme Ultraviolet Variability Experiment (EVE), and the Atmospheric Imaging As-

sembly (AIA). Given the long baseline and the high cadence of SDO observations, there

has also been interest in the development of systematic methods to derive Sun-as-a-star

radial velocities from resolved solar observations comparable to those retrieved by ground

spectrographs. In this context, the Python pipeline S��A���� was created.

In this Chapter, I make use of resolved and Sun-as-a-star observations to investi-

gate the effects of solar variability on radial-velocity data. Section 5.1 briefly describes the

S��A���� pipeline for a better understanding of the algorithms employed for the deriva-

tion of data used in the following Section. Section 5.2 includes the study of the mean

longitudinal magnetic field as a tracer of stellar activity in the RV-domain.

5.1 S��A����: an SDO/HMI Analysis Pipeline

The Solar Dynamics Observatory was launched in 2010 by NASA’s Living With a Star Pro-

gram, a program designed to understand the causes of solar variability and their impacts

on Earth. The aim of the SDO mission was specifically to study the solar atmosphere

on short timescales over many wavelengths. One of its three scientific instruments, the

Helioseismic and Magnetic Imager has been taking continuous full-disc observations of

the solar surface with its two cameras of 4096x4096 pixels nearly without interruption
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since mid-2010. The SDO/HMI instrument has near single-granule resolution (Schou et

al. 2012; Pesnell et al. 2012). It takes polarised filtergrams of the visible solar disc in two

polarisation states by measuring six wavelengths centred in the 6173.3 Å neutral Fe I line

(Couvidat et al. 2016). Observations are taken every 45 seconds, as well as compiled in 12-

minutes (720s) integrated exposures. These filtergrams are then reduced with two main

pipelines: the Line of Sight Pipeline and the Vector Pipeline (for more information refer

to Couvidat et al. 2016 and Hoeksema et al. 2014). In summary, the six observed wave-

lengths are fitted with a Gaussian profile to calculate the observable characteristics of the

solar surface, such as continuum intensity, photospheric Doppler velocity and magnetic

field via Stokes profiles. While the fitting loses any line asymmetry generated within the

pixel area, larger processes are preserved.

The S��A���� pipeline was developed to extract Sun-as-a-star observations from re-

solved solar SDO/HMI filtergrams. In particular, it allows for direct comparison between

space-based measurements and ground-based disc-integrated spectral data. A packaged

version of the pipeline was published by Ervin et al. (2022a)1 based on the work of Hay-

wood et al. (2016) and Milbourne et al. (2019), which themselves built on techniques de-

veloped by Meunier et al. (2010). S��A���� requires as inputs a series of SDO/HMI im-

ages from which it derives all its outputs: the wide-band continuum (the intensitygrams),

the line-of-sight longitudinal magnetic field data (the magnetograms), and the map of the

line-of-sight velocity (the Dopplergrams). The great majority of these data are freely avail-

able at https://sdo.gsfc.nasa.gov/data/aiahmi/ or can be queried from the archive using

S��P� (SunPy Community et al. 2015), with the exception of some brief periods of plane-

tary transits which are often kept private for a short time. The pipeline workflow begins

with coordinate transformation based on the description in Thompson (2006), so that the

images are correctly centred on the solar surface. The image pixels are assigned new posi-

tion coordinates based on their distance from the centre-point of the solar disc. The "edge"

of the Sun is then identified based on these new coordinates, and the fluxes of all pixels

defined as "outside" the Sun are set to zero. The next step is to correct the Dopplergram for

the motion of the spacecraft itself. The position of SDO with respect to each pixel in the im-

age, carefully recorded for each observation, can be combined with its velocity component

1. Code available at: https://github.com/tamarervin/SolAster

https://sdo.gsfc.nasa.gov/data/aiahmi/
https://github.com/tamarervin/SolAster
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Figure 5.1: From top to bottom, the �RVs derived using the physically motivated model described in the
text, the unsigned magnetic field and the filling factor of plage (or facuale, large-scale bright active regions),
network and sunspots. Figure adapted from Fig. 4 of Haywood et al. (2022).

to properly subtract the velocity of the spacecraft. In this process the Doppler velocities

are also corrected for the solar Carrington rotation in order to highlight all line-of-sight ve-

locities that cannot be explained by the spinning of the Sun. The Dopplergrams are thus

de-rotated following the parameterisation of Snodgrass and Ulrich (1990). Two further

corrections need to be applied to the magnetograms and intensitygrams respectively. The

true line-of-sight magnetic field is calculated by including foreshortening effects due to the

geometric projection of the disc (for more a specific description of the process, see Section

5.2.2.2). Finally the intensitygrams are corrected for limb-darkening effects using a static

fifth-order circularly symmetric polynomial brightness function with scaling coefficients

determined by Allen (1973), and a flattened continuum image is then produced.

S��A���� includes a wide range of outputs. In this work, I will focus on four families:
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the magnetic field, the intensity, the filling factors and the radial-velocity data. A selection

of these outputs is plotted in Fig. 5.1. Starting with the magnetic outputs, the pipeline pro-

vides both the mean longitudinal magnetic flux and the mean absolute magnetic flux. The

first is computed as the sum of the continuum intensity-weighted, line-of-sight magnetic

field in all pixels of the resolved disc (for an extended explanation, see Section 5.2.2.2).

The second can be computed similarly but considering the absolute magnetic field, in-

stead of its line-of-sight values and is plotted in the second panel of Fig. 5.1. These data

have been analysed by Rescigno et al. (2024) (also included in this Chapter) and Haywood

et al. (2022) respectively to study the uses of magnetic field measurements in the context

of RV surveys. S��A���� also outputs the mean solar intensity of each observation as well

as the brightness intensity of the "quiet" Sun regions. There are multiple routines that are

tailored to the identification of active regions on the solar surface. The SDO/HMI consor-

tium itself provides the geometric information of active regions as they cross the visible

disc and evolve. These images are produced by the HMI Active Region Patches (HARPs:

Turmon et al. 2012) pipeline (not to be confused with the HARPS telescope) and are

available in the SDO archive or via S��P� query. S��A���� also identifies magnetically

active regions following the threshold method described in Yeo et al. (2013): all pixels

with foreshortening-corrected unsigned magnetic field larger than three times the average

noise of 8 G are considered active. All other pixels are defined as quiet. Bright areas and

dark spots are then differentiated based on a flattened continuum intensity threshold pro-

portional to the mean intensity of all quiet pixels. Milbourne et al. (2019) further extended

this formalism by separating bright regions into faculae with areas larger than 60 Mm2,

and network, which is mostly made up of isolated active pixels. S��A���� outputs this in-

formation for each observation in the form of filling factors, separated in total active region

filling factor, spot filling factor, faculae (or plage) filling factor and network filling factor.

A subsection of these is included in the bottom three panels of Fig. 5.1. Finally, S��A����

extracts disc-integrated radial velocities. The SDO/HMI instrument was not developed

with long-baseline RV analysis in mind, and therefore it lacks the stability required to do

so. Thus, radial velocities cannot be computed from a simple intensity-weighted summa-

tion of the line-of-sight velocity of each pixel, as highlighted by Fig. 5.2. S��A���� instead

derives the RVs using a physically-motivated model. This model accounts only from stel-
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Figure 5.2: Radial velocity time series derived from a simple intensity-weighted sum of all the line-of-sight
velocities of the de-rotated solar SDO/HMI observations. The multiple trends and jumps in the data are
caused by instrumental systematics, as the HMI instrument is not calibrated for long-term stability. These
systematics are not trivial to correct for, and a physically-motivated model is therefore preferred. Figure taken
from Fig. 2 of Haywood et al. (2022).

lar variability directly induced by the presence of large active regions (faculae and spots)

following the two processes introduced in Chapter 1, Section 1.2.2: suppression of con-

vective blueshift and photometric inhomogeneities. The computed radial velocities do not

therefore include all other effects contributing to the stellar variability in ground-based

disc-integrated Sun-as-a-star observations. They are calculated as

�RV = �(C)�Êphot + ⌫(C)�Êconv + E0 , (5.1)

in which �(C) and ⌫(C) are weighting coefficients, �Êphot is the photometric contribution,

�Êconv is the suppression of blueshift term, and E0 represents an instrumental parameter

constant with time, an offset of sort that depends on the Sun-as-a-star data the derived

�RVs are meant to be compared against. Haywood et al. (2016), Milbourne et al. (2019) and

Ervin et al. (2022a) all include step-by-step derivation of each term in Eq. 5.1. S��A����

provides the full reconstructed �RV as well as each component separately. These derived

�RVs have been compared to HARPS-N and NEID integrated-disc observations, and have

since been used in various stellar variability analyses (e.g., Lienhard et al. 2023; Lakeland

et al. 2024).

In the remaining part of this Chapter, I use SDO/HMI-derived disc-integrated time

series to study solar variability. In particular, I aim to assess whether the mean longitudi-

nal magnetic field can be used as a tracer of the solar magnetic activity.



��� CHAPTER �. SOLAR ACTIVITY

5.2 The Mean Longitudinal Magnetic Field and its Uses in Radial-

Velocity Surveys2

5.2.1 Introduction

In the last 20 years, the radial-velocity method has been used to successfully detect and

characterise hundreds of exoplanets. With the aim of finding potential Earth analogues

that future missions such as the Habitable Worlds Observatory3 (HWO: Harada et al. 2024)

or the Large Interferometer for Exoplanets (LIFE: Quanz et al. 2022) can observe in the

search of biosignatures, the community is now more than ever targeting rocky exoplanets

in their stellar habitable zone. As it has been re-iterated throughout this thesis, stellar

variability is now the greatest challenge in this pursuit, as stellar-induced signals often

dominate the RV variations of the observed stars. These signals are still challenging to

model as they affect the time series over multiple timescales, from minutes to years. More-

over, the longer baselines required for disentangling Earth-like signals introduce a further

source of "noise": magnetic cycles.

As addressed in Chapter 1 Section 1.2.3, over the years stars are expected to undergo

similar activity cycles (e.g. Oláh et al. 2009) to what the Sun experiences, with years of max-

ima, where activity is much stronger and more significantly modulated by stellar rotation,

and stretches of minima, where activity-induced variations are much weaker and non-

rotationally-modulated effects dominate (e.g., granulation and supergranulation). Un-

derstanding and modelling these long-term cycles is often necessary for a comprehensive

characterisation of planetary systems, in particular in the case of possible wide compan-

ions. A contemporaneous effort towards the confirmation of outer planets may in fact

be vital for the detection of Earth analogues. In fact, recent studies have shown that the

formation of inner Earths is dependent on the presence of quickly-accreted long-orbit gas

giants (Morbidelli et al. 2022).

A common approach to activity mitigation is to use Gaussian processes. GP regression

however has its limitations. In particular, its ability to predict stellar variability is strongly

2. This Section, alongside all Figures and Tables have been taken from Rescigno et al. (2024).
3. Based on the studies for the Large UV/Optical/IR Surveyor (LUVOIR: The LUVOIR Team 2019), and

the Habitable Exoplanet Observatory (HabEx: Gaudi et al. 2020)
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reliant on an accurate detection of the stellar rotational period (Nicholson and Aigrain

2022). A precise determination of the periodicity of the stellar activity-induced RVs is

vital to correctly differentiate them from Keplerian signals (Bortle et al. 2021), and to com-

pute accurate masses (Blunt et al. 2023). In fact, confirming the presence of non-transiting

planets can be particularly challenging when the stellar rotational period is similar to the

orbital period of the planet candidate (Nava et al. 2022; Dalal et al. 2024), as was the case

in Chapter 4 Section 4.2. An inaccurate rotational period can also have significant direct

impacts on the derived best results for all the other kernel hyperparameters that are less

reliably tied to physical processes and therefore much harder to interpret correctly.

An accurate detection of the stellar rotation period is vital for many other areas of

astrophysics beside exoplanet characterisation. As an example, Irving et al. (2023) studied

the relationship between stellar rotation periods and magnetic cycle amplitudes, as well as

between the ratio of rotation and cycle periods and the stellar Rossby number. McQuillan

et al. (2014) highlighted a bimodality in the rotation period-temperature relation of more

than 30,000 Kepler targets. Amard et al. (2020) studied the contribution of stellar metallicity

to the decay of their rotational periods with age. On the whole, accurate and precise

measurements of stellar rotational periods are at the basis of multiple current fields of

study. The stellar rotation period is often challenging to extract only from RVs (Nava

et al. 2020) or photometry (Aigrain et al. 2015), especially in times of low activity. We

therefore use activity proxies as extra suppliers of information, as covered multiple times

in this work. Nevertheless, even an analysis of the common activity indicators often fails

to consistently measure the stellar rotation period (e.g., Nava et al. 2022). Therefore for the

analysis of RVs and in particular for the detection of the stellar rotational period, especially

over all stages of a star’s magnetic cycle, a different tracer of activity is required.

5.2.1.1 The Mean Longitudinal Magnetic Field

Haywood et al. (2022) have shown that the unsigned (absolute) magnetic flux maps the

stellar-induced RV variations better than any other activity indicator to date. However,

measuring the unpolarised magnetic flux in stars that are not the Sun is extremely chal-

lenging (Reiners 2012). Stellar magnetism is usually investigated with polarimetric obser-
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vations (see Trippe (2014) and similar reviews).

Polarisation of light is fully characterised by four Stokes parameters �, + , & and * . The

first parameter � is the total intensity. Circular polarisation+ is the difference of intensities

carried by left- and right-hand photons with electric field vector rotating around the direc-

tion of propagation. Linear polarisation & and * are the difference of intensities carried

by vertically and horizontally polarised photons in two coordinate systems rotated relative

to each other by 45 degrees, with the line-of-sight as the rotation axis. Typically, a single

observation yields two Stokes parameters: � and one of polarisations. Radiation formed

in the presence of a magnetic field polarises the light through the Zeeman effect. In this

case,+ is sensitive to the line-of-sight component of the magnetic field, and& and* to the

transversal field component. All are needed to directly detect the absolute magnetic field.

The linear polarisation (& and*) is a second order effect in the wavelength-domain and,

especially in the case of weak-fields, it has significantly smaller signals than the circular

polarisation (Bagnulo and Landstreet 2015). In fact, in most cases the signals of & and

* are so small and require such high signal-to-noise ratio that they are not measurable

with current precisions and reasonable exposure times. Although some newly developed

techniques are extracting a proxy of the unsigned magnetic field directly from the spectra

without employing Stokes profiles (e.g., Lienhard et al. 2023), it remains a challenge.

I instead turn to the more easily detectable mean longitudinal line-of-sight magnetic

field. It only requires � and + Stokes profiles, which have stronger signals. The mean

longitudinal magnetic field, ⌫l (sometimes also referred to as <⌫z>), is the line-of-sight

projected component of the magnetic field vector averaged over the visible hemisphere of

the star. ⌫l is related to the circular polarisation as

+

�

= 6eff⇠z⌫2
0
1
�

3�

3⌫
⌫l , (5.2)

where 6eff is the effective Landé factor, � the intensity at wavelength ⌫, ⌫0 is the average

wavelength, and ⇠z = 4.67⇥ 10�13 Å�1 G�1 (e.g. Landstreet 1982). The mean longitudinal

field can then be expressed as the first order moment of the Stokes + parameter as

⌫l = �2.14 ⇥ 1011

¥
⇡+(⇡)3⇡

⌫av6av2
¥
[�c � �(⇡)]3⇡

, (5.3)
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where ⌫av and 6av refer to the average wavelength and the average Landé factor of the

lines used to compute ⌫l, and �c is the continuum intensity (Donati and Collier Cameron

1997). The integration limits over frequency ⇡ are somewhat arbitrary and can change

between analyses. They are selected wide enough to include all the information of the

Stokes profiles but narrow enough to reduce the contribution of noise.

Previous analyses with the near-infrared SPectropolarimètre InfraROUge (SPIRou:

Donati et al. 2020) have shown that ⌫l derived from polarimetry can be used to successfully

detect rotational periods of chemically peculiar stars (Babcock 1949) and M-dwarfs (e.g.,

Landstreet 1992; Donati and Landstreet 2009; Klein et al. 2021; Fouqué et al. 2023). With

these successes, other polarimeters were also turned to similar analyses (e.g., Hébrard

et al. 2016). Donati et al. (2023) also introduced Gaussian process regression to the mod-

elling of ⌫l in M-dwarfs. For Sun-like stars, and most of the stars selected in RV surveys

for exoplanet detection, the low observed projected rotational velocity (E sin(8) < 2 km s�1)

makes the detection of complex magnetic fields difficult due to magnetic flux cancellation

between opposite polarities. To test these limits, Petit et al. (2008) observed a small sam-

ple of active Sun-like stars, and successfully detected their magnetic fields. On a larger

scale, the BCool magnetic survey (Marsden et al. 2014) analysed spectropolarimetric data

of 170 solar-type stars (F-, G- and K-type or FGK) collected between 2006 and 2013. With

mostly a single observation per star, the survey reached precisions in the ⌫l of 0.2 G, and

demonstrated that ⌫l in quieter Sun-like stars is measurable with reasonable uncertainties.

However, this survey and the majority of previous polarimetric surveys focused on ob-

taining mostly single snapshot observations. The great majority of FGK stars lack the time

series of polarimetric data necessary to do period detection analysis. As previous studies

have done to better understand stellar variability and its dependence to other measurable

quantities (e.g., Haywood et al. 2016; Collier Cameron et al. 2019; Haywood et al. 2022), I

turned to the best observed star that falls in that category: the Sun.

The origin of ⌫l, in solar science often also called Solar Mean Magnetic Field (SMMF)

or General Magnetic Field (GMF), is still strongly debated. Some attribute the largest con-

tribution to the signal of ⌫l to the weak, large-scale magnetic flux over the entire visible

disc (i.e., the "quiet" Sun flux) (e.g., Severny 1971; Xiang and Qu 2016). In fact, Bose and
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Nagaraju (2018) claimed that 80% of the signal of ⌫l is generated by the background mag-

netic flux. Using resolved full-disc solar data, they partitioned the solar surface between

sunspots, faculae and background. They then calculated the percentage variation of ⌫l

due to each region independently using the coefficient of determination method based on

linear regression analysis. They found that there exists a clear correlation between ⌫l and

its component from only the background. They also found no correlation between the

mean longitudinal magnetic field and the active regions filling factors. They concluded

that the presence of active regions does not directly influence the structure of the signal

in ⌫l, but their location on the disc can influence the amplitude of the signal (as further

explained in Section 5.2.3).

These results are in opposition to the ones of others. For example, Scherrer et al. (1972)

showed that the largest correlation between ⌫l and the interplanetary magnetic fields is

reached when considering only the innermost fourth of the solar disc, which is more sensi-

tive to active latitudes and therefore to active regions. Furthermore, Kutsenko et al. (2017)

used a similar technique to Bose and Nagaraju (2018) on similar data, but recovered differ-

ent results. They considered a magnitude threshold of 30 Mx cm�2 and found that the ⌫l

component derived from active regions contributed from 65 to 95% of the total field. They

therefore claimed that ⌫l is directly generated by magnetic flux concentrations, meaning

spots, faculae and network. They asserted that the strong rotational modulation measured

in ⌫l is a clear, if indirect, proof of its relationship with the active region flux. Overall, the

source of the opposing results seems to be the different methods for the definition for

active regions: Kutsenko et al. (2017) sectioned the solar surface with a magnetic flux con-

centration mask on the magnetogram, while Bose and Nagaraju (2018) separated active

regions from background with a combination of intensity thresholds on the AIA 1600 Å

and the 4500 Å images for plage and sunspots respectively. Nevertheless, assessing the

true source of the variations of ⌫l is beyond the scope of this work. I will instead focus

on addressing how its behaviours can help us understand stellar activity in the RVs and

pinpoint the stellar characteristics needed for activity modelling.

In this Chapter, I use resolved solar observations to extract the mean longitudinal

magnetic field of the Sun, and compare it to the radial velocities and the common activity

proxies of Sun-as-a-star observations. The aim of this analysis is to determine whether ⌫l
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Figure 5.3: HARPS-N Solar telescope data. From the top, the corrected radial velocities in green, the S-index
in orange, the full-width at half-maximum in red, and the bisector span in black. Uncertainties are included
but may be too small to be visible.

can be a useful tracer of stellar activity in Sun-like stars in the context of RV surveys. I

describe the data in Section 5.2.2. I analyse the derived time series to better identify the

properties and periodicities of ⌫l in Section 5.2.3. Section 5.2.4 covers how I undersampled

the data in order to emulate stellar observations, and the tests to assess the ability of the

mean longitudinal magnetic field to recover the stellar rotational period and to support

RV analysis in a GP regime. Finally, I conclude in Section 5.2.5.

5.2.2 Observational Data

5.2.2.1 HARPS-N Sun-as-a-star Data

The HARPS-N solar telescope (Dumusque et al. 2015; Phillips et al. 2016; Collier Cameron

et al. 2019) is a 7.6-cm achromatic lens which feeds the sunlight to an integrating sphere

and through an optical fiber into the High Accuracy Radial-velocity Planet Searcher for

the Northern hemisphere spectrograph (HARPS-N: Cosentino et al. 2012; Cosentino et al.

2014). It is mounted on the Telescopio Nazionale Galileo (TNG) at the Observatorio del

Roque de Los Muchachos in La Palma, Spain. Sun-as-a-star spectra are taken continu-

ously throughout the day, with exposure times of 5 minutes in order to average over the
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solar oscillations. RVs are then extracted using the 2.3.5 version of the ESPRESSO pipeline

applied to HARPS-N, the Data Reduction Software (DRS: Dumusque et al. 2021), which

computes the cross-correlation function using a G2 stellar mask. From the CCFs, it also

calculates the standard activity indicators: the full-width at half-maximum and the bisec-

tor span. Using the Ca H&K lines, the pipeline also measures the S-index. The data is

corrected from solar system peculiarities, so they can treated as if they were truly coming

from a star. The details of these corrections, which are summarised here, are explained in

Collier Cameron et al. (2019) and Dumusque et al. (2021). First in order to strip the signal

of the Solar System planets, the extracted spectral data are interpolated on the wavelength

scale of the heliocentric frame of reference. The effects of differential extinction (noticeable

due to the Sun being resolved in the sky) are then removed. The FWHM is corrected for

the effects of the Earth’s orbital eccentricity and obliquity. Finally, the S-index is corrected

for ghosts on the CCD.

Some of the observations will be affected by clouds or other bad weather. To select

the best data, strict cuts based on a data quality factor, &f, and on the metrics of the expo-

sure meter are applied. For a detailed description of the applied data cuts, see Rescigno

et al. (2024). In total, I considered 64,332 data points from BJD 2,457,232.873 (2015-Jul-29)

to BJD 2,459,449.104 (2021-Aug-22). All the mentioned HARPS-N time series are shown

in Fig. 5.3.

5.2.2.2 SDO/HMI Resolved-Sun Images

In this work, I use the 720-second integrated SDO/HMI exposures of the continuum pho-

tometric intensity, the Dopplergrams, and the magnetograms reduced with the Vector

Pipeline. An example set of images is shown in Fig. 5.4. While the telescope produces

near continuous observations, I choose a cadence of four hours, yielding six images per 24-

hour period and 31,755 images spanning nearly 13 years from BJD 2,455,318 (2010-May-1)

to BJD 2,459,945 (2022-Dec-31).

5.2.2.2.1 Estimating the full-disc solar longitudinal magnetic field and radial velocities

While the data is corrected to account for most instrumental effects, long baseline analysis

of the solar Doppler velocities was not the original aim of the SDO mission, as addressed
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Figure 5.4: Example SDO/HMI images from 2015-Jul-29. From left to right: the continuum intensity (un-
corrected for limb darkening), the line-of-sight magnetogram, and the Dopplergram (corrected for the solar
rotation and spacecraft motion).

in Section 5.1, and long-term stability of the instrument was not prioritised. I thus use the

S��A���� pipeline to extract disc-integrated time series of all considered filtergram sets.

The mean longitudinal magnetic field and the model-derived�RVs are plotted in Fig. 5.5.

In this Section, I also describe in more detail the derivation of the ⌫l data.

In SDO/HMI data, the line-of-sight magnetic field, ⌫los, is computed for each pixel

as the difference of the Doppler velocities observed in two circular polarisations,+0
LCP and

+
0
RCP:

⌫los = (+0
LCP �+0

RCP) m , (5.4)

in which  m = 0.231405 for a Landé g factor of 2.5. HMI actually directly measures

flux density in each pixel, but because a filling factor of one is assumed, a flux density

of 1 Mx cm�2 is equivalent to a field strength of 1 G (Couvidat et al. 2016). This method

is analogous to how the magnetic field is extracted for Magnetic Detection and Imaging

(MDI). The 720s version of this variable is computed using selected filtergrams for ten

135s vector fields sequences from Camera 2. After full-disc foreshortening corrections,

the disc-averaged, longitudinal magnetic field of the Sun is computed in each observation

by summing the continuum intensity-weighed, line-of-sight magnetic field in each pixel

of coordinates 8 and 9 on the resolved disc as

⌫l =

Õ
8 9
⌫los,ij�89Õ
8 9
�89

, (5.5)
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Figure 5.5: SDO/HMI-derived mean longitudinal magnetic field on the top, and the model radial velocities
on the bottom. Uncertainties are not included as they would be too small to be visible.

in which �89 is the observed, non-flattened continuum intensity in the same pixel. The

derived time series is plotted on the top of Fig. 5.5 in purple. The uncertainties of the

longitudinal magnetic field at each pixel increase as a function of their position on the disc

and distance from the centre, expressed as ⇠ angle, with them being ⇠5 G at disc centre

and ⇠8 G at the limbs (Yeo et al. 2013). Even assuming a consistent 8 G noise level, the

Poisson-derived uncertainties on the disc-averaged values are incredibly small. Therefore

a larger uncertainty will be assumed for the majority of the analysis, as fully addressed in

Section 5.2.4.1. The maximum field strength derived for the solar magnetic cycle (Cycle

24 and the beginning of Cycle 25) included in the data is of 3.05 G, which is comparable to

the average maximum field derived by the BCool collaboration for G stars of 3.2 G, once

again underlining the validity of the comparison.

5.2.3 Full Time Series Analysis: how does ⌫; relate to the RV variations?

I begin the analysis by assessing the basic properties of the mean longitudinal magnetic

field compared to the other derived time series. With this study I aim to answer the fol-

lowing questions: i) Is ⌫l a direct proxy of activity-induced RV variations? ii) How does

⌫l change with activity and does it behave like the RVs? iii) What information can be ex-

tracted from analysing ⌫l that cannot be derived from other common indicators? iv) Can
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Figure 5.6: Correlation plot between the SDO/HMI-derived radial velocities and the mean longitudinal mag-
netic field. The colour indicates the Julian date of each datapoint. The computed Spearman rank correlation
factor is also included.

⌫l be used to trace and model the solar magnetic cycle?

5.2.3.1 Full Time Series Correlation Analysis

To assess whether the mean longitudinal magnetic field can be used to directly map the

SDO/HMI rotationally-modulated stellar activity-induced RVs, I compute the Spearman

rank-order correlation coefficient of the two time series. When considering all 13 years of

data, I calculate a correlation coefficient of 0.02, as shown in Fig. 5.6, meaning that ⌫l does

not correlate with its contemporaneous SDO/HMI-derived �RVs. I also compute the cor-

relation between the absolute values of ⌫l and the�RVs. Their Spearman rank correlation

coefficient is equal to 0.42, a low/moderate correlation. I compare these results to the cor-

relations calculated between the entirety of the HARPS-N RVs and its activity indicators:

0.54 with the S-index, 0.06 with the FWHM, and 0.52 with the bisector span, as plotted in

Fig. 5.7. With the exception of the FWHM, the HARPS-N radial velocities correlate well

with the indicators most commonly employed in stellar activity analyses. In particular,

a visual inspection of the time series also shows that the BIS and the S-index are sensi-

tive to the long-term trend of the magnetic cycle. These similarities between the RVs and
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Figure 5.7: Correlation plots of the HARPS-N radial velocities and their activity proxies, S-index, full-width
at half-maximum, and bisector span. The colour bar indicates the BJD of each datapoint. The Spearman Rank
correlation factor for each set is also included.

the activity proxies are at the basis of many mitigation techniques. This good correlation

however is not stable in time nor in activity level. In fact, during periods of minima the

correlation becomes completely negligible, as addressed in Section 5.2.4.2. This behaviour

can be attributed to the fact that these proxies are sensitive to a mixture of different active

regions (spots, faculae, and network) (Cretignier et al. 2024). At low activity other effects

not tied to active regions (and therefore not probed with traditional indicators) dominate

the stellar variability (Lakeland et al. 2024). Nevertheless, I can now answer the first of our

questions: ⌫l cannot be used as a direct one-to-one proxy to correct for stellar activity in

the RVs over all timescales. The significantly worse correlation (especially when consid-

ering all levels of activity) between ⌫l and the �RV versus the one between the HARPS-N

RVs and their proxies is to be expected after a simple visual inspection. As an example,

⌫l oscillates around 0 G, with an overall mean value of 0.02 G stable in time. The mean

value of the �RVs changes with changing magnetic cycle phase, going roughly from 2.4

m s�1 at high activity, to 0.3 m s�1 during minimum.



�.�. THE MEAN LONGITUDINAL MAGNETIC FIELD AND ITS USES IN
RADIAL-VELOCITY SURVEYS ���

Figure 5.8: Spearman rank correlation coefficient between two time series against the size of the window (in
days) used to smooth the signal (in logarithmic scale). Top panel: the correlation between the RMS of ⌫l and
the RMS of the �RVs is plotted in blue dotted line, and between the RMS of ⌫l and the time-aware mean of
�RVs is shown as a purple solid line. All considered time series are derived from SDO/HMI data and include
all available observations. The knee of both plots is identified and its averaging window and correlation value
are labelled. Bottom panel: Spearman correlation coefficient values plotted against varying window size. The
time series considered have been matched following the method in Section 5.2.3.3. Colours represent, in
order, the correlations between the RMS of ⌫l and the time-aware mean of SDO/HMI �RVs (solid purple),
between the RMS of ⌫l and time-aware mean of the HARPS-N RVs (dashed purple), between the time-aware
mean of the bisector span (black), the S-index (yellow), and the FWHM (red) with the HARPS-N RVs. The
smoothing window equal to a solar rotation period is highlighted with a vertical gray dashed line. Horizontal
black dashed lines indicate the correlation coefficient achieved when smoothing over a window of 27 days.
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Figure 5.9: Top panel: the time series of the time-aware mean over an averaging window of 27 days of the
SDO/HMI �RVs is plotted in blue. The RMS of ⌫l over the same window is also included in purple. Bottom
panel: the time series of the time-aware mean of the matched HARPS-N RVs is plotted in green, of the matched
bisector span in black, and the RMS of the matched ⌫l is shown in purple over the a window of 27 days.

I however notice a general trend shared between the ⌫l and the �RV time series

through the solar cycle. I therefore investigate further. I postulate that, while direct mea-

surements do not correlate, the root-mean squared scatter (RMS) of ⌫l may correlate to

the general envelope shape of the RVs, and could therefore be useful information to model

the long-term variations due to the magnetic cycle. To test this theory, I extract two new

time series: I compute the rolling RMS of ⌫l over an "averaging window" of a day and the

rolling time-aware mean of the SDO/HMI �RVs over the same window. The correlation

between these new time series improves to 0.48. In order to find the best averaging win-

dow size, I repeat the same steps with window lengths between one day and one year.

The results of this analysis are plotted in the top panel of Fig. 5.8 as a purple solid line. I

also include the correlations between the RMS of ⌫l and the RMS of the �RVs for all the

window sizes as a blue dotted line. Both correlations increase steadily until a window

size of 27±1 days reaching a coefficient value of 0.77. At this point, the time series are not

mapping the rationally-modulated variations, and are only sensitive to the overarching

magnetic activity over the cycle, as shown in the top panel of Fig. 5.9. Therefore, the

RMS of ⌫l over windows larger than the solar rotation period are able to successfully map

the long-term variations in the �RVs. This time series can thus be used to correct for the

long-term magnetic activity signal via techniques such as contemporaneous fit, or can be

employed as a training set for a squared exponential kernel in a GP regression framework.

As a simple test, I find the best-fit sine function to the RMS of ⌫l over a window of 27 days.
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I then use the derived parameters to subtract the magnetic cycle long-term trend in the

�RVs. This very rudimentary method is able to flatten the �RVs and reduce their RMS by

more than 60%.

5.2.3.2 Structure Functions

The structure functions of all time series are also computed. The structure function mea-

sures the variability in a time series at each timescale (for a detailed explanation, see Chap-

ter 2 Section 2.3.2).
q

1
2SF is used here to quantify the variability at each timescale, to better

draw analogy with the RMS. The structure functions of the time series shown in Figs. 5.3

and 5.5 are plotted in Fig. 5.10. To ensure each time series is well sampled (i.e., with many

pairs of observations contributing to each structure function calculation), at least 50 pairs

of observations in each � bin are required. To allow for direct comparison, I only consider

the SDO/HMI data over the overlapping years with HARPS-N (2015 to 2021) instead of

the whole time series. In Fig. 5.10, the higher cadence of HARPS-N is highlighted by the

presence of data at shorter timescales, while the SDO/HMI-derived time series have a

minimum � of 4 hours.

Both RV time series (HARPS-N in green, and SDO/HMI in blue) have similar struc-

ture function behaviours. They both increase until a timescale of⇠10 days, they then grow

at a significantly slower rate (forming plateaus of sorts), to finally start increasing more

strongly after 100 days, as the structure functions probe the solar rotation and activity cy-

cle respectively. The RV RMS due to solar activity is of the order of 1 m s�1. A somewhat

similar behaviour is shown by ⌫l, with an initial increase until ⇠10 days, and a plateau

at a
q

1
2SF of ⇠0.3 G (a low value expected for the extended minimum covered by the

considered time series). Note that the structure function shows a slight decrease in this

plateau region. I explain this behaviour by considering the magnetic cycle. Overall, the

signal of ⌫l at comparable levels of stellar activity over different cycles is similar. That

is to say that there are similarities between variations of ⌫l at the rise and at the decline

of Cycle 24 versus at the rise of Cycle 25. The most interesting feature to notice in the

structure function of the magnetic field is the significant dip at ⇠27 days (and a second

smaller one at ⇠55 days). These dips highlight the strong modulation of the time series
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Figure 5.10: Structure functions of the time series shown in Figs. 5.3 and 5.5. See the main text for more
details. From top to bottom: the structure functions for the HARPS-N and SDO/HMI �RVs (in green and
blue respectively), the S-index, the CCF FWHM, CCF bisector span, and the mean longitudinal magnetic
field. The higher cadence of the HARPS-N data is visible in the structure functions as the smaller minimum
timescale. Likewise, the diurnal cycle of the ground-based observations gives rise to a gap in the structure
function at ⇠ 0.5 days, since there are no pairs of observations separated by this timescale. The solar rotation
period at 27 d is indicated by a grey dashed line. Figure taken from Fig. 7 of Rescigno et al. (2024) and
produced by B. Lakeland.
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at the solar rotation period. The SDO/HMI-derived radial velocities also show similar

dips at one- and two-times the solar rotational period. While the HARPS-N RVs do share

this feature, it is much less prominent. This is because the HARPS-N RVs are sensitive to

variability from all processes on the Sun, whereas the �RVs calculated from SDO/HMI

only consider the effect of active regions, which show a stronger rotational modulation.

All three HARPS-N activity indicators have very similar structure functions, with a grad-

ual but consistent increase at all timescales. They all present dips at ⇠1.5 and 2.5 days,

which are not replicated in their radial velocities. The lack of a plateau region in any of

the HARPS-N activity proxies means that no characteristic timescale of the variability can

be retrieved: the activity indicators are affected by multiple physical processes all with

different timescales. On the other hand, ⌫l shows a characteristic timescale of the order

of half the solar rotation period, meaning that its behaviour can be sampled with two ob-

servations per period. This analysis therefore highlights the elevated complexity of the

signal of the common activity proxies versus the mean longitudinal magnetic field, and

is a first proof of the strong rotational modulation of ⌫l.

5.2.3.3 Matching the Data between HARPS-N and SDO/HMI

As the timestamps for the HARPS-N and SDO/HMI data are different, it is necessary

to match the observations of the two time series in order to investigate the relationship

between ⌫l and the RVs from HARPS-N. To do this, I interpolate the SDO/HMI data onto

the timestamp of the nearest HARPS-N observation if the time between the two is less

than one hour. If the time between an SDO/HMI observation and its closest match in

the HARPS-N dataset is more than one hour, the data point is omitted. A justification

for this approach is provided in the Appendix A1 of Rescigno et al. (2024). The resulting

time series has 2,891 datapoints and includes the diurnal cycle and realistic poor-weather

breaks from the HARPS-N data, and the maximum of six observations per 24-hour period

of the selected dataset for SDO/HMI.

5.2.3.4 Correlation Analysis

I then reassess the correlation and recompute the Spearman coefficients between both the

HARPS-N RVs and SDO/HMI�RVs, with all the considered activity tracers, including ⌫l,
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Figure 5.11: Correlation plots between the matched HARPS-N (here HN) and SDO/HMI time series. The
SDO/HMI �RVs are in the first row, while the HARPS-N RVs are in the second. From the leftmost to the
rightmost column, we plot the mean longitudinal magnetic field, the S-index, the full-width at half-maximum,
and the bisector span. The data is colour-coded based on observation time and the Spearman rank correlation
coefficients for each set are also included.

as shown in Fig. 5.11. As derived previously in Section 5.2.3.1, ⌫l does not correlate with

either of the radial velocities. It is interesting to note, however, that correlations between

the HARPS-N activity indicators and the RVs derived from the same instrument are lower

than (or in the case of the BIS, comparable to) their correlation to the SDO/HMI radial ve-

locities. As aforementioned, the SDO/HMI �RVs only include rotationally-modulated

active region-induced RV variations, while the HARPS-N RVs include all other physical

processes on the solar surface as well as instrumental systematics. These results high-

light how these indicators are not able to successfully map the RV signals imprinted by

processes such as granulation or supergranulation. I also replicate the same averaging

window study undertaken in Section 5.2.3.1, as shown in the bottom panel of Fig. 5.8. I

compute the correlations between the RMS of the matched ⌫l and the time-aware mean

of the SDO/HMI �RVs with a rolling window size between one day and one year. The

results are plotted as a purple solid line. With a window size of roughly the solar rota-

tion period, the two time series reach a strong correlation of 0.83, reconfirming the earlier

conclusion. For comparison, I also plot the correlations between the time-aware mean of

the matched time series of the HARPS-N activity indices and their RVs. The FWHM (in

red) does not map the long-term trend and therefore does not correlate well over all con-

sidered windows. On the other hand, the S-index and the BIS (respectively in yellow and
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black) reach similar correlations of 0.75 at a window size of ⇠27 days. Thus, the RMS of

⌫l over a solar rotation period correlate better to their smoothed �RVs than the HARPS-N

activity proxies do to the smoothed RVs derived from the same instrument. As a further

test, I also include the correlation with increasing rolling window size between the RMS

of the matched ⌫l and the matched HARPS-N RVs, plotted as a dashed purple line. Unlike

before, the correlation is lower, with it reaching only 0.67 at the solar rotation. To investi-

gate this behaviour, in the bottom panel of Fig. 5.9 I plot the matched HARPS-N RVs and

BIS time series smoothed over a solar rotation period (in green and black respectively)

alongside the RMS of the ⌫l over the same window (in purple). It is clear that, while

the RMS of ⌫l match the slow general decrease at the end of Cycle 24, the time series ex-

tracted from SDO/HMI diverge from the ones derived from the HARPS-N spectrograph

around BJD 2,458,500, roughly the start of the extended minimum. The SDO/HMI �RVs

follow the same shape as the RMS of ⌫l, instead of bending back up, as the HARPS-N data

do. This different trend between HARPS-N and SDO/HMI can be caused by a variety of

sources, the study of which is above the scope of this work. It is however important to

note that this differing trend is partially enhanced in Fig. 5.9 by the axes chosen for the

comparison.

5.2.3.5 Periodogram Analysis

I compute the Generalised Lomb-Scargle periodograms (GLS: Zechmeister and Kürster

2009) of all the time series for the complete and the matched datasets. Both produce similar

results. For this analysis, I focus on signals with periods smaller than 100 days, as longer

magnetic cycle periodicity would not be reliably picked up with the available baseline. In

particular, I am interested in assessing the ability of ⌫l to systematically recover the solar

rotation period. For these reasons, I remove all long-term signals with a low-pass filter. Via

this comparison I am also able to confirm that no significant periodic signal is introduced in

the data-matching step by interpolating the SDO/HMI data on the HARPS-N timestamps.

In this work, I only include the periodograms for the matched datasets and plot them in

Fig. 5.12. In the Figure, the Carrington solar rotational period of%rot =27.2753 days as seen

from the Earth is highlighted as a reference with a gray dash-dotted line. I also include

the first and second harmonics of the Carrington period as dotted lines. By quick visual
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Figure 5.12: Generalised Lomb-Scargle Periodogram of the matched time series. On the x-axis the period
in days, on the y-axis the normalised logarithmic Zechmeister-Kürster power (or probability). From top to
bottom, the matched time series of SDO/HMI �RVs, and mean longitudinal magnetic field, HARPS-N RVs,
S-index, FWHM, and bisector span. The Carrington Solar rotation period is indicated by a gray dash-dotted
line. The first and second harmonics of the rotation are also highlighted by dotted lines. The False Alarm
Probability (FAP) equal to 0.1% are included as dashed gray horizontal lines.
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inspection, it is clear that the mean longitudinal magnetic field strongly outperforms all

activity indicators in finding the expected rotational period. The only other relevant peaks

in the periodogram of ⌫l are generated by the first and second harmonics of %rot. This

behaviour has been noted before for other ⌫l measurements (e.g., Kotov and Levitskii

1983; Grigor’ev and Demidov 1987; Obridko and Shelting 1992) and is similar to the results

obtained by Xie et al. (2017) via wavelet transformation.

Both RVs are slightly more sensitive to the half rotational period than the full one,

although they present wide forests of peaks at %rot and %rot/2 both. The S-index has its

most significant peak around 100 days, followed by one at ⇠29 days. Even considering all

peaks above the 0.1% False Alarm Probability (FAP) level, the S-index does not reliably

recover the solar rotation period. The FWHM is the most sensitive out of the HARPS-N

proxies to %rot, with a forest of peaks centred in ⇠29 days. It also shows peaks at ⇠ %rot/2,

as well as ⇠19 days. The periodogram of the BIS is nicely peaked around %rot/2, with

some signal around %rot, as well as ⇠32 and 22 days. The periodograms of all time series

excluding ⌫l are complex at high frequencies, have power at longer periods, and the true

solar %rot cannot be recovered to a reasonable level of accuracy or precision. In contrast,

the periodogram of the mean longitudinal magnetic field is much simpler and does not

present any significant power at long periods. As mentioned previously, all the power is

concentrated at %rot and its harmonics. In fact, given the formulation of periodograms, no

power at low frequencies should be expected. Periodograms fit sinusoidal curves to the

data for all periods and assess the goodness of the fit. Long-term effects can be fit by a sine

curve in the radial velocities and its common proxies, but they behave differently in ⌫l.

As an example, the magnetic cycle imprints on the RVs a general increase in their mean

value over time of maximum and a decrease over times of minima. On the contrary, the

average value of ⌫l stays constant in time. The magnetic cycle only affects the amplitude

of the oscillations, not their mid-point, meaning that it cannot be fit by a long-period sine

curve. This effect yields a much simpler periodogram. It can overall be concluded that a

Fourier analysis of ⌫l is significantly more sensitive to %rot and allows for a more precise

and accurate identification of the solar rotation period than all other analysed time series.
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Figure 5.13: Autocorrelation function over a lag window of 250 days of the mean longitudinal magnetic field
(top row in purple), the SDO/HMI and HARPS-N RVs (middle row in blue and green respectively), and the
HARPS-N activity proxies S-index, full-width at half-maximum and bisector span (bottom row in orange,
red and black). Uncertainties are included as errorbars.

5.2.3.6 Autocorrelation Function Analysis

Another way of isolating the rotational period is to compute the autocorrelation function

of the time series (Giles et al. 2017; Collier Cameron et al. 2019). An autocorrelation anal-

ysis measures the relationship between observations at different points in time, and can

therefore isolate patterns over the time series. I use the method developed by Edelson

and Krolik (1988) and updated in Robertson et al. (2015) to compute the autocorrelation

function (ACF) for unevenly sampled datasets. In very simple terms, we "slide" in time

the data and compute how well it correlates to its original version via Pearson rank-order

correlation coefficient (as described in Section 2.3.3). I use a code adapted from �����4.

Assuming significant rotational modulation, the solar rotation period can be extracted as

the lag between each major peak in the ACF. I obtain the ACF for all matched time se-

ries, as shown in Fig. 5.13. As in Section 5.2.3.5, ⌫l is especially good at recovering the

rotational period of the Sun, and its periodic signal stays strong and clear over multiple

rotations. I compute the half-life of the autocorrelation to be 2.74±0.02 days. While not

4. Available at: https://github.com/astronomercdamo/pydcf

https://github.com/astronomercdamo/pydcf
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wholly insensitive to the rotation period in this analysis, the HARPS-N RVs and the other

proxies do not show as clear or well-peaked signals. As expected, the SDO/HMI �RVs

present a smoother ACF signal than the HARPS-N ones, as they are derived with a model

that considers only rotationally-modulated components.

5.2.3.7 Lag Analysis

Previous works have proposed or attempted to constrain the presence of time lags be-

tween the stellar activity proxies and the RVs (Boisse et al. 2011; Santos et al. 2014; Collier

Cameron et al. 2019; Costes et al. 2021). I therefore also investigate for the presence of any

significant lag between the mean longitudinal magnetic field and both radial-velocity time

series. I use the same method as described in the previous section, this time computing

the correlation between two different time series and shifting in time one with respect to

the other. I limit the investigation to lag values between �30 and 30 days. The results of

this analysis are plotted in the top panel of Fig. 5.14. I first examine the cross-correlation

function between ⌫l and the total SDO/HMI �RVs, plotted in dark blue. When consider-

ing the entirety of the available 13 years of data, no significant lag can be found. A best

correlation of 0.17 is recorded at ⇠ �7 days. As a next step I compute the cross-correlation

functions between time-matched datasets. Starting from the matched SDO/HMI �RVs, I

find a lag with ⌫l of�7.5±0.5 days with a correlation coefficient of 0.47±0.05. Similarly, the

most probable lag between the matched ⌫l and HARPS-N RVs is found at �7.4 ± 0.5 days

with a correlation coefficient of 0.32±0.05. I also note second possible peaks for all RV time

series at ⇠20 days. I interpret this as the repetition of the same lag in the "next" rotational

period (assuming a %rot⇠27 days). The derived best lag is comparable to a forth of the

solar rotation, or roughly the difference between disk centre and limb. I note that, with

the same time sampling and baseline, the SDO/HMI�RVs reach a higher correlation than

the HARPS-N RVs for the same lag. In order to test whether this possible lag is driven by

the presence of active regions, I also compute the cross-correlation between the matched

⌫l and the "quiet-Sun" RVs. This last time series is computed as the subtraction between

the HARPS-N RVs (expected to include all processes) and the SDO/HMI �RVs (which

only include active region-induced effects). It represents the RV variations caused by all

physical processes on the Sun that are not directly tied to either the flux imbalance or the
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suppression of convective blueshift generated by the presence of large active regions. This

method is justified in Lakeland et al. (2024). No significant lag can be extracted between

⌫l and the quiet RVs. These results point to the conclusion that active regions, such as

spots and faculae, are the driving force behind the possible lag between ⌫l and the RVs.

To further investigate this, I also plot in red and green respectively in the bottom

panel of Fig. 5.14 the cross-correlation function between ⌫l and the SDO/HMI �RVs dur-

ing high activity (when the active region filling factors are maximised) and low activity

(when active regions are few and far in between). Only the low activity�RVs show a clear

lag with ⌫l at �8.5 ± 0.5 days with a 0.40±0.05 peak correlation coefficient. The cross-

correlation also peaks at ⇠20 days, but differently from before, it also presents somewhat

significant peaks at ⇠9 days (and the related rotation peak at ⇠ �19 days). The high ac-

tivity cross-correlation is as flat as the one between ⌫l and the full �RVs (also re-plotted

in the bottom panel for comparison). These results seem to oppose the earlier conclusion.

However, it is important to note that while at low activity the Sun does develop substan-

tially less spots and faculae than during maximum, the surface is never fully bereft of

them. In fact, even though the model to compute the SDO/HMI �RVs only considers

the direct effects of large active regions, there is still some variability during minimum. I

can therefore explain these results as follows: at high activity the larger number of active

regions allows their longitudinal distribution to be significantly more even over the solar

disc. Their contributions to a lag may therefore be "smoothed" away. On the other hand,

during minimum active regions can more easily be approximated to a single cluster. This

yields a "simpler" signal and the lag can be more successfully recovered. Similar results

are derived when fitting quasi-periodic kernels to different sections of solar data, with

the signal being smoother at solar maximum and increasing in complexity towards solar

minimum (Klein et al. 2024). Further analysis is required to truly understand the source

and the reason behind this lag. Nevertheless, this best-derived lag between ⌫l and the RVs

is only minorly significant. In fact, the best-fit lag is not constant in time. To confirm this, I

divide the SDO/HMI data in rolling 200-day chunks and find the cross-correlation coeffi-

cient at the best lag for each section. The computed lags for the 31,555 data chunks range

from �8 days to 5 days. Roughly 80% of best-fit lags have correlation coefficients under

0.4. I retrieve no significant trends with time. The �7.5 days result is only recovered from
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Figure 5.14: Top panel: lag plot between ⌫l and the RV time series. The lag against the matched SDO/HMI
�RVs are plotted in pale blue, while the lag against the HARPS-N matched RVs are plotted in green. The lag
between ⌫l and the full SDO/HMI�RVs time series is included in dark blue. The lag between the matched ⌫l
and the "quiet-Sun" RVs is plotted in red, and is computed as the subtraction between the matched HARPS-
N RVs and the active regions-derived �RVs from SDO/HMI. On the y-axis is the Pearson rank correlation
coefficient computed between ⌫l and the time shifted RVs. Uncertainties on the power are included as error-
bars. The best correlation achieved and the best-fit lag are highlighted by black dashed lines. The 0 lag is
highlighted with a gray dotted vertical line. Bottom panel: lag plot between ⌫l and SDO/HMI �RVs. In blue,
as in the top panel, the full SDO/HMI dataset, in red the low activity section of the same RVs (2015-Dec to
2021-Jan), in green the high activity section of the RVs (2010-May to 2015-Nov). The best fit lag of the low ac-
tivity RVs and its respective correlation are highlighted with a black dashed lines. The 0 days lag is identified
by a vertical dotted gray line.

the distributions of all the best-fit lags when considering solely correlation coefficients

above 0.4.

Looking back to Fig. 5.5, a general visual inspection does point to an overarching

possible longer time lag between ⌫l and the SDO/HMI�RVs, especially for the years 2013

to 2015, when the activity is at the highest. This behaviour has been noticed and investi-

gated before: Sheeley and Wang (2015) showed that, for most observed magnetic cycles,

the solar large-scale field undergoes sudden rejuvenation only after the Sun has reached

its maximum. They, in fact, stated that a significant increase in the mean of the absolute ⌫l

marks the start of the declining phase of the cycle. Therefore, this increase in amplitude is

not directly tied to the increase of solar photospheric activity (measured by the number of
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sunspots and other active regions, as the maxima of the solar cycle is normally defined). It

is instead caused by the longitudinal distribution of sources of flux, in particular a specific

arrangement that (together with contribution from the axisymmetric element) reinforces

the equatorial dipole component of the magnetic field. Since the migration and emerg-

ing patterns of active regions are expressions of the magnetic cycle of the Sun (Hathaway

2015), the rejuvenation of ⌫l is inherently tied with the stage of the cycle. Overall, this

effect means that the increase in ⌫l, while correlated to the magnetic cycle, is not symp-

tomatic of the same process as the increase of the variability in the radial velocities (which

is primarily dependent on the filling factor of the active regions). The time delay of the

maximum amplitudes of the mean magnetic field is therefore explained by the time re-

quired by the larger amount of active regions to migrate inward (Huang et al. 2017) and

emerge in the "correct" arrangement. The length of this "lag" is not fully constrained yet,

given the long baselines required to have enough data for a proper statistical approach, but

it can be approximated to be of the order of months to a year. This significant correlation

between the pattern of emergence of flux and the value of ⌫l can also inform us about the

physical locations of the largest active regions on the surface of the star. In fact, Wang and

Robbrecht (2011) found that the increased bias towards larger positive ⌫l values during

2014 was generated by a north-south asymmetry in the distribution of flux emergence. In

the Sun, poleward surface flows maintain a north-south asymmetry in the photospheric

field, which in turn generates an asymmetric quadrupole component. This means that at

times, one sector of polarity can dominate over the other at the solar equator. The overall

sign bias of the oscillations of ⌫l is therefore dictated by the leading polarity in the more

active hemisphere. In this case, the wide positive amplitudes were induced by greater

sunspot activity in the southern hemisphere of the Sun, as the southern wing polarity for

Cycle 24 was positive (e.g., Norton et al. 2023). Differently from the RVs, the mean value

of ⌫l and its evolution with time informs us about the leading polarity of the active re-

gions, and in cases in which the magnetic field is better understood, they inform us about

the hemispheric positions of the active regions. In time series of stellar observations, this

information could also be employed as further constraints in Zeeman Doppler Imaging

(Semel 1989; Brown et al. 1991; Piskunov and Kochukhov 2002).
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5.2.4 Stellar-like Observations: can we use ⌫; to measure %rot?

In Section 5.2.3, I have proven that with high cadence and a long baseline, the mean lon-

gitudinal magnetic field is the ideal period detector due to the strength and the simplicity

of its signal. However, the value of a good activity tracer is its ability to inform us about

the stellar variability successfully over much shorter timescales. Is ⌫l as good as a rota-

tional period detector with larger uncertainties and with significantly less data, as is the

case with most stellar datasets? Can ⌫l be relied on over all levels of magnetic activity,

or will it fail at low activity, as do most of the other common activity proxies? I therefore

test the mean longitudinal magnetic field as a "stellar" activity tracer. I limit the data to

the average stellar season length, roughly 100 days. I also select three chunks of data over

the available years in order to test the effectiveness of ⌫l over multiple phases of the solar

magnetic cycle, at highest, medium and lowest activity covered by the HARPS-N dataset.

5.2.4.1 Choosing a Realistic Stellar-like Cadence and Precision

In order to represent a typical observational schedule for a star in the context of exoplanet

detection, I pass through a second data selection process. A typical cadence for stars is

maximum of an observation a night. I therefore select only one observation taken each

day of data. I do not average all datapoints to daily bins, as that would get rid of effects

such as granulation and it would not be representative of the type of observations un-

dertaken for stars. I instead randomly select one observation over each 24 hour window.

In this analysis I do not account for the difference of integration time per exposure. The

5-minute exposure length of HARPS-N solar data is long enough to average out p-modes,

and all other physical process that can significantly influence the RV variations (e.g., super-

granulation) have baselines longer than the average exposure time of stellar observations.

I select three 100-day chunks over three stages of stellar activity. A high stellar activity

case is selected for BJD 2,457,235 to 2,457,335 (2015-Ju-31 to 2015-Nov-8), close to the start

of the HARPS-N solar observations, at the highest currently observed activity level. A

medium activity case is selected for BJD 2,457,716 to 2,457,816 (2016-Nov-23 to 2017-Mar-

3). A low stellar activity case is selected during the extended minimum of Cycle 24 for

BJD 2,458,950 to 2,459,050 (2020-Apr-10 to 2020-Jul-19). The selected chunks are shown

in Fig. 5.15 with vertical dashed lines. From here onward, only the observed HARPS-N
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Figure 5.15: The selected stellar season-like 100 days chunks for the analysis in Section 5.2.4 are shown by
vertical dashed lines. The SDO/HMI radial velocities are plotted in the darker blue, and the HARPS-N RVs
in the lighter green. Uncertainties are included but may be too small to be visible.

radial velocities will be considered in the analysis. As a reminder, given the matching

method summarised in Section 5.2.3.3, bad-weather breaks are already included. I note

that this already significantly reduced dataset will very likely still represent an ideal stel-

lar cadence. The Sun is still observed even with predicted SNR values down to 200. This

is not the case with EPRV targets. Although the two cuts mentioned in Section 5.2.2.1 will

eliminate data taken under not ideal conditions, these requirements are still more relaxed

than what would be expected of an EPRV target. Moreover, I have not considered the

possibility of telescope time competition. At the TNG, every hour of light is dedicated

uniquely to the solar telescope. Conversely at night multiple programs are competing for

time. It is therefore unlikely for a telescope with multiple programs to be able to achieve

the "once-a-day" cadence here selected over the entire season. Nevertheless, I have re-

duced the dataset considerably to a cadence similar to what new missions such as the

Terra Hunting Experiment (THE: Thompson et al. 2016) are aiming to achieve.

As mentioned in Section 5.2.2.2.1, the uncertainties on the mean longitudinal mag-

netic field derived directly from SDO/HMI errors are very small. No existing or planned

polarimetric survey of far-away stars could reach those levels. To better represent the stel-

lar case, I instead inflate the uncertainties of ⌫l to the best achieved uncertainty level of 0.2

G on fully detected mean longitudinal fields for Sun-like star by the BCool collaboration

(Marsden et al. 2014; Mengel et al. 2017). This is an optimistic floor that has been proven to

be achievable by polarimetric observations of Sun-type stars before, and it is the precision

level new spectropolarimetric instruments, such as the one currently in construction for
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the upcoming HARPS3, aim to achieve. I therefore use a constant error on ⌫l measure-

ments of 0.2 G. To match this uncertainty and to truly represent the inflated error, I also

inject into the dataset white noise randomly extracted from a Gaussian distribution with

a FWHM of 0.2 G.

5.2.4.2 Preliminary Analysis

High Stellar Activity Case: I start with the chronologically-first 100-day chunk: the high

stellar activity case. Over this window, I match 69 datapoints. The selected data is plotted

in Fig. 5.16. Even with a quick visual inspection, a clear periodic signal can be identi-

fied in the mean longitudinal magnetic field. Similarly to Section 5.2.3, I compute the

correlation between each considered activity indicator and the HARPS-N RVs, shown in

the first row of Fig. 5.18. At this stage the solar activity is strong and dominated by

rotationally-modulated effects, as highlighted by the high correlation between the RVs

and the indicators S-index, FWHM and bisector span. I also plot the Generalised Lomb-

Scargle periodograms of the all the time series for this chunk in Fig. 5.17. In this case,

as expected, all HARPS-N proxies and to a lower degree the radial velocities themselves

have power at the solar rotation period. Once again ⌫l is sensitive to the %rot and %rot/2

signals.

Medium Stellar Activity Case: A similar analysis is then undertaken for the medium

activity case. Over this window I match 47 datapoints. I plot the derived time series in Fig.

5.19. The correlation relationships between the RVs and the activity indicators are plotted

in the second row of Fig. 5.18. The computed Spearman rank correlation coefficient are

now significantly lower for all proxies and no correlation above 0.5 can now be found. I

can postulate that most of the rotationally modulated effects are now reduced in signifi-

cance with respect to other photospheric and chromospheric variability. As before, I also

perform a GLS periodogram analysis, as shown in Fig. 5.20. The activity signal is now

not strong enough to be picked out from a periodogram analysis of the RVs only, but it is

present in most of the investigated indicators. The FWHM retrieve the rotation period to

a False Alarm Probability of 1%. The S-index and ⌫l are the only ones that present power

at the rotational period over the 0.1% FAP level. It is of note that all HARPS-N activity
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Figure 5.16: High activity dataset selection. From top to bottom: mean longitudinal magnetic field, HARPS-
N radial velocities, S-index, FWHM, and bisector span. Some uncertainties may be too small to be clearly
visible.

Figure 5.17: GLS periodograms of the high activity data. From top to bottom: mean longitudinal magnetic
field, HARPS-N radial velocities, S-index, FWHM, and BIS. 1% and 0.1% False Alarm Probabilities are shown
as dotted and dashed gray lines. The vertical dash-dotted black line highlights the Carrington solar rotational
period.
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Figure 5.18: Correlation plots of the (from top to bottom) high, medium and low activity data selection of
the HARPS-N (here HN) radial velocities against the considered activity proxies. The data is colour-coded
based on date. The Spearman rank-order correlation coefficient of each pair is also included.

indicators are now also presenting a peak at ⇠40 days (not an harmonic of the rotational

period or one of its aliases). This peak exceeds the 0.1% FAP level in the S-index, the most

reliable of the common proxies in the previous analysis, making period determination

only based on its information trickier. Overall at medium activity, ⌫l already starts to

outperform other proxies in this preliminary analysis.

Low Stellar Activity Case: I repeat the same analysis once more with the last se-

lected dataset over the extended solar minimum. I match 79 datapoints. The extracted

time series are plotted in Fig. 5.21. At this level of activity the considered uncertainty of

0.2 G is comparable to the ⌫l signal itself. There is now no correlation between any of the

activity proxies and the radial velocities, as shown in the bottom row of Fig. 5.18. Most

of the rotationally-modulated effects are now overshadowed by other sources of activity.

Even a periodogram analysis yields no information regarding the periodicity of the Sun.

Most of the signal seems to in fact be aperiodic, as illustrated in Fig. 5.22.

5.2.4.3 Gaussian Process Regression Analysis

The usual next step in the analysis of radial-velocity data, especially in cases with high

correlation between indicators and RVs is to employ Gaussian process regression to model

the activity in the stellar proxies, as I have done before in Chapter 4 Section 4.2.6. This

is done in order to identify the hyperparameters that better fit the stellar signal, which
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Figure 5.19: Medium activity dataset selection. From top to bottom: mean longitudinal magnetic field,
HARPS-N radial velocities, S-index, FWHM, and BIS. Some uncertainties may be too small to be clearly
visible.

Figure 5.20: GLS periodograms of the medium activity data. From top to bottom: mean longitudinal magnetic
field, HARPS-N radial velocities, S-index, FWHM, and BIS. 1% and 0.1% False Alarm Probabilities are shown
as dotted and dashed gray lines. The vertical dash-dotted black line highlights the Carrington solar rotational
period.
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Figure 5.21: Low activity dataset selection. From top to bottom: mean longitudinal magnetic field, HARPS-N
radial velocities, S-index, FWHM, and BIS. Some uncertainties may be too small to be clearly visible.

Figure 5.22: GLS periodograms of the low activity data. From top to bottom: mean longitudinal magnetic
field, HARPS-N radial velocities, S-index, FWHM, and BIS. 1% and 0.1% False Alarm Probabilities are shown
as dotted and dashed gray lines. The vertical dash-dotted black line highlights the Carrington solar rotational
period.
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can then be used to inform priors in a second GP analysis of the RVs themselves. In this

work, I undertake the most uninformative Gaussian process regression analysis in order

to simulate a preliminary stellar rotation period search, or a "worse case scenario", in a

typical exoplanet detection. To model the stellar activity, I use a Quasi-periodic kernel

with an added white noise "jitter" term, as described by Eq. 4.2 in Chapter 4 Section 4.1.6.

The QP kernel has been successfully employed to model stellar activity in both

radial-velocity (e.g., Rajpaul et al. 2015; Barros et al. 2020) and stellar activity proxy analy-

ses (e.g., Haywood et al. 2014; Grunblatt et al. 2015). In this work, I test whether a similar

analysis could be undertaken with ⌫l and whether it could be more successful than the

same study done on other activity proxies. To do so I once again use the pipeline MAGP�-

RV. I run the same analysis for all time series: ⌫l, HARPS-N radial velocities, S-index,

FWHM and bisector span. All hyperparameters are bound by forced positive (larger than

0) uniform priors. The harmonic complexity ⇠ is bound by a uniform prior between [0,1].

I also bind both the period %rot and the evolution timescale ; with uniform priors between

[0,100] given the length of the selected window. I bind the white noise � with a Gaus-

sian prior centred in the mean value of the uncertainties of the considered dataset and of

width equal to 25% of said value, in order to avoid the GP explaining all the variability

in the form of white noise. These priors represent the amount of information I am able

to derive from initial analysis in the low activity case. For ease of comparison, I use the

same priors in all runs. For all analyses, I simultaneously evolve 200 chains over 50,000

iterations each, with a discarded burn-in phase of 10,000 steps. I assess the convergence

of the chains by computing the Gelman-Rubin statistics and define a chain as converged

only under a 1.1 convergence cut. Not all chains are able to converge with the described

priors. Instead of aiming for full convergence, I select a number of iterations with which

most of the parameter space for all datasets is investigated, and with which all ⌫l chains

are fully converged.

In this work, I focus on the hyperparameters useful for subsequent radial-velocity

fitting: the period of the solar activity signal, its evolution timescale and its harmonic

complexity. The amplitudes and jitters of each time series are not comparable. I plot the

posterior distributions after MCMC analysis of each considered hyperparameter in Figs.
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Figure 5.23: Collection of posteriors for the period %rot of the Quasi-periodic kernel after GP regression. From
left to right we consider the high, medium and low activity cases. From top to bottom we see the posteriors
of mean longitudinal magnetic field, HARPS-N radial velocities, S-index, FWHM, and BIS in their respective
colours. The Carrington solar rotation is here highlighted with a black dashed line. Note the shared y-axis
for each column.

5.23, 5.24 and 5.25. The high solar activity case is shown in the first column, the medium

is in the middle column, and the low activity case is in the third column. Each time series

is plotted on a different row.

The Rotational Period: I start the assessment from the period of the solar activ-

ity, in Fig. 5.23. For the highest activity case, the mean longitudinal magnetic field far

outperforms all other proxies and the RVs themselves in identifying the "correct" solar ac-

tivity period (here defined again by the Carrington solar rotational period and shown by

a dashed vertical line in the figure). Therefore, even in the case in which ⌫l is comparable

to other common proxies in a simple Fourier analysis, the mean longitudinal magnetic

field gains an edge in a GP regression framework. At medium activity, ⌫l is still able to

cleanly converge for the expected value. Even during the prolonged minimum, although
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not to high precision, ⌫l is the only time series able to identify the solar rotational period,

and the radial velocities are only sensitive to its first harmonic. When looking at all the

posterior results together, it is clear that only ⌫l is consistently successful at recovering the

solar rotation period. To do so, it requires little to no prior information, making it more

versatile, and it can converge much quicker than any other proxy, lowering the computa-

tional expense. In all cases, the HARPS-N activity proxies are unable to converge for any

periodicity and instead their posteriors peak at the top of the time window available for

exploration: 100 days. They model the activity in the data as a long period (longer than

the dataset) with shorter evolution timescale ; and higher ⌘. They therefore "assign" more

of the signal to other time-dependent hyperparameters. This is another confirmation of

the sensitivity of ⌫l to the solar rotation period. Radial velocities and their spectra- or

CCF-derived proxies rely on surface features and limb darkening modulation to pick up

the rotational period. On the other hand, the mean longitudinal magnetic field extracted

with spectropolarimetric observations is not only affected by limb-darkening and fore-

shortening. Its change in intensity with rotation is also exacerbated by the fact that we

are observing the line-of-sight component of the radial field, which will be at the largest

when the field is pointing directly at the observer and will approach zero when rotating

perpendicular to the line of sight, all together yielding a larger and clearer modulation in

the signal.

The Evolution Timescale: Similarly to the period, I plot the posterior distributions

of the evolution timescale ; in Fig. 5.24. All common activity proxies as well as the mean

longitudinal magnetic field prefer longer evolution timescales than the radial velocity.

The ; posterior distributions of the RVs peak at values comparable to the rotation pe-

riod. This result is also supported by previous analyses (e.g., Camacho et al. 2023). The

longer timescale recovered by ⌫l does not oppose the result of the RV analysis. In fact,

even assuming that the main source of the variations in ⌫l is the magnetic flux in the ac-

tive regions, the magnetic fields concentrated in said active regions have been shown to

have longer lifetimes than their photometric expression in the form of sunspots or faculae

(which are the source of the RV variations). A nascent active region (before any photo-

metric brightening or dimming of the solar photosphere) is an ensemble of small-scale

emergence events with a preferred magnetic orientation (Strous and Zwaan 1999). Af-
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Figure 5.24: Collection of posteriors for the evolution timescale after � of the Quasi-periodic kernel GP re-
gression. From left to right we consider the high, medium and low activity cases. From top to bottom we see
the posteriors of mean longitudinal magnetic field, HARPS-N radial velocities, S-index, FWHM, and BIS in
their respective colours. Note the shared y-axis for each column.
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ter the emerging of magnetic field concentrations, the Ca II intensity begins increasing,

usually with a time lag in the order of tens of minutes (Bumba and Howard 1965), and

convective collapse begins. It is then reasonable for the S-index also to converge to compa-

rable evolution timescales to ⌫l. Opposite magnetic polarities separate after 24 hours and

areas of the same polarity migrate towards each other to coalesce into larger features such

as pores (Van Driel-Gesztelyi and Green 2015). With increasing total field and as further

areas migrate and conglomerate, pores evolve in photometric active regions in the form

of spots and faculae (Cheung et al. 2017). With time (and with a lifetimes roughly of 15 to

60 days) photometric active regions gradually disappear. In this process opposite polarity

fragments magnetically reconnect and the flux slowly cancels itself. As coronal heating

decreases, the plages start dimming. Finally, the magnetic active region dissipates into

the magnetic background. Just as the lifetime of spots and faculae depends on their size,

the overall lifetime of magnetic active regions is proportional to the magnetic flux they

reach at maximum development (Van Driel-Gesztelyi and Green 2015). The results of ;

in ⌫l can therefore be reliably employed as upper bounds in following RV GP regression

analyses.

Harmonic Complexity: When looking at the posterior distributions for the har-

monic complexity, shown in Fig. 5.25, ⌫l is consistently in better agreement with the ra-

dial velocity than other proxies. The dashed vertical line indicates an harmonic complexity

equal to 0.5 (meaning that all complex features on the surface can be reduced to two active

regions on opposite sides of the solar sphere rotating in and out of view). This result is

in line with the conclusions in Jeffers and Keller (2009). From the formulation of the QP

kernel in Eq. 4.2, a higher value of ⇠ means a smoother curve in-between periods, or a

lower inner-period complexity. These results seem to contradict the conclusions of the

analysis in Section 5.2.3, that the mean longitudinal magnetic field exhibits less complex

signals than the other proxies. However first, the posterior distributions in Fig. 5.25 need

to be considered within the larger context of the Gaussian process analysis. I cannot do a

direct comparison of the extracted best-fit parameters between ⌫l and the HARPS-N ac-

tivity proxies, as the latters were not able to recover the "correct" period and are therefore

modelling the activity in a completely different manner. For example, I note that for all

levels of activity, the most probable jitter term describing the best-fit GP function to the
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Figure 5.25: Collection of posteriors for the harmonic complexity ⇠ of the Quasi-periodic kernel after GP
regression. From left to right we consider the high, medium and low activity cases. From top to bottom we
see the posteriors of mean longitudinal magnetic field, HARPS-N radial velocities, S-index, FWHM, and BIS
in their respective colours. The black dashed line highlights the 0.5 harmonic complexity. Note the shared
y-axis for each column.
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activity indicators after MCMC optimisation is consistently larger (ranging between twice

to 20 times as large) than the average uncertainty in the corresponding time series. This is

not the case for ⌫l. I therefore postulate that a significant part of the signal in the proxies

is not being modelled by the GP at all and it is instead accounted for by the large jitter.

Overall, with this analysis I show that the mean longitudinal magnetic field is a

great rotational period detector. It is more effective than the RVs themselves or all other

considered activity proxies, as it consistently outperforms them over all solar activity lev-

els. It is more efficient than the other time series, as it requires the least amount of prior

information to converge the the "correct" value and needs the shortest computational time.

A GP regression analysis of ⌫l is not only useful to find or confirm the period of the quasi-

periodic variations, but the results of other hyperparameters can also inform a second GP

analysis of the RVs themselves. The harmonic complexity posterior of the mean longitu-

dinal magnetic field can be used as a prior for the RVs, as I have proven that they are in

agreement over all activity levels. Moreover, the evolution timescale derived for ⌫l can

inform the upper bound of the same hyperparamter for the RVs.

5.2.5 Conclusions

In this work I analysed the solar mean longitudinal magnetic field as a rotational period

detector and as a tracer for the mitigation of activity-induced variations in RV surveys in

the context of exoplanet detection. I considered the longitudinal magnetic field extracted

from SDO/HMI observations alongside the �RVs derived with a model from the same

data. I performed correlation analysis, I computed their structure functions, Generalised

Lomb-Scargle periodograms and autocorrelation functions, and I tested for the presence of

any time lag between the two time series. In parallel I duplicated all the analyses with Sun-

as-a-star observations taken by the HARPS-N spectrograph (I considered the HARPS-N

derived radial velocities, the S-index, and the full-width at half-maximum and the bisector

span of the CCF). I find the following:

• ⌫l does not directly correlate to the RVs. This lack of correlation is not activity-level

dependent. ⌫l cannot therefore be employed as a direct proxy of the solar activity in

the radial velocities. I however find that the time series of the RMS of ⌫l computed
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over a window size comparable to the solar rotation period does correlate well with

the RVs smoothed over the same amount of time. With a rudimentary sine function

fitted to the RMS of ⌫l and subtracted from the SDO/HMI�RVs, I am able to reduce

the radial velocity scatter by more than 60%. ⌫l can therefore be used to successfully

model out the long-term RV signal due to the magnetic cycle of the Sun.

• ⌫l has a significantly simpler structure function than all other considered time series,

with a characteristic timescale of ⇠10 days.

• ⌫l is an effective solar rotation detector. Even when the same cadence and baseline

are considered between the SDO/HMI and the HARPS-N data, the periodogram

of ⌫l only presents peaks at the Solar Carrington rotational period and to a lesser

extent to at its first and second harmonics. None of the other considered proxies

or either of the radial velocities are as simple, and in most cases no clear rotation

period can be isolated with a Fourier analysis. This point is further confirmed by

an autocorrelation analysis, in which the rotation period signal of ⌫l stays clear and

strong over multiple rotations.

• A lag analysis is performed and a minorly relevant lag between ⌫l and the RVs is

found at roughly �7.5 days. This lag appears to be driven by the signal generated by

active regions. These results, however, change significantly based on which section

of the solar RVs are considered and based on the level of the magnetic cycle.

Overall, I therefore have proven that with high cadence and a long baseline, the

mean longitudinal magnetic field is a very effective solar rotational period detector, and

it can be used to inform the understanding of the physical processes happening on the

surface of the Sun. This is, however, not representative of the type of observational time

series taken for exoplanet detection. Therefore, I also test the ⌫l as a "stellar activity tracer".

I degrade the time series to 100-day windows, with a single observation per night, and

inflate the uncertainties in ⌫l to those achieved by previous polarimetric surveys. I then

perform a typical preliminary analysis followed by Gaussian process regression with a

Quasi-periodic kernel. I perform the same analysis for three chunks of data over high,

medium and low activity levels. I find the following:



��� CHAPTER �. SOLAR ACTIVITY

• The mean longitudinal magnetic field starts outperforming the other activity indi-

cators in a preliminary periodogram analysis from the medium activity level.

• After one-dimensional GP regression, ⌫l is the only time series that is able to suc-

cessfully recover the "correct" rotational period over all levels of activity. It does so

with the shortest convergence time and with little to no prior information.

• ⌫l recovers a longer evolution timescale than the RVs.

• The best-fit harmonic complexities of ⌫l and the RVs strongly agree within uncer-

tainties.

With this analysis, I have re-confirmed the mean longitudinal magnetic field as an

effective and efficient rotational period detector, with exoplanet-survey-like time series

and over all levels of solar activity. The best-fit values extracted from the posteriors of the

other hyperparameters can be used as prior information for a follow-up RV GP regression.

This work also highlights the need of time series of polarimetric data for less magnetically

active stars, for more fields than simply exoplanetology.
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Chapter 6

The Conclusion

“If you torture the data long enough, it will confess”

— Ronald Coase

6.1 Concluding Remarks

The radial-velocity method is one of the most promising avenues for the detection of exo-

planets. With the recent sub-m s�1 precision reached by ultra-stable spectrographs such as

HARPS-N, a new horizon of rocky planets in long-orbits has become within reach. How-

ever, the greatest challenge for the detection and characterisation of exoplanets is now

stellar variability. Activity on the surface of stars often strongly dominates the RV budget,

and it can easily obscure or mimic a Keplerian signal. Chapter 1 addresses and describes

the main sources of stellar variability over all timescales relevant to radial-velocity sur-

veys. Dramatic events such as flares and coronal mass ejections can easily be accounted in

an RV analysis, and some oscillation modes can be averaged-out with long enough expo-

sures, but the quasi-periodic variability imprinted by active regions on the stellar surface

is still tricky to model. Moreover, we are now probing for the first time stellar effects with

induced scatter under the m s�1, such as supergranulation and meridional flows. These

processes are still not fully understood and cannot yet be corrected for.

To address these signals, the exoplanet community has developed and adapted a

large variety of modelling techniques aimed at the mitigation of stellar variability and
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the precise retrieval of planetary oscillations. In Chapter 2 I describe the most common

methods to model stellar activity. All techniques rely on the fact that a pure Doppler-shift

caused by the gravitational pull of an exoplanet orbiting the star affects all absorption lines

of the observed spectrum in the same way and with the same velocity. On the opposite,

stellar activity tends to distort the profiles of spectral lines, depending on their physical

characteristics. However, the limited resolution and precision of observations is such that

a precise RV cannot be derived simply by computing the shift of a single spectral line, and

stellar processes affect different lines in unique ways. Basic methods for RV extraction

generally combine all the information of all absorption lines in the spectrum into a single

line profile, and compute RVs based on its peak. It is possible to account for some of

the effects of stellar activity in the RV extraction, by either modelling the spectra or by

using their cross-correlation functions (CCFs), as listed in Sections 2.1.2 and 2.1.3. Activity

indicators can also help in identifying stellar signals. Whether they are derived from lines

in the spectrum or from the CCF, they are designed to not be sensitive to Keplerian signals

and to only map the variability caused by magnetic activity. Finally, there are also many

techniques to study the RV time series themselves that either focus on the recognition of

periodic signals, such as periodograms, or aim to directly model the stellar variability, as

Gaussian processes.

Gaussian Process (GP) regression has in fact been proven to be a very successful

technique for the mitigation of stellar activity, as it is able to model the variability with-

out making any assumption about its functional form. In Chapter 3, I describe GPs in

the context of probabilistic theory and Bayesian inference, and I introduce MAGP�-RV.

MAGP�-RV is a Gaussian process regression pipeline with Markov Chain Monte Carlo

parameter space searching algorithms I developed in the context of exoplanet detection

and characterisation. It allows to simultaneously model stellar activity, described by a GP

with the chosen covariance function, and Keplerian signals in the RVs as well as transits

in photometric data.

I then use this pipeline for the analysis of two planetary systems, as reported in

Chapter 4. In Section 4.1, I present the detection and characterisation of an inner mini-

Neptune in a 9.2292005±0.0000063 day orbit and an outer mono-transiting sub-Saturn
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planet in a 95.50+0.36
�0.25 day orbit around the moderately active, bright K5V star TOI-2134.

Based on the analysis of five sectors of TESS data, I determine the radii of TOI-2134b and c

to be 2.69±0.16 R� for the inner planet and 7.27±0.42 R� for the outer one. After careful pe-

riodogram analysis, the masses of both planets are derived based on RVs observed with the

HARPS-N and the SOPHIE spectrographs via Gaussian Process regression: 9.13+0.78
�0.76 M�

for TOI-2134b and 41.89+7.69
�7.83 M� for TOI-2134c. I analysed the photometric and radial-

velocity data first separately, then jointly. The inner planet is a mini-Neptune with density

consistent with either a water-world or a rocky core planet with a low-mass H/He enve-

lope. The outer planet has a bulk density similar to Saturn’s. The outer planet is derived

to have a significant eccentricity of 0.67+0.05
�0.06 from a combination of photometry and RVs.

I compute the irradiation of TOI-2134c as 1.45±0.10 times the bolometric flux received by

Earth, positioning it for part of its orbit in the habitable zone of its system.

In Section 4.2, I include the work done in collaboration with Dr. Dalal and published in

Dalal et al. (2024). As part of the HARPS-N Rocky Planet Search programme, we present

the discovery of three super-Earth candidates orbiting HD 48948, a bright K-dwarf star

with an apparent magnitude of <+ = 8.58 mag. Various methodologies were applied to

extract the radial velocities from the spectra, and a comprehensive comparative analy-

sis of possible system architectures obtained through these diverse extraction techniques

was also conducted. In this work, I focus on the study of the activity-corrected RVs (after

������ post-processing) and the one-dimensional GP analysis undertaken to identify the

masses of the three planet candidates. This study reveals three planetary candidates with

orbital periods of 7.3, 38, and 151 days, and minimum masses estimated at 4.96±0.42 M�,

7.45 ± 0.75 M�, and 10.67 ± 0.90 M�, respectively. The outermost planet is also found to

reside within the (temperate) habitable zone, positioned at a projected distance of 0.02900

from its star.

In parallel, I also analysed solar data in order to develop a better understanding of

the processes driving stellar variability. The Sun is a fairly representative star of the sample

of targets that are generally selected for RV surveys, and most crucially it is the only star we

can spatially resolve. In Chapter 5 I list the most important solar disc-integrated RV dataset

and I introduce the S��A���� pipeline (Ervin et al. 2022a; Ervin et al. 2022b). S��A���� is

a tool that allows for the scrambling of resolved, full-disc solar observations taken by the
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Helioseismic and Magnetic Imager on board of the Solar Dynamics Observatory, into Sun-

as-a-star time series, comparable to the data measured by ground-based spectral surveys.

Building on the work of Haywood et al. (2022), I use this pipeline to derive disc-integrated

longitudinal magnetic field data in order to asses its uses in radial-velocity surveys. In

Section 5.2, I show that the mean longitudinal magnetic field is an excellent rotational

period detector and a useful tracer of the solar magnetic cycle. In order to put these results

into context, I compare the mean longitudinal magnetic field to three common activity

proxies derived from HARPS-N Sun-as-a-star data: the full-width at half-maximum, the

bisector span and the S-index. I find that the mean longitudinal magnetic field does not

correlate with the RVs and therefore cannot be used as a one-to-one proxy. However, with

high cadence and a long baseline, the mean longitudinal magnetic field outperforms all

other considered proxies as a solar rotational period detector, and can be used to inform

our understanding of the physical processes happening on the surface of the Sun. I also

test the mean longitudinal magnetic field as a "stellar activity tracer" on a reduced solar

dataset to simulate stellar-like observational sampling, including realistic telescope time

scheduling and seasonal visibility. With a Gaussian process regression analysis, I confirm

that, as for the Sun, the mean longitudinal magnetic field is the most effective and efficient

rotational period indicator over different levels of stellar activity. These results highlight

the need for polarimetric time series observations of stars.

6.2 Next Steps

Through this thesis, I have highlighted the need of novel techniques to mitigate the stel-

lar activity in order to reach the precision necessary to detect Earth-analogues. Gaussian

processes represent an exciting tool to develop in order to break this stellar variability bar-

rier. In my future work I intent to tackle this issue with two separate but complementary

approaches.

6.2.1 Introducing Non-Stationarity to GPs for Exoplanet Detection

Recent works (e.g., Klein et al. 2024) have proven that new modelling techniques are re-

quired for the accurate and precise detection of small exoplanets in wide orbits. While
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GP regression with a Quasi-periodic kernel has been very successful at mitigating stellar

activity due to rotationally modulated effects, it does not perform as well on longer so-

lar time series. Modelling solar data with baselines longer than roughly two years does

not yield better results than modelling the same time series in separate chunks. As all

stars are expected to undergo magnetic cycles, these results mean that missions such as

the Terra Hunting Experiment will not be able to count on their long-term monitoring

for increased planet detectability. The reason for this is simple: the covariance relation-

ships between each set of datapoints change based on the stage of the magnetic cycle. We

therefore cannot employ a single kernel with static hyperparameters to model the entire

time series. I aim to develop a novel technique to model long-baseline time series and in

particular their behaviours due to the magnetic cycle. As a first step, I plan to pinpoint the

best way to model the long-term solar variability due to the cycle. The change in filling

factors on the surface of the Sun imprints a typical skewed sinusoidal trend on the RVs.

I plan to test whether this effect is best mitigated by fitting an additional squared expo-

nential kernel (for example by simultaneous fit with activity indicators). The outputs of

this preliminary analysis will not only guide my decisions for following developments,

but will also represent the first systematic study on the mitigation of the magnetic cycle

in the context exoplanet hunting. The real challenge is presented by the development of

non-stationary physically motivated kernels. I plan to approach this problem with two

separate but compatible approaches. On one hand, I plan on building on the previous

work of Remes et al. (2017), and extend their proven formulation for non-stationarity to

the Quasi-periodic kernel, following the programming formatting of open source Python

packages such as ������. On the other hand, I aim to also develop a technique to simulta-

neously model separate sections of the same time series with different stationary kernels,

while requiring a continuous solution. This goal will most likely require the introduction

of temporal-based damping and amplifying parameters to allow for one or another for-

mulation of the same kernel to dominate. The results of this analysis will build towards

a new modelling standard for Gaussian process regression in planet detection studies.
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6.2.2 Modelling the Spectrum with GPs

I also plan to apply GP regression to spectral line characteristics and to eventually use

GPs to model sections of spectrum. Building on the prior works of Miklos et al. (2020),

Siegel et al. (2022), and Wise et al. (2022), I aim to first focus on absorption line-dependent

information in order to disentangle how different lines react to stellar activity and how

their distortions contribute to the RVs. Understanding how the physical properties of

spectral lines influence the sensitivity of RV measurements to stellar variability is vital to

isolate its effects and to develop new mitigation techniques. This method will allow me to

robustly analyse the temporal changes in the shape of lines based on their physical prop-

erties (such as formation temperature or atomic source) or on their responses to physical

processes (such as magnetic sensitivity measured via Landè g-factor). After computing

line characteristics such as the average equivalent-widths and line-depths for each line

group in each observation, I will model these time series using GP regression. This pro-

cess will isolate which line-groups are most sensitive to specific sources of stellar activity

at the various stages of the magnetic cycle, and are therefore the most useful to model

them. As a next step, I aim to also look into the spectra directly. I will model distortions

generated by stellar activity in each observation in the wavelength-domain using GPs.

As described in Chapter 2 Section 2.1.1, Rajpaul et al. (2020) presented a proof-of-concept

methodology in the realm of planet detection. They assume that the only variability in the

spectra is generated by Doppler shifts and show that even a crude implementation yields

comparable precision RVs with significantly lower dispersion than traditional RV extrac-

tion methods. Even in a basic form, implementing GPs to model the observed spectra can

significantly facilitate their study. I thus plan to develop a robust technique to apply GP

regression with MCMC likelihood optimisation to spectral data.
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