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Abstract
The adversarial attack can force a CNN-based model to produce an incorrect output by 
craftily manipulating human-imperceptible input. Exploring such perturbations can help us 
gain a deeper understanding of the vulnerability of neural networks, and provide robustness 
to deep learning against miscellaneous adversaries. Despite extensive studies focusing on 
the robustness of image, audio, and NLP, works on adversarial examples of visual object 
tracking—especially in a black-box manner—are quite lacking. In this paper, we pro-
pose a novel adversarial attack method to generate noises for single object tracking under 
black-box settings, where perturbations are merely added on initialized frames of tracking 
sequences, which is difficult to be noticed from the perspective of a whole video clip. Spe-
cifically, we divide our algorithm into three components and exploit reinforcement learning 
for localizing important frame patches precisely while reducing unnecessary computational 
queries overhead. Compared to existing techniques, our method requires less time to per-
turb videos, but to manipulate competitive or even better adversarial performance. We test 
our algorithm in both long-term and short-term datasets, including OTB100, VOT2018, 
UAV123, and LaSOT. Extensive experiments demonstrate the effectiveness of our method 
on three mainstream types of trackers: discrimination, Siamese-based, and reinforcement 
learning-based trackers. We release our attack tool, DIMBA, via GitHub https://​github.​
com/​Trust​AI/​DIMBA for use by the community.
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1  Introduction

While deep learning has achieved a breakthrough in solving the problems that have been 
experienced by the artificial intelligence and machine learning community over the past 
decade, several studies have revealed that Deep Neural Networks (DNNs) are vulnerable 
to adversarial perturbations (Goodfellow et al., 2015) on image processing tasks (Moosavi-
Dezfooli et al., 2016; Szegedy et al., 2014; Xie et al., 2017). For images, such perturbations 
are often too small to be perceptible, yet they can completely fool a DNN classifier, detec-
tor, or segmentation analyzer, causing them to predict incorrect categories or contours. 
This leads to great concerns under the circumstances where deep learning models are 
deployed rapidly in safety and security-critical applications in particular, e.g., self-driving 
cars, surveillance, drones, and robotics  (Mnih et al., 2015). Besides the computer vision 
applications, recent works also investigate adversarial attacks on other tasks, e.g. natural 
language processing (Zhang et al., 2019a), audio recognition (Yakura & Sakuma, 2019), 
and malware detection (Grosse et al., 2017).

Single object tracking(SOT), as one of the fundamental problems in computer vision, 
has recently experienced tremendous improvement through DNNs and plays a significant 
role in practical security applications such as self-driving systems, robotics, etc.,  Mnih 
et al. (2015). In terms of the tracking procedure, it can be mainly divided into three catego-
ries, Siamese-based trackers (Bertinetto et al., 2016; Li et al., 2018; Zhang et al., 2019b; 
Zhu et al., 2018), discrimination trackers (Danelljan et al., 2019, 2020), and reinforcement 
learning-based trackers (Yun et al., 2017). Siamese-based trackers define the tracking prob-
lem as a one-stage detection problem and locate the object on subsequent frames that have 
the most similar feature representations with the initial template, their reliance on initial-
ized frames especially targeted regions is fully exploited in our proposed algorithm. In con-
trast, discrimination trackers predict object locations based on two sub-modules, which are 
target classification and target estimation. The third category, reinforcement learning-based 
trackers, formulate the whole tracking procedure as a Markov Decision Process and select 
different actions according to the agent state at the current step. In recent years, after the 
concept of adversarial attack was proposed by Szegedy et al. (2014), intensive follow-up 
methods were inspired to demonstrate various adversaries to deceive deep learning mod-
els (Goodfellow et al., 2015; Kurakin et al., 2017; Madry et al., 2019), adversarial attacks 
concerning visual object tracking have also been explored by plenty of works. For example, 
Yan et al. (2020a) has proposed a Cooling-Shrinking Loss to train the perturbation genera-
tor to achieve an effective and efficient adversarial attacking algorithm. Moreover, spatial-
temporal sparse noise was applied in Guo et al. (2020) along targeted or untargeted trajec-
tories. By categorizing the tracking problem into classification and regression branches, 
Chen et al. (2020) focused on free-model object tracking with dual attention.

Whereas, current attack algorithms applied on SOT exhibit several limitations that may 
severely restrict their generality in practice. Specifically, we highlight the following disadvan-
tages: (1) Most tracking adversaries cannot be extended to black-box SOT applications. Given 
comprehensive knowledge of model architecture and parameters, miscellaneous approaches 
are capable of generating effective perturbations over the whole video clip based on the com-
putation of network gradient. However, the target network is often inaccessible within safety-
critical scenarios where we can only obtain hard-label predictions during the whole tracking 
procedure. Therefore, practical black-box attack algorithms are worthy of exploration. (2) 
Current methods compose perturbations often on multiple frames. As illustrated above, exist-
ing white-box attacks can realize powerful overall results, but most of them are derived from 
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noises attached to a large portion of frames. Although the initial frame of a video plays a 
vital role in SOT, few works pay attention to this, either in white-box or black-box scenarios. 
For instance, the Hijacking algorithm (Yan et al., 2020b) generates an adversary on a special 
clip of the video, and the IoU attack (Jia et al., 2021) proposes a continuous black-box attack 
framework imposed from the 2nd frame to Nth frame. (3) Recent query-based black-box attacks 
applied on SOT do not consider computational efficiency. As far as we know, none of the 
existing query-based black-box attacks on SOT considers query efficiency. Jia et al. (2021) 
focuses on temporal correlations between adjacent frames. The gradually increasing pertur-
bation magnitude can surely influence the tracking performance, but its effectiveness heavily 
relies on query times for each frame and the randomness of the Gaussian distribution.

Overall, different from black-box attacks on image classification or segmentation where 
perturbations are merely added to a single picture, the tracking performance in SOT is deter-
mined by the whole video clip, and as the number of perturbed frames increases, adversar-
ies will be detected more easily. Meanwhile, the gradient information is completely lacking 
within black-box scenarios. It seems that a sacrifice of query times is unavoidable to improve 
adversarial results in a query-based black-box attack. Therefore, we propose a question:

Can we combine efficiency and effectiveness in black-box attack on SOT?

Or in other words, can we select the most fragile part of a video, and realize heavily shifted 
tracking results more quickly? In this paper, we propose the Discrete Masked Black-Box attack 
(DIMBA) algorithm, which is mainly inspired by mechanisms of SiamRPN-based trackers 
that achieve the balance between speed and performance based on initialized frames and gen-
eralized to other types of trackers. In contrast to previous works, we firstly introduce the deci-
sion-based attack strategy by crafting heavy perturbations on significant regions in the initial 
frame, then remove unnecessary noises and decrease the adversarial magnitude using a zeroth-
order optimization algorithm. In summary, the key contributions of our paper are as follows: 

(1)	 We formulate the query-based black-box attack problem on SOT in a query-efficient 
manner. Compared to recursively generated perturbations in each frame, we only focus 
on significant regions in the initial frame, and firstly introduce a decision-based attack 
strategy in adversarial SOT problems.

(2)	 To reduce unnecessary patch-based heavy perturbations on specific areas in initialized 
frames, and increase the probability of generating perturbations causing similar attack 
performance within a smaller perturbing radius, we introduce a novel grid searching 
strategy.

(3)	 The comprehensively devised experiments over OTB100, UAV123, LaSOT, and 
VOT2018 datasets show that DIMBA attack can generate perturbations more effi-
ciently, and achieve competitive or even better performance compared to SOTA black-
box attacks on SOT.

2 � Related works

2.1 � Adversarial attacks on visual object tracking

Wide applications of visual object tracking have led to numerous specialized real-
world techniques, which have also resulted in well-crafted attacks from the adversarial 
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perspective. Taking the realm of physical world attacks into account, Eykholt et al. (2018) 
analyzed adversarial stickers on stop signs in the context of autonomous driving to fool 
YOLO (Redmon et al., 2016). Jia et al. (2019) proposed a ‘tracking hijacking’ technique to 
fool multiple object trackers with imperceptible perturbations computed for object detec-
tors in the perceptual pipeline of autonomous driving. Meanwhile, Yan et al. (2020a) devel-
oped an attacking technique to deceive single object trackers based on SiamRPN++ (Li 
et al., 2018). Their method trains a generator model to construct adversarial frames under 
a ‘cooling-shrinking’ loss, which is manipulated to cool down the hot target regions and 
force the bounding boxes to shrink during online tracking. Huang et al. (2020) delved into 
physical attacks on object detectors in the wild by developing a universal camouflage for 
object categories. One-shot attack (Chen et al., 2020) demonstrated the possibility to craft 
adversaries in the first frame of a video clip, forcing trackers, especially SiamRPN-based 
ones to lose the target in subsequent frames. A spatial-aware attack (SPARK) is proposed 
in Guo et al. (2020) to fool online trackers. This approach imposes an Lp constraint over 
perturbations while computing them incrementally based on previous frames. Extensive 
experiments show that their adversaries are capable of fooling multiple state-of-the-art 
trackers.

Different from the above methods proposed in white-box settings,  Jia et  al. (2021) 
explores the black-box attack by utilizing temporal correspondence between adjacent 
frames and incrementally adding noises from the second frame to subsequent frames. From 
the perspective of attack strategies, however, it focuses on locally anchored noises between 
adjacent templates and relies excessively on the successful randomness of perturbations in 
earlier frames due to the temporal momentum, which in essence sacrifices the efficiency 
for generality. Therefore in this paper, we make full use of the prior knowledge of search 
regions in the initial frame, especially existing in SiamRPN-based trackers, to improve the 
query efficiency: Formulating tracking as a one-shot detection problem, SiamRPN-based 
trackers aim at locating objects that have similar appearance with the initial template on 
the search region in each frame. Though search regions are not considered in reinforcement 
learning-based trackers, the initial frame plays an important role as the starting point of 
iterative actions in RNN-based frameworks. Equivalently in discriminative tracking pro-
cesses, the target classification and location regression module can be impacted by attached 
perturbations surrounding the object on the first frame.

In Table 1, we compare our proposed method with previous attack algorithms from dif-
ferent perspectives, including the knowledge of perturbed models, number of frames under 
adversarial attacks, transferability of adversaries between different trackers, and whether or 
not the proposed algorithm is a decision-based one. 

2.2 � Deep reinforcement learning

Due to its ability to scale to previously intractable decision-making problems, Deep Rein-
forcement Learning (DRL) has been a growing area recently. Kickstarting this revolu-
tion  (Mnih et  al., 2015), for example, firstly learns to play a range of Atari 2600 video 
games at a superhuman level directly from pixel-level knowledge, whilst demonstrating 
that RL agents could be trained on raw, high-dimensional observations based on reward 
signals. As another standout success, AlphaGo (Silver et al., 2016) parallelled the historic 
achievement of IBM’s Deep Blue and defeated a human world champion in Go.

Over time, several types of RL algorithms have been introduced and they can be divided 
into three groups: Actor-Only, Critic-Only, and Actor-Critic methods. Policy gradient 
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methods such as REINFORCE algorithms  (Williams, 1992) are chiefly Actor-Only and 
optimized over a large set of parameterized policies. In contrast, Critic-Only meth-
ods including Q-learning (Watkins & Dayan, 1992) and SARSA (Sutton & Barto, 2018) 
approximate solutions to the Bellman equation and learn the optimal value functions. To 
combine the advantages of Actor-Only and Critic-Only methods, Actor-Critic methods 
generate continuous actions step by step, while the large variance in the policy gradients of 
an Actor is reduced by a Critic.

3 � Methodology

In this section, we first introduce the preliminaries of our proposed attack method. As 
shown in Fig. 2, The general pipeline of our algorithm consists of three parts. Firstly, We 
introduce a momentum-based as well as a patch-based perturbation generation process 
to accumulate heavily perturbed frames as candidate examples. Then a key-patch selec-
tion module divides the object-surrounding noise into different regions and computes the 
importance for each of them so that we can remove less important patches step by step and 
remain the approximately same attack results within a bounded range. At last, an iterative 
boundary-walking strategy is utilized to compress perturbation magnitude while maintain-
ing attack results within a specific region. Perturbed by our method, Fig. 1 quantitatively 
illustrates IoU scores with the increase of frame indexes For simplicity, only One Pass 
Evaluation (OPE) is considered in the following sections.

3.1 � Preliminaries

We denote a video sample by v ∈ V ⊂ ℝ
N×H×W×C with N, H, W, C referring to the num-

ber of frames, height, width, and the number of channels respectively. A specific frame 
can be denoted as vi(i ∈ 1,…N) , where N is the length of video v. Generally, SOT learns 
a tracking model T(v;�) ∶ V → ⇐B⇔S⇒ by minimizing regression loss between ground 
truth and predicted bounding boxes in each frame and maximizing similarity of predicted 
bounding boxes between adjacent frames. B ∈ R

(N−1)×4 indicates localizing matrix, where 
each row [xi, yi,wi, hi] denotes the x-axis and y-axis coordinates, width, and height of the 
predicted bounding box for vi(The initialized frame and its ground truth bounding box are 
prior knowledge). Meanwhile, S collects the highest confidence scores for each frame. 
According to the evaluation method, SOT can be summarized into two categories. The first 

Table 1   A high-level comparison with previous attack methods on visual object tracking

Methods Black-box Single-frame Transferability Deci-
sion-
based

Hijacking (Jia et al., 2019) ✗ ✔ ✗ ✗
UP (Ding et al., 2021) ✗ ✗ ✗ ✗
One-Shot (Chen et al., 2020) ✗ ✔ ✔ ✗
Spark (Guo et al., 2020) ✗ ✗ ✔ ✗
IoU (Jia et al., 2021) ✔ ✗ ✗ ✗
Proposed attack ✔ ✔ ✗ ✔
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one initializes only once in a single video, which is also called One Pass Evaluation (OPE). 
In contrast, the second approach can restart the tracker several frames after the failed one, 
such as testing trackers on Visual Object Tracking Challenge 2018  (Kristan, 2018). The 
goal of an adversarial attack in SOT is to find an adversarial example v∗ that can fool the 
network to make a shifted or even target-lost bounding box in the sequence, while keeping 
v∗ within the �-ball centered at v using Lp normalization ‖v∗ − v‖p , where p can be 1, 2 or 
∞ . Here in this paper, we mainly focus on the L∞ norm and SSIM similarity (Wang et al., 
2004) for comparison to clean frames.

Although there are multiple evaluation metrics for SOT across various challenges, 
we decide to explore two standards that are in most common use for visual tracking, 

Fig. 1   Visualization of tracking results generated by trackers from three different tracking categories under 
DIMBA Attack, including SiamRPN++  (Li et  al., 2019) (left), ADNet  (Yun et  al., 2017) (middle), and 
PrDiMP50  (Danelljan et  al., 2020) (right). Clipped frames above the chart qualitatively demonstrate the 
behaviors of trackers with or without attack. Green bounding boxes refer to ground truths, blue ones meas-
ure original tracking results, and red ones illustrate failed tracking performance. The charts below indi-
cate IoU scores between predicted bounding boxes and ground truths, and the tracking performance with or 
without attack is separately represented in red and blue lines (Color figure online)

Fig. 2   Overview of DIMBA framework, which contains heavy perturbation generator, key patch selection, 
and sign attack module, a Heavy Perturbation Generator initially constructs candidate adversarial videos, 
originating from either momentum-based approach or patch-based approach. b Key Patch Selection assigns 
the mask value of heavily perturbed patches to be 0 based on an Actor-Critic network, of which structure 
is proposed above. c Sign Attack Module estimates gradients around designated directions calculated from 
previous steps and compresses adversarial magnitude while maintaining attack results within a specific 
region
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represented as A and R , short for accuracy and robustness. A denotes the average of 
IoU scores of all frames that contain overlapping perturbed bounding boxes and pre-
dicted bounding boxes until the end of video or reinitialization. R weights the tracking 
performance according to the number of failed frames in a discounted reward manner. 
These two values can be calculated as:

where IoUi represents Intersection over Union between predicted B̂i and ground truth B̂i . �a 
and �r state discounted factors for accuracy and robustness, highlighting the impact of sub-
sequent tracking performance across the video clip. Similar to SPARK (Guo et al., 2020), 
we split the video into several intervals with length L based on Frame Per Second.

Generally, attacks on SOT can be categorized into untargeted and targeted attacks. In this paper, 
we mainly focus on untargeted attacks, generating adversarial videos based on object motions to 
degrade the overall tracking performance or deviate the tracker across the whole video clip.

3.2 � Heavy perturbation generator

In the first stage of our algorithms, we generate a group of heavily perturbed videos as 
candidate adversarial examples. To diversify perturbations and increase the probability of 

(1)IoUi =
B̂i ∩ Bi

B̂i ∪ Bi

, roi =

{
1, IoUi ∈ (0, 1],

0, else.

(2)A =
1

N
×

N∑
i

(�a)
i∕∕LIoUi ∗ roi, R =

N∑
i

(�r)
i∕∕Lroi
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successful attacks, we synergistically exploit patch-based and momentum-based perturba-
tion generators.

In the patch-based perturbation generating process, we randomly select a certain num-
ber of candidate videos from the dataset consisting of the attacked video. For each candidate 
video, we randomly pick up a frame and crop an image patch using a window that has the 
same size as the ground truth bounding box in the initial frame of the attacked video. Then 
we can construct a set of cropped patches that can be added to the initial frame of the target 
video. Different from classification tasks such as video recognition or human action recogni-
tion, where we regard each video frame as a whole to feed the underlying model and extract 
feature representation, the final objective of all SOT problems is to accurately locate objects 
in subsequent frames, therefore it is intuitively to craft noises on the region surrounding the 
object instead of marginal regions. To do so, we randomly select a group of areas from the 
search region around the initial frame, and craft patch perturbations over these areas, then we 
are capable of adding these perturbations to the adversarial candidate set V.

On the other hand, we propose a momentum-based perturbation generator, which esti-
mates gradient directions by accumulating historical velocity vectors. IoU Attack (Jia et al., 
2021) leverages this concept and extends it to the temporal correspondence among con-
tinuous frames. Inspired by this, we delve into the spatial correspondence following MI-
FGSM. As illustrated in Algorithm 1, after collecting patch-based adversarial candidates 
in the set V , for each perturbing level �

k
 , where � is the overall adversarial magnitude, and 

k is the number of iterations, we randomly sample C perturbing directions denoted as g′ , 
then adversaries are crafted along the historically optimal direction progressively until the 
magnitude of perturbation exceeds the �-ball bound around the initial frame v0 . Balanced 
by trade-off factor � , if the tracking performance decreases, we then update and get the 
optimal gradient gopt with momentum. With the momentum-based generator, we can get 
optimal adversarial frames in each perturbing level. Particularly, if any of these adversaries 
provides better attack results than previous patch-based perturbations, we can directly out-
put this adversary as shown in Fig. 2. Cases with reinitialization (VOT2018) can be easily 
extended by repeating the previous process on all reinitialized frames step by step.

3.3 � Key patch selection

As illustrated above, some areas in initialized frames are more beneficial for feature repre-
sentations of the target object, but others are not. Take video Bird1 in Fig. 2 for instance, 
perturbations added on edges of bounding boxes affect the tracking performance much 
less than those on object-surrounding ones. Therefore, removing perturbations attached to 
those regions will not affect the overall attack results but increase the similarities between 
original frames and perturbed ones. As shown in Fig.  2, we impose a mask that is split 
into P × P patches and element-wisely composed of all 1s. Considering computational 
efficiency as well as the averaged size of video frames across different datasets, we adjust 
P as a hyper-parameter and conduct a grid search. Then we apply a reinforcement learning 
(RL)-based key patch selection framework, which is implemented by

Actor-Critic network Z , to select the least important patch step by step until the RL agent 
enters into a terminal state.

As shown in the second part of Fig. 2, our network contains 5 convolutional layers, each 
of them is followed by a max-pooling layer, where parameters are shared between Actor and 
Critic branches, and extract features of newly added perturbations. However, the shape of vid-
eos can be varied even in the same tracking dataset. Resizing them into a fixed size may result 
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in unwanted geometric distortion, which is extremely harmful to localizing objects in SOT. 
Therefore we introduce a Spatial Pyramid Pooling (SPP) (He et al., 2016) strategy on top of 
the last convolutional layer to remove the fixed size constraint of the network. Subsequently, 
we append 3 fully connected layers to estimate what is the best action that the agent should 
take and the corresponding critic value of that.

Generally, we consider the key patch selection as a multi-step Markov Decision Process 
(MDP), which contains states, actions, transition function, and a reward function. In our task, 
the state st at time step t is defined as the pixel-wise difference between v0 and v∗

0
 masked by 

the current mask Mt ∈ ℝ
S×P×P . It can be denoted as:

where ⊙ represents Hadamard product. At time step 0, M0 is {1}S×P×P . An action at = Z(st) 
refers to a S × P

2 softmax matrix, indicating the least important patch in each initialized 
frame to successfully track the target at time step t. Then once the agent chooses an action 
at , we can set the corresponding element in Mt to 0.

(3)st = (v∗
0
− v0)⊙Mt
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Denoting this process as a function F  , we can update the state to

st+1 will be the terminal state if at ∈ {a0, a1,… , at−1} or A(T(v0+st+1))

A(T(v0+s0))
> 𝜏1 or R(T(v0+st+1))

R(T(v0+s0))
< 𝜏2 . 

Since SOT is inherently a regression problem within the continuous output space instead of 
a pure classification problem, slight manipulation of the adversarial perturbation may be 
reflected in the final tracking results. Therefore we introduce ratio thresholds �1 and �2 to 
maintain the attack results within an acceptable scale. Generally, our goal is to delete less 
important patches and maximize the long-term expected reward, therefore we design the 
reward in step t as

In the offline training stage, we select a certain number of candidate videos generated from 
the previous step, then feed them into policy network ��c (at‖st) and critic network ��c (ct‖st) 
to maximize the expected long-term reward with PPO algorithm, which is written as

where A�p
(st‖at) = Q�p

(st, at) − V�c
(st) = �T−tV(sT ) + �T−t−1rT−1 +⋯ + rt − V�c

(st) , Q�p
 is 

the Q-value calculated by discounting future rewards, V�c
 is the critic value generated by 

critic network. � denotes the clip parameter to regularize policy iterations.

3.4 � Sign attack module

As indicated in Algorithm  2, after removing less important patch-level perturbations 
attached to initial frames of videos, we can fetch manipulated adversarial examples as well 
as their tracking accuracy and robustness. Then we need a boundary walking method to 
help us compress the noise magnitude while maintaining attack results within a specific 
scope. As shown in part (c) of Fig. 2, we iteratively update victim frame v0 until its mag-
nitude is compressed from �1 to �3 , while maintaining competitive attack results or even 
strengthening it. Cheng et  al. (2018) states that a black-box attack problem can be for-
mulated into an optimization problem, where the objective function can be evaluated as a 
binary search with additional model queries. Then a zeroth-order optimization algorithm 
can be applied to solve this optimization problem. In this paper, we exploit the Sign-OPT 
algorithm in the Sign Attack Module.

In our approach, �d and g(�d) indicate our designated search direction and correspond-
ing distance from the initial frame v0 to its nearest adversarial example that has the same or 
similar tracking results within a predefined threshold along �d . The objective function can 
be written as

(4)st+1 = (v∗
0
− v0)⊙ F(Mt, at)

rt =

⎧⎪⎨⎪⎩

0, at ∈ {a0, a1, .., at−1};

−1,
A(T(v+st+1))

A(T(v+sI ))
> 𝜏1 or

R(T(v+st+1))

R(T(v+sI ))
< 𝜏2;

𝛾
A(T(v+sI ))

A(T(v+st+1))
+ (1 − 𝛾)

R(T(v+st+1))

R(T(v+sI ))
, else

(5)L(�p) =
�
(st ,at)

min

�
��p (at‖st)
��old

p
(at‖st) , clip

�
��p (at‖st)
��old

p
(at‖st) , 1 − �, 1 + �

��
A�old

p
(st‖at)

(6)

min
�d

g(�d), where g(�d) = argmin
�

�
AR

�
T

�
v0 + �

�d

‖�d‖ ;�
��

≤
�(�1�2 − 1) + 1

�2

�
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where �1 and �2 are hyper-parameters exploited in Key Patch Selection. As the evaluation 

results of SOT, AR is denoted as �
A(T(v0+�

�d

‖�d‖
))

A(T(v0+s0))
+ (1 − �)

R(T(v0+s0))

R(T(v0+�
�d

‖�d‖
))
 . We need to estimate 

its directional derivative by consuming a huge amount of queries when computing 
g(�d + u) − g(�d) . However, it will take a large number of computational resources if we 
intend to obtain the gradient derivative accurately. Due to the various and large dimensions 
of our input, we decide to improve query complexity by an imperfect but informative esti-
mation of directional derivative. Therefore, we exploit the sign value and compute the gra-
dient by sampling K gaussian vectors:

When starting an attack on videos, we need to initialize perturbing directions �d =
v∗
0
−v0

‖v∗
0
−v0‖ , 

where v∗
0
 can be retrieved by sampling from v0 ’s candidate adversarial sets V , including 

patch-based and momentum-based perturbations. Detailed in Algorithm 2, by trading off 
the magnitude of adversaries and their tracking performance, we rank the candidate list 
with TP and L1 normalization and pick the top-n target video clips for the attacked video.

4 � Experiments

In this section, we describe our experimental settings and analyze the effectiveness of 
the proposed DIMBA algorithm against different trackers on four challenging short-
term or long-term datasets, including OTB100  (Wu et  al., 2015), VOT2018  (Kristan, 
2018), UAV123 (Mueller et al., 2016), and LaSOT (Fan et al., 2019). Part of the qualita-
tive tracking results performed by SiamRPN++ is shown in Fig. 3.

4.1 � Experimental settings

Victim models As mentioned in Sect.  1, current tracking models can be divided into 
Siamese-based, discrimination, and reinforcement learning-based trackers. Consider-
ing overall tracking performance, we select one or more most representative trackers 
for each of them, which consists of SiamRPN++ that uses MobileNetv2  (Sandler et  al., 
2018), and ResNet50  (He et  al., 2016) as backbones, DaSiamRPN  (Zhu et  al., 2018), 
PrDiMP50  (Danelljan et  al., 2020), TrTr  (Zhao et  al., 2021), and Action-Decision Net-
work (Yun et al., 2017). Specifically, SiamRPN++(R) exploits ResNet50 as the backbone 
model, while SiamRPN++(M) utilizes MobileNetv2.

Metrics To fairly compare our attack results with original tracking performance and pre-
vious black-box attacks on SOT, standard evaluation methods are exploited. While testing 
DIMBA on OTB100 (Wu et al., 2015), UAV123 (Mueller et al., 2016) and LaSOT (Fan 
et al., 2019), we utilize precision and success rate in a one-pass evaluation (OPE) scenario. 
As for the VOT2018 challenge (Kristan, 2018), we introduce a reinitialization mechanism 
five frames after the tracker lost the target.

Computing infrastructures We conduct experiments on a computer with three Nvidia 
GeForce RTX 2080Ti and one Nvidia GeForce RTX 3090 GPUs, an Intel(R) Core(TM) 
i9-10900X CPU @ 3.70 GHz, running Ubuntu 18.04.5 LTS.

(7)∇̂g(𝜙d) =
1

K

K∑
k=1

Sign(g(𝜙d + 𝜌duk) − g(𝜙d))uk
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4.2 � Implementation details

Our experiment is implemented in PyTorch.1 In momentum-based perturbation generation, 
maximum noise magnitude � is 8 (following One-Shot imperceptible settings) , candidate 
number C is 25, iteration number k is 128, momentum factor � is 0.5, trade-off factor � 
is 0.4. Same to momentum generator, the patch-based generator produces adversarial sets 
with capacity C as well. �a and �r are both set to be 0.9.

To pre-train the Actor-Critic Network for key patch selection, we set PPO epoch, clip-
ping parameter � , buffer capacity, and maximum gradient normalization to 10, 0.2, 500, 
and 0.5, respectively. As for patch number P , we exploit the grid search strategy and set 

Fig. 3   Illustration of clean and adversarial tracking results tracked by SiamRPN++ tested on OTB100. 
Green bounding boxes indicate ground truth locations, blue ones state originally predicted locations, while 
red ones demonstrate adversarially attacked locations (Color figure online)

1  We release our code via GitHub https://​github.​com/​Trust​AI/​DIMBA.

https://github.com/TrustAI/DIMBA
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P as 2, 4, 8, 16, 32. For balancing selection efficiency and final impact on tracking perfor-
mance, P is parameterized to 16.

In the same way, the combination of ratio threshold �1 and �2 is set to 1.5 and 0.4. trade-
off factor � is set to 0.5, video candidate number n is naturally set to 20 out of 30, gradient 
candidate number K is assigned to be 100, and the number of attack queries NA can be 60.

4.3 � Overall attack results

Results on VOT2018 Table 2 compares the overall results of these trackers on the VOT2018 
dataset. We exploit randomly generated noises as well as perturbations computed by IoU 
Attack  (Jia et  al., 2021) and compare them with our proposed method. Specifically, our 
algorithm outperforms IoU Attack concerning accuracy in DaSiamRPN and ADNet by 
8.45 and 5.82%, respectively. Furthermore, in terms of robustness, our approach exceeds 
IoU Attack in SiamRPN++(ResNet50), DaSiamRPN, and ADNet by 9.32, 3.21, and 
2.97%. As for EAO (Expected Average Overlap) in SiamRPN++ and ADNet, we have 
achieved 6.2 and 7.9% improvement.

Results on OTB100 As shown in Fig. 4, we draw success and precision plots of various 
trackers selected according to their categories and tested on OTB100. Compared to the 

Table 2   Attack results of SiamRPN++  (Li et  al., 2019), DaSiamRPN  (Zhu et  al., 2018), 
PrDiMP50  (Danelljan et  al., 2020), ADNet  (Yun et  al., 2017), and TrTr  (Zhao et  al., 2021) on 
VOT2018 (Kristan, 2018), evaluated using Accuracy, Robustness, and EAO (expected average overlap)

Bold indicates the best performance among all black-box attacks (including Random, IoU Attack, and Ours)

Trackers Accuracy↑

Original (%) Random (%) IoU Attack (%) Ours (%)

SiamRPN++(R) 60.30 59.12 56.84 57.01
DaSiamRPN 58.52 57.14 53.19 48.68
PrDiMP50 61.80 60.86 57.29 58.12
ADNet 50.80 48.28 39.53 37.14
TrTr 60.65 60.12 57.88 58.84

Trackers Robustness↓

Original Random IoU attack Ours

SiamRPN++(R) 0.235 0.289 1.169 1.278
DaSiamRPN 0.276 0.295 1.214 1.253
PrDiMP50 0.165 0.171 0.377 0.352
ADNet 0.314 0.337 1.412 1.454
TrTr 0.110 0.121 0.227 0.193

Trackers EAO (expected average overlap)↑

Original Random IoU Attack Ours

SiamRPN++(R) 0.415 0.351 0.129 0.121
DaSiamRPN 0.382 0.347 0.124 0.159
PrDiMP50 0.442 0.425 0.275 0.311
ADNet 0.329 0.317 0.113 0.104
TrTr 0.493 0.488 0.336 0.343
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original tracking performance, our black-box attack method can reduce the AUC score and 
visually change the curves’ shape. Meanwhile, we correspondingly visualize the results 
of a white-box One-Shot Attack (Chen et al., 2020) and check the difference. Meanwhile, 
Table 3 illustrates the success and precision rates of original videos, random perturbations, 
One-Shot Attack, IoU Attack, and our method.

Results on UAV123 and LaSOT Depicted in Fig. 4, tracking results of different trackers 
are illustrated based on UAV123 and LaSOT. With our attack method, the AUC score of 
success plots tested on UAV123 are decreased by 4.3, 10.8, and 17.4% for PrDiMP50, 
SiamRPN++(ResNet50), and ADNet individually. In the meantime, the same score of 
success plots calculated on LaSOT are reduced by 6.6, 9.0, 22.5, and 11.8% for PrDiMP50, 
SiamRPN++, DaSiamRPN, and ADNet respectively.

4.4 � Ablation study of key patch selection

We conduct a series of experiments to evaluate the impact of the key patch selection mod-
ule. SiamRPN++(R), DaSiamRPN, and ADNet are selected as our baselines, and tracking 
results on OTB100 and UAV123 are shown in Fig. 5. We query fewer times in black-box 
settings to reach a similar perturbation magnitude � using Key Patch Selection. Meanwhile, 
the average IoU scores in subintervals as shown in Fig. 5 under our proposed Key Patch 

Fig. 4   Illustration of success plots and precision plots tested on OTB100, UAV123, and LaSOT. Success 
plots represent the AUC values regarding different overlapping scores, while precision plots are at the error 
threshold of 20 pixels with respect to centered location errors. The numbers in brackets in front of tracker 
names denote AUC scores
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Table 3   Attack Results of SiamRPN++(ResNet50), SiamRPN++(Mobilev2), DaSiamRPN, ADNet, TrTr, 
and PrDiMP50 on OTB100 (Wu et al., 2015), evaluated using success rate and precision

As OPE (one pass evaluation) dataset, OTB100 can also be perturbed by white-box attacks, like One-Shot 
Attack (Chen et al., 2020), which as it should be, outperforms black-box algorithms, and is highlighted in 
italic font
Bold indicates the best performance among all black-box attacks (including Random, IoU Attack, and Ours)

Trackers Success rate↑

Original (%) Random (%) IoU Attack (%) One-Shot 
Attack (%)

Ours (%)

SiamRPN++(R) 69.64 65.21 49.58 25.22 48.09
SiamRPN++(M) 66.06 59.41 42.73 35.94 45.02
DaSiamRPN 65.82 63.91 53.24 37.60 56.66
ADNet 63.71 61.76 53.80 30.98 51.92
TrTr 71.53 68.32 56.32 41.88 54.16
PrDiMP50 69.50 66.03 46.54 28.10 44.52

Trackers Precision↑

Original (%) Random (%) IoU Attack (%) One-Shot 
Attack (%)

Ours (%)

SiamRPN++(R) 91.42 86.13 63.19 33.68 63.68
SiamRPN++(M) 86.43 79.76 62.18 26.41 61.29
DaSiamRPN 86.50 81.23 64.78 29.65 63.09
ADNet 88.13 84.15 51.20 20.85 54.55
TrTr 92.81 87.86 68.74 45.85 67.66
PrDiMP50 89.73 87.24 70.88 38.10 69.96

Fig. 5   Illustration of the ablation study on key patch selection module of our proposed DIMBA Attack. 
Results are conducted over OTB100 UAV123, tracked by SiamRPN++(ResNet), DaSiamRPN, ADNet. 
Yellow bars indicate the percentage of query times in 8 subintervals from 0–200. Red lines represent ratio 
changes in l∞-norm adversarial magnitude, while blue lines state changes of average overlap scores in each 
interval.  and  state changes under our proposed key patch selection algorithm. In contrast, 

 and  refer to ones by randomly selected (Color figure online)
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Selection algorithm majorly remain smaller than the ones with random patch selection or 
without the Key Patch Selection module.

4.5 � Comparison with previous works

According to our understanding, the overall computational complexity of IoU 
Attack (Jia et al., 2021) is O(KNL) , where K is the number of epochs for choosing per-
turbations on each frame, N is the candidate number of random noises, L is the length 
of the video clip. Whereas in our algorithm, our query complexity can be reduced to 
O(KN + C) , where C is a constant number independent of L. The comparison in query 
efficiency between query-based black box attack algorithms, IoU Attack, and our pro-
posed method, is illustrated in Table 4. In the meantime, we compare the SSIM similar-
ity between clean and adversarial videos to qualitatively verify the side effects of our 
proposed algorithm, the result is shown in Table 5. Except for some specific cases, our 
algorithm achieves better SSIM similarity than the query-based IoU Attack.

5 � Conclusions

In this work, we propose an effective and efficient query-based black-box attack for 
SOT. An Actor-Critic key patch selection module is exploited to reduce redundant 
noises and increase query efficiency. Meanwhile, the combination of patch-based and 

Table 4   Comparison of average query times between IoU Attack and our proposed method, tracked by 
SiamRPN++(R), DaSiamRPN, PrDiMP50, and ADNet, tested on OTB100, UAV123, and LaSOT

Bold indicates the best performance among all black-box attacks (including Random, IoU Attack, and Ours)

Datasets Query Times(IoU‖Ours)↓

SiamRPN++(R) DaSiamRPN PrDiMP50 ADNet

OTB100 81460‖43295 79365‖42981 82727‖41026 76352‖35284
UAV123 129802‖108901 98158‖52830 77102‖56138 48223‖26815
LaSOT 228570‖186285 200382‖129483 182939‖115024 93577‖62661

Table 5   Average SSIM similarity between clean videos and perturbed videos from OTB100, UAV123, and 
LaSOT, tracked by SiamRPN++(R), PrDiMP50, and ADNet

Bold indicates the best performance among all black-box attacks (including Random, IoU Attack, and Ours) 
and italic indicates the performance of the white-box attack (i.e., One-Shot Attack)

Datasets SSIM(One-Shot‖IoU‖Ours)↑

SiamRPN++(R) PrDiMP50 ADNet

OTB100 0.9958‖0.9905‖0.9937 0.9947‖0.9921‖0.9932 0.9984‖0.9937‖0.9963
UAV123 0.9973‖0.9856‖0.9913 0.9939‖0.9914‖0.9918 0.9981‖0.9948‖0.9952
LaSOT 0.9992‖0.9815‖0.9862 0.9996‖0.9945‖0.9957 0.9998‖0.9986‖0.9978
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momentum-based perturbation generators diverse potential adversarial directions and 
introduce heavily damaged tracking performance. Compared with existing works, our 
method requires fewer queries on SOT and less perturbation from the perspective of 
a whole video clip but maintains competitive, even better manipulating results. The 
experiments in both long-term and short-term datasets across three major categories of 
trackers demonstrate the effectiveness of our framework. We hope this work can elu-
cidate the source of vulnerabilities in these trackers, optimistically paving the way for 
more powerful ones.
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