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ABSTRACT 

Terrestrial carbon and water cycling are predicted to undergo large 

changes over the coming decades due to anthropogenic climate change. These 

cycles are dependent on the plant hydraulic system, because of its close link 

with leaf photosynthesis, however these dependencies remain poorly 

understood. Plant hydraulic traits play a pivotal role in regulating transpiration, 

water supply, carbon uptake and ecosystem resilience, but how these traits 

control these ecosystem scale variables is yet to be properly quantified. This is, 

in part, because the controls on the spatial variations in hydraulic traits 

themselves remains poorly understood. Eco-evolutionary optimality (EEO) 

principles have been successfully applied to trait predictions globally, this 

makes it a promising approach to enhance our ability to predict global hydraulic 

trait distributions. Within this thesis I progress through a series of steps to 

develop and test a global hydraulic EEO model. 

Close coupling of water loss and carbon uptake requires close coordination 
between hydraulic and photosynthetic traits. Therefore, firstly I develop a 
hydraulic trait model incorporating photosynthetic traits based on EEO 
principles. The model predicts that optimal carbon allocation to leaves and 
stems generates equilibrium between stem water supply and water demand for 
photosynthesis, allowing the prediction of the sapwood to leaf area ratio (vH). 
This model is the first step in quantifying trait-trait and trait-climate relationships 
in a model that incorporates hydraulic traits. In the second chapter, I use 
empirical data from 18 sites along an elevation gradient in the Gongga 
Mountains in China to reveal a trait coordination network with vH at its nexus. 
This trait network connects hydraulic, photosynthetic, and resource acquisition 
strategies. vH exhibits a positive correlation with carboxylation capacity, is 
negatively related to hydraulic efficiency, aligning well with my model 
predictions. The comparisons between observed and predicted photosynthetic 
traits suggest the plants are well acclimated to short-term midday climate 
conditions, supporting them having a water supply-demand balance, as 
predicted by the model. Finally, I develop this analysis at a global scale using 
global hydraulic trait databases to evaluate the model and to show that plants in 
cold, dry, and high-irradiance environments have low hydraulic efficiency and 
exhibit high vH, consistent with predicted patterns. The EEO-based hydraulic 
trait model explains 56% of variation in vH on a global scale with only one 
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parameter. These findings provide insights to predict how plants adjust 
coordinated traits to adapt to climate change.  

The hydraulic trait model developed in this thesis offers an alternative way 
to offer significant improvements to the carbon allocation scheme in dynamic 
vegetation models, without the use of many additional parameters, which 
increase model uncertainty. Consequently, this modelling approach offers the 
opportunity to considerably enhance future capacity to predict vegetation 
responses to climate change, particularly extreme conditions, such as drought.  
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CHAPTER 1 Introduction 

1.1 Vegetation, climate change and the terrestrial carbon cycle 

Vegetation plays a central role in controlling the terrestrial carbon cycle, 

through key processes such as photosynthesis, respiration and mortality, it also 

stores ~28% of global carbon sink (Friedlingstein et al., 2023; Le Quéré et al., 

2018). Anthropogenic climate change is predicted to have profound effects on 

global climate, including rising global temperatures and shifts in precipitation 

patterns, causing considerable alterations to the global carbon cycle (IPCC, 

2023). These changes in global carbon cycling will be largely mediated by 

vegetation as changes in climate alter the capacity of vegetation to absorb CO2 

from the atmosphere (Dusenge et al., 2019; Frank et al., 2015) and are likely to 

increase vegetation mortality (Allen et al., 2010; McDowell et al., 2022). These 

changes in vegetation function and mortality will have a positive feedback on 

climate change, as they have the potential to rapidly increase the amount of 

CO2 in the atmosphere, accelerating climate change (Richardson et al., 2013). 

We must understand and predict the interactions between terrestrial vegetation 

and global climate in order to predict how climate change will impact our planet, 

as these predictions are central to enabling climate adaptation and mitigation to 

take place. 

The changes predicted to occur as a consequence of anthropogenic climate 

change can alter the terrestrial carbon cycle in various ways. Some of these 

changes may lead to increasing CO2 uptake by vegetation, for example rising 

temperatures can increases growing season length, leading to vegetation 

greening (Fu et al., 2015; Piao et al., 2019; Zhu et al., 2023), furthermore CO2 

fertilisation is predicted to increase terrestrial carbon uptake (Schimel et al., 

2015; Wang et al., 2020b). However, these phenomenon can create complex 
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feedbacks in the climate system including increased evapotranspiration and 

irradiance absorption, which may for example accelerate soil dryness and 

extreme heat events (Wu et al., 2024; Yang et al., 2023). The impacts of 

extreme heat and drought that will occur across the globe as climate change 

occurs (Tripathy et al., 2023) are however predicted to have a far greater 

negative impact on terrestrial CO2 storage, than any positive effects (Xu et al., 

2019). Drought and heatwave events increase plant vulnerability to 

disturbances (i.e. pests and diseases), downregulate photosynthesis and even 

causing widespread tree mortality (Hammond, 2020; Li et al., 2023; Trugman et 

al., 2021; Yan et al., 2024). However, the feedbacks between the carbon stored 

in vegetation and the atmosphere, under climate changes are hugely complex 

and high uncertainty remains concerning exactly how climate change will 

influence vegetation functioning globally (Bonan, 2008; Seddon et al., 2016; 

Zhu et al., 2016).   

1.2 Plant hydraulics and global carbon cycling 

Increasing drought frequency and intensity around the globe as a 

consequence of climate change (Cook et al., 2018; Lehner et al., 2017) makes 

understanding plant water relations essential to predicting changes in plant 

carbon source, sink dynamics. Processes such as stomatal opening, plant 

growth and in many instances mortality are governed by the stress the plants 

vascular system is subject to (Hoeber et al., 2014; Rowland et al., 2021; Sperry 

et al., 2017; Torres-Ruiz et al., 2024; Venturas et al., 2020). In particular, water 

loss and carbon uptake via stomata inextricably link water and carbon cycling 

within plants (Brodribb, 2009). This means that a plants hydraulic traits are 

critical to explaining the changes in water and carbon fluxes which occur in 

response to periods of drought (Anderegg et al., 2018; Jiménez‐Rodríguez et 

al., 2024). Limited soil water availability and greater leaf-to-air vapour pressure 
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deficit reduces stomatal conductance, limiting water loss and hydraulic damage, 

but simultaneously reducing photosynthesis and growth (Grossiord et al., 2020; 

Sperry et al., 2016; Wang et al., 2019b). Plant hydraulics not only affect carbon 

assimilation and plant growth, but also plant mortality and recruitment under 

water limited conditions, which can have long-term effects on carbon storage 

within an ecosystem (Song et al., 2023).  

Plant hydraulic theory has emerged as a key set of principles which allow 

us to better understand how plant water transport and mortality risk are altered 

under increasing atmospheric and soil dryness (Choat et al., 2018; Hammond et 

al., 2019; McDowell et al., 2022). Critically, the plant wants to avoid hydraulic 

failure, which triggers death under severe drought conditions (Rowland et al., 

2015; Trugman et al., 2021). The risk of hydraulic failure is principally driven by 

the vulnerability of the xylem to embolism, the formation of air bubbles, which 

block water flow in the vessels (Hacke et al., 2001b; Tyree and Sperry, 1989; 

Venturas et al., 2017). However, there are many other traits which are also key 

to understanding a plants capacity to function during drought. For example, leaf 

turgor loss point, the capacity for leaf cells to maintain turgor during drought 

stress is key to understanding the limit of leaf function and can be used to 

predict drought-induced tree mortality risk (Álvarez-Cansino et al., 2022; Choat 

et al., 2018; Pivovaroff et al., 2021). Furthermore, the hydraulic status of the 

plant can also indirectly impact a plants susceptibility to damage and mortality. 

Hydraulic stress within a plant can increase the susceptibility of plants to fire 

and pathogens (Ruffault et al., 2023; Torres-Ruiz et al., 2024). Currently, 

however, at a global scale we understand much less about the processes 

involved in plant water transport, particularly under drought, than we do about 

many other areas of plant functioning. This means that currently there we have 

a limited capacity to accurately predict the feedback from changes in plant 

water status on carbon cycling as the climate changes. 
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1.3 The introduction of plant hydraulics to vegetation modelling 

Dynamic global vegetation models (DGVMs) were developed to simulate 

vegetation processes to improve the predictions of the feedback between the 

land and the atmosphere in global climate models. Most models focus on the 

effects of climate variables on vegetation processes related to carbon cycling, 

such as photosynthesis and plant carbon allocation, mostly using empirical 

functions (Clark et al., 2011; Fatichi et al., 2019; Krinner et al., 2005; Lawrence 

et al., 2019; Quillet et al., 2010). However, different models predict diverging 

magnitudes of land carbon sink, especially under future climate conditions 

(Bugmann et al., 2019; Friedlingstein et al., 2023). A substantial part of this 

uncertainty comes from the use of static parameter/trait values for plant 

functional types (PFTs) and empirical functions used to simulate the climate 

effect on plant physiological processes (Bonan and Doney, 2018; Cui et al., 

2019; O'Sullivan et al., 2022). For example, photosynthetic capacity at a 

standard temperature, a key parameter in calculations of photosynthetic rate 

and leaf respiration, is treated as one value for all trees in broadleaf evergreen 

tropical forest, which neglects large inter- and intra-specific variations in 

photosynthetic capacity and its acclimation to key variables like temperature 

(Yan et al., 2023). In most models the downregulation of photosynthesis under 

water-limited condition is estimated using empirical function related to soil 

moisture (Martín Belda et al., 2022; Stocker et al., 2018). This approach 

neglects the underlying adjustment of plant hydraulic process that couples with 

photosynthesis when soil water availability drops. The static PFTs and 

simplification of certain plant physiological processes can reduce the complexity 

of DGVMs, which is necessary when there is limited data available for 

parameterization and the underlying mechanisms remain unclear (Box, 1996). 

However, recently many attempts have been made to develop next-generation 

trait-based DGVMs with more complex processes and parameterization 
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(Berzaghi et al., 2020; Pavlick et al., 2013; Prentice et al., 2015; Scheiter et al., 

2013). 

An increasing number of studies have been carried out regarding the 

prediction of trait variation with climate (Butler et al., 2017; Dong et al., 2023), 

facilitating the implementation of more complex plant physiological processes 

into DGVMs, such as mechanistic plant hydraulic process (Christoffersen et al., 

2016; Hickler et al., 2006; Kennedy et al., 2019; Li et al., 2021). The hydraulic 

process in most DGVMs is adopted from the main structure of soil-plant plant 

water transport model based on Darcy’s law (Sperry et al., 1998; Sperry and 

Love, 2015). The water transport model calculates plant water flow under water 

potential gradient, using the principle of changing hydraulic conductivity along 

flow path through a plant. Although this can greatly improve model capability to 

predict plant responses under drought conditions (Eller et al., 2020; Venturas et 

al., 2018; Xie et al., 2023; Xu et al., 2016; Yan and Dickinson, 2014), the 

incorporation of hydraulic process brings extra parameters, which in turn 

increases uncertainty of DGVMs (Cui et al., 2019; Kennedy et al., 2019; 

Oberpriller et al., 2022; Song and Zeng, 2014; Zaehle et al., 2005). Hydraulic 

parameters are hard to constrain relative to photosynthesis parameters, due to 

greater limitations in field observations, which can hinder model evaluation at 

large spatial scales. How changes in environmental conditions expected as a 

consequence of climate change control global patterns of hydraulic trait 

variation remain a challenge to understand, but an essential piece of 

information to improve plant hydraulic trait representation in DGVMs. 

1.4 Plant trait variation 

Plant traits, including hydraulic traits are known to vary along environmental 

gradients in response to changes in climate and soil conditions and variations in 

the  species composition of a community (Moran et al., 2016; Wang et al., 2023; 
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Wright et al., 2017). The observed trait-climate relationships at large spatial 

scales result from environment filtering and long-term adaptation of plants to 

their environmental niche, often through evolutionary processes. However, trait 

relationships are more complex than a direct relationship with climate, as trait 

trade-offs mean a climate related adaptation in one trait is likely to necessitate a 

change in one or more of the plants other traits. For example if a plant allocates 

more resource in one aspect of function, for example growing tall, it must 

inevitably reduce investment in another aspect of its function in order to 

increase fitness under the current habitat (Figure 1.1) (Chave et al., 2009; Diaz 

et al., 2016; Reich and Cornelissen, 2014). The “leaf economic spectrum (LES)” 

proposes a suite of plant trait trade-offs which are coordinated with one another 

(Wright et al., 2004b). LES states that plants with high leaf mass per area (LMA) 

have longer leaf life spans, the cost of which is lower low nitrogen content and 

carbon assimilation rates. This strategy within LES is known as a conservative 

resource-use strategy, where traits associated with survival and resistance are 

prioritised over those associated with rapid resource acquisition and growth.  

 

Figure 1.1 The schematic of trait variations along climate gradients (a) and trait 

trade-offs (b). (a) Variation of Trait A (black dots) across different climate 

conditions, with the range of variation under each condition illustrated by blue 

bars. (b) Trait A is related to Trait B (black lines), which is potentially affected by 

climate conditions. 
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Relative to traits related to photosynthesis and the LES, the global study of 

plant hydraulic traits is far more recent. For example, although more than 3000 

papers have been published in hydraulic traits in the last two decades, over half 

of them have been published within the last five years (Figure 1.2). Given this, 

many gaps in our knowledge still exist regarding the major global controls on 

plant hydraulic trait variation. More data and more combined model, data 

analyses are urgently needed to understand the theoretical mechanisms behind 

plant hydraulic trait variations in response to climate variables and the traits 

trade-offs they generate. This will provide the foundations to fully incorporate 

plant hydraulics into DGVMs.  

 

Figure 1.2 The published papers containing the term “plant hydraulic trait” during 

the last two decades. 

1.5 Plant hydraulic system 

The process of water movement in plants is governed by a series of 

physiological mechanisms, where water is absorbed by the roots, transported 

via the xylem to the leaves, and ultimately transpired into the atmosphere 

through stomatal openings (Figure 1.3). Soil water potential determines the soil 

water limitation for a plant and the level to which a plant needs to reduce its own 

water potential below in order to extract water from the soil. Cohesion-Tension 
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theory demonstrates that water potential difference between leaf and soil 

(ΔΨmax) drives continuous water flow from root to leaf surface (Bohm, 1893; 

Dixon and Joly, 1894). This process drives transpiration, enabling stomata to 

open and photosynthesis to occur within the plant.   

Several key hydraulic traits regulate this water transport process, including 

the vulnerability of the xylem to embolism and the sapwood-specific hydraulic 

conductivity (KS). KS is defined as the efficiency of water movement through the 

xylem, the water flow rate on mass basis per unit conducting area (sapwood) 

combined with the hydraulic gradient (water potential difference per unit length 

in the direction of water flow) (Reid et al., 2005). KS is likely to be determined to 

a large degree by xylem vessel properties (Yang et al., 2019a; Zanne et al., 

2010), meaning it is connected to the wood density (WD) of the xylem, an 

integrative trait which linked to both mechanical support and hydraulic transport. 

The sapwood to leaf area ratio (Huber Value, vH) is also another key integrative 

hydraulic trait reflecting the balance between water supply through xylem and 

water demand by the leaves. As soil water potential (Ψsoil) drops or atmospheric 

demand from the leaves increases driven by high VPD, leaf water potential can 

reduce sufficiently to drive turgor loss, making leaf water potential at turgor loss 

point (Ψtlp) another key trait determining drought tolerance (Brodribb et al., 

2003). If soil water keeps being depleted and/or VPD keeps rising, embolism 

occurs in the xylem and the continuous water flow breaks, leading to the loss of 

conductivity. The xylem water potential at which 50% loss of conductivity occurs 

(P50) is a key parameter used to determine plants vulnerability to embolism 

(Choat et al., 2018).  
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Figure 1.3 The water transport process and key hydraulic traits. vH is the ratio of 

sapwood area to total leaf area supported by the branch, representing balance 

between water supply and demand. KS is sapwood-specific hydraulic conductivity, 

a measure of xylem water transport efficiency. Ψsoil and Ψleaf are soil and water 

potential, respectively. The difference between Ψsoil and minimum Ψleaf is ΔΨmax. 

Ψtlp is leaf water potential at turgor loss point and P50 is xylem water potential at 

50% loss of KS, which reflects drought resistance at leaf and stem levels 

respectively. Sapwood density (WD) is related to drought resistance and 

mechanical support. 
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1.5.1 Hydraulic trait correlation 

The creation of LES and a corresponding wood economic spectrum (WES) 

(Chave et al., 2009) has accelerated the investigation of traits trade-offs of other 

plant functions over the last decade. WES is centred on trade-offs related to 

WD and its associations with different functions of wood, including water 

transport, as well as mechanical resistance and nutrient allocation (Chave et al., 

2009; Reich and Cornelissen, 2014). Dense wood necessitates less vessel 

lumen area and small conduit diameters, which limits water transport capacity 

(Fan et al., 2012; Hoeber et al., 2014). This leads to a negative relationship 

between wood density and hydraulic efficiency (Janssen et al., 2020), as water 

flow rate is related to fourth power of conduit diameter based on the Hagen-

Poiseuille equation (Hagen, 1839). However, narrower vessels associated with 

denser wood often enhances xylem safety through enhanced cavitation 

resistance (i.e. low Ψ50) at the expense of water transport efficiency (Hacke and 

Sperry, 2001). Numerous studies have investigated these presumed WES traits 

trade-offs, but often there are contrasting findings (Fan et al., 2012; Poorter et 

al., 2010; Sperry et al., 2008). For example, Ocheltree et al. (2016) demonstrate 

the trade-off between hydraulic efficiency and safety exists in C4 grass, while 

van der Sande et al. (2019) finds it in trees, but not lianas in tropical moist 

forest. The safety efficiency trade-off is also found to be weak or absent across 

sites and species on a global scale, possibly due to large sensitivities to climate 

and seasonality (Gleason et al., 2016; Liu et al., 2021). Measurement limitations 

of hydraulic traits could also contribute to these discrepancies. The trade-offs is 

theorised to exist at a tissue level across the plant, however hydraulic traits are 

often measured in one specific piece of xylem in a branch (Blackman et al., 

2010; Franklin et al., 2023; Hacke and Sperry, 2001; Meinzer et al., 2010). 

What’s more, xylem vulnerability and conductance are not the only traits that 

determined whole plant safety and efficiency and therefore the trade-off is likely 
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to be more complex than the traits contained within WES (Oliveira et al., 2021; 

Rowland et al., 2023). In fact WES, although it encompasses hydraulic and 

anatomical traits related to the xylem, is more focused on resource allocation 

strategies at stem level for optimizing growth and survival (Choat et al., 2008; 

Venturas et al., 2017), meaning it can’t fully capture plant hydraulic trait trade-

offs.  

For hydraulic traits new theories surrounding trait trade-offs are being 

created in relation to the huber value (vH), linking leaf water demand and stem 

water supply, to tissue resource allocation and the equilibrium between water 

supply and loss (Mencuccini et al., 2019b; Trugman et al., 2019a) (Figure 1-3). 

A limit exists regarding the total leaf area that can be supported by a given 

amount of sapwood, constrained by its capacity to supply water. Plants balance 

this by either increasing sapwood investment to meet higher water demands or 

shedding leaves to reduce water loss, thereby tightly coupling vH with other 

hydraulic traits. Plants with high hydraulic conductivity can allocate more carbon 

to leaf area to maintain sufficient water supply, despite small sapwood area. 

The xylem hydraulic efficiency (KS) has been widely observed to scale with vH 

(Liu et al., 2019; Mencuccini et al., 2019b; Pivovaroff et al., 2014; Rosas et al., 

2019). Additionally, an evolutionary correlation between KS and vH suggests 

they are co-adapted in relation to environmental stress, highlighting their 

importance for plant survival (Sanchez‐Martinez et al., 2020). This trade-off 

leads to indirect associations between vH with WD (Limousin et al., 2010; 

Mencuccini et al., 2019b; Preston et al., 2006) and hydraulic safety (Markesteijn 

et al., 2011), however this is not detected across all ecosystems (Rosas et al., 

2019), for example it is absent in moist tropical forests (De Guzman et al., 

2021).   

Alongside vH, Ψtlp is another trait that is likely to underpin plant hydraulic 

strategy, as it is inherently linked to stomatal behaviour, vulnerability to xylem 
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cavitation, and resource allocation (Álvarez-Cansino et al., 2022; Bartlett et al., 

2012b; Rodriguez-Dominguez et al., 2016). Bartlett et al. (2012b) illustrate that 

osmotic potential at full turgor, rather than bulk modulus of elasticity, 

predominantly determines Ψtlp, meaning osmotic adjustments and their 

associated changes in water potential will determine which traits link to Ψtlp. Ψtlp 

is therefore found to be coupled with stem-level hydraulic traits (i.e. P50) and 

WD in some studies (De Guzman et al., 2021; Fu et al., 2012; Ocheltree et al., 

2016; Santiago et al., 2018; Zhu et al., 2018), indicating a coordinated response 

to drought resistance across different plant organs is likely to exist (Pivovaroff et 

al., 2018). However, like the vH associations, these trade-offs are not consistent 

across ecosystems. Ψtlp is not significantly associated with WD in tropical 

rainforest (Maréchaux et al., 2015), nor is Ψtlp consistently associated with 

hydraulic efficiency across all species (Rosas et al., 2019). Given this a high 

degree of uncertainty remains concerning the interaction between leaf- and 

stem-level hydraulic traits.  

Overall, plants with low WD generally exhibit high water transport efficiency 

(KS) to compensate for evaporation demand and support low vH. This 

acquisitive strategy potentially allows plants to grow faster, but at the cost of 

reduced tolerance to environmental stress like drought (low Ψtlp, Ψ50). In 

contrast, plants with low KS and high WD tend to have high vH, achieved either 

through smaller leaf areas (reducing evaporation demand) or larger sapwood 

areas (increasing water supply). This conservative strategy prioritizes greater 

safety under dry conditions, balancing the trade-offs between growth and 

drought resistance (Figure 1.4). However, these hydraulic traits trade-offs still 

remain uncertain, mostly due to limited data availability.   
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 Figure 1.4 Hypothesized hydraulic traits trade-offs. Blue line represents positive 

correlations and orange lines represent negative correlations. 

1.5.2 Coordination of hydraulic and non-hydraulic traits  

Traits relating to different plant physiological processes are often well 

integrated to regulate whole plants behaviour under the local climate conditions 

the plant evolved within (Fontana et al., 2021; Pigliucci, 2003). Plant water 

transport processes are linked with other physiological processes, such as 

photosynthesis and resource allocation, leading to the coordination between 

hydraulic traits and non-hydraulic traits. In theory, plant hydraulic and 

photosynthetic traits should be coordinated due to them both influencing leaf 

gas exchange via stomata (Sperry, 2000; Sperry et al., 2016). At the leaf level, 

stomatal behaviour, influenced by leaf turgor, modulates water loss in response 

to changes in soil water potential. This is supported by correlations between Ψtlp 

and several traits including leaf water potential at 50% of stomatal closure, 

minimum water potential and leaf stable carbon isotope ratios (δ13C, reflective 

of leaf internal CO2 concentration) (Brodribb et al., 2003; De Guzman et al., 

2021; Jin et al., 2023; Rosas et al., 2019). At the stem level, sapwood hydraulic 

conductivity, which controls water supply for transpiration affects stomatal 

behaviour and, consequently, leaf internal CO2 concentration (ci). Thus, 

hydraulic conductivity theoretically imposes indirect effect on photosynthetic 

capacity, which are linked with ci, and photosynthetic assimilation rate (A). 
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While many studies identify a negative correlation between hydraulic 

conductivity and δ13C, this pattern is not universally observed across all species 

(Ambrose et al., 2009; Ávila‐Lovera et al., 2020; Hoeber et al., 2014; Rosas et 

al., 2019). However, very few studies have investigated the relationships 

between hydraulic traits and photosynthetic capacity (Brodribb and Feild, 2000; 

Meinzer et al., 2008). Limited paired dataset including both hydraulic and 

photosynthetic traits currently hinders our capacity to comprehensively 

understand how these trait networks coordinate.  

A growing number of studies have investigated the relationships between 

LES and hydraulic traits, however the coordination with hydraulic traits remains 

unclear. Leaf mass per area (LMA), reflects the construction cost of a leaf, 

when allocating a fixed amount of carbon to leaf development, therefore plants 

can either increase total leaf area by producing thinner leaves (low LMA) or 

decrease leaf area by developing thicker leaves (high LMA). This links LMA 

directly to transpiration and water demand via its impact on the vH (Mencuccini 

et al 2019b). This leads to the interaction between LMA and hydraulic traits, KS 

in particular (Fu et al., 2012; Guan et al., 2023; Mencuccini et al., 2019b; Yang 

et al., 2019a). Furthermore, some studies show that LMA is significantly related 

to vessel diameter and WD, but independently of KS (Méndez-Alonzo et al., 

2012; Zhang et al., 2020). In addition to hydraulic efficiency, it has been 

reported that the trade-off between LMA and leaf life span correlate with 

drought tolerance (Nadal et al., 2023; Savi et al., 2017; Zhu et al., 2018), but the 

underlying mechanism for this remains unclear. One plausible explanation is 

that the more resources invested in strengthening cell structures (i.e. bulk 

modulus of elasticity) enhance stress tolerance through adjustment of osmotic 

potential (Bartlett et al., 2012b; Iqbal et al., 2020). 

In summary, plants with high resource-acquisition strategy (greater 

assimilation rates and low LMA and leaf longevity), tend to have high hydraulic 
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efficiency to facilitate greater water supply (Figure 1.5). As the leaves of 

acquisitive plants tend to have short-life spans, it is less efficient to invest 

carbon into drought tolerance strategies, for example high Ψtlp. The opposite is 

true for longer-lived conservative plants. The coordination between hydraulic 

and non-hydraulic traits has however, yet to be clearly placed within a unified 

theoretical framework, mostly due to the lack of sufficient data.  

 

Figure 1.5 A trait network summarized from the literature. The blue, brown and 

yellow circles represent hydraulic, LES and photosynthetic traits respectively. The 

solid and dashed lines indicate positive and negative relationships respectively. 

1.5.3 Hydraulic trait variation with climate 

Plant traits variations are affected by diverse climate variables, the 

significance of which varies across different timescales. Evolution drives trait 

variations over long timescale through several mechanisms, such as natural 

selection, mutation and gene flow. These evolutionary processes lead to 

convergence of traits within lineages, indicating that closely related species tend 
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to have similar traits values (Guillemot et al., 2022; Sanchez‐Martinez et al., 

2020). The selective pressure of environment is also a critical factor that shapes 

spatial pattern of traits through local adaptation and species turnover occurring 

over multiple generations (Anderegg, 2023; Meng et al., 2015; Xu et al., 2023). 

Moreover, changes in environment during short-time periods can also induce 

trait responses which are not related to genetic changes, known as plasticity 

(Bartlett et al., 2014; Liu et al., 2022; Valladares et al., 2007). Trait variation is a 

complex outcome of these underlying processes, reflecting both evolutionary 

history, community change and plasticity.  

At large spatial scales or long timescales, hydraulic traits show large 

variations across environmental gradients. Large interspecific hydraulic traits 

variations are mainly explained by phylogeny and taxonomy (Rosas et al., 2019; 

Sanchez‐Martinez et al., 2020). This indicates the variations in hydraulic traits 

along climate gradient is mainly mediated by species turnover. For example, 

hydraulic efficiency is high in tropical rainforest to support high water 

demand/transpiration and protect leaves from high temperatures (Doughty et 

al., 2023; Guan et al., 2023; He et al., 2020; Jin et al., 2023; Zhu and Zhao, 

2022). Conversely, drought tolerance both at leaf and stem levels increases 

towards arid environments to increase plants fitness and survival in the face of 

greater water stress (Kunert et al., 2021; Rosas et al., 2019; Zhu et al., 2018). 

In addition, plants in these dry environments have small total leaf area (high vH) 

to reduce total transpiration and/or water demand (Anderegg et al., 2021; 

Togashi et al., 2015; Towers et al., 2023; Trugman et al., 2019b). Most studies 

intuitively focus on the effect of moisture on hydraulic traits variations, but 

seldom examine the effects of other climate variables. A recent review by 

Grunwald et al. (2024) emphasizes the importance of light on leaf hydraulics, as 

light drives photosynthesis which determines the demand on the hydraulic 

system. These robust trait-environment relationships suggest that hydraulic 
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traits are pivotal in determining the evolutionary selection of plants for a given 

environment. 

On short timescale, plants may be able to adjust some hydraulic traits 

plastically in response to fluctuating climate. Ψtlp being mainly controlled by 

osmotic potential at full turgor enables it to change more easily with elevated 

drought stress (Bartlett et al., 2012b). Ψtlp can decline following drought via 

osmotic adjustment, which is far less costly than changed in wood structure 

(Bartlett et al., 2014; Choat et al., 2007). However, the plasticity of Ψtlp is 

constrained within a narrow range (Limousin et al., 2022), only adjusting 16% of 

its average value across species (Bartlett et al., 2014). This indicates the limited 

power of Ψtlp to mitigate the impact of severe drought. Some species shed 

leaves to decrease transpiration under drought (Nadal-Sala et al., 2021), as 

they fail to adjust hydraulic efficiency and safety (i.e. P50) within a short period 

due to the dependence of this trait on wood anatomy (Bittencourt et al., 2020; 

Limousin et al., 2010; Limousin et al., 2022). Leaf shedding (change in vH) is 

therefore a more common and efficient strategy for plants to regulate water 

demand and avoid xylem cavitation under drought over short time periods 

(Nadal-Sala et al., 2021; Trugman et al., 2019b; Wolfe et al., 2016). 

Nevertheless, McBranch et al. (2019) observe no change in vH under drought 

and warming treatments. Therefore, it is possible different species may adopt 

different strategies to cope with unfavourable climate conditions. The capacity 

of hydraulic traits to be plastic is however very poorly understood and for the 

majority of hydraulic traits there is limited evidence to support large plastic 

changes being possible and the evidence that does exist shows key hydraulic 

traits, like P50 and KS, have inconsistent directional adjustments to drought 

stress (Bucci et al., 2012; Martinez-Vilalta et al., 2009; Rowland et al., 2023).   
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1.6 Existing application of eco-evolutionary optimality principles in 

ecology 

Recent progress in the application of eco-evolutionary optimality (EEO) 

principles allows us to test predictions about trait coordination and can also 

provide strong explanations for observed responses of traits to environment 

(Franklin et al., 2020; Harrison et al., 2021). EEO principles propose that 

through evolutionary processes (including selection for plasticity, as well as 

environmental filtering of plant lineages) plants adapt to the environmental 

conditions under which they live. Photosynthetic traits are predicted to emerge 

from trade-offs between competing requirements, such as the need to balance 

CO2 uptake with water loss. Analyses of δ13C data have shown quantitative 

agreement between observed and theoretically predicted environmental 

responses of the ratio of leaf internal to ambient CO2 (χ) based on least-cost 

hypothesis (Lavergne et al., 2020a; Prentice et al., 2014a; Wang et al., 2017b). 

The coordination hypothesis states that optimal maximum capacity of 

carboxylation (Vcmax) is determined by local climate conditions, leading to the 

capacity to predict Vcmax variation globally (Peng et al., 2021; Smith et al., 

2019). This challenges previous assumption that photosynthetic capacity is 

driven by nitrogen content invested to support metabolic processes (Walker et 

al., 2014). However, the simulation of photosynthetic traits using long-term 

climate data as inputs (Dong et al., 2023), overlooks the plasticity of 

photosynthetic traits in response to short-term climate changes. With growing 

attention on hydraulic traits, water transport has been coupled into current EEO 

photosynthesis models to improve prediction of stomatal conductance under 

water-limited condition (Joshi et al., 2022; Sperry and Love, 2015). 

Other than key photosynthetic traits, EEO has also been applied to simulate 

the variations in leaf nitrogen per area (Narea) (Dong et al., 2022) and leaf mass 

per area (LMA) (Wang et al., 2023). The need to allocate nitrogen to structural 
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and metabolic processes allows us to predict Narea. This EEO-based hypothesis 

has been shown to accurately capture observed temporal and spatial patterns 

of leaf nitrogen variation (Dong et al., 2022). Using the optimal leaf-longevity 

hypothesis (Kikuzawa, 1991), which states plants maximize the time-averaged 

net carbon gain of leaves taking into account construction costs (paid off over 

the leaf lifetime), an EEO model was also developed for LMA (Wang et al., 

2023). This model reveals the mechanisms behind the trend of LMA with 

latitude (Wang et al., 2023). The successful applications of EEO principles to 

trait predictions confirm the feasibility of EEO principles to enhance the input of 

trait-based ecology into models. This enhances our understanding of how 

evolutionary processes shape plant traits, thereby reinforcing the integral role of 

EEO principles in ecological research and modelling. 

1.7 Applying EEO principles to hydraulic trait modelling 

Two types of models have been developed to explain the response of vH 

variation to the environment based on EEO principles. Such models allow us to 

understand and quantify trait responses to climate in a simple way. One model 

type is based on the hypothesis that whole-tree transpiration rate should equal 

water flow rate through the stem, which was first proposed by Whitehead et al. 

(1984). Earlier in the 1980s, several studies have found that total leaf weight or 

area is proportional to the cross-sectional area of sapwood, and their slope – 

Huber value (vH) – varies across species and sites (Waring et al., 1982; 

Whitehead et al., 1984). This confirms the pipe model theory that suggests a 

unit sapwood, or a pipe, supports a set amount of leaves (Lehnebach et al., 

2018; Shinozaki et al., 1964). In order to examine the factors controlling this 

relationship, Whitehead et al. (1984) use Darcy’s law and the Jarvis-Stewart 

modelling approach (Jarvis and McNaughton, 1986) to estimate the 

transpiration rate of a stem and of a forest stand respectively. They reported 
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that sapwood permeability plays a key role in controlling the relationship 

between leaf and sapwood area. However, this model used an empirical 

transpiration function to represent water demand driven by photosynthesis, as a 

more mechanistic approach had not been developed yet. This limits the model 

capacity of running at large scales or estimating climate effect on vH variation 

from a mechanistic perspective.   

The other type of EEO model which links vH to plant hydraulic traits is based 

on the maximization of net carbon gain by optimal vH, which incorporates 

physiological processes such as respiration and tissue turnover (Magnani et al., 

2002; Trugman et al., 2019a; Westoby et al., 2012). In the model proposed by 

Westoby et al. (2012), carbon gain is leaf photosynthesis and the cost of this 

includes plant construction, investment and maintenance cost. The difference 

between carbon gain and total cost is maximized during a leaf’s lifetime. 

Trugman et al. (2019a) create a different version of this model which 

hypothesizes that plants can maximize net primary productivity, photosynthesis 

minus only the maintenance cost (leaf, stem and root respiration). Although the 

maximization criteria differ between these two models, they produce similar 

predictions of how vH responds to climate. Plants have lower vH under elevated 

CO2 and low atmospheric dryness. However, the effect of temperature is not 

directly deduced from the model. What’s more, these two models emphasize 

different plant traits that affect the maximization process and in turn, optimal vH. 

For example, Westoby et al. (2012) show that nitrogen concentration and wood 

density influence carbon cost and gain, while Trugman et al. (2019b) 

demonstrate the important role of KS and Vcmax. These differences are 

concerning, as if placed within a DGVM, they could result in greater uncertainty 

or unconstrained parameters and maximization criteria which may conflict with 

other optimization processes. 
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Given the above contrasts in model results, it is critical to advance our 

understanding of hydraulic trait variation in relation to climate and other traits 

from both field observations and EEO principles. It is also equally important to 

investigate how key non-hydraulic traits vary along climate gradient to further 

disentangle indirect climate effects on hydraulic trait variation. A unified 

framework based on coordination of different physiological processes should be 

proposed to improve realism and reduce parameterization.   

1.8 Outline of thesis 

This thesis aims to develop a hydraulic trait model based on new EEO 

principles to explore how variations in hydraulic traits coordinate with non-

hydraulic traits and climate variables. The thesis is divided into three chapters, 

first, a study across a 4000-m elevation transect in the Gongga Mountains, 

Sichuan Province, China, is presented. The large temperature and moisture 

gradients found here are used to measure traits at 18 sites along the elevation 

gradient, with traits grouped into those related to hydraulic processes (WD, KS, 

vH, Ψtlp), photosynthetic processes (δ13C, Vcmax) and leaf structure (LMA, Narea). 

This paired trait dataset is used to explore the coordination between different 

axes of traits. In the second research chapter this same dataset is used to test 

an EEO-based photosynthetic and hydraulic traits model. Finally in the third 

research chapter the model is evaluated at scale using global hydraulic trait 

datasets I compiled at species and individual levels, I examine the trait-

environment relationships and compare with the EEO model predictions (Figure 

1.6). The key questions my thesis aims to address are as follows: 

(1) How do hydraulic, photosynthetic and LES traits coordinate with each 

other? 

(2) What is the timeframe of climate variation that photosynthetic traits 

adjust to? 
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(3) How do hydraulic traits vary along climate gradients found at a global 

scale? 

 

 Figure 1.6 The roadmap of objectives and aims. The green part represents data 

analysis and yellow part represents model development and validation. 

Chapter 1 briefly outlines the importance of hydraulic traits and the water 

transport process for understanding the feedback between the land and 

atmosphere under global climate change scenarios. The current state of 

knowledge related to relationships between hydraulic traits and non-hydraulic 

traits and climate variables are summarized. In particular, the theoretical 

principles of the links between hydraulic processes to photosynthesis processes 

are demonstrated. The value and application of recent EEO approaches to traits 

prediction are discussed alongside current theories linking hydraulic trait to the 

EEO prediction method. Critically this chapter outlines the key knowledge gaps 

this thesis contributes to. 
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Chapter 2 uses a supply-demand-balance hypothesis to develop a trait 

coordination model based on EEO principles and examines the coordination 

between hydraulic and non-hydraulic traits. Critically the contributions of 

different environmental factors in controlling trait variations are assessed and 

bivariate relationships between traits are examined. This enables me to build a 

trait coordination network to reveal the links between the different underlying 

physiological processes influencing trait trade-offs. Empirical relationships 

between the traits are then compared with model predictions and the hydraulic 

and photosynthetic traits are used to estimate vH to validate model hypothesis 

at a regional scale. Chapter 2 therefore explains the complex coordination 

between hydraulic and non-hydraulic traits from both empirical and theoretical 

perspectives. 

In Chapter 3, the capacity of a recently-developed EEO-based 

photosynthetic traits models (Smith et al., 2019; Wang et al., 2017b) is tested 

along an elevation gradient and the effects of climate variables on 

photosynthetic traits are disentangled. Different timeframes of climate data are 

used to detect the timescale of photosynthetic traits acclimation to climate. The 

climatic drivers of each photosynthetic trait are quantified. This chapter 

addresses the appropriate timeframes of climate variables for predictions of 

photosynthetic traits, which serves as a basis for incorporating the 

photosynthetic traits models into the hydraulic trait model.  

In Chapter 4, the model from Chapter 2 is extended into a more advanced 

hydraulic trait model after incorporating the photosynthetic traits model from 

Chapter 3. The relationships between hydraulic traits and climate variables are 

examined using two global hydraulic traits datasets resolved at species and 

individual plant scale. The fitted sensitivities of vH to climate variables are 

compared against model predictions. The hydraulic traits (KS and vH) variations 

are predicted using hydraulic trait model. The advanced hydraulic trait model 
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theoretically predicts the vH variation with KS, temperature, vapour pressure 

deficit and irradiance, which helps to determine how vH changes under climate 

change.  

Finally, in Chapter 5, the key findings of this thesis are summarised and the 

ongoing challenges are then discussed to provide guidance for future research. 



 

 38 

CHAPTER 2 Coordination of plant hydraulic and photosynthetic traits: 

confronting optimality theory with field measurements 

This chapter is published in New Phytologist.  
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2.1 Abstract 

• Close coupling between water loss and carbon dioxide uptake requires 

coordination of plant hydraulics and photosynthesis. However, there is 

still limited information on the quantitative relationships between 

hydraulic and photosynthetic traits. 

• We propose a basis for these relationships based on optimality theory, 

and test its predictions by analysis of measurements on 107 species 

from 11 sites, distributed along a nearly 3000-m elevation gradient.  

• Hydraulic and leaf-economic traits were less plastic, and more closely 

associated with phylogeny, than photosynthetic traits. The two sets of 

traits are linked by the sapwood-to-leaf area ratio (Huber value, vH). The 

observed coordination between vH and sapwood hydraulic conductivity 

(KS) and photosynthetic capacity (Vcmax) conformed to the proposed 

quantitative theory. Substantial hydraulic diversity was related to the 

trade-off between KS and vH. Leaf drought tolerance (inferred from turgor 

loss point, –Ψtlp) increased with wood density, but the trade-off between 

hydraulic efficiency (KS) and –Ψtlp was weak. Plant trait effects on vH 

were dominated by variation in KS, while effects of environment were 

dominated by variation in temperature. 

• This research unifies hydraulics, photosynthesis and the leaf economics 

spectrum in a common theoretical framework, and suggests a route 
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towards the integration of photosynthesis and hydraulics in land-surface 

models. 

2.2 Introduction 

Water transport is essential for plant survival and growth. Hydraulic failure 

triggers death under severe drought (Rowland et al., 2015), and differences in 

hydraulic traits can be used to predict drought-induced tree mortality (Choat et 

al., 2018). Photosynthesis is constrained by hydraulics because water 

transported through the xylem must replenish water lost through stomata during 

CO2 uptake (Brodribb, 2009). Empirical studies (Brodribb et al., 2007; Scoffoni 

et al., 2016; Zhu et al., 2018) and optimality arguments (Deans et al., 2020) 

support a tight coordination between hydraulic and photosynthetic traits. 

Nonetheless, quantitative understanding of their relationships remains 

incomplete (Mencuccini et al., 2019b). Embedding plant hydraulics in vegetation 

and land-surface models is desirable (Christoffersen et al., 2016; Mencuccini et 

al., 2019a), not least because an improved understanding of drought effects on 

photosynthesis and transpiration could remove a leading source of uncertainty 

in global models (De Kauwe et al., 2015). This situation provides a strong 

motivation for theoretical and empirical research on how whole-plant hydraulic 

traits are related to (better-studied) leaf photosynthetic traits. 

The ratio of sapwood area to subtended leaf area (the Huber value, vH) links 

whole-plant to leaf processes (Mencuccini et al., 2019b; Rosas et al., 2019). 

There is a limit to the amount of leaves that a given area of sapwood can 

support due to its limited capacity to supply water. The plant needs to invest 

more carbon in sapwood to meet increasing water loss, or to shed leaves to 

decrease water loss. Thus, vH reflects not only the balance between water 

supply and loss, but also carbon allocation to stems versus leaves. Plants with 

low vH tend to have low leaf mass-per-area (LMA) and low leaf stable carbon 
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isotope ratios (d13C), implying a high ratio of leaf-internal to ambient CO2 (χ); 

high maximum CO2 assimilation rate (Asat); high leaf water potential at the 

turgor loss point (Ytlp, a negative quantity); and high sapwood-specific hydraulic 

conductivity (KS) (Mencuccini et al., 2019b; Rosas et al., 2019; Zhu et al., 2018). 

High Vcmax and high LMA both require (all else equal) a high vH, the former 

because high Vcmax is associated with high photosynthetic rate, stomatal 

conductance and transpiration, the latter because high-LMA leaves tend to be 

associated with low hydraulic conductance. There is considerable independent 

variation in Vcmax (expressed on an area basis) and LMA which implies that 

these are separate dimensions influencing vH. Previous studies have also 

shown that hydraulic traits are influenced by environmental variables, 

particularly aridity (Gleason et al., 2013; Liu et al., 2019; Martinez-Vilalta et al., 

2009; Togashi et al., 2015), in a coordinated way. Drought-adapted plants are 

characterized by reduced water supply through stems (low hydraulic efficiency, 

KS; e.g. associated with narrow conduits) and/or reduced demand (high vH), and 

increased leaf hydraulic safety (low Ytlp). Photosynthetic and leaf-economic 

traits are also influenced by climate. χ increases with growth temperature, and 

decreases with vapour pressure deficit (D) and elevation (Prentice et al., 2014a; 

Wang et al., 2017b). Photosynthetic capacity (maximum Rubisco carboxylation 

rate, Vcmax) increases with light, and weakly with temperature and VPD (Smith 

et al., 2019). LMA increases with light and aridity, and decreases with 

temperature (Poorter et al., 2009; Wright et al., 2004b). Although these traits 

show strong trends with climate, phylogeny controls the variation of hydraulic 

traits to a large extent due to their dependence on conservative characteristics 

such as wood anatomy (Rosas et al., 2019), while photosynthesis-related traits 

regulated by biochemical processes show a high degree of plasticity (Dong et 

al., 2020). 
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Optimality theory allows testable predictions about trait-trait coordination 

and can also provide strong explanations for observed responses of traits to 

environment (Franklin et al., 2020). Among photosynthetic traits, analyses of 

δ13C data have shown quantitative agreement between observed and 

theoretically predicted environmental responses of χ (Lavergne et al., 2020a; 

Prentice et al., 2014a; Wang et al., 2017b). Smith et al. (2019), similarly, used 

optimality theory to predict the observed environmental responses of Vcmax in a 

global data set. Sperry et al. (2017) integrated hydraulic traits with a 

photosynthesis model to predict stomatal conductance using optimality theory. 

Less attention has been paid to applying optimality theory to predict leaf-

economic or hydraulic traits. Here we investigate the relationships among 

photosynthetic, leaf-economic and hydraulic traits, and between these traits and 

climate, using field data collected from 11 sites in the Gongga Mountain region 

of western China. We extend the optimality framework of Prentice et al. (2014a) 

and Wang et al. (2017b), which hypothesizes that plants minimize the total cost 

of maintaining the capacities for photosynthesis and water transport relative to 

photosynthesis rate, in order to make explicit quantitative predictions of these 

relationships. KS and Vcmax are two key traits related to water transport and 

photosynthesis/water demand, respectively. Based on the requirement that 

water transport through xylem must equal water loss via stomata, our optimality 

model indicates a key role for vH in achieving this requirement (Mencuccini et 

al., 2019b), and confirms a positive relationship between vH and Vcmax but a 

negative one with KS theoretically in a unified framework. Our model thus 

provides a new theoretical basis to understand the variations of vH along 

environmental gradients. 

To test the model, we measured photosynthetic and hydraulic traits on 107 

species at 11 sites located in the Gongga Mountain region of Sichuan Province, 

China. This region (Figure S2.1) extends from 29° 22' to 29° 55' N and 101° 1' 
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to 102° 9' E and spans an elevation range from near sea level to 8000 m, 

creating a long gradient in growing-season temperature. Sites from the western 

side of Gongga Mountain also tend to be drier than sites at corresponding 

elevations on the eastern side. By sampling 11 sites over a range of nearly 

3000 m in elevation, from both the western and eastern sides, we assembled a 

data set on woody plants encompassing a wide range of climates.  

2.3 Theory 

The theory of vH variation extends the least-cost hypothesis of Prentice et 

al. (2014a). According to Fick’s law and Darcy’s law respectively (Fick, 1855; 

Whitehead, 1998), transpiration can be calculated from either water demand 

(Equation 2.1) or supply (Equation 2.2). The coordination of xylem water 

transport and stomatal water loss implies that plants should optimally allocate 

resources so that maximum water transport matches maximum photosynthesis, 

which leads to Equation 2.3. 

! = 1.6	'!(
)"#$

 (2.1) 

! = *%ΔΨ-&
ℎ  (2.2) 

1.6	'!(
)"#$

= *%ΔΨ$"'-&
ℎ  (2.3) 

where E is the transpiration rate (mol m–2 s–1), gs is stomatal conductance to 

CO2 (mol m–2 s–1), D is the vapour pressure deficit (Pa) and Patm is the 

atmospheric pressure (Pa). Here h is the path length (m), roughly equivalent to 

plant height; KS is the sapwood-specific hydraulic conductivity (mol m–1 s–1 Pa–

1); vH is the ratio of sapwood to leaf area (m2 m–2); ΔΨ is the difference between 

leaf and soil water potential and ΔΨmax is the maximum decrease in water 

potential from soil to leaves (Ψmin and Ψsoil, Pa).  
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From the diffusion equation and the photosynthesis model of Farquhar, von 

Caemmerer and Berry (Farquhar et al., 1980b), we can calculate gs from Vcmax, 

χ and mC: 

'! =
/	

0 1"
)"#$2 (1 − χ)

 (2.4) 

/ = 7(	8)*+,	9 (2.5) 

7( =
χ	1" − Γ∗
χ	1" + *

 (2.6) 

where A is the assimilation (photosynthesis) rate (mol m–2 s–1), ca is the ambient 

partial pressure of CO2 (Pa), χ is the ratio of leaf-internal to ambient CO2 partial 

pressure (Pa Pa–1), Vcmax is the maximum capacity of carboxylation (mol m–2 s–

1), Γ* is the photorespiratory compensation point (Pa), and K is the effective 

Michaelis-Menten coefficient of Rubisco (Pa). The factor mC reduces 

photosynthesis under natural conditions relative to Vcmax. Substituting gs from 

Equations (2.4-2.6) into Equation 2.3 yields Equation 2.7, which represents our 

key optimality theory linking hydraulic and photosynthetic traits. It states that 

maximum rate of water transport through the xylem equals the maximum rate of 

water loss through the stomata.  

*%
ℎ ΔΨ$"'-& =

1.6(
1"

7(
	8)*+,
1 − χ  (2.7) 

Since Vcmax acclimates to the environment on a weekly to monthly timescale 

while KS is determined by xylem structure and therefore less able to vary 

seasonally, we work with Vcmax at the mean daily maximum temperature in July 

(Vcmax,jt) and KS at the mean daily maximum temperature during the growing 

season (defined as the period with daytime temperatures > 0 ˚C) (KS,gt).  

In practice, effects of KS and h are not separable, because the tip-to-base 

widening of xylem elements implies a positive correlation between them that 



 

 45 

greatly reduces the effect of path length on whole-stem conductance, so that 

the whole-stem conductance is similar to or only slightly lower than the 

conductance measured near the branch tip (Christoffersen et al., 2016; 

Mencuccini et al., 2019b; Olson et al., 2021). We assume ΔΨmax equal to –Ψtlp 

(Ψsoil ≈ 0 under well-watered conditions) since Ψtlp is a proxy for Ψmin (Hochberg 

et al., 2018). The uncertainty of the Ψtlp proxy has little impact on our results as 

it is not a principal predictor in our model (shown in Figure 2.4). Thus, to test 

Equation 2.7 we take –Ψtlp as a surrogate for ΔΨmax (Hochberg et al., 2018) and 

subsume the effect of height in a composite constant (C), leading to the 

following relationship after Loge transformation of Equation 2.7: 

Log.(-&) = Log.(() + Log.(7() + Log.?8/$"',1#@ − Log.?*%,2#@ −
Log.?−Ψ#34@ − Log.(1 − χ) − Log.(1") + A  

(2.8) 

where C has a fitted value of 2.27 using all the species sampled (see Figure 

S2.4), which suggests an average “effective tree height” of 6 m.  

Photosynthetic traits can be estimated from existing optimality models. The 

least-cost hypothesis states that plants minimize the combined unit costs (that 

is, costs per unit of carbon assimilated) of maintaining the capacities for carbon 

fixation and water transport (Prentice et al., 2014a). The coordination 

hypothesis states that light- and Rubisco-limited photosynthesis rates are 

approximately equal, in order to be able to utilize the available light while 

avoiding wasteful maintenance costs (Chen et al., 1993a). These two 

hypotheses have already been corroborated by many studies at regional or 

global scale (Lavergne et al., 2020b; Smith et al., 2019; Xu et al., 2021b). χ in 

Equation 2.8 can be estimated as follows, based on the least-cost hypothesis 

(Wang et al., 2017b): 

χ	=	 Γ*ca +
ξ81	–	Γ

*
ca<

ξ+√?    where (2.9) 
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ξ	=	Cβ(K+Γ
*)

1.6η*  (2.10) 

where β is the ratio at 25 ˚C of the unit costs of maintaining carboxylation and 

transpiration capacities (146, based on a global compilation of leaf δ13C 

measurements), η* is the viscosity of water relative to its value at 25 ˚C, and ξ 

(Pa1/2) is a stomatal sensitivity parameter that increases with temperature due 

to the temperature dependencies of K, Γ* (increasing) and η* (decreasing). 

Vcmax,jt can also be predicted from climate, based on the coordination 

hypothesis (Smith et al., 2019): 

Vcmax	≈ φ0Iabs J
1G+K
1G+2Γ*

L	 (2.11) 

where  f0 is the intrinsic quantum efficiency of photosynthesis (to which we 

assign the value 0.085 μmol C μmol–1 photon), Iabs is the photosynthetic photon 

flux density (PPFD) absorbed by leaves (mol m–2 s–1), and ci is the leaf-internal 

CO2 partial pressure (ci = χca) (Pa). 

2.4 Data and Methods 

2.4.1 Trait data 

Trait data were measured at 11 sites in late July 2018 and August 2019, 

during the active growing season, in the Gongga Mountain region (29° 34' 16" – 

29° 54' 52" N and 101° 59' 08" – 102° 9' 42" E, Fig. S1). We collected the data 

needed to allow the calculation of four leaf traits: leaf mass per area (LMA), leaf 

nitrogen per unit area (Narea), the maximum capacity of carboxylation (Vcmax), 

and the ratio of leaf-internal to ambient CO2 partial pressure (χ). Hydraulic traits, 

specifically the ratio of sapwood to leaf area (Huber value, vH), sapwood-

specific hydraulic conductivity (KS), wood density (WD) and leaf potential at 

turgor loss point (Ψtlp), were measured on all the woody broad-leaved species. 
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We sampled all the tree species and at least five shrub species at each site. All 

samples were taken from the top canopy layer receiving direct sunshine.  

LMA was calculated from the measurements of leaf area and dry weight 

following standard protocols (Cornelissen et al., 2003a). Multiple leaves, or 

leaflets for compound leaves, were randomly selected and scanned using a 

Canon LiDE 220 Scanner. The dry weights of these leaves were measured after 

oven-drying at 75 ˚C for 48 h to constant weight. We calculated LMA as the 

ratio of dry mass to leaf area. Leaf nitrogen content was measured using an 

Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific Inc., USA). Narea 

was calculated from LMA and leaf nitrogen content. The LMA value for a 

species at a given site was the average of three separate measurements made 

on leaves from multiple individuals, while Narea measurements were made on 

pooled samples of leaves from multiple individuals. 

Carbon isotopic values (δ13C) were measured using an Isotope Ratio Mass 

Spectrometer (Thermo Fisher Scientific Inc., USA). Values were measured on 

pooled samples of leaves from multiple individuals. Estimates of χ were made 

using the method of Cornwell et al. (2018) to calculate isotopic discrimination 

(Δ) from δ13C with a standard formula using the recommended values of a’ and 

b’ of 4.4 ‰ and 27 ‰, respectively (Cernusak et al., 2013; Farquhar et al., 

1989): 

χ = 	 Δ	–	N
H

OH	–	NH	 (2.12) 

Leaf gas-exchange measurements were made in the field using a portable 

infrared gas analyser (IRGA) system (LI-6400; Li-Cor Inc., Lincoln, NB, USA). 

Sunlit branches from the outer canopy were collected and re-cut under water 

immediately prior to measurement. In-situ measurements were taken with 

relative humidity and chamber block temperature similar to the ambient 

conditions, and a constant airflow rate (500 μmol s−1). Vcmax at leaf temperature 
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(Vcmax,lt) was calculated from the light-saturated rate of net CO2 fixation at 

ambient CO2, measured on one individual of each species, using the one-point 

method (De Kauwe et al., 2016b) and adjusted to a standard temperature of 25 

˚C (Vcmax25) and maximum temperature in July (Vcmax,jt) using the method of 

Bernacchi et al. (2001).  

Branches with a diameter wider than 7 mm were sampled for hydraulic 

traits. We cut the branch as close to the bifurcation point as possible, in order to 

minimize any effect of the measurement location on the measured area. We 

measured the cross-sectional area of the xylem at both ends of the short piece 

recut from the bottom of the branch using digital calipers. Sapwood area was 

calculated as the average of these two measurements. All leaves attached to 

the branch were removed and dried at 70 ˚C for 72 hours before weighing. The 

total leaf area was obtained from dry mass and LMA. The ratio of sapwood area 

and leaf area was calculated as vH. The vH value of one species at each site 

was the average of three measurements made on branches from different 

individuals. 

Five branches from at least three mature individuals of the same species at 

each site were collected, wrapped in moist towels and sealed in black plastic 

bags, and then immediately transported to the laboratory. All the samples were 

re-cut under water, put into water and sealed in black plastic bags to rehydrate 

overnight. KS was measured using the method described in Sperry et al. (1988). 

Segments (10 - 15 cm length) were cut from the rehydrated branches and 

flushed using 20 mmol L–1 KCl solution for at least 30 minutes (to remove air 

from the vessels) until constant fluid dripped from the segment section. The 

segments were then placed under 0.005 MPa pressure to record the time (t) 

they took to transport a known water volume (W, m3). Length (L, m), sapwood 

areas of both ends (S1 and S2, m2) and temperature (Tm, ˚C) were recorded. 

Sapwood-specific hydraulic conductivity at measurement temperature (KS,m, mol 
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m–1 s–1 MPa–1) was calculated using Equation 2.13. This was transformed to KS 

at mean maximum temperature during the growing season (KS,gt) and standard 

temperature (KS25) following Equations 2.14 and 2.15: 

*%,$ =	 P	Q	ρI
0.005	U	(VJ + VK)/2	

1000
18 	 (2.13) 

*%,# = *%,$	
η*
η#
	 (2.14) 

η=10LMYNOP
Q

RPST (2.15) 

where ηm and ηt (Pa s) are the water viscosity at measurement temperature and 

transformed temperature (i.e. mean maximum daytime temperature during the 

growing season and standard temperature, 25 ˚C in this study), respectively, 

and ρw (kg m–3) is the density of water. The parameter values adopted in 

Equation 2.15 were A = −3.719, B = 580 and C = −138 (Vogel, 1921).  

A small part of each sapwood segment was used to measure wood density, 

the ratio of dry weight to volume of sapwood. After removal of bark and 

heartwood, the displacement method was used to measure the volume of 

sapwood and the dry weight of sapwood was obtained after drying at 70 ˚C for 

72 hours to constant weight. Wood density was calculated as the ratio of dry 

weight to the volume of sapwood.  

We applied the method described by Bartlett et al. (2012a) for the rapid 

determination of Ψtlp. After rehydration overnight, discs were sampled from 

mature, healthy leaves collected on each branch, avoiding major and minor 

veins and using a 6-mm-diameter punch. Leaf discs wrapped in foil were frozen 

in liquid nitrogen for at least 2 minutes and then punctured 20 times quickly with 

sharp-tipped tweezers. Five repeat experiments using leaves from multiple 

individuals were carried out for every species at each site. We measured 

osmotic potential (Ψosm) with a VAPRO 5600 vapor pressure osmometer 

(Wescor, Logan, UT, USA) and calculated Ψtlp (in MPa) as: 
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Y#34 = 0.832	YU!$	– 0.631	 (2.16) 

2.4.2 Climate data 

We derived climate variables at each of the 11 sampled sites using 

meteorological data (monthly maximum and minimum temperature, fraction of 

sunshine hours and water vapour pressure) from 17 weather stations in the 

Gongga region 

(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html) 

and the elevation-sensitive ANUSPLIN interpolation scheme (Hutchinson and 

Xu, 2004). The meteorological data were available from January 2017 to 

December 2019. The monthly data were converted to daily values by linear 

interpolation in order to calculate the bioclimatic variables mean maximum 

temperature during the growing-season (defined as the period with daytime 

temperature > 0 ˚C), growing-season mean PPFD, and vapour pressure deficit 

under maximum daytime temperature in July, using the Simple Process-Led 

Algorithms for Simulating Habitats (SPLASH) model (Davis et al., 2017a). 

2.4.3 Data analysis 

All statistical analyses were carried out in R3.1.3 (R Core Team 2015). To 

homogenize the variance, traits were loge-transformed and χ was logit-

transformed; for Ψtlp, the absolute value (–Ψtlp) was loge-transformed. Trait 

variance partitioning was carried out using the vegan package (Oksanen et al., 

2017) to quantify the amount of variation explained by different groups of 

factors. In this study, the groups are families (representing phylogenetic 

relatedness), life forms, climate and sites. Path analysis was used to 

characterize the trait coordination framework built on the idea that plastic traits 

are influenced by structural traits, using the lavaan package (Rosseel, 2012). 

The model was evaluated using the ratio of χ2 and degree of freedom (χ2/df) 
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and goodness-of-fit index (GFI). The χ2/df of models using all species and only 

evergreen species were below 3, and the GFI of all three models were larger 

than 0.9 (Figure 2.2). Traits under standard conditions (Vcmax25 and KS25) were 

used in variance partitioning, path analysis and bivariate regressions to 

eliminate the effect of temperature, while trait values under growth conditions 

were used for theoretical prediction. 

To examine the importance of each predictor in Equation 2.8 for the 

prediction of vH, we evaluated the contributions of each variable in four steps as 

follows. We analysed the contributions to variation in vH using two sets of 

predictors: (1) the traits and environmental variables in Equation 2.8 (D, KS, Ytlp, 

Vcmax, χ, ca), with the contribution of the integrative predictor mC included in the 

effects of χ and ca; (2) the hydraulic traits (KS, Ψtlp) and environmental 

predictors (D, temperature, radiation, elevation) that influence vH indirectly 

through their influence on photosynthesis-related traits. First the baseline value 

of each predictor was defined as the median of its site-mean values across the 

11 sites. These baseline values were used to generate baseline, a predicted 

value of Loge(vH). Second, each predictor in turn was changed to its actual 

values at each site, while other predictors were kept at their baseline values. 

We used these inputs to calculate values of Loge(vH) representing vH variation 

across sites induced by this predictor alone. Third, the contribution of each 

predictor at each site was calculated as the difference between simulated 

Loge(vH) values from the second and first steps (indicated as ΔLoge(vH) in 

Figure 2.4). Last, we calculated the improvement in R2 of the relationships 

between predicted Loge(vH) and contributions of each predictor across sites. R2 

improvements due to each variable were averaged over orderings among 

predictors, yielding the relative importance of each variable. This procedure was 

run using the relaimpo package (Groemping, 2006). The partial residual plots 

from the regression model of the second set of predictors were plotted using the 
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visreg package (Breheny and Burchett, 2017) to better understand the 

environmental effects on vH variation. 

To assess the predictive power of the model, we used Deming regression of 

site-mean predicted versus observed Loge(vH) with its corresponding standard 

deviation (SD). The SD of predictions came from the observed variations of 

sapwood-specific hydraulic conductivity (KS) and leaf water potential at turgor 

loss point (Ψtlp). Root mean square error (rmse) was estimated between the 

observed and predicted values both across sites and species. The Deming 

regression and rmse were calculated using the deming and xxIRT packages 

respectively. 

2.5 Results 

The measured traits can be ranked by phylogenetic influence, according to 

the fraction of variation explained by family alone in a variation partitioning 

analysis (Figure 2.1). The hydraulic traits wood density (WD) and sapwood-

specific hydraulic conductivity at 25 ˚C (KS25) were most influenced by 

phylogeny (49-52%); LMA, leaf nitrogen per unit area (Narea) and Ψtlp were 

intermediate (28-31%); photosynthetic traits (χ and Vcmax at 25˚C, Vcmax25) and 

vH were least influenced by phylogeny (19-24%). These rankings are 

approximately mirrored by the percentages of variation explained by site factors 

and climate (Figure 2.1). 
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Figure 2.1 Variance partitioning (%) for each trait.  

Path analysis (Figure 2.2) was used to test a framework for trait 

coordination, based on the hypothesis that the traits that are structurally 

dependent and more phylogenetically influenced impose a constraint on more 
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plastic traits, with vH as the key trait linking the two sets of traits. Analyses 

conducted separately on evergreen and deciduous woody plants revealed 

several general patterns. First, vH decreased with KS25, but increased with 

Vcmax25 (especially in evergreen plants) (Figure 2.2). KS25 was also lower, and vH 

higher, in plants with high LMA. The leaf economics spectrum (from low to high 

LMA: Wright et al. (2004b)) thus also influenced vH, both directly, and indirectly 

through KS25. Second, WD was negatively related to KS25 (especially in 

deciduous plants), and positively related to –Ψtlp. Third, both LMA and –Ψtlp 

negatively influenced χ. In other words, plants with low (more negative) turgor 

loss point and/or high LMA tend to operate with low χ, with low χ in turn being 

linked to higher Vcmax and therefore higher vH. Fourth, Narea was found to 

depend jointly on LMA and Vcmax25, consistent with accumulating evidence – 

e.g. Dong et al. (2017b), Xu et al. (2021a) – for the dependence of Narea on leaf 

structure (with LMA as the dominant control, here as in other analyses), and a 

weaker relationship to Vcmax25. Together, through direct and indirect effects, 

these hypothesized causal pathways accounted for all of the significant 

bivariate relationship among traits (Figure 2.2; Table S2.1). 



 

 55 

 

Figure 2.2 Path analysis of hydraulic and photosynthetic traits for all species (a), 

separately deciduous (b) and evergreen species (c). WD is wood density, KS25 

is sapwood-specific hydraulic conductivity at 25 ˚C, Ψtlp is leaf water potential at 

turgor loss point, vH is the ratio of sapwood to leaf area, LMA is leaf mass per 

area, χ is the ratio of leaf-internal to ambient CO2 partial pressure, Narea is leaf 

nitrogen content per area, and Vcmax25 is the maximum capacity of carboxylation 

at 25 ˚C. The arrows indicate the proposed links between traits. Solid lines 

indicate positive relationships, dotted lines negative relationships. Standard 

path coefficients are shown near the line (not significant: ns). The trait 

coordination structure was evaluated using the ratio of χ2 and degree of 

freedom (χ2/df) and goodness-of-fit index (GFI). 

Our analyses (Figure 2.2, S2.2) indicated only a weak trade-off between 

leaf drought tolerance and xylem hydraulic efficiency. KS25 and –Ψtlp were 



 

 56 

negatively related for deciduous species, but this relationship was not significant 

for evergreen species, or across all species considered together.  

The theoretical model, including just a single fitted parameter across all 

species (the intercept, reflecting the implicit effect of height), captured the 

essential trade-off between vH and KS. Both quantities vH and KS varied greatly 

among species (variance of Loge-transformed variables = 0.4 and 0.73, 

respectively, averaged across the deciduous and evergreen species-sets; Table 

S1), allowing a wide variety of hydraulic strategies to coexist within 

communities. Vcmax25 also varied widely among species (0.69), and more so 

than either χ (0.28) or Ψtlp (0.03) (Table S2.1). The model also predicted a 

tendency for plants with high Vcmax to have large vH, and/or KS, to allow a 

correspondingly high rate of water loss. This prediction was consistent with the 

partial residual plots based on the data (Figures 2.2 and S2.3). Relationships 

between Asat and plant hydraulic traits found in many studies (Santiago et al., 

2004; Zhu et al., 2018) were consistent with this prediction. Moreover, Equation 

2.8 predicted environmental modulation of the relationship between vH and 

other traits. Specifically, it predicted a positive impact of vapour pressure deficit 

(D) on vH. As D increases, plants are thus expected to allocate relatively less 

carbon to leaves, and more to stems and roots, resulting in increasing vH. 

Temperature was another essential climate variable affecting vH variation 

through χ and mC with contrasting effects (positive on χ, but negative on mC). 

Partial residual plots showed a net negative effect of temperature on vH (Figure 

S2.4a). However, elevation contributed little to vH variation (Figure 2.3b). 
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Figure 2.3 The modelled contribution of different predictors to vH variation at 11 

sites sampled along an elevational gradient in the Gongga Mountains, China. 

(a) The contribution of direct predictors from Equation 2.8. (b) The total 

contribution of environmental predictors through maximum capacity of 

carboxylation (Vcmax), the ratio of leaf-internal to ambient CO2 partial pressure 

(χ) and ca, along with hydraulic traits. In each panel, the vertical black line 

represents the baseline Loge(vH) across sites (on which the data were centred, 

such that the x-axis represents the contribution of predictors: ΔLoge(vH)). 

Transparent bars with black borders show the changes in predicted values 

compared to the baseline Loge(vH). Environmental effects are shown in green; 

photosynthesis-related effects in orange; hydraulic trait effects – sapwood-
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specific hydraulic conductivity (KS) and leaf water potential at turgor loss point 

(Ψtlp) – are shown in blue.  

 Predicted vH captured 90% of the observed variation in vH across sites 

(Figure 2.4) and 20% across all species (Figure S2.4). These predictions (see 

Equation 2.8) were based on observed hydraulic traits and ca, and on predicted 

optimal values of Vcmax, mC and χ. Analysis of the modelled contribution of 

individual factors showed that KS was the most important predictor of the 

variation in site-mean vH along the elevation gradient (Figure 2.3). With high KS, 

plants had large leaf area, leading to low vH. Besides, χ played a crucial role in 

vH variation, as well as being included in the effect of mC. The improvement in 

R2 contributions for the relationships of predicted Loge(vH) to contributions due 

to different predictors was 0.59 for KS, 0.14 for D, 0.10 for χ, 0.09 for ca, and 

0.06 for Vcmax and 0.03 for Ψtlp (Figure 2.3a); or in an alternative breakdown of 

controls, 0.42 for KS, 0.21 for temperature, 0.17 for radiation, 0.10 for D, 0.06 for 

elevation and 0.03 for Ψtlp (Figure 2.3b).  
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Figure 2.4 Comparison between site-mean observed and predicted ratios of 

sapwood to leaf area (vH). The error bar on the y-axis is the standard deviation 

of observed Loge(vH) at each site; that on the x-axis is the standard deviation of 

predictions, considering observed variations of sapwood-specific hydraulic 

conductivity (KS) and leaf water potential at turgor loss point (Ψtlp). 

2.6 Discussion 

The results of path analysis (Figure 2.2) and the success of the optimality 

model (Figure 2.4) are consistent with the proposed central role of vH in 

coordinating hydraulic and photosynthetic traits (Rosas et al., 2019). The vH 

variation mainly results from that in KS and χ or temperature. Species deploying 

a larger total leaf area at a given sapwood area (lower vH) tend to have higher 

KS (Togashi et al., 2015). The relatively rapid acclimation of photosynthetic traits 

to the local environment (Smith and Dukes, 2017a) that leads to the indirect 

relationship between vH and χ (Figure S2.2i) has been noted before (Martinez-

Vilalta et al., 2009). However, the weak trade-off between Ψtlp and KS in 

deciduous species and the apparent absence of these trade-offs in evergreen 

species implies that low hydraulic safety does not always accompany high KS. 

Although the xylem tension at which 50% of the maximum conductivity is lost 
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(P50) is the most commonly used index of hydraulic safety, we used Ψtlp for this 

purpose, noting that the two measures are significantly correlated (Joshi et al., 

2020; Zhu et al., 2018). Globally, a weak trade-off between hydraulic safety and 

efficiency has been reported (Gleason et al., 2016), and new work suggests a 

tight trade-off between efficiency and safety may be a feature of climates with 

highly seasonal precipitation (Liu et al., 2021). That is, plants in environments 

with less seasonal precipitation need not have high hydraulic efficiency, which 

may be accompanied by unknown costs or risks. 

The key role of vH in mediating leaf physiology and hydraulics arises 

because of its relative plasticity. Variance partitioning (Figure 2.1) showed that 

WD and KS are far more strongly linked to phylogeny than other traits. This is 

presumably because both are related to wood anatomy. KS is proportional to the 

fourth power of mean xylem conduit diameter (according to the Hagen–

Poiseuille equation: Tyree and Ewers (1991)), while WD is largely dependent on 

fibre wall and lumen fractions (Ziemińska et al., 2013). Thus, it might be 

expected that these traits would show a strong evolutionary convergence within 

lineages. By contrast, Ψtlp is known to change after drought through osmotic 

adjustment (Bartlett et al., 2014), implying a higher degree of plasticity 

consistent with the lower influence of family, and the higher influence of 

environmental factors, on this trait compared to other hydraulic traits (Figure 

2.1). The correlation between vH and Vcmax provides the bridge between two 

sets of plant traits, resulting in the observed relationship between Asat and 

hydraulic traits (Deans et al., 2020; Zhu et al., 2018). With higher Vcmax, leaves 

can fix more carbon, and stomata open to allow this – entailing greater water 

loss. Since photosynthetic traits, particularly χ and Vcmax, respond to 

environmental conditions on timescales of weeks to months by regulating 

intrinsic biochemical characteristics (Cavanagh and Kubien, 2014b; Smith and 

Dukes, 2017a), plants can adjust vH relatively quickly by shedding leaves to 
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balance water supply and demand (Choat et al., 2018), while potentially 

regulating KS on a longer timescale. The acclimation timescales of different 

hydraulic traits lead to tight coordination with photosynthesis process. This 

coordination also avoids unnecessary carbon costs of hydraulic traits, and may 

help to ensure survival under unfavourable (drought) conditions. The prediction 

of vH based on these essential trade-offs with observed hydraulic traits proves 

the intrinsic adjustment of hydraulic traits, implying that there is no need to try to 

predict hydraulic traits individually from climate alone. The key importance of 

this optimality model is to successfully predict and unite the trade-offs among 

traits in an optimality framework. 

Wood density has been considered as a crucial trait in a “wood economics 

spectrum” linking water transport, mechanical support and tree mortality (Chave 

et al., 2009). Dense wood, found in many species from arid habitats, is 

generally associated with narrow conduits (Hacke and Sperry, 2001) that 

restrict hydraulic conductivity (Zanne et al., 2010) but also confers resistance to 

embolism (Anderegg et al., 2016), possibly owing to thicker conduit walls and 

smaller pores in the pit membranes (Hacke et al., 2001a; Pittermann et al., 

2010). Wood xylem is the foundation for water transport; but leaves are often a 

major bottleneck for water flow, contributing 30% of whole-plant hydraulic 

resistance on average (Sack and Holbrook, 2006). Leaves with lower Ψtlp can 

keep their stomata open and continue photosynthesizing at more negative 

water potentials; on the other hand, this strategy may incur a greater carbon 

cost to maintain leaf turgor (Bartlett et al., 2012a; Deans et al., 2020; Sapes et 

al., 2021). 

The tight relationships among LMA, vH and KS indicate biologically important 

interactions between carbon investment strategy and hydraulics. Leaves with 

low LMA tend to display a larger leaf area to fix carbon within a relatively short 

leaf life span. Meanwhile, high hydraulic conductivity at both leaf and stem 
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levels ensures that large amount of water can be transported to leaves for 

transpiration, in order to maintain open stomata and a high rate of CO2 uptake 

(Joshi et al., 2020; Mencuccini et al., 2019b). This relationship between 

hydraulics and LMA may also be associated with physiological characteristics. 

Thicker leaves (high LMA) tend to have a longer diffusional pathways in the 

mesophyll, which increases water movement resistance outside leaf xylem and 

decreases hydraulic conductivity (Flexas et al., 2013). The relationships 

between WD and KS, and between LMA and KS, for evergreen species was 

non-significant, possibly due to the relatively small sample size. Nonetheless, 

the fitted coefficients had the same sign and were of similar magnitude to those 

found for deciduous species. The reason for the weak relationship between vH 

and Vcmax for deciduous species is unclear; again, the sign of the relationship 

was the same as for evergreen species. 

The theory predicts direct impacts of vapour pressure deficit (D), and 

indirect effects of temperature, elevation and radiation, on vH mediated by 

photosynthetic traits. As D increases, plants shed leaves and allocate more 

carbon to the root in order to reduce transpiration and absorb more water, 

leading to increasing vH to balance water supply and demand (Trugman et al., 

2019b). High D also causes reductions in gross primary production, and tree 

mortality (Park Williams et al., 2012; Yuan et al., 2019). Other environmental 

variables, including temperature and elevation, mainly influence hydraulic traits 

through their coordination with photosynthetic traits, which has been less 

examined in the field. The theory predicts a small positive impact of elevation on 

vH, consistent with the occurrence of small-leaved species at high elevations 

(Wright et al., 2017) and the observed negative relationship between leaf size 

and vH (Mencuccini et al., 2019b). Temperature has multiple competing effects 

that can be hard to disentangle, but the optimality model predicts an overall 

negative effect on vH. Under future scenarios where both D and temperature are 
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projected to increase (Grossiord et al., 2020), the optimality model offers a way 

to explore the potential vH response as the net effect of several competing 

effects. 

The prediction of site-mean vH using optimality theory offers a promising 

approach to implement hydraulics into vegetation and land-surface models. 

Although hydraulic processes are incorporated into some vegetation models to 

constrain photosynthesis, parameterization of hydraulic traits such as vH is 

required (Christoffersen et al., 2016; Eller et al., 2020). If the focus is on 

“typical” vegetation in a given climate, the relationship we have predicted (and 

demonstrated) that applies to site-mean vH (Equation 2.8), with photosynthetic 

traits predicted by optimality theory, could provide a straightforward way to 

couple photosynthetic and hydraulic traits in models. The prediction is much 

stronger for site means than for individual species – not surprisingly because 

the micro-environmental conditions to which each species acclimates are not 

known; while most current model applications are concerned only with the 

aggregate properties of the community.  

The Huber value also reflects carbon allocation to leaf and biomass, which 

further affects productivity. A fixed parameter is used to partition carbon into leaf 

and stem in many vegetation models (Trugman et al., 2019a). With the 

optimality model, the fixed parameter could be replaced by acclimated variation 

in vH, leading to improved realism. However, there is considerable diversity in 

hydraulic traits (notably KS) that is linked to LMA, which raises two practical 

issues if we are concerned with functional diversity: first, how to predict 

environmental influences on the leaf economics spectrum; second, how to deal 

with the large within-community variation in both LMA and KS. Xu et al. (2021a) 

have demonstrated a method to predict optimal LMA for deciduous plants, and 

a different approach is applicable to evergreen plants (Wang et al., 2023). A 

way needs to be found to simultaneously estimate the distribution of values for 



 

 64 

highly variable, non-plastic traits. A solution to this problem would be a major 

step forward for modelling the terrestrial carbon, water and nitrogen cycles. 
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CHAPTER 3 Predictability of leaf traits with climate and elevation: a case 

study in Gongga Mountain, China 

This chapter is published in Tree Physiology.  
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3.1 Abstract 

Leaf mass per area (Ma), nitrogen content per unit leaf area (Narea), maximum 

carboxylation capacity (Vcmax) and the ratio of leaf-internal to ambient CO2 

partial pressure (χ) are important traits related to photosynthetic function, and 

show systematic variation along climatic and elevational gradients. Separating 

the effects of air pressure and climate along elevational gradients is challenging 

due to the covariation of elevation, pressure and climate. However, recently 

developed models based on optimality theory offer an independent way to 

predict leaf traits, and thus to separate the contributions of different controls. 

We apply optimality theory to predict variation in leaf traits across 18 sites in the 

Gongga Mountain region. We show that the models explain 59% of trait 

variability on average, without site- or region-specific calibration. Temperature, 

photosynthetically active radiation, vapour pressure deficit, soil moisture and 

growing-season length are all necessary to explain the observed patterns. The 

direct effect of air pressure is shown to have a relatively minor impact. These 

findings contribute to a growing body of research indicating that leaf-level traits 

vary with the physical environment in predictable ways, suggesting a promising 

direction for the improvement for terrestrial ecosystem models.  

3.2 Introduction 

 A number of leaf traits are diagnostic of photosynthetic processes. The ratio 

of leaf-internal to external CO2 (χ) reflects stomatal regulation of CO2 uptake, 

which has to be balanced against water loss (Wang et al., 2017b). The 

maintenance of transpiration involves a carbon cost, in the form of respiration 

by living parenchyma cells, to maintain active water-transport tissues. Vcmax25, 

the maximum capacity of carboxylation at a standard temperature of 25 ˚C, is a 

measure of the control of photosynthesis by the amount of the enzyme 

(Rubisco) responsible for carbon fixation (Wang et al., 2020a). The 
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maintenance of photosynthetic capacity also incurs a substantial carbon cost, in 

the form of leaf respiration to support protein synthesis. Leaf mass per unit area 

(Ma) determines the total carbon cost of leaf construction (Wright et al., 2004a). 

Nitrogen is required both for metabolic processes and for leaf construction 

(Lambers and Poorter, 1992; Onoda et al., 2004). Leaf nitrogen content per unit 

area (Narea) thus provides a combined measure of metabolic and structural 

costs.  

Empirical analyses of large trait data sets have shown that variation in each 

of these traits is related to climate, and indeed specific climate variables can be 

shown to influence individual processes (Meng et al., 2015; Ordoñez et al., 

2009; Wright et al., 2005). Vcmax25 is primarily determined by the amount of 

Rubisco, while the activity of Rubisco varies with leaf temperature (Devos et al., 

2010; Rokka et al., 2010). Vapour pressure deficit represents the atmospheric 

moisture demand: it is the difference between the saturated vapour pressure of 

water (a function of temperature) and the actual vapour pressure, which 

depends on atmospheric pressure and moisture content. Vapour pressure 

deficit influences stomatal behaviour and thereby induces variation in χ (Wang 

et al., 2017b). The amount of light reaching the leaves influences Ma and Narea 

within the canopy (Peltoniemi et al., 2012; Werger and Hirose, 1991). Both also 

vary with latitude because this determines total incident radiation and day length 

(Forsythe et al., 1995). Analyses have shown that the variability in each of these 

traits is largely independent of variability in the others (Yang et al., 2019b).  

Elevational transects provide examples of trait variability along 

environmental gradients (Asner and Martin, 2016; Asner et al., 2017; Jian et al., 

2009; Pfennigwerth et al., 2017). Although this variability is partly related to 

changes in climate with elevation, the impact of changing elevation on air 

pressure is also thought to be significant (Gale, 1972; Terashima et al., 1995; 

Wang et al., 2017a; Wang et al., 2014). Reduction in air pressure at higher 
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elevations lowers the partial pressure of oxygen. All else equal, it also 

decreases the water vapour pressure, and increases the atmospheric 

transmissivity to solar radiation. The reduction in partial pressure of oxygen 

increases the affinity of Rubisco for CO2, which reduces photorespiration. The 

effects of decreasing water vapour pressure and increasing transmissivity are 

often countered by decreasing temperature and increasing cloudiness. 

Nonetheless, their contribution (compared to the situation at constant elevation) 

is to increase the vapour pressure deficit – because atmospheric pressure 

automatically declines with elevation while the saturated vapour pressure does 

not – resulting in higher water transport costs and lower χ; and to increase 

absorbed light, resulting in increased Vcmax25, Ma and Narea (Wang et al., 2017a).  

It is difficult to disentangle the effects of air pressure and climate along 

elevation gradients because of their covariation. Attempts to separate out 

climate and elevation empirically by comparing low-elevation sites at higher 

latitude with high-elevation sites at lower latitude (Körner et al., 1991) have 

distinguished the impacts of temperature from air pressure, but have not 

addressed specific climate influences. However, understanding the relative 

importance of air pressure effects on photosynthesis could be important in the 

face of projected climate changes, in particular given the apparent sensitivity of 

high-elevation sites to these changes (Settele et al., 2015; Stocker et al., 2013). 

Recent progress in the application of optimality theory to predict trait 

variation (Dong et al., 2017a; Prentice et al., 2014b; Wang et al., 2017b) offers 

an alternative way to examine the impacts of climate and elevation on 

photosynthesis. Optimality theory is predicated on the idea that through 

evolutionary processes (including selection for plasticity, as well as 

environmental filtering of lineages) plants are adapted to the environmental 

conditions under which they live. The values of photosynthetic parameters are 

then predicted as the result of trade-offs between competing requirements, such 
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as the need to balance CO2 uptake against water loss. The balance between 

maintaining carboxylation capacity and transpiration capacity can be described 

in terms of the least-cost hypothesis (Prentice et al., 2014b; Wright et al., 2003), 

which states that plants minimize the combined costs of maintaining these 

capacities. This hypothesis allows us to predict χ. The coordination hypothesis 

(Chen and Reynolds, 1997; Maire et al., 2012; Wang et al., 2017b) indicates 

that carbon gain is maximized through balancing light- and Rubisco-limitations 

on photosynthesis. This hypothesis allows us to predict Vcmax25 (Smith et al., 

2019). The need to allocate nitrogen to structural and metabolic processes 

allows us to predict Narea as a function of Vcmax25 and Ma (Dong et al., 2017a). 

According to the optimal leaf-longevity hypothesis (Kikuzawa, 1991), plants 

maximize the time-averaged net carbon gain of leaves taking into account 

construction costs (amortized over the leaf lifetime) and the decline in 

photosynthetic capacity with increasing age. This hypothesis allows Ma to be 

predicted from leaf longevity. The leaf longevity of deciduous species is 

constrained by growing-season length; thus, Ma of deciduous species should be 

predictable from growing-season length. 

In this study, we draw on these theoretical developments to predict trait 

variability in response to climate and elevation gradients in the Gongga 

Mountain region, China. We develop a new optimality model to predict Ma of 

deciduous species and a simplified optimality approach to predict Narea. These 

optimality models were developed independently of the observations used in 

this study and require no calibration. We show that these models capture 

observed variations in photosynthetic traits at sites in the Gongga Mountain 

region. We then use these models to quantify the relative contribution of 

different factors to the observed changes in trait values at these sites. 
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3.3 Methods 

3.3.1 Study sites 

We collected photosynthetic trait data from 18 sites in the Gongga Mountain 

region of Sichuan Province, China (Figure 3.1a,b). The study area extends from 

29° 22' to 29° 55' N and 101° 1' to 102° 9' E. The sampled sites span an 

elevation gradient from 1143 to 4361 m, and as a result there is a considerable 

gradient in growing season temperature (Table S3.1). Sites from the western 

part of the Gongga Mountain region tend to be drier than sites at a 

corresponding elevation in the eastern part, and thus our data set also samples 

a large moisture gradient (Table S3.1). The vegetation at lower elevations is 

deciduous broad-leaved forest dominated by Betulaceae, Urticaceae, 

Caprifoliaceae and Rosaceae, and is replaced by evergreen needle-leaved 

forest and subsequently by deciduous shrubland dominated by Pinaceae and/or 

Rosaceae and Ericaceae (Table S3.2) with increasing elevation. Although 

evergreen woody species are present at all of the sites (Table S3.2), and trait 

measurements were made on these species, our subsequent analyses of 

photosynthetic traits focused entirely on the deciduous species because of the 

difficulty of obtaining reliable estimates of leaf age based on a single sampling 

of a site. 
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Figure 3.1 The study area. (a) the location of the Gongga Mountain region in 

China, (b) spatial distributions of the sampled sites in the Gongga mountain 

region, shown by red dots, (c) the daytime temperature in July (TdJ) and the ratio 

of annul actual evapotranspiration to annual potential evapotranspiration (αp) at 

the sampled sites. The background to plots (a) and (b) shows elevation. 

3.3.2 Sample collection and analysis  

Trait data were measured in late July 2018 and early August 2019 during 

the active growing season in the Gongga Mountain region. We used a stratified 

sampling strategy at each site, in order to sample the dominant species in each 

canopy stratum. In forest sites, we sampled a minimum of five tree, five shrub 

and five forb species at each site, and also sampled graminoids, lianas and 

climbers, and pteridophytes when present (Table S3.2). At the highest elevation 

sites (3794 m, 3943 m, 4081 m, 4361 m), where shrubs form the upper canopy, 

we only sampled shrubs and forbs (and at the highest site one pteridophyte) but 

again we sampled a minimum of five species in each category. All samples 

were taken from the outer canopy. Measurements were made on young but fully 

expanded leaves, attached to the cut branch. 
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Our analyses focus on four leaf traits: (1) leaf mass per unit area (Ma, g 

biomass m–2), (2) the maximum capacity of carboxylation at 25 ˚C (Vcmax25, 

μmolC m–2 s–1), (3) the ratio of leaf-internal to ambient CO2 partial pressure (χ, 

unitless), and (4) leaf nitrogen content per unit area (Narea, g m–2). (See Table 

3.1 for definitions of parameters and other abbreviations frequently used in the 

text.) Ma was obtained from measurements of leaf area and dry weight following 

standard protocols (Cornelissen et al., 2003b). Leaf area was taken as the 

projected area of a leaf, or leaflet for compound leaves, using a Canon LiDE 

220 Scanner and Matlab. Dry weight was obtained after air-drying for several 

days and then oven-drying at 75 ˚C for 48 h to constant weight. The Ma value of 

one species at each site was the average of three measurements made on 

leaves from multiple individuals. Leaf nitrogen content was measured using an 

Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific Inc., USA). Narea 

was calculated from Ma and leaf nitrogen content. Leaf nitrogen content (for 

Narea) and stable carbon isotope (δ13C, for χ) measurements were made on 

pooled samples of leaves from multiple individuals. 

Table 3.1 Parameters and abbreviations frequently used in the text.  

The table provides information on the meaning and units of them. 

Parameters 

and 

abbreviations 

Unit Description 

χ Pa Pa–1 The ratio of leaf-internal to ambient CO2 

partial pressures 

Ma g biomass 

m–2 

Leaf mass per area 

Narea g m–2 Leaf nitrogen content per area 

Vcmax μmolC m–2 

s–1 

The maximum capacity of carboxylation 
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Vcmax25 μmolC m–2 

s–1 

molC m–2 

day–1 

The maximum capacity of carboxylation at 

standard 25 ˚C 

Used when calculating b in Ma section 

Tg ˚C Mean temperature during the growing season 

(mean daily temperature above a baseline of 0 

˚C) 

D0 kPa Mean vapor pressure deficit during the 

growing season 

R0 μmol photon 

m–2 s–1 

Mean photosynthetically active radiation 

during the growing season 

RLAI mol photon 

m–2 day–1 

Mean leaf area index weighted 

photosynthetically active radiation during the 

growing season 

f day day–1 The ratio of growing season length to the 

number of days in the year 

MAP mm Mean annual precipitation 

αp mm mm–1 The ratio of annual actual evapotranspiration 

to annual potential evapotranspiration 

TdJ ˚C Mean daytime temperature of July 

Γ* Pa The photorespiratory compensation point 

ca Pa Ambient CO2 partial pressure 

ci Pa Internal CO2 partial pressure 

β unitless The ratio at 25 ˚C of the unit costs of 

maintaining carboxylation and transpiration 

capacities (estimated as 146) 

Κ Pa The effective Michaelis-Menten coefficient of 

Rubisco 

Kc Pa The Michaelis-Menten coefficients of Rubisco 

for carboxylation 

c unitless A constant proportional to the unit carbon cost 

for the maintenance of electron transport 

capacity (0.41) 
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LL day Leaf longevity 

b day The potential age when leaves can no longer 

photosynthesize and assimilate CO2 

k g biomass 

mol C–1 

Scaling factor 

Iabs mol photon 

m–2 day–1 

The photosynthetically active radiation 

absorbed by leaves 

CC gC gC–1 A constant representing the construction 

carbon cost per unit leaf mass carbon 

Aa g biomass 

m–2 day–1 

Daily carbon assimilation rate per unit leaf 

area 

φ0 μmol C 

μmol–1 

photon 

The intrinsic quantum efficiency of 

photosynthesis 

 mol C mol–1 

photon 

Used in Equation 3.12 of the Ma section 

Nrubisco g m–2 Nitrogen content in Rubisco enzymes 

Nstructure g m–2 Nitrogen content in leaf structure 

 

We used a portable infrared gas analyser (IRGA) system (LI-6400; Li-Cor 

Inc., Lincoln, NB, USA) to make the leaf gas-exchange measurements. Sunlit 

terminal branches from the upper canopy were collected and re-cut under water 

immediately prior to measurement. Measurements were made in the field with 

relative humidity and chamber block temperature close to that of the ambient air 

at the time of measurement, and a constant airflow rate (500 μmol s−1). Vcmax 

was calculated from the light-saturated rate of net CO2 fixation at ambient CO2 

using the one-point method (De Kauwe et al., 2016a) and adjusted to a 

standard temperature of 25 ˚C (Vcmax25) using the method of Bernacchi et al. 

(2003a). The Vcmax value of one species at each site was obtained from one 

individual only, due to the time-consuming nature of the measurement. 
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Carbon isotopic values (δ13C) were measured using an Isotope Ratio Mass 

Spectrometer (Thermo Fisher Scientific Inc., USA). Estimates of χ were made 

using the simplified method of Ubierna and Farquhar (2014) to calculate 

isotopic discrimination (Δ) from δ13C considering discrimination during stomatal 

diffusion, carboxylation and photorespiration, thus following the relationship: 

χ	 =
Δ	 + &

′Γ∗
(" 	–	*#

+′	–	*#
	 (3.1) 

where as, b’ and f’ are the fractionations associated with diffusion in air (4.4 ‰), 

Rubisco carboxylation (30 ‰) and photorespiration (16 ‰), respectively. Γ* is 

the photorespiratory compensation point, and ca is ambient CO2 partial 

pressure. 

3.3.3 Climate data 

In-situ climate data were only available for five (1785 m, 2782 m, 2993 m 

3251 m and 3943 m) of the 18 sampled sites. We therefore estimated the 

climate at each site consistently by interpolation between a larger set of weather 

stations in the region (17 stations, Figure S3.1) for the period from January 

2017 to December 2019 

(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html) 

to create seasonal climatologies of monthly maximum and minimum 

temperature, fraction of sunshine hours, water vapor pressure and precipitation. 

These 17 stations range in elevation from 422 m to 3951 m. We then used the 

elevationally-sensitive ANUSPLIN interpolation scheme (Hutchinson and Xu, 

2004) to provide estimates of these meteorological variables at each of the 

sites. The monthly estimates at each site were converted to daily values by 

linear interpolation in order to calculate the bioclimatic variables required as 

inputs to our models, specifically growing-season mean daytime temperature 

(Tg), growing-season mean vapour pressure deficit (D0) and growing-season 
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mean photosynthetically active radiation (R0), where the growing season was 

defined as the period when the daily temperature is above 0 ˚C. We also 

calculated the ratio of growing-season length to the number of days in the year 

(f), and the leaf-area-index weighted R0 (RLAI) to represent the effect of light 

interception by different layers in the canopy (Dong et al., 2017a). The average 

leaf area index during July and August (i.e. the months the trait data were 

collected) in 2018 and 2019 was derived from the MODIS leaf area index 

product (MCD15A3H: https://modis.gsfc.nasa.gov/). An annual moisture index 

(αp, an estimate of the ratio of annual actual evapotranspiration to annual 

potential evapotranspiration) was calculated from the monthly temperature, 

precipitation and fraction of sunshine hours at each site using the Simple 

Process-Led Algorithms for Simulating Habitats (SPLASH) model (Davis et al., 

2017b). Given the large difference between daytime and night-time temperature 

at high elevations, we also calculated the mean daytime temperature of July 

(TdJ) by approximating the daily temperature cycle with a sine curve: 

TdJ	=	Tmx \
1
2+

(1–x2)12
2 cos–1 x`+Tmn \

1
2 –

(1–x2)12
2 cos–1 x` (3.2) 

where Tmax is the mean daily maximum air temperature, Tmin is the mean daily 

minimum air temperature, and x = – tan φ tan δ, where φ is site latitude and δ is 

the average solar declination in July. 

Comparison of the interpolated bioclimate variables with values calculated 

using in-situ data at the five sites where such data are available (Figure S3.2) 

suggests that the ANUSPLIN interpolation provides robust estimates of the 

patterns of variation in climate across sites although, except for July 

temperature, the absolute values differ.  
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3.3.4 Trait data analysis 

Analyses of the trait data focused on the predominant deciduous 

component of each community. We used redundancy analysis (RDA: Legendre 

and Legendre (2012)) to determine the main patterns of trait variation using 

species average values from each site, assess how much of this variation is 

explained by environmental factors, and determine the correlations between 

traits and environment. RDA was performed using the vegan package in R 

(Oksanen et al., 2017). In order to compare the trait variability within and across 

sites, we calculated the coefficient of variation (CV: Lovie (2005)), a 

standardised measure of the dispersion of a frequency distribution, for the data 

set as a whole and at each site, for each of the traits independently. 

We used Generalized Additive Models (GAMs) to analyse trait variability 

with αp and elevation. GAMs (Hastie and Tibshirani, 1990) allow flexible 

relationships between response and predictor variables to be fitted to the data, 

avoiding the need to assume the form of the function in advance. Convex hulls 

were used to exclude areas of the fitted surface that were not well constrained 

by observations. GAMs were fitted using the mgcv package (Wood, 2001) and 

α-convex hull was produced using alphahull package in R (Rodríguez Casal 

and Pateiro López, 2010).    

3.3.5 Trait prediction 

We used existing optimality-based models of χ and Vcmax25 and new models 

of Ma and Narea to predict the distribution of traits with climate and elevation 

across the sites. We used growing-season length as a proxy for the leaf 

longevity of deciduous plants. Specific photosynthetic traits adjust to 

environmental conditions over different timeframes (Jiang et al., 2020; Xu and 

Baldocchi, 2003), so we tried two alternative measures of temperature (Tg and 
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TdJ) as predictors. The models for χ and Vcmax25 apply for both deciduous and 

evergreen species. 

3.3.5.1 The model for χ 

This model is based on the assumption of evolutionary optimality in the 

trade-off between the costs of transpiration and carbon gain. The least-cost 

hypothesis predicts that plants minimize the total costs of photosynthesis, i.e. 

the requirement to maintain capacities for both carboxylation and transpiration 

(Prentice et al., 2014b; Wright et al., 2003). Using the standard photosynthesis 

model due to Farquhar et al. (1980a), Wang et al. (2017b) showed that χ could 

be predicted by: 

χ = 
Γ*

ca
+

ξ,1– Γ*

ca
-

ξ+./$
 (3.3) 

where 

ξ	=	0β1K+Γ*2
1.6η  (3.4) 

and 

K = Kc 31+
Po
Ko
4 (3.5) 

Here Γ* is the photorespiratory compensation point, and ca is ambient CO2 

partial pressure. η is the viscosity of water relative to its value at 25 ˚C. β is the 

ratio at 25 ˚C of the unit costs of maintaining carboxylation and transpiration 

capacities. Based on a global compilation of leaf 13C measurements, Wang et 

al. (2017b) estimated β = 146. Κ is the effective Michaelis-Menten coefficient of 

Rubisco. Kc and Ko are the temperature-dependent Michaelis–Menten 

coefficients for carboxylation and oxygenation, with reference values at 25 ˚C of 

39.97 Pa and 27.48 kPa, respectively (Bernacchi et al., 2001). Po is the ambient 

partial pressure of O2. The composite variable ξ determines the sensitivity of χ 
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to D0. This dependence is influenced by temperature (via Γ*, K and η) and O2 

pressure (via K), according to Equations. 3.4 and 3.5.  

3.3.5.2 The model for Vcmax25 

The coordination hypothesis states that plants coordinate light-limited and 

Rubisco-limited photosynthesis rates so as to be equal under average daytime 

conditions (Chen et al., 1993b). This coordination ensures that the use of 

absorbed light is maximized, without incurring additional maintenance costs for 

Vcmax. Vcmax acclimated to growth temperature can be predicted from the 

universal model of carbon uptake proposed by Wang et al. (2017b): 

Vcmax = φ0R0 ,
ci+K

ci+2Γ*-01– 5 c
m
6

2
3 (3.6) 

m	=	 7ci	–	Γ*

ci+2Γ*8 (3.7) 

where φ0 is the intrinsic quantum efficiency of photosynthesis (0.085 μmol C 

μmol–1 photon), and ci is the leaf-internal CO2 partial pressure, which is the 

product of observed χ and ca. c is a constant proportional to the unit carbon cost 

for the maintenance of electron transport capacity (a value of 0.41 was 

estimated from an independent global dataset on photosynthetic capacities). m 

represents the effect of subsaturating CO2 on the light-limited rate of 

photosynthesis.  

The kinetic response of Rubisco to temperature allows Vcmax25 to be 

estimated from Vcmax at growth temperature (Tg), by the following relationship: 

Vcmax = Vcmax25fv (3.8) 

fv=9%!(
Tg–298.15
298.15TgR

)
×	 [1+e

(298.15ΔS–Hd)
298.15R ]

[1+e
(TgΔS–Hd)

TgR ]

 (3.9) 
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where Ha is the activation energy (71513 J mol–1), R is the universal gas 

constant (8.314 J mol–1 K–1), Hd is the deactivation energy (200000 J mol–1), 

and ∆S is an entropy term (J mol–1 K–1) calculated using a linear relationship 

with Tg with a slope of 1.07 J mol–1 K–2 and intercept of 668.39 J mol–1 K–1 

(Kattge and Knorr, 2007). 

3.3.5.3 A new model for Ma 

Ma contributes to determining how much leaf area can be displayed for a 

given amount of carbon allocated to above-ground tissues (Cui et al., 2019). 

There is a universal trade-off between Ma and leaf longevity (LL) across growth 

forms, plant functional types and biomes, known as the ‘leaf economics 

spectrum’ (Wright et al., 2004a). The spectrum runs from a ‘fast’ to a ‘slow’ 

economic strategy. Plants adopting a fast economic strategy have rapid returns 

on investment (low Ma) and short longevity (low LL), while plants adopting the 

slow strategy have high Ma and high LL.  

Here we propose a novel model for Ma, which combines three optimality-

based predictions. We start from the model proposed by Kikuzawa (1991). By 

assuming that the average net carbon gain by a leaf during its lifetime is 

maximized, this model provides an optimality-based prediction of the trade-off 

between Ma and LL: 

LL=02b*CC*Ma
Aa

 (3.10) 

Here b (day) is the potential age at which leaves can no longer 

photosynthesize, CC (gC gC–1) is the construction cost per unit mass of leaf 

carbon, and Aa (g biomass m–2 day–1) is the daily carbon assimilation rate per 

unit leaf area. Ma can be written as a function of LL, b and Aa from Equation 

3.10. Consequently, understanding the environmental responses of these three 

traits is the key to predicting Ma.  
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Second, Xu et al. (2017) showed that b is approximately proportional to Ma 

and inversely proportional to Vcmax25: 

b =  
:	Ma

k Vcmax25
 (3.11) 

Here u » 8889 (dimensionless), estimated from a meta-analysis of data on 49 

species across temperate and tropical biomes (Xu et al., 2017), and k is a 

scaling factor (30 g biomass mol C–1).  

Third, the coordination hypothesis allows optimal values of Vcmax to be 

predicted, by equating the Rubisco-limited assimilation rate with the electron-

transport limited rate under typical daytime conditions that include temperature, 

vapour pressure deficit, ambient CO2 and the photosynthetically active radiation 

absorbed by leaves (Iabs). The model has the mathematical form of a “light use 

efficiency model”: that is, modelled total photosynthesis over any period is 

proportional to the total light absorbed during that period, consistent with 

classical studies on crop growth (Wang et al., 2017b). For this derivation, we 

made the simplifying assumption that the maximum rate of electron transport 

(Jmax) is large enough that the square-root term in Equation 3.6 can be 

neglected. We substituted Equations 3.8 and 3.9 into 3.11 to predict b from Ma 

and Vcmax, which is then predictable from φ0, Iabs, ci, Γ* and K. In this way we 

obtained a theoretical prediction of Ma: 

Ma = φ0 Iabs LL k;
1ci–Γ*2(ci+K)

(2uCCfv)5ci+2Γ*6
2 (3.12) 

In addition to the implied proportionality of Ma with both absorbed light and 

leaf longevity, Equation 3.12 indicates the existence of a composite temperature 

effect due to the temperature dependencies of χ, Γ*, K and fv. In order to 

separate these dependencies, estimate the net effect of temperature more 

easily and account for the moisture effect detected in the China Plant Trait 

Database (Wang et al., 2018), we obtained the partial derivative of ln (Ma) in 
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Equation 3.12 with respect to temperature (Tg), and evaluated the result under 

standard environmental conditions. This predicts a decline in ln (Ma), for a given 

LL and Iabs, of ≈ 3% per degree increase in growth temperature (Tg). In addition, 

all the constants (φ0, u, k, CC and reference values of fv, K, ci, and Γ* at 25 ˚C) 

are combined into a single parameter C1, to reduce the complexity of the model. 

A linearized equation for predicted Ma can then be derived as: 

ln(Ma)= ln(Iabs) – 0.03 Tg	+	ln(LL)	+	ln(C1) (3.13) 

where C1 is a free parameter. For deciduous species, there is an additional 

constraint on LL by growing-season length in Equation 3.13, thus we obtained 

the equation for deciduous species: 

ln(Ma) = ln(Iabs)– 0.03 Tg + ln(f) + ln(C2) (3.14) 

where f is the ratio of growing season length to the number of days in the year. 

Thus, information on the number of days in a year is considered in the free 

parameter (ln (C2) = ln (C1) + ln (365)), resulting in changing C1 to C2. C1 and C2 

are unknown a priori but could be estimated from observations. 

Although not included in this theoretical derivation, a strong negative effect 

of increasing moisture availability on Ma has been reported (Meng et al., 2015). 

We used the ratio of actual to potential evapotranspiration (αp) as an index of 

moisture availability in order to estimate this effect from the data. Thus, 

parameter C2 is further replaced by C3 to denote the parameter difference in 

Equations 3.14 and 3.15 after the moisture effect is included. 

We used an independent data set of ln (Ma) for 621 deciduous species from 

the China Plant Trait Database (Wang et al., 2018) to estimate the parameter 

C3. Using RLAI to represent the averaged light absorbed by leaves, we 

regressed the observations of ln (Ma) against ln (RLAI), Tg, ln (f) and ln (αp) and 

obtained an estimate of ln (C3) of 1.70. The predictors in this analysis explained 

53% of the variation in Ma, and the fitted slopes of RLAI, Tg and ln (f) were 
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quantitatively consistent with their theoretical values as given in Equation 3.14. 

Thus, the final model for Ma was: 

ln(Ma) = 1.22 ln(RLAI)+ 0.78 ln(f)– 0.06 Tg – 0.60 ln(αp) + 1.70 (3.15) 

3.3.5.4 A simple model for Narea 

Narea represents the sum of nitrogen in both metabolic and structural 

components of a leaf. Dong et al. (2017a) proposed a model to predict Narea 

from Ma and Vcmax25 by assuming (based on previously published analyses) that 

(1) Vcmax25 is proportional to nitrogen in Rubisco, and (2) non-photosynthetic 

nitrogen is almost proportional to Ma. The model of Dong et al. (2017a) is as 

follows: 

Narea	=	9.5Nrubisco+Nstructure (3.16) 

Nstructure	=	10–2.67Ma
0.99 (3.17) 

and 

Nrubisco	=	0.003135Vcmax25 (3.18) 

The coefficient of Nrubisco in Equation 3.16 reflects the allocation of total 

metabolic nitrogen to Rubisco, which however varies among species. We used 

the observed Ma and Vcmax25 in this study to estimate Nstructure and Nrubisco in 

Equations 3.17 and 3.18, then fitted a regression of metabolic nitrogen 

(estimated as the difference between Narea and Nstructure) against Nrubisco to 

estimate this coefficient for the deciduous species from the Gongga sites. We 

obtained a value for the coefficient of Nrubisco of 7.2, which is within the predicted 

range given in Dong et al. (2017a).  

However, there is considerable uncertainty in Equation 3.18, which 

describes the maximal catalytic turnover rate of Rubisco at 25 ˚C (Harrison et 

al., 2009; von Caemmerer et al., 1994), as well as in Equations 3.16 and 3.17. 

To simplify the calculations and avoid these uncertainties, we adopted an 
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alternative method to estimate Narea directly by regression as a linear 

combination of all observed Ma and Vcmax25 (without intercept) in this study, 

yielding a simpler model that applies to non-nitrogen-fixing plants: 

Narea	=	0.02Ma	+	0.003Vcmax25 (3.19) 

We used this simple model to predict Narea first from observed – and then 

from predicted – Vcmax25 and Ma. In this way, we could first test whether Narea is 

indeed predictable from Vcmax25 and Ma in our data set, and then test whether 

Narea is predictable from climate data alone. In order to examine the impact of 

nitrogen fixation on this relationship, we also included “N-fixer” as a factor in this 

linear model. Partial residuals from the regression model for Narea were plotted 

using the visreg package (Breheny and Burchett, 2013). 

3.3.5.5 Estimating the contribution of individual predictor variables  

The contribution of each predictor variable to trait variation was calculated 

in three steps. At step 1, we created a baseline by averaging the values of each 

predictor variable across the 18 sites to create a data set for an “average” site. 

We used this average site data to calculate baseline trait values. At step 2, we 

changed one predictor variable at a time to the actual value at that site, keeping 

all the other variables constant at the average site value. We then calculated 

trait values using these new inputs. At step 3, the contribution of each predictor 

variable was calculated as the difference between the traits simulated at step 2 

and the baseline value of the traits from step 1. This procedure allowed us to 

separate out the individual influences of changes in air pressure with elevation, 

TdJ and D0 on χ, the influence of changes in air pressure with elevation, TdJ and 

R0 on Vcmax25, as well as the impact of χ itself on Vcmax25. It also allowed us to 

separate the effects of Tg and RLAI on Ma, and the effects of leaf longevity 

(indexed by growing season length, gsl) and moisture (indexed by the ratio of 

annual actual evapotranspiration to annual potential evapotranspiration) on Ma. 
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3.3.5.6 Uncertainty of the model predictions  

The uncertainty of trait prediction can come from two sources: parameter 

values and input data. To evaluate the parameter uncertainty, we calculated the 

uncertainty of each parameter separately and combined them using the 

standard error propagation formula: 

u2(y)	=	>(∂m ∂ni⁄ )2u2(ni)
i

 (3.20) 

where u(y) is the standard uncertainty of the trait, ∂m/∂ni is the sensitivity to 

variable ni (obtained by differentiating the individual equations), and u(ni) is the 

standard uncertainty of ni. The uncertainty of predicted Ma and Narea values 

arises from the uncertainties in coefficients fitted by regression and additional 

observed Ma and Vcmax25 for Narea. The uncertainty of χ and Vcmax25 arises from 

the values of the various ecophysiological quantities in the prediction equations 

and additional observed χ for Vcmax25, which show some degree of variation 

among species.  

3.3.6 Model evaluation 

We evaluated model performance by comparing the observed mean trait 

value at each site with predictions of each trait, using r and root mean square 

error (RMSE) between observed and predicted values across the sites. We 

compared the R2 explained by the optimality models and statistical models. To 

test whether the optimality-based models can capture the climate variability, we 

also fitted multiple linear regressions of the site-mean trait values against the 

driving climate data, which serves as a statistical benchmark. All statistics were 

performed in R3.1.3 (R Core Team 2015). 
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3.4 Results 

3.4.1 Traits variation related to climate 

The four climate variables together accounted for 22.2 % of trait variation as 

shown in the RDA. The first axis explained 22.9 % of the variability in the 

observations. On this axis, variability was negatively related with temperature 

and positively related with R0 (Figure 3.2). The second axis reflected gradients 

in moisture (αp and vapour pressure deficit). Variability in χ was shown to be 

controlled by moisture, although with a small influence from temperature. 

Vcmax25 varied positively with radiation, and negatively with temperature and 

moisture, in the opposite direction from χ. Temperature had a small positive 

influence on Ma but moisture had a negative impact, reflecting the fact that 

leaves were thicker in hotter and drier environments. Narea was mainly controlled 

by radiation and moisture, and covaried with Ma and Vcmax25. 
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Figure 3.2 Climate-related trait dimensions from redundancy analysis (RDA). The 

climate variables (shown by blue arrows) are mean temperature during the 

growing season, defined as days above a baseline of 0 ˚C (Tg), mean vapour 

pressure deficit (D0), mean photosynthetically active radiation (R0), and a 

moisture index (αp) defined as the ratio of annual actual evapotranspiration to 

annual potential evapotranspiration. The traits (shown by red arrows) are leaf 

mass per area (Ma), leaf nitrogen content per area (Narea), the maximum capacity 

of carboxylation standardized to 25 ˚C (Vcmax25) and the ratio of leaf-internal to 

ambient CO2 partial pressures (χ). The grey circles are species average values 

from each site. 

3.4.2 Observed and predicted trait variation with elevation 

All observed traits showed non-linear relationships with elevation (Figure 

3.3). Trait distributions in climate space also showed non-linear relationships. 

(Figure 3.4). These non-linear relationships arose because although 

temperature (as measured by either Tg or TdJ) decreased monotonically with 
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elevation, the moisture-related variables in the Gongga Mountain region had 

non-linear relationships with elevation (Figure 3.1c): the lowest and uppermost 

sites had lower mean annual precipitation (MAP) and αp than the sites at 

intermediate elevations (Table S3.1). The combination of these different trends 

in individual climate variables led to a complex pattern of trait variability. Ma and 

Narea were large under dry conditions and high elevation. Vcmax25 increased 

along elevation and moisture gradients. χ was lower under dry conditions and 

low elevation. Nevertheless, Ma, Vcmax25, Narea tended to increase overall with 

elevation, while χ showed an overall decrease with elevation. There was no 

trend in the CV of any of the traits with elevation (Figure S3.3). Within-site CV 

values were larger than across-site CV values at nearly half of the sites for Ma, 

χ and Narea, while most of the within-site CV values were smaller than across-

site CV values for Vcmax25. However, within-site variability differed between the 

traits. Vcmax25 was the most, and χ the least, variable trait.  
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Figure 3.3 The observed and predicted values of traits along the altitudinal 

gradient. The traits are leaf mass per area (Ma), leaf nitrogen content per unit 

area (Narea), the maximum capacity of carboxylation standardized to 25 ˚C 

(Vcmax25) and the ratio of leaf-internal to ambient CO2 partial pressure (χ). Only 

the observed trait values of deciduous plants are shown in black with box plots. 

The best versions of each predicted trait are shown in red dots: predicted Ma 

using mean temperature during the growing season, defined as days above a 

baseline of 0 ˚C (Tg), predicted Vcmax25 and χ driven by daily temperature in July 

(TdJ), predicted Narea using observed Ma and Vcmax25. 
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Figure 3.4 The distribution of predicted trait values in a climate space defined by 

elevation and a moisture index (αp) using Generalized Additive Models. The traits 

are leaf mass per area (Ma), leaf nitrogen content per unit area (Narea), the 

maximum capacity of carboxylation standardized to 25 ˚C (Vcmax25) and the ratio 

of leaf-internal to ambient CO2 partial pressure (χ). Trait values are indicated by 

the colour scale. 

The models captured the overall patterns of variability of the four traits 

between sites, with most of predicted values falling within the range of the 

observed values. The observed and predicted site-mean values followed the 1:1 

line (Figure 3.5) and the average of the r values for the four traits was 0.75. 

Mean RMSE values showed that differences between observations and 

predictions accounted for close to 30% of the mean trait values. The R2 values 

produced by the optimality models were generally higher, except for Ma due to 

its underestimation at low elevation (Table 3.2). The models also captured χ 

and Vcmax25 variations for evergreen species, with r values of 0.68 and 0.67 

respectively (Figure S3.4). However, predicted Ma using TdJ, χ using Tg and 

predicted Narea using Nstructure and Nrubisco were underestimated, and Vcmax25 

using Tg was overestimated (Figure S3.5). Using TdJ instead of Tg improved the 
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predictions of Vcmax25 and χ, but degraded the prediction for Ma (Figure 3.5, 

S3.6). The predicted χ values using TdJ were better than those using Tg, and the 

best-fit model could predict values across sites with r = 0.71 and RMSE = 0.06 

despite the bias, with median values of χ underpredicted at most sites (Figure 

3.3). The uncertainties of predicted Vcmax25 and Narea were much narrower than 

the observed ranges. All parameters in the Narea models contributed almost 

equally to the uncertainty, while the parameter c was the major source of 

uncertainty for Vcmax25. The large uncertainty of Ma and χ mainly resulted from 

the intercept and the parameter β, respectively (Figure S3.7).  

Table 3.2 The comparison between R2 of statistical models (multiple linear 

regressions of the site-mean trait values against the driving climate data) and 

optimality models. For Ma, Vcmax25 and χ, ‘Tg’ in brackets represents the predicted 

traits using mean temperature during growing season, ‘TdJ’ represents the 

predicted traits using daytime temperature in July. For Narea, ‘Ma + Vcmax25’ 

represents the predicted Narea using observed Ma and Vcmax25’ in Equation 3.19. 

Traits Statistical model Optimality model 

Ma (Tg) 0.55 0.33 

Vcmax25 (TdJ) 0.45 0.60 

χ (TdJ) 0.49 0.51 

Narea (Ma + Vcmax25) 0.65 0.84 
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Figure 3.5 Site-mean values of traits. The traits are leaf mass per area (Ma), leaf 

nitrogen content per unit area (Narea), the maximum capacity of carboxylation 

standardized to 25 ̊ C (Vcmax25) and the ratio of leaf-internal to ambient CO2 partial 

pressure (χ). Observations are site-mean values and predictions are the best 

versions of different driven data at each site: predicted Ma using mean 

temperature during the growing season (Tg), predicted Vcmax25 and χ driven by 

daily temperature in July (TdJ), and predicted Narea using observed Ma and Vcmax25. 

The solid line is the 1:1 line. 

Narea was shown to be strongly correlated with both Ma and Vcmax25 (Figure 

3.6, S3.8). However, there was a significant effect of including nitrogen fixation 

(“N-fixer”) as a factor. At any given Ma or Vcmax25, Narea was slightly higher in N-

fixing species. The prediction of Narea directly from Ma and Vcmax25 with our 

simple method (Equation 3.19) was marginally closer to the data than the 

prediction from Ma and Vcmax25 via Nstructure and Nrubisco (Figure S3.5). The 
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predicted site-mean Narea with our new method but from predicted Ma and 

Vcmax25 was also not significantly different from observed Narea (p = 0.08). These 

“fully predicted” Narea values were within the range of observations at most sites, 

but underestimated at low elevation due to the underestimation of predicted Ma 

(Figure S3.5). 

 

Figure 3.6 Partial residual plots showing leaf nitrogen content per unit area (Narea) 

as a function of leaf mass per area (Ma) and the maximum capacity of 

carboxylation standardized to 25 ˚C (Vcmax25) with N-fixer as an interaction term.  

(a) Narea as a function of Ma, (b) Narea as a function of Vcmax25. Blue, nitrogen-fixing 

plants (N-fixer); red, non-nitrogen-fixing plants (non-N-fixer). 

3.4.3 Contribution of climate and elevation to trait variations 

Vapour pressure deficit and temperature were shown to be the most 

important factors influencing the variation in χ between sites at different 

elevations in the Gongga Mountain region, but with opposing effects. Elevation 

made little contribution to the variation of χ. Vcmax25 was influenced most by 

temperature and radiation, but elevation also had a small impact on Vcmax25. The 

effects of all the predictors were important for Ma (Figure 3.7). 
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Figure 3.7 The modelled contributions of individual climate variables for each trait 

at each site. The traits are the ratio of leaf-internal to ambient CO2 partial 

pressures (χ), the maximum capacity of carboxylation standardized to 25 ˚C 

(Vcmax25) and leaf mass per area (Ma). The grey bars show the changes in 

predicted trait values compared to the reference level driven by site-mean 

environment. The green bars show the elevation effect on χ and Vcmax25 due to 

the changes in air pressure. The red bars show the effects of average daytime 

temperature in July on χ and Vcmax25, and the effect of growing season mean 

temperature on Ma, respectively. The blue bars show the effect of vapour 

pressure deficit (D0) on χ, and then the effect of χ on Vcmax25. The yellow bars 

show the effect of growing season mean radiation on Vcmax25, and the effect of 

leaf area index weighted growing season mean radiation on Ma, respectively. The 

effects of leaf longevity (indexed by growing season length, gsl) and moisture 
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(indexed by the ratio of annual actual evapotranspiration to annual potential 

evapotranspiration) on Ma are shown in purple and blue.  

3.5 Discussion 

Optimality models have shown skill in predicting the trait variations along 

the elevation gradient in the Gongga Mountain region, without site- or region-

specific calibration of parameters. The r of optimality models was generally 

higher than statistical models (Table 3.2). The r of the optimal Ma model was 

0.73 when four predictions at low elevation were excluded. This finding 

suggests that the optimality models considering the underlying mechanisms are 

better than the statistical models, and supports the general validity of these 

models. The new model for Ma – calibrated using an independent set of 

measurements – correctly predicted patterns in the community-mean Ma of 

deciduous plants at the Gongga Mountain sites. When the coefficients of Iabs, f, 

Tg and αp were calibrated with the sampled data, the values obtained were 0.99, 

0.52, –0.03 and –0.75, not significantly different from the values obtained using 

the China Plant Trait Database but closer to the values for Iabs and Tg deduced 

from the theory. We did not apply the new model to evergreen species, because 

we had no information about their leaf longevity. Leaf longevity is strongly 

related to Ma (Kikuzawa, 1991; Reich et al., 1997; Wright et al., 2004a; Wright 

and Westoby, 2002). According to the leaf economics spectrum, the leaf 

longevity and Ma of deciduous plants are smaller than those of evergreen plants 

(Wright et al., 2004a). However, leaf longevity cannot be reliably estimated in 

the field without monitoring over a long period (Cornelissen et al., 2003b). If 

such data were available, it would be possible to extend the Ma model to 

evergreen species.   

We have developed a simplified approach to predict Narea. This approach 

produced results close to those obtained using the two-step approach put 
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forward by Dong et al. (2017a). The agreement between predictions using the 

two methods suggests that the hypothesis underpinning both, namely that Narea 

can be predicted as the sum of a photosynthetic component related to Vcmax25 

and a non-photosynthetic component proportional to Ma (Evans, 1989; Lambers 

and Poorter, 1992; Onoda et al., 2004), is reasonable. However, our simpler 

approach does not require explicit specification of the relative allocation to 

metabolic and structural components and, by removing the intermediate steps, 

reduces the uncertainties and improves the predictions. We have shown that Ma 

and Vcmax25 are predictable from climate, and that fully predicted Narea values lie 

within the range of observations at most sites (Figure S3.5). This interpretation 

differs from some previous studies in which leaf N availability, implicitly 

assumed to be related to soil N availability, is used to predict Vcmax25 (Luo et al., 

2004). There is evidence that soil nutrients, particularly phosphorus (P) rather 

than N, can influence Narea and Vcmax25 (Gvozdevaite et al., 2018; He et al., 

2014). However, there is growing evidence (a) that LMA exerts a major control 

on Narea (Dong et al., 2017a), and (b) that climate variables are the dominant 

drivers of Vcmax. Smith et al. (2019) found that climate variables accounted for 

about two-thirds of global variation in Vcmax; soil fertility indices about one-third. 

Liang et al. (2020), in a meta-analysis of soil N enhancement experiments, 

showed a 2-4 times greater effect on leaf area and biomass (i.e. whole-plant 

carbon allocation responses) than on leaf-level Narea and Vcmax. In other words, 

consistent with optimality theory, plants react to nutrient deficiency more by 

reducing leaf area, and increasing below-ground carbon investment, than by 

developing suboptimal leaves. Thus, a key implication of our results is that leaf 

nitrogen content can be predicted from climate alone. No global analysis of Narea 

is yet available, but the consistency of results for Australia (Dong et al., 2017a), 

Peru (Peng et al., 2020) and this study strongly supports the idea. Moreover, 

further work should focus on improving Ma prediction, since fully predicted Narea 
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is underestimated at low elevation due to the underestimation of Ma. We have 

also shown that R0 is positively related to Narea – consistent with widespread 

observations that leaf nitrogen is higher at the top of the canopy (Chen et al., 

1993b; Hirose and Werger, 1987) and the optimality hypothesis that nitrogen is 

unequally allocated within the canopy so as to maximize photosynthesis at each 

canopy level (Peltoniemi et al., 2012; Werger and Hirose, 1991). 

Our analyses provide insights into the timescales on which leaf trait 

acclimation and adaptation operate. Since optimality models implicitly consider 

acclimation and adaptation in physiological processes, the use of climate inputs 

at the appropriate timescale – which resulted in better predictions – might 

provide insight on the corresponding adaptation/acclimation timescale of a trait. 

We showed that Tg was a better predictor than TdJ for Ma, suggesting that Ma 

adapts to the whole-growing-season environment. The adaptation of Ma to long-

term temperature is consistent with the fact that deciduous leaves are built at 

the beginning of the growing season with one-time carbon investment from the 

previous year, and maximize average carbon gain per day, and in turn net 

carbon gain during the whole growing season (Kikuzawa, 1991). However, 

although predictions of Vcmax25 have commonly been made using long-term 

temperature inputs such as Tg (Smith et al., 2019; Wang et al., 2017a), our 

results show this can lead to a mis-estimation of Vcmax25. Using TdJ (i.e. daytime 

during the month the plants were sampled) gives a better prediction, suggesting 

that Vcmax25 adapts to environmental conditions during the previous few weeks. 

Several studies have shown that photosynthetic traits can acclimate quickly to 

temperature changes (Smith and Dukes, 2017b; Smith et al., 2017a), by 

regulating intrinsic biochemical characteristics, such as Rubisco content or 

catalytic turnover rate (Cavanagh and Kubien, 2014a). Our model-data 

comparison also suggests that χ acclimates to TdJ rather than Tg. The least-cost 

hypothesis underlying the model of χ considers the total cost of maintaining 
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plant carboxylation and transpiration. Both metabolic processes function mainly 

in the daytime and can be adjusted rapidly. Therefore, the regulation of χ is also 

expected to acclimate to daytime temperature at a weekly to monthly scale, 

consistent with our finding that χ is better predicted using TdJ than Tg. χ is highly 

plastic compared to Ma (Dong et al., 2017a), and seasonal variations in χ for 

deciduous species have been observed in many studies (Chen and Chen, 

2007; Ma et al., 2010; McKown et al., 2013); however, the correlation of leaf 

phenology with seasonal changes in the growth environment of deciduous 

leaves indicates a need to disentangle their effects in the future. Given that 

different processes have different time-scales for acclimation/adaptation, model 

inputs should be selected to reflect this.  

We have focused on predicting community-mean trait values. Although 

between-site variation is larger than within-site variation for all traits, 

nevertheless there is considerable variability at each site. This variability 

presumably reflects the within-canopy heterogeneity in bioclimate and in 

particular in radiation. There are large differences in photosynthetic traits 

between sunlit and shaded leaves, and it has also been shown that sunflecks 

contribute greatly to the photosynthesis of shaded leaves. Our model for Ma is 

sensitive to radiation inputs. By using RLAI to estimate the average light level 

absorbed by leaves within the canopy to drive the Ma model, we were able to 

obtain relatively good predictions of the community-mean values except at the 

lowest sites, which may be attributable to disturbance – since many people live 

at lower elevations in this region. This approach would be insufficient to model 

within-canopy variability. However, site-based radiation measurements could be 

used in order to test whether this optimality-based model could predict within-

site variation given appropriate inputs. The within-canopy heterogeneity of other 

bioclimatic factors may also be important in the choice of appropriate model 
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inputs (Blonder et al., 2018) and for testing the applicability of optimality-based 

models to explain within-site variability. 

The comparison between observed and simulated traits allows us to identify 

mechanisms that are missing from the current optimality framework. For 

example, our analysis emphasizes the importance of soil moisture constraints. 

RDA showed that Vcmax25 was positively associated with soil moisture, indexed 

by αp. We found significant relationships between αp and the residuals of 

predicted χ and Vcmax25. Some hydraulic traits, including the ratio of leaf-to-

sapwood area and specific-sapwood hydraulic conductance, also showed 

significant correlations with photosynthetic traits (Figure S3.9), suggesting co-

ordination between photosynthesis and water transport. Many studies have 

shown a strong coordination between hydraulic and photosynthetic traits across 

species (Brodribb, 2009; Scoffoni et al., 2016; Zhu et al., 2018), especially when 

hydraulic structure plays a crucial role in limiting photosynthesis process under 

water stress (Tyree and Sperry, 1989). Lin et al. (2015) analysed a large global 

dataset and found a positive relationship between wood density and carbon 

cost per unit water use. We have detected a significant positive effect of wood 

density on Vcmax25. Further empirical analysis on the coordination between 

photosynthetic and hydraulic traits over a larger environmental gradient is 

required. The coordination of photosynthesis and hydraulic traits has already 

been considered in models to predict stomatal response (Sperry et al., 2017) 

and vegetation response to drought (Eller et al., 2018a), and shown to produce 

improved predictions under water-limited conditions. Our results underline the 

need to consider aspects of water limitation, in addition to the stomatal 

response to vapour pressure deficit, in order to predict key plant traits. 

Empirical analyses have shown that leaf longevity is positively related to 

potential evapotranspiration and vapour pressure deficit (Wright et al., 2004a). 

In our model to predict Ma, the effect of αp was based on an empirical analysis 
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of an independent global trait dataset, because there is currently no theory to 

explain the impact of moisture on optimal leaf longevity. Using local data to 

calibrate the parameters for the theoretical model of Ma showed that the 

estimated effect of αp is stronger than that indicated by the China Plant Trait 

Database. RMSE of predictions using the two different sets of calibrated 

parameters showed larger differences in the lowest values, where the soil 

moisture constraint is more severe. Given that the effects of other climate 

variables on Ma are well captured by the model, it would be worthwhile to try to 

identify and incorporate the mechanism of moisture impact on optimal leaf 

longevity. 

The large functional diversity within sites may result from species attributes, 

biotic factors or microenvironment (Pappas et al., 2016; Violle et al., 2014). The 

model uncertainty analysis may provide a new way to estimate the functional 

diversity. Uncertainty analysis showed that the parameters β and c, 

representing unit costs for the maintenance of carboxylation, electron transport 

and transpiration, are the main contributors to uncertainty in χ and Vcmax25, 

respectively (Figure S3.7). Empirical analysis has shown substantial 

interspecific variation in β, but the current model of χ uses a single value of β for 

all species (Wang et al., 2017b). Using a single value estimated from published 

values of photosynthetic capacity (Kattge and Knorr, 2007; Wang et al., 2017b) 

for the parameter c in the model of Vcmax25, similarly, cannot fully represent its 

variation among species. Predictions using average values of β and c estimated 

from published data could cause mismatches with observed values, such as the 

predicted χ being lower than median observed value at many sites (Figure 3.3). 

At the same time, parameter uncertainty due to species variation also 

represents functional diversity in the community, which could in principle be 

considered in ecosystem models by specifying a realistic range of values for 
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each parameter. Meanwhile, modelling functional diversity still needs further 

work both in theory and application. 

3.6 Implications for terrestrial ecosystem models 

Optimality theory relies on the concept that natural selection requires plants 

to acclimate or adapt to prevailing environmental conditions. The development 

of optimality-based models therefore focuses on identifying the trade-offs 

between competing requirements. We have shown that optimality-based 

models for four key traits related to photosynthesis, Ma, Narea, Vcmax and χ, 

predict community-level variability with elevation and climate in the Gongga 

region, with no need for site- or regional-scale calibration. This finding adds to 

the growing number of studies showing that patterns of variation in these traits 

along climate gradients are predictable (Meng et al., 2015; Wang et al., 2017a).  

Optimality-based models could be beneficially incorporated into vegetation 

or land-surface models since they provide a natural way of accounting for trait 

variability within plant functional types (PFTs), or across vegetation types, as a 

function of environmental gradients. The prediction of continuous trait variation 

with environment would obviate the need to specify parameter values 

separately for different PFTs (Kim et al., 2018; Kucharik et al., 2000; Sitch et al., 

2003) or to account for within-PFT variability probabilistically (see e.g. Kelley et 

al., 2014). Moving from PFT-based parameters to optimality-based formulations 

would have the desirable effect of reducing the number of parameters that have 

to be specified. Moreover, models should improve in realism if parameter values 

are allowed to adjust to changing environmental conditions. 

However, some issues need to be addressed before implementing 

optimality-based trait models into vegetation models. First, the timescales of 

acclimation and adaptation differ between traits. Thus, it is important to ensure 

that the variability of a given trait is predicted using the appropriate climate 
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information, for example daytime temperature over a week or month (rather 

than a climatological growing-season average) in the case of Vcmax25. Second, 

although soil moisture can limit photosynthesis, we lack theoretical 

understanding of the coordination between plant photosynthesis and hydraulics 

required to account for this constraint within the current optimality-based 

modelling framework. Third, the current framework does not account for within-

site trait variability, and thus does not account for functional diversity within 

communities. Nevertheless, our study suggests a promising way forward to 

improve both the robustness (with fewer parameters) and realism (considering 

the acclimation and adaptation of traits) of terrestrial ecosystem models through 

the prediction of continuous trait variation along environmental gradients.   
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CHAPTER 4 Global variation in the ratio of sapwood to leaf area explained 

by optimality principles 

This chapter is preprinted in bioRxiv.  
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4.1 Abstract 

The sapwood area supporting a given leaf area (vH) reflects a coordinated 

coupling between carbon uptake, water transport and loss at a whole plant 

level. Worldwide variation in vH reflects diverse plants strategies adapt to 

prevailing environments and impacts the evolution of global carbon and water 

cycles. The fact that such variation has not been convincingly explained hinders 

its representation in Earth System Models. Here we hypothesize that optimal vH 

tends to mediate between plant hydraulics and leaf photosynthesis so that leaf 

water loss matches water supply. By compiling and testing against two 

extensive datasets, we show that our hypothesis explains nearly 60% of vH 

variation responding to light, vapour pressure deficit, temperature, and sapwood 
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conductance in a quantitively predictable manner. Sapwood conductance or 

warming-enhanced hydraulic efficiency reduces the demand on sapwood area 

for a given total leaf area and, whereas brightening and air dryness enhance 

photosynthetic capacities consequently increasing the demand. This knowledge 

can enrich Earth System Models where carbon allocation and water hydraulics 

play key roles in predicting future climate-carbon feedback. 

4.2 Introduction 

Continued atmospheric warming and drying worldwide (Fang et al., 2022) 

severely impacts terrestrial carbon and water cycling, which influences the 

global energy balance and climate system (Friedlingstein et al., 2023; Le Quéré 

et al., 2018). These processes are mediated by complex and coordinated plant 

physiological processes, leading to variations in plant traits in response to 

climate. Leaf photosynthesis and transpiration are closely linked, as stomata 

simultaneously control water loss and CO2 uptake (Brodribb, 2009). This results 

in the coordination between leaf-level photosynthetic traits and whole-plant 

hydraulic traits (Rosas et al., 2019; Xu et al., 2021c), regulated by resource 

allocation to different plant organs (i.e. ratio of sapwood to leaf area). Plants 

adjust these traits at different timescales altering their performance and fitness 

in response to climate. For example, photosynthesis-related traits can be 

changed on relatively short timescale (Smith and Dukes, 2017a; Smith et al., 

2017b), while hydraulic traits related to wood/leaf anatomy require much longer 

timescale to adapt (Bittencourt et al., 2020; Blackman et al., 2010; Limousin et 

al., 2022; Meinzer et al., 2010). Thus, spatial pattern of hydraulic traits variation 

might be achieved through species turnover, which affects species distribution 

especially in arid areas (Cosme et al., 2017; Trugman et al., 2020). It is urgent 

to investigate how plant hydraulic traits adapt to climate in order to improve our 

understanding of carbon and water cycling under global climate change. 
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Diverse plant eco-physiological traits and allocation strategies are shaped 

by the surrounding environments, reflecting various adaptation strategies 

evolved through natural selection. Eco-evolutionary optimality principles (EEO) 

offer an alternative perspective to examine the effect of climate on plant traits 

based on the idea that plants adapt to their surrounding environment through 

evolutionary processes (Franklin et al., 2020; Harrison et al., 2021). It has been 

successfully applied to explain optimal trait behaviour in response to climate, 

such as maximum capacity of carboxylation (Vcmax), ratio of leaf-internal to 

ambient CO2 partial pressure (χ) and leaf mass per area (Smith et al., 2019; 

Wang et al., 2017b; Wang et al., 2023). However, previous applications of EEO 

mainly focus on leaf-level traits related to plant carbon cycling. Few studies 

consider the interactions between physiological processes across different 

organs due to the complex nature of trait coordination networks (Diaz et al., 

2016). Whole-plant hydraulic traits may be the bridge that connects traits across 

different organs. Xylem hydraulic conductivity (KS) has long been observed to 

be related to wood density and scale with the ratio of sapwood to leaf area (vH) 

to maintain sufficient water supply (Janssen et al., 2020; Mencuccini et al., 

2019b). Leaf water potential at turgor loss point (Ψtlp) coordinated with drought 

resistance traits at stem level (i.e. wood density) (Fu et al., 2012) indicates 

these traits also relate to photosynthesis and stomatal behaviour (Bartlett et al., 

2016; Jin et al., 2023). Hence, hydraulic, photosynthetic and allocation traits are 

tightly coupled at the whole-plant level, but these relationships remain poorly 

understood at this scale (Diaz et al., 2016). Recent study shows that vH sits at 

the centre of trait coordination network and mediates multiple processes in the 

coupling of plant water-carbon cycle (Xu et al., 2021c). Whether or not its 

variation and its trade-off with other hydraulic traits could be explicitly explained 

by a unified framework of optimal regulation on the carbon-water coupling 

hasn’t yet been tested globally. 
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The lack of understanding on the variation in vH and other key hydraulic 

processes with climate is likely partially responsible for the ongoing 

uncertainties in how process-based models as a tool of simulating the future 

earth system show large uncertainties in their predictions on future climate-

carbon feedbacks, especially under drought and heatwave events (Bonan and 

Doney, 2018). Current representation of carbon allocation is either derived from 

empirical relationships involving response to environment without considering 

its coordination with other physiological processes or the use of many tuneable 

plant functional types parameters (Trugman et al., 2019a). A realistic, efficient 

and unified model of vH that can be directly implemented in process-based 

models may therefore be able to improve land-surface models (LSMs), without 

the need for increased model uncertainty from the use of many additional 

uncertain parameters. 

Here based on EEO concepts, we propose a universal parsimonious theory 

to explain the variation in vH as a trade-off with hydraulic traits regulated by 

environment in order to coordinate photosynthesis, transpiration and hydraulics 

at whole-plant level. In other words, how the water demand by transpiration for 

supporting canopy photosynthesis equals the water supply from trunk water 

transport. We evaluate the role of environmental variables (irradiance, 

temperature, vapour pressure deficit and CO2) in controlling the water demand-

supply balance and consequently how they shape the variation in vH and its 

trade-off with hydraulic traits. We test our theory using two global hydraulic traits 

datasets collected at species and individual-at-site levels. We show that our 

theory predicts vH variation at global scale. This model can be incorporated into 

LSMs as flexible plant allocation and hydraulic schemes to improve the 

prediction of land carbon and water cycling under future climate. 
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4.3 Theory 

Based on EEO, we hypothesize that maximum plant water transport 

through the xylem matches maximum water demand required to maintain 

photosynthesis, considering resources are optimally allocated (Whitehead et al., 

1984). In other words, the water uptake from soil driven by the maximum water 

potential difference between soil and leaf (ΔΨmax) is transported through root 

and sapwood to the leaf evaporating surface for transpiration through stomata 

so that CO2 from atmosphere is absorbed to sustain optimal photosynthetic 

capacity.  

The canopy water demand is determined by canopy total leaf area and 

transpiration rate per leaf area. The latter is regulated by stomata, and 

predictable from EEO-based least-cost and coordination hypotheses via the 

coupling between photosynthesis and transpiration using Fick’s law (Fick, 

1855). The carbon assimilation is co-limited by carboxylation and electron 

transport processes, based on the theory that light- and Rubisco-limited 

photosynthetic rates are equal in order to optimally utilize light without additional 

carbon costs (Wang et al., 2017b). The leaf internal CO2 level for carboxylation 

is controlled by stomatal conductance and an optimal ratio of leaf-internal to 

ambient CO2 (χ) is achieved by minimizing unit carbon cost of photosynthesis 

and transpiration over a timescale of weeks to months (Lavergne et al., 2020a; 

Prentice et al., 2014a; Wang et al., 2017b). Both these traits determine the 

maximum water demand for leaf gas exchange and optimal photosynthesis. 

Furthermore, combing with the classic biochemical model of photosynthesis 

(Farquhar et al., 1980a) and Fick’s law, the leaf level transpiration demand can 

be predicted as a function of irradiance, temperature, vapour pressure deficit 

(D) and CO2. The tree water supply is controlled by hydraulic properties, 

including compensation effect of maximum hydraulic efficiency and a driving 

force of ΔΨmax. The maximum hydraulic efficiency is influenced by structure of 
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hydraulic systems (i.e. pit membrane, conduit diameter), and temperature, 

which controls water viscosity (Vogel, 1921) and cell membrane permeability. 

All else being equal, plants with higher hydraulic efficiency (due to enhanced KS 

or warming-reduced water viscosity and cell membrane permeability) can 

transport more water through a given stem, which could increase total leaf area. 

We assumed that (1) this match between water supply and demand often 

occurs around noon where stomatal conductance and transpiration reach their 

peak; (2) the optimal vH is achieved at multiple-year timescale under 

environmental selection. Although photosynthetic traits optimize at weekly to 

monthly timescale, the hydraulic properties, especially maximum hydraulic 

efficiency, have limited plasticity. vH is the intermediate trait to coordinate both 

sets of traits in respond to the surrounding environment and optimized to meet 

the balance as a result of coordinated physiological processes (Xu et al., 

2021c). At site level, the optimal vH is achieved through plasticity and species 

turnover over years.  

These processes eventually lead to an optimal vH balancing between the 

hydraulic efficiency in trunks and the water demand from canopy as predicted 

by irradiance, maximum temperature and vapour pressure deficit: 

Loge(vH) = 0.6Loge(Dmax) + Loge(Iabs) – 0.03Tmax – Loge(KS) – 

Loge(ΔΨmax) + C1	
(4.1) 

Here C1 is the parameter containing information about photosynthetic traits 

values under standard climate condition and plant height. The model predicted 

that vH was positively related to Dmax and irradiance, negatively to air 

temperature and CO2, and its negative correlations with KS and ΔΨmax (Figure 

4.1, S4.1). The sensitivities of maximum vapour pressure deficit (Dmax) and air 

temperature (Tmax), mean irradiance (Iabs) during growing season to vH variation 

after log-transformed were 0.6, 1 and –0.03 theoretically derived from our 

model, which implied that high vH was expected in dry and cold areas, with high 
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irradiance. A detailed model description is presented in Methods, and derivation 

of the theoretical prediction is presented in Appendix 4.1. 

 

 
Figure 4.1 The sensitivities of theoretical model to climate and hydraulic traits. 

Sensitivity of the theoretical ratio of sapwood to leaf area (vH, 10–4) to irradiance 

(Iabs, panel a), vapour pressure deficit (D, panel b), temperature (T, panel c), 

hydraulic conductivity (KS, panel d) and water potential difference between soil 

and leaf (ΔΨmax, panel e). Sensitivity analyses were done while keeping all other 

climate variables at median levels across species: T = 25.5 °C, D = 1.5 kPa.  
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Our new theoretical hypothesis therefore, for the first time, explicitly 

incorporates the known functional coordination between hydraulic traits (i.e. the 

correlations between vH and KS, ΔΨmax) in a parsimonious and analytical way, 

and quantitatively predicts the impacts of climates on this coordination network 

in terms of both the directions and sensitivities of those responses. 

4.4 Methods 

4.4.1 Theory based on eco-evolutionary optimality 

The model of vH variation builds on the hypothesis proposed by Whitehead 

et al. (1984) and Xu et al. (2021c), which predicts that maximum plant water 

transport should match maximum photosynthesis with resources optimally 

allocated. This implies that water loss through stomata should match water 

transport through xylem, which can be estimated using Fick’s and Darcy’s law 

respectively. The use of water storage and xylem water refilling are not 

considered in our model as they often occur during abrupt extreme events and 

night. 

1.6	'!(
)"#$

= *%ΔΨ$"'-&
ℎ  (4.2) 

where gs is stomatal conductance to CO2 (mol m–2 s–1), D is the vapour 

pressure deficit (Pa) and Patm is the atmospheric pressure (Pa). On the right-

hand side of the equation, vH is the ratio of sapwood to leaf area (m2 m–2); KS is 

the maximum sapwood-specific hydraulic conductivity (mol m–1 s–1 MPa–1); 

ΔΨmax is the maximum difference between leaf and soil water potential (Ψmin 

and Ψsoil, MPa); h is the path length, approximately equal to tree height (m).  

We can calculate gs from the diffusion equation and the photosynthesis 

model (Farquhar et al., 1980b): 
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/ = 7(	8)*+,	9 (4.4) 

7( =
χ	1" − Γ∗
χ	1" + *

 (4.5) 

where A is the assimilation (photosynthesis) rate (mol m–2 s–1), ca is the ambient 

partial pressure of CO2 (Pa), χ is the ratio of leaf-internal to ambient CO2 partial 

pressure (Pa Pa–1), Vcmax is the maximum capacity of carboxylation (mol m–2 s–

1), Γ* is the photorespiratory compensation point (Pa), and K is the effective 

Michaelis-Menten coefficient of Rubisco (Pa), u is the unit conversion from μmol 

to mol.  

By replacing gs from Equations 4.3-4.5 in Equation 4.2 and rearranging after 

Loge transformation, we derive the following Equation 4.6 that describes the 

coordination between hydraulic and photosynthetic traits: 

Log.(-&) = Log.(() + Log.(7() + Log.(8/$"') − Log.(*%) −
Log.(ΔΨ$"') − Log.(1 − χ) − Log.(1") + Log.(1.6ℎ)  

(4.6) 

We can estimate photosynthetic traits (χ, Vcmax) using existing models 

based on EEO. The least-cost hypothesis states that plants minimize the unit 

cost of both photosynthesis and transpiration (Prentice et al., 2014a; Wang et 

al., 2017b), leading to the prediction of χ (Equation 4.7).  

χ	=	 Γ*ca +
ξ81	–	Γ

*
ca<

ξ+√?     (4.7) 

ξ	=	Cβ(K+Γ
*)

1.6η*  (4.8) 

where β is a dimensionless constant (146, based on a global compilation of leaf 

δ13C measurements), and η* is the viscosity of water relative to its value at 25 

˚C.  
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The coordination hypothesis states that light- and Rubisco-limited 

photosynthesis rates should match to optimally utilize light without extra 

maintenance costs (Smith et al., 2019), leading to the prediction of Vcmax 

(Equation 4.9). 

Vcmax	≈ φ0Iabs J
1G+K
1G+2Γ*

L	 (4.9) 

where  f0 (μmol C μmol–1 photon) is the intrinsic quantum efficiency of 

photosynthesis calculated by temperature-dependence relationship (Bernacchi 

et al., 2003b), Iabs is the photosynthetic photon flux density absorbed by leaves 

(μmol m–2 s–1).  

Since photosynthetic traits can be estimated from climate variables alone, 

the relationship between vH and its drivers can be represented in Equation 4.10. 

Thus, the sensitivities of climate variables can be derived from the 

photosynthesis optimality models (see detailed steps in Appendix 4.1), which 

results in the simple form of our theoretical model for vH (Equation 4.1).  

Loge(vH) = f(D, Tmax, Iabs) – Loge(KS) – Loge(ΔΨmax) + C1	 (4.10) 

4.4.2 Datasets 

The global species-averaged dataset (Dataset1) for 1727 species was an 

updated version of HydraTRY (Mencuccini et al., 2019b; Sanchez‐Martinez et 

al., 2020). It includes 1624 angiosperms and 103 gymnosperms, 332 deciduous 

and 694 evergreen species with remaining species unknown. Species names 

and taxonomy (angiosperm and gymnosperm) were checked against the Plant 

List using plantlist package in R (Zhang et al., 2019). The information of leaf 

habit was matched with original publications and online reports. The dataset 

contained the branch-based ratio of sapwood to leaf area (vH, m2 m–2, 

dimensionless), maximum sapwood-specific hydraulic conductivity (KS, mol m–1 

s–1 MPa–1) and Ψtlp (MPa). The traits values were averaged if multiple samples 
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for one species occurred, in order to achieve maximum number of species with 

all traits values available at the same time.  

Monthly climate data for Dataset1 from year 1970 to 2000 was extracted 

from Worldclim interpolated from weather stations (Fick and Hijmans, 2017), 

including maximum temperature, mean temperature, vapour pressure, solar 

radiation and precipitation. Monthly maximum vapour pressure deficit (Dmax) 

was calculated using maximum temperature and vapour pressure. Monthly 

volumetric soil water content (m3 m-3) of the ECMWF Integrated Forecasting 

System for 7-100cm depth from 1981-2019 

(https://cds.climate.copernicus.eu/#!/home), soil texture, soil organic carbon 

content were extracted from SoilGrids (https://soilgrids.org/) to generate soil 

water potential (Ψsoil) using medfate R package (Saxton and Rawls, 2006). 

Monthly aridity index (AI, the ratio of precipitation to evapotranspiration) was 

obtained from Global Aridity and PET Database 

(https://cgiarcsi.community/data/global-aridity-and-pet-database/) to determine 

growing season for plants. We defined the growing season as the months when 

mean temperature was above 0˚C and aridity index was above 0.1 and limited 

our study data to these periods, as in temperate ecosystems at periods below 

these values our study species will either be leafless or not photosynthesising. 

Maximum temperature (Tmax), vapour pressure deficit (Dmax), mean 

photosynthetically active radiation (Iabs) and Ψsoil during growing season were 

calculated. The maximum difference between leaf and soil water potential 

(ΔΨmax) was estimated using Ψtlp and soil water potential during growing 

season. The climate data for each species were calculated as the mean value 

of the per pixel value across its spatial extent within the observational data. 

The global dataset (Dataset2) of 1612 individual samples (1247 species) 

was compiled from published literatures for validation of our results without 

aggregating into species level. Most of KS data came from He et al. (2020) and 
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corresponding vH values for each record have been implemented from the 

original publications. We added more KS and vH data from 2017-2021 by 

conducting searches on Web of Science, Google Scholar, and China National 

Knowledge Infrastructure (http://www.cnki.net) using the keywords “leaf area to 

sapwood area ratio”, “Huber value”, and “hydraulic traits”. To minimize the 

errors from ontogenesis and our methodology, we excluded the data that failed 

to meet the following criteria: (a) wild plants that were growing in natural 

ecosystems without experiments; (b) measurements which were made on adult 

plants or saplings; (c) vH measured which were made on terminal stem or 

branch segments at the top of the canopy; (d) vH estimates presented as the 

mean value for each species at the same site when the data was available for 

more than one individual. Because the corresponding Ψtlp data was limited, we 

did not include it in Dataset2. Monthly climate data from year 2011 to 2020 was 

extracted from CRU (https://crudata.uea.ac.uk/cru/data/hrg/, Harris et al. 2020) 

for each site, including maximum temperature, vapour pressure, cloud cover 

and precipitation. We calculated growing-season Tmax, Dmax and Iabs using 

Simple Process-Led Algorithms for Simulating Habitats (SPLASH) model (Davis 

et al., 2017a). 

4.4.3 Statistical analysis 

We used Dataset1 at species level to test our EEO-based hypothesis by 

investigating how vH changed along environmental gradient and comparing with 

model predictions. Principal components analysis (PCA) was conducted to 

analyse climate covariance and reduce three climate variables (temperature, 

irradiance and D) to two axes. The first axis of Principal Component Analysis 

(PCA) explained 74.6% of climate variation, which was dominated by maximum 

vapour pressure deficit (Dmax) and temperature (Tmax) during growing season 

(Figure S4.4). The second axis (accounting for 20% of variation) largely 
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reflected variation in site irradiance during growing season (Iabs). In order to find 

the clear pattern of vH variation in climate space, species with available three 

hydraulic traits values were divided into 48 climate zones/sites according to the 

loadings of first and second PC axes to investigate trait variation at site level 

(Figure S4.4a). The relationships between vH and its driving factors were 

analysed at species and site levels.   

To examine the relationships between vH and its driving factors in a linear 

format, the multiple linear regression was carried between vH and KS, Tmax, 

Dmax, Iabs and ΔΨmax at species and site level using Dataset1 after trait values 

were natural log-transformed. Due to data absence of one or more trait for 

some species, sites with only one species were excluded from the multiple 

linear regression. The regression was repeated without ΔΨmax due to its 

insignificant effect on vH variation and large uncertainty. Due to the unknown 

information about path length for water transport, the intercept (C2 = –9.59) in 

Equation 4.11 was fitted for vH prediction at site level when the coefficients of 

other factors were kept as theoretical values. C2 was the only parameter in our 

EEO-based model and contained the information about path length, 

photosynthetic traits values at standard conditions and unit conversion. The 

sensitivity plots of vH to its driving factors were drawn when one factor changed 

at a time while others were kept as median of their observed values. To quantify 

the contribution of different factors in vH prediction, the r2 of observed and 

predicted vH with one factor added each time was calculated.  

Loge(vH) = f(D, Tmax, Iabs) – Loge(KS) – Loge(ΔΨmax) + C1	 (4.11) 

The multiple linear regression between vH and KS, Tmax, Dmax, Iabs was 

conducted repeatedly using Dataset2 at site level for validation.  

To assess the trade-off between vH and KS among different leaf phenologies 

(evergreen and deciduous), their bivariate relationship was examined using 

standardised major axis (SMA) regression and the slopes were tested if 
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different from theoretical values (–1) or not using smatr package (Warton et al., 

2012). To show the opposite effects of temperature and vapour pressure deficit 

on vH variation clearly, we estimated vH value in continuous climate space 

(temperature and vapour pressure deficit) using theoretical sensitivities of D 

temperature, while kept KS and Iabs as median values.  

4.5 Results 

4.5.1 Correlations between hydraulic traits 

We observed that greater KS was associated with lower vH and this trade-off 

was consistent across species and sites from the multiple linear regressions 

including climate variables (Figure 4.2, 4.3). In multiple linear regressions 

including KS and climate variables, the correlation between vH and KS was 

tighter at site level than species level. KS was the most important driver of vH, 

explaining 46% of its variation at site level. The fitted KS – vH slopes (either at 

species or site level) were flatter than that predicted from theory (–1) (Figure 

4.2a, 3a). The fitted site-level slope was closer to theoretical prediction than that 

at species level. Analyses across a comprehensive sample of biomes and 

climate gradients (Figure S4.2) showed that deciduous and evergreen species 

had similar mean value of vH (2×10–4 and 1.6×10–4, respectively), but evergreen 

species had significantly lower KS value than deciduous species (1.15 and 1.93 

kg m–1 MPa–1 s–1, respectively, Figure S4.3). In order to assess the variation in 

this trade-off among leaf phenology types, standard major axis (SMA) 

regressions were carried out for evergreen and deciduous species separately. 

However, the evergreen and deciduous species behaved the same and the 

slopes of their relationship were steeper than that from multiple linear 

regression expected by, and not significantly different from, the theoretical value 

(–1) (Figure S4.5). Though few gymnosperms were included, the relationship 
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between vH and KS was similar among angiosperms and gymnosperms (Figure 

4.3a). An insignificant relationship between vH and ΔΨmax was found at species 

and site level when ΔΨmax was added into multiple linear regression (Figure 

S4.6e), which might be masked by the strong negative relationship between KS 

and ΔΨmax (Figure S4.7a). The relationship between vH and ΔΨmax could be 

indirect through the covariation with KS, which might be hard to examine 

empirically. The insignificant effect of ΔΨmax may also attribute to the 

uncertainty in gridded soil water potential data (Figure S4.7b). 

 

 

Figure 4.2 Partial residual plots from the multiple linear regression of loge-

transformed the ratio of sapwood to leaf area (vH) against different predictors at 

site level using Dataset1. The predictors are shown in (a) sapwood-specific 

hydraulic conductivity (KS), (b) maximum vapour pressure deficit (Dmax), (c) mean 

irradiance (Iabs), (d) maximum temperature (Tmax) during growing season. Black 

lines are the fitted across all sites and the gray shadings are the 95% confidence 

intervals around the fitted lines. The red lines are theoretical sensitivities in 

Equation 4.1. 
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Figure 4.3 Partial residual plots from the multiple linear regression of loge-

transformed the ratio of sapwood to leaf area (vH) against different predictors at 

species level using Dataset1. The predictors are shown in (a) sapwood-specific 

hydraulic conductivity (KS), (b) maximum vapour pressure deficit (Dmax), (c) mean 

irradiance (Iabs), (d) maximum temperature (Tmax) during growing season. Black 

lines are the fitted across all sites and the gray shadings are the 95% confidence 

intervals around the fitted lines. The black solid lines are significant (p<0.05) and 

the dotted lines are insignificant (p>0.05). The red lines are theoretical 

sensitivities in Equation 4.1. 

4.5.2 vH variation along climate gradient 

Across both species and site levels, we found that plants tended to have 

larger sapwood area and/or lower total leaf area as vapour pressure deficit and 

irradiance increased, and temperature dropped after consideration of traits 

correlation. The observed climatic effects on vH variation were similar whether 

using species-averaged dataset (Dataset1) or individual-at-site dataset 

(Dataset2) (Figure 4.3, S4.8). In Dataset1, the significant effects of temperature 
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and Dmax on vH variation were stronger at site level than species level, but the 

effect of light was only significant at site level (Figure 4.2, 4.3, S4.6). The multiple 

linear regressions showed that these climatic effects together led to 23% more of 

vH variation explained at site level (Figure 4.3). The observed directions of 

climatic effects were consistent with EEO-based predictions and their predicted 

magnitudes fell into the confidence interval of slopes fitted at site level (Figure 

4.3b-d, S4.8b-d). The site-level observed effects of Dmax and irradiance were 

close to theoretical sensitivities in species-averaged dataset (Dataset1, Figure 

4.3b, c). The observed effect of temperature in Dataset2 was smaller than that in 

species-averaged dataset and matched well with theoretical prediction (Figure 

S4.8d).  

4.5.3 Prediction of hydraulic traits 

The EEO-based model captured 56% of vH variation using theoretical 

sensitivities of KS, irradiance, Dmax and temperature, a fitted parameter (Equation 

4.11, Figure 4.4a). The 46% of vH variation was contributed from KS, followed by 

6% from light, 4% from Dmax and only 1% from temperature (Figure S4.9). 

Substituting KS with vH in Equation 4.12 could also lead to 66% of KS variation 

predicted across sites (Figure 4.4b). 
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Figure 4.4 Comparison between site-mean observed and predicted ratios of 

sapwood to leaf area (vH) using Dataset1. (a) vH is predicted using observed 

sapwood-specific hydraulic conductivity (KS) and climate variables with 

theoretical sensitivities of predictors and a fitted intercept. (b) KS is predicted 

using observed vH and the same climate variables.  

4.6 Discussion 

The comparison between observations and predictions by our theoretical 

model confirms the hypothesis that plants allocate resources optimally to 

balance the water supply through stem and water demand via leaf to maintain 

CO2 capture and photosynthesis, without wasting additional carbon. The climate 

effects on vH and global patterns of vH were examined for the first time by 

extending the model proposed by Whitehead et al. (1984) further and 

incorporating recently developed EEO-based models for photosynthetic traits. 

The EEO-based theory, using a simple equation with only one fitted parameter 

to represent the coordination of hydraulic and photosynthetic processes, clearly 

describes the correlations between traits, quantifies the sensitivities of driving 

factors of vH variation and largely captures its observed variation along climate 

gradients at a global scale. Hydraulic efficiency has a significant and large 
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impact on vH values globally and certain climate variables also affects vH 

indirectly through coordination with photosynthetic traits (Mencuccini et al., 

2019b). It is crucial to understand trait integration to reveal mechanism behind 

complex trait-climate relationships (Anderegg, 2023).  

vH is directly associated with plant transpiration and regulates water cycling 

from soil to atmosphere. The sensitivity of vH to climate is important for us to 

understand how water cycling at plant level will be influenced by climate 

change. The estimated sensitivity of vH to climate will therefore help us 

elucidate the response of plant water cycling under climate change. In addition 

to the widely acknowledged positive effect of vapour pressure deficit (D), the 

theory predicts a negative temperature and positive irradiance effects on vH, 

which is consistent with the observation that plants with higher vH value are 

observed at dry and cold area with high light availability at two hydraulic 

datasets. Globally increasing vapour pressure deficit poses a dominant impact 

on leaf water potential regulated by stomata to control the water demand or leaf 

gas exchange (Fang et al., 2022; Turner et al., 1984; Yuan et al., 2019). The 

induced changes in stomatal conductance alter CO2 uptake and photosynthetic 

process, leading to the shift in water demand and vH. Other studies also find 

higher vH value at sites with low soil water availability (Rosas et al., 2019). On 

the one hand, soil water availability is related to soil water potential and alters 

ΔΨmax. This may further influence whole-plant trait – carbon allocation between 

belowground and aboveground (more carbon invested in roots when soil water 

availability is low) (Rowland et al., 2023). However, temperature covaries with 

atmospheric dryness, making it hard to disentangle their effects (Fu et al., 

2022).  

It is difficult to separate the effects of D and temperature due to their 

collinearity even with divergent results from warming experiments (McBranch et 

al., 2019; Way et al., 2013). The EEO-based model provides an alternative 
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approach to disentangle their effects theoretically and reveals the opposite 

impacts of D and temperature on vH, which emphasizes the importance of 

quantifying their sensitivities to predict plant allocation strategy under future 

scenarios when both temperature and D are projected to increase (Grossiord et 

al., 2020). The total temperature effect is the sum of its effect on photosynthetic 

trait and hydraulic efficiency. The response of photosynthetic traits to 

temperature has been widely studied. As temperature increases, photosynthetic 

capacity increases and the ratio of leaf internal to external CO2 becomes larger, 

leading to higher stomatal conductance and water demand. At the same time, 

hydraulic efficiency increases due to low water viscosity and high permeability 

in the symplastic pathway that is rarely studied and poorly understood. Here we 

employed a rather conservative temperature dependency of hydraulic efficiency 

(Cochard et al., 2000; Matzner and Comstock, 2001). This indicates that 

theoretical temperature sensitivity on vH may be greater if less conservative 

temperature sensitivity was applied. The results highlight the need to study the 

instantaneous temperature response of hydraulic efficiency in the future, due to 

its important role in constraining photosynthesis process and water transport, 

especially under global warming. The EEO-based model offers a way to explore 

the potential vH response as the net effect of competing effects. 

The impact of irradiance is often overlooked in previous hydraulic traits-

climate analysis, however hydraulic processes are tightly coupled with 

photosynthetic process (Brodribb et al., 2002), leading to the crucial role of light 

in influencing hydraulic traits. The observation and prediction from our EEO-

based model both find plants need more sapwood area to support the same leaf 

area when irradiation is high. More water is required to maintain high 

assimilation rate under high irradiation in order to utilize light optimally at the 

whole-plant level. Plants may have greater leaf vein length per unit area to 

match increased water supply through xylem (Sack et al., 2013). The integration 
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of hydraulic and photosynthetic processes can help us better comprehend plant 

strategy from a more synthetic perspective. Our EEO-based theory predicts that 

plants support more leaves without allocating extra carbon to sapwood under 

higher CO2, probably due to increasing water use efficiency which is observed 

in FACE experiments (De Kauwe et al., 2013). We do not examine the empirical 

CO2 effect here since hydraulic data along a CO2 gradient or under elevated 

CO2 treatment is unavailable, however our theoretical prediction of its negative 

effect matches the direction found in other studies (Trugman et al., 2019b; 

Westoby et al., 2012).  

The hypothesis for vH variation is tested spatially at species and site level, 

indicating that the model works well on a longer timescale (multiple years) that 

is likely to involve evolutionary processes, such as plant genetic adaptation and 

species turnover. Theoretically, photosynthetic traits in our model acclimate to 

climate on a monthly timescale, while the plasticity of hydraulic traits is poorly 

known (Rowland et al., 2023). We presume that part of vH variation can be 

mediated by climate effects via photosynthetic traits within a month, while 

another part requires a longer time period when hydraulic efficiency is altered in 

response to climate change (Niccoli et al., 2023). The shortest time frame for vH 

to reach its optimal value to reconcile different timescales from water supply 

and demand still needs further verification. Previous studies show that plants 

can increase vH to cope with drought event by shedding leaves to prevent water 

loss or hydraulic failure during a rather short time period (Carnicer et al., 2011; 

Choat et al., 2018; Trugman et al., 2018). During drought, photosynthetic traits 

can be adjusted quickly to alter water demand (Mengoli et al., 2022), but 

maximum hydraulic conductivity is not achieved and water storage within stem 

may be released, leading to disequilibrium between water demand and supply 

through xylem. More efforts are required to implement instantaneous hydraulic 
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processes and test the model at a temporal scale to improve drought phenology 

scheme in DGVMs (Martín Belda et al., 2022). 

Other than external climate effects, plant internal trait coordination also 

plays an important role in adjusting plant performance. The robust trade-off 

between vH and KS across site and species has long been recognized as 

compensation effect, indicating its essential role in maintaining plant fitness. It is 

consistent with the prediction of our model that the relationship between vH and 

KS should be negative and modified by climate and other traits. Hydraulic 

efficiency is fundamental for vH due to its direct constrains on water supply 

within plants. When more leaves are produced, plants either increase 

conducting area or efficiency to maintain water supply when assimilation rate 

and stomatal control remain constant. This compensation effect guarantees the 

balance between water supply though xylem and water demand from leaf to 

avoid wasted carbon investment or protect xylem from excessive tension. The 

importance of this compensation effect also manifests in their evolutionary 

correlation at species level, which means vH and KS cooperatively adapt to the 

changing environment over long timescale (Sanchez‐Martinez et al., 2020). 

This implies that the trade-off between vH and KS in our model shows plasticity 

to some extent and can still maintain under future climate conditions. Such key 

trade-off could be used to constrain species properties in individual-based 

vegetation models (Berzaghi et al., 2020).  

The EEO-based model predicts a negative relationship between vH and 

ΔΨmax, nonetheless, this correlation might be partially affected by the significant 

relationship between ΔΨmax and KS on a global scale and uncertainty in gridded 

product of soil water potential (Ψsoil) (Hengl et al., 2017). The effect of ΔΨmax is 

the combination of Ψsoil and leaf water potential at turgor loss point (Ψtlp), which 

is directly related to stomatal behaviour. Leaf turgor has shown to be the 

dominant contributor to changes in stomatal conductance, and Ψtlp well 
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represents the point when stomata fully close and carbon assimilation stops 

(Bartlett et al., 2016; Cochard et al., 2002; Knipfer et al., 2020; Mantova et al., 

2023; Rodriguez-Dominguez et al., 2016). Soil water potential influences the 

water potential from soil to stem to regulate stomatal conductance and affect 

carbon assimilation (Rodriguez-Dominguez and Brodribb, 2020). Due to unclear 

mechanism, most models apply an empirical function to downregulate 

productivity using soil water availability (De Kauwe et al., 2013; Stocker et al., 

2020). However, different stomatal conductance schemes show large variation 

in its response to soil water potential (Sabot et al., 2022). Some DGVMs 

including plant hydraulics employ another important hydraulic trait (P50, water 

potential at 50% loss of hydraulic conductivity) to represent the species’ 

response to drought via its relationship with hydraulic conductivity 

(Christoffersen et al., 2016; Eller et al., 2018b). Whereas, Brodribb et al. (2003) 

finds no correlation between P50 and stomatal closure point across species. 

Previous studies demonstrate stomata closure occurs before P50 or xylem 

cavitation (Bartlett et al., 2016; Martin-StPaul et al., 2017). The direct 

incorporation of Ψtlp effect into this model increases its realism and robustness 

of stomatal behaviour under drought event. 

Current DGVMs adopt fixed or flexible carbon allocation to leaf and stem 

mostly based on PFTs parameters or empirical relationships in response to 

environment (Berzaghi et al., 2020; Trugman et al., 2019a), leading to the 

uncertainty of land carbon sink (O'Sullivan et al., 2022; Sitch et al., 2008). vH 

represents carbon allocation between leaf and stem, which has been observed 

to vary with climate. The allocation to leaf and stem directly influences the 

amount of low-turnover-rate carbon stored in stem and quick-turnover-rate 

carbon invested in leaves for productivity and transpiration, which in turn, 

affects land carbon and water cycling (Trugman et al., 2019a; Yang et al., 

2021). Under future climate warming scenario, increasing CO2 and temperature 
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can alleviate part of positive effect of D on vH, resulting in more leaves 

supported for a given stem. This attributes to the co-acclimation of trait 

relationships in response to climate. The rate of change in climate variables 

along with their sensitivities of vH together determine the carbon allocation and 

influence land-atmosphere feedback under continuous climate change 

(Anderegg et al., 2019). Our EEO-based model for vH provides a new route of 

flexible carbon allocation representation in DGVMs to generate more realistic 

model output (Deckmyn et al., 2006; Magnani et al., 2000; Trugman et al., 

2019a).  

Compared to other models the EEO-based model is validated spatially on a 

longer timescale and considers coordinated physiological processes to achieve 

parsimonious solution using a single parameter. This hydraulic trait model 

avoids the dependency of complicated processes that requires simplifications 

and parameters, which is beneficial for improvement of PFTs scheme in 

DGVMs without jeopardizing original model structure and increasing process 

complexity. Inclusion of such a parsimonious scheme in DGVMs will lead to 

improved representation of plant responses to future climate change, with 

projected increases in temperature, D, regional drought, and extreme events, 

and thus in turn a critical for improved future climate prediction. 
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CHAPTER 5 Summary and Outlook 

5.1 Conclusions 

This thesis aims to understand how hydraulic traits vary in relation to non-

hydraulic traits and climate using both field data and theoretical modelling 

approaches. Here I summarize the key findings of Chapter 2 to 4. 

In Chapter 2, I proposed EEO-based model to understand the relationships 

between hydraulic and non-hydraulic traits. This model incorporated trait 

coordination network based on the EEO hypothesis that plants optimally 

allocate carbon to leaf and stem (optimal vH) to balance water supply through 

stem and water demand driven by photosynthesis to minimize carbon cost. The 

model predicted that plants with high Vcmax25 have high KS, as vH mediated both 

photosynthesis and hydraulic processes at whole plant level. This hypothesis 

aligned with field observations, as the vH model could replicate the trait-trait and 

trait-climate relationships at a site level along an elevation gradient. 

Furthermore, the path analysis revealed that more structurally dependent traits 

such as LMA and WD, constrained the variation in more plastic traits like 

Vcmax25. Huber Value, which was at the centre of this trait network, linked traits 

of different degrees of plasticity, functions and strategies. The traits coordination 

network indicated a trade-off between resource acquisition efficiency and water 

transport capacity. This chapter provided a theoretical framework to explain 

coordination between hydraulic and photosynthetic traits.  

In Chapter 3, I tested the predictability of recently developed photosynthetic 

traits models based on EEO along elevation. EEO-based models for 

photosynthetic traits predicted community-level traits variability with elevation 

and climate in the Gongga region, with no need for site- or regional-scale 

calibration. The trait predictions related to relationships with different climate 

inputs concluded that Vcmax and χ that are mainly driven by metabolic processes 

can be adjusted to “keep pace” with changing climate at monthly timescales. In 

contrast the variations in LMA and Narea were explained by climate variations at 

yearly timescales. The photosynthetic traits models further quantified the 

importance of different climate variables in trait variations. Temperature and 

vapour pressure deficit largely controlled the variation in χ, temperature and 
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irradiance controlled the variations in Vcmax and LMA. This chapter serves as the 

support for integration of photosynthetic traits models into hydraulic trait model 

with suitable timeframes of climate data. 

In Chapter 4, the trait coordination model built in chapter 2 was advanced 

into a hydraulic trait model incorporating the photosynthetic traits models to 

understand hydraulic trait variation at a global scale and their response to 

climate. The model predicted the theoretical sensitivities of vH to climate 

variables, which were consistent with observed patterns across sites and 

species on a global scale. Under low temperature, high irradiance and 

atmospheric dryness, plants allocated more carbon to stem than leaf (high vH) 

and had low hydraulic efficiency. This strategy reduced the risks of freezing-

thawing and cavitation by thickening cell walls, but at the cost of water transport 

capacity, which was significantly reduced under these conditions. Lastly, the 

hydraulic trait model predicted nearly 60% of the observed global hydraulic trait 

variations at a site level. This hydraulic trait model based on EEO principles 

therefore offers a promising way forward to improve both the robustness (with 

fewer parameters) and realism (considering the adaptation of traits and species 

turnover) of terrestrial ecosystem models through the prediction of continuous 

trait variation along environmental gradients. 

5.2 Limitations and future directions 

The theoretical framework was built to understand trait coordination and 

trait variations in response to climate with several assumptions and 

simplifications, which allowed the model to be easily to run and validated. 

However, these assumptions mean that there are potentially important 

physiological processes and key traits that are missing in the current 

framework. This may limit our understanding of trait coordination and model 

predictive capacity under certain climate conditions. Below I address some of 

the issues regarding this modelling framework, which were revealed from the 

work presented in chapter 2 to 4 and which required future investigation.  

(1) Trait coordination in tropics 
Tropical forests are significant contributors to the global terrestrial carbon 

sink (Friedlingstein et al., 2023). Climate change, especially drought stress, 

jeopardizes the ability of tropical forests to absorb carbon and function as a 
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carbon sink (Maia et al., 2020). Given this, it is pivotal to investigate trait 

coordination and variation in tropical regions to understand tropical forest 

responses to future climate change. In this thesis, we only sampled plants in the 

temperate zone and compiled global hydraulic traits datasets that only included 

a few sites and species in the tropics, due to limitations with existing data 

availability. To further understand traits coordination in tropical forests, I 

conducted fieldwork in tropical rainforests in Hainan province, China during 

summer 2023. In a team I contributed to measuring hydraulic, photosynthetic 

and LES traits of dominant species at three sites with contrasting water and 

nutrient conditions. The bivariate relationships between traits and trait 

coordination network were examined across and within sites. The trait network 

across sites showed that leaf nutrients and χ were key to controlling trait 

coordination, as assessed by weighted coefficients (Figure 5.1). Contrary to the 

trait coordination observed in the Gongga region, vH was not related to 

photosynthetic or LES traits across the three study sites, potentially due to the 

narrow environmental gradients existing in this area. The preliminary results I 

have obtained from this trip highlighted the important role of soil nutrients in trait 

coordination, which was not included in my current modelling framework. This 

indicated that plants adopted different strategies under different climate and soil 

conditions. Although these results are only in their initial stages of analysis, this 

work is likely to be pivotal in understanding how soil nutrients could be an 

essential part of optimally modelling plant hydraulic trait coordination, especially 

in tropical rain forest regions. However, it should be noted this fieldwork was 

only conducted in one tropical region in China and it is likely that many more 

studies across the tropics with data on plant hydraulic and photosynthetic traits 

coordinated with climate and soils data are needed to facilitate further 

improvements in modelling the water and carbon dynamics in the tropics. 
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Figure 5.1 The trait coordination network across three sites in tropical rainforests 

in China. LA is leaf area, LMA is leaf mass per area, Ψtlp is leaf water potential at 

turgor loss point, vH is sapwood to leaf area ratio, Pmass is leaf phosphorus per 

mass, Nmass is leaf nitrogen per mass, χ is ratio of leaf internal to ambient CO2, rs 

is branch respiration, Vcmax25 is maximum capacity of carboxylation at 25 ˚C. The 

orange and blue lines show positive and negative relationships (p<0.05). 

respectively. Correlation strength is represented by line thickness. 

(2) Interdependence of hydraulic efficiency and vH  
Although the hydraulic trait model no longer required photosynthetic traits 

inputs, substantial variation in vH explained by the model resulted from hydraulic 

efficiency and vice versa. The model created in Chapter 4 currently fails to 

generate reliable global hydraulic trait map due to the interdependence and 

paucity of hydraulic traits data. Currently, hydraulic efficiency is estimated using 

LMA or calibrated with field measurement in DGVMs (Christoffersen et al., 

2016; Kennedy et al., 2019; Li et al., 2021), which increases model uncertainty. 

Thus, the prediction of hydraulic efficiency remains an urgent challenge to 

tackle in the future. A new hypothesis based on EEO principles needs to be 

proposed to explain optimal hydraulic efficiency under environmental selection. 

This might lead to a fully climate-driven vH model to improve representation of 

hydraulic traits in DGVMs. The approach used in Wang et al. (2023), which 

predicts the correlation between LMA and LL, may provide an alternative way to 

solve this issue by mathematic transformation. Take one climate variable 

(temperature, T) as an example, LMA1 can be described as a function of LL1, T1 
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and other climate variables (moisture, irradiance). When other climate variables 

are kept constant and T1 changes to T2, plants have different trait combination – 

LMA2 and LL2. LMA2 can also be described in the same formation as LMA1 with 

climate variables. Combined with the theoretical magnitude of correlation 

between LMA and LL based on EEO model, the dependency of LMA on LL can 

be removed by subtracting these two functions and the sensitivity of LMA to 

temperature can be estimated without consideration of LL. This could narrow 

the range of trait prediction by removing contribution from trait variation. The 

scarcity of paired hydraulic traits hinders our capacity to understand the 

variation of hydraulic efficiency along climate gradient and therefore limits 

model development. Therefore, more efforts are required to measure hydraulic 

traits in the field to enhance our capacity to propose a theoretical framework to 

explain variations in hydraulic traits. 

(3) Temporal change of vH 
In this thesis, the model has only been tested at a spatial scale, which 

involves macro-evolutionary processes, such as species turnover. The 

equilibrium between maximum water transport through xylem and demand by 

photosynthesis is assumed to hold true under long-term climate condition 

around noon as maximum hydraulic efficiency is less plastic in response to 

short-term climate change. The climate effects on vH in the current version of 

hydraulic trait model are derived from photosynthesis processes, which is 

observed to acclimate to climate at a monthly timescale, implying that this 

model might be able to simulate seasonal change of vH. Due to the lack of 

hydraulic traits data over varying temporal scales, the capacity of this model to 

predict intra-annual variability of optimal sapwood to leaf area ratio remains 

untested. The data that does exist on plasticity on these traits from experimental 

studies is currently very inconclusive concerning both the magnitude and 

direction of change in these traits in response to climate changes such as 

drought (Rowland et al., 2023). However, this may be due to the paucity of data 

availability globally to evaluate plasticity in hydraulic traits. Given this, more 

efforts should be made to measure hydraulic trait variation across time to 

understand their plasticity and timescales of acclimation. 

When extreme events occur, such as drought and disrupt water equilibrium 

within a plant, this current model may fail to capture change in vH or leaf 
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shedding. Under drought, plants adopt different water use strategies to cope 

with drought (Bacelar et al., 2012). For example, plants can close stomata early 

to reduce water loss and maintain leaf water potential (isohydricy), or keep leaf 

gas exchange and face high risk of embolism (anisohydricy) (Hochberg et al., 

2018; Meinzer et al., 2014). This may be related to different combinations and 

trade-offs of hydraulic traits controlling drought responses, including Ψtlp, P50 

and rooting depth (Martínez-Vilalta and Garcia-Forner, 2017). What’s more, 

plants can release stored water (defined as capacitance) to replenish 

insufficient water supplies over short timescales and prevent dieback when 

water transport through xylem is obstructed (Sack and Holbrook, 2006). Leaf 

and woody capacitance are crucial hydraulic traits that regulate water supply to 

buffer drought (Salomón et al., 2017), which are likely needed to be 

incorporated into current framework. Thus, more hydraulic processes need to 

be considered under EEO framework to improve our understanding of complex 

hydraulic traits coordination and model performance in response to abrupt 

drought event.  

(4) Functional diversity and trait coordination within a community 
Many studies have demonstrated the important role of diversity in 

ecosystem functioning under climate change, however most DGVMs fail to 

simulate this. It is well documented that biodiversity has positive effects on 

ecosystem resilience, stability, and productivity (Brun et al., 2019; Isbell et al., 

2015; Wang et al., 2019a). Functional diversity, a key component of diversity, 

refers to distribution of plant functional traits, which explains mechanisms of 

biodiversity-resilience relationships (Wang et al., 2024). For example, Anderegg 

et al. (2018) find that higher hydraulic traits diversity explains most of 

ecosystem flux change under drought than photosynthetic or LES traits. Plant 

trait diversity enhances biomass recovery and ecosystem resilience under 

climate change (Sakschewski et al., 2016). Therefore, functional diversity plays 

an important role in terrestrial biogeochemical cycle. However, the mechanisms 

controlling functional diversity variability still remain unknown, both from field 

observations and our theoretical understanding. Currently there are multiple 

ways to measure functional diversity (Mammola et al., 2020), which provide 

varying results (Stewart et al., 2023) and all of these measures are time-

consuming to deploy, especially in diverse ecosystems, as they require a high 
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proportion of species within an ecosystem to be sampled (van der Plas et al., 

2017). This leads to few public community- or plot-level traits datasets existing 

worldwide and hinders our understanding of drivers of functional diversity from 

empirical analysis. I tried to compile a plot-level trait dataset on a global scale 

across the tropics (Figure 5.2a), initially using LMA, as it is the most widely 

measured trait. I searched for plots where all species on the plot had a 

measured LMA value, but there were very few of these globally and so initially I 

did comparisons of plots in Brazil and Ghana. The initial analysis showed that 

the ranges of LMA values were similar across different plots with different 

temperature and moisture conditions on a regional scale (Ghana or Brazil), 

despite the changes in site-mean LMA (Figure 5.2b,c). This indicates that 

changes in functional diversity may be scale dependent. More freely available 

data on functional diversity is needed to pursue this question further however, 

as currently there is not enough data to allow model development and 

calibration. With advanced technologies, recent studies try to derive functional 

diversity using remote sensing or LiDAR, which facilitates large-scale 

monitoring and assessment of traits (Helfenstein et al., 2022; Schneider et al., 

2017).  

 

Figure 5.2 The locations of plots I have with available traits and species 

abundance data (a) and distributions of LMA in Ghana (b) and Brazil (c). 

Although the current EEO-based traits models can capture optimal 

community-mean traits or trait combinations, the models are incapable of 

predicting functional diversity within community. In the future it may be that the 

functional diversity acts as a greater control on the ecosystem response to 
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climate change, than the community mean trait value. Therefore analysing the 

prior distribution of traits in a species pool and using a joint normal distribution 

method might give insights to comprehend climate effect on functional diversity 

based on EEO models (Poggiato et al., 2023). The joint normal distribution 

modelling describes how two normally distributed traits are correlated along 

climate gradients, characterized by their community-means, variances, and 

covariance. This enables predictions on trait variation within a community based 

on EEO models. For example, our hydraulic trait model predicts the correlation 

between KS and vH with the intercept varying with climate (Equation 4.11). With 

average values and trait covariances estimated from a global hydraulic trait 

dataset, I can simulate their standard deviation at each site (see examples in 

Figure 5.3). The preliminary results showed that this method could predict 

within-site distributions of vH. However, there are some uncertainties in the 

observed trait distributions. The species abundance is not included, as not all 

species were measured at each site in the hydraulic trait datasets from Chapter 

4. Thus, the observed distributions of vH were not the same as functional 

diversity. More attempts should be made to measure functional diversity in 

order to validate our model predictions and investigate its drivers from both 

empirical and mechanistic approaches.  

 

Figure 5.3 The comparisons of vH distribution at different climate zones in 

Dataset1. The black and red lines are observed and simulated distributions of 

vH. 
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 In conclusion, I have created a new hydraulic model based on EEO 

principles, which can simulate the standard deviations of variation in vH and use 

this to generate effective trait level predictions across sites and climate 

gradients globally. Future work is however needed to develop and test this 

model further, this should focus on improving the prediction of trait trade-offs 

using climate variables. A larger global hydraulic trait dataset, particularly with 

greater coverage in tropical environments, is urgently needed to facilitate the 

additional trait changes needed. Furthermore, in the future and with greater 

data-access for calibration, this modelling method has the potential to be 

applied to simulate trait distributions, as well as trait means. The capacity to 

simulate changes in functional diversity, alongside community-mean traits is 

likely to considerably expand our capacity to understand and predict ecosystem 

responses to climate change.
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Appendices 

Appendix 1 – Other publications 

First-authored peer-reviewed articles 

• Xu H, Wang H, Prentice IC and Harrison SP (2023), Leaf carbon and 

nitrogen stoichiometric variation along environmental gradients. 

Biogeosciences, 20: 4511-4525. https://doi.org/10.5194/bg-20-4511-2023 

Co-authored peer-reviewed articles 

• Wang H, Harrison SP, Li M, Prentice IC, Qiao S, Wang R, Xu H, Mengoli 

G, Peng Y, Yang Y (2022), The China plant trait database version 2. 

Scientific Data, 9: 769. https://doi.org/10.1038/s41597-022-01884-4 
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Appendix 2 – Supplementary material to Chapter 2 

Table S2.1 Variance-covariance matrices of traits for deciduous and evergreen 

species. The values were calculated across all species. All traits were Loge-

transformed except χ, which was logit transformed. Trait abbreviations as 

follows: wood density (WD), sapwood-specific hydraulic conductivity at 25 ˚C 

(KS25), leaf water potential at turgor loss point (Ψtlp), the ratio of sapwood to leaf 

area (vH), leaf mass per area (LMA), the ratio of leaf-internal to ambient CO2 

partial pressure (χ), leaf nitrogen content per area (Narea) and maximum 

capacity of carboxylation at 25 ˚C (Vcmax25). P values are indicated “***” (< 

0.001), “**” (< 0.01) and “*” (< 0.05). 

 
Deciduous vH KS25 -Ψtlp WD LMA Narea Vcmax25 logit χ 

vH 0.36        
KS25 -0.19*** 0.70       
-Ψtlp 0.02* -0.03** 0.03      

WD 0.03**  0.02*** 0.05     
LMA 0.11*** -0.06** 0.02***  0.12    

Narea 0.11***  0.02**  0.11*** 0.18   
Vcmax25      0.09*** 0.58  

logit χ   -0.02***  -0.06*** -0.08***  0.26 

 
Evergreen vH KS25 -Ψtlp WD LMA Narea Vcmax25 logit χ 

vH 0.43        

KS25 -0.33** 0.76       
-Ψtlp   0.03      

WD    0.05     
LMA 0.14**    0.13    

Narea 0.14**    0.07** 0.12   
Vcmax25 0.36**      0.79  
logit χ     -0.07* -0.09*  0.30 
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Figure S2.1 Locations of sampling sites and weather stations. The green dots 

are the sampling sites and red triangles are the weather stations. The latitude 

and longitude for the outer plot are in black, inset in navy blue. The background 

colour represents the elevation gradient. 
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Figure S2.2 Bivariate relationships between traits. All traits were Loge-

transformed except χ, which was logit transformed. Deciduous and evergreen 

species are shown by blue and red circles, respectively. Solid lines indicate 

significant relationships (p < 0.05), dashed lines nonsignificant relationships. 

The relationships between wood density (WD) and hydraulic traits are panel (a) 

to (c). The relationships between leaf water potential at turgor loss point (Ψtlp) 

and traits are panel (d) to (e). The relationships between sapwood-specific 

hydraulic conductivity at 25 ˚C (KS25) and traits are panel (f) to (h). The 

relationships between the ratio of sapwood to leaf area (vH) and traits are panel 

(i) to (j). The relationships between leaf mass per area (LMA) and traits are 

panel (k) to (o). The relationship between the ratio of leaf-internal to ambient 

CO2 partial pressure (χ) and maximum capacity of carboxylation at 25 ˚C 

(Vcmax25) is panel (p). The trait is leaf nitrogen content per area (Narea). 
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Figure S2.3 Partial residual plots from the regression of Loge-transformed the 

ratio of sapwood to leaf area (vH) against different predictors. The traits and 

climate variables were the second set of predictors shown in Figure 2.3b. The 

predictors are shown in (a) temperature, (b) vapour pressure deficit (D), (c) 

elevation, (d) maximum capacity of carboxylation (Vcmax), (e) sapwood-specific 

hydraulic conductivity (KS), and (f) leaf water potential at turgor loss point (Ψtlp). 

Black lines are the fitted across all species, red dots are deciduous species and 

blue dots are evergreen species. The gray shadings are the 95% confidence 

intervals around the fitted lines. 

 

 

 
Figure S2.4 Comparison between observed and predicted ratios of sapwood to 

leaf area (vH) across species. The black line is 1:1 line and red one is the fitted 

line across species. 
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Appendix 3 – Supplementary material to Chapter 3 

Table S3.1 Characteristics of the study sites. Climate data: mean temperature during the growing season (Tg), the ratio of growing 

season length to the number of days in the year (f), mean photosynthetically active radiation (R0), mean vapor pressure deficit (D0), mean 

annual precipitation (MAP), ambient partial pressure of O2 (P0), moisture index (αp) and leaf area index (LAI). The sample size gives the 

number of species sampled at each site. 

Geographic information Climate information Vegetation type Sample 

size 
 

Elevation 

(m) 

Longitud

e 

(°E) 

Latitude 

(°N) 

Tg 

(˚C) 

f  

(day 

day–1) 

R0 

(μmol 

m
–2

 s
–1

) 

D0 

(kPa) 

MAP 

(mm) 

αp 

(mm 

mm–1) 

P0 

(Pa) 

LAI 

(m2 m-2) 

1143 102.16 29.43 20.33 1 293 1.18 1046 0.53 18589 3.7 Deciduous broad-leaved forest 27 

1650 102.13 29.65 15.89 1 202 0.81 994 0.66 17508 2.6 Deciduous broad-leaved forest 25 

1785 102.10  29.65  14.77  1 253 0.74 1292 0.70 17229 2.6 Deciduous broad-leaved forest 21 

1976 101.02 29.38 13.14 1 319 0.89 821 0.59 16840 3.6 Deciduous broad-leaved forest 29 

2258 102.05 29.59 14.01 1 316 0.72 657 0.72 16279 1.7 Deciduous broad-leaved forest 26 

2735 101.91 29.42 13.50 1 330 0.74 1396 0.71 15365 3.0 Deciduous broad-leaved forest 28 

2782 102.03  29.59  11.92  1 333 0.62 1500 0.74 15277 3.3 Deciduous broad-leaved forest 36 

2950 101.92 29.37 12.57 1 343 0.70 906 0.72 14966 2.6 Deciduous broad-leaved forest 27 
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2966 101.88 29.45 12.21 1 344 0.69 1113 0.72 14937 1.8 Deciduous broad-leaved forest 29 

2993 102.00  29.57  10.73  1 305 0.58 1568 0.75  14888 4.3 Deciduous broad-leaved forest 21 

3251 101.99  29.57  8.97 1 330 0.53 1660 0.77 14423 3.2 Evergreen needle-leaved forest 10 

3290 101.39 29.55 12.76 1 295 0.81 1145 0.62 14354 3.4 Deciduous broad-leaved forest 20 

3500 101.53 29.47 9.78 1 371 0.68 935 0.70 13986 2.1 Deciduous broad-leaved forest 18 

3780 101.60 29.45 9.51 1 330 0.66 1108 0.71 13507 1.2 Evergreen needle-leaved forest 17 

3794 101.66 29.52 8.61 1 371 0.61 1047 0.73 13483 1.5 Deciduous shrub 15 

3943 102.00  29.90  7.03  0.79 341 0.46  1576 0.82 13234 1.5 Deciduous shrub 9 

4081 102.01 29.91 6.20 0.74 379 0.46 887 0.84 13007 0.5 Deciduous shrub 17 

4361 101.71 29.52 6.14 0.82 383 0.55 1333 0.77 12555 0.7 Evergreen shrub 13 
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Table S2.2 Species sampled at each site. The list provides information on the plant functional type and the species on which 

measurements were made.  
Elevation Plant functional type Species sampled 
1143 deciduous broadleaf tree Euptelea pleiosperma, Betula utilis, Juglans cathayensis 

deciduous broadleaf small 
tree 

Pyracantha fortuneana, Viburnum foetidum var. ceanothoides, Litsea cubeba, Quercus gilliana, Pistacia 
weinmannifolia 

evergreen broadleaf tree Cunninghamia lanceolata, Cyclobalanopsis glaucoides 
evergreen broadleaf small tree Rhamnus dumetorum, Trachycarpus fortunei, Ilex corallina, Hydrangea xanthoneura 
deciduous broadleaf shrub Debregeasia orientalis, Rubus macilentus, Grewia biloba 
evergreen broadleaf shrub Myrsine semiserrata 
liana Clematis grandidentata 
forb Boehmeria clidemioides var. diffusa, Elatostema cuspidatum, Arisaema erubescens, Begonia henryi, 

Boenninghausenia albiflora, Lophatherum gracile 
pteridophyte Woodwardia unigemmata 

1650 deciduous broadleaf tree Alnus cremastogyne, Quercus serrata var. brevipetiolata, Rhus chinensis, Toxicodendron sylvestre 
deciduous broadleaf small 
tree 

Rhamnus tangutica, Morus australis, Alangium chinense 

evergreen broadleaf tree Cyclobalanopsis glaucoides, Ligustrum lucidum 
evergreen broadleaf small tree Lyonia ovalifolia var. lanceolata, Rhododendron augustinii 
deciduous broadleaf shrub Debregeasia orientalis, Neillia affinis, Lespedeza formosa, Rosa glomerata 
evergreen broadleaf shrub Pyracantha fortuneana, Maclura tricuspidata 
liana Clematis smilacifolia var. peltata 
forb Agrimonia pilosa, Arisaema erubescens, Zingiber striolatum, Artemisia argyi, Anaphalis bicolor, Lophatherum 

gracile 
pteridophyte Pseudocyclosorus esquirolii 

1785 deciduous broadleaf tree Alnus ferdinandi-coburgii, Betula utilis, Tetracentron sinense, Salix wallichiana, Rhus chinensis 
deciduous broadleaf small 
tree 

Litsea cubeba 

evergreen broadleaf small tree Viburnum oliganthum 
deciduous broadleaf shrub Coriaria nepalensis, Indigofera szechuensis, Elaeagnus umbellata, Rubus mesogaeus, Debregeasia 

orientalis, Cotoneaster dielsianus, Aster albescens, Pyracantha fortuneana, Lonicera ligustrina, Salix 
variegata, Hydrangea strigosa, Rubus setchuenensis, Rubus lambertianus, Ficus tikoua 
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evergreen broadleaf shrub Viburnum atrocyaneum, Viburnum rhytidophyllum 
liana Stauntonia chinensis, Berchemia floribunda, Galium dahuricum var. lasiocarpum, Paederia foetida, Clematis 

pogonandra, Fallopia multiflora 
forb Arisaema erubescens, Begonia grandis, Pilea pumila, Artemisia tangutica, Incarvillea arguta 

1976 deciduous broadleaf tree Alnus cremastogyne, Juglans cathayensis, Euptelea pleiosperma, Machilus viridis, Toxicodendron 
vernicifluum 

deciduous broadleaf small 
tree 

Elaeagnus bockii, Salix wallichiana, Styrax roseus, Sorbaria arborea, Litsea cubeba, Viburnum betulifolium 

deciduous broadleaf shrub Rubus lambertianus, Rhamnus dumetorum, Hydrangea anomala, Rubus setchuenensis, Neillia affinis, 
Cotoneaster dielsianus 

liana Viburnum foetidum var. rectangulatum, Clematoclethra scandens subsp. actinidioides 
forb Iris confusa, Zingiber striolatum, Agrimonia pilosa, Artemisia argyi, Boehmeria clidemioides var. diffusa,  

Oplismenus undulatifolius, Carex henryi, Bambusa multiplex, Arisaema erubescens 
pteridophyte Dryopteris neorosthornii 

2258 deciduous broadleaf tree Malus prattii, Euptelea pleiosperma, Sorbus meliosmifolia, Tetracentron sinense 
deciduous broadleaf small 
tree 

Corylus ferox, Cornus controversa, Ilex fragilis f. kingii 

evergreen broadleaf tree Lithocarpus cleistocarpus, Machilus viridis 
evergreen broadleaf small tree Rhododendron polylepis, Ilex pernyi, Ilex yunnanensis 
deciduous broadleaf shrub Polygala fallax, Rubus pentagonus, Ribes longiracemosum, Viburnum kansuense 
evergreen broadleaf shrub Viburnum oliganthum 
liana Clematoclethra scandens subsp. actinidioides 
forb Adenocaulon himalaicum, Pternopetalum davidii, Oxalis griffithii, Rubus fockeanus, Calanthe tricarinata, Carex 

henryi, Fargesia ferax 
pteridophyte Polystichum braunii 

2735 deciduous broadleaf tree Sorbus pallescens, Tilia chinensis var. intonsa, Padus buergeriana, Acer laxiflorum, Betula utilis 
deciduous broadleaf small 
tree 

Lonicera lanceolata, Malus yunnanensis, Viburnum betulifolium 

evergreen broadleaf tree Rhododendron polylepis, Abies fabri, Larix potaninii var. marcrocarpa, Picea likiangensis, Ilex pernyi 
deciduous broadleaf shrub Rubus pungens var. oldhamii, Smilax stans, Ribes glaciale, Meliosma cuneifolia 
evergreen broadleaf shrub Berberis potaninii 
liana Sabia yunnanensis subsp. Latifolia, Schisandra grandiflora 
forb Artemisia argyi, Thalictrum javanicum, Ophiopogon bodinieri, Rubia schumanniana, Valeriana officinalis, 

Brachypodium sylvaticum, Arundinaria faberi 



 

 145 

pteridophyte Lepisorus thunbergianus 
2782 deciduous broadleaf tree Acer flabellatum, Acer oliverianum, Acer laxiflorum, Betula utilis, Maddenia wilsonii, Ilex macrocarpa 

needleleaf evergreen tree Picea likiangensis, Abies fabri, Tsuga chinensis 
deciduous broadleaf small 
tree 

Enkianthus chinensis, Viburnum nervosum, Viburnum cylindricum, Malus prattii, Euonymus semenovii, Litsea 
chunii, Sorbus rufopilosa, Rubus delavayi, Ribes glaciale, Cerasus trichostoma 

evergreen broadleaf small tree Rhododendron calophytum, Rhododendron polylepis 
deciduous broadleaf shrub Hydrangea robusta 
evergreen broadleaf shrub Ilex yunnanensis 
liana Clematoclethra scandens subsp. actinidioides, Rubia cordifolia, Clematis kweichowensis, Clematis montana 
forb Pilea martini, Oxalis griffithii, Ligularia dentata, Arisaema elephas, Beesia calthifolia, Arundinaria faberi 

2950 deciduous broadleaf tree Acer laxiflorum, Betula utilis, Sorbus rufopilosa, Sorbus pallescens, Tilia chinensis var. intonsa 
 deciduous broadleaf small 

tree 
Cerasus trichostoma, Litsea chunii, Viburnum betulifolium, Cotoneaster bullatus, Dipelta yunnanensis 

 evergreen broadleaf tree Tsuga chinensis, Abies fabri, Rhododendron pachytrichum, Larix potaninii var. marcrocarpa 
 evergreen broadleaf small tree Rhododendron decorum 
 deciduous broadleaf shrub Rubus fockeanus, Lonicera tangutica, Rosa moyesii, Salix cathayana, Buddleja davidii 
 evergreen broadleaf shrub Berberis potaninii 
 forb Polygonum aviculare, Parasenecio palmatisectus, Artemisia argyi, Gentiana robusta, Arundinaria faberi 
 pteridophyte Athyrium niponicum 
2966 deciduous broadleaf tree Betula utilis, Padus buergeriana, Sorbus pallescens, Acer laxiflorum, Populus kangdingensis 
 deciduous broadleaf small 

tree 
Viburnum betulifolium, Sorbus rufopilosa, Litsea chunii, Viburnum nervosum, Cerasus trichostoma, Sorbaria 
arborea, Cotoneaster bullatus 

 evergreen broadleaf tree Abies forrestii, Larix potaninii var. australis 
 deciduous broadleaf shrub Berberis tischleri, Rosa moyesii, Lonicera lanceolata, Lonicera tangutica 
 evergreen broadleaf shrub Berberis potaninii, Daphne tangutica 
 liana Schisandra grandiflora 
 forb Impatiens tortisepala, Parasenecio palmatisectus, Parasenecio roborowskii, Ligusticum daucoides, 

Brachypodium sylvaticum, Heracleum hemsleyanum 
 pteridophyte Athyrium niponicum, Lepisorus thunbergianus 
2993 deciduous broadleaf tree Betula utilis, Acer kungshanense, Acer laxiflorum, Maddenia wilsonii 

needleleaf evergreen tree Abies fabri 
deciduous broadleaf small 
tree 

Sorbus prattii, Viburnum betulifolium, Viburnum nervosum, Philadelphus purpurascens, Cotoneaster bullatus, 
Rubus pungens var. oldhamii, Cerasus trichostoma, Euonymus frigidus, Padus buergeriana 
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evergreen broadleaf small tree Rhododendron decorum, Rhododendron calophytum 
deciduous broadleaf shrub Ribes longiracemosum, Lonicera tangutica, Arundinaria faberi, Ribes glaciale, Rosa omeiensis 
evergreen broadleaf shrub Berberis aemulans 
liana Clematis montana, Smilax stans, Clematoclethra scandens subsp. actinidioides 
forb Streptopus obtusatus, Salvia smithii, Arisaema elephas, Berneuxia thibetica, Galium hoffmeisteri 

3251 evergreen needleleaf tree Abies fabri 
 deciduous broadleaf small 

tree 
Acer stachyophyllum 

evergreen broadleaf small tree Rhododendron calophytum, Rhododendron lutescens, Rhododendron pachytrichum 
deciduous broadleaf shrub Sorbus rufopilosa, Acer flabellatum, Rubus pungens, Lonicera tangutica, Lonicera nigra, Euonymus semenovii, 

Rosa omeiensis, Philadelphus purpurascens, Ribes glaciale 
liana Clematis montana 
forb Maianthemum henryi, Arisaema elephas, Galium innocuum, Parasenecio deltophyllus, Carex capilliformis 

3290 deciduous broadleaf tree Acer pictum subsp. mono, Malus rockii, Populus davidiana, Cerasus pleiocerasus, Sorbus thibetica, Salix 
wallichiana 

 evergreen needleleaf tree Picea likiangensis var. hirtella 
 evergreen broadleaf tree Quercus guyavifolia 
 deciduous broadleaf shrub Rosa soulieana, Zanthoxylum undulatifolium, Rhamnus maximovicziana, Ribes alpestre, Cotoneaster tenuipes 
 liana Berchemia yunnanensis 
 forb Chrysanthemum glabriusculum, Thalictrum atriplex, Anemone tomentosa, Salvia brevilabra, Elsholtzia ciliata 
 pteridophyte Onychium contiguum 
3500 deciduous broadleaf tree Hippophae rhamnoides, Cerasus serrula 
 deciduous broadleaf small 

tree 
Malus transitoria 

 evergreen needleleaf tree Picea brachytyla, Juniperus pingii 
 evergreen broadleaf tree Quercus guyavifolia 
 deciduous broadleaf shrub Caragana franchetiana, Berberis approximata, Ribes alpestre, Spiraea schneideriana 
 evergreen broadleaf shrub Rhododendron intricatum 
 evergreen needleleaf shrub Juniperus pingii var. wilsonii 
 forb Halenia elliptica, Stellera chamaejasme, Thalictrum cultratum, Polygonatum cirrhifolium, Salvia prattii, Carex 

cardiolepis 
3780 deciduous broadleaf tree Hippophae rhamnoides 
 deciduous needleleaf tree Larix potaninii var. marcrocarpa 
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 evergreen needleleaf tree Picea likiangensis var. hirtella, Pinus yunnanensis 
 evergreen broadleaf small tree Quercus guyavifolia, Rhododendron intricatum 
 deciduous broadleaf shrub Potentilla fruticosa, Berberis approximata, Caragana erinacea 
 evergreen needleleaf shrub Juniperus pingii var. wilsonii 
 liana Clematis tangutica 
 forb Stellera chamaejasme, Spenceria ramalana, Anaphalis flavescens, Potentilla saundersiana, Anemone 

tomentosa, Deyeuxia scabrescens 
3794 deciduous broadleaf shrub Sibiraea angustata, Salix wuxuhaiensis, Rhododendron intricatum, Caragana erinacea, Lonicera rupicola, 

Potentilla fruticosa var. arbuscula 
 evergreen broadleaf shrub Berberis dictyoneura, Quercus guyavifolia 
 evergreen needleleaf shrub Juniperus pingii var. wilsonii 
 forb Sibbaldia cuneata, Potentilla anserina, Stellera chamaejasme, Anaphalis aureopunctata, Anemone tomentosa, 

Carex cardiolepis 
3943 deciduous broadleaf shrub Berberis dictyophylla, Salix sclerophylla, Salix spodiophylla, Lonicera ligustrina, Lonicera rupicola var. 

syringantha, Spiraea schneideriana, Potentilla fruticosa, Sorbus rehderiana, Ribes takare 
evergreen broadleaf shrub Rhododendron phaeochrysum, Rhododendron intricatum 
forb Rheum nobile, Gentiana trichotoma, Polygonum macrophyllum, Sedum chauveaudii, Ligularia duciformis, 

Angelica sinensis 
4081 deciduous broadleaf shrub Sorbus rehderiana, Salix sclerophylla, Potentilla fruticosa, Ribes takare, Spiraea schneideriana, Anaphalis 

souliei 
 evergreen broadleaf shrub Rhododendron intricatum, Rhododendron phaeochrysum, Lonicera ligustrina 
 evergreen needleleaf shrub Picea likiangensis 
 forb Ligularia pleurocaulis, Polygonum macrophyllum, Gentiana trichotoma, Pyrethrum tatsienense, Potentilla 

stenophylla var. emergens, Poa attenuata, Carex cardiolepis 
4361 deciduous broadleaf shrub Salix flabellaris, Lonicera hispida 
 evergreen broadleaf shrub Rhododendron intricatum, Rhododendron telmateium, Rhododendron phaeochrysum 
 forb Polygonum macrophyllum, Saussurea przewalskii, Hedysarum vicioides, Gentiana trichotoma, Potentilla 

stenophylla var. emergens, Trisetum spicatum, Carex cardiolepis 
 pteridophyte Polystichum gongboense 
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Figure S3.1 The locations of weather stations used to derive estimates of the 

climate variables at each sampled site. The red triangles are the weather 

stations and dots are the sampling sites. The background colour represents the 

elevation gradient which has the same scale in Figure 3.1 in the main text. 
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Figure S3.2 The comparisons of interpolated and in-situ climate data at five 

sites. The red dots are the interpolated climate data and blue dots are the in-situ 

climate data collected from flux tower or nearby meteorological stations. The 

bioclimatic variables are daytime temperature in July (TdJ), mean temperature 

during the growing season, defined as days above a baseline of 0 ˚C (Tg), mean 

vapor pressure deficit (D0), mean photosynthetically active radiation (R0), and a 

moisture index (αp) defined as the ratio of annual actual evapotranspiration to 

annual potential evapotranspiration. 
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Figure S3.3 The coefficient of variation (CV) of traits at each sampled site. The 

traits are leaf mass per area (Ma), leaf nitrogen content per unit area (Narea); the 

maximum capacity of carboxylation standardized to 25 ˚C (Vcmax25) and the ratio 

of leaf-internal to ambient CO2 partial pressure (χ). The red dashed line is the 

CV of traits across sites. 

 

 

 

Figure S3.4 Site-mean values of the maximum capacity of carboxylation 

standardized to 25 ˚C (Vcmax25) and the ratio of leaf-internal to ambient CO2 

partial pressure (χ) for evergreen species. Observations are site-mean values of 

evergreen species. The solid line is the 1:1 line. 
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Figure S3.5 The observed and predicted values of traits along the altitudinal 

gradient. The traits are leaf mass per area (Ma), leaf nitrogen content per unit 

area (Narea); the maximum capacity of carboxylation standardized to 25 ˚C 

(Vcmax25) and the ratio of leaf-internal to ambient CO2 partial pressure (χ). 

Observed trait values are shown in grey dots. In panel (a), the red and blue dots 

show the mean predicted Ma using mean temperature during the growing 

season (Tg) with regional-calibrated coefficients in Equation 3.15 and using 

daily temperature in July (TdJ), respectively. In panel (b) and (c), red dots show 

the mean predicted Vcmax25 and χ using Tg. In panel (d), predicted Narea using 

Nstructure and Nrubisco following Dong et al. (2017) are shown with red dots, the 

blue dots show the mean Narea predicted from predicted Tg-driven Ma and TdJ-

driven Vcmax25. Error bars in panel (a) and (c) are the square root of uncertainty 

caused by parameters, in panel (b) by parameters and observed χ, in panel (d) 

by parameters and observed Ma and Vcmax25. 
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Figure S3.6 Site-mean values of traits for deciduous species. The traits are leaf 

mass per area (Ma), leaf nitrogen content per unit area (Narea); the maximum 

capacity of carboxylation standardized to 25 ˚C (Vcmax25) and the ratio of leaf-

internal to ambient CO2 partial pressure (χ). Observations are site-mean values 

of deciduous species. In panel (a), the red and blue dots show the mean 

predicted Ma using mean temperature during the growing season (Tg) with 

regional-calibrated coefficients in Equation 3.15 and using daily temperature in 

July (TdJ), respectively. In panel (b) and (c), the red dots show the mean 

predicted Vcmax25 and χ using Tg. In panel (d), predicted Narea using Nstructure and 

Nrubisco following Dong et al. (2017) are shown with red dots, the blue dots show 

the mean Narea predicted from predicted Tg-driven Ma and TdJ-driven Vcmax25. 

The solid line is the 1:1 line. 
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Figure S3.7 The impact of parameter uncertainty on the prediction of traits. Site 

at 1785 m was selected as a case study. Blue circles are predicted values at 

1785 m and orange circles are mean observed values. Error bar is accumulated 

uncertainty by successive parameters on y-axis from the bottom to the top. Ma 

is predicted leaf mass per area using Tg, Vcmax25 is predicted maximum capacity 

of carboxylation standardized to 25 ˚C using TdJ, χ is predicted ratio of internal 

to ambient CO2 partial pressure using TdJ, and Narea is predicted leaf mass per 

area by observed Ma and Vcmax25 directly. c is the unit cost of maintaining 

electron transport capacity, Kc (Pa) is Michaelis-Menten coefficient for 

carboxylation at 25 ˚C, ΔHK_C (J mol-1) is the activation energy of carboxylation, 

ΔHΓ* (J mol-1) is the activation energy of Γ*, Γ*25 (Pa) is photorespiratory 

compensation point at 25 ˚C, ΔHK_O (J mol-1) is the activation energy of 

oxygenation. β is the ratio of the unit costs of maintaining carboxylation and 

transpiration capacities. 
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Figure S3.8 The distribution of observed leaf nitrogen content per unit area 

(Narea) values in the space of leaf mass per area (Ma) and the maximum 

capacity of carboxylation standardized to 25 ˚C (Vcmax25). Trait values are 

indicated by the colour scale. 

 

 

 
Figure S3.9 The relationships between residual of predictions and hydraulic 

traits and αp. Only the significant relationships were represented. Tg means 

predicted traits using mean temperature during growing season, TdJ means 

predicted traits using daytime temperature of July. αp is the ratio of annual 

actual evapotranspiration to annual potential evapotranspiration. 
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Appendix 4 – Supplementary material to Chapter 4 

Appendix 4.1 Theoretical climate effect on sapwood to leaf area ratio 

After replacing photosynthetic traits with climate-driven variables, optimal vH 

balancing the hydraulic efficiency in trunks and the water demand from canopy 

can be expressed by a function of KS, irradiance, temperature and vapour 

pressure deficit.  

The effect of irradiance (Iabs) on vH comes from Vcmax, based on 
Equation 4.6. 

!Log!(&")
!Log!((#$%)

= !Log!(*&'#()
!Log!((#$%)

= 1 (S4.1) 

Thus, the sensitivity of Loge(vH) to Loge(Iabs) is 1.  

 

Vapour pressure deficit (D) affects vH through its effects on 
transpiration and χ, based on Equations 4.6 and 4.7. 
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Thus, at average climate condition (T = 25.5˚C, D = 1.5kPa), the sensitivity 

of Loge(vH) to Loge(D) can be estimated as 0.6.  

 

The temperature effect comes from hydraulic efficiency (KS) and 
photosynthetic traits (χ, Vcmax), based on Equations 4.6 to 4.9. 

Temperature effect on hydraulic efficiency: 

!Log!(&")
!	E = !F−Log!(GN)H

!	E 	 (S4.5) 
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Here, KS represents hydraulic efficiency at growth condition, while KS in 

dataset was measured in standard room temperature (~25˚C, KS25). Due to 

temperature effect on water viscosity and permeability of cells, the temperature 

response of KS is given by: 

Log!(GN) = Log! IGN<MJ5K
O
5KK (S4.6) 

We took Q10 value as 1.80 from Matzner and Comstock (2001), thus, the 

temperature response of KS is –0.06. 

Temperature effect on photosynthesis process: 

)*+,!(.")
)	P =

)1*+,!(3#)2*+,!(φ0)2*+,!7 $%&'(
$%&')Γ*

84*+,!(546)9

)	P 		 (S4.7) 

The temperature sensitivity of photosynthetic terms can be divided into 

following terms: 

The temperature sensitivity of K and Γ* can be achieved (Bernacchi et al., 

2001): 
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The temperature effect from χ on vH can be calculated: 
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The temperature effect from mC and Vcmax on vH is as follows. The intrinsic 

quantum efficiency of photosynthesis (φ0) is calculated by temperature-

dependence relationship (Bernacchi et al., 2003b). Thus, the sensitivity of φ0 to 

temperature is given by: 
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!	Log!Fφ0H
!	E = 0.021	– 	0.00068P

0.352	 + 	0.021P	– 	0.00034P< (S4.13) 

Combining the temperature sensitivities of K and Γ*, the temperature 

sensitivities of the rest terms are given by: 
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In summary, in average climate condition (T = 25.5˚C, D = 1.5kPa), the 

estimated temperature sensitivity of combined photosynthetic terms is 0.03. 

Therefore, the temperature sensitivities of hydraulic efficiency and 

photosynthesis process are –0.06 and 0.03 respectively, which yields –0.03 in 

total.  

The relationships between hydraulic traits and climate variables can be 

expressed by the following equation.  

Log!(&") = 0.6Log!(7'#() + Log!((#$%) − 0.03P'#( − Log!(GN<M)
− Log!(ΔΨ'#() + Z 

(S4.16) 

Here KS25 is KS under 25˚C, C is the parameter containing information about 

photosynthetic traits values under standard climate condition (25˚C) and plant 

height. In practice, effects of KS and h are not separable, because the tip-to-

base widening of xylem elements implies a positive correlation between them 

that greatly reduces the effect of path length on whole-stem conductance, so 

that the whole-stem conductance is similar to or only slightly lower than the 

conductance measured near the branch tip (Christoffersen et al., 2016; 

Mencuccini et al., 2019b; Olson et al., 2021). 

The model predicted that vH was positively related to vapour pressure deficit 

and irradiance, negatively to air temperature and CO2, and its negative 

correlations with KS and ΔΨmax. The sensitivities of maximum vapour pressure 

deficit (Dmax) and air temperature (Tmax), mean irradiance (Iabs) during growing 

season to vH variation after loge-transformed were 0.6, 1 and –0.03 theoretically 

derived from our model, which implied that high vH should be expected at dry 

and cold areas with high irradiance. 
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Appendix 4.2 Supplementary figures 

 
Figure S4.1 The theoretical sensitivity of loge-transformed ratio of sapwood to 

leaf area (vH) to ambient CO2.  

 

 

 

 

 
 
Figure S4.2 Species distribution along climate gradients in Dataset1. AI is aridity 

index (ratio of precipitation of evapotranspiration), Tmax is maximum temperature, 

Dmax is maximum vapour pressure deficit and mean irradiance (Iabs) during 

growing season.  



 

 159 

 
 
Figure S4.3 The distribution of ratio of sapwood to leaf area (vH) and hydraulic 

conductivity (KS) among deciduous and evergreen species in Dataset1. T-test is 

carried out to examine the difference of vH and KS between leaf phenology.  

 

 

 
 
Figure S4.4 Principal components analysis of climate variables including 

maximum vapour pressure deficit (Dmax), maximum temperature (Tmax) and mean 

irradiance during growing season in Dataset1. (a) PC1 vs PC2, grey dotted lines 

show the site division according to loadings of PC1 and PC2 axes. (b) PC2 cs 

PC3. The pink points represent species.  
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Figure S4.5 The relationships between loge-transformed ratio of sapwood to leaf 

area (vH) and hydraulic conductivity (KS) at species level using Dataset1. The red 

dots are deciduous species, green dots are evergreen species. The black line is 

1:1 line, the red and green lines are fitted using standardised major axis (SMA) 

regression among deciduous and evergreen species respectively.  
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Figure S4.6 Partial residual plots from the multiple linear regression of loge-

transformed the ratio of sapwood to leaf area (vH) against different predictors at 

site level using Dataset1. The predictors are shown in (a) sapwood-specific 

hydraulic conductivity (KS), (b) maximum vapour pressure deficit (Dmax), (c) mean 

irradiance (Iabs), (d) maximum temperature (Tmax) and (e) maximum water 

potential difference between soil and leaf (ΔΨmax) during growing season. Black 

lines are the fitted across all sites and the grey shadings are the 95% confidence 

intervals around the fitted lines. The black solid lines are significant (p<0.05) and 

dotted line is insignificant (p>0.05). The red lines are theoretical sensitivities in 

Equation 4.1. 
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Figure S4.7 (a) The bivariate relationship between Loge-transformed hydraulic 

conductivity (KS) and maximum water potential difference between soil and leaf 

(ΔΨmax). The yellow dots are angiosperms and blue dots are gymnosperms. The 

gray line is fitted across all species. (b) The soil water potential (Ψsoil) variation 

along maximum vapour pressure deficit (Dmax) and aridity index for each species.  

 
 
 
 
 
 
 

 
 
Figure S4.8 The contribution (r2) of different predictors to the ratio of sapwood to 

leaf area (vH) prediction. The green bar is vapour pressure deficit (D), yellow is 

hydraulic conductivity (KS), purple is irradiance/light and red is temperature.  
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Figure S4.9 Partial residual plots from the multiple linear regression of loge-

transformed the ratio of sapwood to leaf area (vH) against different predictors at 

site level using Dataset2. The predictors are shown in (a) sapwood-specific 

hydraulic conductivity (KS), (b) maximum vapour pressure deficit (Dmax), (c) mean 

irradiance (Iabs), (d) maximum temperature (Tmax) during growing season. Black 

lines are the fitted across all sites and the gray shadings are the 95% confidence 

intervals around the fitted lines. The black solid lines are significant (p<0.05) and 

dotted line is insignificant (p>0.05). The red lines are theoretical sensitivities in 

Equation 4.1. 
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Figure S4.10 Theoretical variation of the ratio of sapwood to leaf area (vH) along 

temperature and vapour pressure deficit (D) with other predictors kept as median 

values.  
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