
University of Exeter

DEPARTMENT OF COMPUTER SCIENCE

AUTOMATED UNIVERSITY
TIMETABLING WITH

ROBUSTNESS

JAMES SAKAL

Submitted by JAMES SAKAL, to the University of Exeter as a thesis for the degree

of Doctor of Philosophy in COMPUTER SCIENCE, NOVEMBER, 2023.

This thesis is available for Library use on the understanding that it is copyright

material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been identified

and that any material that has previously been submitted and approved for the

award of a degree by this or any other University has been acknowledged.

Signed: .

Abstract

Generating workable timetables for universities is a hard task. For many years, the

process was conducted manually, but it has benefited in recent times from greater

automation. From graph theoretical and mathematical programming to metaheuristic

approximation methods, a multitude of computational approaches have been tried

and tested. In parallel to this, benchmarks of artificial problems have arisen to aid the

development of novel algorithms. In this thesis, we focus on nature-inspired search

processes as applied to the International Timetabling Competition (ITC) 2007 track

3 benchmark. Firstly, we develop an ant colony optimiser based on the MAX-MIN

ant system (MMAS). Consideration is given to the ordering of lecture assignments

in the construction graph. We aim to discover how permuting lectures affects overall

performance and what features of the problem are important. Through a machine

learning phase, a permutation predictor is then devised for unseen instances, which

is assessed both with and without local search enhancements. Other aspects of the

MMAS as relate to performance and efficiency are also examined, such as dynamic

constraint handling and partial function evaluations. Initial results are mixed but

show promise for the smaller problems, suggesting that further expansion of the

methodology could be worthwhile. Secondly, a many-objective approach to the

same problem is explored. Noting that treatments of the ITC2007 are typically

single-objective, we instead cast individual constraint violations as distinct objectives.

Inspiration is taken from NSGA-III, which is discretised and otherwise adapted for

the problem at hand. Working under the assumption that decision maker preferences

are not known in advance, we attempt to generate good approximations to the Pareto

set, relying on hypervolume as the key performance indicator. We show that feasible

solutions can be attained quickly in a constructive phase, and that targeted objectives

i

can be optimised to zero (where possible) in a second phase. Trade-offs between the

different objectives are analysed. Scalarised results are compared with published

single-objective approaches and found to be competitive on some problems. More

importantly, our contribution represents a method of attaining an approximation set

of unique non-dominated solutions that has been lacking thus far in the literature. In

the final chapter, we build upon the many-objective solver by considering symmetry

and redundancy in the search space. An encoding conversion is proposed to eliminate

equivalent solutions. We also investigate and visualise the plateaus in the search

landscape and propose a genotype diversity mechanism to facilitate the escape from

these regions. This leads to a statistically significant improvement in results. Further

operators are introduced and we examine the trade-offs between computation time

and increased complexity within the perturbation and selection operators. Lastly,

we explore the idea of robustness of solutions, developing a method to quantify this

property, before adding it to the problem as an additional objective. Our solver

copes well with the extra dimension of robustness, offering promising results for

future research.

ii

Acknowledgements

First and foremost I would like to thank my supervisors, Professor Jonathan Fieldsend

and Professor Edward Keedwell. They have been unflinchingly supportive over the

past four years and I have gained so much from their expert insight week to week.

On an academic level, they constantly challenged me, asked all the right questions,

encouraged me to pursue new ideas but reigned me in when I needed focus. On

a human level, I found them extremely personable and I always left our meetings

with a renewed sense of direction and motivation. By chance or by design, they also

complemented each other wonderfully, offering equally valuable feedback but from

different angles. Overall, I could not have wished for a better pair of academics to

have fulfilled their roles.

In setting me up for the PhD journey, the following deserve credit. Professor

Alan Champneys at the University of Bristol, who supervised my final year un-

dergraduate project, and Professor Peter Higgins at the University of Essex, who

supervised my Masters dissertation. Both kindly provided positive references that

helped me towards taking the next step. Professor Chunbo Luo and the rest of the

panel also put me at ease when I was first interviewed at the University of Exeter

for this project. My decision to commit fully to it was aided in no small part by the

many enlightening conversations with those who had trodden the PhD path before

me. In particular, Dr. Mark Yarrow, Professor Mark Barrett, Dr. Stephanie Stanton,

Dr. Simon Clark and Marianne Stewart.

At the University of Exeter, I was privileged to work in an environment that

was both friendly and intellectually stimulating. Various peers, colleagues and senior

lecturers deserving of special mention are Dr. George De’Ath, Dr. Tinkle Chugh,

Dr. Alberto Moraglio, Dr. Hugo Barbosa, Melike Dila Karatas, Dr. Abdulaziz

iii

Almutairi, Sha Mos and Matthew Hayslep. The interactions we had — whether in

reading groups, seminars, taught lectures, conferences or in social settings — widened

my perspective and gave me a feeling of belonging to something much larger than

just my own project. Similarly, I will remember with fondness sharing the ups

and downs of PhD life with fellow candidate Liam Watts, both during and outside

of our PTA sessions. Aileen MacGregor, Dr. Jamie Walker, George Humby, Ed

Horncastle and Melanie Dennig were also influential colleagues in the sphere of

teaching, and I thank them for allowing me to develop my skills in this area. For the

opportunity to disseminate my research to a public audience, I also valued working

with Dr. Clodomir Joaquim De Santana Junior, Chryssa Brown, Dr. Diogo Pacheco,

Ana Maria Jaramillo and the other Pint of Science organisers and speakers. The

friendships I have made transcend research alone.

I am grateful to the Engineering and Physical Sciences Research Council

(EPSRC) who provided funding for my thesis, and to the Doctoral College, the

Researcher Development Program, IT support, and the many anonymous reviewers

whose comments helped improve my published papers.

Outside of the university setting, I must unquestionably thank my family.

They provided vital emotional and practical support throughout what has been a

gruelling period of study, while at the same time learning more about automated

timetabling than they perhaps ever wished to. Welcoming me back home during the

pandemic and setting aside a quiet study space was greatly appreciated. Without

their backing I may not have been able to push through the myriad low moments and

keep going. Also from outside the university, I would like to thank Carl Williams,

whose friendship has meant a lot through some very trying times. Despite working

in a different field, he has taken a keen interest in the technicalities of my research.

His patience, encouragement and good humour throughout times of struggle will

never be forgotten. I must also commend Lucy Cross, for her engagement with my

Research Showcase Week poster and her valiant attempts to solve the timetabling

puzzle therein.

iv

To DT, WC, KR, LA and others who were compassionate, understanding and

rational during the most difficult of times, I also offer my gratitude. Thank you for

believing in me, and I hope I have repaid that faith. To my extended network of

family and friends, too numerous to mention individually, I appreciate you putting

up with me while I was engrossed in my PhD and otherwise unavailable.

Last but not least, I am forever indebted to the fine pubs and publicans of

Exeter and East Devon — for being the ‘fourth emergency service’. Whether offering

me a refuge from my buggy code, or injecting just the right amount of randomness

(beer) into my thought processes, you truly oiled the wheels of the PhD adventure.

v

Contents

Abstract i

Acknowledgements iii

List of Figures xxiii

List of Tables xxviii

1 Introduction 1

1.1 Motivations and objectives . 2

1.2 Contributions . 6

1.3 Publications . 8

1.4 Thesis outline . 9

2 Background 10

2.1 University course timetabling problem 10

2.1.1 Constraint modelling . 11

2.2 Formulations and benchmarks . 12

2.2.1 Metaheuristics Network 2000-2004 12

2.2.2 The Sixty Instances. 13

2.2.3 International Timetabling Competition 2002 13

2.2.4 International Timetabling Competition 2007 14

2.2.5 International Timetabling Competition 2011 18

2.2.6 International Timetabling Competition 2019 19

2.2.6.1 Problem interrogation 22

2.2.7 Other real world instances . 24

vi

2.3 Approaches to solving the UCTP . 26

2.3.1 Operational Research techniques 27

2.3.1.1 Reduction to Graph Colouring 27

2.3.1.2 Direct constructive heuristics 29

2.3.1.3 Network flow . 29

2.3.1.4 Mathematical Programming 31

2.3.1.5 Constraint Satisfaction Programming 34

2.3.1.6 Logic Programming 36

2.3.2 Single-solution-based metaheuristics 39

2.3.2.1 Local search . 39

2.3.2.2 Tabu search . 40

2.3.2.3 Iterated Local Search 42

2.3.2.4 Simulated Annealing 43

2.3.2.5 Variable Neighbourhood Search 45

2.3.3 Population-based metaheuristics 46

2.3.3.1 Genetic Algorithm 46

Representation . 47

Operators . 48

Selection . 52

Approaches to fitness evaluation 53

2.3.3.2 Ant Colony Optimisation 54

2.3.3.3 Particle Swarm Optimisation 55

2.3.3.4 Other nature-inspired algorithms 56

2.3.4 Multi-agent systems . 57

2.3.5 Novel intelligent methods . 58

2.3.5.1 Hybrid algorithms/heuristics 58

2.3.5.2 Hyper-heuristics . 59

2.3.6 Multi/many-objective approaches 60

2.4 State of the art . 61

2.5 Summary . 62

vii

2.5.1 Formulations . 62

2.5.2 Solvers: A thematic summary 64

3 A Study on Course Ordering in an Ant Colony Optimiser 69

3.1 Introduction . 69

3.1.1 Background . 71

3.1.1.1 ACO . 71

3.1.1.2 Course assignment order 74

3.1.1.3 Constraint handling 77

3.1.1.4 Summary . 78

3.2 Methodology . 78

3.2.1 MMAS design . 79

3.2.1.1 Solution representation 79

3.2.1.2 Penalty scheme . 82

3.2.1.3 Pheromone update 83

3.2.1.4 Dynamic hard constraint handling 85

Full relaxation . 85

Zero-tolerance . 85

3.2.1.5 Smart function evaluations 87

3.2.2 Local search routine . 88

3.2.3 Regression model T0 . 88

3.2.4 Genetic Algorithm . 89

3.3 Experimental setup . 89

3.3.1 Proof of concept . 89

3.3.1.1 Permutation testing 92

3.3.1.2 Training a predictor 94

3.3.2 Final model training data . 98

3.3.2.1 Feature types and composite features 100

3.3.2.2 Target values . 101

3.3.2.3 Mapping . 101

3.3.3 Problem Instances . 101

viii

3.3.4 Parameterisation . 102

3.3.5 CPU budgets . 102

3.4 Results and analysis . 102

3.4.1 Final model training set permutation results 103

3.4.2 Genetic Algorithm results . 107

3.4.3 Benchmark Experiment 1 - PP vs. RP 108

3.4.3.1 Any-time performance comparison 108

3.4.3.2 Significance testing 110

3.4.4 Benchmark Experiment 2 - PP-LS vs. RP-LS 112

3.5 Conclusions and further work . 115

4 A Many-Objective Optimiser for the UCTP 118

4.1 Introduction . 118

4.2 Background . 120

4.3 Methodology . 121

4.3.1 Encoding . 121

4.3.2 Initialisation . 124

4.3.2.1 Search space size and sample bias 126

4.3.3 Core algorithm . 135

4.3.4 Selection and constraint handling 136

4.3.5 Genetic operators . 137

4.3.6 δ-evaluations . 142

4.3.7 Non-dominated sorting . 143

4.3.8 Archiving . 144

4.3.9 Summary . 144

4.4 Experiments . 145

4.4.1 Relaxed hard constraints experiments 145

4.4.2 Two-phase system experiments 146

4.4.2.1 Hypervolume reference points 147

4.5 Results . 148

4.6 Conclusions . 153

ix

5 Genotype Diversity, Enhanced Operators and Robustness 156

5.1 Diversity measures . 157

5.1.1 Background . 157

5.1.2 Methodology . 161

5.1.2.1 Metric entropy in equivalent solutions 165

5.1.2.2 Standard form encoding 166

5.1.2.3 Distance metrics . 169

5.1.3 Experimental setup . 170

5.1.4 Results and analysis . 171

5.1.5 Conclusions on genotype diversity 177

5.2 Operators . 179

5.2.1 Destroy-repair . 179

5.2.2 Perturbation . 183

5.2.2.1 Experiments on enhanced swapPlace 189

5.2.3 Tournament selection . 191

5.2.3.1 Experiments on tournament selection 193

5.2.4 Conclusions on operators . 197

5.3 Robustness . 198

5.3.1 Disruptors . 199

5.3.2 Idealised robustness metric . 202

5.3.3 Experiment on fixed scenarios 204

5.3.4 Results . 205

5.3.5 Analysis of general robustness 207

5.3.6 Conclusions on robustness . 213

6 Summary and Further Work 215

x

List of Figures

1.1 A taxonomic tree of educational timetabling problem domains. 1

2.1 A taxonomic tree of UCTP problem types. 10

2.2 A Venn diagram showing the set relations of curricula u1, u2, courses

C1 . . . C4 and lectures l1 . . . l16 for an ITC2007 track 3 toy example.

Lecture l11, for instance, belongs to course C3, which in turn belongs

to both curricula u1 and u2. 15

2.3 A highly disconnected graph showing parent-child relations between

classes in ITC2019 problem instance agh-ggis-spr17. Classes have

a maximum of one parent, and any student sectioned to a ‘child’

class must also attend its ‘parent’ class, where it exists. Each node

represents one of the 1,852 classes, while directed edges show relations.

Prominent features include star graph components and a predominance

of classes with no relation at all. The layout of the plot is such that

larger components are forced to the left of the window, but otherwise

there is no inherent meaning behind the node positions as shown. . . 22

2.4 Distributions of values for four objectives over 500 solutions generated

by the sampling method respecting H1, H2, H6, H7 for problem

muni-fspsx-fal17. The red line indicates the value for the best

known (single-objective) feasible solution. 24

2.5 A solution to a simplified timetabling problem modelled as a graph,

in which different colours represent distinct required periods. 27

2.6 The Petersen graph. 37

2.7 A 3-vertex-colouring. 37

xi

2.8 An illustration of the partially matched crossover (PMX) operator.

Within a randomly selected matching area, alleles 1, 2 and 6 in Parent

A are swapped with 7, 8 and 5 in Parent B respectively. To eradicate

duplicates, 5, 8 and 7 in Intermediate A are swapped with 6, 1 and 2

in Intermediate B to produce the final offspring. 49

2.9 An illustration of the order crossover (OX) operator generating Off-

spring B. Alleles 1, 2 and 6 (taken from the matching area in Parent A)

are replaced in Parent B by ‘holes’, H. A leftwards sliding mechanism

repositions the ‘holes’ to the matching area, where they are filled by

1, 2 and 6. 49

2.10 An illustration of the cycle crossover (CX) operator generating Off-

spring A. Starting with gene 1 in Parent A, a cycle through the alleles

of both parents is found. The steps of the cycle are denoted by the

numerals i to viii. All alleles that are not part of this cycle are replaced

in Parent A by ‘holes’, H, which are then filled by 8 and 2 from Parent

B. 50

2.11 A breakdown of the metaheuristics employed in a sample of 131

academic papers published between 2009 and 2020 for examination,

course timetabling or both. Adapted from Bashab et al., 2020. 65

3.1 2-D construction graph with three lectures (arranged horizontally) ×

2 periods (vertically), plus start (1) and end (8) nodes. 72

3.2 A schematic of the training phase. 79

3.3 A schematic for the benchmark experiment phase. The mapping,

T0, and the genetic algorithm comprise the proposed Permutation

Predictor. Random Permutation is used as a naive baseline comparator.

Experiments are conducted with and without local search, giving a

total of four experimental MMAS variants in all (PP-LS, PP, RP-LS

and RP). 80

xii

3.4 3-D construction graph with 3 lectures (arranged horizontally) × 2

periods (vertically) × 2 rooms (front to back), plus start (1) and end

(14) nodes. 80

3.5 The MMAS construction graph as used in the final model, where

{d1 . . . dα} ∈ D is the set of days, {p1 . . . pβ} ∈ P is the set of periods,

{l1 . . . lγ} ∈ L is the set of lectures, {C1 . . . Cδ} ∈ C is the set of

courses, {r1 . . . rψ} ∈ R is the set of rooms and s and e are start

and end nodes respectively. Cubes in the diagram represent nodes in

an edgeless graph, which is stored as a 3-D matrix. Additionally, T

is the set of teachers and N denotes the set of unavailable periods.

{U1 . . . Uθ} ∈ U is the set of curricula, where courses are members of

one or more curricula. 83

3.6 Convergence plots for various repetitions of permutation 4321, PI1.

The top row plots show the best and worst performing repetition,

respectively, while the bottom plot shows results for all repetitions.

Lines trace the global best while points (only on the top plots) denote

the iteration best. 92

3.7 Boxplot of sample distributions (30 samples) of the best SCV found

over 24 course permutations of PI1. The central mark indicates the

median, while the top and bottom edges of the box indicate the 75th

and 25th percentiles respectively. The whiskers cover all remaining

data points not considered outliers, with outliers shown as circles. . . 93

xiii

3.8 A visualisation based on the conceptual permutohedron. Each poly-

hedral face corresponds to a permutation on the first four natural

numbers. Two faces share an edge if and only if their permutations

can be generated from one another using a swap operator on two pos-

itionally adjacent elements. Faces are shaded according to a greyscale

map where 0 = black (best performing permutation) and 1 = white

(worst). Values used in (a) are the results obtained for PI10. Values

used in (b) are randomly generated from a uniform distribution, for

comparison purposes only. 94

3.9 The proof of concept decision tree generated from a 20-feature (nom-

inally f1 . . . f20) training set. Prediction values at leaf nodes indicate

how well a permutation characterised by the relevant branch is ex-

pected to perform relative to all others. Lower valued predictions

represent better predicted performance. 95

3.10 The mapping from 4-course proof of concept training problem to a

generalised larger problem instance. For illustrative purposes, feature

f1 is the number of lectures in the first ordinal course, when |C| = 4.

When |C| > 4 as in the larger problem, f1 is derived through averaging

the lecture count over the courses in Q1, the first quartile. For this

purpose, lnorm(C) is the number of lectures in course C, normalised

over those for the entire instance. 96

3.11 Convergence of the global best SCV for 15 repetitions, in the cases of

a predicted high and low quality permutation on comp01. 97

3.12 A 3-D bar chart showing the estimated importance of all 40 features

used in T0. The features are arranged in a grid of feature type

(ordered by mean estimated importance) vs. position of feature type

in permutation. The estimated importance of a feature is calculated by

summing the change in mean squared error at each relevant splitting

node and dividing by the number of splitting nodes. The final value

plotted is an average over all folds. 104

xiv

3.13 Averaged values for the estimated importance of the features in T0,

by position of feature type in permutation (a) and by feature type (b).

Initial calculations are made in the same manner as for Figure 3.12. . 104

3.14 Distributions (population size = 30) of full function evaluations re-

quired to find a perfect solution for all 5! = 120 permutations (ordered

54321 to 12345) of final model training instance PI214N in T0. The

boxplot shows median, interquartile range, non-outlier max/min and

outliers. 105

3.15 Plots of the similarity of course permutation vs. the difference in

their median performance, for all pairs of permutations in nine of the

final model training set instances. ψ is the pairwise distance between

permutations in the permutohedron, where distance is defined as

the shortest path between the two based on making adjacent course

swaps. δ is the mean absolute difference in median performance (where

performance is measured by SCV) between all pairs of permutations

at distance ψ. 107

3.16 Fitness (where fitness corresponds to predicted performance in the

MMAS) of a population of 60 individual permutations vs. generation

number (truncated at 20) for an example genetic algorithm run on

comp17. The plot shows median and interquartile range. 108

3.17 comp12: Progress of the baseline RP (black) vs. the Permutation

Predictor PP (green), with median and interquartile range shown. . . 109

3.18 comp20: Progress of the baseline RP (black) vs. the Permutation

Predictor PP (green), with median and interquartile range shown. . . 109

3.19 comp04: Progress of the baseline RP (black) vs. the Permutation

Predictor PP (green), with median and interquartile range shown. . . 110

3.20 comp19: Progress of the baseline RP (black) vs. the Permutation

Predictor PP (green), with median and interquartile range shown. . . 110

xv

3.21 Results for Wilcoxon rank sum significance testing comparing the

sample sets (size 30) of global best SCV values at each discrete

time step of the run, for the small problems. Significantly superior

performance (p < 0.05) of a particular variant is indicated in green (for

PP) or black (RP). No shading indicates that no significant difference

was found between the variants at that point in time. 111

3.22 Results for significance testing for the medium problems, using the

same visualisation as described in Figure 3.21. 111

3.23 Results for significance testing for the large problems, using the same

visualisation as described in Figure 3.21. 111

3.24 Results for Wilcoxon rank sum significance testing comparing the

sample sets (size 30) of global best SCV values at each discrete

time step of the run, for the small problems. Significantly superior

performance (p < 0.05) of a particular variant is indicated in blue

(for PP-LS) or red (RP-LS). No shading indicates that no significant

difference was found between the variants at that point in time. . . . 113

3.25 Results for significance testing for the medium problems, using the

same visualisation as described in Figure 3.24. 113

3.26 Results for significance testing for the large problems, using the same

visualisation as described in Figure 3.24. 113

3.27 ITC2007 problem size (by number of courses) vs. % improvement of PP

over RP in benchmark experiment 1 (a) and % improvement of PP-LS

over RP-LS in benchmark experiment 2 (b). The % improvement

metric is calculated on the median SCV achieved by each variant at

a common discrete time step, averaged over all time steps in a run,

providing a single data point for each problem in each plot. 114

xvi

4.1 A sequence diagram outlining the essential components in the many-

objective optimiser. ‘Phase one’ includes the initialisation, while

‘phase two’ refers to everything inside the main optimiser loop. Note

that the genotype diversity routine does not form part of the work in

this chapter, but is developed and incorporated in the following chapter.122

4.2 Performance comparison of 3 constructive heuristics. Lines connect

results for common instances. 126

4.3 A Venn diagram— sets are labelled first by a particular hard constraint

{H2,H3,H5}, with the suffix c denoting compliance and v denoting

at least one violation. Ultimately, a Monte Carlo estimate is run on

the shaded region to determine the relative size of the feasible space. 129

4.4 The curriculum co-occurrence graph for smallA, in which nodes rep-

resent curricula, and edges their co-occurrences. 130

4.5 smallA: Monte Carlo estimate convergence on the shaded region

represented by (H4v ∪H3v)′. 131

4.6 smallA: Monte Carlo estimate convergence on the complete universe

of assignments. 131

4.7 Probabilities of teacher clashes, by teacher, for comp11, where * indic-

ates an exact result. Estimates are returned where a closed analytical

formula is unavailable. 131

4.8 The curriculum co-occurrence graph for comp11, in which nodes rep-

resent curricula, and edges their co-occurrences. 132

4.9 comp11: Sample histogram and fitted Gaussian for Monte Carlo

sampling of the shaded region (H4v ∪H3v)′, used to estimate the

probability of rare event feasible solutions. 133

4.10 A histogram showing the distribution of 100 million feasible solutions

to smallB generated by the SD constructive heuristic. A bin width of

10,000 solutions is used and solutions are indexed nominally according

to a systematic enumeration of the feasible solution space. 134

xvii

4.11 A histogram showing the distribution of 100 million feasible solutions

to smallB generated by the SD constructive heuristic (the same sample

data as in Figure 4.10). A bin width of 10,000 solutions is used and

indices are reordered by increasing bin count. 134

4.12 Active population statistics — hypervolume (blue line), and fraction

of infeasibility within the population (red line) — for an unmodified

NSGA-III on the instance smallA with population size 364 and default

parameters. Note that only feasible solutions contribute towards the

hypervolume measurement. 137

4.13 Histogram of the percentage of assigned lectures with at least one

feasible move available, for instances comp01, comp02 and comp12. The

sample is the first 1000 feasible solutions constructed by saturation

degree. 138

4.14 Red: S1. Black: S2. Blue: S3. Green: S4. Normalised minimum

(lower dashed lines), mean (solid lines) and maximum (upper dashed

lines) values of individual soft constraint objectives in the active

population, for generations 1 to 550, using the proposed MuPF mutator

for comp01 and 10 repetitions. 139

4.15 comp01: Novel solutions (with regard to the entire search history) in

the active population using the base optimiser with mutator MuPF.

Generations 2 to 550 are shown. 140

4.16 Red: Mutator MuPF. Blue: MuPFPR. Traces shown are the minimum

(lower dashed lines), mean (solid lines) and maximum (upper dashed

lines) objective scores from each generation for a single repetition of

comp01 with 2 million function evaluations (or approximately 5,500

generations with a population of 364). 141

4.17 A comparison of the estimated time complexity (mean of 10 repetitions)

for the combined δ-evaluators (solid lines) vs. full evaluation (dashed

lines), for a small (comp18), medium (comp02) and large (comp07)

sized problem and a variable number of mutations. 143

xviii

4.18 The 7-objective evaluation of an initial population (size 200) of solu-

tions to comp01, in which the majority of solutions have a zero S1

score. 145

4.19 The 7-objective evaluation of an active population of solutions to

comp01 at termination, after 250,000 function evaluations (approx-

imately 1,250 generations). The optimiser was initiated using the

population shown in Figure 4.18 and uses the same axes ranges for

consistency. 146

4.20 The progression of the hypervolume over the course of an optimisation

run that evolved the initial population from Figure 4.18 into the final

population from Figure 4.19. 146

4.21 Non-dominated solution sets found during single repetitions for the ten

problems comp01, comp02, comp03, comp05, comp07, comp12, comp18,

comp19, comp20, comp21 shown as parallel coordinate plots. Each plot

window shows the repetition that achieved the greatest hypervolume. 150

4.22 Non-dominated solution sets (black points) in (S2,S3,S4)-space, found

during single repetitions for nine problems in which the fourth ob-

jective, S1, was consistently optimised to zero. Grey points show the

projection of the sets onto the coordinate axes. For each instance, the

data is taken from the repetition that achieved the greatest hypervolume.151

5.1 A novel visualisation to illustrate uniqueness within an evolutionary

population. Shown is a snapshot of the active population at generation

1,000 for comp11, using the baseline solver. Each node corresponds to

a solution subset in the particular space labelled on the left. 161

5.2 An illustrative example, for a bi-objective problem, of the integrated

genotype diversity routine for choosing solutions from a truncated front.165

5.3 Distance metric Hamm (Hamming) vs. editDist for a sample using

Algorithm 8. Sample settings: sampleSize = 10,000, maxMoves =

100, equivalent() randomly shuffles lectures within courses and rooms

within equal room sets. 166

xix

5.4 A visualisation of 4 solutions to the instance Toy3R. Each vertical grid

of 3 plot windows is a single solution, with each of those windows

representing a distinct room. Red shading shows a priori unavailable

periods while black shows a priori available periods. White indicates

the timeslot and room of each lecture assignment, as derived from its

encoded tuple ⟨d, p, r⟩. Solutions 2a), 2b) and 2c) are all equivalent

and have an editDist of 1 from Solution 1. Solutions 1 and 2c) are

the only solutions in the proposed standard form. 168

5.5 The four distance metrics vs. editDist for four samples using Al-

gorithm 8. Sample settings: sampleSize = 10,000, maxMoves = 100,

equivalent() converts a solution into standard form. 171

5.6 A trace of p-values obtained by independent Friedman tests at each

snapshot of the runs. H0: The variant effects are the same. H1: The

variant effects differ. 172

5.7 Normalised number of distance metric invocations vs. function eval-

uations for 4 benchmark problems, using Hamm. Data has been

averaged over 24 repetitions and smoothed using a Gaussian-weighted

moving average filter of window length 200. 173

5.8 Post hoc analysis on the performance by hypervolume of individual

variants using the Bonferroni method. 174

5.9 Performance of the two highest ranked variants (Hamm and SepM)

and the baseline, Base, for four benchmark problems. Traces shown

are mean averages of estimated hypervolume over 24 repetitions. Inset

plots show cropped portions of the main plots. 175

5.10 The number of generations since the last update to the non-dominated

archive, for four example runs on problems comp02, comp04, comp11

and comp19. 180

xx

5.11 Test results from snapshot populations extracted from first generations

(left plot window) and last generations (right plot window) of 1,000,000

function evaluation budget runs. Across 20 instances comp01, . . . ,

comp21 (shown in different colours and omitting comp15), parameter

percDestroy was varied and the feasibility of the new population

recorded. Traces show the mean values from 30 repetitions. 182

5.12 Test results from snapshot populations extracted from first generations

(top row) and last generations (bottom row) of 1,000,000 function

evaluation budget runs. Across instances comp01, . . . , comp21 (shown

as black lines, and omitting comp15), parameter attempts was varied

and the number of lectures perturbed was recorded. Traces show the

mean values from 24 repetitions and have been smoothed using a

Gaussian filter. 184

5.13 Matrix visualisation of pairs of lectures that can be selected by the

swapPlace operator, for an initial comp07 solution, over four tabu

scenarios. Yellow shading indicates prohibited pairs (upper triangle

only). Incremental prohibition scenarios shown are a) pairs in same

course, b) pairs that would violate H4 (unavailable periods), c) pairs

that would violate H5 (teacher clashes), d) pairs that would violate

H3 (curriculum clashes). 186

5.14 Previously run populations for comp20 from generations 1 to 4000 vs.

improvement (by scalarised score) due to the application of swapPlace.

Median (solid line), lower and upper quartiles (dash-dotted lines)

and maximum/minimum (dashed lines) are shown for data from 24

repetitions. Positive values on the y-axis indicate improvement. . . . 187

5.15 Mean hypervolume improvement for four variants Defa, Uvio, Upre

and Naiv on a set of six instances. 190

5.16 Wilcoxon signed rank tests comparing Uvio with Upre (blue) and

Uvio with Defa (black) for six problems. In all cases, lines show the

progression of the p-value over increments of the entire run. 191

xxi

5.17 A boxplot showing distributions of the percentage increase in |H|, the

number of unique designs in the active population history, from the

variant Tsel to Wrep. Boxes show the median and interquartile range,

while the whiskers extend to the most extreme points not considered

outliers. Outliers are shown as crosses. 195

5.18 Comparisons of the Pareto front approximations generated by Tsel

(red ‘x’) and Wrep (blue ‘o’) for repetition 11 of comp16, repetition 1 of

comp09 and repetition 2 of comp13. All three plots are representative

of the case in which the two hypervolumes are approximately equal

but the set cardinalities differ, with the Wrep variant being the more

populous in every case. From left to right, cardinalities in the plot

windows are 36 and 146, 54 and 109, and 38 and 57. 196

5.19 ˆE(R), an estimate for the idealised robustness metric E(R), is ob-

tained by way of the mean outcome over 20,000 resampled disruption

scenarios. The histograms show the distribution of ˆE(R) over 250

solutions sampled from previous 4-objective runs, for instances comp03,

comp08 and comp18. 204

5.20 Profiles of the hypervolume improvement (as a mean over 12 repeti-

tions) for instances comp01 to comp21 under a 5-objective treatment

(four soft constraint violation scores plus a robustness metric). Nu-

merical results from the same runs are reproduced in Table 5.8. . . . 207

5.21 Combined Pareto approximation sets for instances comp01 to comp10

under a 5-objective treatment. 208

5.22 Combined Pareto approximation sets for instances comp11 to comp21

under a 5-objective treatment (comp15 excluded). 209

5.23 The combined Pareto approximation sets for instances comp01 to

comp10 under a 5-objective treatment, projected into 2-dimensional

space. On the x-axis is the scalarised score (or sum of objectives S1

. . . S4), while on the y-axis is the robustness metric. This figure

presents the same data as in Figure 5.21. 210

xxii

5.24 The combined Pareto approximation sets for instances comp11 to

comp21 (excluding comp15) under a 5-objective treatment, projected

into 2-dimensional space. On the x-axis is the scalarised score (or sum

of objectives S1 . . . S4), while on the y-axis is the robustness metric.

This figure presents the same data as in Figure 5.22. 211

xxiii

List of Tables

2.1 Characteristics of the original ITC2007 track 3 problem instances,

ordered by number, and headed using the notation introduced in this

section. From left to right, the table shows name, number of courses,

lectures, curricula, teachers, days per week, timeslots (or periods per

day), rooms and unavailable periods. 16

2.2 An extension of the ITC2007 track 3 formulation, from Bonutti et al.,

2012. Five configurations were suggested, where a configuration is

the designation of a specified subset of constraints as hard (denoted

by H) and another subset as soft (denoted by an integer). For soft

constraints, the integer gives the value of the penalty incurred for one

violation. The prefix label ‘UD’ in the headings is borrowed from the

author, and refers to the University of Udine, whose timetabling the

problem was based on. 18

2.3 Best known results for the ITC2007 track 3 benchmark under com-

petition rules (from Abdullah and Turabieh, 2012, Kiefer et al., 2017

and Lindahl et al., 2018 respectively) as well as best known lower and

upper bounds. The best average results are shaded. 62

3.1 The schedule of solution selection for update in MMAS. 84

3.2 A summary of the differences between the proof of concept model and

the final model. Key novelties in the final model are indicated with

asterisks (*). A column for future work is also preemptively included. 90

xxiv

3.3 The proof of concept training set of 14 problem instances, where |U|

is the number of curricula and mwd(Ci) is the minimum working

days requirement for a course i. Characteristics shown are number of

rooms (with respective capacities) and number of curricula. Then for

course ID ∈ {1, . . . , 4}; number of lectures, curriculum membership,

minimum working days and number of unavailable periods. 91

3.4 Two permutations on the 30 courses of comp01. If the mapping works

as intended, the decision tree suggests that the top permutation will

perform strongly and the bottom permutation poorly. 97

3.5 Characteristics of the final model training set of small problem in-

stances. Columns from left to right show name, number of lectures,

curricula, teachers, rooms and unavailable periods (for each of courses

1 to 5). 99

3.6 A list of eight feature types, defined for a course Ci. The properties

mwd(), stud(), teach() and unav() are the minimum working days,

number of enrolled students, teacher ID and unavailable periods for a

given course, while cap() designates the capacity of a given room. . . 100

3.7 Characteristics of 14 of the ITC2007 track 3 problem instances, ordered

by number of courses, and headed using the notation introduced in

Figure 3.5. From left to right: Group (Small, Medium or Large), num-

ber of courses, lectures, curricula, teachers, days per week, timeslots

(or periods per day), rooms and unavailable periods. 102

3.8 Parameter and other settings used in this study. The two phases of the

MMAS refer to the final model training, and benchmark experiment

phases respectively. 103

4.1 Average distance to feasibility for each hard constraint objective, over

the infeasible subset of the 4000 solutions constructed by SD. 126

4.2 Characteristics of a toy problem instance, using the same notation as

in Table 3.7 . 127

xxv

4.3 Probabilities of teacher clashes, by teacher, for smallA, where * indic-

ates an exact result. Estimates are returned where a closed analytical

formula is unavailable. 129

4.4 Probabilities of curriculum component clashes, by component, for

smallA, where * indicates an exact result. Estimates are returned

where a closed analytical formula is unavailable. 130

4.5 Probabilities of curriculum component clashes, by component, for

comp11, where * indicates an exact result. Estimates are returned

where a closed analytical formula is unavailable. 132

4.6 Characteristics of smallB, using the same notation as in Table 3.7 . . 133

4.7 Coordinates of hypervolume reference points for benchmark problems

comp01 to comp21, as upper bounds on the worst point. 148

4.8 Results from 30 independent repetitions. bs is the best scalarised

solution score found over all repetitions, while bs(S1, S2, S3, S4)

gives a decomposition over the objective scores (averaged over all

unique objective vectors whose sum is bs). A is the final archive of

non-dominated solutions, where sets of unique vectors in objective

or decision space are distinguished by subscripts o and d respectively.

Cardinalities for both are given as median values. hv(Ao) is the

(mean) hypervolume of Ao. The best scalarised results from the two

approaches in Geiger, 2009 are given as G1 (Threshold Accepting with

1% threshold) and G2 (reference point based). 149

5.1 For five variants, the mean sizes (over 24 repetitions) of the archives

of non-dominated objective vectors at termination, rounded to the

nearest integer. The largest raw averages are shaded. 176

5.2 For five variants, the mean number of discovered unique designs (over

24 repetitions) that cumulatively map to the objective vectors in the

final non-dominated archives. The largest averages are shaded. 177

xxvi

5.3 A small grid search on destroy-repair parameters stagThresh and

percDestroy for comp04. Feasibility percentages are mean values

attained from 10 repetitions, where the first execution of the operator

is relied upon to generate the results. 181

5.4 A comparison of baseline tournament selection operator variant, Tsel,

against a variant, Wrep, that includes the replica property as the

second criterion after feasibility. |H|, the number of unique designs in

the active population history, is given as a mean. The hypervolume of

the final non-dominated archive, hv(Ao), is given as a mean. |Ao|, the

cardinality of the final non-dominated archive, is given as a median

(due to more outliers). For each metric and problem, the larger of the

two values is shaded. 194

5.5 A contingency table for all 252 problem × repetition combinations.

Symbols + and - represent an increase or decrease from Tsel to Wrep

respectively, where Tsel is the baseline tournament selection operator

and Wrep is a proposed modification using the replica property. |H|

is the number of unique designs within the active population history,

hv(Ao) is the hypervolume of the final non-dominated archive and

|Ao| is its cardinality. 195

5.6 A pool of seven disruptors used in the calculation of a robustness

metric. The identifier is the name of the function used to call a

particular disruptor. Each one acts on prescribed entities, such as a

course or teacher, according to the mechanism in column 3. The final

column shows which type/s of constraint violation can potentially be

induced. 201

5.7 Hypervolume reference point coordinates for the fifth objective, ro-

bustness, for the formula given by expression 5.8 and fixed sets of five

disruptor combinations. 205

xxvii

5.8 Results for the 5-objective treatment (four soft constraint violation

scores plus a robustness metric) using a 1,000,000 function evaluation

budget. hv(Ao) is the hypervolume of the final Pareto approximation

set, while |Ao| is its cardinality. Results are given both by individual

repetition, and for the set generated by combining the 12 repetitions. 206

5.9 The mean, over 50 solutions, of the estimated idealised robustness

metric, (ˆE(R)), for samples of solutions from the 4-objective optimiser

vs. those from the 5-objective optimiser. The lesser means, indicating

greater robustness, are shaded. 212

xxviii

1. Introduction

For as long as humans have been engaged in cooperative, organised endeavours,

timetabling has been an integral component. From offices to transportation networks,

streamlined operational procedures are crucial for ensuring the smooth functioning

of complex systems. Before the advent of computing, timetables were constructed

manually, through a combination of intuition, trial and error, and applied mathemat-

ical knowledge. These foundational principles still have a part to play today. At the

same time, modern computer hardware has opened the door to a deeper exploration

of the science underpinning timetabling. A more formal description of the process of

timetabling can be found in the literature:

“The allocation of given resources to specific objects being placed in space time,

in such way as to satisfy as nearly as possible a set of desirable objectives, subjected

to constraints.” (Wren, 1995).

This definition, while helpful and concise, lends itself to a vast array of different

scheduling problems, ranging from railways to rostering. The branch that comprises

timetabling for schools or other academic institutions is known as educational

timetabling. Some of its most commonly recognised sub-divisions are shown in

Figure 1.1 (Frausto-Solis et al., 2006, Pillay, 2012).

Educational
Timetabling

High School
(HTT)

University
(UCTP)

Examination
(ETT)

Figure 1.1: A taxonomic tree of educational timetabling problem domains.

1

Of these three, this thesis is concerned with the university course timetabling

problem (UCTP), which was first addressed in the literature by Gotlib, 1963. The

UCTP has long been understood as belonging to a class of problems known as NP -

complete (Cooper and Kingston, 1996), meaning there exists no known polynominal-

time method for solving it. As processing power has advanced, practitioners have

instead developed creative and innovative search algorithms that are tailored to the

problem at hand. Interest in the UCTP has grown considerably in recent decades. A

survey of the field in 2019, for example, reported a 10-fold increase between 1990

and 2015 in the number of papers being published on the subject of timetabling in

higher education (Oude Vrielink et al., 2019). Consequently, the diversity of both

test problems and approaches has increased too.

1.1 Motivations and objectives

Solving the UCTP can be seen as both a practical and a purely academic endeav-

our. Artificial problem models are informed by real world requirements, while the

algorithms used to solve them may be abstract in nature or borrow from theoretical

findings in other domains. The work in this thesis leans more toward academic

analysis. Understanding and developing the mechanisms of action of the algorithms is

a thread that runs throughout. At the same time, the UCTP is not entirely removed

from the wider context of being an operational problem. Consideration is given to

the fact that most timetables are created as part of an annual cycle, and that this

allows for relatively liberal compute times. The sizes of test problems studied are

also of a realistic departmental scale, for which a complete enumeration of solutions

is not practicable. Therefore trade-offs between run time and quality of solutions

must be weighed up in the context of overall efficiency.

Another important motivation relates to automation. In seeking to fully auto-

mate the generation of good timetables, algorithms should be highly problem-agnostic

and avoid the need for excessive parameters or tuning. And while automation implies

a lack of human-in-the-loop, the presence of a final decision maker is an important

feature of later chapters. Particularly in many-objective work, the algorithm should

2

satisfy the requirements of the institution neutrally so that a human in a timetabling

office can then choose based on their subjective preferences. These in turn may be

influenced by factors that are difficult or impossible to encode algorithmically, such as

staff retirements or building works. The evaluation of many objectives simultaneously

is under-represented in the UCTP literature. The later direction of this thesis is

therefore motivated by probing this gap. Another real world issue is that of the

requirements sometimes changing subsequent to the drafting of a timetable, or even

during the term itself. This acts as motivation for the complementary work on the

so-called robustness of solutions. Once again, there is a scarcity of work in the

literature exploring this feature in a many-objective setting.

In reviewing the literature, a picture is drawn of both the history of timetabling

research and its current breadth. Based on this, the methodology in the technical

chapters incorporates simple heuristics, metaheuristics and evolutionary techniques

— all of which have shown great promise. The effective use of randomness, and how

generic algorithms can be enhanced with domain-specific knowledge or operators

are both subjected to empirical study. In the first chapter of technical work, a gap

is identified regarding the best way to order the assignment of lectures within the

context of a metaheuristic solver. An ant colony optimiser is designed in order to

examine this aspect in detail. In terms of scope, the ant colony investigation is focused

on the twin areas of constraint handling and the aforementioned assignment ordering,

the two of which are inextricably linked. Gaining insight into the mechanisms at

play ‘under the hood’ is therefore more important than an absolute comparison with

best-known results. In this context, a machine learning pipeline is devised with the

aim of predicting beneficial assignment orderings. If successful, the concept could in

theory be ported to other systems in which ordering plays a role.

The thesis then develops in its treatment of the UCTP from single-objective to

many-objective. While a limited number of bi- or multi-objective approaches have

been proposed in the literature, a proposal for a many-objective UCTP solver that

can be tested against a well known benchmark is notably lacking. Perhaps one factor

3

contributing to this is the myriad challenges that arise when raising the number of

objectives. These include:

• A lessening of discriminatory power of the dominance relation.

• Intricate inter-objective conflicts.

• Diversity preservation issues.

• Scalability to large problem instances.

• Higher time and memory complexity.

• Visualisation and analysis difficulties.

Consideration is given to all of these in the development of a many-objective

solver. Other design and implementation choices such as the encoding scheme, data

structures and redundancy are also scrutinised. The goals and scope in these latter

chapters are to create an optimiser that is reliable across a range of problem inputs,

yet not overly-complicated in design. Empirical testing is carried out at all stages of

development, on a well-known benchmark set. Ultimately, while timetable quality

should converge closely to the best-known single-objective results, it is acknowledged

that the added complexity of the many-objective treatment makes this a difficult

task. More importantly then, the optimiser should provide a good spread of solutions

that represent the different trade-offs inherent in the problem. As such, appropriate

metrics such as hypervolume and cardinality of the solution set are used primarily

to quantify the success of the approach. Returning a well-populated trade-off front

approximation becomes all the more crucial when, ultimately, a robustness objective

is added too. Robustness is the property of a timetable that explains how resilient

it is to unforeseen changes or disruptions to the scheduling requirements. Practical

ways of defining and optimising robustness are explored.

Driven by these motivations, the following specific, measurable and achievable

research objectives, as identified for each chapter, are:

4

Chapter 2

• To conduct an extensive literature review in order to understand how the

history of timetabling research has lead to its present state. To identify how the

UCTP is modelled, which strategies and ideas have been co-opted successfully

for it, and what gaps exist in the research.

Chapter 3

• To build and adapt an ant colony optimiser for the UCTP, incoporating

components such as dynamic constraint handling. To establish the extent to

which the order of lecture assignments impacts on results and what patterns

may be in evidence. To generate a training set of problems that can be tested

over all lecture permutations and employ machine learning techniques to learn

from the results obtained. To scale this to larger benchmark problems as a

predictor of beneficial permutations. Finally, to assess the performance of the

ant colony and predictor, both with and without the addition of local search.

Chapter 4

• To examine the efficacy and potential biases of constructive heuristics in

initialising a population, as the first phase of a UCTP solver. To adapt a core

evolutionary algorithm as the second phase of a UCTP solver, incorporating

components such as selection and perturbation operators, constraint handling

and efficient evaluation and archiving. Firstly, to test the system with fully

relaxed hard constraints, where both hard and soft violations are objectives

to minimise. Secondly, to test the system with a stricter enforcement of hard

constraints. To visualise and analyse the best approximations to the Pareto

front for all instances.

Chapter 5

• To define a set of distance metrics between solution designs. To generate data

for different diversity preserving techniques that operate in the genotype space

based on these. To reduce search space redundancy with a new encoding scheme.

5

To introduce additional perturbation operators and assess their complexity

and performance. To examine the role tournament selection plays and assess

performance based on different selection criteria. To define a robustness metric

and incorporate this as a new objective. Finally, to visualise and assess the

trade-offs between the quality objectives and robustness.

1.2 Contributions

In the pursuit of these aims, a number of contributions were made:

Chapter 3

• A dynamic hard constraint handling mechanism for an ant colony optimiser

was proposed and calibrated using a theoretical value τshelf . This proved highly

successful in delivering feasible results.

• A novel machine learning pipeline was proposed in order to learn and predict

beneficial orderings for lectures in the context of an ant colony construction

graph.

Chapter 4

• A novel, many-objective solver for the UCTP was developed. This led to

publishing the first known results for the chosen benchmark to approximate

the 4-dimensional Pareto front.

• The best-known and optimal result was equalled for one problem instance by

this solver, under the same time conditions.

Chapter 5

• A novel, tree graph-based visualisation was introduced to illustrate the unique-

ness of individual solutions in a population with regard to their various proper-

ties.

6

• A novel approach to integrating genotype crowding measures with more tradi-

tional phenotype crowding was proposed. This proved successful in promoting

exploration.

• A novel standard form encoding was developed in order to eliminate equivalence

issues found in commonly-used direct encodings for the UCTP.

• Relying on this encoding, a new hierarchy of discriminatory criteria for the

tournament selection operator was proposed, which was successful in promoting

diversity.

• The first results were returned for a many-objective optimiser incorporating

robustness for the chosen benchmark.

• To quantify robustness, a novel metric was utilised. Despite being called

sparingly and for a small fixed set of disruptions, this metric was also shown

to be a consistent indicator of more generalised robustness.

7

1.3 Publications

During this PhD, research has been disseminated through the following publications.

The preliminary findings in Chapter 3 were published as:

J. Sakal, J. E. Fieldsend and E. Keedwell (2021). ‘Learning Assignment Order

in an Ant Colony Optimiser for the University Course Timetabling Problem.’ In:

Proceedings of the Genetic and Evolutionary Computation Conference Companion,

pp. 77–78. DOI: 10.1145/3449726.3459534.

In the context of conference proceedings, material presented in Chapter 4 was

published as:

J. Sakal, J. E. Fieldsend and E. Keedwell (2022). ‘Towards a Many-Objective

Optimiser for University Course Timetabling’ In: Proceedings of the 12th Interna-

tional Conference on Artificial Evolution, pp. 171-184.

In the context of the Lecture Notes in Computer Science series, material presen-

ted in Chapter 4 was published as:

J. Sakal, J. E. Fieldsend and E. Keedwell (2023). ‘Towards a Many-Objective

Optimiser for University Course Timetabling.’ In: Lecture Notes in Computer Sci-

ence, Volume 14091, pp. 133-144. DOI: 10.1007/978-3-031-42616-2 10.

Material presented in Chapter 5 was published as:

J. Sakal, J. E. Fieldsend and E. Keedwell (2023). ‘Genotype Diversity Measures

for Escaping Plateau Regions in University Course Timetabling’ In: Proceedings of

the Genetic and Evolutionary Computation Conference Companion, pp. 2090-2098.

DOI: 10.1145/3583133.3596334.

8

https://dl.acm.org/doi/10.1145/3449726.3459534
https://dl.acm.org/doi/10.1007/978-3-031-42616-2_10
https://dl.acm.org/doi/10.1145/3583133.3596334

1.4 Thesis outline

The remainder of this thesis is arranged as a series of chapters. Chapter 2 provides

background in the form of a literature review. Focus is placed on the UCTP and a

particular benchmark that is used in later work. However, other literature peripheral

to this is called upon when context requires it. Thematically, the chapter first

introduces the UCTP, before elucidating its formulations, benchmarks, and offering

a breakdown of different approaches to solving it. Chapter 3 features technical work

on the ant colony solver, preceded by a short section on the background specific to

this metaheuristic. Chapter 4 introduces the work on a many-objective solver, with

its various components expounded upon in the methodology section. Experiments

with relaxation and strict enforcement, graphical plots, and conclusions follow. The

solver is developed further in Chapter 5, which details investigations into diversity,

operators and finally robustness. Chapter 6 provides a summary and conclusions to

the thesis, before a full list of references is given in the bibliography.

9

2. Background

This aim of this chapter is to furnish the reader with the necessary background to

support the technical work in later chapters. Section 2.1 introduces the different

types of university course timetabling problem (UCTP) and how they are formalised.

Section 2.2 provides a chronology of benchmark problem sets that have been developed

and adopted by practitioners. Section 2.3 gives an overview of some of the various

popular technical approaches that have been used to solve the UCTP. Some state of

the art results are tabulated in Section 2.4, before Section 2.5 draws together the

various themes and offers a summary.

2.1 University course timetabling problem

In its broadest sense, the university course timetabling problem (UCTP) is a class of

problems in which an assignment and schedule of lectures is sought for a particular

university in order to create a working timetable (Rossi-Doria et al., 2003). A

satisfactory solution is one that is both feasible with regard to certain physical

constraints and desirable from an operational point of view. Figure 2.1 extends the

taxonomy tree from Figure 1.1 in order to show the further sub-divisions of the

UCTP domain.

University
(UCTP)

Post-Enrolment
Curriculum-

based

Figure 2.1: A taxonomic tree of UCTP problem types.

10

While post-enrolment and curriculum-based timetabling are superficially similar

problems, they have some crucial differences. In post-enrolment, a timetable is

constructed with prior knowledge of which lectures students have enrolled in. Conflicts

arise when lectures with students in common are scheduled in the same period. Also,

the suitability of a room for certain lectures is determined by a combination of its

seating capacity and its features. In addition, precedence relations are imposed,

meaning that certain lectures must be scheduled before or after others. All of

these constraint requirements are defined on a lecture-by-lecture basis and there

is no higher structural organisation of lectures. In contrast to this, all lectures in

curriculum-based timetabling are grouped into courses, which in turn are members

of a curriculum or curricula. Student commonality is therefore implicit, and lectures

cannot be scheduled in the same period if their courses belong to one or more of the

same curricula. It was noted by Ceschia et al., 2023 that students in post-enrolment

and curricula in curriculum-based timetabling are, in effect, equivalent entities. What

fundamentally differentiates curriculum-based timetabling though is that properties

are always defined at the level of a course rather than an individual event.

2.1.1 Constraint modelling

The UCTP is modelled by discrete variables and can be considered as a combinatorial

optimisation problem. A feasible solution to a problem instance is one that assigns all

lectures to a timeslot and a room without violating any ‘hard constraints’. Typically,

hard constraints ensure that rooms are not double-booked and that lecturers and

students do not have clashes that would make their commitments impossible to fulfil.

From a human operational perspective, not all of the timetable solutions within

this feasible space are equally attractive, however. To discern between different

feasible solutions, it is common also to use ‘soft constraints’ — constraints for which

is it merely preferable, rather than necessary, to satisfy. Examples from the literature

include the number of lectures a student has in a day or the physical distance between

buildings holding consecutive lectures (Müller et al., 2018). A cost can be defined as

some function of the number and magnitude of violations of these soft constraints,

11

typically given as a positive integer value. Since a lower cost signifies a more desirable

solution, the optimisation process then becomes a minimisation problem on the value

given by this function. A timetable with no violations of either kind is known as a

no-cost or ‘perfect’ solution. If such a solution exists, it is by definition the best (or

joint best) achievable timetable for a particular problem. In practice though, the

optimal solution is rarely a perfect one.

2.2 Formulations and benchmarks

Problem formulations and data sets used to test approaches to the UCTP fall into one

of two categories: Real world and artificially generated (Ceschia et al., 2023). In a real

world scenario, the timetabling needs of a particular university may be idiosyncratic

or unique to itself. Any technique used to derive a useful solution may therefore not

be generally applicable to other universities (Ariyazand et al., 2022). However, such

real world data sets do have the advantage of capturing nuanced and challenging

aspects of timetabling that may lead to novel and important developments in research.

In addition to providing practical solutions for particular institutions, they have also

informed the design of commercial software solvers. Artificial problems, on the other

hand, often dispense with the higher complexities of real world scenarios. These

problem sets are appealing to researchers because of their simplicity and generality.

They serve as a useful test-bed on which to run new algorithms, collaborate and

compare like-for-like results. Through repeated use over time, a number of these have

become established and well-known benchmarks. The following section documents

some important problem sets from the literature, from both categories.

2.2.1 Metaheuristics Network 2000-2004

In a survey of the state of the art, Burke et al., 1997 lamented both the lack

of a standardised description of the UCTP and a benchmark for cross-comparing

timetabling algorithms. It was in the context of this research landscape that the

Metaheuristics Network was formed. A European Commission project involving

collaboration between five European institutes (Rossi-Doria et al., 2006), its goal was

12

to empirically compare the performance of different metaheuristics on combinatorial

optimisation problems, including university timetabling. From the work of Rossi-

Doria et al., 2003, a standardised UCTP formulation was devised, which would enable

results from different researchers to be compared more evenly (Alhuwaishel and

Hosny, 2011). An artificial instance generator, referenced in Lewis and Paechter, 2005,

was created by Ben Paechter to reflect aspects of Napier University’s timetabling.

It worked on eight input parameters (events, rooms, features, features per room,

percentage of features used, students, max events per student and max students

per event) and a random seed. The generator initially yielded a benchmark set

of twelve UCTP problem instances, designated as “easy”, “medium” and “hard”

(later adapted in terminology to “small”, “medium” and “large”) according to their

complexity and size. This set contains five, five and two of each type respectively

and all have at least one perfect solution. It appears in the literature variously as the

Paechter benchmark, the Socha et al. (2002) set, Socha benchmark or Rossi-Doria

et al. (2003) set.

2.2.2 The Sixty Instances.

In Lewis and Paechter, 2005, sixty further instances were generated by the Paechter

generator. Again, these were subdivided into three sets of “small”, “medium” and

“large”, with 20 instances in each category. These have been made freely available for

testing, and continue to be popular (Song et al., 2018) with the instances of highest

complexity being of interest to pure feasibility solvers (see also Section 2.3.2.4).

2.2.3 International Timetabling Competition 2002

The work of the Metaheuristic Network resulted in the establishment of the Interna-

tional Timetabling Competition (ITC) in 2002. For this, standardised data formats

(with the file extension .tim) and the rules formalised by Ben Paechter were utilised.

The first set, in the post-enrolment format, comprised 20 instances. These were

released to the competitors at staggered intervals in the run-up to the competition

and are now maintained online. They continue to be a popular benchmark, referenced

13

for example in Badoni et al., 2014, in which the performance of two algorithms was

tested.

2.2.4 International Timetabling Competition 2007

Post-enrolment timetabling featured again, in a slightly modified form, as track 2

of the second ITC edition in 2007. Of greater interest in this thesis though is the

track 3 formulation, curriculum-based (Gaspero et al., 2007). A set of 21 instances,

nominally comp01 to comp21, were modelled on the real world timetabling problem

of the University of Udine. For the sake of generality, a range of requirements from

different faculties were included. The magnitude of the instances, which have lecture

counts in the hundreds, is mostly on a departmental scale. The model was built

around a number of entities and variables, for which we use the following notation:

• Days. A day with index i is denoted di. The number of days in a week that

are available for teaching is fixed by the problem instance. The set of days is

D.

• Timeslots. Each day is divided into an equal and fixed-sized set, t, of timeslots.

• Periods. A period, pi, is a day × timeslot. The set of periods is P .

• Rooms. A room, ri ∈ R, is defined by its seating capacity, cap(ri) which

ought not to be exceeded. In all other respects, any room is suitable to host

any lecture. Adopting the terminology used in Lewis, 2006, a room/period pair

is referred to as a place, and the action of assigning a lecture to a particular

room/period as placing.

• Lectures. Lectures, li, are events that must be assigned to a suitable place.

The set of all lectures is L.

• Courses. Every lecture belongs to exactly one course, Ci, while a course can

comprise any number of lectures. Each course Ci has a fixed number of enrolled

students, stud(Ci) as well as several other properties. The set of all courses is

C.

14

• Teachers. Exactly one teacher is pre-assigned to each course, while teachers

can teach multiple courses. The unit set consisting of the teacher of a course

Ci is denoted teach(Ci) and the set of all teachers is T .

• Curricula. A curriculum, ui, is a set of courses. A course may belong to

multiple curricula but must belong to at least one. Any two courses in the same

curriculum implicitly have students in common and the set of all curricula is U .

Figure 2.2 offers a visualisation of the relationship between curricula u1, u2,

courses C1, . . . , C4 and lectures l1, . . . , l16 for a published toy example from the

ITC2007 track 3. Table 2.1 meanwhile gives the characteristics of the comp* instances.

l1 l2
l3

l4 l5
l6

l7 l8 l9
l10 l11

l12 l13 l14
l15 l16

C1

C2 C3 C4

u1

u2

Figure 2.2: A Venn diagram showing the set relations of curricula u1, u2, courses C1 . . . C4

and lectures l1 . . . l16 for an ITC2007 track 3 toy example. Lecture l11, for instance, belongs
to course C3, which in turn belongs to both curricula u1 and u2.

The formulation also prescribed a set of hard and soft constraints, which are

denoted H or S and named and numbered as below. The penalty points incurred for

violations of the soft constraints are also given.

• H1: AllLectures. All lectures must be assigned to a distinct place.

• H2: RoomOccupancy. A room can host a maximum of one lecture per

period.

• H3: CurriculumConflicts. Lectures of courses belonging to a common

curriculum cannot be scheduled in the same period.

• H4: UnavailablePeriods. One or more periods may be pre-defined as

unavailable for a particular course Ci. As such, no lecture belonging to that

15

Table 2.1: Characteristics of the original ITC2007 track 3 problem instances, ordered by
number, and headed using the notation introduced in this section. From left to right, the
table shows name, number of courses, lectures, curricula, teachers, days per week, timeslots
(or periods per day), rooms and unavailable periods.

Name |C| |L| |U| |T | |D| |t| |R| |N |
comp01 30 160 14 24 5 6 6 53
comp02 82 283 70 71 5 5 16 513
comp03 72 251 68 61 5 5 16 382
comp04 79 286 57 70 5 5 18 396
comp05 54 152 139 47 6 6 9 771
comp06 108 361 70 87 5 5 18 632
comp07 131 434 77 99 5 5 20 667
comp08 86 324 61 76 5 5 18 478
comp09 76 279 75 68 5 5 18 405
comp10 115 370 67 88 5 5 18 694
comp11 30 162 13 24 5 9 5 94
comp12 88 218 150 74 6 6 11 1368
comp13 82 308 66 77 5 5 19 468
comp14 85 275 60 68 5 5 17 486
comp15 72 251 68 61 5 5 16 382
comp16 108 366 71 89 5 5 20 518
comp17 99 339 70 80 5 5 17 548
comp18 47 138 52 47 6 6 9 594
comp19 74 277 66 66 5 5 16 475
comp20 121 390 78 95 5 5 19 691
comp21 94 327 78 76 5 5 18 463

course can take place in such a period. This set of periods is denoted as

unav(Ci), while the union of these sets of over all the courses is denoted N .

• H5: TeacherConflicts. Lectures of courses sharing a common teacher cannot

be scheduled in the same period.

• S1: RoomCapacity. The number of students should be less than or equal

to the capacity of the room holding the lecture. Each student above capacity

counts as one point of penalty.

• S2: MinimumWorkingDays. The scheduling of the lectures of a course Ci

should be spread over a minimum number of distinct days, denoted mwd(Ci).

Each day below this minimum counts as five points of penalty.

• S3: CurriculumCompactness. Lectures should be adjacent in timeslot to

some other lecture from the same curriculum. Any lecture that is ‘isolated’ in

16

this respect counts as two points of penalty. The last timeslot in a day does

not count as adjacent to the first timeslot in the next day.

• S4: RoomStability. Within each course, lectures should be held in the same

room. Every distinct room beyond the first used for a course counts as one

point of penalty.

The soft constraint penalty scheme outlined above provides a method by which

to express the overall quality of a solution. For feasible solutions, the cost is simply

the sum of the penalties incurred for soft constraint violations, a value referred to by

SCV. A high SCV reflects a low quality and vice versa. In certain circumstances, it

may also be useful to ascribe a cost to infeasible solutions. The archetypal use case

for this is when an optimisation process is allowed to traverse the infeasible space in

search of disconnected regions of feasibility. In Mayer et al., 2012, the distance to

feasibility (DTF) was defined as the sum total of students taking lectures that have

failed to be scheduled. DTF — described by Schaerf, 1999 as a nominal measure of

the magnitude of a solution’s infeasibility — can be conceptualised and expressed

in other ways, such as the number of courses unassigned, or a sum total of all hard

violations. A value representing DTF can then be returned as a summary statistic,

or amalgamated with the SCV, at the practitioner’s discretion.

An augmentation of this set of soft constraints was proposed by Bonutti et al.,

2012. The purpose was both to increase the model complexity and to address some

perceived inadequacies of the original definitions. For example, the intention behind

CurriculumCompactness was to discourage lengthy gaps in a student’s day, by

penalising any temporally isolated lectures belonging to some curriculum. Consider a

10-timeslot day. The placing of two common lectures in timeslots 1 and 10 would, in

isolation, trigger a penalty. If four lectures were instead scheduled in timeslots 1, 2, 9

and 10, no such penalty would be incurred — despite the existence of a time gap of

comparable size. In Bonutti’s alternative definition of CurriculumCompactness,

named Windows, unwanted time gaps incur the same number of violations as their

length in periods. A full list of suggested constraints is given in Figure 2.2, as well as

five proposed configurations. Despite the merits of these, the original configuration,

17

Table 2.2: An extension of the ITC2007 track 3 formulation, from Bonutti et al., 2012.
Five configurations were suggested, where a configuration is the designation of a specified
subset of constraints as hard (denoted by H) and another subset as soft (denoted by an
integer). For soft constraints, the integer gives the value of the penalty incurred for one
violation. The prefix label ‘UD’ in the headings is borrowed from the author, and refers to
the University of Udine, whose timetabling the problem was based on.

Constraint UD1 UD2 UD3 UD4 UD5
AllLectures H H H H H
RoomOccupancy H H H H H
CurriculumConflicts H H H H H
UnavailablePeriods H H H H H
TeacherConflicts H H H H H
RoomCapacity 1 1 1 1 1
MinimumWorkingDays 5 5 - 1 5
CurriculumCompactness 1 2 - - 1
Windows - - 4 1 2
RoomStability - 1 - - -
StudentMinMaxLoad - - 2 1 2
TravelDistance - - - - 2
RoomSuitability - - 3 H -
DoubleLectures - - - 1 -

UD2, has remained the most enduring in the literature and is adopted in our work

also.

Supplementary problem instance sets have since been created for the track

3 formulation. These are: DDS* (7 instances), test* (4 instances) (Bonutti et al.,

2012), erlangen* (6 instances), EA* (based on EasyAcademy timetables, originally

12 instances in 2014, to which 11 more were added in 2021) and Udine* (9 instances).

Of the problems within these sets, erlangen* are by some margin the largest, with

course counts ranging from 705 to 850 and lecture counts from 788 to 930.

2.2.5 International Timetabling Competition 2011

While the 2011 competition focused on high school timetabling rather than university,

it did provide some interesting cross-domain innovations. The 15 constraint types,

ranging from lecture spread to student idle times, could be designated as either soft

or hard, enabling complete modular control over problem design.

18

2.2.6 International Timetabling Competition 2019

The facility to mix and match constraint types was carried forward to the 2019

competition. By that year, another trend had become apparent — formulations were

moving progressively away from artificially generated sets and towards real world.

As confirmed by the organisers at the time, “We already have an agreement with

ten institutions including Purdue University in the USA, Masaryk University in the

Czech Republic, AGH University of Science and Technology in Poland and Istanbul

Kultur University in Turkey that we can use their data.” (Müller et al., 2018)

The new formulation introduced greater flexibility than the ITC2007 tracks.

The inclusion of several novel features also helped to bring theory closer to practise

in terms of simulating the complexities of a real world problem. Outlined below are

some of the major differences between ITC2007 and ITC2019:

• Student sectioning. Previously, student clashes were implied by common

curriculum membership of courses. Such violations are explicit in ITC2019, as

every student is defined as an entity with individual enrollment requirements.

• Constraints. A wider pool of constraints, referred to as ‘distributions’, was

introduced. The majority of these can be applied as either hard or soft, while a

smaller number are invariant. Some constraints were defined as pairwise, while

others may apply to multiple classes.

• Teachers. Teachers are absent from the newer formulation. Instead, they can

be modelled either implicitly using the available constraints, or explicitly in

the guise of a ‘student’.

• Courses. Courses are subdivided into ‘configs’ and then ‘subparts’. This

allows modelling of different versions of the same course/module, for example

undergraduate vs. masters.

• Classes. Equivalent to ‘lectures’ in ITC2007, classes exist within subparts. A

more complex hierarchical structure is made possible. Some pairs of classes

may have parent-child relations. Any student sectioned to a ‘child’ class is also

19

obligated to attend the ‘parent’ class. This is a convenient way to model a

lecture-lab session dependency, for example.

• Granularity. Time is discretised into small slots of 5 minutes, meaning that

classes can have staggered start times and potentially partial overlaps too.

• Room location. Travel distances are defined between rooms. This is to

encourage consideration of the physical geography of the campus.

• Weekly variation. The ITC2019 allows for different weekly schedules over

the course of a semester, rather than a static timetable that is repeated every

week.

• Format. Due to their tree-like structure, ITC2019 problems are supplied in

XML format rather than as plaintext .ctt files.

The following hard constraints are embedded within the scoring system:

• H1: All students must be sectioned into one class of every subpart of exactly

one configuration.

• H2: Any parent-child class relations must be respected in the above.

• H3: Class limits on number of enrolled students must not be exceeded.

• H4: Rooms cannot be used during any pre-defined ‘unavailable’ time.

• H5: Rooms cannot host more than one class at any time.

• H6: If a room assignment is demanded for a class, this room must come from

the domain of that class. All rooms in such a domain are necessarily suitable for

hosting the relevant class, both in their implied facilities and stated capacity.

• H7: Classes must be assigned a time from their respective domains.

Note thatH4 andH5 correspond directly to ITC2007’sH4 andH2 respectively.

H3 is a stronger variation on the idea of student capacity as seen previously in

ITC2007’s S1. The remainder are prescriptive constraints relating to room and time

20

suitability, precedence and student sectioning — aspects that were either undefined,

non-explicit or absent in ITC2007.

The fixed soft constraints in ITC2019 are:

• S1: Student conflicts. A conflict occurs when a pair of classes that a student

is assigned to has any kind of time overlap. This counts regardless of the total

length and/or whether the overlaps are contiguous or not.

• S2: Time penalty. Penalty values of zero or greater are associated with each

available time in the time domain of a class.

• S3: Room penalty. An equivalent penalty is associated with each room in the

room domain of a class.

A further 19 flexible constraints (F1 - F19), referred to as the aforemen-

tioned ‘distributions’, can be treated as either hard or soft, or omitted entirely.

Without reproducing the full definitions here, these are: SameStart, Same-

Time, DifferentTime, SameDays, DifferentDays, SameWeeks, Different-

Weeks, Overlap, NotOverlap, SameRoom, DifferentRoom, SameAttendees,

Precedence, WorkDay(S), MinGap(G), MaxDays(D), MaxDayLoad(S),

MaxBreaks(R,S) and MaxBlock(M,S). Semantically, there is provision for both

affirmative (e.g. certain classes should start at the same time) and prohibitory (e.g.

certain classes should not start at the same time) requirements around entities such

as days, weeks and rooms. There is also scope to impose a precedence relation

between the timing of a first class and subsequent classes. Lastly, the behaviours of

some constraints are reliant upon arguments. For example, the number of breaks

between classes exceeding S time slots can be limited by MaxBreaks to a maximum

of R per day. The cost of a solution is a weighted sum of the individual violation

sums for student (S1), time (S2), room (S3) plus any ‘distributions’ (F1-F19) that

have been applied as soft. The four weights applied to these violation counts are

problem-specific and supplied in the XML attribute ‘optimization’.

21

2.2.6.1 Problem interrogation

Some initial insights into the ITC2019 model can be gained by interrogation of the

problem data by way of the following: After pre-processing, instances were read into

a struct array. Variables ‘days’ and ‘weeks’ were encoded as bitstrings, while all other

numeric values were stored as 16-bit unsigned integers. Native IDs of entities such

as rooms, courses, configs, subparts, classes and students, which may be character

strings or numeric, were mapped to sequential integer IDs. The variable counts could

then be extracted as well as a directed graph of class parent relations. Figure 2.3

illustrates the parent-child relations for an example problem agh-ggis-spr17.

Figure 2.3: A highly disconnected graph showing parent-child relations between classes
in ITC2019 problem instance agh-ggis-spr17. Classes have a maximum of one parent,
and any student sectioned to a ‘child’ class must also attend its ‘parent’ class, where it
exists. Each node represents one of the 1,852 classes, while directed edges show relations.
Prominent features include star graph components and a predominance of classes with no
relation at all. The layout of the plot is such that larger components are forced to the left
of the window, but otherwise there is no inherent meaning behind the node positions as
shown.

A simple form of pure random search can be executed in the solution space

which, by the nature of its sampling algorithm, automatically enforces the subset

{H1, H6, H7} of hard constraints. This sample space can be further narrowed by

employing a more sophisticated approach for student sectioning, informed by the

digraph. Algorithm 1 gives the pseudo-code. By way of rejection sampling, the

algorithm considers parent-child relations as well as selecting exactly one class per

22

Algorithm 1: randSearch1: An unbiased rejection sampler for student
sectioning

1 Inputs: Student s, randomly chosen config of a required course
2 Return: Sectioned classes for student s
3 if numSubparts = 1 then
4 Choose random class for the subpart and section (assign) student s to it

5 else
// Multiple subparts

6 Initialise C, column vector of zeros, length numSubparts.
7 while C ̸= vector of ones do
8 if ∃ x such that C(x) > 1 then
9 Reset C to the zero vector

10 else

11 Find the zero element in C with the greatest index, i
12 Choose a random class for subpart i
13 C(i) = C(i) + 1
14 while Current class has a parent in subpart j & max(C) ≤ 1 do

// Recursively find chain of parents

15 if No class chosen yet for subpart j then
16 Choose parent class
17 Current class = parent class
18 C(j) = C(j) + 1

19 else if Parent class already chosen for subpart j then
20 Current class = parent class
21 else

// Some other class already chosen for subpart j
// Reject this sample

22 C(j) = C(j) + 1

23 Section student s to chosen classes

subpart of a randomly chosen config. This guarantees that H2 is also respected, and

the distance to feasibility is consequently reduced.

A set of 500 solutions were sampled using this method, for the instance

muni-fspsx-fal17. Solutions were written back to XML documents before being

converted into the recognised format using XSL style sheets. These were evaluated

by making programmatic API calls to the ITC website validator. The embedded

code is currently protected and we are unaware of any open source function evaluator

for this problem. Histograms for the four aggregated objective values, as well as

the weighted sum total cost, are shown in Figure 2.4. All sampled solutions have a

23

positive overall distance to feasibility. For context, the vertical red line shows the

individual values that make up the best known feasible (single-objective) solution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Total cost 10
5

0

50

100

150

B
in

 c
o
u
n
t

muni-fspsx-fal17 Total cost (500 sols, randSearch1)

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

Student conflicts

0

50

100

150

B
in

 c
o
u
n
t

muni-fspsx-fal17 Student conflicts (500 sols, randSearch1)

(a) Single-objective total (b) First

200 250 300 350 400 450 500

Time penalty

0

50

100

150

B
in

 c
o
u
n
t

muni-fspsx-fal17 Time penalty (500 sols, randSearch1)

500 600 700 800 900 1000 1100 1200 1300

Room penalty

0

50

100

150

B
in

 c
o
u
n
t

muni-fspsx-fal17 Room penalty (500 sols, randSearch1)

(c) Second (d) Third

40 50 60 70 80 90 100

Distribution penalty

0

50

100

150

B
in

 c
o
u
n
t

muni-fspsx-fal17 Distribution penalty (500 sols, randSearch1)

(e) Fourth

Figure 2.4: Distributions of values for four objectives over 500 solutions generated by the
sampling method respecting H1, H2, H6, H7 for problem muni-fspsx-fal17. The red
line indicates the value for the best known (single-objective) feasible solution.

Some very basic intuitions about possible trade-offs between different con-

straints can be gleamed from the positions of the red lines. Sample values for student

conflicts in Figure 2.4(b) are all worse than the best known result, while those for

room penalty in Figure 2.4(d) conversely are better. Developing robust techniques

for the sampling of solutions, aided by an understanding of which hard constraints

are being respected and what biases may be present, forms an integral part of the

technical work in later chapters.

2.2.7 Other real world instances

It is evident from the above that the ITC2019 represented a large step forward in

bridging the gap between timetabling theory and practise. While some aspects of

24

real world problems remain unaccounted for in this model, these are mostly esoteric.

Perhaps the least so, though, is the concept of priority or preference on the part

of students and/or teachers. Some real world institutions allow students to make

reservations, giving them priority to be assigned to a particular class. The first version

of the UniTime project (UniTime, 2023) was designed around the autumn (fall) and

spring 2007 Purdue University data sets, with data broken down by department. An

example of expressed preferences in UniTime may be those of a teacher, for whom

certain time slots, buildings or rooms are more appealing than others. Seven nominal

levels of preference were made available: Required, strongly preferred, preferred,

neutral, discouraged, strongly discouraged, prohibited. This opened up more of a

continuum across constraint types, spanning hard (prohibited) to soft (the rest). In

the original Purdue timetabling problem data set, there were approximately 750

classes, 29,000 students and 41 large lecture rooms (Vermirovsky, 2003). All data

are available in anonymised form on the UniTime website.

Other early uses of real world timetabling problems can be found in Abdullah

et al., 2007, Avella and Vasil’ev, 2005, Daskalaki et al., 2004, Dimopoulou and

Miliotis, 2004 and Santiago-Mozos et al., 2005. More recently, Maya et al., 2016

utilised three data sets from different Mexican universities in Zitacuaro, Valle de

Morelia and Tuxtla Gutierrez, while Babaei et al., 2019 used a hybrid fuzzy and

clustering algorithm to satisfy the multi-departmental demands of the Islamic Azad

University of Ahar branch. Cross-pollination between the real and artificial is possible

too. A large, real world data set from College of Arts and Sciences, Universiti Utara

Malaysia known as UUMCAS A131 (247 courses, 850 lectures, 32 rooms, 350 teachers,

and 20,000 students) had such synergy with the ITC2007 that it was proposed as a

test problem under that formulation (Wahid and Hussin, 2017).

In this section, some background has been presented on the different UCTP

models that have been used by researchers. Over time, a diversity of approaches

have been explored to find optimal or satisfactory solutions to such problems, both

artificial and real world. In the next section, a fuller review is offered of some of the

most prominent techniques.

25

2.3 Approaches to solving the UCTP

Due to the large size and complexity of real-world UCTP instances, many tradi-

tional optimisation techniques are impractical (Garg, 2009). An exact algorithm,

guaranteeing optimality, has proven elusive for all but unrealistically small, artificial

cases (Schaerf, 1999). Much research has therefore been carried out into heuristic

and approximation techniques, as well as hybridisation with traditional methods.

The fundamental idea is to find solutions that are both good enough in practise and

achievable with finite computing resources. As well as weighing up these unavoidable

trade-offs, researchers have also grappled with some interesting philosophical consid-

erations, for example how to handle the different constraint types. Eiselt and Laporte,

1987 proposed separating the hard and soft constraints in order to solve for the former

first then the latter. Subsequently, two-phase metaheuristic approaches have gained

in popularity and continue to show promise for the UCTP (Rossi-Doria et al., 2003,

Lewis and Paechter, 2005). One-phase metaheuristics, as their name suggests, seek

to solve for both types of constraints concurrently. Another design choice concerns

infeasible regions of the solution space. Hertz, 1991 deliberately included these in

order to maintain connectedness across the entire search space, while others have

preferred to restrict the search to the feasible-only space. Some of the important

comprehensive surveys referenced when documenting previous approaches include

Schaerf, 1999, Lewis, 2008b, Babaei et al., 2014, Pandey and Sharma, 2016, Chen

et al., 2021 and Ceschia et al., 2023. More targeted surveys such as Pillay, 2016

and Ilyas and Iqbal, 2015 are referenced for hyper-heuristic and hybrid methods

respectively. Broadly speaking, the same taxonomy is used as in Chen et al., 2021,

with some rearrangement and expansion. While acknowledging that the categor-

ies are not mutually exclusive, a non-exhaustive overview is presented under the

following headings: Operational research techniques (Section 2.3.1), single solution

based metaheuristics (Section 2.3.2), population based metaheuristics (Section 2.3.3),

multi-agent systems (Section 2.3.4), novel intelligent methods (Section 2.3.5) and

multi/many-objective approaches (Section 2.3.6). The presentation of these themes

26

roughly corresponds to a chronology of popular usage, such that the reader can trace

the development of ideas through this chapter.

2.3.1 Operational Research techniques

Operational research techniques have a long history of use for timetabling and other

scheduling problems. They have the advantage of being relatively intuitive to model

and implement. However, due to scaling issues, they are often inefficient for the

UTCP when used in strict isolation.

2.3.1.1 Reduction to Graph Colouring

Early timetable models were formulated as graph colouring problems — with courses

as nodes, conflicts/constraints as edges, and periods as colours. In this pared back

representation, the chromatic number χ(G) implies the minimum number of periods

required for a feasible course-teacher schedule. Figure 2.5 shows an example solution

to a five course problem with pairwise conflicts {1,2}, {2,3}, {3,4}, {4,5}, {5,1}.

1

2

34

5

Figure 2.5: A solution to a simplified timetabling problem modelled as a graph, in which
different colours represent distinct required periods.

Welsh and Powell, 1967 were two of the first authors to point out the structural

similarities between graph models and timetabling, as well as offering an improved

upper bound for χ(G) and an algorithm to obtain a valid colouring. This early model

had inherent limitations however, such as being uncapacitated (paying no heed to

rooms or their capacities) and not allowing for additional real-world constraints. The

second of these issues was addressed by Neufeld and Tartar, 1974, who introduced the

possibility of certain preconditions on course assignments. By imposing restrictions

on the colouring of particular nodes, unavailability constraints could be accounted

27

for. Meanwhile, preassigned meetings were enforced by limiting particular nodes to

a single colour. The authors offered a formal mathematical proof that the existence

of a |P|-colouring (where |P| is the number of discrete periods) is a necessary and

sufficient condition for the existence of a feasible solution. A number of different

threads of timetabling operational research were later brought together by de Werra,

1985, who discussed algorithmic approaches for valid graph colourings. An established

method at that time was degree saturation (Brélaz, 1979), which proceeds as follows:

Initially the node with the greatest number of neighbours is selected, and coloured. At

each subsequent step, the uncoloured node with the greatest number of colours in its

immediate neighbourhood is selected. The smallest colour (based on a lexicographic

ordering) that has not been assigned to any of its neighbours is then assigned for this

node. The process is iterated until completion or impasse. While degree saturation

provides an infallible method for the optimal colouring of bipartite, cycle and wheel

graphs, it is considered a heuristic method when used on the other types of graphs

more likely to be encountered in timetabling.

Bipartite graphs are responsive to the degree saturation method because of

their structure, in which edges only connect nodes from different disjoint sets, of

which there are two. These convenient properties were later exploited by Badoni

et al., 2014, who tackled an uncapacitated school timetabling problem with a novel,

two-phase approach. In phase one, a bipartite multigraph (whose parts are lectures

and teachers) was used to derive a daily requirement matrix from a given weekly

requirement matrix. In the second phase, an edge colouring was generated for a

second bipartite graph (lectures and periods) using the highest degree first heuristic.

Thus a connection was made between the three entities (lectures, teachers and periods)

such that all constraints were satisfied. It must be noted that once again, the model

was a simplified and artificial one, without courses, rooms or other dependencies,

and small-scale instances were used for testing.

28

2.3.1.2 Direct constructive heuristics

Degree saturation and highest degree first are both examples of direct constructive

heuristics. These are used to build solutions incrementally, adding lectures to an

empty timetable one by one, according to a set of logical rules. Constructive heuristics

formed the basis of the 1980’s SCHOLA timetabling software (Junginger, 1986).

Using this strategy, lectures are generally sorted according to some measure of how

constrained they are. The rationale for this is an intuitive one — lectures that are

harder to place should be handled with greater priority. The sorting process can

either be static (executed once and then fixed) or dynamic (recalculated at each

decision point over the lectures yet to be assigned). Another example of the dynamic

type is colour degree, in which priority is determined by the number of conflicts

that each lecture has with those already assigned. Constructive heuristics are by

nature greedy, making locally optimal moves at the expense of global consequences.

Enhancements such as swapping rules or backtracking can be added to extricate such

heuristics from unproductive construction paths. Even so, while construction by

heuristic may produce feasible timetables, it cannot be relied on to generate optimal

ones. Petrovic and Burke, 2004 cautioned against using such solutions as anything

other than a starting point for further optimisation or as a baseline for comparison.

2.3.1.3 Network flow

Graph theory is once again invoked in the network flow approach. In this paradigm,

the UCTP is formulated as one or more flow networks (Dyer and Mulvey, 1976,

Mulvey, 1982, Chahal and Werra, 1989). A graph is generated in which edges have

numerical flow capacities, limited to 0 or 1. In Dinkel et al., 1989, the vertices were

layered at intermediate levels between a sink and source, representing departments,

teacher/course and room/timeslot combinations respectively. Edges were omitted

wherever co-assignments of particular variables were impossible, while the unimodu-

larity property ensured integrality of solutions. While the resultant maximum flow

problem can be solved in polynomial time, the authors noted that their approach

occasionally required human intervention. This is because constraints such as H5 —

29

the prohibition on assigning a single teacher to multiple lectures simultaneously —

could not automatically be guaranteed.

These shortcomings were highlighted further in the more recent work of Kampke

et al., 2019, which modelled the ITC2007 track 3 problem using ostensibly the same

graph architecture as Dinkel et al., 1989. Hard constraints H2 and H3 were

guaranteed, while the remainder were not. Due to a lack of backtracking, it was

possible to reach a situation in which no feasible places remained for the unassigned

lectures. This induced a no-win scenario in which the only options were to return an

incomplete timetable (violating H1) or introduce conflicts (violating H4 or H5).

Soft constraints were not considered explicitly, but modifications to the base

solving algorithm indirectly assisted S2 (room stability) and S3 (minimum working

days). A solution was represented by a valid flow through the network, which was

found using the Ford-Fulkerson method with breadth first search (Ford and Fulkerson,

1962). The added refinements in Kampke et al., 2019 were two-fold:

1. For each course C ∈ C, nodes in the room/period layer were visited in ascending

order of room capacity, beginning with the smallest room whose capacity

exceeded stud(C). When/if these were exhausted, the search continued with

the undersized rooms, this time in descending order.

2. Feasibility checking was implemented such that infeasible placements were

avoided and the better alternative was always preferred.

The first of these modifications is a greedy heuristic from the same family

as those in Section 2.3.1.2, demonstrating again how deceptively simple rules can

aid certain objectives. The authors stated that the two constraints served by this

heuristic were almost never violated. Returning complete or feasible solutions,

however, proved more difficult, with the overall approach failing consistently on 12

of the 21 instances. In 8 of the others (comps 01, 04, 06, 08, 09, 13, 14 and 18),

feasible solutions were found only in a fraction of the trials (55%, 22%, 3%, 3%, 3%,

37%, 7% and 84% respectively), while comp11 was the sole problem to achieve 100%

on this metric. It was only through supplementary stages that the initial returns

30

could be moulded into high quality timetables. Partial solutions from the network

flow phase were completed by a constructive algorithm ISCB−CTT (Kampke et al.,

2015), before further optimisation took place through a simulated annealing process

using a greedy randomised adaptive search procedure (GRASP).

The limitations of network flow as a standalone modelling approach are evident.

A related field, offering a richer modelling environment in which to overcome these, is

mathematical programming. In the next section, some important integer and mixed

integer based approaches are relayed.

2.3.1.4 Mathematical Programming

Mathematical programming has been used to address timetabling as an assignment

problem (or a collection of sub-problems), often using binary variables for direct

representation. One of the earliest examples is Lawrie, 1969, who used a branch-and-

bound procedure with Gomory cuts to find a feasible timetable for a high school

problem. Other early proponents include: Breslaw, 1976, Shin and Sullivan, 1977,

McClure and Wells, 1984, Ferland and Roy, 1985, and Tripathy, 1992. Tripathy,

1984 and Carter, 1989 employed Lagrangian relaxation to solve instances of a course

timetabling problem with up to 287 lectures. While this may be comparable in

size to the ITC2007 benchmark, these approaches only considered straight-forward

conflicts of the type depicted in Figure 2.5. More complex interactive effects were

disregarded as these would have increased both modelling difficulty and solver run

time. Indeed, in Carter, 1989, the assignment variable was indexed only by course

and room.

Burke et al., 2010 went further in attempting to include all hard and soft

constraints from the ITC2007 track 3 benchmark in an integer linear programming

(ILP) model, named Monolithic. Five sets of decision variables were defined as

follows:

xCpr ∈ B. Lectures of course C should be placed in period p, room r if and

only if this variable is set to 1.

31

vCd ∈ B. At least one lecture of course C is scheduled on day d if and only if

this variable is set to 1.

zpu ∈ B. A lecture in curriculum u ∈ U is ‘isolated’ in period p if and only if

this variable is set to 1.

yCr ∈ B. Some lecture of course C is scheduled in room r if and only if this

variable is set to 1.

iC ∈ Z. This value (bounded by zero and the number of days per week) is the

number of days that the lectures of course C fall short of the recommended minimum

working days.

As instance properties in this benchmark are defined by course rather than by

lecture, the graph theoretic interpretation of the problem became supernodal. That

is to say, each course node (akin to those in example Figure 2.5) became a clique

of nodes representing its constituent lectures, and inter-clique edges proliferated

accordingly. The core binary decision variables, xCpr, therefore remained indexed

by course rather than lecture, while the values of the other (dependent) variables

were inferred during the solving process. Two equations were used to enforce H1

(all lectures must be assigned) and H4 (no unavailable periods can be used) while

the remaining hard constraints were guaranteed by a set of inequalities. The soft

constraints, which were formulated as six additional inequalities, presented a more

challenging aspect in their design. The S3 (curriculum compactness) constraint, for

example, was expressed by:

∑

C∈u

∑

r∈R

(xCpr − xC,p−1,r − xC,p+1,r) ≤ zpu u ∈ U , p ∈ P (2.1)

With the added complication that if p coincided with the first (or last) timeslot

of a day, p−1 (or p+1 respectively) ceased to exist for the purposes of this inequality

and had to be taken as zero. This follows from the definition of S3.

The objective function, which returned the solution cost to be minimised, was

similarly unwieldy:

32

wS1
∑

r∈R

∑

p∈P

∑

C∈C:
stud(C)>c(r)

xCpr(stud(C)− c(r)) + wS2
∑

c∈C

iC

+wS3
∑

p∈P

∑

u∈U

zpu + wS4
∑

c∈C

(∑

r∈R

yCr − 1

) (2.2)

Where w denotes the penalty weights for each soft constraint. This ILP was

solved using ILOG CPLEX 11 Dual Simplex LP Solver, and theoretically finds an

optimal timetable, given enough time. Bettinelli et al., 2015 remarked that the ILP

could run for days without return though and Monolithic was thus only suitable

for modest sized or trivial problems. Only three problems (comp01, comp05 and

comp11) from the 14 released at the time were solved within 40 CPU units, where 1

CPU unit ≈ 780 seconds. Monolithic nonetheless proved useful in identifying lower

bounds for the benchmark, and inspired several developments. By discounting certain

violations by setting their weights to zero, two variants derived by the same authors

(Burke et al., 2010) were capable of obtaining better lower bounds on a majority

of instances, at an order of magnitude speed-up. Other proposed simplifications

included aggregating equivalent rooms in order to reduce the quantity of variables

which, as pointed out in Cacchiani et al., 2013, could be exponential in number.

Embedding the ILP within a heuristic framework so as to locate an area of promising

solutions before ‘diving in’ was another improvement suggested by Burke et al., 2010.

In later work (Burke et al., 2012), cuts were suggested to narrow the search bounds

— the simplest example of this being the tightening of the upper bound of iC ∈ Z to

mwd(C).

In Cacchiani et al., 2013, which also examined the ITC2007 track 3 benchmark,

a strategy was proposed in which the main problem was partitioned into more

manageable sub-problems. The fact that constraints S1 and S4 relate to the

assignment of lectures to rooms, while S3 and S2 relate to time, suggested a natural

decomposition. The authors found that a fully descriptive ILP gave competitive

results when the sub-problems were small. In larger cases, a linear relaxation was

imposed and a column generation procedure used to deliver a similar quality of results.

33

Most notably, lower bounds were improved for many instances, while some known

upper bounds were mathematically proved to be optimal. Splitting the problem

constraint entities along spatial vs. temporal lines echoed the approach of Lach and

Lübbecke, 2012.

A different form of problem partitioning was also exploited as a first step in

the divide-and-conquer approach of Hao and Benlic, 2011. This decomposition was

based on minimising the number of relaxed S3 constraints linking pairs of courses

in distinct parts. It was created using a tabu search and refined by a perturbation

phase, the two of which were called cyclically until some stopping criterion was met.

In subsequent steps, lower bounds were obtained on the sub-problems by generic

ILP solvers, before being summed to give a solution for the main problem.

This effective melding of mathematical and metaheuristic techniques also

proved successful in Lindahl et al., 2018. In the authors’ proposed matheuristic,

termed a fix-and-optimise approach, a mixed integer program solver explored a large

neighbourhood in which a subset of the variables were fixed. This was inspired by

the ‘corridor’ method (Sniedovich and Voß, 2006) of solving smaller sub-problems by

exact methods. The technique currently holds the best known result for one instance

in the ITC 2007 track 3 benchmark and was highly competitive across the remainder.

On the whole, while standalone integer or mixed integer programs can exactly

describe a problem, in practise they are most useful for proving bounds on the

optimum. Constraint satisfaction programming, discussed in the next section, focuses

not on an explicit objective function, but instead on finding consistent assignments

that meet the specified problem constraints.

2.3.1.5 Constraint Satisfaction Programming

In a constraint satisfaction programming (CSP) formulation, conditions are placed

on variables, thereby constraining their values to some finite feasible domain. An

assignment of values to all variables represents a solution in which every constraint

is satisfied. Yoshikawa et al., 1996 described a constraint relaxation problem solver

(COASTOOL) applied to a high school timetabling problem, while Deris et al., 1999

34

used CSP in combination with a genetic algorithm to address the UCTP, before

furthering the research in Deris et al., 2000. Other notable contributions include

Zhang and Lau, 2005. One of the most prominent examples though can be found

in the UniTime software as mentioned in Section 2.2.7. This is an open source

solver for UCTPs. Conceived in 2001 at Purdue University, its first phase allows the

modelling of a problem instance by constraint programming primitives (constraints,

variables and values). Operating an iterative forward search algorithm, UniTime

differentiates itself from traditional local search methods by including incomplete

(partially assigned yet internally feasible) solutions within its search space. Some

evident benefits of this are:

1. A heuristic-guided local search that includes partial solutions is generally more

efficient, with respect to response time, than a systematic one that only allows

fully formed solutions.

2. The system can stop, start or continue from any given feasible solution, no

matter the level of its incompleteness.

3. An otherwise feasible timetable with missing lectures is more meaningful and

interpretable than a fully assigned timetable with multiple hard constraint

violations.

4. Built-in backtracking means the system does not suffer from the so-called ‘early

mistake problem’. Any decision suspected to lead to a dead-end in a partial

solution can be undone 1.

In this constructive phase, cycling is prevented by the use of conflict-based

statistics (CBS) (Müller et al., 2004). CBS is a data structure that records previously

encountered conflicts between assignment variables, along with their frequencies.

Conceptually similar to the tabu list (discussed in a later section), CBS helps steer

the search away from potentially detrimental regions. Unlike the aforementioned

approach of Kampke et al., 2019, UniTime waits for a complete solution to be found

1 The ‘early mistake problem’ is a crucial element of investigation in the work on ACOs in
Chapter 3, in which different form of remediation is proposed.

35

before entering its second phase. This is a minor distinction, however. The more

important commonality is the emergence of a multi-phase system in which rule-based

construction precedes optimisation. For UniTime, optimisation is achieved through a

recursive chain of metaheuristics: Hill climbing, great deluge and simulated annealing.

UniTime was a finalist in all three tracks of the ITC2007 and the winner of two.

Although finer algorithmic details such as neighbourhoods and parameter settings

were redefined for each problem domain, the underlying principles were shown to be

encouragingly robust.

2.3.1.6 Logic Programming

While CSP involves finding solutions that satisfy a set of constraints, logic program-

ming provides a framework for expressing and solving such problems through logical

relationships, predicates and the leveraging of powerful inference mechanisms. One

well-known framework is Answer Set Programming (ASP) — an approach based on

a declarative logic paradigm (Marek and Truszczynski, 1999, Niemelä, 1999). It is

only in recent years that ASP has been applied to the UCTP, however.

A simple ASP logic program, P , is made up of rules, facts and constraints.

Rules are of the mathematical form:

h1 ∨ · · · ∨ hk ⇐= a1 ∧ · · · ∧ an ∧ not b1 ∧ · · · ∧ not bm. (2.3)

Where letters symbolise classical first-order logic atoms, which may be predic-

ates on one or more variables. Facts and constraints are defined by expressions that

are empty on the right or left of the implication sign, respectively. A typical ASP

workflow consists of three stages:

1. Modelling. In which the problem is formalised and declared for the parser.

2. Grounding. In which variables are eliminated.

3. Solving. In which the ‘stable models’, or eponymous ‘answer sets’, are generated.

36

Answer sets are equivalent to the set of solutions across the defined feasible

search space. Programs may have any number of answer sets, with the case of none

implying no feasible solution.

1

2

34

5
6

7

89

10

Figure 2.6: The Petersen graph.

1

2

34

5
6

7

89

10

Figure 2.7: A 3-vertex-colouring.

In a similar vein to Figure 2.5, Figure 2.6 shows a simplified timetabling example

based on the Petersen graph, which has 10 nodes and 15 pairwise constraints. To

find a 3-vertex colouring — one solution of which is shown in Fig. 2.7 — the program

in Listing 2.1 could be used. Lines 1-7 define the graph by way of node and edge

predicates, while line 9 accounts for the three colours. Line 11 specifies that exactly

one colour should be applied to each node and line 13 is a constraint stating that

adjacent nodes must have different colours.

1 node (1..10).

2

3 edge (1,2). edge (1,6). edge (1,5). edge (2,1). edge (2,3). edge (2,7).

4 edge (3,2). edge (3,4). edge (3,8). edge (4,3). edge (4,5). edge (4,9).

5 edge (5,1). edge (5,4). edge (5,10). edge (6,1). edge (6,8). edge (6,9).

6 edge (7,2). edge (7,9). edge (7,10). edge (8,3). edge (8,6). edge (8,10).

7 edge (9,4). edge (9,6). edge (9,7). edge (10,5). edge (10,7). edge (10,8).

8

9 col(r). col(b). col(g)

10

11 1 {colour(X,C) : col(C)} 1 :- node(X).

12

13 :- edge(X,Y), colour(X,C), colour(Y,C).

Listing 2.1: A reductive timetabling problem expressed by Answer Set Programming.

The expressive power of ASP has been growing as further semantic construc-

tions, many vital for modelling the UCTP, are supported. These include conditional

literals, cardinality constraints, aggregates, choice rules, weights and arithmetic op-

37

erators, as well as blanks such as in the predicate penalty(, ,P) which are used

to sum across all values of the first two elements of the tuple. Popular off-the-shelf

solver Clingo features optimisation commands #maximise and #minimise, which

could be employed with the example above like so: #minimise[penalty(, ,P) =

P] to find a UCTP solution with the lowest soft constraint violation cost.

Banbara et al., 2013 describe an ASP program which was tested against 57

problem instances in the ITC2007 track 3 formulation, using each of the UD1-UD5

configurations. On the 57× 5 = 286 problems from the sets named in Section 2.2.4,

the previously best known bounds were matched or bettered for 175 problems, while

optimality was proved for 46.

Some benefits of logic programming are readily apparent. ASP enables a

compact formulation that is human-readable. There is high ‘elaboration tolerance’

owing to the way rules, facts and constraints are independently declared — meaning

that activating, deactivating or switching UCTP constraints is easy. The on-going

and rapid development of grounders, solvers and monolithic hybrids has also shown

the potential for extensibility, as in Clingo’s priority level multi-objective optimiser

(Banbara et al., 2019). Furthermore, logic programming obviates the need for the

parameter tuning required by some metaheuristics. Yet there are still design choices

to be taken. Clingo offers users a choice of search strategies, such as backtracking

(Ward and Schlipf, 2010) and conversion to a Boolean satisfiability (SAT) problem.

Different configurations of these strategies were tested in Banbara et al., 2013 with

mixed results.

Perhaps the biggest issue concerns the timeouts that result from excessively

large ground programs. In Banbara et al., 2013, problem instance EA03 (consisting

of 145 courses, 65 rooms in 9 buildings, 65 curricula, 3,207 unavailability constraints,

and 1,350 room constraints) was unsolvable under formulation UD5, due to a combin-

atorial explosion of clauses. One particular soft constraint, TravelDistance, caused

the ground program to blow up to 7.9GB in size (versus 70MB with TravelDis-

tance omitted) while EA07 caused similar issues. Likewise, in Banbara et al., 2019,

UUMCAS A131 on UD5 exceeded the available memory limit of 20GB and a large

38

instance of erlangen* could not be grounded in a day. Such issues speak to the

impracticality of pure exact approaches for large-scale UCTP problems.

The following two sections move the discussion on to the field of metaheuristics,

beginning with single solution based strategies.

2.3.2 Single-solution-based metaheuristics

Single-solution-based metaheuristics are approximation approaches, in which a

single solution (a timetable, in this context) is iteratively refined by low-level heuristic

operators until some termination criteria is met (Bianchi et al., 2009). Through

the informed design and paramaterisation of both the operators and acceptance

criteria, a path is navigated through the search space and the algorithm converges

on solutions of high, if not optimal, quality. A key feature of many metaheuristics is

their stochastic element, which enables disparate regions of the search space to be

accessed through random (or partly random) exploration. Regions of the landscape

thought to contain promising solutions can then be exploited further.

2.3.2.1 Local search

Local search is based on exploring nearby solutions as defined by some neighbourhood

structure. The simplest form is random search. Given a starting timetable, a new

solution is sampled from its neighbourhood, evaluated, and accepted if and only if it

lowers the solution cost. Hill climbing is similar, except that the neighbourhood is

assessed exhaustively and the most improving solution is chosen. A known drawback

of local search is its tendency to get stuck in local optima, in which better solutions

exist elsewhere but are not reachable through the immediate neighbourhood. Local

search is therefore more commonly used in conjunction with other techniques in order

to fine-tune solutions. Examples include Joudaki et al., 2011, which incorporated

local search in the form of a memetic algorithm, and Yang and Jat, 2011 and Shahvali

et al., 2011, both of which proposed enhanced genetic algorithms with local search

capabilities.

39

2.3.2.2 Tabu search

In order to avoid repetition or cycling during such a search, a list of prohibited

moves from the recently-visited solution space can be maintained. This is known

as tabu search. A critical feature of tabu search for the UCTP is the choice of

neighbourhood, which is used to determine the candidate list of next possible moves.

In the multi-phase tabu approach of Alvarez-Valdes et al., 2002, two neighbourhoods

of interest were studied2. A solution x was a neighbour of x′ if and only if:

1. Simple move: x can be reached from x′ by the reassignment of exactly one

lecture in x′ to a new period.

2. Swap: x can be reached from x′ by swapping the places of exactly two lectures

in x′.

The authors found that the type of neighbourhood was the most significant

factor affecting performance, ahead of other design choices such as the size of the tabu

list or candidate list. Of the neighbourhoods tested, simple move gave the poorest

quality results, which was explained by its move set being limited to only temporal

(period) moves and not spatial (rooms). The search landscape it induced suffered

from disconnectedness, meaning simple move can be thought of primarily as an

intensifying move. This result highlighted the importance of offsetting intensification

with sufficient diversification.

Aladag et al., 2009 attempted to improve the balance between the two by

proposing additional neighbourhoods, mixed 1 and mixed 2, that combined elements

of the original simple move and swap:

1. mixed 1 : If, after a predetermined number of applications of simple move, an

improved local optimum has not been found, the search relocates to the best

swap neighbour of the current best local optimum.

2 A third neighbourhood, multiswap, was also studied, although this was problem-specific to
the real world Spanish university formulation under consideration, in which lectures of variable
duration were allowed. This feature was similarly explored in a previous tabu approach of Hertz,
1992.

40

2. mixed 2 : Simple move and swap are treated as a union rather than individually,

thereby expanding the pool from which the candidate list is formed. The authors

noted that evaluating entire neighbourhoods was expensive. Therefore, only

one random move by each lecture was carried out. By implication, the final

candidate list was the same length as the number of lectures.

The best results were achieved by mixed 1 and simple move, both of which

were significantly superior to the other neighbourhoods as well as a random baseline.

The good performance of simple move appeared to contradict the findings of Alvarez-

Valdes et al., 2002. However, the authors’ inclusion of a local optima escape

mechanism showed that, with this addition, a simple intensifying neighbourhood can

deliver good results over a long term search. The plots of objective cost vs iteration

number showed a series of spikes where the search jumped from one local optimum

in order to descend a different basin of attraction. mixed 1 conferred a similar type

of benefit in the sense that its fall-back operator, swap, was more diversifying.

The relatively poor performance of mixed 2 raises an interesting question

about the structuring of composite neighbourhoods. A promising alternative to the

set union is a token ring approach. This was defined in di Gaspero and Schaerf,

2003 as follows: Given a pool of neighbourhoods N1 . . . Nq, The input solution is

operated on by Ni in the predetermined sequence i = 1 . . . q, with each Ni working

on the output produced by Ni−1. i = q is followed by i = 1 so that the sequence is

circular. The global best is cached and the cycle is broken when a fixed number of

non-improving rounds have been completed. In di Gaspero and Schaerf, 2003, the

notation N1 ▷ · · · ▷ Nq was suggested. An empirical comparison between the set

union and token ring configurations was carried out by Lü et al., 2011, on a pool

{N1, N2}. N1 was simple move. N2 was an ‘advanced’ neighbourhood — KempeSwap

— adopted from the adaptive tabu search method of Lü and Hao, 2010. The move

was defined by the interchange of two Kempe chains. In the context of a timetable

as a graph of lectures and their conflicts (as per Figure 2.5), a Kempe chain is a

connected component of nodes in the subgraph that is induced by nodes belonging

to two periods (or colours). The results in Lü et al., 2011 suggest that a token ring

41

approach is superior to a set union, and that the order of operators at the start of

the ring cycle was immaterial.

Other structures and elementary neighbourhood operators have been proposed

for tabu search that are more aggressive, more nuanced and/or more targeted

towards improving a particular objective. Awad et al., 2022 described four such

neighbourhoods, two of which not only enforced feasibility but also mandated the

lowest-cost move. Exploration was encouraged by stochastic selection. While results

did not improve upon the best known for the chosen benchmark (11 problems from

the Socha et al. 2002 set), the algorithm performed competitively against other

metaheuristics. Aspiration criteria were declared in order to provide exceptions to

the strict prohibitions of the tabu list, and the list itself was dynamically sized. Awad

et al., 2022 remarked on the difficulty of fine tuning the parameters that control

these aspects of a tabu approach.

Besides parameter tuning, another routinely confounding issue, identified

in Lü and Hao, 2010, is that of computational complexity. While the authors’

aforementioned Kempe chain move was useful in affecting large, feasibility-preserving

perturbations, handling Kempe chains (or other complex topologies) can be expensive,

meaning the move could only be used sparingly. The authors mitigated this with a

‘reduction’ technique, which estimated the goodness, using the period-based sub-cost,

to decide whether a full execution of KempeSwap was worth calling or not. This

is one example of an efficiency saving that can help make complex operators more

attractive, and will be explored further in later chapters.

2.3.2.3 Iterated Local Search

Improving a solution using local search operators, before applying larger perturbations

to escape local optima traps is known as iterated local search (ILS). In fact, in Lü and

Hao, 2010, an ILS scheme was adaptively combined with the tabu search. Their

findings empirically demonstrated that the judicious integration of metaheuristics,

and indeed the balancing of large and small moves, can produce a more powerful

optimiser compared to the use of a single technique in isolation.

42

Parameterisation of η (the ILS perturbation strength) was noted as being

crucial. When set too high, each iterative jump behaves as a random restart. Too

low a value, meanwhile, will not provide an escape from the current local optimum.

A related parameter, q > η, was also used. This represented a number of the

most highly-penalised lectures, η of which were then selected probabilistically and

reassigned by a sequence of η randomly chosen (but feasible) moves. In this way,

parameters q and η strongly influenced diversification levels. Using the original

stopping conditions of the ITC2007 track 3 benchmark, this hybrid system improved

or matched the best known results at the time over all 21 comp* instances.

2.3.2.4 Simulated Annealing

Pure ILS manages the exploration/exploitation balance in timetabling optimisation

by alternating between incremental and larger moves. Another differing but promising

approach is simulated annealing (SA), which has delivered strong results on both

artificial and real world UCTP problems (Akbulut, 2024). Inspired by the annealing

process in metallurgy — in which a heated metal is slowly cooled in order to reduce

defects and achieve a more ordered, stable and desirable crystalline structure — SA

permits the occasional inferior solution based on a probabilistic acceptance criteria.

Aycan and Ayav, 2008 offered a proof of concept for SA on a real world problem

from the Izmir Institute of Technology with nine hard constraints. The perturbation

of a solution, x, led to a new solution xnew, which was accepted if and only if:

((δ ≤ 0) or e−δ/v < rand[0, 1]) (2.4)

Where δ = eval(x′)− eval(x), and v is a ‘temperature’, which decreased over

time according to a geometric cooling schedule. With only this standard SA design,

the authors were able to reduce the departmental timetable cost from 5,011,800 (for

a manually prepared version) to just 3,600.

Across recent SA approaches, a few commonalities stand out. Firstly, the multi-

phase model is prominent. Three distinct stages were used by Lewis, 2008a in solving

the post-enrolment problem. At each stage, constraints satisfied in the previous stage

43

could not be violated. A different three-stage strategy — closer resembling that of

Lü and Hao, 2010 — was adopted by Song et al., 2018. Initialisation by heuristic was

followed by intensification by SA (using a constructive heuristic-inspired operator)

and diversification by perturbation. The latter two phases operated in the iterative

style of ILS and resulted in feasible solutions for 58 of the ‘Sixty Instances’ problems,

including for three of the ‘largest’ instances that had, up to that point, proved elusive

(Lewis and Paechter, 2006).

Some authors prefer to view the intertwining of intensification and diversific-

ation as a single ‘improvement’ phase, as distinct from the constructive stage, as

described in the two-phase SA algorithms of Goh et al., 2019 and Goh et al., 2020.

Another recurrent theme, in relation to small neighbourhoods, is the predominance

of the single lecture move and swap operators (or subtle variations thereof), as seen

in Ceschia et al., 2012 and others. Many novelties have arisen too, some specific to

SA and others with general applicability. In Geiger, 2012, the probabilistic element

of SA was substituted for a deterministic ‘threshold accepting’ test, which built

upon ideas by Kirkpatrick et al., 1983 and Dueck and Scheuer, 1990. Solutions that

worsened the objective were permitted up to a given threshold, while an element

of randomness was retained within the constructive perturbation operator. Geiger,

2012 achieved fourth place in the ITC2007 track 3 competition.

In Tarawneh et al., 2013, an SA with memory was proposed, in which previously

rejected solutions could be recalled to aid in local optima escape at low temperatures.

The two popular neighbourhoods were also joined by a third, wherein the highest-cost

timeslot (as summed over all days of the week) was swapped en masse with a new,

random one. The approach was competitive with contemporaneous ITC2007 results.

Perhaps one of the most interesting novelties in SA optimisers is the integration

of machine learning to improve contextual awareness. Bellio et al., 2016 derived

a linear regression model between (easily extracted) features of the instance and

the search parameters. The training data was produced by the generator of Lopes

and Smith-Miles, 2010 with heavy post hoc manual filtering. Goh et al., 2019,

meanwhile, applied reinforcement learning techniques to the task of obtaining suitable

44

neighbourhood structures. Six new best results were found for the ITC2007 track 2.

Finally, in Goh et al., 2020, which introduced periodic ‘reheating’ of the temperature

to encourage exploration, two preliminary runs were undertaken. The information

learned from these was leveraged in order to improve the efficiency of the subsequent

runs. Helped by these savings, the approach delivered seven new mean best and

three new best results across a set of standard benchmarks.

2.3.2.5 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) was born out of a recognition that a local

minimum under one neighbourhood structure may not be a local minimum under

another (Mladenović and Hansen, 1997). Consisting of two main phases — shaking

and local search — this metaheuristic, which can be deterministic or stochastic, is

centred around a pool of neighbourhoods. Early work on VNS for the UCTP by

Abdullah et al., 2005 led to the development of a ‘randomized iterative improvement

with a composite neighboring algorithm’ (RIICN) in Abdullah et al., 2007. More

recently, Vianna et al., 2020 proposed a hybrid of VNS and tabu search for a real

world example from Federal Fluminense University. Each iteration started with a

solution, x, and a neighbourhood, k. A random neighbouring solution, xnew, was

chosen and then improved through local search. If this refinement was better than x

then it was accepted, otherwise k was shuffled to the next neighbourhood in the pool.

The authors reported that, consistent with numerous other metaheuristic studies

previously discussed, the hybrid outperforms either of its individual components. As

a whole, the system was deemed both good enough and flexible enough to be put to

real world use.

Almeida et al., 2023 proposed a hybrid VNS that included an adaptive large

neighbourhood search and guided local search. A novel instance decomposition

technique was used, whereby the problem was broken down by curricula. At a certain

threshold of non-improvement, difficult constraint groups were re-weighted and the

search re-focused on improving for those, potentially at the expense of others —

45

thereby allowing moves that worsened the overall quality. The extended approach

found high quality solutions faster than the native VNS.

2.3.3 Population-based metaheuristics

An alternative to the single-solution-based metaheuristic is one with a population of

solutions. This offers a number of advantages. A population search is often more

robust and less sensitive to initial conditions. Wide areas of the search space can

be explored simultaneously, leading to the discovery of the best timetable. The

drawbacks include higher computational load, slower convergence speed and often

additional parameters that require tuning. In this section, the most relevant and

important methods are reviewed, including swarm intelligence.

2.3.3.1 Genetic Algorithm

A subclass of evolutionary algorithms (EAs), genetic algorithms (GAs) are iterative

procedures inspired by the biological process of natural selection. GAs have been

known to perform well on non-convex fitness landscapes, both single and multi-

objective problems, and also lend themselves well to parallelisation. This makes

them well-suited for NP -hard, combinatorial optimisation tasks. Algorithm 2 shows

a simple GA, as successfully adapted with additional local search for the timetabling

problem in Psarra and Apostolou, 2023.

Algorithm 2: A simple genetic algorithm

1 Input: Operational parameters
2 Output: Population at termination
3 Initialise population of solutions
4 Evaluate population
5 while Termination criteria not met do
6 Select solutions for next generation
7 Perform crossover
8 Perform mutation
9 Evaluate population

Various flavours of GA have been conceived for the UCTP, which differ in one

or more of the fundamental components discussed below.

46

Representation Within the optimiser, solution timetables must be encoded in

a consistent way. In GAs, this is a phenotype-to-genotype mapping, in which each

solution is represented as a chromosome. For theoretical as well as practical reasons,

it is desirable that the entire space of feasible solutions can be represented and that

there is little or no redundancy in the genotype space. Thus, the mapping is typically

bijective. Its domain may encompass part or all of the infeasible solution space too,

in the case where an algorithm permits individuals to evolve through infeasibility in

order to reach a better final solution.

An intelligent choice of representation is a convenient mechanism by which

to implicitly enforce hard constraints. Abouelhamayed et al., 2017 recounted a

popular encoding for certain UCTP formulations (seen in Akkan and Gülcü, 2018

amongst others) which consisted of a 2-D array of rooms vs. weekly periods with

the gene values in cells denoting the ID of an assigned lecture. However, it was

noted by the authors that clumsy design can also narrow the represented search

space by inadvertently enforcing hard constraints that are not present in the problem

description. An example given was a lecture that alternates every two weeks, which

the aforementioned array had no means of encoding. The proposed alternative to

cater for this requirement was a 1-D array. Two identically sized vectors, with indices

corresponding to the set of unique lecture IDs, were concatenated. The value for

an index in the first half of the resultant array encoded the period to which that

particular lecture had been assigned, while a value for the same index in the second

half encoded the associated room.

Chinnasri et al., 2012 also employed a flattened 1-D array, but constructed of

a sequence of indices corresponding to the periods, repeated |R| times. Into these

positions were placed tuples
〈
Subject, Lecturer, Student, Type of subject, ID

〉
which

were drawn from a fixed pool. In Sutar and Bichkar, 2016, a conceptually similar yet

complementary approach is found. Here, the period indices were repeated over the

number of classes rather than rooms, and the value inserted into the chromosome

was instead a
〈
room, teacher

〉
tuple. Such tuples were often indivisible ‘blocks’,

which proved useful for preserving a priori (known or established) associations from

47

one generation to the next. In contrast, some practitioners prefer a 2-D matrix to

enable shuffling of variable values that may not be fixed in blocks. In Asiyaban and

Mousavinasab, 2012, values encoding the teacher, period and room were stored in a

column of length 3 whose matrix row index corresponded to the associated course

event. For UCTP formulations with higher variable dimensionality, 3-D matrices

have also appeared in the literature (Sigl et al., 2012).

As the UCTP is, at its heart, a permutation problem, encoding designs com-

monly feature integer rather than binary values, as they complement better the type

of operators used. In addition, integer values eschew problems such as the ‘Hamming

cliff’ that can cause issues when manipulating bit-strings (Wang et al., 2018). It

is worth noting that all of the representation styles discussed above are forms of

direct encoding, as these predominate in the literature. Some examples of indirect

encodings for GAs on the UCTP can be found in Paechter et al., 1998 and Chaudhuri

and De, 2010.

Operators GAs are built on a set of operators, usually selection, crossover and

mutation, each of which performs a different role in driving the search. Relying

on traditional operators alone (for example single-point crossover) may not be

appropriate for the UCTP and result in offspring that are consistently less fit than

their parents or, in the worst case, invalid. Chinnasri et al., 2012 noted that careful

design, application and parameterisation of operators are therefore critical for GA

performance in this context. The authors provided a comparison of three different

crossover operators — partially matched (PMX), order (OX) and cycle (CX).

Figure 2.8 shows a worked example of PMX, which begins with the uniform

random selection of two crossover points. These delimit the matching area common

to both parents, which is shaded in grey in the top block. The intermediate stage

involves a position-by-position swap of alleles within the matching area, which can

lead to unwanted duplicate values in outer positions (shaded again in grey, in the

middle block). To resolve this issue, these values are then switched with their

counterparts outside of the matching area, as shown in the bottom block. This

completes offspring A and B.

48

Parent A 9 4 1 2 6 5 8 3 10 7
Parent B 6 1 7 8 5 10 2 9 4 3

Intermediate A 9 4 7 8 5 5 8 3 10 7
Intermediate B 6 1 1 2 6 10 2 9 4 3

Offspring A 9 4 7 8 5 6 2 3 10 1
Offspring B 5 7 1 2 6 10 8 9 4 3

Figure 2.8: An illustration of the partially matched crossover (PMX) operator. Within
a randomly selected matching area, alleles 1, 2 and 6 in Parent A are swapped with 7, 8
and 5 in Parent B respectively. To eradicate duplicates, 5, 8 and 7 in Intermediate A are
swapped with 6, 1 and 2 in Intermediate B to produce the final offspring.

Parent A 9 4 1 2 6 5 8 3 10 7
Parent B 6 1 7 8 5 10 2 9 4 3

Intermediate B 1 H H 7 8 5 10 H 9 4 3

Intermediate B 2 8 5 H H H 10 9 4 3 7

Offspring B 8 5 1 2 6 10 9 4 3 7

Figure 2.9: An illustration of the order crossover (OX) operator generating Offspring B.
Alleles 1, 2 and 6 (taken from the matching area in Parent A) are replaced in Parent B
by ‘holes’, H. A leftwards sliding mechanism repositions the ‘holes’ to the matching area,
where they are filled by 1, 2 and 6.

Order crossover, shown in Figure 2.9, begins in the same fashion as PMX.

However, in the first intermediate step the alleles within the matching area of Parent

A are removed wherever they occur in Parent B, leaving ‘holes’ in the genome denoted

by H. A sliding motion is applied to the remaining values — which in the given

example is leftwards from the second crossover point. The holes are thus maneuvered

into the matching area, where they can then be filled by the equivalently positioned

gene values from Parent A. The second offspring is generated by swapping the roles

of the parents.

Through their respective mechanisms, PMX has a tendency to respect absolute

positions of alleles, whereas OX favours relative positions.

Figure 2.10 illustrates cycle crossover. As its name implies, CX initiates by

looking for a cycle — from a randomly chosen gene in Parent A to itself. Permitted

moves are from gene n in Parent A to gene n in Parent B, and from allele m in

Parent B to allele m in Parent A. In this example, the starting gene is gene 1, and a

49

Parent A 9 4 1 2 6 5 8 3 10 7
i ↓ v ↓ vi ↓ ii ↓ iii ↓ viii ↓ iv ↓ vii ↓

Parent B 6 1 7 8 5 10 2 9 4 3

Cycle 9→ 6→ 5→ 10→ 4→ 1→ 7→ 3→ 9

Intermediate A 9 4 1 H 6 5 H 3 10 7

Offspring A 9 4 1 8 6 5 2 3 10 7

Figure 2.10: An illustration of the cycle crossover (CX) operator generating Offspring A.
Starting with gene 1 in Parent A, a cycle through the alleles of both parents is found. The
steps of the cycle are denoted by the numerals i to viii. All alleles that are not part of this
cycle are replaced in Parent A by ‘holes’, H, which are then filled by 8 and 2 from Parent
B.

cycle of length 8 is found. All alleles in this cycle are preserved in position, while the

remaining genes are replaced with ‘holes’, as seen in Intermediate A. Finally ‘holes’

are filled by the corresponding gene values from Parent B. Parent roles are switched

to generate Offspring B.

The authors ran a grid search over mutation and crossover rate for a problem

based on a department of Rangsit University in Thailand. In conclusion, OX was

deemed to be the most successful operator in obtaining feasible solutions, while CX

surpassed it in finding perfect (zero violation) solutions, on average. However, the

discrepancy in results was not marked, and success was highly dependent on the

aforementioned parameters in addition to the number of generations used.

In Yu and Sung, 2002, a modified PMX, known as sector-based PMX, was

conceived, in which the 2-D matrix encoding was divided into ‘sectors’ according

to variable type and size. Randomly generated blocks then defined the active

crossover regions. Akkan and Gülcü, 2018 varied this approach by using a a period-

based PMX. In both of these cases (as well as Kohshori et al., 2012, Asiyaban

and Mousavinasab, 2012, Assi et al., 2018 and others), the potential for crossover

to induce infeasibility was acknowledged, and different remedies were suggested.

Yu and Sung, 2002 used a ‘check and repair’ routine. Noting that five of the hard

constraints were automatically satisfied by virtue of the representation, the remaining

two were handled by reassigning conflicting lectures while considering the effects

on all constraints. The repair here was deterministic but others, such as Sutar and

50

Bichkar, 2016, have included a probabilistic element. Akkan and Gülcü, 2018 on the

other hand, posited the existence of a trade-off between the flexibility of an operator

and the subsequent need for chromosome repair. The authors also found that the

quality of offspring mended by a complex repair procedure was not significantly

better than that of its parents. This, and the time-intensive nature of explicit repair,

led the authors to dispense with the repair function entirely. An efficient feasibility

checker was embedded within the PMX operator instead.

Along with sector-based PMX, other crossover operators tailored to the UCTP

— namely day, students, conflict-based — were tested by Lewis and Paechter, 2002.

A key idea motivating all of these operators was that certain sub-timetables, or

‘blocks’ within the main timetable, may be worth preserving due to their positive net

contribution to the wider solution quality. Conflict-based crossover, in which blocks

of assigned lectures with high student commonality were prioritised for preservation,

was reported to have the highest relative success.

Like crossover, standard mutation operators have been adapted in various ways

for the UCTP. Abouelhamayed et al., 2017 described three that, used in combination,

affected different behaviours in the GA:

1. The chosen chromosome is replaced, wholesale, with a randomly generated one,

in order to promote exploration of the space.

2. The chromosome is replaced with the currently highest rated solution. As

a countervailing measure to the first operator, this nudges the GA towards

making more incremental changes.

3. All genes are fixed, except one whose value is varied across all of its possible other

values. With each change, the fitness is tested. The procedure loops through

all genes before returning the mutation with the largest fitness improvement.

Numbers 1 and 2 begin by discarding the chromosome, while the third works

directly on it as a form of local search more akin to the moves discussed throughout

Section 2.3.2. Mutation as local search is indeed a common theme in the literature.

While traditional mutation is entirely random, Sutar and Bichkar, 2016 stated that

51

room / teacher clashes can easily be introduced without careful restriction. In the

‘informed genetic algorithm’ of Suyanto, 2010, two aspects were considered in order

to overcome this. Firstly, which lecture/s were mutated, and secondly, to where.

Conflict-causing lectures were prioritised in a first stage, and only feasible places

were made available for their reassignment. In a second stage, the mutator was

configured to be sensitive to its effect on soft constraints as well, meaning that it

played a active role in ‘guiding’ the search towards higher quality individuals. Forms

of guided mutation were also used successfully in Yousef et al., 2017, Assi et al.,

2018 and Yusoff and Roslan, 2019, with the latter adopting a hill climbing approach

wherein only fitness-improving mutations were accepted. Understanding the tension

between overly-prescriptive perturbation operators and the need for randomised

exploration remains an important and open area of research.

Selection This tension is also present in the selection operator, which determines

the solutions that are put forward for breeding. A regime that is too rigidly elitist

can cause premature convergence to sub-optimal solutions by compromising the

population diversity. On the other hand, if selection pressure is too low then little

improvement is made from one generation to the next.

Yousef et al., 2017 listed some of the most popular selection techniques —

stochastic uniform sampling, roulette wheel, tournament, and stochastic uniform

selection — before arguing in favour of ‘gender selection’. In this approach, the

population is sorted according to fitness, with the top and bottom halves being

labelled as female and male respectively. A default tournament size of four is run

to pair male individuals with female. These pairs are then bred, ensuring that each

couple includes one parent with high fitness and another with relatively low fitness,

thus promoting diversity.

Other selection operators in other GAs mentioned include standard roulette

wheel (Assi et al., 2018), linear scaling plus roulette wheel (Sutar and Bichkar,

2016) and tournament with elitism (Yusoff and Roslan, 2019). It is important to

remember that the effectiveness of a selection operator is dependent on the interplay

between problem type, instance characteristics and parameter settings. While the

52

key concerns — diversity preservation, sufficient pressure for timely convergence, and

efficiency — are common across UCTP formulations, no one size operator fits all.

Approaches to fitness evaluation Broadly, fitness tends to be defined as the sum

of soft constraint violations (SCV), with the following adaptations also appearing in

the literature:

1. Where the GA is restricted to feasible solutions either by representation or

repair, the SCV is used. However, its weights wi may be user-defined or, in

the case of Yusoff and Roslan, 2019, determined by a survey asking timetable

end users to rank various soft constraints in order of desirability. As soft

constraints are themselves based on qualitative human preferences, some re-

searchers incorporate fuzzy logic in order to deal with uncertainties in definition

and inter-constraint conflicts. Kohshori et al., 2012, like Asiyaban and Mousav-

inasab, 2012, defined a fuzzy set membership function µi bounded between

0 and 1. The fitness was then the sum of the products of µ and w over all

soft constraint violations. In Al-Ashhab and Abdulrahman, 2018, functionality

resembling that of UniTime software is seen. Any entity such as a day, period

or room can be given an explicit priority penalty.

2. Where the GA is permitted to enter infeasible regions, the violation of a hard

constraint can be assigned an arbitrarily large penalty, which is added to the

SCV. The idea ensures that, while the GA can traverse a wider search space

between disconnected regions, infeasible solutions are ultimately evolved out of

the population by virtue of their poor fitness. In Abouelhamayed et al., 2017,

the minimum penalty for a hard violation was guaranteed to be greater than

the maximum possible sum of soft constraint violations, meaning that feasible

solutions were always superior.

Operationally, GA is a powerful framework for the UCTP, particularly so when

hybridised with local search methods (Ilyas and Iqbal, 2015). Augmenting GAs (or

evolutionary algorithms more generally) with individual learning procedures gave

birth to a category known as the memetic algorithm (MA). Jat and Shengxiang,

53

2008 and Joudaki et al., 2011 applied MAs to the original Paechter benchmark.

The former found that including two types of local search operator vastly improved

performance when compared to just one. The latter then equalled or bettered results

for 9 out of 11 problems (as compared to Jat and Shengxiang, 2008 and 6 other

competitors) by embedding a simulated annealing process. GAs have also been used

not as direct timetable solvers but as a distinct phase in a multi-phase algorithm.

Xiang et al., 2024 used a GA to cluster courses into sets by leveraging graph coloring

techniques, before a second tabu phase was used to then optimise the solutions.

From a software engineering perspective, there are many options for efficient

parallelisation of both GAs and MAs across CPU cores or stream processors in the

GPU. In the GPU-based GA of Yousef et al., 2017 for example, the fitness function

evaluation was parallelised, due to its relative high complexity, the independence

between individual solutions, and the large data parallelism required.

Other design aspects of timetabling GAs, such as initialisation, operator rates

and crowding measures will be discussed further in Chapter 4.

2.3.3.2 Ant Colony Optimisation

First described by Dorigo, 1992, ant colony optimisation (ACO) is inspired by the

collaborative behaviour of ants in seeking out the most efficient path between colony

and food source. If an instance of the UCTP can be represented by a graph of

nodes and edges, then a tour through this graph can encode a solution. This is

referred to as the construction graph. Just like representation in a GA, choices

about its design can impact greatly upon the metaheuristic performance. When

virtual ants complete such tours probabilistically, an amount of artificial pheromone

is deposited on the tour edges in proportion to the goodness of the solution found. At

the same time, pheromone values are universally reduced by ‘evaporation’ after each

iteration. Edges with boosted pheromone levels naturally become more attractive

to subsequent virtual ants, and this positive feedback loop drives convergence to a

good solution. The information encoded by pheromones is sometimes referred to as

stigmergic information.

54

One of the first applications of ACO to the UCTP is found in Rossi-Doria

et al., 2003. In this study, ACO was one of five algorithms compared by researchers

from the Metaheuristic Network project. The authors reported that an ACO variant

known as ant colony system (ACS) performed competitively on small benchmark

problem instances, but was outperformed by tabu search, genetic algorithm, simulated

annealing and iterated local search on medium sized problems. Another of the most

consistently cited and successful variants of ACO besides ACS is the MAX-MIN ant

system (MMAS) (Stutzle and Hoos, 1999), which was applied to the UCTP by Socha,

2002 as an unofficial entry to the first ITC. Pertinent points from these approaches

and others will be reviewed in greater depth as background material in Chapter 3.

2.3.3.3 Particle Swarm Optimisation

Another nature-inspired approach that takes advantage of emergent population

behaviour is particle swarm optimisation (PSO). Particles, or individuals, each

maintain a vector position and a velocity. The former represents a solution in

n-dimensional decision space, while the latter designates the direction for further

exploration. Through the coordinated movements of its members, the population

mimics the social dynamics of a swarm of insects or a flock of birds. PSO exhibits

good resilience to local optima while converging towards solutions of high fitness.

The hybrid PSO of Chen and Shih, 2013 — tested on a real world UCTP —

reported an interesting finding. A swap operator (described as an ‘interchange’) was

inserted as a local search enhancement to the basic PSO. This was found to be a

strong contributor to performance, irrespective of other factors such as constriction

factor, learning factors, inertia and parameter values.

Later, Imran Hossain et al., 2019 pointed out that PSO was originally conceived

for continuous optimisation problems, in which mathematical operators could be

applied to floating point representations. Previous work (including Shiau, 2011 and

the aforementioned Chen and Shih, 2013) was cited in which discrete timetabling

variables had been transformed into this domain. Instead of changing their Khulna

University problem to fit the PSO framework, however, Imran Hossain et al., 2019

55

took the converse approach, modifying the algorithm. A sequence of swaps of

differing types was adapted for velocity, while selective search and forceful swap with

repair were deployed for constraint handling. Over the sequence of swap types, if

an intermediate solution bettered the final one, then the former was used. In terms

of parameterisation, the population size was also deemed to be of high importance,

with the steepest improvement seen over the range 0-150 and lesser gains thereafter.

2.3.3.4 Other nature-inspired algorithms

PSO is one metaheuristic that emulates phenomena from the natural world but, as

mentioned in Chen et al., 2021, several other types have been applied to the UCTP.

Amongst this plethora of metaphor-based approaches, Sörensen, 2015 argues that

true novelty or distinction is hard to discern. Nonetheless, some of these efforts can

at least corroborate past findings, or at best offer domain-specific components or

adaptations to inspire future work. Three examples follow:

In Turabieh et al., 2010, another swarm-based approach was proposed (‘intelli-

gent fish’), in which the search space was dynamically partitioned into regions that

were either empty, crowded or non-crowded. In empty areas, steepest descent was

used. In crowded areas, the great deluge algorithm (Dueck, 1993) was used, with

an estimated quality derived from a Nelder-Mead simplex algorithm (Nelder and

Mead, 1965). In non-crowded areas, great deluge was once again used, but with an

estimated quality defined by either the best current solution or the central point of

the non-crowded space. Traditional single lecture move and swap operators were

used to perturb solutions.

In Sabar et al., 2012, a comparison was made between the original honey bee

mating algorithm (HBMO) (Abbass, 2001b, Abbass, 2001a) and a version modified

for educational timetabling (HBMO-ETP). In a honey bee approach, queen drone

bees are analogous to the best-found solution, broods to incumbent solutions, worker

bees to new trial solutions, and mating to the crossover operator as found in GAs. A

form of elitism pervades the algorithm, as the genetic material carried by the queen

56

is invoked in every iteration. Premature convergence was prevented in HBMO-ETP

by forbidding the repeat use of genetic material from any one drone.

Abuhamdah et al., 2014 developed a population based local search (PS-LS)

approach based on gravitational emulation local search (GELS) Webster, 2004. Single-

direction and all-direction force were utilised for searching, while MPCA-ARDA

(multi-neighbourhood particle collision algorithm and adaptive randomized descent

algorithm) were embedded. This was in order to off-set the exploitative shortcomings

of the core population based method.

The three approaches above were all tested on the Socha dataset, enabling a

direct comparison. Hybridised variants consistently outperformed base algorithms

in the case of both HBMO and PB-LS, while the greatest number of best results

overall was achieved by PB-LS.

2.3.4 Multi-agent systems

The population-based methodologies discussed above involve sets of individual solu-

tions that are largely passive and uncommunicative. A distributed multi-agent

framework has also been the subject of UCTP research. In such a system, intelligent

agents may, for example, collaborate and exchange information through a shared

language, and negotiate for resources in order to resolve conflicts and force a solution.

Drawing on observations of real world timetabling practises at the University of Mari-

bor, Strnad and Guid, 2007 argued that such an approach has a concrete theoretical

foundation. A multi-agent simulation can handle multiple allocation requests made

by stake-holders in the problem such as teachers, students or even abstractions such

as courses. In a loose thematic parallel to the honey bee metaheuristic, these different

entities are reflected by agents who are specialised in particular tasks. Srinivasan

et al., 2011 suggested that some characteristics should be common to all agents,

however: 1. Autonomy, 2. Intelligence, 3. Reaction, 4. Pro-action, 5. Learning, 6.

Mobility, 7. Cooperation. As indicated by point 1, there is no central control, rather

agents interact asynchronously according to queuing, round robin or interleaved

queuing rules. A detailed survey of multi-agent timetabling approaches prior to 2014

57

can be found in Babaei and Hadidi, 2014, while Nouri and Driss, 2016 Houhamdi

et al., 2019 are more recent contributions to the literature.

2.3.5 Novel intelligent methods

So far in this chapter, a progression of techniques have been traced that are, to

various extents, well-established. These span classical mathematical forms through

to metaheuristic search. While accepting there is no precise demarcation to the term;

‘novel intelligent methods’ refers to new ideas, adaptive combinations of traditional

ones, or the inclusion of an element of learned behaviour or artificial intelligence.

Some of the approaches falling under this umbrella are outlined below.

2.3.5.1 Hybrid algorithms/heuristics

Many novel approaches seek to compensate for the weakness of a certain heuristic

by combining it with others, often executing base heuristics in a phased or layered

approach (Kostuch, 2005). Some examples of this have already been touched upon

and a fuller review can be found in Ilyas and Iqbal, 2015.

A good example of a hybrid solver using an as yet unmentioned technique,

case-based reasoning (CBR), at its core, can be found in Grech and Main, 2005.

CBR relies on a priori domain knowledge. It works on the principle that previously

discovered solutions to similar problems can inform a new solution to the problem at

hand. Large amounts of memory are requisitioned to store old solutions in a ’case

base’. From there, four operational steps — retrieve, reuse, revise, retain — are

deployed in sequence. The novelty offered by the authors was the incorporation of a

GA into the ‘revise’ stage. The GA was able to learn and apply beneficial mutations

in order to improve the health of the retrieved solutions. These were then retained

as part of the CBR life cycle.

Two other hybrid approaches are of particular interest to this thesis as they

produced the vast majority of the best known results for the ITC track 3 bench-

mark (reproduced in Table 2.3). Abdullah and Turabieh, 2012 employed a hybrid

genetic algorithm with tabu search, whose movement through the search space was

58

determined by a sequence of large neighbourhood operators. The algorithm leveraged

information from its own search history to bias the choice of operators in favour of

those with a high percentage of success. Kiefer et al., 2017, meanwhile, embedded an

adaptive large neighbourhood search within a simulated annealing framework. Sev-

eral destroy-repair operators were used. Both of these highly successful approaches

used large neighbourhood structures and exhibited dynamic, adaptive behaviour,

exploiting past knowledge to inform future decisions. The cumulative power of

integrated metaheuristics is also a common feature and key strength.

A note of caution though was sounded in Feutrier et al., 2023, in which a

hybrid local search method (comprised of sequential hill climbing, great deluge and

simulated annealing) was broken down into its constituent components. Ablation

testing and irace were used to determine the best ratios of deployment. The authors

found that in the optimal configurations, some components had been deactivated

completely. Great deluge alone was enough, on occasion, to surpass the original

hybrid in performance. These results emphasised the need for sensitive tuning in

hybridised solvers.

2.3.5.2 Hyper-heuristics

Hyper-heuristics depart from the convention of searching the solution space. Instead,

they operate at a higher level of abstraction, searching the heuristic space in order

to select the best low-level heuristics, or combination thereof, to suit a particular

problem. In practise, this is achieved by adapting and/or combining promising

components of known heuristics, or generating new ones. CBR can be employed as a

point of reference and a measure of the success of previously found solutions.

In Pillay, 2016, four categories of hyper-heuristic were defined: 1. Selection

constructive, 2. Selection peturbative, 3. Generation constructive, 4. Generation

peturbative. In all cases, the first word describes whether the low-level heuristics

are chosen or created, while the second word describes the nature of their action.

‘Constructive’ implies the type of heuristics in Section 2.3.1.2 such as saturation

degree, while ‘peturbative’ refers to mutation operators.

59

Ahmed et al., 2015 designed nine low-level heuristics for a high school problem,

seven of which were mutational and the remainder constraint-specific hill climbers.

At each iteration, a formula was used to rate the heuristics according to three

factors {f1, f2, f3}. f1 measured the previous performance, both in terms of time

efficiency and impact on objective cost. f2 related to the pairwise dependencies

between heuristics, while f3 recalled the time passed since the last invocation. The

authors reported that this adaptive framework performed better than either a fully

deterministic or probabilistic equivalent.

Aside from this high school solver, Pillay, 2016 noted that hyper-heuristics

have predominantly been tested on the examination track of educational timetabling.

However, an application to the ITC2007 track 3 can be found in Habashi and Yousef,

2018. An add-delete list of variable length was compiled at each step and lectures

assigned, fixed or reassigned accordingly. The approach generated superior initial

solutions when compared to three nearest competitors.

The most promising aspect of hyper-heuristics is their ability to generalise

better over unseen problem instances than a prescribed heuristic or metaheuristic

can (Obit, 2010). However, careful operator design and parameterisation is still

crucial to performance.

2.3.6 Multi/many-objective approaches

In all of the methodologies discussed so far, the cost of a solution timetable has

been quantified by a single value — typically a weighted sum of constraint violations.

Under this scalarised approach, optimisers are by definition single-objective. Datta

et al., 2007, however, criticised this use of weights, and hence the scalar objective, as

arbitrary. Selecting numeric weights for incommensurable objectives, such as the

desires of teachers vs. students, is inherently subjective. Moreover, constraints can

conflict with one another, either directly or obliquely. A scalar cost cannot capture

this intricate interplay, and thus obscures the more granular qualities of a timetable.

In this context, single-objective solvers necessarily suffer from lossy information.

60

Multi-objective optimisation addresses this by presenting solution cost as a

vector comprising a number of individual objective costs, or ‘scores’. These can either

be simple constraint violation sums, or derived values representing more intangible

properties, such as the conflicting teacher and student satisfaction scores in Ariyazand

et al., 2022. The Pareto dominance relation can then be used to define a partial

ordering on these vectors. Rather than returning a single best timetable, in the

multi-objective case, a set of solutions is generated that are mutually non-dominating.

These sketch out an approximation to the true Pareto front and help illustrate the

intrinsic trade-offs between different objectives. A more detailed background on the

multi-objective treatment of the UCTP, including its relative merits, demerits, and

a review of previous approaches, is included as part of Chapter 4.

2.4 State of the art

The algorithms developed later in this thesis are based around the ITC2007 track 3

formulation, and so it is to these benchmark results that the most attention is paid

when considering the progression of the state of the art. The majority of authors

have followed a single-objective treatment, as prescribed by the competition rules.

The five original finalists were Müller, 2009, Lu et al., Atsuta et al., 2008 Geiger,

2008 and Clark et al., 2008, from which the multi-phase constraint-based solver of

Müller, 2009 was declared the winner. The ‘benchmark analysis’ section in Gozali

and Fujimura, 2020 features an incomplete, but more recent, list of ITC2007 results,

while Ceschia et al., 2023 includes the most up-to-date state of the art results. The

majority of the overall best known results under the original timeout are shared

between Abdullah and Turabieh, 2012 and Kiefer et al., 2017 (whose methods are

described in Section 2.3.5.1). Lindahl et al., 2018 (discussed in Section 2.3.1.4)

retains the best known result for comp09. For ease of reference all of these cost values

are reproduced in Table 2.3, alongside the tightest currently known lower and upper

bounds on the optima. The bounds have been contributed by various authors either

using mathematical techniques or search methods with large iteration budgets.

61

Table 2.3: Best known results for the ITC2007 track 3 benchmark under competition rules
(from Abdullah and Turabieh, 2012, Kiefer et al., 2017 and Lindahl et al., 2018 respectively)
as well as best known lower and upper bounds. The best average results are shaded.

Abdullah and Kiefer et al., Lindahl et Bounds
Turabieh, 2012 2017 al., 2018

Instance Avg Best Avg Best Avg LB UB
comp01 5.00 5 5.0 5 12.0 5 5
comp02 36.36 26 41.5 34 49.5 24 24
comp03 74.36 70 71.7 68 74.5 58 62
comp04 38.45 35 35.1 35 38.5 35 35
comp05 314.45 295 305.2 294 373.5 247 284
comp06 45.27 30 47.8 41 58.3 27 27
comp07 12.00 7 14.5 10 35.0 6 6
comp08 40.82 37 41.0 39 49.7 37 37
comp09 108.36 102 102.8 100 100.5 96 96
comp10 8.36 5 14.3 7 25.7 4 4
comp11 0.00 0 0.0 0 6.5 0 0
comp12 320.27 315 319.4 306 360.7 248 294
comp13 64.27 59 60.7 59 69.0 59 59
comp14 64.36 61 54.1 51 56.9 51 51
comp15 72.73 69 72.1 66 74.5 58 62
comp16 23.73 18 33.8 26 37.1 18 18
comp17 76.36 60 75.7 67 86.1 56 56
comp18 75.64 69 66.9 64 72.9 52 61
comp19 66.82 57 62.6 59 64.8 57 57
comp20 13.45 7 27.2 19 34.3 4 4
comp21 100.73 86 97.0 93 103.8 74 86

To consolidate results from disparate sources, a centralised repository has

recently been established (Ceschia et al., 2023). It is known as OptHub. Instance

and solution data from a wide range of scheduling and timetabling problems is

accessible at https://opthub.uniud.it/.

2.5 Summary

In the final section of this chapter, a summary is offered of the reviewed literature

and conclusions are drawn.

2.5.1 Formulations

A distinction has been drawn between artificial UCTP benchmarks that are widely

used, and individual problems that may have been studied by just one researcher.

62

As real world problems can be quirky or even unique, the goal of standardisation is

to present challenging problems that preserve generality without over-simplification.

Ceschia et al., 2023 surveyed six such educational timetabling problem bench-

marks. The authors noted with interest that the chronology corresponded with

growing levels of complexity. The recent ITC2019, for example, incorporated ele-

ments of earlier post-enrolment and curriculum-based models, making it a rich,

customisable dataset. Despite this undeniable trend towards increased intricacy and

nuance, the authors make the case that earlier benchmarks have not yet exhausted

their purpose. Many instances in ITC2007 have been solved to optimality, but these

problems remain a useful test bed for landscape analysis, computational efficiency

and theoretical investigation. Not least of all, the volume of past work and published

results (which presently eclipses that for ITC2019) enables robust comparisons to be

drawn for novel algorithms. A potential downside is the over-fitting of an algorithm to

a particular benchmark, restricting its usefulness. However, concepts from successful

approaches (such as the style of metaheuristic, or the profile of a cooling schedule)

can provide valuable insights into how to tackle a wider range of bespoke, real world

problems, thus building a bridge between theory and practise. Another benefit

of standardisation (and the international competitions) is to provide a focal point

for the research community and encourage collaboration and cross-pollination of

ideas. Some approaches have also crossed domain boundaries within the timetabling

taxonomy in Figure 1.1. GAs, applied to the examination problem by Colorni et al.,

1992, are now popular for course timetabling, for example.

We acknowledge enduring issues around both constraint modelling and timetable

quality measures. A good illustration of the (perhaps) unintended consequences

of strict constraint definitions is the CurriculumCompactness vs. Windows

distinction from Section 2.2.4. While hard constraints are mostly straight-forward to

formalise, soft constraints such as these can be more intricate and difficult to define

appropriately. In some cases, dependencies or other inter-variable relationships may

be required. A subjective aspect may exist, which is also true of timetable quality

measures/costs. Ranking the relative importance or attributing weights to different

63

objectives is not an exact science. Solvers without hard-coded weights can offer some

relief here, as well as the multi-objective approach, which does not rely on a scalarised

objective at all. The latter is an evident gap in the field as the vast majority of

UCTP research has taken a single-objective stance (Ceschia et al., 2023). Another

avenue ripe for exploration is the inclusion of more ‘intangible’ objectives. Limited

examples of these can be found, such as Mühlenthaler and Wanka, 2016 and Akkan

and Gülcü, 2018, who devised metrics for ‘fairness’ and ‘robustness’ respectively, but

most researchers persist with the prescribed objectives. Additional holistic objectives

such as these lend themselves well to a bi- or multi-objective treatment, in which an

approximation to the Pareto front can then reveal the extant trade-offs.

2.5.2 Solvers: A thematic summary

Across the myriad approaches applied to the UCTP, many thematic contrasts are in

evidence. The pursuit of optimality — the exact solution — has fallen out of favour,

with approximation techniques now more prevalent. While metaheuristics cannot

guarantee optimality like a pure mathematical model can, the latter has proven

impractical for navigating the immense search spaces induced by departmental-sized

problems. A potential trade-off in quality is thus considered acceptable. Chen

et al., 2021 remarked that techniques from operational research may be effective

for generating feasible solutions, but remain cumbersome for further optimisation.

The legacy of this is reflected in the popularity of solvers with multiple phases. The

sequencing strategy can vary, with some authors assigning periods first and rooms

second. Others address the hard constraints first before optimising over the soft

constraints — a method that has proved highly successful.

Concentrating on metaheuristics for university timetabling, a meta-study by

Bashab et al., 2020 gave an insight into the frequency of use of various types. A

sample of 131 papers published between 2009-2020 (a period of increasing interest in

the field) is broken down in Figure 2.11. Nature-inspired methods are prominent,

while genetic algorithms and hybrids, between them, make up nearly half of the total.

In terms of hybrids, we have discussed the compositing of exact and inexact methods,

64

Hybrid
 algorith

m

Genetic
 algorith

m
Others

Sim
ulated annealin

g

Artif
icial b

ee colony

Ant c
olony optim

isatio
n

Harm
ony search

Memetic
 algorith

m

Partic
le swarm

 optim
isatio

n

Tabu search

Great d
eluge

Evolutio
nary algorith

m

Honey bee m
atin

g

Scatte
r s

earch

Chicken swarm

Fish swarm

Intellig
ent w

ater d
rops

Migratin
g bird

s

Gravita
tio

nal e
mulatio

n lo
cal s

earch

Hill c
lim

bing search

0

5

10

15

20

25

30

35

P
e

rc
e

n
ta

g
e

 o
f

s
a

m
p

le
 o

f
1

3
1

 p
a

p
e

rs

Figure 2.11: A breakdown of the metaheuristics employed in a sample of 131 academic
papers published between 2009 and 2020 for examination, course timetabling or both.
Adapted from Bashab et al., 2020.

as well as the mixing of metaheuristics that complement each others’ strengths.

One conclusion is that a carefully designed hybrid can out-perform its constituent

components, resulting in an extraordinarily powerful search.

The topology of this search space is partly dependent on the encoding scheme.

This review focused on direct style encodings, whose popularity is explainable by a

number of factors. Their interpretation is highly intuitive (for example representing

a day of the week by an integer from 0 to 4, or 1 to 5). It is easy to ‘bake in’ the

satisfaction of certain hard constraints using appropriate variable ranges. Similarly,

the design of genetic and other operators is much simplified. For these reasons, a

direct encoding is adopted in the technical work that follows. It is recognised however

that indirect encodings can offer greater expressiveness with regard to complex

constraints, acting as timetable ‘builders’, much like the constructive heuristic rule

sets discussed previously.

In terms of constraint handling, a range of perspectives have emerged on the

question of strict enforcement vs. full relaxation. Allowing movement through the

infeasible space, subject to harsh penalties, can be a useful way to reconcile the two.

Aiming for strict enforcement can be problematic due to the nature of the operators

and the desire to avoid expensive repair mechanisms. Alvarez-Valdes et al., 2002

pointed out the difficulties in navigating the search space using overly simple moves.

65

Assignments that may be good in one respect for a lecture may also be impossible

due to the clashes induced between rooms or other entities.

The scope and size of perturbation moves is equally important. The success of

adaptive algorithms that can call on a variety of neighbourhood structures suggests

that both large and small moves have a role to play. The work of Yusoff and Roslan,

2019 also indicates that a guided mutator can aid convergence better than pure

random mutation can. There is a danger, however, in being overly prescriptive and

stifling exploration. Achieving the right balance also requires the prudent setting of

budgets and other relevant parameters.

Optimisers can indeed be sensitive to individual parameter values or combin-

ations thereof. Systems with fewer settings to tune, or those that have adaptive

hyper-parameter tuning, are therefore naturally attractive. A trend is also evident

towards problem agnosticism in solver design. Instances in the ITC2007 bench-

mark vary from large and heavily constrained (comp05) to moderately easy to solve

(comp11). A versatile and reliable optimiser ought to perform consistently across

this diversity of problems without the need for explicit re-tuning.

It has also been seen how both stochastic and deterministic processes can

coexist or be nested within components of an optimiser. Both are present within

certain constructive heuristics, where the ordering (and hence choice) of lecture

is deterministic at each step, while the assignment period itself is left to chance.

Evolutionary algorithms, by their nature, incorporate randomness. Consideration

must be given then to the variance of the performance measure across multiple

repetitions of such an algorithm. Low deviation from the mean is preferred as this

allows stronger claims to be made about the expected performance.

It is implied by various authors (Bashab et al., 2020, Wahid and Hussin, 2017,

Abdelhalim and El Khayat, 2016) that run time is not of paramount concern in the

field of timetabling. While automation-enhanced efficiency is laudable, universities

often prepare a timetable weeks or months in advance of a new term. In many

cases, running an optimiser for days (or longer) is unlikely to cause practical issues.

A notable exception to this is when the full requirements of the timetable are not

66

known or may be subject to repeated changes over time, which is addressed in the

later work on robustness. For the fair comparison of algorithms, the ITC2007 rules

mandate the use of a single CPU core. In a real world use case though, independent

runs of stochastic algorithms can be parallelised across multiple CPU cores and

the best result returned. Further, the use of GPU-based programming has been

mentioned as an avenue for future inquiry. Evolutionary approaches are tailor-made

for parallelisation (across fitness functions or populations, for example) and could

benefit from the high core count and multiple thread execution of a GPU.

It is probably no coincidence then that population-based approaches have

often been preferred over single-solution / trajectory-based alternatives. If a slower

convergence rate and extra computational burden are deemed acceptable, then

population-based solvers can offer advantages. Global exploration is particularly

important in complex landscapes, and populations are generally more resilient with

regard to local optima traps. Maintaining a population also means a diversity of

possible solutions can be supplied to a decision maker without advance knowledge of

his or her preferences.

Finally, it is recognised that some published procedures or commercial solvers

for timetabling incorporate (or require) a manual override for adjustments. These

are generally referred to as interactive or semi-automatic solvers. In real-world

applications, human intervention may prove useful in managing a timetable in the

face of unforeseen changes that occur during a semester. Understanding what makes

a timetable robust to such changes in the first place though is an interesting area of

open research and could potentially increase the functionality of a fully automatic

solver. The work presented in Chapters 4 and 5, in which robustness is ultimately

incorporated into a many-objective solver, is premised on this very scenario.

In dissecting the UCTP trends in the literature, it is apparent that some

methodologies show greater promise than others over a wider range of formulations.

No single approach or algorithm is consistently superior, however.

In the chapter that follows, a review is provided of a popular metaheuristic

— ACO, which ranked highly in Figure 2.11 — and an implementation known as

67

MAX-MIN ant system is developed. In particular, research is carried out into

how performance is affected by the order of course/lecture assignment and whether

beneficial permutations can be predicted through learning. Chapter 4 then presents

and develops a many-objective approach, in which individual soft constraint violations

are treated as individual objectives. This work is built upon in the subsequent Chapter

5, in which ideas of diversity in the genotype space, additional perturbation operators

and, finally, a robustness objective are investigated. Chapter 6 summarises the thesis

and provides directions for future work.

68

3. A Study on Course Ordering in

an Ant Colony Optimiser

3.1 Introduction

A number of studies have employed ant colony optimisation (ACO) to solve the

UCTP, with some adaptations producing promising results. Particular focus is given

in this chapter to two key and linked aspects of ACO design: constraint handling,

and the order in which courses and lectures are assigned by the virtual ants. The

latter is an unavoidable and non-trivial design choice in ACOs, and yet there is

uncertainty regarding the best approach. Various ideas such as random ordering

or the use of simple heuristics based on graph colouring have been proposed in

the literature. However, the relationship between lecture ordering and quality of

constructed timetables remains unclear. A common underlying aim is to try to

assign ‘harder’ (or more tightly constrained) lectures earlier — when a wider choice

of feasible placement options remains available.

The work in this chapter seeks to investigate the effect of course lecture

ordering empirically through the development and implementation of a novel MAX-

MIN ant system (MMAS). A basic model is first used as a proof of concept, before a

refined model is developed. In each case, the MMAS is run over all possible course

permutations of a set of small training problems, to examine how this re-ordering

affects its ability to locate the optimal timetable. A machine learning pipeline is

then devised with the aim of predicting beneficial permutations for unseen larger

problems from the ITC2007 track 3 benchmark. Specifically, a regression model is

trained using human-interpretable features such as ‘number of lectures’ and ‘number

69

of unavailable periods’. The purpose of this deliberately simplified approach is to

assess whether permutation predictions can be made quickly on these unprocessed

summary statistics alone. The target value for the supervised learning is a measure

of the success of a particular permutation in locating the optimum over multiple

repetitions of the MMAS. By leveraging this information and using a mapping, a

course Permutation Predictor is developed for much larger problems. This learning

and scaling approach is then trialled on subsets of small, medium and large problems

from the benchmark. Additionally, the core MMAS is enhanced with an optional

local search routine so that the any-time performance of variants with and without

this component can be studied and assessed.

Comparing absolute results against those published in the literature is outside

the scope of this study. Rather, the study is motivated by understanding how relative

differences in results given by the MMAS on a particular problem can be attributed

to differences in the course lecture ordering.

Significance testing is applied to the any-time performance of the MMAS

variants. An analysis is provided both of the importance of the model features, as

well as patterns of performance between permutations. For the final model training

set, a strong correlation is found between the similarity of permutation and relative

performance. Features are shown to be most informative for the courses near the

beginning and end of a permutation. Among the smaller problems in the ITC test

set, the learnt approach improves relative timetabling performance compared to a

random baseline, suggesting that there is potential in further developing the idea to

tackle its largest problems.

Section 3.1.1 offers a review of the ACO literature relevant to this chapter.

It concentrates on the order of course lecture assignments and constraint handling.

Methodology is covered in Section 3.2, with Section 3.2.1 recounting the development

of each component of the MMAS. These include the solution representation, penalty

scheme, pheromone update procedure, dynamic hard constraint handling and smart

function evaluations. The section continues with the local search methodology

(Section 3.2.2), and finally the proposed approach for learning and predicting the

70

course assignment order using a pipeline of regression model (Section 3.2.3) and

genetic algorithm (Section 3.2.4). Section 3.3 gives details of the experimental

setup as they relate to the aforementioned pipeline — firstly for a simplified proof

of concept model and then a more refined model. This section also includes the

mapping procedure as well as specifics of the problem instances, parameter settings

and CPU budgets used. Results for the final model are revealed in Section 3.4. Two

benchmark experiments, in which the final system is compared against a random

baseline (both with and without local search), are then outlined along with results

and analysis. Conclusions are drawn in Section 3.5 before some directions for further

work are suggested.

3.1.1 Background

3.1.1.1 ACO

Algorithm 3: A basic ACO

1 Input: Parameters ρ, k, problem instance
2 Output: Best solution found
3 Initialise full construction graph
4 while termination criteria not met do
5 for each ant do
6 Begin path at start node
7 while ant not reached end node do
8 Choose next node probabilistically based on state transition rules

9 Evaluate solution encoded by completed path

10 Optionally improve iteration best solution using local search
11 Apply offline pheromone update

Algorithm 3 outlines the steps of a basic ACO, where 0 ≤ ρ < 1 is the

‘evaporation’ parameter used to uniformly geometrically decrease pheromone levels

in line 11, and k is the number of virtual ants looped over in line 5. While these

steps describe a generic ACO, domain-specific variations and enhancements have

been developed in the literature.

In Socha, 2002, the construction graph for the proposed MMAS was a 2-D

lattice of nodes representing lectures × periods, with one extra node at each end to

serve as start and end points. A trivially small example of this, with 3 lectures × 2

71

periods, is illustrated in Figure 3.1. Node 7 in this case encodes an assignment of

lecture 3 to period 2.

1

2 4

3 5 7

6

8

Figure 3.1: 2-D construction graph with three lectures (arranged horizontally) × 2 periods
(vertically), plus start (1) and end (8) nodes.

Virtual ants construct paths from start to end, meaning that the sequencing of

lecture assignments is fixed. An attempt was made to pre-order lectures by ‘hardest

to assign’ first by way of the following:

c(l, l′) =





1, if lectures l and l’ have students in common

0, otherwise

(3.1)

Where c(l, l′) is a binary function that takes pair of distinct lectures and returns

student commonality.

d(l) = |{l′ ∈ L \ {l} | c(l, l′) ̸= 0}|. (3.2)

Where d(l) is a function of a lecture that returns the count of distinct lectures

it shares students with. L is the set of all lectures. A total order ≺ on lectures is

then defined:

l ≺ l′ ⇔ d(l) > d(l′)

∨ d(l) = d(l′) ∧ [f(l) < f(l′)]. (3.3)

Where f : L → N is an injective function invoked only for breaking ties.

This is a valid and simple way of defining ‘hardness to assign’, which nonetheless

exploits only one source of available information — namely student commonality.

72

The 2-D structure also makes this graph less susceptible to combinatorial explosion

when scaling. These beneficial features led to the very same architecture being

adopted in Ayob and Jaradat, 2009 and, it is implied, the same method of ordering

lectures. This total ordering was likewise adopted for a more recent UCTP ACO in

Badoni et al., 2023, in which a novel student grouping method was used to produce

competitive results for the ITC2007 track 2 benchmark.

Socha et al., 2003 attempted a direct comparison of ACS and MMAS for the

timetabling problem. The differences between the two algorithms in this context are

subtle but critical:

• While MMAS relies solely on stigmergic information, ACS also incorporates

heuristic information. This information is determined by evaluating the con-

straint violations caused by making a particular next assignment, given the

partial assignments made in the path so far. For the purposes of this calculation,

hard and soft constraint violations are weighted parametrically.

• In many ACO implementations, the solutions found by the basic algorithm are

enhanced by way of a local search improvement phase. In the case of MMAS,

only the solution with the fewest constraint violations is chosen, which is then

improved upon until either a local minimum is encountered or a time limit

elapses. ACS however runs its improvement routine on all candidate solutions

generated, but varies the number of steps according to how good the starting

solution is.

• As originally described, the procedure by which pheromones are updated differ

between ACS and MMAS. In the former, virtual ants apply local updates

on edges during construction of a path. After each iteration, the single best

performing ant (iteration best) then applies a global pheromone updating rule.

In the latter, a dynamic mix occurs whereby one of either the global best

ant or the iteration best ant update pheromones on their respective trails. In

practice, update procedures are often modified. For example in Matijas et al.,

2009, which is discussed in further detail later, either the global best ant or

73

the iteration best ant are used in a static ratio of 5% to 95%. Further, not

all edges in a path are updated uniformly, but according to a measure of the

goodness of each individual assignment.

• Perhaps the most fundamental difference between these variants though is that,

in MMAS, the pheromone levels are bounded between parameters τmin and

τmax. This mitigates against premature convergence to potentially sub-optimal

solutions by allowing for more sustained exploration of the search space. The

extent of this can be controlled by the tuning the bounding parameters.

In Socha et al., 2003 — with both algorithms implemented faithfully as outlined

above — MMAS outperformed ACS on all the benchmark problem instances tested.

However, the authors posited that the high cost of the ACS local search routine

may have been partly responsible for this disparity. In attempting a more equitable

comparison, the authors tweaked the algorithms in order to make their operational

complexity more similar. While this had the effect of bringing the quality of results

closer together, on average MMAS still remained the better performer.

In a further comparative study, Socha et al., 2003 found that MMAS compre-

hensively out-performed ACS on a set of UCTP instances of varying size. These

instances were created by the Paechter problem generator (as referred to in Lewis

and Paechter, 2005). It was concluded that the ACS had made inefficient use both

of heuristic information and local search.

3.1.1.2 Course assignment order

Matijas et al., 2009 investigated the laboratory exercises timetabling problem (LETP)

— a subset of the general UCTP. Efficiency of the construction graph was again cited

as a cardinal concern, particularly as the authors’ aim was to implement their system

for real world scheduling at their institution, the University of Zagreb. Construction

of the graph here differed from Ayob and Jaradat, 2009 with the introduction of ‘dock

nodes’ — an ordered pair of room and period. The construction graph was tripartite,

with independent sets L of lectures, D of dock nodes and S of students. Edges were

used to connect nodes in L with D and in D with S, yielding an upper bound on

74

the number of edges of (l + s)pr, where l, p, r and s were used to denote numbers of

lectures, periods, rooms and students respectively. Pre-processing typically reduced

the graph by eliminating edges known a priori to be invalid. The issue of maintaining

feasibility was handled by so-called ‘constraint fences’, which were particular to each

individual virtual ant. While the construction graph in essence remained static,

certain edges were rendered invisible to virtual ants whenever crossing them would

render a partial assignment infeasible in that particular path. This was achieved by

forcing the heuristic value to zero as appropriate. The order in which the events

— laboratory exercises in this study but equivalently, lectures — were scheduled

was not fixed, but reset before each new iteration. The new order was determined

with reference to the best path from the previous iteration. Events having more

unscheduled students in this path were given higher priority in the next iteration.

The idea of dynamic lecture ordering also appears in Mayer et al., 2012,

whose approach earned 4th place for the ITC2007 track 2 (post enrollment). Here,

pheromones were associated with nodes rather than edges. This is permissible

because, while the order of lecture assignments may impact directly upon the efficacy

of an algorithm, it has no meaning in the context of a solution’s finalised timetable.

Therefore nodes, along with their pheromone values, can be shuffled during a run.

The approach taken was to generate a uniform random permutation of lectures, πe,

at each iteration. The priority of periods and rooms were also randomised, but

with weights corresponding to their current pheromone values. In this way, the

probabilistic element of the ACO was shifted and the assignments were technically

made in a greedy deterministic fashion. The naive randomisation of πe would appear

less sophisticated than in Matijas et al., 2009 and yet there is uncertainty in the

literature around the best method and even the importance of lecture ordering.

Patrick and Godswill, 2016 are one of the few research teams to have used

the ITC2007 track 3 benchmark in their ACO-based approach to timetabling as a

single-objective problem. Of particular interest for this review is their initial phase

construction graph, which was bipartite and fully connected. One part was made

up of lecture nodes while the other comprised combined room-period nodes. Trails

75

began at a random lecture and there was no fixed ordering of lecture assignments.

The authors accepted in their conclusions that the expressiveness afforded by this

representation was worth the higher compute time, also finding that 8 was the

optimal number of virtual ants for their system. A recent ACO interpretation by

F‌o ‌t‌o‌v‌v‌a‌t ‌i and M ‌i ‌r‌g‌h ‌a‌d‌e ‌r‌i, 2023 retained the same style of bipartite construction

graph, while introducing a dynamic bias to the pheromone update rules which was

found to aid convergence.

Thepphakorn and Pongcharoen, 2012 also experimented on the ITC2007 using

ACO. Their approach to ordering invoked graph colouring based heuristics, namely

random ordering (RO), largest enrolment first (LE), largest degree first (LD), largest

coloured degree first (LCD), largest weighted degree first (LWD), and saturation

degree (SD) (Burke et al., 2007). These heuristics work by determining a priority

level for each event (equivalently, course or lecture) and ordering accordingly. LE,

for example, attaches higher priority to course lectures that have a larger number

of enrolled students, whereas the authors’ proposed method — largest unpermitted

period degree first (LUPD) — uses the number of unavailable periods in a similar

fashion. Employing an ACO variant known as rank-based ant system (AS-Rank)

(Bullnheimer et al., 1999), the construction graph was determined heuristically in

an initialisation phase before the optimisation was allowed to proceed as normal.

Six heuristic techniques were tested: RO and LE, as well as LUPD — alone and

combined in series and in parallel with LE. The percentage of solutions that were

feasible over a limited-iteration AS-Rank run was used as the primary performance

metric. Results showed superior performance of the hybridised LUPD+LE heuristics,

both in terms of the feasibility metric and speed of computation.

Other practitioners using ACOs have implied the use of similar simple heuristics

for event ordering. In Lutuksin et al., 2009, the brief description is found: “sort

courses (C) according to the priority of events and student sizes”, with no further

detail provided. Meanwhile, in Munirah et al., 2019, experimental results were

presented with and without “priority”, where, “priority is given on several tests to

76

determine the allocation of course timetabling for a different large number of students

to be scheduled into the prescribed time”.

3.1.1.3 Constraint handling

As the UCTP is a highly constrained problem, another vital aspect of any ACO

solver is (hard) constraint handling. Blum and Roli, 2003 listed three high-level

approaches to dealing with an infeasible solution returned by a metaheuristic:

1. Discard the solution as useless.

2. Apply an artificially heavy penalty to the solution.

3. Use appropriate operators to repair the solution.

In Patrick and Godswill, 2016, illegal moves that may have been needed to

complete a solution were only made available to a virtual ant once no legal alternatives

remained. This is one of several types of possible constraint relaxation approaches.

Permitting illegal moves, even as a last resort, can result in infeasible timetables

during the optimisation process.

Nguyen et al., 2016 related that in many ant colony applications, hard con-

straints are subject to a full relaxation. At the end of an iteration, any constructed

solutions found to be infeasible are then penalised heavily. This approach opens up

connectivity across the entire search space while making individual solutions easier

to construct. However, overall efficiency losses may be incurred as the search process

can take longer to locate feasible areas of interest. To combat this performance issue,

the authors — using an ACO on an optimal crop and water allocation problem —

adopted an approach at the other extreme. For each trail node visited, all subsequent

nodes that would cause a hard constraint violation by virtue of a dependency were

effectively eliminated from the construction graph in real time. The authors referred

to the procedure as a dynamic decision variable (DDV), and its effect was to concen-

trate the search exclusively in the space of feasible solutions. Cross-problem domain

applicability is evidenced in Golding et al., 2017, in which the authors incorporated

DDV in a multi-objective ant colony modelling global food security.

77

Another concept which appears in the ACO for timetabling work by Djamarus

and Ku-Mahamud, 2009 is that of negative pheromones. Positive pheromones are

traditionally used in ACOs to boost the probability of choosing paths leading to

preferred solutions. Their negative counterpart was used here to discourage virtual

ants from choosing paths that led to ‘dead ends’ in the solution construction. Chmait

and Challita, 2013 elaborated further on the idea as it related to their ACO treatment

of the examination scheduling problem. At the point of assignment of an exam

j that immediately followed an exam i, checks were made not only for conflicts

between the placements of i and j, but also potential conflicts with all other exams

yet to be assigned. Where conflicts were uncovered, a negative pheromone was

incorporated into a local update procedure performed by virtual ants at each step of

their construction trail. The risk of running out of feasible placement options later

in construction was therefore pre-emptively mitigated.

3.1.1.4 Summary

It is apparent that the twin aspects of lecture assignment order and constraint

handling can complement each other in a well-designed ACO. A beneficial lecture

ordering can decrease the amount of naturally occurring hard constraint violations

and thus the computational load required to handle them. This section has reviewed

various approaches to both elements, as applied to both real world and simulated

timetabling problems as well as other related problem domains. The following sections

cover the technical details of the proposed MMAS, supplementary components and

experimentation.

3.2 Methodology

For ease of reference, this section begins with a high level overview of the entire

proposed system, illustrated by two schematics. The first schematic, Figure 3.2,

depicts the training process. Beginning with a set of small training problems, all

of the possible course permutations are queued up. For each distinct permutation,

the MMAS then solves the corresponding problem. A performance measure can

78

thereby be attributed to each permutation for each problem. These target values

are then used to train a regression model, denoted for convenience by T0. The full

rationale behind T0 is given in Section 3.2.3, while the generation of its training set

is described later in Section 3.3.2.
T
ra
in
in
g
p
ro
b
le
m
s

All Permutations
Regression
model T0

MAX-MIN
Ant System

Figure 3.2: A schematic of the training phase.

The second schematic, Figure 3.3, illustrates the benchmark experiment phase,

in which unseen ITC2007 problems are solved. Having learned how to identify a

good permutation of courses, T0 is used to inform the operation of a basic genetic

algorithm1 (details of which are given in Section 3.2.4). The permutation space of the

problem is mapped to the equivalent space of the learned permutations. The genetic

algorithm searches this space to locate a promising permutation. The mapping,

T0, and the genetic algorithm are referred to in combination as the Permutation

Predictor. Set against this approach is a baseline comparator known as Random

Permutation, which has no learned behaviour and merely selects a permutation at

random. The MMAS solves the problem as before. For both Permutation Predictor

and Random Permutation, local search can be enabled or disabled as part of the

MMAS, meaning that, in total, there are four variants tested. These are denoted

PP-LS, PP, RP-LS, and RP, as laid out in Figure 3.3.

3.2.1 MMAS design

3.2.1.1 Solution representation

In contrast to the 2-D construction graph used in Socha, 2002, the initial (proof of

concept) design used a 3-D lattice of rooms × periods × lectures, plus start and

end nodes. A 3-D architecture contains additional information and was described

1 A simple greedy search is sufficient for the proof of concept stage and so replaces the genetic
algorithm for the proof of concept version only.

79

Random
Permutation

GA / Greedy
search

Regression
Model T0

Mapping

B
en
ch
m
ar
k
p
ro
b
le
m

Predictor?

Local
Search?

Local
Search?

Permutation Predictor MAX-MIN
Ant System

PP-LS

PP

RP-LS

RP

Yes

No

Yes

No

Yes

No

Figure 3.3: A schematic for the benchmark experiment phase. The mapping, T0, and the
genetic algorithm comprise the proposed Permutation Predictor. Random Permutation is
used as a naive baseline comparator. Experiments are conducted with and without local
search, giving a total of four experimental MMAS variants in all (PP-LS, PP, RP-LS and
RP).

in Mayer et al., 2012 as a more “expressive” option than the graph in Figure 3.1,

but with a cost trade-off. In gaining a more rigid, comprehensive embedding of hard

constraints, a data structure of higher combinatorial complexity is required, which

can impact on efficiency. Below, some reasons are given as to why this trade-off was

initially accepted, and how the cost was mitigated.

1

2 4

8 10

3 5

9 11 13

7

6

12

14

Figure 3.4: 3-D construction graph with 3 lectures (arranged horizontally) × 2 periods
(vertically) × 2 rooms (front to back), plus start (1) and end (14) nodes.

Figure 3.4 shows the (full) 3-D composition for a toy example, with lectures on

the horizontal (left to right), periods on the vertical (top to bottom) and rooms on

the mutually orthogonal plane (front to back). A direct ordered encoding was used as

shown such that, here, node 7 denotes an assignment of lecture 3 to period 2, room

1. The layer of nodes depicted with dashed edges (8, 9, 10, 11, 12, 13) constitute

80

room 2 assignments, and nodes 1 and 14 are start and end nodes respectively. In

general, this graph has lpr + 2 nodes and an upper bound of 2pr + p2r2(l − 1) edges

for the given architecture. Inequality (3.4) gives an upper bound on the density of

the adjacency matrix and, in these applications, this ratio was typically observed to

be less than 0.10.

2pr + p2r2(l − 1)

(lpr + 2)2
≤ 0.25. (3.4)

Computational savings were therefore made by storing the construction graph

as a sparse matrix data structure. Pre-processing was invoked on this to remove edges

from all nodes representing unavailable assignments in the problem instance, thereby

guaranteeing satisfaction of H4. Further savings were attempted by decreasing the

graph size dynamically. At each step in a virtual ant path, edges connected to the

following nodes were removed: The previous lecture × room layer and the previous

period × room layer, to ensure feasibility with regard to hard constraints H1 and H2

respectively. In certain problems that are highly constrained by unavailable periods,

this could sometimes cause virtual ants to reach dead ends when constructing a path.

There are several ways to handle this possibility — the proof of concept method

being to abort the partial path and enforce an unguided restart. Algorithm 4 outlines

the initial MMAS — note the instruction to “restart current path” on line 15.

It was only when experimenting with larger problems that two major pitfalls

of this first design became evident. These are the memory issues caused by the

highly connected construction graph, as well as the recurring failure of restarts. An

improved representation was therefore devised for the final design, and the path

restart replaced with a more nuanced strategy.

This final model construction graph is depicted in Figure 3.5 as a 3-D matrix

plus start and end nodes. Its dimensions are equal to the cardinalities of the sets

of periods (|P|), lectures (|L|) and rooms (|R|). Rather than connect nodes by

edges, an edgeless graph is employed instead, in which the pheromone is deposited

directly on nodes. It is noted in Mayer et al., 2012 that this treatment — known as

a permutation-based ACO — removes the complexity and memory issues associated

81

Algorithm 4: Proof of concept MMAS with path restart

1 Input: Parameters τmin, τmax (bounding), ρ (evaporation), q (deposition
scaling factor), k (number of virtual ants), problem instance, course
permutation

2 Output: Best timetable solution found, by SCV value.
3 Initialise full construction graph MatrixH

4 Remove unavailables
5 MatrixP ← MatrixH× τmax
6 for iterations do
7 Initialise empty data structure antPaths to store ant paths
8 for each ant do
9 Begin path at start node

10 Initialise dynamic copy MatPCopy of MatrixP
11 Initialise empty CurClashList

12 while ant not reached end node do
13 Remove edges of nodes in CurClashList from MatPCopy

14 if no possible next move then
15 Restart current path
16 else
17 Select next move probabilistically

18 Append next move to current path
19 Remove edges of previous lecture × room layer of nodes from

MatPCopy

20 Remove edges of period × room layer of nodes from MatPCopy

21 Add nodes representing future curriculum clashes to
CurClashList

22 Save ant path to antPaths

23 Evaluate SCV for all paths and select update path according to schedule
24 Pheromone, evaporation update procedure on MatrixP and bound new

values by τmin, τmax

with handling a large matrix of edge values. Each virtual ant begins its trail at the

start node, s, before visiting exactly one node in each lecture plane and terminating

at node e. Every node in the main matrix corresponds to a distinct placing of a

lecture, and thus a trail encodes a complete solution timetable.

3.2.1.2 Penalty scheme

The original ITC2007 scoring regime is extended to encompass infeasible solutions

too. The SCV therefore incorporates a supplementary heavy penalty for every hard

constraint violation. In the case of H1, H2 and H4, no such violations are possible,

as explained. In the case of H3 and H5, a penalty of 20,000 points is incurred for

82

s e

l1 l2 l3 ... lγ ∈ L

C1 C2
... Cδ ∈ C

Lecture assignment

r1

...

rψ ∈ R

R
oo
m

d1

d2

..
.

dα
∈ D

p1
p2
p3

..
.

pβ
∈ P

P
er
io
d

Direction of virtual ant
in solution construction.

Figure 3.5: The MMAS construction graph as used in the final model, where {d1 . . . dα} ∈ D
is the set of days, {p1 . . . pβ} ∈ P is the set of periods, {l1 . . . lγ} ∈ L is the set of lectures,
{C1 . . . Cδ} ∈ C is the set of courses, {r1 . . . rψ} ∈ R is the set of rooms and s and e are
start and end nodes respectively. Cubes in the diagram represent nodes in an edgeless
graph, which is stored as a 3-D matrix. Additionally, T is the set of teachers and N
denotes the set of unavailable periods. {U1 . . . Uθ} ∈ U is the set of curricula, where courses
are members of one or more curricula.

every pairwise curriculum or teacher clash respectively. The value of this penalty

is such that a feasible timetable has a lower cost than an infeasible one with high

probability, regardless of how great the number of soft constraint violations.

3.2.1.3 Pheromone update

Pheromone update is achieved by an elite update strategy based on the original

MMAS description. While k virtual ants independently complete k trails in a given

iteration, only one solution (assigned to a variable updater) is used in each iteration

to update the pheromone values. This may either be the highest quality solution

found in the most recent iteration (iterBest) or the highest quality solution found

during the search history thus far (globBest). The choice of which is determined by

a schedule as outlined in Table 3.1. For the first 5% of the iteration run, iterBest

is used exclusively. From then onwards, globBest gradually begins to predominate

according to a piecewise function of the iteration number. The purpose of this

83

Table 3.1: The schedule of solution selection for update in MMAS.

Period of run globBest frequency iterBest frequency

0% - 5% 0 1
5% - 15% 1/5 4/5
15% - 25% 1/3 2/3
25% - 50% 1/2 1/2
50% - 100% 1 0

function is to slowly increase intensification following initial exploration of the search

space.

In the proposed system a CPU time budget is specified. When the budget has

been exceeded the ongoing iteration is completed before termination. To ensure that

the schedule in Table 3.1 runs its course, an adaptive re-scaling factor is introduced.

This compresses or expands the schedule in real time based on the number of

iterations forecast to complete before the CPU time limit is reached.

The formula for the (unbounded) update of a pheromone value hi is given in

(3.5).

hi :=





(1− ρ)hi + q
SCV

, if node i is visited in trail

(1− ρ)hi, otherwise.

(3.5)

Where 0 ≤ ρ < 1 is the ‘evaporation’ parameter and q is a deposition scaling

factor.

For the MMAS to function as intended, the deposition quantity q
SCV

ought

to be of the same order of magnitude as the evaporation. For this reason, and for

experimental consistency, q
SCV

is fixed against ρ by tuning q relative to the problem

instance.

In order to estimate the order of magnitude of SCV for initial feasible solutions,

a faster, unguided variant of the MMAS with no pheromone update, but enhanced

with local search operators, is run. Taking the mean, µSCV , of the first 5 feasible

solutions found, q := 2.5 × ρ × µSCV . This ensures that feasible solutions exert a

stronger influence on the update procedure compared to infeasible ones.

84

The update procedure is completed in accordance with (3.6). Here, upper and

lower bounds are imposed on the values assigned in (3.5).

hi :=





τmax, if hi > τmax

τmin, if hi < τmin

hi, otherwise.

(3.6)

All pheromone values are initialised to the value of τmax at the start of the

MMAS to promote exploration (as per line 5 of Algorithm 4).

3.2.1.4 Dynamic hard constraint handling

For each course, periods linked to potential violations of hard constraint H4 are

known a priori from the problem inputs. H4 is therefore handled in a static fashion

by setting pheromone values to zero for all relevant nodes. Hard constraints H2,

H3 and H5, however, have dependencies on previous lecture assignments, which

require a dynamic constraint handling approach during trail construction. Below, an

assessment is made of two of the methods discussed in Section 3.1.1.

Full relaxation In the first case, the dynamic handling of hard constraints was

fully relaxed in order to guarantee complete assignment of lectures. Moves to nodes

invoking hard constraint violations were permitted, and the completed solution was

penalised heavily according to the regime outlined. Initial experiments indicated

that, unless q was re-tuned to the magnitude of the greatest possible SCV values,

this search tended to stagnate in the infeasible solution space. Setting a high

value for q was undesirable though as q (and hence q
SCV

) then became increasingly

disproportionate and unbalanced as the search moved into more feasible regions.

Zero-tolerance In the second case, at each trail step at which an ant assigned a

lecture lb from course Ci to a period pa and room rc, we considered the set of nodes

encoding pa for all lectures lb+1 . . . l|L| yet to be assigned, whose pheromone value was

nonzero. Of this set, the following subsets were reassigned to zero: In respect of H2:

All with room index c. For H3: All whose course belonged to one or more curricula

85

of which Ci was also a member. For H5: All whose course shared the same teacher

as Ci. This rigid prescription on ant moves guaranteed no violations of the hard

constraints listed above. This offered performance benefits by restricting the search

entirely to the domain of feasible solutions — provided that all lectures could be

assigned, i.e. H1 was not violated. In certain problems that are highly constrained

by unavailable periods, it was too often the case that virtual ants encountered ‘dead

ends’, where every potential move in the next lecture plane had zero probability.

Zero-tolerance was therefore considered overly suppressive as a stand-alone strategy.

A workable compromise between these two extremes was therefore proposed.

The deployment of dynamic artificial penalties guarantees complete lecture assignment

while severely discouraging illegal moves. As in the case of zero-tolerance above, the

set of newly prohibited nodes is collected at each trail step. Rather than using zero

as the re-assignment value though, a novel, positive value, τshelf , is defined between

zero and τmin:

τshelf = τmin/(|P| × |R| − 1). (3.7)

The proposed formula fixes a worst-case bound on the cumulative probability

of making an illegal move such that it never exceeds that of making a legal move.

Virtual ants can now distinguish between nodes that are illegal and nodes that are

either under performing or as yet unexplored. To assess the efficacy of this idea,

a comparison was made with the fully relaxed approach. For both variants, 30

repetitions of 6 benchmark problems were run, using a budget of 500,000 function

evaluations. The problems chosen were comp01, comp04, comp11, comp17, comp18

and comp19. The fully relaxed approach failed in every case to find feasible solutions,

whereas the dynamic artificial penalty using τshelf approach was always successful in

this regard. Due to parameter q being fixed, the highest SCV values offer negligible

adjustments to the pheromone matrix, leading to difficulty for the former in escaping

the infeasible search space. The benefits of a successful dynamic constraint handling

approach is to move the system search into the more exclusive feasible space more

86

quickly, reducing the need for an adaptive or re-calibrated q, and therefore dynamic

artificial penalties using τshelf is approved as the default constraint handling technique.

With regard to the implementation, this also enables the flagging of hard constraint

violations in real time, leading to significant efficiency gains as outlined in the next

section.

3.2.1.5 Smart function evaluations

By understanding the context around the solutions, not every one need be evaluated

in full. Partial function evaluations are known to be effective in reducing overall

computation time. When a virtual ant constructs a solution, it carries an associated

feasibility flag, which is passed to the function evaluator. Depending on this and

other circumstances, three outcomes are possible:

1. A full function evaluation is executed and the SCV returned. If flagged

as feasible, virtual ant solution 1 of k is always fully evaluated, as are any

subsequent solutions which improve on the current best SCV value found in

this iteration.

2. A partial function evaluation is attempted before being aborted. For

all solutions subsequent to the first full evaluation, violations of individual

constraints are calculated in sequence from least computationally expensive to

most, with a running total kept of the cost. As soon as it becomes evident a

solution cannot be the iterBest, the evaluation is halted and discarded.

3. No evaluation is computed. This occurs when a solution is carrying an

infeasibility flag and at least one of the other solutions in this iteration is

feasible and therefore automatically preferable.

This strategy promotes efficient use of the CPU time budget by accelerating

the iteration rate.

87

3.2.2 Local search routine

The local search routine is domain-specific and can be enabled or disabled in accord-

ance with the variant being studied. When activated, the routine tries to improve

upon updater (the solution chosen to update the pheromone values with), at each

iteration where updater is feasible. Local search includes three of the perturba-

tion operators described in chapter 5.3 of Müller, 2009: timeMove, roomMove and

lectureMove. In brief, these operators select a random lecture and attempt to move

it to either a new period, room or some combination of the two respectively. This set

is augmented with a swap operator periodRoomSwap which attempts to swap the

room and period of two randomly chosen lectures. The local search routine is para-

meterised by attemptsLS and iterLS. It begins by choosing one of the four operators

(timeMove, roomMove, lectureMove, periodRoomSwap), with equal probability. It

then attempts to find a new feasible solution within the induced neighbourhood, to

a maximum of attemptsLS attempts. In the case of the first three operators, the

search proceeds sequentially following each failed attempt. For example in timeMove,

if moving randomly chosen lecture li to period 17 proves to be infeasible, it is followed

by an attempt to move the same lecture to period 18. Upon reaching the final period,

the process cycles back to period 1. If a new feasible solution is identified within

the threshold attempts, it is returned and evaluated. For computational efficiency,

partial function evaluations are once again used. If the new solution improves upon

the current best SCV for the local search, it becomes the starting solution for the

next step. iterLS steps are run before re-assigning updater as the best new solution

found.

3.2.3 Regression model T0

T0 is one part of the Permutation Predictor, as shown in Figure 3.3. It incorporates

a set of decision trees trained on an experimentally generated set of training data.

This data is comprised of artificially small-sized problems, for which all permutations

can be practically evaluated — full details about the data are given in Section 3.3.2.

A decision tree approach serves a useful purpose here as this form of machine learner

88

is transparent, human readable and easy to interpret, while also being relatively

quick to train. Its simple representation, employing logical rules, offers an intuitive

and cost-effective way to map to larger problem instances.

3.2.4 Genetic Algorithm

Given an unseen problem, a search can be run over its course permutation space for

permutations of high fitness. Fitness here corresponds to the normalised predicted

performance of that permutation under T0. For the proof of concept experiments, a

simple greedy search was sufficient, but in the final model, the genetic algorithm is

used. In the following section, full details are given on the genetic algorithm and the

rest of the experimental setup. Before this, however, the proof of concept stage is

briefly described, in which a more limited version of the final system was tested. Its

purpose was to demonstrate and establish the viability of the idea before making

refinements.

3.3 Experimental setup

The overarching aim in this chapter is to develop an MMAS to test the effect that

permuting lecture order in the construction graph has on solution quality. In first

proving the concept, a simplified UCTP formulation was used — one that omits both

teachers and multiple curricula membership. The following Section 3.3.1 describes

this proof of concept model in depth, while Section 3.3.2 provides detail on the final

model. Table 3.2 summarises the key differences between the two models, as well as

highlighting the key novelties in the final model.

3.3.1 Proof of concept

For this proof of concept approach, experiments were carried out using the toy

problem (shown in Figure 2.2) and 13 other similarly sized problem instances that

were reverse engineered by hand. By design, all had at least one known perfect

solution — meaning an optimum at SCV = 0. The number of courses was fixed to 4

89

Table 3.2: A summary of the differences between the proof of concept model and the final
model. Key novelties in the final model are indicated with asterisks (*). A column for
future work is also preemptively included.

Proof of concept Final model Future work
Construction graph 3-D lattice (Fig-

ure 3.4.)
Permutation-
based (Figure
3.5.)

Permutation-
based

Constraint handling Unguided reset
for dead ends

Partial relaxa-
tion using τshelf∗

Partial relaxa-
tion using τshelf

Training data source Manually gener-
ated

Semi-automated
instance gener-
ator*

Fully automated
instance gener-
ator

Training instance size 4-course 5-course Up to 8-course
Target values Mean SCV found

within a func-
tion evaluation
budget

Mean number of
function evalu-
ations taken to
reach SCV = 0,
or a timeout

Mean number of
function evalu-
ations taken to
reach SCV = 0

Mapping Average over
quartiles

Average over
quintiles*

Average over
smaller divisions

Problem description ITC2007 Track 3
without teachers
and multiple cur-
ricula member-
ship

ITC2007 Track 3 Other

as this kept the size of the permutation space manageable at 4! = 24. The number

of days and periods were similarly fixed across the set, at 5 and 20 respectively.

Other factors such as minimum working days, number of students per course were

independently varied between instances.

Table 3.3 displays some principal characteristics of these 14 training problem

instances, which are named PIX, X ∈ {1 . . . 14}. For each training instance, every

permutation was tested over 30 repetitions, with the number of iterations set to 400.

As well as this limit being time-effective, an iteration run longer than this would

have increased the chances of the algorithm arriving at perfect solutions regardless

of the permutation. As the performance measure is the best SCV, such an outcome

was undesirable as it would have made it harder to discern between permutations.

90

Instance Rooms (caps.) |U| Course ID Lectures Curriculum mwd(Ci) Unavailable periods
PI1 2 (32, 50) 2 1 3 1 3 0

2 3 1 2 4
3 5 2 4 4
4 5 1 4 0

PI2 2 (32, 50) 2 1 3 1 3 0
2 3 1 2 2
3 5 2 4 4
4 5 1 4 0

PI3 3 (25, 35, 50) 3 1 4 2 3 6
2 5 1 3 3
3 3 2 2 2
4 2 3 1 1

PI4 2 (32, 50) 2 1 3 1 2 0
2 2 1 2 2
3 5 2 4 4
4 4 1 3 0

PI5 2 (32, 50) 2 1 3 1 3 0
2 3 1 2 4
3 5 2 4 4
4 5 1 4 0

PI6 3 (32, 50, 25) 2 1 2 1 2 4
2 2 1 1 3
3 3 1 3 4
4 2 1 2 7

PI7 2 (32, 50) 2 1 3 1 3 2
2 2 2 2 1
3 3 1 4 0
4 4 1 3 5

PI8 4 (50, 40, 35, 20) 2 1 4 1 2 2
2 2 1 1 4
3 5 2 4 1
4 3 1 2 7

PI9 2 (32, 50) 2 1 2 2 1 2
2 5 1 2 5
3 3 1 3 3
4 6 1 2 0

PI10 4 (50, 40, 35, 20) 2 1 3 1 3 11
2 2 1 3 6
3 3 1 2 8
4 4 2 2 12

PI11 3 (40, 50, 20) 2 1 4 1 3 8
2 2 1 1 3
3 4 2 2 0
4 5 2 3 10

PI12 3 (25, 35, 50) 3 1 2 3 1 9
2 3 2 2 6
3 4 2 3 0
4 6 1 4 3

PI13 3 (25, 35, 50) 3 1 3 3 2 2
2 5 1 3 4
3 5 2 4 1
4 7 2 5 6

PI14 3 (25, 35, 50) 3 1 3 3 1 8
2 4 2 3 6
3 5 2 2 2
4 6 1 4 0

Table 3.3: The proof of concept training set of 14 problem instances, where |U| is the
number of curricula and mwd(Ci) is the minimum working days requirement for a course
i. Characteristics shown are number of rooms (with respective capacities) and number of
curricula. Then for course ID ∈ {1, . . . , 4}; number of lectures, curriculum membership,
minimum working days and number of unavailable periods.

91

3.3.1.1 Permutation testing

Figure 3.6 is an illustrative triple plot showing results for the permutation [4 3 2 1] —

which is written for ease as 4321 — of PI1. The top row of plots show the iteration

best SCVs as black points and the global best SCV as a red line. The single best

and worst repetitions are shown. The gradual shift from exploration to exploitation

of the feasible space is observable, as well as the variation in end result due to the

stochastic nature of MMAS. The bottom plot shows convergence of the global best

SCV for all 30 of the repetitions.

0 100 200 300 400

0

20

40

60

80
Best rep. SCV=2

0 100 200 300 400

0

20

40

60

80
Worst rep. SCV=13

0 50 100 150 200 250 300 350 400

0

20

40

60

80
All 30 reps. Convergence of global best. Mean SCV=7.4667

Iteration number

S
C
V

S
C
V

Figure 3.6: Convergence plots for various repetitions of permutation 4321, PI1. The top
row plots show the best and worst performing repetition, respectively, while the bottom
plot shows results for all repetitions. Lines trace the global best while points (only on the
top plots) denote the iteration best.

The distribution of this global best SCV at termination is also displayed as

a boxplot in Figure 3.7, alongside those obtained from the other 23 permutations.

The first intuition from Figure 3.7 is that, all else being equal, changing the order of

lectures by permuting the courses has a marked effect on solution quality. For PI1,

the best performing permutation (by µ̂, the mean best SCV found over the sample

repetitions) was the course ordering 2314, with µ̂ = 2.8. The worst performing

92

Figure 3.7: Boxplot of sample distributions (30 samples) of the best SCV found over 24
course permutations of PI1. The central mark indicates the median, while the top and
bottom edges of the box indicate the 75th and 25th percentiles respectively. The whiskers
cover all remaining data points not considered outliers, with outliers shown as circles.

was 1423 with µ̂ = 6.83. Other instances yielded similar levels of variation across

permutations as this instance.

One way to inspect the results for an instance is by sorting its permutations

by µ̂ value. However a more revealing visualisation can be achieved by taking

inspiration from the permutohedron (Schoute, 1911). Such an object of order n is

an (n− 1)—dimensional polytope in which each of its n! vertices corresponds to a

distinct permutation on the first n natural numbers. Two vertices are connected by

an edge if and only if their corresponding permutations are neighbours according

to some defined neighbourhood relation. As this proof of concept stage uses n = 4

courses, the corresponding object is a 3-D polyhedron. In the original permutohedron,

the polytope of order 4 forms a truncated octahedron. In the given visualisation, its

dual — a tetrakis hexahedron — is used, so that permutations map to faces rather

than vertices. Faces share a common edge if and only if one of the corresponding

permutations can be reached from the other using a swap operator on positionally

adjacent elements. For example, the face mapping 1234 has three edges which it shares

respectively with the faces mapping 2134, 1324 and 1243. For each permutation of an

instance, µ̂ (the mean performance over the repetitions) is converted by normalisation

to a greyscale value. The corresponding face of the polytope is then shaded according

to this value.

93

Figure 3.8a shows the visualisation for PI102. There is evidence of order, in

that neighbouring permutations show incremental differences in average solution

quality rather than sizeable disparities. For comparison and contrast, Figure 3.8b

shows the disordered structure generated by a random shading. While PI10 provides

the finest example of order, all instances in the set exhibit greater order than would

be expected for a random shading.

(a) PI10 permutations: Normalised sample means. (b) Xface ∼ U{0, 1}

Figure 3.8: A visualisation based on the conceptual permutohedron. Each polyhedral face
corresponds to a permutation on the first four natural numbers. Two faces share an edge
if and only if their permutations can be generated from one another using a swap operator
on two positionally adjacent elements. Faces are shaded according to a greyscale map
where 0 = black (best performing permutation) and 1 = white (worst). Values used in
(a) are the results obtained for PI10. Values used in (b) are randomly generated from a
uniform distribution, for comparison purposes only.

3.3.1.2 Training a predictor

Having established the existence of order or structure in the performance of different

permutations, a predictor was developed for use on unseen instances.

The features used were a combination of various course attributes (as given

by the column headings in Table 3.3) and the relative positions of courses within a

permutation. For this proof of concept stage, detail is omitted and 20 features are

nominally f1 . . . f20. However, a full explanation of how features are derived and

defined in the final model is included in Section 3.3.2.1.

2 A video animation showing a rotating polytope for PI10 can be seen at: https://youtu.be/
psETpqmvwS8.

94

https://youtu.be/psETpqmvwS8
https://youtu.be/psETpqmvwS8

f19 < 0.51 f19 ≥ 0.51

f4 < 0.51 f4 ≥ 0.51 f4 < 0.67 f4 ≥ 0.67

f16 < 0.29 f16 ≥ 0.29

f14 < 0.75 f14 ≥ 0.75

0.55f14 < 0.67 f14 ≥ 0.67

0.41 0.33 0.29 0.69

f9 < 0.67 f9 ≥ 0.67
f1 < 0.71 f1 ≥ 0.71

0.13 0.19 0.74 0.84

Figure 3.9: The proof of concept decision tree generated from a 20-feature (nominally
f1 . . . f20) training set. Prediction values at leaf nodes indicate how well a permutation
characterised by the relevant branch is expected to perform relative to all others. Lower
valued predictions represent better predicted performance.

The proof of concept training set consisted of the 14 instances× 24 permutations

= 336 20-feature vectors. All values were subjected to min-max feature scaling. The

target feature for supervised learning was the mean predicted SCV, µ̂, which was

normalised in the same manner.

A decision tree was constructed using the standard CART node-splitting

technique (Breiman et al., 1983) and 10 fold cross-validation. Minimum leaf size was

used for termination and the tree was optimised over this parameter. The resultant

decision tree is visualised in Figure 3.9. The R2 value for this predictor over the proof

of concept training set is 0.67 (indicating moderate rather than absolute predictive

power) while the optimised minimum leaf size is 28. In avoiding overfitting, a fairly

coarse tree was produced, with nine single-value predictor leaf nodes. These range in

value from 0.13 to 0.84 and, as the problem is one of minimisation, paths to these leaf

nodes represent high quality and low quality permutation performance respectively.

In the next step, the predictive power of the decision tree was exploited for an

unseen test problem — comp01 from the ITC2007 track 3 benchmark. This problem

comprises 30 courses (a total of 160 lectures), 14 curricula and 6 rooms. It is larger

in all respects than the proof of concept training set problems, and thus a form of

transfer learning or scaling was needed.

95

Q
4

Q
3

Q
2

Q
1

|C| = 4

|C| > 4, |Qn| ≈ |C|/4, n = 1 . . . 4

f1 =
1

|Q1|
∑

C∈Q1
lnorm(C)

. . .

. . .

. . .

. . .

Figure 3.10: The mapping from 4-course proof of concept training problem to a generalised
larger problem instance. For illustrative purposes, feature f1 is the number of lectures in
the first ordinal course, when |C| = 4. When |C| > 4 as in the larger problem, f1 is derived
through averaging the lecture count over the courses in Q1, the first quartile. For this
purpose, lnorm(C) is the number of lectures in course C, normalised over those for the
entire instance.

The proposed procedure for mapping from the 4-course proof of concept

training problem to the generalised larger case is illustrated in Figure 3.10. The

course assignment positions of the larger problem are divided into four sets (Q1 . . . Q4)

of equal integer-valued length (or approximately equal where 4 ∤ |C|), based on a

composition of the course cardinality. Feature values relating to course 1 in the

smaller problem map to the average value of the courses in quartile 1 of the larger

problem, and likewise for Q2, Q3, Q4.

A division into 4 equal integer parts is not possible for comp01, so the split is

made according to the composition [8 7 7 8]. The proof of concept system was tested

on comp01 in the case of both the best and worst leaf node predictions, which are

0.13 and 0.84 respectively. Table 3.4 gives two permutations on 30 courses whose

mapped feature values satisfy all node split conditions for the relevant branch of

the decision tree, for both the high quality prediction (top) and low (bottom). In

96

Q1 Q2 Q3 Q4

1 3 2 4 5 6 7 8 13 20 29 16 17 18 19 9 10 11 14 15 12 24 23 21 25 26 27 28 22 30

Q1 Q2 Q3 Q4

23 21 22 26 27 28 30 15 25 14 24 12 9 10 11 20 29 16 17 18 19 13 5 6 7 8 2 4 3 1

Table 3.4: Two permutations on the 30 courses of comp01. If the mapping works as
intended, the decision tree suggests that the top permutation will perform strongly and
the bottom permutation poorly.

Figure 3.11: Convergence of the global best SCV for 15 repetitions, in the cases of a
predicted high and low quality permutation on comp01.

this proof of concept version, these permutations were found using a simple greedy

search.

For each permutation, 15 repetitions of the MMAS were run over 5,000 itera-

tions. The pheromone update schedule in Table 3.1 was expanded proportionally

by a factor of 10 in order to better serve the increased search space and iteration

count. This meant switching to exclusive use of the global best solution for update,

for example, at iteration 2,500 and not iteration 250 as for the smaller instances.

Plots for the convergence of the global best SCV for all 15 repetitions are shown in

Figure 3.11.

The sample mean SCV in the case of the predicted high quality permutation

is 833.7, while that for the low quality prediction is 1671.3. A paired t-test rejects

the null hypothesis that pairwise difference between the best SCV values found

by repetitions of the first and second permutations has a mean of zero, with a

p-value of 2.82 × 10−11. Thus there is some evidence to suggest that the actual

performance of permutations on a benchmark problem may correlate with their

97

predicted performance according to the learned approach. The remainder of this

section describes the experimental setup of the more refined model, starting with

the building of a new set of training data.

3.3.2 Final model training data

In order to build up a new set of training instances for the final model, a problem

instance generator is proposed. This generator is designed to reverse engineer small

instances that have at least one perfect solution. The number of courses is increased

to five, for greater granularity. This is still small enough, though, that the entire

permutation space of size 5! = 120 can be evaluated for the complete set over multiple

repetitions in reasonable time. All final model training instances have 5 days per

week and 4 periods per day. Their other characteristics, such as number of lectures

and unavailable periods, are determined by drawing integers from appropriately sized

discrete distributions. The generated problems can also be manually adjusted to

increase the tightness of constraints as required. The generator can therefore be

described as semi-automated. To distinguish the final model training set from the

proof of concept training set, the new instances are named PIXN, X ∈ Z. The precise

steps of the generator are as follows:

1. The number of lectures in each of the five courses are set by taking independent

samples from a Gaussian distribution N (4, 1.32), truncated at 0.5 and 7.5, and

rounding to the nearest integer.

2. The minimum working days value for each course is chosen by sampling

uniformly from the integer set {1, . . . ,min(|D|, |L|)}.

3. A distribution of numbers of parent curricula over courses is chosen randomly

from a prescribed list. The required number of curricula are then randomly

sampled in the case of each course.

4. A sample from another prescribed list is used to assign teachers. Any configur-

ation of assignments involving 3, 4 or 5 teachers is possible.

98

5. Student numbers for each curriculum are determined by independent samples

from the discrete uniform distribution on {1,60}.

6. The number of rooms is sampled from the discrete uniform distribution on

{2,5}. Similar distributions on {min(stud(Ci)),80} and {max(stud(Ci)),80}

are used to sample the corresponding capacities for (|R| − 1) rooms and one

potentially larger room respectively.

7. The distribution of unavailable periods over courses is found by sampling the set

of integers from 0 to 7, with an incremental bias towards lower values. Periods

are then uniformly sampled the relevant number of times without replacement.

8. The core MMAS is used to solve the problem.

9. Problems are discarded as trivial if a perfect solution is found too quickly. They

are also discarded if no perfect solution can be found.

10. Steps 1. to 9. are repeated to build a set of problems.

11. Constraints are manually adjusted or tightened across the set in order to

promote diversity, without invalidating the known perfect solutions in any case.

Table 3.5: Characteristics of the final model training set of small problem instances.
Columns from left to right show name, number of lectures, curricula, teachers, rooms and
unavailable periods (for each of courses 1 to 5).

Name |L| |U| |T | |R| unav(Ci), i = 1 . . . 5

PI41N 23 3 4 3 {8,5,2,0,6}
PI58N 19 3 4 3 {3,0,8,4,1}
PI60N 23 3 4 2 {0,3,2,5,4}
PI62N 23 3 4 4 {5,2,1,4,10}
PI72N 18 5 3 3 {5,1,2,4,0}
PI86N 19 4 4 2 {0,1,4,4,1}
PI93N 24 3 3 3 {0,3,8,5,1}
PI94N 20 3 3 2 {0,8,3,4,1}
PI152N 23 5 3 3 {5,0,4,1,8}
PI212N 23 3 5 2 {2,0,4,0,0}
PI214N 25 4 4 5 {1,0,0,3,4}

99

Table 3.6: A list of eight feature types, defined for a course Ci. The properties mwd(),
stud(), teach() and unav() are the minimum working days, number of enrolled students,
teacher ID and unavailable periods for a given course, while cap() designates the capacity
of a given room.

Feature type Human intuition Definition (prior to normalisation)

lecs Number of lectures |Ci|
cur Number of curricula |{X ∈ U : Ci ∈ X}|
mwd Minimum working days mwd(Ci)

sturms Over-enrolment 1
|R|
∑

r∈R max(stud(Ci)− cap(r), 0)
unav Uavailable periods |unav(Ci)|

curConf Curriculum conflicts
∑

j ̸=i |{X ∈ U : Ci ∈ X} ∩ {Y ∈ U : Cj ∈ Y }|
unavConf Unavailablity conflicts

∑
j ̸=i |unav(Ci) ∩ unav(Cj)|

teachConf Teacher conflicts
∑

j ̸=i |teach(Ci) ∩ teach(Cj)|

3.3.2.1 Feature types and composite features

Eight feature types3 defined in Table 3.6 are taken either directly from the problem

descriptions or derived from inexpensive summations. Min-max feature scaling is

applied to these formulae in order to normalise the values between 0 and 1.

Feature types lecs, cur, mwd and unav record the relative number of lectures,

parent curricula, minimum working days required and unavailability constraints

respectively. These values are inherent to each course. Inter-course relationships are

captured by the feature types curConf, unavConf and teachConf. These record the

conflict density, or intersection size, between parent curricula, unavailable constraints

and teacher allocations respectively. Finally, the value stud(Ci) alone is uninformative

as a feature type without context of the room capacities, and so a compound measure

sturms is introduced. The sturms feature type is a metric relating student numbers

to room size. A sturms value of 0 implies that a course can be allocated to any

room without incurring an S1 penalty. A higher value indicates that a course is

over-enroled relative to at least one room.

When permuting courses, we are interested not only in attributes common

to courses, but the relative positions of courses within the permutation. To take

account of this, the eight feature types in Table 3.6 are composited with position

indices 1 . . . 5 and the resultant vectors concatenated. This yields a single feature

vector of length 8× 5 = 40 for each permutation. By way of a naming convention,

3 The term ‘feature type’ is used as distinct from ‘feature’ — the former is a raw attribute of a
course whereas the latter also incorporates the position of that course within a permutation.

100

3lecs is the composite feature whose value is the lecs value for the course assigned

in position 3 of 5, for example. The final model training data set therefore consists

of 11 instances × 120 permutations = 1320 40-feature vectors.

3.3.2.2 Target values

The target for supervised learning is the sample mean (over 15 repetitions) of the

number of full function evaluations taken to find a perfect solution. If no SCV =

0 has been found within a certain timeout, the number of full function evaluations

completed to that point is taken instead. The target values are normalised as before.

A complete list of other parameter settings is provided in Section 3.3.4.

3.3.2.3 Mapping

In order to make predictions about larger unseen problems where |C| > 5, the

following mapping, from unseen problem permutation space to its equivalent in T0,

is proposed: (
1

|Qi|
∑

C∈Qi

feat

)
→ ifeat (3.8)

for i = 1 . . . 5, where Qi is the set of courses comprising the ith quintile of a

permutation, by position, feat is the normalised value of a generic feature type, and

ifeat is the subsequent composite positional feature, for example 3lecs. By way of

this averaging, a standard 40-feature vector is obtained irrespective of the value of

|C|. Every such vector has an associated fitness — namely the normalised prediction

value returned by the regression model T0.

3.3.3 Problem Instances

For the benchmark experiments, 14 problems are chosen from the ITC2007 track

3 set, to encompass a range of size and complexity. The problems are divided into

three groups: Small, medium and large, based on the number of courses. The groups

and their characteristics are shown in Table 3.7.

101

Table 3.7: Characteristics of 14 of the ITC2007 track 3 problem instances, ordered by
number of courses, and headed using the notation introduced in Figure 3.5. From left to
right: Group (Small, Medium or Large), number of courses, lectures, curricula, teachers,
days per week, timeslots (or periods per day), rooms and unavailable periods.

Name Grp. |C| |L| |U| |T | |D| |t| |R| |N |
comp01 S 30 160 14 24 5 6 6 53
comp11 S 30 162 13 24 5 9 5 94
comp18 S 47 138 52 47 6 6 9 594
comp05 S 54 152 139 47 6 6 9 771
comp03 M 72 251 68 61 5 5 16 382
comp19 M 74 277 66 66 5 5 16 475
comp09 M 76 279 75 68 5 5 18 405
comp04 M 79 286 57 70 5 5 18 396
comp12 M 88 218 150 74 6 6 11 1368
comp17 M 99 339 70 80 5 5 17 548
comp06 L 108 361 70 87 5 5 18 632
comp10 L 115 370 67 88 5 5 18 694
comp20 L 121 390 78 95 5 5 19 691
comp07 L 131 434 77 99 5 5 20 667

3.3.4 Parameterisation

Table 3.8 lists all parameter settings used for the various components in this study.

3.3.5 CPU budgets

The CPU timeout for finding a perfect solution during the final model training

process is 150 seconds. For the benchmark experiments, the budget is set at 2,000,

3,000 and 4,000 seconds for the small, medium and large problems respectively. The

proposed system is implemented using Matlab (version 2021a) and run on an AMD

Ryzen 9 5900X 12-core CPU @ 3.20GHz. The code incorporates parallelisation such

that each repetition is allocated to a single core.

3.4 Results and analysis

In this section, results are first explored from the (final model) training of the

Permutation Predictor, upon which the two subsequent benchmark experiments rely.

Further results and analysis are then provided for these benchmark experiments.

102

MAX-MIN ant system Genetic Algorithm
Phase 1 2 Population 60
k (number of ‘ants’) 8 Encoding Permutation
ρ 0.035 Initalisation Random
τmin 0.004 Selection Truncation (best 50%)
τmax 10 Crossover Partially Matched
Repetitions 15 30 Crossover rate 1
iterLS n/a 10 Mutation Swap
attemptsLS n/a 12 Mutation rate 1/(2|L|)

Fitness Normalised predicted
value returned by T0

Termination 750 generations

Regression model T0
Node-splitting CART (Breiman et al., 1983)
Loss function Mean squared error (0.0373)
Cross-validation 5 folds
Termination Minimum leaf size (15)

Table 3.8: Parameter and other settings used in this study. The two phases of the MMAS
refer to the final model training, and benchmark experiment phases respectively.

3.4.1 Final model training set permutation results

Figure 3.12 displays the 40 individual composite features (arranged in a grid of

their constituent type/position) and their estimated importance in T0. Where

peaks of importance occur, these tend to be where the position of the feature type

in permutation is either 1 or 5, while central positions 2, 3 and 4 exhibit lower

importance. Feature types curConf and unav are most illustrative of this profile,

but aspects of the trend can be seen across all feature types. This breakdown of

results suggests that the choice of course assignment is crucial in both the early and

late nodes of the construction graph as virtual ants pass through it, but less so in

the middle.

In Figures 3.13a and 3.13b, the data shown in Figure 3.12 is averaged out

along each of its lateral axes. The feature with the lowest estimated importance

(zero) is 4teachConf and, Figure 3.13b makes explicit, features of type teachConf

are the second least important for splitting across all positions. As the number of

final model training set courses is fixed at 5, it is noted that there is no integer

partition of 5 that contains more than two unique parts. This is equivalent to the

103

Figure 3.12: A 3-D bar chart showing the estimated importance of all 40 features used
in T0. The features are arranged in a grid of feature type (ordered by mean estimated
importance) vs. position of feature type in permutation. The estimated importance of
a feature is calculated by summing the change in mean squared error at each relevant
splitting node and dividing by the number of splitting nodes. The final value plotted is an
average over all folds.

number of discrete values the normalised teachConf feature type can take, and helps

to explain the low informational value of features of this type for the training set.

Mean importance of features in T0

by position of feature type in perm

1 2 3 4 5

Position of feature type in perm

0

0.5

1

1.5

2

2.5

3

M
e
a
n
 e

s
ti
m

a
te

d
 i
m

p
o
rt

a
n
c
e

10-5

(a)

Mean importance of features in T0

by feature type

curC
onf

lecs
unav cur

unavConf
mwd

teachConf

sturm
s

0

0.5

1

1.5

2

2.5

M
e

a
n

 e
s
ti
m

a
te

d
 i
m

p
o

rt
a

n
c
e

10
-5

(b)

Figure 3.13: Averaged values for the estimated importance of the features in T0, by position
of feature type in permutation (a) and by feature type (b). Initial calculations are made in
the same manner as for Figure 3.12.

The elevated importance of the first and last course assignment is clearly seen

in Figure 3.13a. Indeed, analysis of the splitting nodes from the top three levels of

104

the decision trees show that a large majority (83%) split on features from positions 1

or 5 in the permutation.

Purely where the feature type is concerned, Figure 3.13b shows that curConf

is estimated to be the most important overall. curConf feature types appear in 31%

of the nodes using for splitting in the top three levels of the trees, compared to

20% for the next most popular feature type (lecs). It is interesting to note that a

(differently defined) measure of curriculum conflicts was found in Rosa-Rivera et al.,

2021 to be one of the four most important features (of 149 proposed) for determining

the ‘complexity’ of a timetabling instance. The closest equivalent metric to lecs

was likewise in the top four in that study. This strengthens the findings in this

section, as increased complexity is associated with increased difficulty in finding good

solutions. As discussed, the value ranges for some estimated low-information features

are naturally restricted by the modest size of the final model training instances.

0

5

10

15

F
u

ll
 f

u
n

c
ti
o

n
 e

v
a

lu
a

ti
o

n
s

10
4 Full func evals needed to find SCV = 0. T0. PI214N, all perms, 30 reps.

Permutations 1 - 120.

Figure 3.14: Distributions (population size = 30) of full function evaluations required to
find a perfect solution for all 5! = 120 permutations (ordered 54321 to 12345) of final model
training instance PI214N in T0. The boxplot shows median, interquartile range, non-outlier
max/min and outliers.

An illustrative boxplot, Figure 3.14, shows the distributions of full function

evaluations obtained for one of the final model training instances (‘PI214N’). The

permutations (nominally 1 to 120) are ordered from 54321 to 12345, left to right on

the x-axis. It can clearly be observed that certain clusters of permutations converge

to a perfect solution more efficiently than others. In the example given, index

permutations 41-51 are some of the best for locating a perfect solution quickly. Eight

of the permutations in this block assign course 4 first while assigning course 3 in

105

position 3 or later. At the other end of the spectrum, a cluster of poor results is

evident in index permutations 65-72. Notably, these permutations all assign course 3

first, while course 4 comes later. However, three permutations in the high performing

block also assign course 3 first, emphasising that the roles of both absolute and

relative course positions are complex. While solving the permutation problem is not

synonymous with solving the UCTP itself, this plot demonstrates how a well-informed

choice of permutation can enable the MMAS to locate the optimal solution — even

without local search enhancement — where it may have been unable or unlikely to

otherwise4.

Beyond the example case PI214N, such variation in permutation-related per-

formance was noted across all training problems, establishing in the broadest sense

that course lecture ordering has a marked effect on performance. Further analysis of

the remainder of final model training instances is possible by considering, as before,

a form of permutohedron — this time (5 - 1)-dimensional — in which the median

performance of permutations are associated with distinct vertices. If one permutation

can be reached from another by swapping a pair of courses in adjacent positions, then

the two are neighbours and share an edge. The permutation 12345 is a neighbour of

21345, for example. This adjacency concept offers an insight into how similarly to

one another neighbouring permutations perform. A distance metric, ψ, is defined as

the number of adjacent swaps required to transform one permutation to another —

equivalent to the shortest path between vertices in the permutohedron. The mean

absolute difference in median performance between permutations at distance ψ is

denoted by δ. In Figure 3.15, these two variables are considered over all permutation

pairs for nine of the final model training instances.

An important observation is that all of the plots exhibit positive correlation,

with some showing monotonic increase. Not only therefore does the course ordering

affect results in the core MMAS, but there is an inherent structure in which similar

permutations can be expected on average (while noting a generally wide variance)

to deliver similar performances. While this association broadly holds true, it is not

4 This is the case for the training problems. No optimal solutions were reached by any means for
the benchmark problems in this chapter.

106

2 4 6 8 10

7000

7500

8000
PI41N

2 4 6 8 10
3500

4000

4500

PI62N

2 4 6 8 10
1

1.1

1.2

10
4 PI72N

2 4 6 8 10

5000

5500

6000
PI86N

2 4 6 8 10

5000

5500

6000
PI93N

2 4 6 8 10
1

1.5

10
4 PI94N

2 4 6 8 10

1.8

2

10
4 PI152N

2 4 6 8 10

500

1000

PI212N

2 4 6 8 10

4

6

8
10

4 PI214N

Figure 3.15: Plots of the similarity of course permutation vs. the difference in their median
performance, for all pairs of permutations in nine of the final model training set instances.
ψ is the pairwise distance between permutations in the permutohedron, where distance is
defined as the shortest path between the two based on making adjacent course swaps. δ is
the mean absolute difference in median performance (where performance is measured by
SCV) between all pairs of permutations at distance ψ.

universal however. Exceptions can be seen in plots for PI41N and PI72N, while the

non-monotonic plots for PI62N, PI86N, PI93N and PI152N exhibit a characteristic

dip in δ value at ψ = 8 or 9. While overall trends are strong, the permutation space

and performance space do not conform to a single consistent mapping across all

training problems. The following section presents results from the genetic algorithm

component of the Permutation Predictor.

3.4.2 Genetic Algorithm results

Figure 3.16 illustrates the evolution of population fitness for a genetic algorithm run

on benchmark problem comp17, framed as a maximisation problem. As fitness is a

normalised value, it can never exceed 1. In practise, the maximum fitness values —

dictated by the decision tree — are slightly lower. In this example run, a median

permutation fitness of 0.81 is reached within 10 generations and not improved upon

thereafter. The speed of convergence shown in Figure 3.16 is typical across the set of

all problem instances. While the size of the permutation decision space is large for

107

2 4 6 8 10 12 14 16 18 20

Generation

0.6

0.7

0.8

P
o

p
u

la
ti
o

n
 f

it
n

e
s
s

Evolution of population fitness, GA run on comp17

Figure 3.16: Fitness (where fitness corresponds to predicted performance in the MMAS) of
a population of 60 individual permutations vs. generation number (truncated at 20) for an
example genetic algorithm run on comp17. The plot shows median and interquartile range.

the unseen problems (|C|! where 30 ≤ |C| ≤ 131), its fitness landscape is simplified by

the discrete decision trees and a low granularity mapping. This ensures that regions

of the fittest permutations are relatively easy and quick to locate.

3.4.3 Benchmark Experiment 1 - PP vs. RP

In benchmark experiment 1, PP (the Permutation Predictor) was compared against RP

(Random Permutation). Each repetition of PP ordered the courses in the construction

graph using a different permutation returned by the Permutation Predictor. In RP,

the order of course assignment was determined by uniform random sampling of the

permutation space, without the benefit of any prior learning. The aforementioned

CPU time budget was used as a termination criterion.

Rather than returning singular results at the termination point, any-time

performance graphs are provided over the entire CPU time budget. The progress of

the two variants has been plotted together in different colours (black — RP, green

— PP). Across the 14 ITC2007 problems tested, distinct patterns in these traces

were observed, and some representative plots are presented here for discussion. In

assessing the efficacy of PP on the core MMAS, analysis is focused firstly on the

characteristic shapes of the convergence plots. Robust statistical testing is then

applied. The Wilcoxon rank sum test is used to determine statistical significance

between the performances of PP and RP at each discrete time step.

3.4.3.1 Any-time performance comparison

Figure 3.17 shows the convergence traces for RP and PP for medium problem comp12.

108

0 500 1000 1500 2000 2500 3000

CPU time / seconds

1000

1500

2000

2500

3000

3500

4000

S
C

V
 s

c
o

re

comp12. Black: DCH-rand. Green: DCH-T0.

S
C
V

Figure 3.17: comp12: Progress of the baseline RP (black) vs. the Permutation Predictor PP
(green), with median and interquartile range shown.

0 500 1000 1500 2000 2500 3000 3500 4000

CPU time / seconds

6000

6500

7000

7500

8000

8500

S
C

V
 s

c
o

re

comp20. Black: DCH-rand. Green: DCH-T0.

S
C
V

Figure 3.18: comp20: Progress of the baseline RP (black) vs. the Permutation Predictor PP
(green), with median and interquartile range shown.

It can be seen that PP achieves better median results than the RP baseline

for the entirety of the time budget. Another notable aspect in this plot is the

‘knee’ in the curves at 1,500 seconds. This is caused by the rigid update schedule,

which switches to exclusive use of globBest at 50% of the run. This instance may

benefit from an increased intensification earlier in the run — something that could

be achieved by a more dynamic update schedule.

Example results for a large problem are given in Figure 3.18, which shows

comp20. Here, the median performance of PP is again superior for the majority of

the run, although the relative difference between traces is smaller and PP is overtaken

at points.

In the given plots, as well as the majority of the small problems, PP is successful

in beating the any-time performance of the baseline. However, in a minority of

problems the converse is true — Figure 3.19 shows an example in comp04.

109

0 500 1000 1500 2000 2500 3000

CPU time / seconds

3000

3500

4000

4500

S
C

V
 s

c
o

re

comp04. Black: DCH-rand. Green: DCH-T0.

S
C
V

Figure 3.19: comp04: Progress of the baseline RP (black) vs. the Permutation Predictor PP
(green), with median and interquartile range shown.

0 500 1000 1500 2000 2500 3000

CPU time / seconds

10
4

10
5

S
C

V
 s

c
o

re

comp19. Black: DCH-rand. Green: DCH-T0.

S
C
V

Figure 3.20: comp19: Progress of the baseline RP (black) vs. the Permutation Predictor PP
(green), with median and interquartile range shown.

The final plot provided is Figure 3.20, which shows results for medium-sized

problem comp19. This problem is an anomaly in the sense that its underlying

structure due to the interaction of its constraints proved particularly difficult for the

MMAS to navigate — the time taken to escape the region of infeasible solutions was

relatively long. This is evidenced by the high SCV values (in the range 104 to 105),

large interquartile ranges and jagged contours of the median traces in the initial

portion of the run. The median for PP is seen to touch the feasible space first, at

around 600 seconds. Once within the feasible space, the two variants progress at

similar rates.

3.4.3.2 Significance testing

Statistical significance testing is provided by way of a two-sided Wilcoxon rank sum

test. The test was applied at every discrete time step for the duration of the result

110

Small problems

0 200 400 600 800 1000 1200 1400 1600 1800 2000

CPU time / seconds

comp01 no LS

comp11 no LS

comp18 no LS

comp05 no LS

Figure 3.21: Results for Wilcoxon rank sum significance testing comparing the sample sets
(size 30) of global best SCV values at each discrete time step of the run, for the small
problems. Significantly superior performance (p < 0.05) of a particular variant is indicated
in green (for PP) or black (RP). No shading indicates that no significant difference was
found between the variants at that point in time.

runs for the sample sets produced by RP and PP. Using these statistics, Figures 3.21

(small problems), 3.22 (medium) and 3.23 (large) provide a visual guide to which of

PP (green) and RP (black) performed significantly better during an optimisation run

and over which time period(s).

Medium problems

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

CPU time / seconds

comp03 no LS

comp19 no LS

comp09 no LS

comp04 no LS

comp12 no LS

comp17 no LS

Figure 3.22: Results for significance testing for the medium problems, using the same
visualisation as described in Figure 3.21.

Large problems

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

CPU time / seconds

comp06 no LS

comp10 no LS

comp20 no LS

comp07 no LS

Figure 3.23: Results for significance testing for the large problems, using the same visual-
isation as described in Figure 3.21.

Figure 3.21 shows results for the small problems. The abundance of contiguous

green shading confirms that, for 3 out of the 4 problems in this subset, the Permutation

Predictor PP found permutations that significantly improved any-time performance.

While the smallest instance, comp01, appears to be an exception, it should be noted

that the inferior performance of PP in the initial phase becomes insignificant at the

111

point at which globBest is exclusively used for pheromone update. Further, from

around 1,600 seconds, the median value for the PP trace indeed overtakes its RP

comparator. Figures 3.22 (medium problems) and 3.23 (large problems) show that

as the problem size increases, the statistical test results become more mixed.

In summary of benchmark experiment 1, the Permutation Predictor approach

— which has at its heart the mapping used for scaling in (3.8) — showed some promise

for the core MMAS. This is particularly encouraging given the modest size of the

final model training set and instances. Good performance is noted on the subset of

small problems, which ranged from 6 to 10.8 times the size of the final model training

set problems (by number of courses). Complex feature relationships of the medium

and large problems, whose sizes were 14.4 – 26.2× greater than the final model

training problems, proved harder to capture. This may indicate the importance of

similarity in size or structure between training and test problems, in the sense that

the diversity of relationships between variables and constraints in larger problems

must be sufficiently represented within the smaller training problems. Restricting

final model training size to 5-course problems was a practical necessity in enabling

computation of all 5! = 120 permutations over multiple repetitions, with the trade-off

that some features — particularly teachConf — could only take a limited number

of discrete values.

3.4.4 Benchmark Experiment 2 - PP-LS vs. RP-LS

The second experiment repeated the protocol from benchmark experiment 1, except

with local search activated during the ACO search in all cases, enabling a comparison

between PP-LS and RP-LS. The purpose of this experiment was to assess whether

any performance gains (or losses) seen for the core MMAS would be flattened out by

the application of the local search routine. In the same fashion as Section 3.4.3.2,

Figures 3.24, 3.25 and 3.26 show the (local search-enhanced) results of significance

testing for the small, medium and large problems respectively — this time with blue

representing PP-LS and red representing RP-LS.

112

Small problems

0 200 400 600 800 1000 1200 1400 1600 1800 2000

CPU time / seconds

comp01 LS

comp11 LS

comp18 LS

comp05 LS

Figure 3.24: Results for Wilcoxon rank sum significance testing comparing the sample sets
(size 30) of global best SCV values at each discrete time step of the run, for the small
problems. Significantly superior performance (p < 0.05) of a particular variant is indicated
in blue (for PP-LS) or red (RP-LS). No shading indicates that no significant difference was
found between the variants at that point in time.

Medium problems

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

CPU time / seconds

comp03 LS

comp19 LS

comp09 LS

comp04 LS

comp12 LS

comp17 LS

Figure 3.25: Results for significance testing for the medium problems, using the same
visualisation as described in Figure 3.24.

Large problems

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

CPU time / seconds

comp06 LS

comp10 LS

comp20 LS

comp07 LS

Figure 3.26: Results for significance testing for the large problems, using the same visual-
isation as described in Figure 3.24.

Across all problems, one key observation about the extent of significant dif-

ference between the local search variants is that they are typically less sustained

than for no local search. This can be observed in the areas of no shading, which are

greater. After a time, the effects of powerful local search operators tend to flatten

out any differences attributed to the permutation choice using the core MMAS.

There is, however, a consistent exception to this trend. In all four cases where

no significant difference was found at almost any point in benchmark experiment

1 (comp06, comp17, comp19, comp20), one of the local search variants significantly

out-performs the other for at least a portion of the run. This is an interesting result,

as — treating the lack of significance in the non-local search variants as controlling

113

20 40 60 80 100 120 140

Number of courses in problem

-30

-20

-10

0

10

20

30

%
 i
m

p
ro

v
e

m
e

n
t

o
n

 R
P

 m
e

d
ia

n
 S

C
V

 b
y

P
P

 (
m

e
a

n
 o

v
e

r
a

ll
d

is
c
re

te
 t

im
e

 p
o

in
ts

 i
n

 r
u

n
)

Problem size vs. performance improvement due to

Perm Predictor, on the core MMAS

(a)

20 40 60 80 100 120 140

Number of courses in problem

-30

-20

-10

0

10

20

30

%
 i
m

p
ro

v
e

m
e

n
t

o
n

 R
P

-L
S

 m
e

d
ia

n
 S

C
V

 b
y

P
P

-L
S

 (
m

e
a

n
 o

v
e

r
a

ll
d

is
c
re

te
 t

im
e

 p
o

in
ts

 i
n

 r
u

n
)

Problem size vs. performance improvement due to

Perm Predictor, on the MMAS with LS

(b)

Figure 3.27: ITC2007 problem size (by number of courses) vs. % improvement of PP over
RP in benchmark experiment 1 (a) and % improvement of PP-LS over RP-LS in benchmark
experiment 2 (b). The % improvement metric is calculated on the median SCV achieved
by each variant at a common discrete time step, averaged over all time steps in a run,
providing a single data point for each problem in each plot.

for the effects of the Permutation Predictor on the core MMAS alone — it suggests

the choice of permutation has the potential to impact the efficacy of the local search

routine in some cases too.

For the small subset of four problems in which one local search variant was

significantly superior for a substantial portion of time (comps05, comp18, comp09,

comp06), only one (comp05) returned the same winner (the Permutation Predictor)

as for the non-local search case. The key finding in this section is that there is little

evidence to suggest that the introduction of local search preserves any performance

gains, or indeed losses, attributable to the Permutation Predictor.

Figure 3.27 brings together the performance of all 14 problems, by giving a

single averaged percentage improvement metric to each, for benchmark experiment 1

(Figure 3.27a) and 2 (Figure 3.27b). For benchmark experiment 1, it can be seen that

in the majority (9 out of 14) of problem instances, use of the Permutation Predictor

resulted in improved performance on average and in one case by as much as 22%.

Further, considering only sizeable gains through the use of the Permutation Predictor

of over 5% and likewise losses of over 5%, there are twice as many problems in the

former category than in the latter, which is promising. It is also noted that the

greatest gains are clustered at the lower end of problem size, where the resolution of

the quintiles used for scaling is higher and the magnitude of the problem is closer to

114

that of the final model training set. In the plot for benchmark experiment 2, the

average distance to zero is lower across all points — highlighting the flattening effect

of local search — with most being negative as the regression model was not trained

on an local search-enhanced MMAS.

3.5 Conclusions and further work

The MMAS system developed was capable of finding feasible solutions to all prob-

lems investigated under the ITC2007 track 3 formulation. Smart partial function

evaluations enabled efficient use of computational budget. Having considered two

traditional methods of hard constraint handling in ACOs — full relaxation and

zero-tolerance — neither were found to be suitable for the MMAS in this problem

domain. Therefore a novel compromise was proposed. The dynamic deployment of

artificial penalties, reducing the appropriate pheromone values to τshelf , guaranteed

complete solutions while helping guide the search towards feasibility.

Using this core MMAS system (i.e. without local search enhancement) and a

small training set, it was established that permuting the order of course assignments

can influence the quality of solutions and the cost of finding them. Furthermore,

across the majority of these 5-course problems, there was a strong positive correlation

between similarity of permutation and average similarity of performance — where

performance was measured as the number of full function evaluations needed to find

a perfect solution.

Human-interpretable features were used in a machine learning pipeline. Out of

these, curConf (a measure of how much a course’s curriculum membership conflicted

with that of other courses) was estimated to be the most important based on the

final model training data. ‘Number of lectures’ and ‘number of unavailable periods’

also ranked highly. Furthermore, feature types relating to assignments in the first or

last position of a permutation consistently ranked as more important than those in

the middle, suggesting that the choice of course assignment is more critical towards

the beginning and end of the ACO construction graph.

115

The major novelty was in using this learnt information (rather than determ-

inistic/stochastic heuristics) for permuting course lectures in unseen problems. In

attempting to scale from the final model training set to ITC2007 benchmark prob-

lems, the permutations predicted by the machine learner and mapping generally

led to improved results (compared to a random permutation baseline) in the small

problems (|C| < 55). Results were more mixed as the problem size increased and

feature relationships became harder to capture and transfer. This is reflected in the

analysis in Section 3.4.3.2. In essence, it is difficult to represent the complexities of

the largest benchmark (or, by extension, real world) problems in a training set of

such limited proportions.

When a local search routine was integrated with the core MMAS, two key

observations were made. First, performance gains due to a good choice of permutation

in the core MMAS did not necessarily hold once local search was applied. Second, for

some problems, the choice of permutation appeared to induce significant any-time

performance differences between the two local search variants where there was none

between the two non-local search variants. This suggests that, while in many cases

local search flattened out the differences due to permutation choice, in at least 4

of the 14 problems tested, the effectiveness of local search itself was influenced by

permutation choice.

In terms of the Permutation Predictor, further work will involve enlarging

the set of training problems. With the benefit of greater computing power and

parallelisation, the number of courses in these problems could also be increased. This

would further increase the granularity for some feature values. The mapping given

by expression 3.8, that showed some promise, nonetheless dilutes information by

way of averaging over each quintile. Therefore a more sophisticated and expressive

mapping could be sought. As an extension, non-human interpretable features could

be extracted and studied. With regard to the local search findings, further research

is also needed to understand the effect of the permutation choice on local search

performance as it relates to different structures of problem. In addition, the ratio of

local search routine calls to iteration (fixed at 1:1 here) could also be varied.

116

No evidence has been provided as to how generally applicable the Permutation

Predictor may be to variants of ACO other than the MMAS developed in this work.

The premise of assigning ‘difficult’ lectures first is nonetheless well established. On

this basis, a permutation that is shown to deliver good results in the given MMAS

may be expected to confer similar advantages when applied within other ACO

variants.

In this chapter, the UCTP was evaluated as a single-objective problem and

solved by way of an ACO. In real world applications, however, a timetable decision

maker may wish to prioritise the satisfaction of one type of soft constraint over

another. Furthermore, striving to achieve the single-objective optimum as defined

(such as SCV = 0 in the case of comp11) may neglect other, more intangible, elements

of a timetable which are also of interest to a decision maker. In the following chapter,

the problem is therefore extended to one with many objectives, in which the SCV is

decomposed instead into a vector of objective scores.

117

4. A Many-Objective Optimiser for

the UCTP

In this chapter, a domain-specific many-objective optimiser is developed, based on

constructive heuristics and a modified non-dominated sorting genetic algorithm III

(NSGA-III) (Deb and Jain, 2013), in which the violations of different constraints

are cast as separate objectives to be minimised concurrently. Results show that

feasible solutions can be attained consistently in a first phase and that a targeted

objective can be optimised to zero (where possible) in a second phase. A set of

non-dominated solutions is returned, representing a well-spread approximation to

the Pareto front, from which a decision maker could ultimately choose according to

a posteriori preferences.

4.1 Introduction

The evaluation of timetables in this chapter represents a departure both from the

work in the previous chapter and the majority of research on timetabling. Rather

than a scalar cost, timetables are evaluated in terms of a vector of objective scores,

each of which represents the cost of an individual constraint.

The term ‘multi-objective optimisation’ is generally reserved for optimisation

problems with a modest number of objectives, whose results can be visualised using

2-D or 3-D plots (Karami and Dariane, 2022). A recent example of this is the

timetabling approach of Budi Darmawan et al., 2019, which comprised two bespoke

objectives, one of which was minimising the loss of revenue due to empty seats.

118

More recently popularised in the literature is the many-objective approach, for

a higher-dimensional objective space. This chapter explores this idea by casting four

(and initially more) UCTP constraints as separate objectives. The motivation is to

evolve a set of mutually non-dominating solutions that approximate the Pareto front,

thereby giving a decision maker a set of high-quality timetables to select from. In

highly complex real world timetabling, this is likely to be the preferred approach.

One reason is that, in contrast to some artificial problems, a solution that satisfies

all constraints is unlikely to exist in a real world case, or to be discoverable in an

acceptable time. At the same time, an insight can be gained into the inherent trade-

offs and relationships between objectives. Visualising this information is valuable

to an experienced user who can then make the most appropriate decision for their

problem.

Formally, many-objective optimisation is expressed by the minimisation in

(4.1) and mappings in (4.2):

min
x∈X

(f1(x), f2(x), . . . , fk(x)) (4.1)

f : X 7→ (Z+
0)

k

x 7→




f1(x)

f2(x)

. . .

fk(x)




(4.2)

Where x is a design vector, X is the feasible solution set, fi is a function that

evaluates objective i, and k ≥ 4 is the number of objectives.

The primary method of comparison between objective vectors is the Pareto

dominance relation, as used (for instance) in NSGA-III. A solution x1 ∈ X dominates

x2 ∈ X if and only if the following conditions hold:

∀i ∈ {1, . . . , k}, fi(x1) ≤ fi(x2)

∃i ∈ {1, . . . , k}, fi(x1) < fi(x2)

(4.3)

119

For efficiency, the implementation in this chapter incorporates δ-evaluators, as

suggested in Geiger, 2012. Ultimately, phase one of the system aims to find feasible

starting solutions, which are then used to initialise the genetic algorithm in phase

two. Computational efficiency, simplicity of design and keeping the parameter count

to a minimum are also key motivating factors throughout.

Section 4.2 provides some background work before Section 4.3 details the

methodology and optimiser development. Section 4.4 describes the experimental set-

up, both for the two-phase system and a preliminary one-phase system. Two-phase

results are presented and discussed in Section 4.5, while Section 4.6 presents some

conclusions.

4.2 Background

While results have been published for many solvers for the ITC2007 benchmark, the

vast majority treat the problem as a single-objective minimisation, as suggested by

the original competition rules.

It is noted in Hafsa et al., 2021 that this single-objective approach predominates

in educational scheduling more generally, despite the existence of often numerous

and conflicting objectives. The authors consider a 3–objective professional training

scheduling problem with some similarities to the UCTP. Objectives are typically

multi-variable functions of constraint violations and other statistical data. The

performance of NSGA-II was compared against NSGA-III, with the former found to

be superior on all metrics except speed. However, the parameter values were tuned

only for NSGA-II, and we note that the ITC2007 problem has a higher-dimensional

objective space which may be tackled better by NSGA-III. Other differences between

the ITC2007 and the problem in Hafsa et al., 2021 must also be recognised, such

as the timescale of the former (repeating week-long blocks rather than months or

years), its requirement to assign all events, and its lack of precedence constraints.

A more apropos comparison may be made with Geiger, 2009, in which the many-

objective nature of the UCTP and ITC2007 benchmark was considered. A trajectory

search was carried out by selecting a small number of lectures and reassigning them.

120

Various acceptance criteria were relied upon for the new evaluations. In both of

the two variants proposed, decision maker preferences were assumed a priori and

implied by the cost function. This was defined as either the standard weighted sum

of violations or the Chebyshev distance (Cantrell, 2000) to a reference point (the

origin). Using the latter resulted in a more uniform spread of scores across individual

objectives. However, as a trajectory search, a set of non-dominated solutions was

neither sought nor returned in the author’s work.

To the best of our knowledge, there are as yet no published results for the

benchmark that attempt to approximate the 4-D Pareto set in the absence of

decision maker preferences. The following section, on methodology, outlines the

system proposed to achieve this. While NSGA-III lies at the core of this system,

several modifications and augmentations were required to make it operable and

competitive for the problem domain. The development and reasoning behind the

different components of the system — such as heuristic initialisation, perturbation

operators and δ-evaluations — are described in the methodology.

4.3 Methodology

Figure 4.1 provides a high-level sequence diagram of the final many-objective system.

All pictured components are outlined and included as part of this chapter, with the

exception of ‘genotype diversity’, which is not incorporated until Chapter 5.

4.3.1 Encoding

Initial work was carried out using the platEMO package, version 3.1 (Tian et al.,

2017). This is an optimisation suite containing Matlab implementations of over

20 single- and 100 multi/many-objective algorithms. While these algorithms are

coded in their most naive form, platEMO is designed to be highly user-extendable.

The work described in this chapter involved customising and enhancing standard

algorithms with domain-specific knowledge. For this, a small number of platEMO

modules were retained in a modified form, while most of the codebase was built from

scratch.

121

Optimiser
Tournament
selection

Perturbation
operator/s δ-evaluator

Environmental
selection

Non-
dominated sort

Genotype
diversity

Initialise

Active pop.

Mating pool

Parents

Offspring

Offspring, δ-information

Objective score vectors

Merged parent/offspring population

Next generation

Merged pop.

N-D fronts

Merged pop., N-D fronts

Genotype diversity metrics

Archive

While termination criteria not satisfied

Figure 4.1: A sequence diagram outlining the essential components in the many-objective
optimiser. ‘Phase one’ includes the initialisation, while ‘phase two’ refers to everything
inside the main optimiser loop. Note that the genotype diversity routine does not form part
of the work in this chapter, but is developed and incorporated in the following chapter.

122

The first task was re-encoding the problem instances, by converting each

problem from its original .ctt file format to a 2-D indexed cell array data structure.

Most of this structure is given to the indexing of course, teacher, minimum working

days, number of students, curriculum membership and unavailable periods, for every

lecture. The last two rows of the cell array include a matrix of the room IDs and

capacities, as well as various metadata. Some elements of the problem are also stored

as alternative representations (such as curriculum membership as a Boolean matrix

and a cumulative lecture count per course) to aid the efficiency of certain recurrent

functions.

Solutions — the timetables themselves — must also be encoded. This is a

design choice with serious implications for the efficacy of any evolutionary algorithm

used. A number of direct approaches were considered. The first attempt used a

chromosome of length |L| and a integer-valued encoding such that each assignment

took a value of:

(ri − 1)|t|+ ti (4.4)

Where ri is the room ID and ti is the timeslot, drawn from the set t. This

encoding was somewhat advantageous both in terms of its low memory footprint and

the time complexity of the required function evaluators. The drawback, however, lay

with the lower-resolution fitness landscape induced and the lack of direct connectivity

between, for example, places composed of the same timeslot but different rooms.

The second solution encoding therefore used a tuple as a more expressive way

to represent an individual lecture assignment:

⟨di, pi, ri⟩ (4.5)

Where di and pi are the day and period respectively and the element-wise

length of the chromosome became 3×|L|. Disadvantages of this encoding include the

larger data structure required, increased time complexity as well as the potential for

epistatic effects caused by interactions between elements within tuples. Nonetheless,

the induced search landscape grants connectivity between days, periods and rooms

123

as individual entities, allowing for the design of potentially more nuanced genetic

operators. Each element within a gene resonates with a particular soft constraint.

For example, perturbing di affects the number of unique days that course lectures

are held on, and therefore the violation score of S2. Varying ri has a direct effect

on the two constraints relating to physical location, namely S1 and S4. Finally, pi,

in conjunction with di, influences S3. Compliance with H1 (all lectures must be

assigned) is also ensured by the 1:1 lecture:gene ratio.

4.3.2 Initialisation

The initialisation constitutes phase one of a two-phase optimisation. In phase one,

the aim is to produce a population of solutions that is as close to fully feasible as

practicable. A number of strategies were trialled. These included uniform random

sampling, uniform random sampling excluding pre-defined unavailable periods (those

in set N), and seeding with solutions that had been pre-optimised in one of the

objectives only.

The most promising approach however involved the use of constructive heuristics

as discussed in Section 2.3.1.2. Two broad categories of constructive heuristics have

been proposed in the literature (Pillay and Özcan, 2019). Static heuristics require

lectures to be sorted by some metric, where this fixed ordering then determines the

sequence of assignments. Dynamic heuristics involve recalculating the metric values

after each assignment, thus providing greater adaptive potential. In both cases, the

chosen metric is intended as a measure of ‘difficulty to assign’.

The static heuristics largest enrolment (LE) and largest degree (LD) and the

dynamic heuristic saturation degree (SD) were tested on the ITC2007 benchmark.

LE relies on the number of enrolled students for its metric. Lectures with a larger

number of students take priority. LD, as described for the generic case in Pillay and

Özcan, 2019, uses the number of potential clashes a lecture has with other lectures

resulting from commonality of students. Since explicit student sectioning is not a

feature of the ITC2007 benchmark, the metric is redefined analogously as: The sum

total of lectures that have either a curriculum or a teacher in common with the

124

lecture being assessed. Priority is given to lectures with higher numbers of potential

clashes in this respect. The metric for SD is the number of available feasible places,

i.e. those that would not cause a hard constraint violation at the point of assignment.

The lecture with the lowest value at each decision point is chosen for assignment.

Across all heuristics, ties are broken at random.

Once a lecture has been chosen on the basis of its metric value, a place is

randomly selected from the set of feasible places currently available to that lecture.

If no feasible place exists, an infeasible place (excluding pre-defined unavailable

periods in set N) is chosen at random instead. A secondary, period-based heuristic is

suggested in Pillay and Özcan, 2019 as an optional, more discriminatory, alternative

to random sampling. The proposed system declines to include this with the following

justification: Any infeasible solutions that may have been constructed in phase

one stand to be quickly bred out of the population by an inherent hard constraint

handling mechanism. The extra expense of a period-based heuristic was therefore

found to outweigh the marginal gains in feasibility rate.

In testing LE, LD and SD, 10 independent repetitions were carried out for

each problem instance. In each repetition, 100 timetable solutions were constructed,

the number chosen as being a reasonable magnitude of population size. The primary

quality measures to consider are the proportion of solutions that are feasible, and

the relative speed of obtaining them. As with all experiments in this thesis, the

computation was performed on a 12-core Ryzen9 with 32GB RAM, base clock speed

3.8GHz. The wall clock speed shown here resulted from using a single core and

no parallelisation. Figure 4.2 shows the results for the three heuristics over the 21

instances.

SD achieved superior feasibility rates for every instance, while being compu-

tationally dearer. At the scale of a population size of 100, this additional time

cost amounts to no more than a few seconds. More pertinently, all SD rates are

0.99 or higher, with the exception of the 3 instances. These were comp02 (0.81),

comp05 (0.12) and comp19 (0.56). In the case of the infeasible constructions for these

125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proportion of feasible solutions in sample of 100 (mean of 10 reps).

1

2

3

4

5

W
a

ll
c
lo

c
k
 t

im
e

 t
o

 c
o

n
s
tr

u
c
t

1
0

0
 s

o
lu

ti
o

n
s
 /

 s
 (

m
e

a
n

 o
f

1
0

 r
e

p
s
).

Comparison of constructive heuristics

LE (), LD (), SD ()

for all 21 instances in the ITC2007 benchmark.

Figure 4.2: Performance comparison of 3 constructive heuristics. Lines connect results for
common instances.

problems, the average distance to zero for each hard constraint objective is given in

Table 4.1.

Table 4.1: Average distance to feasibility for each hard constraint objective, over the
infeasible subset of the 4000 solutions constructed by SD.

Instance H2 H3 H4 H5

comp02 0.31 3.12 0 0.21
comp05 0.19 18.63 0 0.21
comp19 0.49 3.81 0 0.21

These show that in a minority of cases where SD fails to achieve a near-perfect

feasibility rate, the expected violations of hard constraints in the infeasible subset

are nonetheless low. In particular, H4 is zero in all cases.

4.3.2.1 Search space size and sample bias

Besides feasibility and speed, other factors may be worth considering in the assessment

of an initial population created by a constructive heuristic. The percentage of

unique individuals in the sample is one example. In the aforementioned tests, 100%

uniqueness was achieved across all instances and all heuristics on this measure.

Additionally, some measure of dispersion or dissimilarity between individuals may

be important in terms of the subsequent exploratory reach of the optimiser.

The thoughts above can be consolidated in the following question: Does the

set of feasible solutions produced by a constructive heuristic represent a uniform

sample of the feasible solution space, or does the process introduce certain biases?

126

To investigate this, it is proposed to completely enumerate the feasible search

space of a very small problem. Then, hypothesis testing can be applied to samples

generated from the constructive heuristic. To reverse engineer such a problem of

sufficient yet manageable size, some intuition is first needed around the relationship

between problem variables and the size of the feasible search space. As the ITC2007

formulation is a combinatoric problem, this space is theoretically finite and countable.

In the case of the competition instances, the size of the feasible solution set is

presumed to be a vanishingly small proportion of the universe of all possible complete

assignments. A closed analytical formula for the former is hard to obtain owing to

the complex inter-dependencies of hard constraints. Sampling this entire universe

using the Monte Carlo method is likewise not practicable due to the extreme rarity

of feasible solutions. It is, however, possible to decompose the search space and

apply a mixture of exact and approximation methods in order to reach an estimated

upper bound for the size of the feasible set. In providing an exposition of this hybrid

method, we make use of a toy example, smallA, whose characteristics are given in

Table 4.2.

Table 4.2: Characteristics of a toy problem instance, using the same notation as in Table
3.7

Name |C| |L| |U| |T | |D| |t| |R| |N |
smallA 5 15 3 3 5 4 2 25

When all |L| lectures are assigned to a day, timeslot and room, the total

number of combinations is given by:

(|D| × |t| × |R|)|L| (4.6)

This equates to 1.07× 1024. To enumerate the subset of this universe that has

no hard constraint violations relating to unavailability, the formula is adapted so

that pre-defined unavailable periods are subtracted across all lectures. This set is

labelled H4c to denote that its members are compliant with constraint H4. The size

in the smallA example, by way of an exact calculation, is 4.69× 1021. Considering

now H4c as its own universe, Figure 4.3 shows set relations between the remaining

127

hard constraints. The suffix v here denotes the violation of a particular constraint,

from {H2, H3, H5}. Any combination of these constraint violations is possible

within a single solution. The probability of sampling a feasible solution from the

H4c probability space is denoted by:

P ((H2v ∪H3v ∪H5v)′) (4.7)

Where ′ denotes the complement of a set. Notwithstanding the timing of

respective unavailable periods, in general any lecture can cause a room clash (H2)

violation with any other, whereas violations of H3 or H5 can only result from pairs

of lectures which share the same curriculum or teacher respectively. This, coupled

with the observation that typically |R| ≪ |U| in the ITC2007 problems, gives an

intuition that H5v may often be the largest of the three sets in Figure 4.3. Hybrid

approximation methods may therefore deliver more accurate and efficient estimates

for the other two sets. A mathematical lower bound for the size of (H3v ∪H5v) is

given by HXv, where HXv = max(H3v,H5v). This bound is equal to the exact

value when one of H3v or H5v is a subset of the other in solution space, which in

practical problems is rare. 1− P (HXv) nonetheless gives a loose upper bound for

the probability of the shaded region in Figure 4.3. Monte Carlo sampling can be

applied to this shaded region to infer the relative size of the feasible region as defined

by (4.7).

To estimate P (H5v), the probability of at least one teacher clash occurring,

the set can be decomposed further. Since lectures have a maximum of one teacher

each, the probability of a clash involving teacher Ti ∈ T is independent of those

involving Tj ∈ T , i ̸= j. Therefore, the probability of at least one teacher clash

occurring somewhere in a solution is:

P (H5v) = 1−
T∈T∏

P (TclashFree) (4.8)

An exact formula for P (TclashFree) can be applied in the case where a course-

to-teacher ratio is 1:1. When this ratio is higher (i.e. a single teacher takes multiple

courses), a closed analytical formula is not necessarily available due to inconsistent

128

H3v H5v

H2v H4c

Figure 4.3: A Venn diagram — sets are labelled first by a particular hard constraint
{H2,H3,H5}, with the suffix c denoting compliance and v denoting at least one violation.
Ultimately, a Monte Carlo estimate is run on the shaded region to determine the relative
size of the feasible space.

patterns of unavailability between these courses. Instead, the Monte Carlo method

can be used on the subset of course lectures sharing this teacher. If these multiple

courses have the same pattern of unavailable periods (i.e. unav(Ci) = unav(Cj) =

· · · = unav(Cn)), they can be aggregated and the exact formula used, although this

is a rarity in practise. For smallA, the results for the decomposition by teacher are

given in Table 4.3. Equation (4.8) then gives an estimate for P (H5v) of 0.89.

Table 4.3: Probabilities of teacher clashes, by teacher, for smallA, where * indicates an
exact result. Estimates are returned where a closed analytical formula is unavailable.

T ∈ T P (TclashFree)

1 0.67*
2 0.56
3 0.29

When estimating the probabilities of curriculum clashes, decomposing by

individual curricula is not workable. This is because courses may belong to multiple

curricula, inducing probabilistic dependencies. Instead, a curriculum co-occurrence

graph can be used. In such a graph, each curriculum is represented by a node. The

co-occurrence of two curricula within a particular course is represented by an edge.

Multi-edges are removed for simplicity. Figure 4.4 shows the graph for smallA, which

consists of two components.

129

Figure 4.4: The curriculum co-occurrence graph for smallA, in which nodes represent
curricula, and edges their co-occurrences.

The probability of a clash involving a curriculum in some component ki is

independent of that in component kj, i ≠ j. Components are therefore analogous

to teachers in the previous exposition, and the corresponding exact and inexact

approaches may be applied. Results for smallA are given in Table 4.4.

Table 4.4: Probabilities of curriculum component clashes, by component, for smallA, where
* indicates an exact result. Estimates are returned where a closed analytical formula is
unavailable.

Curricula component k P (kclashFree)

1 {1, 2} 0.10
2 { 3 } 0.46*

Thus, the estimate for P (H3v), and consequently P (HXv) too, is 1− (0.10×

0.46) = 0.95. The estimated lower bound for the probability of the remainder of

the universe, or the shaded region in Figure 4.3, is 0.05, which implies 2.2 × 1020

solutions.

A sample of solutions from the shaded region in Figure 4.3 can be obtained by

way of a stochastic heuristic. This incorporates rejection sampling in the case where

a solution fails during construction. Figure 4.5 shows convergence of the Monte Carlo

estimate for the feasible proportion of the shaded region.

The final estimated upper bound reached for the size of the smallA feasible

space, as in (4.7), is 0.89% of H4c, or 4.2× 1019 solutions. As smallA is a sufficiently

small problem, this result can be empirically checked by applying the Monte Carlo

method to the entire H4c space with a sample budget of half a million. Figure 4.6

130

0 1 2 3 4 5 6 7 8 9 10

Number of samples. 10
4

0.17

0.18

0.19

0.2

E
s
ti
m

a
te

d
 p

ro
b
a
b
ili

ty

o
f
fe

a
s
ib

ili
ty

.

Monte Carlo method: MyToy ((H4v H3v)').

Figure 4.5: smallA: Monte Carlo estimate convergence on the shaded region represented
by (H4v ∪H3v)′.

shows this convergence trace. The result obtained, 0.39%, is shown to be both within

the estimated bound and of the same order of magnitude.

0 0.5 1 1.5 2 2.5

Number of samples. 10
5

3.4

3.6

3.8

4

4.2

E
s
ti
m

a
te

d
 p

ro
b
a
b

ili
ty

o
f
fe

a
s
ib

ili
ty

.

10
-3 Monte Carlo method: MyToy (universe of complete assignments).

Figure 4.6: smallA: Monte Carlo estimate convergence on the complete universe of assign-
ments.

The decomposition method developed above can now be applied to one of the

smallest problems in the benchmark, comp11. The cardinality of all possible complete

assignments here is 225162 ≈ 1.13× 10382. Of these, 1.91× 10376 are compliant with

constraint H4. Figure 4.7 gives a breakdown of values of P (TclashFree) for T ∈ T .

From this, P (H5v) ≈ 1− 2.9× 10−7.

comp11. Probabilities of no clashes, decomposed by teacher.

1 2 3 4 5 6* 7* 8* 9* 10
*

11
*

12
*

13
*

14
*

15
*

16
*

17
*

18
*

19
*

20
*

21
*

22
*

23
*

24
*

Teacher

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
n

o
 c

la
s
h

Figure 4.7: Probabilities of teacher clashes, by teacher, for comp11, where * indicates an
exact result. Estimates are returned where a closed analytical formula is unavailable.

131

The curricula co-occurrence graph for comp11 is shown in Figure 4.8, with

the values of P (kclashFree) for corresponding component k given in Table 4.5. For

estimated values, sample budgets were varied according to the size and complexity

of the component. P (H3v) ≈ 1− 1.24× 10−22. This is also consequently the value

of P (HXv), meaning the upper bound estimate for the shaded region probability is

1.24× 10−22.

Figure 4.8: The curriculum co-occurrence graph for comp11, in which nodes represent
curricula, and edges their co-occurrences.

Table 4.5: Probabilities of curriculum component clashes, by component, for comp11, where
* indicates an exact result. Estimates are returned where a closed analytical formula is
unavailable.

Curricula component k P (kclashFree)

1 {1} 0.0059
2 {2} 0.0066*

3 {3, 4, 5, 6, 7} 1.75× 10−7

4 {8, 9, 10} 1.54× 10−8

5 {11} 0.0718*
6 {12} 0.0885
7 {13} 0.1873

Monte Carlo sampling of the shaded region does not yield directly useful results

in the case of comp11 (or other benchmark problems) due to the extreme rarity of

feasible solutions. Within this region, the identifying attribute of a feasible solution

is that it comprises |L| = 162 unique placements. Figure 4.9 shows a histogram of

the number of unique placements in 100,000 non-rejected samples. A fitted Gaussian

can be used to approximate the probability of a feasible solution, which is given by

132

the integral bounded by 161.5—162.5 in the extreme right-hand tail. This value is

1.1286× 10−24.

Figure 4.9: comp11: Sample histogram and fitted Gaussian for Monte Carlo sampling of
the shaded region (H4v ∪H3v)′, used to estimate the probability of rare event feasible
solutions.

Using this value and those obtained previously for comp11; an estimate for the

upper bound of the feasible space, expressed as a probability P (H4c), is 1.39× 10−46.

This corresponds to a cardinality for the feasible solution set of 2.65× 10330.

This hybrid approximation method gives a useful intuition about relative search

space sizes in the problem domain. Neither comp11, nor even smallA are suitable

for complete enumeration, due to their astronomical search spaces. For this purpose,

and guided by the techniques in this section, a more appropriately sized problem,

smallB, was created instead. It has the following characteristics:

Table 4.6: Characteristics of smallB, using the same notation as in Table 3.7

Name |C| |L| |U| |T | |D| |t| |R| |N |
smallB 3 6 2 2 5 4 2 26

A total of 5,488,320 non-equivalent1 feasible solutions were systematically

identified and nominally indexed. 100 million feasible solutions were then sampled

using the SD constructive heuristic.

Figure 4.10 shows the distribution of this sample, as a histogram with bin

sizes of 10,000. Figure 4.11 displays the same data but ordered by ascending bin

count. A χ2 goodness of fit test returns a p-value of 0, leading to a rejection of the

1 Equivalent solutions are solutions whose quality is invariant to the re-indexing of certain lectures
or rooms. The idea is formalised in Section 5.1.2.2 of the following chapter.

133

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Nominal solution index 10
6

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

B
in

 c
o

u
n

t

10
4

Figure 4.10: A histogram showing the distribution of 100 million feasible solutions to
smallB generated by the SD constructive heuristic. A bin width of 10,000 solutions is used
and solutions are indexed nominally according to a systematic enumeration of the feasible
solution space.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Nominal solution index 10
6

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

B
in

 c
o
u
n
t

10
4

Figure 4.11: A histogram showing the distribution of 100 million feasible solutions to
smallB generated by the SD constructive heuristic (the same sample data as in Figure
4.10). A bin width of 10,000 solutions is used and indices are reordered by increasing bin
count.

null hypothesis that the sample data follows a uniform distribution. Evidence for

this can be also gleamed by cursory inspection of Figure 4.10, in which some blocks

of solutions visibly display a higher probability of occurrence than other adjacent

blocks. Self-similar patterns also emerge in this histogram when viewed at higher

scales.

Analysing two examples at opposite extremes gives an insight into why this

variation exists. There were six unique solutions that did not appear in the sample at

all, and three that tied for the highest bin count of 62. In the former case, following

the pathway of construction revealed a consistent fact at each step. The choice of

lecture placement had a minimal effect on the number of valid placements remaining

134

for other lectures. That is to say, a high number of potential placements were left

open, creating more potential branches for the heuristic to follow. The chance of

following any one such branch at a given assignment point was therefore reduced.

This occurrence generally stems from a lecture from course Ci being placed in a

period p, for which unavailability constraints are already applied across a maximal

number of the courses in {C \ Ci}. The converse phenomenon was responsible in the

case of high probability solutions.

Corresponding χ2 tests on samples by static heuristics LD and LE led to a

rejection of the null hypothesis in the same way as for SD, meaning that all three

heuristics produce non-uniform samples. As problem size scales, the effects of these

biases are exacerbated. In smallB, |L| ≪ |R| × |P|. In benchmark and real world

problems, the relative difference between these quantities is smaller, and some feasible

solutions may be completely unreachable by way of a static heuristic. Further analysis

is needed to ascertain whether this may also be the case with dynamic heuristics,

although their mechanism of iterative sorting is understood to confer an advantage

in terms of opening up pathways to more solutions.

For these reasons, the versatility of SD is preferred, even though it is ac-

knowledged not to produce a uniform sample. Once initialised by SD, the optimiser

proceeds to phase two, the constituent parts of which are outlined across the following

sections 4.3.3 to 4.3.8.

4.3.3 Core algorithm

NSGA-III is a successful evolutionary algorithm that supports many-objective op-

timisation with constraints (Deb and Jain, 2013). It is an extension to the popular

NSGA-II algorithm, which was originally conceived for lower-dimensional objective

spaces (Deb et al., 2002). Due to the many-objective nature of the problem, NSGA-

III serves as an appropriate core around which to develop phase two, albeit with a

number of modifications.

135

4.3.4 Selection and constraint handling

Alongside the initialised population, the SD heuristic implementation returns an

array of feasibility flags, toggled during construction. The property con holds the

flag associated with each solution, with a true value indicating at least one violation

of a hard constraint. For the first generation only, scores for the four soft constraint

objectives are then calculated in full. Two-way tournament selection is used to select

a mating pool. Randomly paired candidate solutions are first compared on their con

property, with the lower value indicating the winner. Feasible solutions are thereby

given priority. Should the con values be equal, the sum of the objective scores is

used as a tie-breaking fitness measure.

One natural consequence of utilising the con property in this way is that

infeasible solutions can only decrease monotonically as a proportion of the active

population over time. Figure 4.12 illustrates this on a toy problem solved using

an unmodified NSGA-III. The red line shows that, once feasible solutions enter

the population, they cannot be replaced except by other, better, feasible solutions.

Once the infeasible timetables have been entirely bred out, the optimiser rapidly

converges to a perfect score, as shown by the blue line which indicates the estimated

hypervolume (Zitzler and Künzli, 2004).

Hypervolume (or the hypervolume indicator) is a useful performance metric

for optimisation problems with more than one objective, and is used regularly

throughout these chapters. The metric quantifies the volume of the objective space

that is dominated by a set of solutions, relative to an appropriate reference point.

As such, it captures a sense of both the convergence and coverage of the solution set,

with a higher hypervolume value representing better performance.

Despite the trivial nature of smallA and a sizeable population of 364, a full 120

generations were required movement occurred in the plots as shown. One conclusion

from this is that the standard NSGA-III operators are largely ineffective for the

UCTP. In the next section, some better-suited operators are proposed.

136

0 50 100 150

Generation

0

0.2

0.4

0.6

0.8

1

H
y
p
e
rv

o
lu

m
e

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n
 o

f
p
o
p
u
la

ti
o
n
 w

it
h

o
n
e
 o

r
m

o
re

 h
a
rd

 v
io

la
ti
o
n
s

Figure 4.12: Active population statistics — hypervolume (blue line), and fraction of
infeasibility within the population (red line) — for an unmodified NSGA-III on the instance
smallA with population size 364 and default parameters. Note that only feasible solutions
contribute towards the hypervolume measurement.

4.3.5 Genetic operators

For a real-valued encoding in a continuous space, NSGA-III traditionally uses simu-

lated binary crossover (SBX) and polynomial mutation as its genetic operators. For

the discrete problem at hand, adaptations were first made to both genetic operators

to ensure the preservation of integrality in decision space. Further investigation

determined that, with no meaningful ordering apparent for entities such as days

or periods, traditional polynomial mutation is not necessarily well suited for this

problem domain. Similarly, standard SBX carries the risk of degenerating timetables

by recombining promising subsets in an injudicious way, thereby worsening the overall

solution quality.

In further tests, uniform crossover and uniform random mutation were trialled

in place of the original operators. Uniform crossover in particular, however, was found

to cause large jumps in the solution space, diminishing the ability of the optimiser to

exploit its more immediate neighbourhood. In complex, combinatorial timetabling

problems, a successful crossover operator requires domain-specific knowledge and

can be computationally expensive. For simplicity, the proposed approach therefore

dispenses with crossover, devoting the entirety of its operator budget instead to a

guided mutator. In developing this mutator, the following test was conducted:

137

90 92 94 96 98 100

Percentage of assigned lectures that can feasibly move

0

100

200

300

400

500

C
o
u

n
t

(a) comp01

70 75 80 85 90 95

Percentage of assigned lectures that can feasibly move

0

50

100

150

C
o

u
n

t

(b) comp02

75 80 85 90

Percentage of assigned lectures that can feasibly move

0

50

100

150

200

C
o
u
n
t

(c) comp12

Figure 4.13: Histogram of the percentage of assigned lectures with at least one feasible
move available, for instances comp01, comp02 and comp12. The sample is the first 1000
feasible solutions constructed by saturation degree.

1,000 feasible solutions were constructed using SD. For each assigned lecture

of each solution, a check was made on the number of places it could be reassigned to

without violating the overall solution feasibility. For some assignments, there were

no feasibility-preserving moves available. The histograms in Figure 4.13 show (for

comp01, comp02 and comp12 respectively) the distribution of percentages of assigned

lectures, over each 1,000-solution sample, that had at least one such available feasible

move.

For all problems tested, the distributions demonstrate that the expected number

of available feasible moves for a starting solution is generally high. The optimiser

can be guided, therefore, by imbuing the first version mutator, known as MuPF,

with a preference for feasible moves where they exist. Algorithm 5 outlines this

138

‘preference for feasibility’ mutator, abbreviated as MuPF. In line 4 of the pseudo-code,

all potential feasible moves are identified in advance of conducting a random uniform

sample of that set. While it would be cheaper to simply take the first feasible move

found during identification, the systematic nature of the process makes it implicitly

biased. The (small) additional computational expense is deemed acceptable in order

not to bias the move selection.

Algorithm 5: Preference for feasibility (MuPF) mutation operator

1 Input: One starting solution (feasible or infeasible)
2 Output: One mutated solution
3 Randomly select a lecture, li, to mutate
4 Identify the set of places, feasMoves(li), to which i can be reassigned

without violating the feasibility of the solution
5 if feasMoves(li) = ∅ then
6 Reassign lecture li to a new randomly chosen place, excluding pre-defined

unavailable periods (set N)

7 else
8 Reassign lecture li to a place from feasMoves(li), chosen at random

0 50 100 150 200 250 300 350 400 450 500 550

Generation.

0

0.2

0.4

0.6

0.8

1

O
b
je

c
ti
v
e
 v

a
lu

e
,
0
-1

 n
o
rm

a
lis

e
d
 b

e
tw

e
e
n

0
 a

n
d
 r

e
s
p
e
c
ti
v
e
 m

a
x
 v

a
lu

e
.

comp01. 4-obj. Min, mean and max values of 4 soft constraint

objectives per generation. Red: S1. Black: S2. Blue: S3. Green: S4.

Figure 4.14: Red: S1. Black: S2. Blue: S3. Green: S4. Normalised minimum (lower
dashed lines), mean (solid lines) and maximum (upper dashed lines) values of individual
soft constraint objectives in the active population, for generations 1 to 550, using the
proposed MuPF mutator for comp01 and 10 repetitions.

Using this mutator, a test run was performed on comp01. Figure 4.14 shows

traces of the population minimum, mean and maximum for the normalised individual

objective scores as they evolved over 550 generations. Over the course of this run,

the minimum values of objectives [S1, S2, S3, S4] improved from [1599, 15, 88,

139

50 100 150 200 250 300 350 400 450 500 550

Generation number.

0

10

20

30

40

50

60

N
o

v
e

l
s
o

lu
ti
o

n
s
 i
n

 p
o

p
u

la
ti
o

n

(a
s
 a

 p
e

rc
e

n
ta

g
e

 o
f

p
o

p
u

la
ti
o

n
).

comp01: New individuals with regard to entire search history.

Figure 4.15: comp01: Novel solutions (with regard to the entire search history) in the active
population using the base optimiser with mutator MuPF. Generations 2 to 550 are shown.

66] to [537, 0, 6, 28] respectively. The inference is that, regardless of its simplicity,

the perturbations introduced by MuPF effectively facilitate the search process, even

when operating within a limited budget. Figure 4.15 gives a measure of the novelty

within the active population for this run. A healthy degree of churn is in evidence.

Towards the end of the run, around 15% of each successive population is made up of

previously unseen solutions.

Further tests emphasised the large relative contribution that S1 often makes

to a scalarised objective score. A modification to the mutator, in which sufficient

room capacity is taken into account, was proposed to better target this objective.

Denoted MuPFPR, this mutator has the same initial preference for placements that

preserve feasibility, but appends a secondary preference for placements in rooms

whose capacity is sufficient for the number of enrolled students. The pseudo-code is

given in Algorithm 6.

A comparison between MuPF and MuPFPR is displayed in Figure 4.16. A run on

comp01 was carried out with a function evaluation budget of 2 million. The extra

room-related guidance provided by MuPFPR, shown as a blue trace, helped drive the

convergence rate for the S1 objective (in the top left tile), at no significant detriment

to objectives S2 or S3 (which are temporal rather than spatial). S4 is also not

significantly compromised in this particular example, but in general has a greater

potential to conflict with S1 due to both being room-related.

140

Algorithm 6: Preference for feasibility, preference for room (MuPFPR) muta-
tion operator

1 Input: One starting solution (feasible or infeasible)
2 Output: One mutated solution
3 Randomly select a lecture, li, to mutate
4 Identify the set of places, feasMoves(li), to which li can be reassigned

without violating the feasibility of the solution
5 if feasMoves(li) = ∅ then
6 Reassign li to a new randomly chosen place in any room with sufficiently

high capacity but excluding pre-defined unavailable periods (set N)

7 else
8 if feasMoves(li) ∩ sufficientRooms(li) = ∅ then
9 Reassign lecture i to a place randomly chosen from feasMoves(li)

10 else
11 Reassign li to a place randomly chosen from the given non-empty

intersection

Generation

O
b

je
c
ti
v
e

 s
c
o

re

0 1000 2000 3000 4000 5000
0

1000

2000

3000

S1 (Room capacity)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

S2 (Minimum working days)

0 1000 2000 3000 4000 5000
0

50

100

150

200

S3 (Curriculum compactness)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

S4 (Room stability)

Figure 4.16: Red: Mutator MuPF. Blue: MuPFPR. Traces shown are the minimum (lower
dashed lines), mean (solid lines) and maximum (upper dashed lines) objective scores from
each generation for a single repetition of comp01 with 2 million function evaluations (or
approximately 5,500 generations with a population of 364).

Incorporated into the mutation process is an implicit feasibility checker. A

violation flag, conMutation, is toggled if and only if feasMoves(i) = ∅. The returned

con property for that child is generally given by (conParent ∨ conMutation) —

except in the case when the parent solution is infeasible and the mutation (in

isolation) is feasible. In such a case, the status of the child is unknown and a full

evaluation of the hard constraints must be called. The rarity of this happening

141

ensures that, in practise, the hard constraint evaluators seldom need to be executed

at all — an example of a time-saving partial evaluation. The following section

details how δ-evaluations are used to make similar savings when calculating the soft

constraint objectives.

4.3.6 δ-evaluations

δ-evaluators can speed up the function evaluations by an order of magnitude, enabling

experimentation with higher budgets. This is achieved by computing only the small

areas of inter-generational change rather than evaluating an entire solution. The

concept was suggested for timetabling as far back as Ross et al., 1994. More recently,

Geiger, 2012 reported expending 13 million function evaluations in 10 minutes on a

single CPU core for comp01 by incorporating δ-evaluations, and yet many authors

neglect to take advantage of the strategy. Profiling of the system suggested that

50% of run time was used on function evaluations, making it a prime candidate for

streamlining.

The process by which the proposed δ-evaluators obviate the need for full

evaluations is as follows: The ID of the lecture to be perturbed is recorded. The

value contributed to the parent objective score by the assignment of this lecture is

calculated. This value is subtracted from the objective score of that parent, which is

known a priori from the previous generation. Lastly, the contribution of the new

assignment in the child solution is added. Objective S1 is best suited for a fast δ

implementation, due to the fact that the value contributed by an individual lecture

is independent of those from other lectures. For the remainder of the objectives,

interactions between the lecture being perturbed and various other lectures must also

be accounted for — specifically, those from the same course (for S2 and S4), or those

with a common curriculum (S3). Combined over four objectives, the δ-evaluators

nonetheless offer a sizeable time saving over their fully executed counterparts, as

illustrated in Figure 4.17.

While the run time of a full evaluator scales with the number of lectures, the δ

run time scales with the number of mutations — due to the resulting combinatorial

142

Number of lectures mutated.

W
a
ll
 c

lo
c
k
 t
im

e
 f
o
r

1
0
0
 e

v
a
lu

a
ti
o
n
s
 /
 s

.

5 10 15 20
0

0.1

0.2

0.3
comp18

5 10 15 20

comp02

5 10 15 20

comp07

Figure 4.17: A comparison of the estimated time complexity (mean of 10 repetitions)
for the combined δ-evaluators (solid lines) vs. full evaluation (dashed lines), for a small
(comp18), medium (comp02) and large (comp07) sized problem and a variable number of
mutations.

interactions. Under a single lecture mutation, the δ-evaluator gives the largest

time savings, by multiples of 6.3, 10.7 and 13.2 for the respective problems shown.

Additionally, the likelihood of returning a feasible solution decreases exponentially

with multiple mutations under MuPFPR. For these reasons, MuPFPR is restricted to

one execution per solution per generation.

4.3.7 Non-dominated sorting

At the heart of NSGA-III (and other many-objective optimisers) is the dominance

relation on objective scores, which is used to sort a merged parent/offspring population

into non-dominated fronts. The efficient non-dominated sort with sequential search

(ENS-SS) is used (Zhang et al., 2015). The hard constraint handling procedure

mandates that any solution with a con flag value true is automatically dominated

by all feasible solutions, regardless of the quality of its objective vector. The only

way, therefore, in which such a solution can be admitted into the next generation is if

the cardinality of the feasible solution set is less than the active population size. This

in turn reaffirms the following about phase two: If a given generation is fully feasible,

all subsequent generations are also fully feasible. To promote diversity, NSGA-

III also associates solutions with rays passing through a set of popSize uniformly

distributed points on the 4-dimensional unit hyperplane. The normal-boundary

intersection method with two layers is used to obtain these coordinates. popSize is

a geometrically constrained approximation to the desired, user-input population size,

setPopSize.

143

4.3.8 Archiving

An external archiving routine, implementing the ND-Tree structure (Jaszkiewicz

and Lust, 2018, Fieldsend, 2020), is included inside the main optimisation loop. Its

purpose is to update and maintain the set of non-dominated solutions found over

the course of the search. The archive is passive, meaning that it plays no active role

in the optimisation process.

4.3.9 Summary

In this section, the rationale and description of each algorithmic step for a many-

objective solver is given. An overview of how these steps fit into the two-phase system

is given by the sequence diagram in Figure 4.1, in which initialisation is followed

by optimisation. A integer-valued encoding is used, with a chromosome of length

|L| × ⟨di, pi, ri⟩ (Section 4.3.1). Initialisation is by saturation degree constructive

heuristic, with infeasible solutions permitted in the first generation. Two-way

tournament selection is used as in Section 4.3.4. Perturbation is by mutation-only,

using the operator MuPFPR exclusively (Section 4.3.5). In replacing individuals for

the next generation, the traditional NSGA-III approach is used. Non-dominated

sorting is employed until the size of a front causes the population size to be exceeded,

at which point, closeness to a set of decomposition rays is used (Section 4.3.7) until

the population quota is satisfied. Genotype measures are not incorporated in this

chapter. At each generation, a non-dominated archive is maintained (Section 4.3.8)

and the complete search history is also archived for post hoc system analysis.

In the next section, details of two stages of experimentation are laid out. The

latter is based on the two-phase system, while initial tests were also carried out using

a single-phase model in which hard constraints were relaxed.

144

4.4 Experiments

4.4.1 Relaxed hard constraints experiments

Before arriving at the two-phase model, preliminary tests were carried out into

the viability of solving the many-objective problem in a single phase. Barring H1

and H4, whose satisfaction was guaranteed by the encoding scheme, all other hard

constraints were relaxed. The violation count of each was cast as an additional

objective, giving rise to a 7-dimensional space and no con property.

When initiated with a random population, this algorithm exhibited poor

convergence. In a second round of tests, the initial random population was instead

heavily seeded with solutions that had been pre-optimised to zero in one or two

objectives only. Figure 4.18 provides an example of an initial population in which a

large majority of the 200 solutions have no S1 violations2.

H2 H3 H5 S1 S2 S3 S4

Objective

V
a

lu
e

0

20

40

60

80

100

120

0

20

40

60

80

0

5

10

15

20

25

30

0

50

100

150

200

250

0

20

40

60

80

100

0

50

100

150

200

0

10

20

30

40

50

60

Figure 4.18: The 7-objective evaluation of an initial population (size 200) of solutions to
comp01, in which the majority of solutions have a zero S1 score.

Figure 4.19 shows the evolved population at termination, while Figure 4.20

shows a trace of the hypervolume3. The gradient at termination indicates that

further significant improvement was unlikely. Zero scores for S1 were not achieved

consistently across the entire population, despite the initial and deliberate bias

2 S1 is arguably the simplest of the objectives to pre-optimise and has been used here for
illustrative purposes. Similar experiments were attempted in which S2 . . . S4 were similarly
pre-optimised. In all cases, the evolution was hampered by genetic drift, causing poor convergence.

3 Note that the apparent non-monotonicity of the hypervolume is due to estimation error, as
high-dimensional hypervolume is expensive to calculate exactly — details of the methods used are
elucidated in Section 4.4.2.

145

H2 H3 H5 S1 S2 S3 S4

Objective

V
a

lu
e

0

20

40

60

80

100

120

0

20

40

60

80

0

5

10

15

20

25

30

0

50

100

150

200

250

0

20

40

60

80

100

0

50

100

150

200

0

10

20

30

40

50

60

Figure 4.19: The 7-objective evaluation of an active population of solutions to comp01 at
termination, after 250,000 function evaluations (approximately 1,250 generations). The
optimiser was initiated using the population shown in Figure 4.18 and uses the same axes
ranges for consistency.

0 0.5 1 1.5 2 2.5

Function evaluations 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

E
s
ti
m

a
te

d
 h

y
p
e
rv

o
lu

m
e

Figure 4.20: The progression of the hypervolume over the course of an optimisation run
that evolved the initial population from Figure 4.18 into the final population from Figure
4.19.

towards this objective. Most pertinently, the relaxation of the hard constraints meant

that, throughout this batch of runs, feasible solutions were almost never located.

These preliminary findings strengthened the argument for a two-phase approach

as developed in Section 4.3: The first strand of which is that feasibility rates could

be improved by tackling the hard constraints in advance of the soft. Secondly, a

greater selection pressure could be brought to bear by the dominance relation if the

dimensionality of the objective space were reduced from seven to four. The next

section lays out the main experiments using this two-phase system.

4.4.2 Two-phase system experiments

Each run of the optimiser was allocated to a single core of the Ryzen9 machine, as per

the original ITC2007 stipulation. Parallelisation was used only across independent

repetitions. In the absence of the original CPU benchmarking program, termination

146

was after 600 seconds wall clock time, which was the limit intended by the competition,

and setPopSize = 100. For each problem instance4, 30 repetitions were carried

out by varying the random seed. The results are reported in terms of the following

performance metrics:

• The number, at termination, of unique solutions in the non-dominated archive.

This cardinality is reported in both the objective space and design space, as

these values may differ owing to the many-to-one mapping. All equal quality

designs are retained.

• A Monte Carlo estimate of the hypervolume indicator, for which 1,000,000

samples are used and objective scores are normalised. The hypervolume is

a useful indicator by which to gauge performance, as it captures a sense of

both spread and convergence, and has the property of being strictly monotonic

with respect to Pareto dominance (Bader and Zitzler, 2011). Theoretical

upper bounds on the maximum objective scores are used as its reference point

coordinates. The method of derivation for these is given under the following

heading.

4.4.2.1 Hypervolume reference points

By contriving a worst case scenario on each objective, coordinates of a theoretical

worst point can be loosely approximated. Potential interactions between objectives

and curricula are ignored, as are pre-defined unavailable periods. This ensures a

conservative estimate, suitable for use as the hypervolume reference point. In the

case of each objective, the value is determined by way of the following steps:

For S1: Sort lectures by number of enrolled students, in descending order.

Replicate each room capacity value |P| times, and sort in ascending order. Pair

lectures to rooms accordingly, beginning with the most popular lecture and smallest

room.

For S2: Distribute lectures across the smallest number of days possible, given

by ⌈(|L|/t)⌉.
4 Under the UD2 configuration, comp03 is identical to comp15, so the latter was omitted.

147

For S3: The maximum number of ‘isolated’ periods is given by ⌈(t/2)× |D|⌉.

In a loop over curricula 1:|U|, compare this value to the number of lectures. If the

value is less than or equal to, increment a running total by the difference. Otherwise,

increment by the number of lectures in the curriculum.

For S4: Distribute lectures across the greatest number of rooms as possible,

given by min(|R|, |L|).

Table 4.7 shows the calculations for all benchmark instances.

Table 4.7: Coordinates of hypervolume reference points for benchmark problems comp01
to comp21, as upper bounds on the worst point.

comp S1 S2 S3 S4

01 3,606 360 294 124
02 14,072 815 1,704 201
03 11,160 720 1,536 179
04 8,151 665 1,130 207
05 11,102 475 2,954 98
06 10,632 990 1,668 253
07 9,760 1,150 1,806 303
08 7,711 700 1,166 238
09 9,269 720 1,492 203
10 9,296 1,020 1,610 255
11 3,196 335 500 103
12 4,533 650 3,102 130
13 10,668 670 1,292 226
14 7,138 830 1,392 190
15 11,160 720 1,536 179
16 9,354 985 1,650 258
17 10,229 930 1,608 240
18 2,638 455 954 91
19 10,108 760 1,386 203
20 12,338 1,070 1,874 269
21 10,687 860 1,666 233

4.5 Results

Table 4.8 shows the results in terms of the key performance metrics and additional

statistics, alongside results from Geiger, 2009. In Figure 4.21, parallel coordinate

plots show the spread of non-dominated solutions for the single best performing

repetition, for ten problems. In ten other problems, the S1 dimension was successfully

148

Table 4.8: Results from 30 independent repetitions. bs is the best scalarised solution
score found over all repetitions, while bs(S1, S2, S3, S4) gives a decomposition over the
objective scores (averaged over all unique objective vectors whose sum is bs). A is the final
archive of non-dominated solutions, where sets of unique vectors in objective or decision
space are distinguished by subscripts o and d respectively. Cardinalities for both are given
as median values. hv(Ao) is the (mean) hypervolume of Ao. The best scalarised results
from the two approaches in Geiger, 2009 are given as G1 (Threshold Accepting with 1%
threshold) and G2 (reference point based).

Proposed approach Others
Instance bs bs(S1, S2, S3, S4) |Ao| |Ad| hv(Ao) G1 G2
comp01 11 (4, 0, 4, 3) 10.5 7,492 0.959 5 10
comp02 200 (0, 45, 129, 26) 15.5 396 0.792 108 134
comp03 162 (0, 52.5, 92, 17.5) 17 850 0.831 115 154
comp04 92 (0, 6.7, 65.3, 20) 16.5 481.5 0.853 67 90
comp05 564 (0, 151.7, 403.3, 9) 331.5 669 0.732 408 611
comp06 167 (0, 15, 104, 48) 15.5 233 0.777 94 159
comp07 183 (0, 20, 90, 73) 17 125.5 0.710 56 155
comp08 108 (0, 0, 74, 34) 13.5 300.5 0.810 75 120
comp09 158 (0, 40, 94, 24) 24 623 0.821 153 197
comp10 133 (0, 20, 60, 53) 15.5 179.5 0.763 66 104
comp11 0 (0, 0, 0, 0) 2 45,453 0.981 0 0
comp12 515 (2, 210, 292, 11) 412 735.5 0.759 430 660
comp13 131 (0, 30, 84, 17) 20 390 0.832 101 133
comp14 125 (0, 20, 90, 15) 19 1,288.5 0.866 88 120
comp16 149 (0, 20, 82, 47) 16 139.5 0.787 n/a n/a
comp17 182 (0, 15, 130, 37) 17 243.5 0.779 n/a n/a
comp18 116 (0, 30, 78, 8) 44.5 1,372.5 0.884 n/a n/a
comp19 180 (0, 37.5, 126, 16.5) 16.5 703 0.798 n/a n/a
comp20 200 (0, 25, 119, 56) 138.5 408 0.751 n/a n/a
comp21 213 (0, 35, 148, 30) 17.5 240.5 0.770 n/a n/a

collapsed to zero, meaning they can be visualised in 3-D objective space, as per

Figure 4.22.5

In terms of run time, expensive components such as non-dominated sort meant

that the proposed method was found to execute fewer total function calls in 600

seconds than many of its single-objective competitors. Despite this, scalarised results

were seen to approach those of single-objective solvers on some problems which is

encouraging — comp11 in particular was solved to optimality. With regard to the

individual objective scores, the targeted operator MuPFPR was capable of rapidly

optimising S1 to zero across the board (except for comp01 where the value of S1

in the optimal solution is known to be 4, and comp12). These gains were not made

5 Problem comp11 is excluded from this set of plots, as a perfect score was attained.

149

Objective

V
a

lu
e

comp01

4

4.5

5

5.5

6

0

1

2

3

4

5

0

2

4

6

8

10

2

3

4

5

6

comp02

42

44

46

48

50

52

54

10

20

30

40

50

60

70

120

140

160

180

200

220

240

20

40

60

80

comp03

0

2

4

6

8

20

30

40

50

60

70

150

200

250

20

40

60

80

comp05

0

100

200

300

40

60

80

100

120

140

500

600

700

800

900

0

5

10

15

20

S1 S2 S3 S4

comp07

0

20

40

60

80

10

15

20

25

30

95

100

105

110

115

66

68

70

72

74

76

78

S1 S2 S3 S4

comp12

0

20

40

60

50

100

150

400

500

600

700

800

900

10

20

30

40

V
al
ue

Objective

V
a

lu
e

comp18

0

10

20

30

10

20

30

40

50

60

70

60

80

100

120

140

160

180

0

2

4

6

comp19

0

5

10

30

40

50

60

70

100

120

140

160

15

20

25

30

S1 S2 S3 S4

comp20

50

100

150

200

20

40

60

80

100

120

100

150

200

250

50

60

70

80

90

S1 S2 S3 S4

comp21

0

50

100

150

200

30

40

50

60

140

160

180

200

27

28

29

30

31

32

Figure 4.21: Non-dominated solution sets found during single repetitions for the ten
problems comp01, comp02, comp03, comp05, comp07, comp12, comp18, comp19, comp20,
comp21 shown as parallel coordinate plots. Each plot window shows the repetition that
achieved the greatest hypervolume.

150

0

20

100
40

S
4

40

comp04

60

20

50 0

40

150
30

45

comp06

20

50

10
100 0

20

100

25

30

90 20

comp08

35

1080
0

0

20

150

40

S
4

100

comp09

60

100 50

30

150

40

60

50

comp10

60

40
100

20

10

150

20

comp13

40

30

100

20

0

150

20

40

S
4

50

comp14

60

S3 S2

100

0

150

40

60

30

comp16

S3 S2

80

20
100

10

30

40

40160

comp17

S3

30

S2

50

140 20
10

Figure 4.22: Non-dominated solution sets (black points) in (S2,S3,S4)-space, found during
single repetitions for nine problems in which the fourth objective, S1, was consistently
optimised to zero. Grey points show the projection of the sets onto the coordinate axes. For
each instance, the data is taken from the repetition that achieved the greatest hypervolume.

151

at the expense of other objectives however, which showed improvement without

exception during the runs. This suggests that additional bespoke operators, targeted

at these objectives, may be a promising next step in striving to closer approximate

the true Pareto front.

The results of Geiger, 2009 are included as a point of reference because of

the matching benchmark and the attention given to soft constraints as individual

objectives within the algorithm. A comparison with the reference point based

approach (G2 in Table 4.8), shows competitive or superior performance in terms

of scalarised scores, although this claim is weakened by the CPU benchmarking

discrepancy as mentioned in Section 4.4.2. It is important to note that a direct

statistical comparison is not possible as, despite some similarities in process, Geiger,

2009 ultimately returns a single scalarised solution. The major point of differentiation

and novelty in this chapter is that the approach returns a Pareto front approximation

set (with sizes and spreads of those sets varying with the complexity or size of

the instances.) Achieving this in a comparable timescale while also maintaining

competitiveness on the preferred metric of Geiger, 2009 is therefore encouraging.

The original NSGA-III offers arguably more of a like-for-like comparison, but it

must be understood in the context of the problem domain. When the original NSGA-

III was run under under default settings and a matching evaluation budget, no feasible

solutions were returned for any of the problem instances. In NSGA-III, random

(rather than heuristic) initialisation leads to a first generation of wholly infeasible

timetables. From here onwards, and as discussed in Section 4.3.5, traditional operators

do not respect the hard constraints, meaning that the populations never migrate

away from infeasible regions, even if soft constraint violations are gradually improved

upon. Thus, while a formal statistical comparison between the proposed algorithm

and NSGA-III is also not appropriate, it can be stated that the modifications made

in the former are overwhelmingly suitable and beneficial for the UCTP since feasible

solutions are consistently found.

The approach appears relatively problem-agnostic, in contrast to, for example,

Geiger, 2012 whose results show high variance across problems. Most importantly,

152

it works under the assumption of a posteriori decision maker preferences. Different

areas and extremes of the Pareto front are therefore explored simultaneously and a

well-spread set of non-dominated solutions can be delivered, as shown in Figures 4.21

and 4.22. The hypervolume indicator values in Table 4.8 also provide evidence for

this, with nine problems achieving a mean of 0.8 or higher. Figure 4.21 also helps to

understand the trade-offs between objectives. Conflict can be seen between S2 and

S3, for example. This may be expected, as S2 depends on spreading lectures more

widely over time (days), while S3 relies on forcing lectures closer together in time

(periods).

As lower absolute objective scores are achieved, the cardinality |Ao| naturally

tends to decrease, as in comp01 (median 10.5) and comp11 (median 2). This tension

can be understood by the proximity of the front to the origin and consequent sparsity

of distinct points on the 4-D integer lattice.

Ad is the set of unique decision vectors, discovered at any point during the

optimisation run, that evaluate to the objective vectors stored in the final non-

dominated archive. The set Ad is obtained by retrospectively scanning the complete

history archive, retrieving the necessary data and removing duplicates. The observa-

tion |Ad| ≫ |Ao| interestingly highlights the extent to which multiple designs map

to a common objective point. This particular facet of the problem domain will be

analysed further in the next chapter.

4.6 Conclusions

In a departure from the single-objective treatment of the ITC2007 timetabling

problem, this chapter proposed a two-phase, many-objective optimiser based on a

modified NSGA-III in which hard constraints are handled procedurally and soft

constraints are cast as objectives.

It is effectively parameterless — save for setPopSize and termination criteria

which are pragmatic user choices — and therefore does not require or depend upon

tuning. The value 2 in the 2-way tournament selection operator is a commonly used

default. The time cost associated with many-objective algorithms was alleviated by

153

prudent use of δ-evaluators. The various strategies for speeding up (or by-passing)

the calculation of objective scores was successful in yielding inexpensive evaluations.

However, mitigation against the cost of non-dominated sort was only partial. The

algorithm unsurprisingly had a lower execution rate for function calls than many

single-objective solvers. Comparing its performance on an equal function evaluation

budget rather than a time budget would be enlightening, as the gradients in Figure

4.16 suggest further gains are available.

A simple guided mutation operator reduced the otherwise large violation

contributions caused by over-filling rooms (constraint S1) to zero wherever this

was possible (i.e. in all problem instances except comp01 and comp12). Selection

and non-dominated sorting ensured convergence of the other objectives as well as

feasibility of solutions, while a quick start was guaranteed by the SD constructive

heuristic.

Some avenues for future work include increasing the convergence speed of the

remaining three objectives by widening the pool of targeted operators. If the mutator

is interpreted as a neighbourhood, a more systematic exploration may be possible.

Figure 4.13 gives an intuition about the size of such a neighbourhood. An adaptive

element may be added to phase two to select from such a pool based on the state of

the current population or trajectory of the evolution. Alternatively, objectives that

reach optimality may be aggregated with con so that any solutions sub-optimal in

this objective will thereafter be automatically dominated. Further analysis will also

help characterise the trade-offs between the objectives. By their definitions, S1/S4

and S2/S3 represent the two pairs with the greatest potential to conflict. The large

cardinalities of the decision space solution sets suggests that genotype diversity could

also play a useful role in the selection process.

In the next chapter, the system is developed further. Redundancy in the search

space is examined, leading to a modification of the encoding scheme. Aforementioned

genotype diversity measures, alluded to in schematic Figure 4.1 but absent in this

chapter, are introduced and tested. The effects of additional perturbation operators

and a modified tournament selection operator on run time and performance are

154

assessed. Finally, a robustness metric is designed and inserted as an additional

objective.

155

5. Genotype Diversity, Enhanced

Operators and Robustness

When using evolutionary algorithms to solve the UCTP as a many-objective problem,

measures aimed at encouraging population diversity are commonly applied in the

objective space (Preuss et al., 2010). Difficulties can arise when the search encounters

plateau regions, caused by multiple designs evaluating to a common objective vector.

The work in this chapter seeks to address this through making subtle, but impactful,

adjustments to the algorithmic components. These include the non-dominated sort

and its leverage of genotype information, as well as the perturbation and selection

operators. The enhancements made, which lead to improved diversity through better

exploration, are important for the final section, in which robustness is then added as

a new objective. Chapter 5 is therefore laid out in three distinct parts:

In the first part (Section 5.1) the phenomenon of plateaus is illustrated with

a specialised tree diagram. An enhanced diversity measure that includes genotype

crowding is proposed in order to alleviate the issue shown. A standard form encoding

is also developed to handle solution equivalence and reduce metric entropy. Four

metrics and a baseline are tested, using the optimiser developed in Chapter 4.

Hypervolume is the primary performance measure. As an additional integrated

selection criterion in the non-dominated sort, behind dominance and phenotype

diversity, genotype diversity measures are shown to improve performance. Hamming

distance is the most successful of the metrics tested.

In the second part (Section 5.2) the pool of operators is extended to include

those with stronger perturbations. Analysis is conducted into aspects of performance

of each, such as feasibility preservation and run time. The tournament selection

156

routine is also modified to take advantage of symmetry within the problem. A variant

of this operator is proposed that is motivated by discouraging the proliferation

of equivalent or recycled solutions. While no significant improvement in overall

hypervolume is achieved by the use of this operator, increases are seen in the final

set cardinality instead. This suggests that a more granular rendering of the Pareto

approximation set can be achieved. A larger set of choices could then be made

available to a decision maker, without compromising on timetable quality.

In the third part (Section 5.3) a fifth objective — robustness — is introduced

to the optimiser. To facilitate this, some realistic disruption scenarios are defined. A

metric is then devised in order to capture the deterioration in timetables when re-

evaluated subject to various disruptions to the problem. Robustness is an important

but often overlooked quality in real world timetabling, in which disruptions can

occur regularly. Given the many-to-one mapping that exists in the UCTP model

between designs and evaluations, a new objective representing robustness could be

invaluable to a decision maker in discriminating between timetables of otherwise

equal quality. The many-objective approach developed in this thesis provides the

ideal set-up for analysing what trade-offs may be present between individual quality

objectives and the robustness. It is therefore proposed to generate solutions as part

of a 5-dimensional Pareto approximation set. When using a fixed disruption scenario,

perfectly robust solutions are discoverable for the majority of benchmark instances.

These solutions are also shown to be more robust to generalised disruptions when

compared to those returned from the 4-objective system.

5.1 Diversity measures

5.1.1 Background

It has long been recognised that maintaining a diverse population of solutions is

important in genetic algorithms tasked with navigating vast and fragmented search

landscapes. This is as essential for timetabling as it is for other problem domains.

Deb, 2001 cites diversity maintenance as one of the two key functions a good multi-

157

objective optimiser must perform, the other being to converge as close as possible to

the true Pareto front. Diversity and convergence may also at times conflict with one

another. In Myszkowski and Laszczyk, 2021, a selection operator based on diversity

is tested on a scheduling problem with the aim of nudging the search process towards

unexplored ‘gaps’ and increasing the spread of solutions to encompass these regions.

A weakness was found in relation to constrained problems, in that processing power

may be wasted in the exploration of infeasible solutions, reducing the likelihood of

convergence within the time budget.

In a recent survey of university course timetabling practises, Oude Vrielink

et al., 2019 related work in Alkan and Özcan, 2003 highlighting the opposite problem.

While exploring feasible solutions with a GA, the authors noted that premature

convergence is a common occurrence, caused by individual solutions becoming too

similar. Some techniques to counter this are mentioned, such as hypermutation

or maintaining parallel sub-populations of solutions. A conclusion drawn from

experimentation was that prohibiting non-unique offspring from joining the next

population during the process of replacement was one successful way to maintain

diversity.

A variety of encoding schemes have been proposed for timetabling, including

indirect and direct. In the latter category, using a multi-dimensional logical array or

its integer indices is a common approach (see for example Abdullah and Turabieh,

2008). However, depending on the semantics of the problem description, this style of

encoding has the potential to invite degeneracy whereby multiple encodings represent

solutions that are in some way equivalent to one another.

It is important to note that in timetabling, as in other forms of scheduling

problem, the genotype-to-phenotype mapping is often many-to-one. Laszczyk and

Myszkowski, 2019 notes that there are many ways to rearrange variable assignments

that are not on a critical path and therefore do not alter the evaluated quality of

that solution. This can cause a perverse outcome when enforcing diversity on the

phenotype level, as solutions that occupy promising positions in genotype space

can sometimes be unfairly removed. Plateau regions in phenotype space were

158

explicitly recognised by Salehi and Doncieux, 2022 as one of three challenges (along

with distance metric bias and evolvability traps) faced by quality-diversity (QD)

optimisers. These are diversity-promoting search processes that seek to maximise the

coverage of their solutions, usually by operating diversity preservation techniques in

the phenotype space. Similar considerations underpin other established approaches,

such as NSGA-III (Deb and Jain, 2013). In the original formulation of NSGA-III

the preferential selection of solutions for the next generation is made primarily

on their relative positions according to the dominance relation. Solutions whose

objective vectors are not dominated by any others are the first to be accepted. If

this non-dominated front (or some subsequent front) should cause the population

size to be exceeded, a second criterion may be called upon to discriminate between

its mutually non-dominated solutions. The simplest approach, as seen in Greenfield,

2003, is to randomise this choice. While this mitigates against the introduction

of unwanted selection bias, it also fails to make use of information about solution

spread. NSGA-III leverages this with a phenotype diversity strategy built around

the projection of evenly distributed rays into objective space, yet it takes no account

of how solution genotypes may be spread. As discussed in Deb, 2001, proximity in

one space does not guarantee proximity in the other, particularly in many-variable,

non-linear or highly complex problems.

A suggestion offered in Chen et al., 2013 and Chen and Chou, 2017, with

regard to an air crew scheduling problem, was to select one portion of the required

solutions using a phenotype crowding measure, and the remainder using an analogous

genotype measure. For the latter, pairwise Hamming distances were used in order

to ascertain the least crowded designs. A parameter was used to define the ratio

between portions.

Conceptually, the use of genotype measures is not restricted to GAs. In Pérez

et al., 2021, a novel harmony search approach was presented, in which traditional non-

dominated sorting and phenotype crowding measures were enhanced by a genotype

crowding measure to encourage dispersion in the design space. The authors argued

159

that this extra criterion was useful in improving refined search (exploitation) in

promising areas of the solution space for multi-objective problems.

As discussed, different ideas exist for the implementation of genotype crowding.

One example is Deb and Tiwari, 2008, who proposed a multi-purpose ‘omni’ optimiser.

When encountering a partial front and requiring further discriminatory power, this

optimiser compared crowding measures in both spaces before selecting just one

for use. For each solution in phenotype space, a loop was executed through the

objective axes. The nearest lateral neighbours were found and the distance added to

a sum total. Boundary points were considered infinitely distant. The same process

was applied to the variable axes in genotype space, except that boundary points

were given a one-sided distance, then doubled. In both spaces, the values were

normalised and averaged. For each solution, if either distance exceeded the average,

the maximum of the two was accepted, otherwise the minimum was accepted. This

nearest neighbour approach in dual spaces was found to drive convergence through

the promotion of diversity.

As per the normalisation used above, care must be taken with the intrinsic

meaning of any variables used in the representation of a solution. In a real world

engineering problem such as Desai and Williamson, 2009, values of design variables

such as battery power and motor power are either on a continuum and/or have a

natural ordering. The authors use a multi-objective GA, with integrated genotype

diversity measure, to find Pareto optimal solutions to a hybrid electric vehicle problem.

Because of these design variable properties, a normalised Euclidean distance was

appropriate. In the timetabling problem under consideration here this may not be

valid, as some variables do not possess such an obvious natural ordering.

The next sections are laid out as follows. In Section 5.1.2, the methodology is

explained, including the proposed framework for choosing solutions from a truncated

front. This comprises an investigation into metric entropy, leading to a proposed

standard form encoding to deal with solution equivalence, and distance metrics.

Experimental protocol and parameter settings are given in Section 5.1.3. Section 5.1.4

160

provides analysis and statistical testing of the experimental data, before conclusions

on this part of the chapter are summarised in Section 5.1.5.

5.1.2 Methodology

The system developed in Chapter 4 is used both to initiate and optimise a population

of solutions, but with the addition of a genotype diversity routine (as preempted

in the schematic in Figure 4.1). While the perturbation operator in this system

is denoted MuPFPR, the more generalised reassignment of a lecture li to some new

randomly-chosen place within a solution x is denoted by the function reassign(x,li).

Additional relevant terminology and notation is summarised below.

Subsets of rooms with identical capacities are referred to as equal room sets and

are contained by E . The variable editDist is the value of the edit, or Levenshtein,

distance between two given solution encodings. In context, this is defined as the

minimum number of reassign moves required to transform one solution, or its

equivalent, into the other. The population size parameter is denoted popSize. Any

further notation is introduced at the point of use.

height = 4

Unique design

Unique obj. vector

Obj. vector sum

Feasible

All

Active population of comp11.

Generation:1000

Figure 5.1: A novel visualisation to illustrate uniqueness within an evolutionary population.
Shown is a snapshot of the active population at generation 1,000 for comp11, using the
baseline solver. Each node corresponds to a solution subset in the particular space labelled
on the left.

The timetabling problem domain and ITC2007 benchmark are known to exhibit

a many-to-one mapping from the genotype to the phenotype space. That is to say,

161

typically, a large array of unique solution designs evaluate to a common vector of

objective scores. Figure 5.1 provides a novel way of illustrating this phenomenon.

Taken from a snapshot (at Generation 1,000) of the optimiser run on comp11 with

popSize = 84, the tree graph breaks down the active population according to different

aspects of uniqueness. Each node in the lowest level corresponds to a unique design

vector. An animated form1 is proposed for observing the changes over time. In the

snapshot shown in Figure 5.1, All 84 population members are unique, yet collectively

they map to only 8 distinct objective vectors, as represented by the level above in

the tree. The exclusive use of a small-perturbation operator may exacerbate this

issue for some problem instances due to the difficulty in escaping from local optima

in the search space. The example instance in Figure 5.1 has a known optimum at

[S1, S2, S3, S4] = [0, 0, 0, 0] (Hao and Benlic, 2011) (note though that not all

problem instances have a perfect solution). As the population converges towards

this singular point, the approximation front also becomes naturally constrained by

the geometry of the 4-dimensional integer lattice in objective space. It is common

therefore in comp11 and other problems to encounter ‘plateau’ regions in the search

landscape, where small changes in the designs have no effect on solution quality.

The methodology is driven by this insight. Figure 5.1 serves also to emphasise the

potential wealth of information at the genotype level that could usefully be leveraged

when selecting solutions for the next generation. By developing a suitable genotype

crowding routine and identifying the most dissimilar amongst designs, the aim is to

help the search process escape plateau regions by encouraging exploration.

In our solver, non-dominated sorting is carried out on the union of parent and

offspring populations. The leading front of solutions that are not dominated by any

others (according to the dominance relation on objective vectors) are accepted first

into the next generation. This priority continues to be applied to each subsequent

non-dominated front. The first front that causes the number of admitted solutions

to exceed the population size is known as a split, or truncated, front. The original

NSGA-III algorithm provides a mechanism by which to discriminate between solutions

in such a front. A set of reference points, usually identical in size to the population

1 An example for comp13 can be seen at: https://www.youtube.com/watch?v=V70_b1w3KB0.

162

https://www.youtube.com/watch?v=V70_b1w3KB0

Algorithm 7: Genotype diversity: Choosing procedure for truncated front

1 Inputs: St (set of normalised solutions in accepted and last fronts
combined), Ft (set of normalised solutions in truncated front), Zr

(normalised reference points), π(x) (associated ray/s for a solution or set of
solutions x), K = popSize - |{St \ Ft}| (number of solutions required from
the truncated front to make up the population quota), dist (some pairwise
distance metric on genotypes)

2 Output: K solutions from truncated front Ft
3 ρ ← π(x) : x ∈ {St \ Ft} // Get the rays associated with the

solutions in the non-truncated front/s.

4 f ← π(x) : x ∈ Ft // Get the rays associated with the solutions

in the truncated front.

5 quota ← α : α ⊂ f, |α| = K, argminα[var(bins{ρ ∪ α})] // Choose the

set of K rays in f that, when combined with ρ, gives the most

even spread (lowest possible variance) over the rays. The

bins function returns the vector of counts per ray.

6 for rayIdx = 1:|Zr| // Loop through the rays.

7 do
8 if bins{quota}(rayIdx) = 0 then
9 Accept no new solutions for this ray.

10 else if bins{quota}(rayIdx) = bins{f}(rayIdx) then
11 Accept all x ∈ Ft associated with this ray.

12 else
// Invoke genotype crowding.

13 Compute dist(xi, xj) for all x ∈ Ft associated with this ray, i > j.
14 Accept a set of solutions (size bins{quota}(rayIdx)) with the

greatest minimum distance metrics (tie break at random).

size, are defined in objective space, through which decomposition rays are extended.

Taking the perpendicular Euclidean distance, solutions are associated with their

nearest ray. The algorithm then accepts as many solutions as are needed to satisfy

the next population quota, giving preference to those associated with the most

underrepresented rays. The motivation behind this is to maintain diversity in

objective space. However, it is quite possible for rays to have no associated solutions

or for multiple solutions to eventually cluster around a few rays. Furthermore, no

genotype information whatsoever is incorporated into this process of selection.

Algorithm 7, the genotype diversity routine, is proposed here to replace lines

16 and 17 of Algorithm 1 pseudo-code in the original NSGA-III (Deb and Jain,

2013). It outlines the procedure for choosing solutions from a truncated front. In

our Algorithm 7, line 3 obtains the rays associated with solutions in the previously

163

accepted, non-truncated fronts. Line 4 does the same but for the truncated front.

Line 5 selects a vector of counts of rays from the truncated front such that the variance

of the combined counts (of solutions associated with rays in both the non-truncated

and truncated fronts) is minimised.

By way of an example, consider a bi-objective problem with two decision

variables and population size of seven. Figure 5.2 shows five solutions comprising a

non-truncated front as black crosses. These are associated with seven rays as per the

vector [2 2 1 0 0 0 0]. Two more solutions are required from a truncated front whose

corresponding ray bin counts (solutions shown as red circles) are [1 2 2 3 0 1 0]. One

solution from each of ray 4 and 6 (shown as solid lines) would be selected in this case,

as this is the choice that yields the most even spread, [2 2 1 1 0 1 0] (corresponding

to the minimal variance of 0.67), in the now-completed next population. Lines 6-14

loop through the rays, calling the index value from the quota derived above, [0 0

0 1 0 1 0]. For each ray, the quantity of accepted solutions is either none (the if

clause in line 8, or rays 1, 2, 3, 5, 7 in the example), all (the else clause in line

10, or ray 6 in the example) or some (the else clause in line 12, or ray 4 in the

example). In the last case, genotype crowding is invoked to determine which of the

three solutions (enclosed by the dotted box in the objective space plot) to choose.

The corresponding locations of the three points in decision space are shown as green

triangles in the right window of Figure 5.2. Preference is given to the solution/s

that have the highest genotypic dissimilarity to their closest neighbour, as defined

by a distance metric (generalised as dist) in line 13. In the Figure 5.2 example,

Euclidean distance is used for clarity of illustration, with the most dissimilar of the

three solutions shown enclosed by a dotted box.

A traditional distance metric in this scenario, particularly for binary encodings,

is the Hamming distance. This can be applied to the real encoding used here in

an analogous way. However, a potential drawback exists in relation to the ⟨d, p, r⟩

style of encoding. Different designs can represent solutions that are, in practical

terms, equivalent. This is not an explicit consideration within the original ITC2007

rules, however there are good real world motivations for acknowledging equivalence.

164

Objective 1

O
b

je
c
ti
v
e
 2

Objective space
1 2 3 4

5

6

7

Decision variable 1

D
e

c
is

io
n
 v

a
ri
a

b
le

 2

Decision space

Figure 5.2: An illustrative example, for a bi-objective problem, of the integrated genotype
diversity routine for choosing solutions from a truncated front.

Firstly, if a teacher is allocated four timeslot/room pairs for their four lectures, then

the nominal ordering of these lectures is unimportant. The teacher will decide how

best to spread the delivery of course material across the discontiguous time available

to them. Secondly, other than capacity, rooms in the ITC2007 formulation have

no secondary distinguishing features. Therefore, rooms of equal capacity can be

considered equivalent and interchangeable.

In the following section, we propose a standard form conversion for the encoding,

in which equivalent solutions have a single design. We also outline a set of distance

metrics for use by Algorithm 7. These variants are empirically assessed to ascertain

the best performing metric.

5.1.2.1 Metric entropy in equivalent solutions

To understand and quantify the theoretical weakness of Hamming distance as a

metric on this solution encoding, a sample is taken according to the procedure

in Algorithm 8. For each of sampleSize = 10,000 sample pairs, lines 4–7 select

a random problem instance and generate an initial feasible solution, x, using the

saturation degree heuristic. The function equivalent() renders a solution into some

equivalent form. In this case, lectures within courses and rooms within equal room

sets are both permuted at random. Line 9 selects an editDist between 0 and

maxMoves = 100. editDist defines the number of single-lecture operations to be

165

carried out in sequence. Inside the loop in lines 12–22, rejection sampling is employed

so that only feasible solutions are accepted, thus the path traced from x to xnew is

contained within a connected feasible subspace. No lecture can be operated on more

than once. When all perturbations are complete, line 23 performs equivalent() on

the new solution, xnew, before the distance metric (Hamm) is computed on the pair

(x, xnew). Figure 5.3 shows the correlation between editDist and Hamm for one

such sample. The Pearson’s coefficient is 0.434, implying a weak positive correlation.

The estimated mean Hamm value for an editDist of zero is positive (0.64) when

ideally it too would be zero. Hamm demonstrably cannot account for solution

equivalence or near-equivalence when used on this encoding. For these experiments,

it is therefore proposed that solutions are transformed into a standard form. The aim

of this is to increase the utility of cheap pairwise distance metrics such as Hamm by

reducing the entropy.

0 20 40 60 80 100

editDist

0.4

0.5

0.6

0.7

0.8

D
is

ta
n
c
e
 b

y
 m

e
tr

ic

Figure 5.3: Distance metric Hamm (Hamming) vs. editDist for a sample using Algorithm
8. Sample settings: sampleSize = 10,000, maxMoves = 100, equivalent() randomly shuffles
lectures within courses and rooms within equal room sets.

5.1.2.2 Standard form encoding

Figure 5.4 provides a step-by-step exposition of the conversion of an offspring solution

to the standard form. The example has also been chosen to highlight how a small

perturbation can lead to a significantly different looking genome. Understanding this

unavoidable quirk of the conversion process will inform the design of more bespoke,

albeit expensive, distance metrics. The example problem is an artificially generated

166

Algorithm 8: Sampling procedure for pairs of solutions and their distances
according to some chosen metric

1 Inputs: sampleSize, maxMoves, equivalent()
2 Output: Pairs of feasible solutions (x, xnew) and their distances
3 for 1:sampleSize do
4 PI ∼ U{1, 21} // Sample a problem instance number from the

discrete uniform distribution on 1 to 21

5 repeat
6 x← SDinit(PI, 1) // Initialize one solution using the

saturation degree heuristic

7 until x is feasible
8 x← equivalent(x)
9 editDist ∼ U{1, maxMoves}

10 lecsMoved ← ∅
11 xtemp ← x
12 for 1:editDist do
13 validMove ← false

14 while validMove = false do
15 lecToMove ∼ U{L \ lecsMoved} // Choose a lecture to

move, from the set of all lectures excluding those

already moved, with uniform probability

16 xnew ← reassign(xtemp, lecToMove)
17 if xnew is infeasible then
18 Reject xnew

19 else
20 validMove ← true

21 xtemp ← xnew

22 lecsMoved ← {lecsMoved ∪ lecToMove}

23 xnew ← equivalent(xnew)
24 disti(x, x

new) // Compute solution distance, where disti is a

user-defined distance metric (with nominal index i) such as

Hamm

toy instance, Toy3R. Amongst its other characteristics, it has 3 rooms (capacities 50,

20, 20) and 5 courses (lecture counts 4, 3, 2, 2, 4).

Solution 1 is a starting feasible parent solution, already encoded in standard

form.

Solution 2a) is a hypothetical offspring of Solution 1, having undergone an

operation to feasibly reassign one lecture. Nominal lecture 1 has been moved from

⟨d, p, r⟩ = ⟨1, 4, 2⟩ to ⟨5, 4, 3⟩.

Solution 2b) represents the first step in its conversion. Here, only courses of

perturbed lectures need to be considered — in this case, course 1. This is another

167

Lecture assignments.

R
o

o
m

 3
.

C
a

p
 2

0
.

 R
o

o
m

 2
.

C
a

p
 2

0
.

 R
o

o
m

 1
.

C
a

p
 5

0
.

Solution 1

5

10

15

20

Solution 2a) Solution 2b) Solution 2c)

5

10

15

20

T
im

e
s
lo

ts
.

5 10 15

5

10

15

20

5 10 15 5 10 15 5 10 15

Figure 5.4: A visualisation of 4 solutions to the instance Toy3R. Each vertical grid of 3 plot
windows is a single solution, with each of those windows representing a distinct room. Red
shading shows a priori unavailable periods while black shows a priori available periods.
White indicates the timeslot and room of each lecture assignment, as derived from its
encoded tuple ⟨d, p, r⟩. Solutions 2a), 2b) and 2c) are all equivalent and have an editDist

of 1 from Solution 1. Solutions 1 and 2c) are the only solutions in the proposed standard
form.

δ-evaluation approach which helps to reduce compute time. All lectures in course 1

are re-sorted by timeslot, with the earliest temporal lecture taking the first nominal

position.

Solution 2c). In the second and final step, the rooms are considered. As

before, potential treatment only applies to the equal room sets affected by the initial

perturbation. Here, equal room set {1} has not been changed and so only equal room

set {2, 3} is handled. Within an equal room set, rooms are re-sorted according to the

nominal assignment position of the lectures scheduled in them. For example, in 2b),

room 3 hosts lecture 1. As this is a lower minimum nominal lecture than in room 2,

room 3 is sorted ahead of room 2 in standard form. Any empty rooms found in this

step are pushed to the end of the sort. Empty rooms are not explicit in a solution

encoding and so the ordering of equally-sized empty rooms is immaterial.

168

In totality, the procedure is kept from being too computationally cumbersome

by a combination of the (typically small) size of the equal room sets, the perturbation

operator which only acts on a single lecture, and the aforementioned δ-evaluation

approaches.

5.1.2.3 Distance metrics

Algorithm 8 demonstrates that, for a given input editDist, it is possible to efficiently

sample a pair of solutions having that distance. The inverse of this function, however,

can involve higher complexity. It may not be viable to obtain exact values of

editDist for unseen pairs of solutions inside the optimiser loop. We therefore

propose two surrogate functions, SepM and AggM , as approximations to editDist.

These metrics, along with traditional pairwise measures Hamm and City, make

up a total of four that are used to generate experimental results in this study. As

the purpose of the metrics is for determining priority on solution selection, it is the

relative values that are important rather than the absolute. A description of each of

the four metrics, as applied to a pair of feasible standard form solutions a and b, is

given below.

1. Hamm. The fraction of elements in a that differ from their pairwise

counterparts in b.

2. City. The Cityblock (alternatively known as Manhattan) distance, which is

given by:
∑3|L|

i=1 |ai − bi| .

3. SepM . This metric uses estimates of the number of separate moves

required between timeslots (timeslotMoves) and equal room sets (equalRoomMoves)

to transform a into b, as set out in the following formulae:

timeslotMoves =

|C|∑

k=1

|l ∈ Ck| − |(l ∈ Ck)at ∩ (l ∈ Ck)bt | (5.1)

equalRoomMoves =

|C|∑

k=1

|E|∑

i=1

(|rsaki − rsbki|)/2 (5.2)

SepM = timeslotMoves+ roomSetMoves (5.3)

169

Where ()t denotes the assigned timeslots of a set of lectures. rsk is a vector

giving the distribution of assignments of course Ck lectures over the equal room sets.

The second subscript i denotes its ith element.

4. AggM . The final metric is based on aggregating lectures by course and

rooms by equal room set.

|C|∑

k=1


|l ∈ Ck| −

|E|×|t|∑

i=1

(trsaki ∧ trsbki)


 (5.4)

Where trsk is a flattened Boolean vector of length |E|× |t|, indicating the equal

room sets and timeslots in which assignments have been made, for course Ck. Its i
th

element is denoted by the second subscript i, as before.

As a baseline to empirically compare against the performance of these four

distance metrics, the base system from Chapter 4 — before inclusion of genotype

crowding — is used. This variant is labelled Base.

5.1.3 Experimental setup

The experiment proceeds as follows: 24 repetitions were run (by varying the random

seed) for each of the 21 benchmark problem instances and for each of the 4 distance

metric variants plus baseline. Each repetition is independent and allocated to a

single CPU core of a 12-core Ryzen9 with 32GB RAM, base clock speed 3.8GHz.

The population size was fixed at 84, and each run had a budget of 1,000,000 function

evaluations. The optimiser is written in Matlab and Java.

At every 50th generation across all runs, a snapshot is taken and the hyper-

volume of the current archive of non-dominated solutions is estimated using the

Monte Carlo method with 1,000,000 samples. The reference points used to define

the hypervolumes are retained from Table 4.7.

170

5.1.4 Results and analysis

The results section begins with an analysis of the properties of Hamm, City, SepM

and AggM , and how closely each of these distance metrics was found to correlate

with editDist.

editDist

D
is

ta
n

c
e

 b
y
 m

e
tr

ic

0

0.2

0.4

0.6

0.8

0

500

1000

1500

2000

0 50 100
0

50

100

150

200

0 50 100
0

50

100

Figure 5.5: The four distance metrics vs. editDist for four samples using Algorithm 8.
Sample settings: sampleSize = 10,000, maxMoves = 100, equivalent() converts a solution
into standard form.

Figure 5.5 displays the results of four samples using the sampling procedure

in Algorithm 8. Settings sampleSize and maxMoves are the same as for Figure

5.3, but equivalent() is used here to call the standard form conversion function.

Pearson’s correlation coefficients are 0.829 (Hamm), 0.857 (City), 0.986 (SepM),

0.998 (AggM). The effect of the standard form encoding scheme on Hamm is a

significant strengthening of correlation, as highlighted by comparing Figures 5.3 and

5.5. Correlation of the other pairwise metric, City, is similarly strengthened by the

use of standard form encoding, however sizeable variability remains. There is a lack

of natural ordering for variables such as days or periods in the timetabling problem,

meaning pairwise distance metrics that rely on absolute values can be deceptive.

Even for Hamm with standard form, variability can be an issue, as illustrated

by the Toy3R solutions in Figure 5.4. Here, Solution 2c) only differs from Solution

1 in the perturbation of one lecture, yet the pair have a relatively large Hamm

171

distance of 0.33, due in no small part to the switching of rooms 2 and 3. One

motivation behind the novel metrics was therefore to reduce the metric variance in

solutions that are nearly equivalent. SepM and AggM both have this characteristic,

exemplified by their high correlation coefficients. Out of the four, AggM proved to

be the strongest overall surrogate for editDist.

In order to analyse results from the optimiser runs, an omnibus test — the

Friedman test — was performed. The five variants were considered as distinct

treatments and a blocking factor used over the repetitions of each problem instance.

The Friedman test examines the null hypothesis, H0, that the treatment effects are

all the same, versus the alternative hypothesis that they are not, under minimal

assumptions about the data. Repeat tests were carried out for the hypervolume data

at each snapshot. Figure 5.6 shows the progression of the p-value over the 1,000,000

function evaluations of the runs.

2 4 6 8 10

Function evaluations 105

0

0.5

1

S
n

a
p

s
h

o
t

p
-v

a
lu

e

o
f

F
ri
e

d
m

a
n

 t
e

s
t

Figure 5.6: A trace of p-values obtained by independent Friedman tests at each snapshot
of the runs. H0: The variant effects are the same. H1: The variant effects differ.

The plot indicates no significant difference between variants at the start of the

run. Results remain mixed until around 2×105 evaluations. In this early stage of a

run, it is likely that the search is predominantly exploratory. The number of plateau

regions encountered by the optimiser here is low, resulting in fewer invocations. In

addition, it is easier to find neighbourhood solutions that improve the current state

of the Pareto front approximation early in a run. Because of this, even on the rare

occasions that the genotype distance metrics are called, the advantages they confer

early in a run may be less pronounced relative to later on.

172

Function evaluations

In
v
o

c
a

ti
o

n
s
 o

f
d

is
ta

n
c
e

 m
e

tr
ic

(a
s
 a

 f
ra

c
ti
o

n
 o

f
th

e
 m

a
x
im

u
m

 p
o

s
s
ib

le
)

0

0.05

0.1

0.15

0.2

comp05 comp06

0 5 10

105

0

0.05

0.1

0.15

0.2

comp09

0 5 10

105

comp18

Figure 5.7: Normalised number of distance metric invocations vs. function evaluations for
4 benchmark problems, using Hamm. Data has been averaged over 24 repetitions and
smoothed using a Gaussian-weighted moving average filter of window length 200.

To confirm these intuitions about the changing frequency of distance metric

invocations over time, Figure 5.7 displays the relevant data for four representative

problem instances using the Hamm variant. The plots show how frequently line

13 is called in Algorithm 7. Low numbers of invocations at the start are generally

followed by a steep increase, as shown in the initial gradients of all plots barring

comp05. Problem comp05 has a particularly large and intractable search landscape,

meaning the rate of early increase here, while still evident, is shallower. As the

runs progress, the rate of invocations per time begins to slow down, as seen for

comp06. Most problems follow this trend (suggesting that there are still gains to be

made after the 1,000,000 function evaluation cut-off) or reach a peak before levelling

off, as in comp09. Only one problem (comp18) displays a clear downwards trend

after peaking. This may be explainable by the diminishing returns of trying to

further evolve a population that has achieved a hypervolume closely approaching its

theoretical maximum. As a note on the y-axis scale in Figure 5.7, the normalised

maximum value of 1 can only be reached if all offspring solutions are part of the

same leading non-dominated front as their parents and all solutions in the union set

173

0 2 4 6 8 10

Function evaluations 10
5

75

70

65

60

55

50

45

40

M
e

a
n

 r
a

n
k

Figure 5.8: Post hoc analysis on the performance by hypervolume of individual variants
using the Bonferroni method.

are associated with a single ray. This is an extremely unlikely scenario, hence the

peaks occur at a substantially lower normalised value of around 0.2.

Figure 5.6 shows that in the latter part of the run, from around 3.5×105

onwards, there is consistent evidence to reject H0 at the 5% significance level. Post

hoc analysis is therefore conducted to investigate which of the individual variants may

be outperforming the others. Figure 5.8 shows the mean ranks (by instance/repetition

row) of the variants over the course of the run.

As the role of genotype crowding assumes greater prominence over time, there is

a clear divergence in the performance of the variants. Base is outranked consistently

almost from the start, while Hamm proves to be the highest achiever. SepM comes

a close second, narrowing the gap on Hamm towards the end of the budget. Using

the Bonferroni method to mitigate against family-wise errors, statistically significant

difference is not found between any of the individual pairwise comparisons. However,

the use of a more liberal test — Fisher’s Least Squared Difference — returns significant

differences in two cases: Base vs. Hamm and Base vs. SepM . The p-values at the

final snapshot are 0.019 and 0.021 respectively.

Figure 5.9 provides a closer look at these two most promising variants, Hamm

and SepM. The mean hypervolumes are plotted against function evaluations for

174

Function evaluations (x 10
5
)

E
s
ti
m

a
te

d
 h

y
p

e
rv

o
lu

m
e

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10
0.7

0.75

0.8

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

4 6 8 10
0.75

0.8

0.85

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10
0.85

0.9

0.95

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

4 6 8 10
0.75

0.8

0.85

0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

comp05 comp06

comp18 comp20

Figure 5.9: Performance of the two highest ranked variants (Hamm and SepM) and the
baseline, Base, for four benchmark problems. Traces shown are mean averages of estimated
hypervolume over 24 repetitions. Inset plots show cropped portions of the main plots.

four problems. While SepM is successful, note that it does not hold an any-time

advantage over the baseline, as illustrated by the cross-over in the traces shown in

the inset plot for comp05 at around 350,000 evaluations. Both Base and SepM are

any-time dominated by Hamm across the ranges shown in the inset plots. Both

genotype crowding measures finish the runs with higher gradients than the baseline,

suggesting they would continue to offer better economy if the run budgets were to

be increased.

While hypervolume is the primary performance metric, some consideration

may be given to time complexity too. Experiments were run to a function evaluation

budget so that results could be judged independently of this. It is noted however that

Hamm was the cheapest (non-baseline) variant to compute, and therefore dominated

the others on both performance and speed.

Another interesting aspect to look at is the number of non-dominated solutions

and designs found by the optimiser using the different variants. In respect of the

(objective space) cardinality of the non-dominated solution set at termination, Base

returned lower cardinality values on average than the tested variants. Table 5.1 gives

175

Table 5.1: For five variants, the mean sizes (over 24 repetitions) of the archives of non-
dominated objective vectors at termination, rounded to the nearest integer. The largest
raw averages are shaded.

Instance Base Hamm SepM City AggM
comp01 11 16 11 11 11
comp02 23 54 50 49 30
comp03 17 46 39 42 26
comp04 16 36 36 30 25
comp05 291 371 399 334 339
comp06 17 69 62 53 38
comp07 18 59 50 53 37
comp08 14 30 27 24 19
comp09 26 94 91 66 44
comp10 18 39 39 39 26
comp11 2 2 2 3 2
comp12 421 390 390 442 300
comp13 20 66 64 50 43
comp14 20 52 38 50 33
comp16 15 55 50 38 28
comp17 22 70 69 63 30
comp18 45 110 99 105 90
comp19 28 49 33 42 30
comp20 105 257 240 230 228
comp21 20 68 58 51 28

the mean averages across the instances. Hamm returned most of the highest average

set sizes, and was significantly different from Base. The superior hypervolumes

achieved by Hamm suggest that the Pareto front approximations were closer to the

true Pareto front, better spread, or both, compared to the baseline. It is perhaps the

improved spread that gave rise to, on average, greater numbers of non-dominated

solutions.

More counter-intuitively, perhaps, are the counts of unique designs mapping to

these final non-dominated solutions, the mean values of which are given in Table 5.2.

Here, the converse was true — counts for Base were the highest, and significantly

higher than any of the other variants under pairwise statistical tests. The smaller

number of non-dominated solutions in the approximation front for Base were found

to have, on average, greater numbers of discovered designs mapping to them. One

reason for this may be that Base, by definition, lacks a genotype-based mechanism

to aid the escape from plateau regions. It can therefore spend more time idling

through (and archiving) designs that do not offer a path to improved evaluations,

176

Table 5.2: For five variants, the mean number of discovered unique designs (over 24
repetitions) that cumulatively map to the objective vectors in the final non-dominated
archives. The largest averages are shaded.

Instance Base Hamm SepM City AggM
comp01 6,843 3,706 3,624 3,474 4,288
comp02 2,484 745 798 702 882
comp03 1,765 859 740 854 960
comp04 988 353 496 345 614
comp05 1,735 604 661 598 661
comp06 861 444 420 494 530
comp07 699 401 346 284 438
comp08 753 420 419 247 319
comp09 658 390 403 322 661
comp10 851 382 482 474 500
comp11 26,521 14,623 13,626 13,277 12,862
comp12 838 630 650 728 582
comp13 840 416 388 353 581
comp14 1,785 1,140 1,212 1,054 1,149
comp16 771 414 370 342 465
comp17 1,009 419 505 551 831
comp18 1,087 294 317 324 544
comp19 1,675 920 625 681 1,447
comp20 754 634 601 610 677
comp21 858 493 586 492 727

leading to the higher counts observed. It may also be the case that plateau regions

of lower fitness are naturally larger than those of high fitness. With Hamm and

other variants, however, the frequent discovery of new non-dominated solutions has

the potential to remove one or more previously non-dominated solutions from the

approximation front. Whenever this action occurs, tens, hundreds or even thousands

of designs are also instantly subtracted from the count.

In relation to the wider hypothesis that the performance of a distance metric is

proportional to its closeness of approximation to editDist, the experiments do not

provide enough evidence to accept this. AggM , which was most highly correlated to

editDist, was the third best performing variant, while Hamm delivered the best

results despite having a lower correlation in this respect.

5.1.5 Conclusions on genotype diversity

In this section, the known many-to-one mapping between the genotype and pheno-

type space in the UCTP was scrutinised. In problems with this characteristic, an

177

evolutionary search may have difficulty navigating plateau regions in the objective

space. Using a many-objective optimiser, further adaptations were implemented

in which genotype distance measures were used as part of the process for choosing

solutions from a truncated non-dominated front. Two novel distance metrics were

proposed and compared against two traditional metrics and a baseline. A novel

standard form encoding conversion was also proposed in order to reduce the entropy

of the traditional metrics. It was found that a genotype Hamming distance provided

the best performance gains in this context, based on attained hypervolumes and

controlling for cross-problem variation. A number of insights follow from this. Hamm

is a proportional measure of the number of index positions in two chromosomes in

which the representational symbols differ. As each lecture assignment is represented

by a 3-tuple, Hamm is implicitly more granular than editDist (which counts any

number of changes to the tuple as a single move). The notion of a shortest path

through connected feasible space, as encapsulated by editDist, was found not to be

as important as originally hypothesised. Therefore AggM and SepM , both of which

closely approximate editDist, do not necessarily confer advantages. Furthermore,

Hamm does not assume or impose any natural ordering on the variables where none

exists, unlike the other variant City.

The standard form encoding was motivated by reducing entropy, increasing

information capture, and ultimately making the distance metrics more effective. In

addition, standard form reduced the risk of equivalent solutions emerging in the

population, at an acceptable computational cost, while also offering practical benefits

for the work on tournament selection that follows.

Further work may focus on alternative approaches for incorporating genotype

distance into the system. Despite being essentially a fourth tie-breaking criterion in

the non-dominated sort (after feasibility, dominance and phenotype crowding), the

data on number of invocations (Figure 5.7) showed the role that it plays is significant

and tends to increase over time.

178

5.2 Operators

In this section, some alternative operators are introduced to the system in order to

investigate the benefits to performance versus the repercussions for run time. This is

motivated by a desire to address premature convergence and homogeneity within the

population. To this end, the new operators feature larger perturbations.

5.2.1 Destroy-repair

Premature convergence can result from becoming trapped in a local optimum, from

which the original operators do not offer means of escape, or through other forms

of stagnation. A destroy-repair operator is proposed for whenever this occurs. The

first solution created by this operator is accepted — even if it is of lower quality.

Two potential indicators of stagnation (which are equivalent to one another) could

include:

1. No change to the non-dominated archive for stagThresh generations, where

stagThresh is a parameter representing the stagnation threshold. This value

may be determined adaptively or derived from other input parameters such as

the budget.

2. No increase in the hypervolume of the non-dominated archive for stagThresh

generations.

In practise, as hypervolume is expensive to calculate or estimate, any real time

computations are only executed at intervals of g generations. Therefore criterion 2 is

less precise as it can only indicate no improvement for some number of generations

in the range g to 2g − 1. The first criterion is therefore preferred for implementation

purposes. At each generation, the non-dominated archive is inspected. It is not

sufficient to check only the cardinality, as solutions may have exited and entered

the archive in equal numbers, altering the hypervolume but not the archive size.

Therefore, the cardinality and, if necessary, the set members are checked. A counter,

gensUnchanged, is incremented if no change has been found since the previous

179

inspection. Once gensUnchanged reaches the threshold, the destroy-repair procedure

is triggered, as outlined in Algorithm 9.

Algorithm 9: Destroy-repair operator

1 Inputs: Current population, stagThresh, gensUnchanged, percDestroy
2 Output: New population
3 n = ⌈percDestroy/100× |L|⌉ // Compute the number of lectures to

perturb

4 if gensUnchanged = stagThresh then
5 forall x ∈ Current population do
6 if x is feasible then

7 l1, l2, . . . , ln
iid∼ U{1, |L|}

8 Unassign lectures l1, l2, . . . , ln in x
9 Reassign lectures l1, l2, . . . , ln in x using SD heuristic

10 gensUnchanged ← 0

11 New population ← Current population

To determine an order of magnitude for stagThresh, diagnostic data from

previous optimiser runs is used. Figure 5.10 shows how the counter variable

gensUnchanged changes with generation number, for four different problem runs.

Generation

G
e

n
e

ra
ti
o

n
s
 s

in
c
e

 l
a

s
t

c
h

a
n

g
e

 i
n

 n
o

n
-d

o
m

 a
rc

h
iv

e

0 2000 4000 6000 8000 10000
0

200

400

600

800
comp02

0 2000 4000 6000 8000 10000
0

100

200

300

400

500
comp04

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000
comp11

0 2000 4000 6000 8000 10000
0

50

100

150
comp19

Figure 5.10: The number of generations since the last update to the non-dominated archive,
for four example runs on problems comp02, comp04, comp11 and comp19.

180

Table 5.3: A small grid search on destroy-repair parameters stagThresh and percDestroy

for comp04. Feasibility percentages are mean values attained from 10 repetitions, where
the first execution of the operator is relied upon to generate the results.

stagThresh 500 500 500 500 500
percDestroy 10 20 30 40 50
Proportion of feasible solutions in new population 0.18 0.04 0.00 0.00 0.00

In all cases, the greatest peaks occur in the latter stages of a run. The heights of

these peaks are problem-dependent, with the most tractable instance comp11 showing

no improvement for as many as ∼8,000 generations. Based on this information,

comp04 was chosen for experimentation and an ad hoc value of stagThresh = 500

used. Further tests were then conducted on this instance in which the second

parameter percDestroy — controlling the percentage of lectures to be operated on

— was varied between 10 and 50. Table 5.3 shows the effects of percDestroy on the

feasibility of the new population.

Note that the placements of the fixed lecture assignments in these tests have not

been determined by a direct heuristic, but through many iterations of the evolutionary

algorithm itself. SD is therefore limited in the feasible places it can reassign the

‘destroyed’ lectures to, as highly evolved populations can be more sensitive to the

effects of reassignment. The upshot is that, even operating on as few as 20% of the

lectures in comp04, almost none of the resultant solutions are feasible, as rates drop

away rapidly. Setting a much higher value for percDestroy (approaching 100) would

allow SD a blanker canvas on which to construct new solutions, but at the cost of

discarding most of the progress made by the optimiser — more akin to a wholesale

restart. A prudent value should be large enough to reinvigorate the search while not

introducing excessive infeasibility.

In a second batch of tests, focusing only on percDestory, values of this

parameter were varied across a narrower range of 0% – 20%. All instances barring

comp15 were tested. It is hypothesised that the more mature (i.e. evolved) a

population is, the less adept the destroy-repair operator will be at returning feasible

solutions. Using a set of 1,000,000 function evaluation budget runs, snapshot

populations were extracted from the first and last generations. The repair-destroy

181

procedure was applied to each, over 30 repetitions, with the mean results plotted in

Figure 5.11.

2 4 6 8 10 12 14 16 18 20

Threshold parameter (per cent)

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f
fe

a
s
ib

le
 s

o
lu

ti
o

n
s
 i
n

 n
e

w
 p

o
p

All instances. Mean of 30 reps.

Destroy-restart on initial pops.

percDestroy (%)

First generation

2 4 6 8 10 12 14 16 18 20

Threshold parameter (per cent)

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n
 o

f
fe

a
s
ib

le
 s

o
lu

ti
o

n
s
 i
n

 n
e

w
 p

o
p

All instances. Mean of 30 reps.

Destroy-restart on final pops from a 1M func eval run.

percDestroy (%)

Last generation

Figure 5.11: Test results from snapshot populations extracted from first generations (left
plot window) and last generations (right plot window) of 1,000,000 function evaluation
budget runs. Across 20 instances comp01, . . . , comp21 (shown in different colours and
omitting comp15), parameter percDestroy was varied and the feasibility of the new
population recorded. Traces show the mean values from 30 repetitions.

In both initial and pre-optimised populations, the comp11 trace — shown as

a horizontal purple line — is invariant to changes in percDestroy. In the left plot

only, traces for instances comp02, comp05 and comp19 are also relatively unchanging

from percDestroy = 6 onwards — levelling out at proportions of 0.18, 0.86 and 0.52

respectively. All three of these show significantly diminished returns in the right plot.

It is notable and perhaps not coincidental that these instances are some of the hardest

in the benchmark according to complexity metrics suggested in Rosa-Rivera et al.,

2021. For the majority of the problems, the optimisation state of the population

used does not effect significant differences in the traces as shown.

Including infeasible solutions under the umbrella term ‘worsening moves’ and

allowing their temporary acceptance is problematic for a few reasons. Tournament

selection ensures that such solutions will be bred out of the population fairly quickly,

meaning that any beneficial traction is lost. Alternatively, feasibility repair functions

may be required, which are considered overly expensive. Should such a function be

invoked, it is also not clear whether this would simply walk the solution back to

its original pre-perturbation state, thus rendering the computation redundant. The

182

graphs in Figure 5.11 confirm that, even when perturbations are limited to 1% of the

lectures (2.8 lectures as a benchmark average), the benchmark average feasibility rate

in the latter stages of a run is only 0.68. Moreover, the two parameters stagThresh

and percDestroy are shown to be highly sensitive and problem-dependent. For these

reasons, the destroy-repair operator, as described, was not adopted for the optimiser.

5.2.2 Perturbation

In this section, further perturbation operators are analysed in the context of feasibility

preservation. Three initial operators are defined as follows:

swapPlace: A pair of lectures are chosen at random and their places (i.e. room,

day and timeslot) are swapped. A tabu matrix, size |L| × |L|, is maintained so that

pairs of lectures from the same course cannot be selected and neither can any pairs

previously found to result in infeasible swaps.

tsSwitch: A pair of timeslots are chosen at random and all lectures in the

first timeslot are switched with all lectures in the second.

tsCirc: A pair of timeslots ti and tj are chosen at random, where i < j. A

circular shift is performed on the timeslot variable of all lectures originally assigned

to ti, tj and all ordinal timeslots in between. The direction of the circular shift, up

or down, is determined at random with equal probability.

swapPlace and tsCirc are adaptations of operators from Abdullah and Tura-

bieh, 2012, while tsSwitch corresponds to operator Nbs3 from the same authors.

The operators are parameterised by a variable labelled attempts. This controls

the number of attempts that will be made to return a feasible solution, before the

operator defaults to MuPFPR.

In an initial batch of tests, populations from prior runs were once again

extracted from both the first and last generations, for all instances barring comp15.

The parameter attempts was varied from 1 to 100 and the three operators applied.

Over 24 repetitions, the number of perturbed lectures was recorded. Defaulting was

switched off, so that if a feasible solution was not obtained within the threshold

attempts, a value of 0 was recorded. Figure 5.12 shows traces for the means.

183

Attempts

N
u

m
b

e
r

o
f

le
c
tu

re
s
 p

e
rt

u
rb

e
d

0

0.5

1

1.5

2

0

10

20

30

0

10

20

30

40

20 40 60 80 100
0

0.5

1

1.5

2

20 40 60 80 100
0

10

20

30

20 40 60 80 100
0

10

20

30

40

L
as
t
ge
n
er
at
io
n

F
ir
st

ge
n
er
at
io
n

Figure 5.12: Test results from snapshot populations extracted from first generations (top
row) and last generations (bottom row) of 1,000,000 function evaluation budget runs. Across
instances comp01, . . . , comp21 (shown as black lines, and omitting comp15), parameter
attempts was varied and the number of lectures perturbed was recorded. Traces show the
mean values from 24 repetitions and have been smoothed using a Gaussian filter.

The key observations are:

1. Increasing the value of attempts tends to increase the number of lectures

that are moved. This reflects the fact that, on average, a larger number of

individuals are perturbed feasibly due to greater opportunity.

2. As the time complexity of attempts is linear, the best economy is represented

by the steepest gradients in Figure 5.12. These are generally found in the

range 1–30, after which diminishing returns are evident. 30 could therefore be

considered a reasonable ad hoc value for attempts.

3. The evolutionary maturity of the populations did not impact significantly

upon results. On average, the numbers of lectures perturbed were similar

whether the populations in question were initial (the top row of plots) or

pre-optimised (the bottom row). The operator least affected by this factor was

swapPlace. Due to this consistency throughout the run, and for its relatively

high feasibility returns within a limited number of attempts, swapPlace is

focused on exclusively for the remainder of this section.

184

One method to increase the chances of feasible returns from swapPlace is to

embed some degree of hard constraint checking into the tabu matrix. Doing so would

mean that fewer attempts are expended on case-by-case feasibility checking. Figure

5.13 illustrates how the search space of pairs contracts as each hard constraint type

is forbidden in turn. An initial solution is generated for comp07. Figure 5.13a) shows

the space induced by the original tabu matrix, in which swaps are only prohibited

between lectures in the same course. The constraint violation counts due to H1

and H2 are invariant with swapPlace. The remaining hard constraints are sorted

according to time complexity. Figure 5.13b) shows the induced space when the least

complex of these, H4, is prohibited. In Figures 5.13c) and 5.13d), violating pairs are

prohibited for H5 and H3 respectively. The last figure gives a good insight into the

sparsity of feasible swaps available even for an initial solution. Run time analysis on

a wider set of problems showed, however, that pre-filtering H5 and H3 violations

was too CPU-intensive. Therefore, only H4 was incorporated into the final tabu

matrix, with other violations handled case by case.

While an increase in the proportion of returned feasible solutions is welcome,

some insight is needed around how likely these are to be improvements. Therefore,

another batch of tests was conducted with a focus this time on the soft constraint

violations. Parameter attempts was set to 100 in order to ensure a near-total

feasibility rate and to generate a usable quantity of data. For all instances, populations

(size 84) were extracted from previous runs at a series of progress points ranging from

generation 1 to generation 4000. Operator swapPlace was applied to all individuals

over 24 repetitions. The scalarised objective score was used as a cheap indicative

measure of quality, and the net improvement or deterioration recorded for each

perturbed solution. Figure 5.14 illustrates the results for comp20.

Improving moves are more abundant at the start, which is followed by a

deterioration, the rate of which slows over the generations. The median is below

zero at all times, and the upper quartile is mostly below zero, which was typical

across all problems. Improving moves remain available in the upper tail. In the next

185

Lecture number

L
e

c
tu

re
 n

u
m

b
e

r

a)

100

200

300

400

b)

c)

100 200 300 400

100

200

300

400

d)

100 200 300 400

Figure 5.13: Matrix visualisation of pairs of lectures that can be selected by the swapPlace
operator, for an initial comp07 solution, over four tabu scenarios. Yellow shading indicates
prohibited pairs (upper triangle only). Incremental prohibition scenarios shown are a) pairs
in same course, b) pairs that would violate H4 (unavailable periods), c) pairs that would
violate H5 (teacher clashes), d) pairs that would violate H3 (curriculum clashes).

investigation, consideration is given to ways in which the distribution can be skewed

towards these better moves.

The swapPlace operator already includes rudimentary soft constraint-based

guidance, on account of common course swaps being prohibited. There are other

conditions on a lecture pair that guarantee a redundant swap, however, such as when

all of the following are true:

For S1, if lectures are assigned to rooms in the same equal room set.

For S2, if lectures are assigned in the same day.

For S3, if the curricula membership of the lectures is identical.

For S4, if lectures are assigned in the same room.

The last of these is a stronger condition than the S1 condition, and therefore

subsumes it. An analysis of lecture pairs was carried out to ascertain the likelihood of

the three remaining conditions being met. In a sample of 1,000 initialised solutions,

186

500 1000 1500 2000 2500 3000 3500 4000

Generation

-200

-150

-100

-50

0

50

100

150

Im
p

ro
v
e

m
e

n
t

in
 s

c
a

la
ri
s
e

d

s
c
o

re
,

c
h

ild
-t

o
-p

a
re

n
t

Figure 5.14: Previously run populations for comp20 from generations 1 to 4000 vs. im-
provement (by scalarised score) due to the application of swapPlace. Median (solid line),
lower and upper quartiles (dash-dotted lines) and maximum/minimum (dashed lines) are
shown for data from 24 repetitions. Positive values on the y-axis indicate improvement.

the modal number of pairs meeting all conditions for redundancy was 1 for toy3R.

This toy problem has 15×14
2

= 105 lecture pairs in total, making the mode less

than 1%. For the ITC2007 problem comp07, the mode was even lower, at 0. The

implication is that these conditions are satisfied together so rarely in practise as to

be of little use.

A complementary approach was therefore explored. By prioritising pairs

that are in distinct rooms, distinct days and have no curricula in common, would

swapPlace become more powerful in terms of discovering improving moves? Al-

gorithm 10 outlines how these priorities are embedded into the swapPlace operator,

where ()d, ()p, ()r denote the day, period and room that a particular lecture has

been assigned to, and ()cur is its curricula set. The for-loop populates the tabu

matrix with regard to common course lectures (line 7) and H4 violations (line 9). A

promising pair is sampled at random in line 14, before feasibility and priority checks

are carried out in line 15. These look at violations of the remaining hard constraints

H5 and H3, as well as distinct room, day and curricula properties. Short circuit

logic is used to streamline the checks.

Across all problems and different stages of optimisation, pairs satisfying the

priority conditions are generally easy to locate. With high probability such a pair

187

Algorithm 10: swapPlace with embedded dissimilarity-based guidance.

1 Inputs: x (a solution), attempts
2 Output: lecIdx (lectures to operate on.)
3 Initialise |L| × |L| tabuMatrix with zeroes.
4 lecIdx ← ∅
5 for i = 1 : |L| − 1 do
6 for j = i+ 1 : |L| do
7 if li, lj ∈ Ca then
8 tabuMatrix(i, j) ← 1
9 else if [(li)p ∈ unav(Ca) & lj ∈ Ca] OR [(lj)p ∈ unav(Ca) & li ∈ Ca]

then
10 tabuMatrix(i,j) ← 1

11 pairFound ← 0
12 attempted ← 0
13 while pairFound = 0 & attempted < attempts do
14 Randomly sample i, j where i, j ∈ {1, |L|}, i > j, tabuMatrix(i, j) = 0.
15 if swap is feasible & (li)r ̸= (lj)r & (li)d ̸= (lj)d & (li)cur ∩ (lj)cur = ∅

then
16 pairFound = 1
17 lecIdx = [i j]

18 else
19 tabuMatrix(i, j) ← 1
20 attempted ← attempted + 1

21 if lecIdx = ∅ then
22 Default to MuPFPR operator.

can be found within 9 samples, and the modal number of samples required was 1.

Note that not all of these guarantee a feasible swap, however, and a cost of one

attempt is incurred (line 20) for every failure.

Default operator MuPFPR and swapPlace differ both in perturbation size and

computational complexity. In the interests of balancing the exploration/exploitation

trade-off, as well as regulating the run time, it is proposed to call swapPlace more

frequently in the early stages of a run, after which MuPFPR begins to predominate.

The probability of swapPlace being called is defined by an exponential decay profile

exp[−10 × genID/(budgetFE/popSize))], where genID is the current generation

number and budgetFE is the function evaluation budget. Initial tests suggested this

approach lead to improved hypervolumes, on average, over a majority of problems

when compared with exclusive use of MuPFPR. Experiments are laid out in the next

section in order to formally test this.

188

5.2.2.1 Experiments on enhanced swapPlace

As the culmination of the development of perturbation operator swapPlace in this

section, an experiment was carried out using four variants defined as follows:

Defa: Only the default (MuPFPR) operator is used, as a baseline.

Naiv : Exponential decay profile swapPlace. A naive implementation of the

operator with no tabu matrix or pair priority.

Uvio: Exponential decay profile swapPlace. The tabu matrix filters out

common course lectures and H4 violations.

Upre: Exponential decay profile swapPlace. The tabu matrix filters out

common course lectures and H4 violatons. A scheme for preferring certain pairs

based on dissimilarity of properties is used, as per Algorithm 10.

Six instances were solved by way of each variant. Experimental settings were

attempts = 30, repetitions = 24, function evaluations = 1,000,000 (equivalent to

11,904 generations with popSize = 84.) Figure 5.15 shows the progression of the

mean hypervolumes over the entire runs, with inset windows providing greater detail

on the traces as they approach termination. Figure 5.16 meanwhile shows the results

of significance testing on the data, for the two most informative variant comparisons:

Uvio vs. Upre and Uvio vs. Defa.

Analysis of the data reveals a number of key insights. Inclusion of swapPlace

(in any capacity) resulted in shallower initial gradients of the hypervolume trace.

This reflects a greater focus on early exploration of the search space. Delayed

benefits are apparent, as the gradients of these variants steepen in the later stages.

Variant Uvio was the best performer, on average, by termination in four of the

six instances (and second best in the remaining two). This suggests that early

use of swapPlace helps navigate the search to regions from which the exploitative

power of MuPFPR then has a greater impact. Upre did not appear to confer an

advantage compared to Uvio, as it came last, on average, at termination in half the

instances. In fact, the statistical tests visualised in Figure 5.16 indicate the opposite

— that Uvio performed significantly better than Upre in at least two of the problems.

Conceptually, prohibiting swaps known not to affect the objectives increases the

189

Generation

H
y
p
e

rv
o
lu

m
e

0

0.5

1

comp01

comp03

0

0.5

1

comp04 comp09

0 2000 4000 6000 8000 10000
0

0.5

1

comp14

0 2000 4000 6000 8000 10000

comp21

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1.05 1.1 1.15

10
4

0.95

0.96

0.97

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1.05 1.1 1.15

10
4

0.85

0.86

0.87

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1.1 1.12 1.14 1.16 1.18

10
4

0.866

0.868

0.87

0.872

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1.05 1.1 1.15

10
4

0.83

0.84

0.85

0.86

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1.05 1.1 1.15

10
4

0.86

0.88

0.9

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1.05 1.1 1.15

10
4

0.78

0.8

0.82

Generation

H
y
p

e
rv

o
lu

m
e

0

0.2

0.4

0.6

0.8

1

comp01

comp03

0

0.2

0.4

0.6

0.8

1

comp04 comp09

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

comp14

0 2000 4000 6000 8000 10000

comp21

Figure 5.15: Mean hypervolume improvement for four variants Defa, Uvio, Upre and Naiv
on a set of six instances.

chances of change, though not necessarily in a net positive direction. Therefore, other

methods of filtering pairs based on their potential contributions to soft constraint

violation counts could be considered to improve Upre. In the preliminary work, it was

found that filtering out all hard constraints was cost-prohibitive. The experiments

showed that, even relatively cheap filtering of H4 violations added enough time

complexity such that the practical needs of the end user may have to be carefully

considered in order to justify it. The exponential decay profile played a part in

curbing run time (compared to exclusive use of swapPlace), while also serving the

exploration/exploitation trade-off well. However, more tests are needed to determine

the optimal profile for this curve and to what extent this may be influenced by the

instance characteristics.

Having considered perturbation operators in this section, the next section looks

at the tournament selection operator. The concept of symmetry within solutions,

190

Generation

p
-v

a
lu

e

0

0.5

1
comp01 comp03

0

0.5

1
comp04 comp09

0 2000 4000 6000 8000 10000
0

0.5

1
comp14

0 2000 4000 6000 8000 10000

comp21

Figure 5.16: Wilcoxon signed rank tests comparing Uvio with Upre (blue) and Uvio with
Defa (black) for six problems. In all cases, lines show the progression of the p-value over
increments of the entire run.

leading to equivalence, as discussed in Chapter 5, is once again invoked. The standard

form encoding proposed in that chapter is leveraged by an enhanced tournament

selection routine.

5.2.3 Tournament selection

One consequence of the confluence of small perturbation operators and standard

tournament selection is potential homogeneity of the population. Tournament

selection plays a key role in regulating this diversity. In this section, an enhancement

is proposed in order to help widen the search. The motivation is to discourage the

acceptance of offspring that are equivalent either to their parent, or to some other

parent in the population. The standard form encoding provides a useful way to do

this.

The idea could potentially be taken further, by discriminating against any

offspring that are equivalent or identical to any encountered over the entire search

history. Some methods by which to achieve this include archiving the complete

191

search history and utilising look-up or hash tables. Both the design vectors and

active search history in this problem domain can be large however, and such an

approach may have a significant impact on the memory footprint. Moreover, the cost

of look-ups may not be justifiable beyond a certain threshold in the history, as new

designs appear that are increasingly dissimilar to older ones. Recording the ‘age’ of

each solution is another discriminatory measure by which freshly discovered designs

can be given preference (Schmidt and Lipson, 2010). However, it is possible for a

solution x to be converted into itself via a cycle of moves, especially if its immediate

neighbourhoods all lie on a plateau, meaning this scheme is not without issues either.

The tournament selection used in the optimiser is deterministic 2-way without

replacement. This permits a maximum of one identical copy of any given solution in

the mating pool. Promoting identical copies of solutions that are, by implication,

high quality, is not problematic by itself, as the perturbation stage can reintroduce

divergence. However, it is desirable to avoid a proliferation of equivalent solutions as

this is anti-exploratory and an inefficient use of compute time.

A property, replica, is proposed, as follows: All offspring created in generation

i− 1 are represented using the standard form encoding. The active population in

generation i is concatenated with the active population from the previous generation.

This set therefore contains 2 × popSize designs. The property replica of each member

is false if it is unique within this set, and true otherwise. When comparing on

the replica property, a solution with a false value out-ranks one with a true. Note

that this approach treats solutions that have been successfully carried forward from

generation i− 1 to generation i as ‘replicas’ — thereby incorporating an element of

‘discrimination by age’ too. Note also that no special status or protection is afforded

to the ‘original’ solution in a pair of equivalent or identical solutions. This is justified

by the following: If the population of a generation i is largely unchanged from that

of generation i− 1 then the replica property is mostly redundant as a tie-breaker.

If the populations differ, this is because new non-dominated solutions have been

admitted. Uniqueness in this case is a sign of high quality and thus the favouring

of these solutions is encouraged. At the same time, high quality solutions whose

192

replica property is true will not necessarily be lost as, in the case of an equivalent

pair, there is an empirically high chance of one of the two being paired with another

replica = true solution, where replica again becomes redundant as a tie-breaker. In

this sense, the stochasticity of the tournament selection operator serves to mitigate

the issue of discarding good solutions.

5.2.3.1 Experiments on tournament selection

When conducting a tournament, the selection operator compares solutions according

to a hierarchy of properties. The first of these is outright feasibility. For the

purposes of the experiments in this section, property replica is positioned immediately

underneath this as the second most important criterion. This variant is denoted Wrep,

and it is tested against the baseline tournament selection variant, Tsel, which omits

the replica property. Each benchmark problem is run for 24 independent repetitions,

with a function evaluation budget of 1,000,000. The primary performance metric

is the hypervolume of the non-dominated solution set at termination. Another

metric used to provide insight is the number of designs that are unique within the

active population history. This is denoted as |H|, where H is the union of all active

populations from first to last generation. A third metric is the cardinality of the

final non-dominated archive.

Table 5.4 gives the results in terms of these three metrics. |H| is essentially a

measure of churn in the active population, and results show that Wrep increased

this quantity, on average, in 18 of the 21 problems tested. In terms of hypervolume,

the results were more mixed, with Wrep leading to increases, on average, in 14 of

the 21 problems. This was the same number as for the metric |Ao|, although these

two sets differed by which instances they contained.

In Figure 5.17, the percentage increase in |H| between Tsel and Wrep has been

calculated and the distributions across repetitions plotted. Most commonly, Wrep is

seen to increase the churn by between 5–10%, with highly complex problem comp05

the most striking exception. A greater number of unique designs being accepted into

active populations may suggest that higher quality timetables were being found, and

193

Table 5.4: A comparison of baseline tournament selection operator variant, Tsel, against a
variant, Wrep, that includes the replica property as the second criterion after feasibility.
|H|, the number of unique designs in the active population history, is given as a mean.
The hypervolume of the final non-dominated archive, hv(Ao), is given as a mean. |Ao|, the
cardinality of the final non-dominated archive, is given as a median (due to more outliers).
For each metric and problem, the larger of the two values is shaded.

|H| hv(Ao) |Ao|
Instance Wrep Tsel Wrep Tsel Wrep Tsel
comp01 35,620 33,888 0.960 0.957 9.5 12.5
comp02 59,865 61,422 0.837 0.829 71.5 42.5
comp03 62,050 57,250 0.858 0.843 45 39.5
comp04 59,981 57,778 0.874 0.871 30 28.5
comp05 70,129 77,765 0.776 0.772 297.5 383.5
comp06 69,044 67,458 0.812 0.819 50 40
comp07 81,173 76,799 0.791 0.787 50.5 32.5
comp08 64,636 61,606 0.841 0.831 31.5 33
comp09 60,051 55,504 0.847 0.847 111.5 86
comp10 70,762 68,042 0.818 0.821 47.5 52.5
comp11 55,191 55,144 0.973 0.969 2 2
comp12 86,428 86,487 0.809 0.797 337 435.5
comp13 63,094 60,651 0.840 0.837 58.5 50.5
comp14 63,685 62,502 0.880 0.890 55 49.5
comp15 59,919 56,624 0.865 0.856 50.5 44.5
comp16 71,266 68,319 0.837 0.838 49 46.5
comp17 66,875 64,975 0.823 0.822 83 76
comp18 42,837 38,575 0.926 0.926 113 116
comp19 60,945 57,685 0.826 0.831 60.5 43
comp20 90,353 80,876 0.829 0.838 211 182.5
comp21 67,623 66,692 0.807 0.810 73.5 65.5

with greater frequency, through the wider exploration afforded by Wrep. However,

the hypervolume figures do not bear out any such benefits in terms of the quality

of the Pareto set approximation — at least not in as much as can be inferred from

a unary metric. There was no significant improvement in hv(Ao) effected by Wrep

over Tsel.

Table 5.5 presents the data as a contingency table, showing the counts where

an increase or decrease in |H| has coincided with an increase or decrease in each

of the other two metrics. While a significant relationship could not be shown with

hypervolume, a χ2 test statistic of 4.25 indicated a significant association between

|H| and |Ao| at the α = 0.05 confidence level.

This finding offers up an interesting interpretation. In many cases, the modified

tournament selection operator Wrep led to a greater churn in the evolving population,

194

co
m

p0
1

co
m

p0
2

co
m

p0
3

co
m

p0
4

co
m

p0
5

co
m

p0
6

co
m

p0
7

co
m

p0
8

co
m

p0
9

co
m

p1
0

co
m

p1
1

co
m

p1
2

co
m

p1
3

co
m

p1
4

co
m

p1
6

co
m

p1
7

co
m

p1
8

co
m

p1
9

co
m

p2
0

co
m

p2
1

-60

-50

-40

-30

-20

-10

0

10

20

30

P
e

rc
e

n
ta

g
e

 i
n

c
re

a
s
e

 i
n

 n
u

m
b

e
r

o
f

u
n

iq
u

e

d
e

s
ig

n
s
 i
n

 a
c
ti
v
e

 p
o

p
u

la
ti
o

n
 h

is
to

ry

Figure 5.17: A boxplot showing distributions of the percentage increase in |H|, the number
of unique designs in the active population history, from the variant Tsel to Wrep. Boxes
show the median and interquartile range, while the whiskers extend to the most extreme
points not considered outliers. Outliers are shown as crosses.

but without necessarily increasing the hypervolume covered by the final approximation

set. Nevertheless, increased churn correlated with higher cardinality of this set.

There are several possible inferences to be drawn. The set returned by Wrep may

be less well converged on the whole, while spanning a wider range of trade-offs

between the objectives. Alternatively, the set may have reached a similar level

of convergence, while providing a greater density of points and hence a higher

granularity approximation to the front. Areas and extremes of the approximation to

the front that are missing or, at best, coarsely drawn using the baseline variant may

Table 5.5: A contingency table for all 252 problem × repetition combinations. Symbols
+ and - represent an increase or decrease from Tsel to Wrep respectively, where Tsel is
the baseline tournament selection operator and Wrep is a proposed modification using the
replica property. |H| is the number of unique designs within the active population history,
hv(Ao) is the hypervolume of the final non-dominated archive and |Ao| is its cardinality.

hv(Ao) |Ao|
+ - + -

|H| + 98 81 104 75
- 38 35 32 41

195

Figure 5.18: Comparisons of the Pareto front approximations generated by Tsel (red ‘x’)
and Wrep (blue ‘o’) for repetition 11 of comp16, repetition 1 of comp09 and repetition 2 of
comp13. All three plots are representative of the case in which the two hypervolumes are
approximately equal but the set cardinalities differ, with the Wrep variant being the more
populous in every case. From left to right, cardinalities in the plot windows are 36 and
146, 54 and 109, and 38 and 57.

be discoverable in more detail by the Wrep variant. In Figure 5.18, three pairs of

Pareto front approximations are presented to illustrate aspects of these scenarios.

The sets, taken from single repetitions of comp16, comp09 and comp13 were chosen

on the basis of the following criteria:

• The hypervolumes are equal, to within a tolerance of 0.2%.

• The cardinalities are unequal.

• The S1 objective has been collapsed to zero across all points, enabling a 3-D

visualisation.

In the first plot, many of the Wrep points are at a greater distance from the

ideal point than those in Tsel and may in many cases be dominated. The larger

set does, however, cover greater extremes. In the second and third plots, the fronts

occupy positions that are more proximal in Euclidean space. Again, the larger sets

offer greater overall coverage and a better resolution of the approximation front.

Where trade-offs occur between convergence and cardinality, as in comp16 repetition

11, valid reasons exist for preferring the larger set. These are summarised in the

conclusions section which follows.

196

5.2.4 Conclusions on operators

An analysis of the benefits and drawbacks of various additional operators was

conducted in this section. First, data was interrogated in order to quantify the

periods of non-improvement in optimisation runs. This led to an ad hoc value for

a stagnation threshold parameter, which was then relied upon to trigger a destroy-

repair operator. The idea is broadly similar to iterated local search (Lourenço et al.,

2010). It was discovered that the saturation degree heuristic, which worked well for

constructing solutions from scratch, was less effective as a partial repair tool, even

when the destruction was limited to a small number of lectures. In seeking to escape

local optima with this strategy, a natural trade-off emerged between the need for

a sufficiently large alteration to the timetable and the desire to preserve its more

beneficial and well-evolved sub-parts. Two newly-introduced parameters, relating to

stagnation threshold and the degree of destruction, were found to be highly sensitive

and problem-dependent. More insight is required in order to correctly calibrate them.

Another pervasive question in this section revolved around the sequencing

of feasibility checks. In the investigation into other perturbation operators, it was

found that explicitly checking for all hard violations added too great a computational

expense. Instead, a parameter called attempts was introduced, and a default routine

called if a feasible perturbation was not found within this threshold. A value

attempts = 30 was found to give good economy on the problems studied. More

evidence was also found that, in terms of feasibility, the relationship between the state

of maturity of the evolved solutions and the activity of the operators is somewhat

problem-dependent but in most cases not significant. This suggests that there are

more important factors than the progress of the run when considering why and when

particular operators should be called.

One aspect that was associated with the state of maturity, however, was the

quality of solutions found by the operators (i.e. the soft violation counts). A proposal

was made to guide the operators towards choosing higher yielding swaps, based on

domain knowledge. This was not easy to achieve, as any conditions on lectures that

were inexpensive to check were also rarely satisfied in practise. Conceptually though,

197

the pre-operator filtering of lectures certainly holds promise. A different selective

approach was trialled in which lectures were preferred based on the dissimilarity

of their assignment properties. While this led to larger changes in the quality of

perturbed solutions, these were not always in a net positive direction. Variant Uvio,

which was something of a compromise between two filtering extremes, was found to

be the most successful, outperforming the other variants and the baseline.

Finally, modifications to the tournament selection operator also helped improve

the algorithm. By introducing the property replica and encouraging greater churn —

even sometimes at the expense of dominating solutions from the previous generation

— more of the budget was diverted to exploration of the search space. The tangible

advantages of this were seen not in the final hypervolume, which was not significantly

affected, but rather in the increased granularity of the final approximation front.

In the next section, developments are premised upon the following notion: If a

fifth objective of ‘robustness’ is brought into consideration, then the cardinality and

spread shown in Figure 5.18 assumes greater importance. Without sacrificing high

quality solutions to an overly-excessive degree, the decision maker can be furnished

with a larger pool of options, potentially encompassing a wider range of robustness,

from which to choose their preferred timetable. With this justification, the successful

Wrep variant of the tournament selection operator was therefore adopted.

5.3 Robustness

In real world applications, one or more unforeseen disruptions may occur after

a timetable has been drafted. Extra students may belatedly be enrolled into a

particular curriculum, or a teacher may alter their unavailability requirements, for

example. If the original timetable maintains its quality and feasibility in the face of

a set of changes, it is said to be entirely robust to that particular disruption scenario.

It is more likely, however, that the quality of a timetable will be compromised in

some way by the adjustments to the problem instance.

The best method of finding, or generating, highly robust timetables is an

open area of research. Akkan et al., 2020 developed a Simulated Annealing search

198

algorithm for this purpose. The goal was to locate ITC2007 solutions that, once

acted upon by random disruption scenarios, could be repaired without significantly

degrading their quality. This was termed ‘quality robustness’. A second consideration,

deemed ‘solution robustness’, was to ensure the repaired solutions were, at the same

time, not excessively different in design to the old ones.

When quantifying robustness, Akkan et al., 2021 noted that estimators are

needed. Calculating an exact or ‘idealised’ metric is not computationally viable

because of the high memory and time requirements. This is particularly the case when

multiple concurrent disruptions are permitted. The authors investigated slack-based

estimators, finding that the ‘coefficient of variations of the number of conflict-free

available periods per course’ was the most effective of the 33 surrogates (11 slack

measures × 3 summary statistics) tested. Extended work in Akkan et al., 2022

concluded that there is no closed-form expression for the ‘idealised’ robustness metric,

due to the large sample sizes required. The authors treated their robustness estimator

as stochastic, in the sense that a Pareto ‘band’ was maintained rather than a Pareto

front approximation. This band gave an indication of the probability of a solution

existing on the true Pareto front.

In this section, some perturbations to the problem instance, or ‘disruptors’,

are mathematically defined. These are inspired by circumstances that might be

encountered in a real world use case. An ‘idealised’ robustness metric is defined in

order to capture a sense of the deterioration in quality of a solution as a reaction to

single and/or multiple disruptors. A more computationally viable approximation to

this idealised metric is then proposed and ultimately integrated into the optimiser as

a fifth objective to be minimised.

5.3.1 Disruptors

A number of principles guide the design of the disruptors. Re-evaluating a timetable

subject to a changed instance could result in different values for the objectives, S1

. . . S4. In a worst case, it may also affect any combination of H1 . . . H5, thereby

rendering the solution infeasible. Every constraint, whether hard or soft, that is

199

potentially unstable with regard to the changing of a problem instance should be

targeted by at least one disruptor in the pool. Where possible, individual disruptors

should act on individual constraints in isolation. In the real world, circumstances may

transpire that make the problem easier, rather than harder, to solve. For example, if

an extension is built that enlarges the capacity of a room, or if a group of students

drop out of a course. Such eventualities are of lesser interest when considering

robustness. The disruptors should instead be designed with the aim of constraining

the problem more tightly or, at the very least, rearranging the patterns of existing

constraints. As a counterbalance to this, disruptors should not act so destructively

on a particular problem so as to make it entirely intractable. For maximum insight,

the robustness tests should induce deterioration across a full spectrum of ways:

exclusive soft constraints, exclusive hard constraints, and both constraint violation

types together. By extension, the perturbed problems ought ideally to be solvable

by the optimiser.

Table 5.6 provides details of seven disruptors. As a pool, the disruptors can

bring about violations in any of six constraint types (H3, H4, H5, S1, S2, S3).

The remaining three (H1, H2, S4) are invariant to problem perturbation under the

encoding scheme used.

In dNewCnn, the curriculum membership of a course is revised in such a way

as to increase its student count. Problem instance descriptions do not give student

count as an explicit property of curricula. However, to maintain internal consistency

of the problem, the student count must be updated in conjunction with the changed

curricula. The correct new values could be inferred, in some cases, directly from the

data, or by the use of linear algebra. A more restrictive but computationally cheaper

method is by the subtraction described in Table 5.6. Note that due to these structural

dependencies between students and curricula, dNewCnn is the only disruptor that

affects multiple violations. dNewCP and dNewTP both affect unavailability constraint

H4. The former adds course-specific period prohibitions, while offsetting this by

releasing a (smaller) number of previously unavailable periods. The latter blocks out

periods in a teacher-specific manner, which may impact across more than one course.

200

Table 5.6: A pool of seven disruptors used in the calculation of a robustness metric. The
identifier is the name of the function used to call a particular disruptor. Each one acts on
prescribed entities, such as a course or teacher, according to the mechanism in column 3.
The final column shows which type/s of constraint violation can potentially be induced.

Identifier Acts on Mechanism Affects
dNewCnn A randomly chosen

course Ci that does
not have member-
ship of every pos-
sible curriculum.

The curriculum membership
of Ci is changed to {u :
Cj ∈ u}\{u : Ck ∈
u} and stud(Ci) becomes
stud(Cj)− stud(Ck), where
j, k ∼ {1, C}, j, k ̸= i, {u :
Ck ∈ u} ⊊ {u : Cj ∈ u}
and stud(Cj) − stud(Ck) >
stud(Ci).

H3,
S1,
S3

dNewCP A randomly chosen
course Ci where
|unav(Ci)| ≥ 1.

A set of consecutive periods
within a single day that were
available are made unavail-
able. Meanwhile, a smaller
or equally sized set (if it ex-
ists) of consecutive periods
within a single day that were
unavailable, are made avail-
able.

H4

dNewCS A randomly chosen
curriculum ui.

All courses in ui have
their student enrol-
ment increased by θ ∼
{1, ⌊ 1

2|C|
∑|C|

i=1 stud(Ci)⌋}.

S1

dNewTP Courses taken by
a randomly chosen
teacher, Ti.

Teacher Ti becomes unavail-
able for a randomly chosen
timeslot.

H4

dNewTS Two randomly
chosen courses Ci
and Cj with distinct
teachers.

The two teachers of the
courses are swapped with
one another.

H5

dNewMWD Two randomly
chosen courses Ci
and Cj, where
mwd(Ci) < |D| and
mwd(Cj) > 1.

mwd(Ci) is increased by
θ ∼ {1,min(|L|, |D|)}.
mwd(Cj) is decreased by 1.

S2

dNewRC Two randomly
chosen rooms, r1
and r2, where
cap(r1) ≥ cap(r2).

cap(r1) is decreased by θ1,
where θ1 ∼ {2, ⌊cap(r1)/2⌋}.
cap(r2) is increased by θ2
where θ2 ∼ {1, θ1 − 1}.

S1

201

dNewCS and dNewRC also target a common constraint (S1) but, again, from different

perspectives. The former increases the student count for a particular curriculum,

up to a limit of half of the mean student count across all courses. The latter acts

upon a pair of rooms, decreasing the capacity of the larger by the value of a discrete

random variable, while increasing the capacity of the smaller by a lesser amount.

dNewTS reflects a real world situation in which two teachers swap courses with one

another, which may possibly cause teacher clashes in other areas of the timetable.

Finally, dNewMWD tightens the minimum working days requirement for one course,

while loosening it to a lesser degree for a second course.

5.3.2 Idealised robustness metric

In real world timetabling, multiple disruptions may occur concurrently. To model

this, a random number of disruptors are selected (without replacement) and executed

on the problem in sequence. To respect the principle of problem tractability, this

number is capped conservatively at 3. A total of
∑3

k=1

(
7
k

)
= 63 combinations of

disruptors are therefore available. Another feature in real world applications is that

no combination of disruptors can be predicted to occur with certainty. Let this

random variable be denoted as D. Let R be the random variable representing the

outcome of executing a combination of disruptors. The expected outcome of a fixed

combination is E(R|D), while a idealised unary robustness metric may be expressed

by E(R).

A definition is first required for R in order to quantify the deterioration of

a given timetable. Given a feasible solution x to a problem d, Hall(x, d) returns a

vector of length five representing the violation counts for [H1 H2 H3 H4 H5], while

Sall(x, d) gives the objective vector representing violation scores for [S1 S2 S3 S4].

The equations (5.5) and (5.6) give the deterioration in solution quality in terms

of hard and soft violations respectively, when x is re-evaluated on the perturbed

problem dNew. A greater value corresponds to a higher deterioration, and [0]k is the

zero vector of length k.

202

deteriorationH = max(Hall(x, dNew)− Hall(x, d), [0]
5) (5.5)

deteriorationS = max(Sall(x, dNew)− Sall(x, d), [0]
4) (5.6)

These quantities are brought together in (5.7). The hard constraint differences

are multiplied by a coefficient in order to give them prominence relative to the

soft constraint differences. The sum of the concatenated vector then yields a

measure of robustness for x — under the specific disruption scenario described

by the transformation of d into dNew.

robx(d, dNew) =
9∑

i=1

[5× deteriorationH, deteriorationS]i (5.7)

In theory, E(R) can be obtained by systematic evaluation of all possible

arrangements of dNew accompanied by the calculations in (5.5), (5.6) and (5.7), and

averaging. As the affected constraint type is known for each disruptor (as per column

four of Table 5.6), δ-evaluations can be employed to reduce the computational cost.

Even with this mitigation however, calculating the idealised robustness metric is not

practicable due to the overwhelming number of distinct problem perturbations that

the 63 disruptor combinations can induce.

As a test, an estimator is considered for E(R), in order to first gain an

understanding of the discriminatory power of the idealised metric. If the idealised

metric shows little differentiation among dissimilar solutions, then the guidance

provided for the optimiser is less useful. Such an issue would only be compounded

further by the statistical noise introduced by a low quality estimator. In the following

test, a large number of samples (far higher than would be viable within a real

time optimiser loop) were taken of potential disruption scenarios. This number was

set to 20,000. A feasible solution, x, was sampled at random from the complete

search history of a previous run. The distribution of the proposed robustness metric

resulting from reevaluating solution x over the 20,000 perturbed problems was

obtained. Solution x was then resampled a total of 250 times and the corresponding

distribution returned each time. The 250 distribution means (which serve as the

203

60 70 80 90 100
0

20

40

60

35 40 45 50 40 45 50 55 60 6560 70 80 90 100
0

20

40

60

35 40 45 50 40 45 50 55 60 6560 70 80 90 100
0

20

40

60

35 40 45 50 40 45 50 55 60 65

Figure 5.19: ˆE(R), an estimate for the idealised robustness metric E(R), is obtained by
way of the mean outcome over 20,000 resampled disruption scenarios. The histograms
show the distribution of ˆE(R) over 250 solutions sampled from previous 4-objective runs,
for instances comp03, comp08 and comp18.

naive estimates for E(R)) are displayed as histograms for three instances in Figure

5.19.

Figure 5.19 serves as intuition for the range of values that E(R) may commonly

take. Recall that these samples use data from the 4-objective runs only, and that

the left hand tails of these distributions are likely to extend further towards 0 if

robustness were being driven deliberately as its own objective. While these plots

provide useful insight, real time calculation, or even high quality estimation, of E(R)

is too expensive in the context of the optimiser. In the next section, experiments

are undertaken using a simpler, computationally viable scheme in order to prove the

many-objective robustness concept and analyse trade-offs between the five objectives.

5.3.3 Experiment on fixed scenarios

In this experiment, fixed scenarios are used — in other words, a priori knowledge of

disruption scenarios is assumed. Initial testing revealed that five was an acceptable

trade-off between the sample size of problem perturbations and additional run time.

For each problem, five disruption combinations were therefore sampled at random

and executed on the instance outside of the optimiser loop. The perturbed instances,

dNewi, i = 1 . . . 5, remained fixed over all repetitions. The aggregation in (5.8)

provided the robustness metric.

5∑

i=1

robx(d, dNewi) (5.8)

204

Table 5.7: Hypervolume reference point coordinates for the fifth objective, robustness, for
the formula given by expression 5.8 and fixed sets of five disruptor combinations.

comp01 comp02 comp03 comp04 comp05 comp06 comp07

3,200 5,817 6,245 5,321 9,233 8,232 10,624
comp08 comp09 comp10 comp11 comp12 comp13 comp14

6,418 9,267 1,434 5,650 1,292 1,797 1,496
comp15 comp16 comp17 comp18 comp19 comp20 comp21

10,397 6,082 10,850 6,494 6,178 9,161 5,127

12 repetitions were run for each problem instance with a function evaluation

budget of 1,000,000, setPopSize = 100. Hypervolume reference coordinates for the

fifth objective were derived from a mathematical upper bound. These are listed in

Table 5.7.

5.3.4 Results

Results for the hypervolume and cardinality of the non-dominated archive at ter-

mination are given in Table 5.8. The left-hand side of the table shows extremes

and averages of the individual repetitions. Exploiting the parallelisation of these

repetitions across CPU cores, better hypervolumes can be achieved in a run time

of the same magnitude by amalgamating the independent repetitions. A combined

archive was therefore created by extracting non-dominated solutions from the union

of the final archives across all repetitions. Metrics for these combined sets are shown

in the right-hand side of the table.

Figure 5.20 shows the improvement of the mean hypervolume over the genera-

tions, for all instances. Gradients at termination suggest that even a small budget

increase would lead to further gains.

Figures 5.21 and 5.22 show (for comp01 to comp10, and comp11 to comp21

respectively) parallel coordinate plots of the combined Pareto approximation sets. At

least one perfectly robust solution (i.e. a robustness metric of 0) was found for every

instance in these sets, with the exceptions of comp11, comp16 and comp20 (whose most

robust, non-dominated solutions scored 6, 5 and 13 on that objective respectively).

In order to better show the trade-offs between robustness and generalised timetable

quality, an alternative, lower-dimensional visualisation of the same data is given in

Figures 5.23 and 5.24. In these plots, the combined Pareto approximation sets have

205

Table 5.8: Results for the 5-objective treatment (four soft constraint violation scores
plus a robustness metric) using a 1,000,000 function evaluation budget. hv(Ao) is the
hypervolume of the final Pareto approximation set, while |Ao| is its cardinality. Results
are given both by individual repetition, and for the set generated by combining the 12
repetitions.

By individual repetition By combined repetitions

Instance
hv(Ao) |Ao| hv(Ao) |Ao|Best Mean Min Max Median

comp01 0.976 0.962 7 147 42.5 0.976 31
comp02 0.820 0.800 202 861 495 0.857 1,220
comp03 0.855 0.823 220 698 305 0.880 697
comp04 0.877 0.852 97 335 129 0.893 275
comp05 0.767 0.740 1,499 3,289 2,632.5 0.816 4,496
comp06 0.829 0.801 108 950 475.5 0.841 428
comp07 0.782 0.764 152 724 415.5 0.797 427
comp08 0.853 0.826 17 229 60 0.877 98
comp09 0.800 0.776 378 1,327 626.5 0.815 599
comp10 0.813 0.785 73 928 635 0.821 316
comp11 0.976 0.954 628 2,451 1,781.5 0.977 1,527
comp12 0.746 0.708 1,743 4,920 3,699 0.772 5,560
comp13 0.815 0.780 175 835 480.5 0.825 442
comp14 0.873 0.844 142 762 359.5 0.884 501
comp16 0.837 0.813 68 442 309.5 0.854 154
comp17 0.809 0.775 454 1,024 605.5 0.824 855
comp18 0.890 0.866 374 1,102 768 0.914 500
comp19 0.860 0.835 35 575 86.5 0.884 212
comp20 0.737 0.699 1,068 3,664 2,120 0.747 2,130
comp21 0.805 0.783 68 469 254 0.832 391

been projected into 2-dimensional space where the x-axis is the traditional scalarised

score (S1 + S2 + S3 + S4). A common observation (exemplified best by comp02,

comp03, comp07, comp11, comp14, comp17, comp18 and comp20) is that quality and

robustness are in conflict.

Characteristic trade-off curves are sketched out for these instances, with the

most tightly drawn being that of comp11. Seeking a near-optimal solution to this

instance means accepting a trade-off with its robustness, with this metric being

around 200 or higher. On the other hand, a perfectly robust solution can be chosen,

but only if a large deterioration in scalarised score, of around 300 or higher, is

accepted. A more complex trade-off picture is shown for comp05 and comp12, in

which clustering / disconnected fronts are seen. These two problems are highly

constrained. Perhaps not coincidentally, they also returned the two largest combined

206

0 2000 4000 6000 8000 10000

Generation

0

0.2

0.4

0.6

0.8

1

H
y
p

e
rv

o
lu

m
e

Figure 5.20: Profiles of the hypervolume improvement (as a mean over 12 repetitions) for
instances comp01 to comp21 under a 5-objective treatment (four soft constraint violation
scores plus a robustness metric). Numerical results from the same runs are reproduced in
Table 5.8.

archives of all instances in the experiment. This suggests they would benefit more

than most instances from an increased budget. Meanwhile, comp08, comp16 and

comp21 show that, for instances where inherent conflicts between objectives are

oblique, solutions that are highly robust to the fixed scenarios can be found across a

wide range of qualities.

The scenarios used in this experiment were fixed in order to avoid the constant

resampling of disruptions. Tests showed that attempting this would not only be

prohibitively expensive, but would also introduce an untenable degree of noise to

the estimator. However, solutions optimised according to a fixed disruption scenario

may, ultimately, be more robust in general when compared to solutions obtained by

the 4-objective model. The following section tests this hypothesis analytically.

5.3.5 Analysis of general robustness

In this section, further analysis is carried out on the data from the fixed scenarios

experiment. Included in the 5-D Pareto front approximations obtained previously

are subsets of solutions in which the robustness score is minimal. For the majority of

instances, this minimal value is 0. While quality varies in other regards, any solution

with a metric value of 0 can be said to be perfectly robust to the fixed scenario.

207

comp01

20

40

60

80

100

0

5

10

15

20

25

0

5

10

15

4

6

8

10

12

0

5

10

15

20

25

comp02

50

100

150

200

250

20

40

60

80

100

150

200

250

20

30

40

50

50

100

150

200

250

comp03

0

50

100

150

200

0

20

40

60

80

100

100

150

200

250

300

20

30

40

0

10

20

30

comp04

-0.5

0

0.5

20

40

60

60

80

100

120

20

30

40

50

5

10

15

20

25

comp05

500

1000

50

100

150

400

600

800

1000

1200

10

20

30

50

100

150

200

250

comp06

50

100

150

20

40

60

80

120

140

160

180

200

220

240

30

40

50

60

70

50

100

150

V
al
ue

Objective

comp07

20

40

60

10

20

30

40

50

150

200

60

70

80

90

100

10

20

30

40

50

comp08

-0.5

0

0.5

10

20

30

40

50

60

80

100

25

30

35

40

45

50

10

20

30

S1 S2 S3 S4 Rob

comp09

0

20

40

60

80

100

120

0

50

100

100

150

200

250

30

40

50

60

70

0

100

200

300

400

500

S1 S2 S3 S4 Rob

comp10

20

40

60

80

100

20

40

60

80

100

150

200

250

40

50

60

70

80

50

100

150

200

250

Figure 5.21: Combined Pareto approximation sets for instances comp01 to comp10 under a
5-objective treatment.

208

comp11

100

200

300

10

20

30

40

20

40

60

80

100

120

5

10

15

20

50

100

150

200

250

300

comp12

200

400

600

50

100

150

600

800

1000

1200

10

20

30

40

50

100

200

300

400

comp13

0

50

100

150

0

20

40

60

80

100

150

200

250

30

40

50

60

0

50

100

150

comp14

0

20

40

60

0

20

40

60

100

150

200

20

30

40

0

20

40

60

comp16

0

20

40

60

80

100

0

20

40

60

100

150

200

40

50

60

70

10

20

30

40

50

comp17

50

100

20

40

60

80

100

150

200

250

300

40

50

60

70

80

90

20

40

60

80

V
al
ue

Objective

comp18

0

20

40

60

80

100

0

50

100

100

150

200

250

0

5

10

15

20

0

20

40

60

comp19

50

100

20

40

60

80

100

100

150

200

20

30

40

50

60

20

40

60

80

S1 S2 S3 S4 Rob

comp20

100

200

300

400

50

100

200

250

300

350

60

70

80

90

100

200

300

400

S1 S2 S3 S4 Rob

comp21

0

20

40

60

80

100

50

100

150

150

200

250

300

30

40

50

60

0

100

200

300

Figure 5.22: Combined Pareto approximation sets for instances comp11 to comp21 under a
5-objective treatment (comp15 excluded).

209

0 50 100 150

0

10

20

30
comp01

200 300 400 500 600

0

100

200

300
comp02

200 250 300 350 400 450 500

0

10

20

30

40
comp03

100 110 120 130 140 150 160

0

10

20

30
comp04

500 1000 1500 2000 2500

0

100

200

300
comp05

150 200 250 300 350 400 450

0

50

100

150

200
comp06

R
ob
us
tn
es
s

200 220 240 260 280 300 320

0

20

40

60
comp07

100 110 120 130 140 150 160

0

10

20

30

comp08

200 250 300 350 400

0

200

400

600
comp09

200 250 300 350 400 450 500

0

100

200

300
comp10

Scalarised score

Figure 5.23: The combined Pareto approximation sets for instances comp01 to comp10

under a 5-objective treatment, projected into 2-dimensional space. On the x-axis is the
scalarised score (or sum of objectives S1 . . . S4), while on the y-axis is the robustness
metric. This figure presents the same data as in Figure 5.21.

210

0 100 200 300 400 500

0

100

200

300

comp11

600 800 1000 1200 1400 1600 1800

0

100

200

300

400

comp12

150 200 250 300 350 400 450

0

50

100

150

200
comp13

140 160 180 200 220 240 260

0

20

40

60

comp14

150 200 250 300

0

20

40

60
comp16

200 250 300 350 400 450

0

50

100
comp17

R
ob
us
tn
es
s

150 200 250 300

0

20

40

60

comp18

150 200 250 300

0

50

100
comp19

200 400 600 800 1000

0

100

200

300

400

comp20

250 300 350 400

0

100

200

300

400
comp21

Scalarised score

Figure 5.24: The combined Pareto approximation sets for instances comp11 to comp21

(excluding comp15) under a 5-objective treatment, projected into 2-dimensional space. On
the x-axis is the scalarised score (or sum of objectives S1 . . . S4), while on the y-axis is
the robustness metric. This figure presents the same data as in Figure 5.22.

211

The question of whether this property implies a greater robustness in general, to

any form of unseen disruption or disruptions, is addressed using the following test.

For all instances, where possible, 50 perfectly robust solutions, obtained from runs

with a 1,000,000 function evaluation budget, were sampled without replacement

from the final non-dominated archives. As a baseline comparator, samples were also

taken of non-dominated solutions obtained from the 4-objective model, which has

no robustness objective at all. These sample sets, also of size 50, were drawn from

runs with an equal budget. For each sampled solution, an estimate for E(R), the

idealised robustness metric described in Section 5.3.2, is then obtained by way of

reevaluations against 10,000 resampled disruption scenarios and averaging.

Table 5.9: The mean, over 50 solutions, of the estimated idealised robustness metric, (ˆE(R)),
for samples of solutions from the 4-objective optimiser vs. those from the 5-objective
optimiser. The lesser means, indicating greater robustness, are shaded.

Instance
¯̂

E(R) 4-objective
¯̂

E(R) 5-objective
comp01 47.0 46.6
comp02 122.2 110.8
comp03 86.7 83.0
comp04 48.3 49.5
comp05 223.8 209.9
comp06 67.1 57.0
comp07 48.5 46.2
comp08 45.4 43.7
comp09 50.0 46.2
comp10 45.8 40.9
comp12 67.3 52.4
comp13 61.4 51.5
comp14 37.6 35.2
comp17 45.0 43.5
comp18 56.0 50.3
comp19 79.2 79.6
comp21 56.9 53.5

Table 5.9 shows the mean (over 50 solutions) of the estimated idealised robust-

ness metric, ˆE(R), for each relevant problem, over the two sample universes. Using

a blocking factor to account for variability in problem instances, a Friedman test

was run on the raw data. A p-value of 0 indicated a rejection of the null hypothesis

that the column effects (which universe the samples were drawn from) are the same.

In other words, the evidence suggests that being perfectly robust to a specific fixed

212

disruption scenario makes a solution more robust to generalised disruptions than a

solution that has been optimised with no robustness objective at all.

5.3.6 Conclusions on robustness

The concluding work in this chapter looked at the incorporation of a robustness

metric as the fifth objective in a many-objective optimiser.

Realistic disruptors were first defined according to a set of guiding principles.

A small number of constraints were found to be untouchable by problem disruption,

due to the framework and encoding used. The remainder, whether hard or soft,

were targeted in specific ways by the mathematical operations of seven different

disruptors.

The difficulty of measuring robustness became apparent when devising a metric.

The idealised metric was so-named on account of the exorbitant expense required for

its calculation. Nonetheless, it provided both a starting point and a reference point

for further investigation and later sanity checking. A proposed estimator proved

viable in experimental settings but not within the optimiser loop itself. As a remedy

for this, instead of a vast pool of possible disruption scenarios, fixed scenarios were

utilised instead. By re-assessing solutions against a total of five known disruptor

combinations, an evaluation for the fifth objective could be obtained without any

of the statistical noise associated with sampling from a larger pool. A degree of

variability in the problem perturbation was also retained. Furthermore, the impact

on run time was deemed acceptable using this number.

Results showed that the optimiser coped well with an additional objective, with

large and well-spread non-dominated sets achieved by termination. The optimiser

yielded highly robust solutions for all problems, with the majority of non-dominated

sets including multiple distinct timetables that were perfectly robust. As would

perhaps be expected, the values for the soft constraints were generally worse than for

the 4-objective optimiser with the same budget. A trade-off, best illustrated in the 2-

D projections in Figures 5.23 and 5.24, was commonly found between robustness and

quality. While S1 was again well handled, more investigation into operators is needed

213

if these fronts are to show better convergence in the other three quality objectives. It

is interesting, however, that no operator within the system was specifically tailored

to aid robustness, and yet this objective was optimised most successfully.

In the final section, a determination was made as to essentially how good a

surrogate the fixed scenarios metric was for the idealised metric. ‘Perfectly’ robust

solutions were compared with solutions optimised in four objectives only, under equal

budgets. The outcome was statistically significant. The evidence suggested that

even optimising for a limited pool of disruptor combinations could prime solutions

to be robust in a more general sense. It should be noted though that the two

variants terminated in different regions of the (S1,S2,S3,S4)-space, with the Pareto

fronts generally being better converged for the 4-objective case, though not always

significantly so. While the equal budget comparison yielded a significant and positive

result, further study is needed to ascertain whether positioning in 4-D space is a

confounding factor associated with robustness too.

In the section that follows, a final summary is given of each chapter, along

with insights and suggested directions for future work.

214

6. Summary and Further Work

This thesis has considered the university course timetabling problem (UCTP), and

in particular the curriculum-based model and ITC2007 benchmark. A review of

literature in Chapter 2 revealed that the UCTP has been the subject of many decades

of research, both as an abstraction and for its practical applications. Interest in

educational timetabling has shown a particularly rapid growth since the early 2000s,

coinciding with the advent of the International Timetabling Competition, which has

encouraged collaboration through standardised formulations. Despite this large body

of extant work, automatic timetabling continues to evolve as a field, and gaps in

the research remain. In Chapter 2, metaheuristics were identified as some of the

most successful, efficient and adaptable techniques for solving the UCTP. One such

approach, ant colony optimisation (ACO), showed promise for timetabling, while

at the same time posing a number of unanswered questions. Chief amongst these

related to the ordering of course lectures within the construction graph. In Chapter

3, a specialised ACO solver was created. The idea of a threshold value in a dynamic

constraint handling component — strong enough to discourage virtual ants following

unprofitable pathways, yet liberal enough to prevent dead ends — was included as a

novel contribution. This proved successful in enabling the virtual ants to construct

feasible solutions. The central focus of Chapter 3, however, was the related aspect

of lecture ordering. Revisiting the objectives set out in Section 1.1, the question

of whether lecture ordering impacted on ultimate timetable quality was answered

in the affirmative. More profoundly than this, certain features of problems, and

the position of those features within a permutation of lectures, were identified as

being more important than others in predicting good orderings. Conflict between

curriculum memberships, and the number of overall lectures were examples of highly

215

informative features in this regard. The significance of feature values for courses was

also influenced by the position of those courses within the permutation. Courses

assigned near the start or the end of a virtual ant’s construction path were shown

to provide a more critical contribution and thus had to be chosen with greater care

than those in the middle. Strong patterns of correlation were also observed between

permutation distance (measured by a chain of neighbourhood swap operators) and

similarity in performance.

This finding suggested that information from easy-to-obtain features could be

exploited in order to learn good permutations for use in an ACO construction graph.

A novel pipeline was proposed for this purpose. A training set of small problems was

completely enumerated by permutation. The outcomes of these repeated runs were

used as target values in a regression model, which was then scaled to larger, unseen

problems as a predictor. When scaling to relatively small problems, there were some

encouraging results, but the success rate become more mixed when extrapolating

to larger problems. Taken as a whole, the ACO was not competitive with state of

the art results, but this fact is to overlook the true value of the study, which was to

investigate the workings of one of its internal components in relative isolation. Having

established the importance of both ordering and more specifically course features and

positions, there are several directions for further work that could address some of the

limitations of this chapter. While the feature set was deliberately kept simple, feature

extraction could be used to discover more elaborate features for use in the training

process. Similarly, the features could be made more granular by increasing the course

cardinality in the training problems. The reason why this was fixed to 4 (in the proof

of concept work) and then 5 (in the final model) is because the permutation space

scales exponentially with number of courses, making complete enumeration costly.

However, by leveraging greater CPU power, parallelism, or simply allowing for a

greater temporal training budget, it is far from inconceivable that problems with 8

courses or more could be processed in this manner. An increased set of larger-sized

training problems would also enable more nuanced interplay between constraints to

be learned. The wider implications are that learned permutations could potentially

216

outperform those constructed by heuristic or by randomness, as is often the case

currently. If such a predictor were to be refined and proven, it could be ported to

other types of ACO, or potentially other metaheuristics which rely on the sequential

assignment of lectures or other events.

Chapter 4 followed a new direction, with the UCTP being treated as a many-

objective problem. This was identified as being another prominent gap in the existing

literature, or rather, an approach to timetabling that is only recently beginning to

gain traction. As such, the proposed extension and modification of an existing (and

originally continuous) many-objective algorithm provides novelty. Previous studies

have formulated the UCTP as a multi- or bi-objective problem, or sought to address

individual objectives separately before returning scalarised results. In this chapter

however, a novel attempt was made to return a set of non-dominated solutions that

approximate the Pareto front for the ITC2007. Attention was paid to minimising

complexity and parameter count. The solver, which is essentially parameterless and

uses a simple mutator but no crossover, was shown to return well-spread solution sets.

With the exception of perfectly solvable problems like comp11, whose Pareto optimal

set comprises a single point in objective space, the shapes and discontinuities of the

Pareto fronts for each problem are not known. Published approximations to these

are also, until now, lacking. Thus, although there is no direct set-wise comparison

to be made for the results in this chapter, published best known scalarised scores

can offer useful context. Analogous to shining a light on a single brick in a wall

to gauge its position in the dark, some intuition about distance to the optimal

solutions can be gained this way. Due to the extra computational overheads present

in many-objective optimisers, achieving results close to the optimal or best-known

single-objective scores was not expected within the same time budget. Regardless,

optimal or near-optimal timetables were returned for two problems, while across

the benchmark, results were competitive for some other instances. This is highly

encouraging given both the simplicity of the approach, and the fact that a higher

focus was placed on the spread/cardinality of the non-dominated set than on pure

convergence. The efficacy of a multi-phase solver was reaffirmed in this chapter too.

217

Tackling constraint types sequentially prevented stagnation in infeasible space. Some

interesting findings emerged from the initialisation phase, which could lead to further

work. The constructive heuristics studied were shown to perform well, tempered

by a failure to return a uniform sample from the solution space. How much of a

limitation this is, in the wider context of the optimiser, remains unclear. A direction

for future work may involve introducing an adaptive bias to the choice of construction

paths such that a more uniform sample could be obtained. The idea of combining or

pooling heuristics is also an interesting avenue for investigation. Initialisation was

shown to be inexpensive relative to phase two (the main optimiser loop). Thus, if it

were established that the initialisation protocol exerted a significant influence on the

final results, there is certainly scope to devote more of the computational budget to

this opening phase.

In Chapter 5, some issues with the commonly used form of direct encoding were

identified. A standard form version, which involved making limited and systematic

swaps between genes in the chromosome, was proposed. This contracted the search

space as well as providing a basis for modification of the tournament selection operator

employed later on. While this thesis was limited in scope to direct encodings, the

efficacy of constructive heuristics showed that further exploration of indirect encoding

schemes could be useful in the main optimisation phase too. The proposed tree-graph

visualisation of the active population (Figure 5.1) provided valuable insight into the

extent of plateau regions and showed, in its animated video form, how the population

evolved through them. This suggested that further discrimination in the genotype

space when carrying out non-dominated sorting may be helpful. Distance metrics

were invoked for this purpose, with the Hamming distance shown to perform the

best. While the Hamming distance is known to perform well on binary encodings,

the finding that it was also superior on real encodings is enlightening. Moreover,

it is convenient given that the Hamming distance is one of the cheapest metrics

to compute. Data on the invocations of the genotype distance metric indicated its

importance, despite it being low in the hierarchy of discriminating features called

by the non-dominated sort routine. In the approach used, phenotype and genotype

218

distances were integrated — at the lower levels of priority. Future work may look

at the intelligent or adaptive weighting of one or the other. Also, while there are

unlikely to be any cheaper metrics than the Hamming distance, more sophisticated

and insightful distance metrics may be available that are worth the increased cost of

their computation.

Chapter 5 also offered an assessment of some other perturbation operators.

The prevailing issue with many of these operators was the preservation of solution

feasibility. A small perturbation operator like MuPFPR (introduced in Section 4.3.4) can

encapsulate feasibility checks inexpensively, due to only one lecture being reassigned.

Batch reassignments, circular shifts and swaps require more complex feasibility checks.

An alternative or enhanced encoding scheme may be able to alleviate this issue, but

inevitably not without affecting the topology of the search landscape. The motivation

behind exploring larger perturbation operators was to compensate somewhat for the

absence of crossover in the genetic algorithm, as well as to encourage escape from local

optima. Future study should compare the complexity of bespoke UCTP crossover

operators with the feasibility checking required for mutation/perturbation operators.

Using a faster, compiled language such as C or C++ could also give a better empirical

idea as to what these limits are, as well as allowing for higher budget runs. The study

in this section was limited to a destroy-repair operator plus three other operators.

Future tests could involve other perturbations based on intelligent filtering of lectures

(for example, by how much they contribute to the cost of a timetable). The work

on an enhanced swapPlace showed that intelligently selecting lectures for operation

holds promise. Inferring a preference on the lectures from simple features of the

problem is one option. Another possible direction, bringing to mind the approach

taken in Chapter 3, would be to harvest large amounts of data from an augmented

set of benchmark problems and attempt to learn associations between the placement

of lectures and the potential benefits of operating on them. These could then inform

the choices made, either in a probabilistic or deterministic fashion. Tournament

selection was successfully modified so as to encourage greater exploration. This was

achieved through a combination of age and equivalence discrimination. The effects of

219

this were seen in the final non-dominated sets that were, on average, more populous

but without sacrificing their quality.

The development of a many-objective optimiser provided the groundwork for a

study on robustness as a fifth objective. Disruptions, based on real world scenarios,

were defined. All constraint types were accounted for in the action of the disruptors,

barring those that were invariant under the encoding scheme. In future work, a

different encoding could open up the possibility of more scenarios, such as a specific

room being made unavailable. Nonetheless, the proposed disruptors covered a wide

range of scenarios involving curricula, students, unavailable periods and more. They

were also finely calibrated such that reevaluations on the changed problems would

yield a representative mix of both lower quality and infeasible solutions, and not only

exclusively the latter. Experiments using fixed scenarios led to two major findings.

Firstly, the algorithm found perfectly robust solutions in nearly all cases, without

any increase on the previously-used budget. However, this was often at the expense

of the soft constraint objectives — S2, S3 and S4 more so than S1. A natural

trade-off became apparent in the projected 2-D plots between robustness and quality

for some problems, which supports similar findings in Akkan and Gülcü, 2018. The

second key finding was that perfect robustness to fixed scenarios implied an improved

robustness to generalised scenarios, when compared with solutions optimised in 4

objectives only. Therefore, solutions with greater robustness could be found, on

average, without recourse to expensive resampling of disruptions or noisy estimators.

There are several directions for future work as regards robustness in many-

objective timetabling. Firstly, the definition of robustness itself could be explored.

The proposed metric captured a sense of deterioration in both quality and feasibility,

without considering the cost of repair. One fairly crude but simple way to include this

would be to return the number of lecture assignments that contribute towards hard

constraint violations. An alternative would be to ascertain the minimum number of

such lectures needing to be reassigned to restore feasibility. A sense of the consequent

impact on soft constraint scores could be factored in too. This would lead to a

measure of not only how badly solutions were damaged by disruptions, but also the

220

least-cost option for restoring them. As with any idealised robustness metric, its

exact calculation is inevitably prohibitively expensive. Some interesting ideas about

noisy objectives and mitigating the chaos induced by such evaluations are presented

in Rakshit et al., 2017. For example, the budget for resampling could be increased

over the run according to a linear profile. An underlying assumption in this approach

is that accuracy becomes more important as the optimiser hones in on a particularly

promising region.

Finally, an in-depth analysis of the trade-offs between the five objectives will

help inform future operator design. It is known that high quality solutions exist

in 4-objective space, and yet some desirable characteristics were sacrificed for good

robustness in the 5-objective experiments. It would be enlightening to harvest data

on the robustness of high quality and best known solutions in order to further fill the

gaps in knowledge on this front. The state of a population and its evolution history

at any point in time could also potentially be harnessed for the adaptive selection of

newly proposed operators. The ultimate aim would be to drive timetable quality,

intelligently and in all dimensions, while maintaining the solid robustness that was

successfully identified in this thesis.

221

Bibliography

H. A. Abbass (2001a). ‘MBO: Marriage in Honey Bees Optimization A Haplometrosis

Polygynous Swarming Approach’. In: Proceedings of the IEEE Conference on

Evolutionary Computation, ICEC 1, pp. 207–214. doi: 10.1109/cec.2001.

934391 (Cited on page 56).

H. A. Abbass (2001b). ‘A Monogenous MBO Approach to Satisfiability’. In: Proceed-

ings of the International Conference on Computational Intelligence for Modelling,

Control and Automation (CIMCA) (Cited on page 56).

E. A. Abdelhalim and G. A. El Khayat (2016). ‘A Utilization-based Genetic Al-

gorithm for Solving the University Timetabling Problem (UGA)’. In: Alexandria

Engineering Journal 55.2, pp. 1395–1409. doi: 10.1016/j.aej.2016.02.017

(Cited on page 66).

S. Abdullah, E. K. Burke and B. McCollum (2005). ‘An Investigation of Variable

Neighborhood Search for University Course Timetabling’. In: Proceedings of

the 2nd Multidisciplinary Conference on Scheduling: Theory and Applications,

pp. 413–427 (Cited on page 45).

S. Abdullah, E. K. Burke and B. McCollum (2007). ‘Using a Randomised Iterative

Improvement Algorithm with Composite Neighbourhood Structures for the Uni-

versity Course Timetabling Problem’. In: Metaheuristics: Progress in Complex

Systems Optimization, pp. 153–169. doi: 10.1007/978-0-387-71921-4_8 (Cited

on pages 25 and 45).

S. Abdullah and H. Turabieh (2008). ‘Generating University Course Timetable

Using Genetic Algorithms and Local Search’. In: International Conference on

Convergence Information Technology 1, pp. 254–260. doi: 10.1109/ICCIT.2008.

379 (Cited on page 158).

222

https://doi.org/10.1109/cec.2001.934391
https://doi.org/10.1109/cec.2001.934391
https://doi.org/10.1016/j.aej.2016.02.017
https://doi.org/10.1007/978-0-387-71921-4_8
https://doi.org/10.1109/ICCIT.2008.379
https://doi.org/10.1109/ICCIT.2008.379

S. Abdullah and H. Turabieh (2012). ‘On the use of multi neighbourhood structures

within a Tabu-based memetic approach to university timetabling problems’. In:

Information Sciences 191, pp. 146–168. doi: 10.1016/j.ins.2011.12.018

(Cited on pages 58, 61, 62 and 183).

A. F. Abouelhamayed, A. S. Mahmoud, T. T. Shaaban, C. Salama and A. H.

Yousef (2017). ‘An Enhanced Genetic Algorithm-Based Timetabling System

with Incremental Changes’. In: Proceedings of 11th International Conference on

Computer Engineering and Systems (ICCES), pp. 122–127. doi: 10.1109/ICCES.

2016.7821985 (Cited on pages 47, 51 and 53).

A. Abuhamdah, M. Ayob, G. Kendall and N. R. Sabar (2014). ‘Population based

Local Search for university course timetabling problems’. In: Applied Intelligence

40.1, pp. 44–53. doi: 10.1007/s10489-013-0444-6 (Cited on page 57).

L. N. Ahmed, E. Özcan and A. Kheiri (2015). ‘Solving High School Timetabling

Problems Worldwide Using Selection Hyper-heuristics’. In: Expert Systems with

Applications 42.13, pp. 5463–5471. doi: 10.1016/j.eswa.2015.02.059 (Cited

on page 60).

H. E. Akbulut (2024). ‘A simulated annealing algorithm for the faculty-level university

course timetabling problem’. In: Pamukkale University Journal of Engineering

Sciences 30.1, pp. 17–30. doi: 10.5505/pajes.2023.00483 (Cited on page 43).

C. Akkan and A. Gülcü (2018). ‘A bi-criteria hybrid Genetic Algorithm with robust-

ness objective for the course timetabling problem’. In: Computers and Operations

Research 90, pp. 22–32. doi: 10.1016/j.cor.2017.09.007 (Cited on pages 47,

50, 51, 64 and 220).

C. Akkan, A. Gülcü and Z. Kuş (2020). ‘Search Space Sampling by Simulated

Annealing for Identifying Robust Solutions in Course Timetabling’. In: IEEE

Congress on Evolutionary Computation (CEC), pp. 1–10. doi: 10.1109/CEC48606.

2020.9185823 (Cited on page 198).

C. Akkan, A. Gülcü and Z. Kuş (2021). ‘Slack-based Robustness Estimators for

the Curriculum-Based Course Timetabling Problem’. In: Proceedings of the 13th

223

https://doi.org/10.1016/j.ins.2011.12.018
https://doi.org/10.1109/ICCES.2016.7821985
https://doi.org/10.1109/ICCES.2016.7821985
https://doi.org/10.1007/s10489-013-0444-6
https://doi.org/10.1016/j.eswa.2015.02.059
https://doi.org/10.5505/pajes.2023.00483
https://doi.org/10.1016/j.cor.2017.09.007
https://doi.org/10.1109/CEC48606.2020.9185823
https://doi.org/10.1109/CEC48606.2020.9185823

International Conference on the Practice and Theory of Automated Timetabling

(PATAT), pp. 147–158 (Cited on page 199).

C. Akkan, A. Gülcü and Z. Kuş (2022). ‘Bi-criteria simulated annealing for the

curriculum-based course timetabling problem with robustness approximation’. In:

Journal of Scheduling 25.4, pp. 477–501. doi: 10.1007/s10951-022-00722-0

(Cited on page 199).

M. S. Al-Ashhab and A. Abdulrahman (2018). ‘Two-Stage Multi-Objective University

Courses Timetabling Using Genetic Algorithms’. In: International Journal of

Engineering and Technology 10.4, pp. 1102–1111. doi: 10.21817/ijet/2018/

v10i4/181004030 (Cited on page 53).

C. H. Aladag, G. A. Hocaoglu and M. Basaran (2009). ‘The effect of neighborhood

structures on tabu search algorithm in solving course timetabling problem.’ In:

Expert Systems with Applications 36.10, pp. 12,349–12,356. doi: 10.1016/j.

eswa.2009.04.051 (Cited on page 40).

N. Alhuwaishel and M. Hosny (2011). ‘A Hybrid Bees/Demon Optimization Algorithm

for Solving the University Course Timetabling Problem’. In: College of Computer

and Information Sciences, King Saud University, Riyadh, Kingdom of Saudi

Arabia (Cited on page 13).

A. Alkan and E. Özcan (2003). ‘Memetic Algorithms for Timetabling’. In: Proceedings

on IEEE Congress on Evolutionary Computation 3, pp. 1,796–1,802. doi: 10.

1109/CEC.2003.1299890 (Cited on page 158).

J. Almeida, J. R. Figueira, A. P. Francisco and D. Santos (2023). ‘A hybrid meta-

heuristic for the generation of feasible large-scale course timetables using instance

decomposition’. In: arXiv, pp. 1–43. doi: 10.48550/arXiv.2310.20334 (Cited

on page 45).

R. Alvarez-Valdes, E. Crespo and J. M. Tamarit (2002). ‘Design and implementation

of a course scheduling system using Tabu Search’. In: European Journal of

Operational Research 137.3, pp. 512–523. doi: 10.1016/S0377-2217(01)00091-

1 (Cited on pages 40, 41 and 65).

224

https://doi.org/10.1007/s10951-022-00722-0
https://doi.org/10.21817/ijet/2018/v10i4/181004030
https://doi.org/10.21817/ijet/2018/v10i4/181004030
https://doi.org/10.1016/j.eswa.2009.04.051
https://doi.org/10.1016/j.eswa.2009.04.051
https://doi.org/10.1109/CEC.2003.1299890
https://doi.org/10.1109/CEC.2003.1299890
https://doi.org/10.48550/arXiv.2310.20334
https://doi.org/10.1016/S0377-2217(01)00091-1
https://doi.org/10.1016/S0377-2217(01)00091-1

A. Ariyazand, H. Soleimani, F. Etebari and E. Mehdizadeh1 (2022). ‘Optimization of a

multi-objective university course timetabling problem with a hy-brid WOANSGA-

II (Case study: IAU, Robat Karim branch)’. In: Journal of Industrial Engineering

and Management Studies 10.2, pp. 131–148 (Cited on pages 12 and 61).

S. Asiyaban and Z. Mousavinasab (2012). ‘University Course Timetabling using

Multi-population Genetic Algorithm Guided with Local Search and Fuzzy Logic.’

In: International Journal of Computers and Technology 11.10, pp. 3,043–3,050

(Cited on pages 48, 50 and 53).

M. Assi, B. Halawi and R. A. Haraty (2018). ‘Genetic Algorithm Analysis using

the Graph Coloring Method for Solving the University Timetable Problem’. In:

Procedia Computer Science 126, pp. 899–906. doi: 10.1016/j.procS.2018.08.

024 (Cited on pages 50 and 52).

M. Atsuta, K. Nonobe and T. Ibaraki (2008). ‘ITC-2007 Track 2: An Approach using

General CSP Solver’. In: Proceedings of the Practice and Theory of Automated

Timetabling (Cited on page 61).

P. Avella and I. Vasil’ev (2005). ‘A Computational Study of a Cutting Plane Algorithm

for University Course Timetabling’. In: Journal of Scheduling 8.6, pp. 497–514.

doi: 10.1007/s10951-005-4780-1 (Cited on page 25).

F. H. Awad, A. Al-Kubaisi and M. Mahmood (2022). ‘Large-scale timetabling

problems with adaptive tabu search’. In: Journal of Intelligent Systems 31.1,

pp. 168–176. doi: 10.1515/jisys-2022-0003 (Cited on page 42).

E. Aycan and T. Ayav (2008). ‘Solving the course scheduling problem using simulated

annealing’. In: IEEE International Advance Computing Conference (IACC),

pp. 462–466 (Cited on page 43).

M. Ayob and G. Jaradat (2009). Hybrid Ant Colony Systems For Course Timetabling

Problems. 2nd Conference on Data Mining and Optimization, pp 120-126 (Cited

on pages 73 and 74).

H. Babaei and A. Hadidi (2014). ‘A Review of Distributed Multi-Agent Systems

Approach to Solve University Course Timetabling Problem’. In: Advances in

225

https://doi.org/10.1016/j.procS.2018.08.024
https://doi.org/10.1016/j.procS.2018.08.024
https://doi.org/10.1007/s10951-005-4780-1
https://doi.org/10.1515/jisys-2022-0003

Computer Science: an International Journal (ACSIJ) 3.5, pp. 19–28 (Cited on

page 58).

H. Babaei, J. Karimpour and A. Hadidi (2014). ‘A survey of approaches for university

course timetabling problem’. In: Computers and Industrial Engineering 86, pp. 43–

59 (Cited on page 26).

H. Babaei, J. Karimpour and A. Hadidi (2019). ‘Generating an optimal timetabling for

multi-departments common lecturers using hybrid fuzzy and clustering algorithms’.

In: Soft Computing 23.13, pp. 4,735–4,747 (Cited on page 25).

J. Bader and E. Zitzler (2011). ‘HypE : An algorithm for fast optimization’. In:

Evolutionary Computation 19.1, pp. 45–76. doi: 10.1162/EVCO_a_00009 (Cited

on page 147).

R. P. Badoni, D. K. Gupta and P. Mishra (2014). ‘A new hybrid algorithm for

university course timetabling problem using events based on groupings of students’.

In: Computers & Industrial Engineering 78, pp. 12–25 (Cited on pages 14 and

28).

R. P. Badoni, S. Kumar, M. Mann, R. P. Mohanty and A. Sarangi (2023). ‘Ant colony

optimization algorithm for the university course timetabling problem using events

based on groupings of students’. In: Modeling and Applications in Operations

Research February 2024, pp. 1–36. doi: 10.1201/9781003462422-1 (Cited on

page 73).

M. Banbara, K. Inoue, B. Kaufmann, T. Okimoto, T. Schaub, T. Soh, N. Tamura

and P. Wanko (2019). ‘teaspoon: solving the curriculum-based course timetabling

problems with answer set programming’. In: Annals of Operations Research 275,

pp. 3–37. doi: 10.1007/S10479-018-2757-7 (Cited on page 38).

M. Banbara, T. Soh, N. Tamura, K. Inoue and T. Schaub (2013). ‘Answer set pro-

gramming as a modeling language for course timetabling’. In: Theory and Practice

of Logic Programming 13.4-5, pp. 783–798. doi: 10.1017/S1471068413000495

(Cited on page 38).

A. Bashab, A. O. Ibrahim, E. E. AbedElgabar, M. A. Ismail, A. Elsafi, A. Ahmed

and A. Abraham (2020). ‘A systematic mapping study on solving university

226

https://doi.org/10.1162/EVCO_a_00009
https://doi.org/10.1201/9781003462422-1
https://doi.org/10.1007/S10479-018-2757-7
https://doi.org/10.1017/S1471068413000495

timetabling problems using meta-heuristic algorithms’. In: 32.23, pp. 17,397–

17,432. doi: 10.1007/s00521-020-05110-3 (Cited on pages 64, 65 and 66).

R. Bellio, S. Ceschia, L. di Gaspero, A. Schaerf and T. Urli (2016). ‘Feature-based

tuning of simulated annealing applied to the curriculum-based course timetabling

problem’. In: Computers and Operations Research 65, pp. 83–92. doi: 10.1016/

j.cor.2015.07.002 (Cited on page 44).

A. Bettinelli, V. Cacchiani, R. Roberti and P. Toth (2015). ‘An overview of curriculum-

based course timetabling’. In: TOP 23.2, pp. 313–349. doi: 10.1007/s11750-

015-0366-z (Cited on page 33).

L. Bianchi, M. Dorigo, L. M. Gambardella and W. J. Gutjahr (2009). ‘A survey on

metaheuristics for stochastic combinatorial optimization’. In: Natural Computing

8.2, pp. 239–287. doi: 10.1007/s11047-008-9098-4 (Cited on page 39).

C. Blum and A. Roli (2003). ‘Metaheuristics in Combinatorial Optimization : Over-

view and Conceptual Comparison’. In: ACM Computing Surveys 35, pp. 268–308

(Cited on page 77).

A. Bonutti, F. De Cesco, L. di Gaspero and A. Schaerf (2012). ‘Benchmarking

curriculum-based course timetabling: formulations, data formats, instances, val-

idation, visualization, and results’. In: Annals of Operations Research 194.1,

pp. 59–70. doi: 10.1007/s10479-010-0707-0 (Cited on pages 17 and 18).

L. Breiman, J. Friedman, R. Olshen and C. J. Stone (1983). Classification and

Regression Trees. Wadsworth International Group (Cited on pages 95 and 103).

D. Brélaz (1979). ‘New methods to color the vertices of a graph’. In: Communications

of the ACM 22.4, pp. 251–256. doi: 10.1145/359094.359101 (Cited on page 28).

J. A. Breslaw (1976). ‘A linear programming solution to the faculty assignment

problem’. In: 10.6, pp. 227–230. doi: 10.1016/0038-0121(76)90008-2 (Cited

on page 31).

V. E. Budi Darmawan, Y. W. Chen, A. Larasati, D. Prastyo and A. Dwiastuti (2019).

‘Multi-objective Modeling for a Course Timetabling Problem’. In: Proceedings of

the International Conference on Creative Economics, Tourism and Information

227

https://doi.org/10.1007/s00521-020-05110-3
https://doi.org/10.1016/j.cor.2015.07.002
https://doi.org/10.1016/j.cor.2015.07.002
https://doi.org/10.1007/s11750-015-0366-z
https://doi.org/10.1007/s11750-015-0366-z
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/s10479-010-0707-0
https://doi.org/10.1145/359094.359101
https://doi.org/10.1016/0038-0121(76)90008-2

Management (ICCETIM), pp. 10–14. doi: 10.5220/0009857300100014 (Cited

on page 118).

B. Bullnheimer, R. Hartl and C. Strauss (1999). ‘A New Rank Based Version of

the Ant System: A Computational Study.’ In: Central European Journal for

Operations Research and Economics 7.1, pp. 25–38 (Cited on page 76).

E. Burke, K. Jackson, J. Kingston and R. Weare (1997). ‘Automated University

Timetabling: The State of the Art’. In: The Computer Journal 40.9, 565––571.

doi: 10.1093/comjnl/40.9.565 (Cited on page 12).

E. K. Burke, J. Mareček, A. J. Parkes and H. Rudová (2010). ‘Decomposition,

Reformulation, and Diving in University Course Timetabling’. In: Computers &

Operations Research 37.3. doi: 10.1016/j.cor.2009.02.023 (Cited on pages 31

and 33).

E. K. Burke, J. Mareček, A. J. Parkes and H. Rudová (2012). ‘A branch-and-cut

procedure for the Udine Course Timetabling problem’. In: Annals of Operations

Research 194.1, pp. 71–87. doi: 10.1007/s10479- 010- 0828- 5 (Cited on

page 33).

E. K. Burke, B. Mccollum, A. Meisels, S. Petrovic and R. Qu (2007). ‘A Graph-Based

Hyper-Heuristic for Educational Timetabling Problems’. In: European Journal of

Operational Research 176, pp. 177–192 (Cited on page 76).

V. Cacchiani, A. Caprara, R. Roberti and P. Toth (2013). ‘A new lower bound

for curriculum-based course timetabling’. In: Computers & Operations Research

40.10, pp. 2,466–2,477. doi: 10.1016/j.cor.2013.02.010 (Cited on page 33).

C. D. Cantrell (2000). Modern mathematical methods for physicists and engineers.

Cambridge University Press (Cited on page 121).

M. W. Carter (1989). ‘A Lagrangian Relaxation Approach To The Classroom As-

signment Problem’. In: Information Systems and Operational Research (INFOR)

27.2, pp. 230–246. doi: 10.1080/03155986.1989.11732094 (Cited on page 31).

S. Ceschia, L. di Gaspero and A. Schaerf (2012). ‘Design, engineering, and experi-

mental analysis of a simulated annealing approach to the post-enrolment course

228

https://doi.org/10.5220/0009857300100014
https://doi.org/10.1093/comjnl/40.9.565
https://doi.org/10.1016/j.cor.2009.02.023
https://doi.org/10.1007/s10479-010-0828-5
https://doi.org/10.1016/j.cor.2013.02.010
https://doi.org/10.1080/03155986.1989.11732094

timetabling problem’. In: Computers & Operations Research 39.7, pp. 1,615–1,624.

doi: 10.1016/j.cor.2011.09.014 (Cited on page 44).

S. Ceschia, L. di Gaspero and A. Schaerf (2023). ‘Educational timetabling: Problems,

benchmarks, and state-of-the-art results’. In: European Journal of Operational

Research 308.1, pp. 1–18. doi: 10.1016/j.ejor.2022.07.011 (Cited on pages 11,

12, 26, 61, 62, 63 and 64).

N. Chahal and D. de Werra (1989). ‘An interactive system for constructing timetables

on a PC’. In: European Journal of Operational Research 40.1, pp. 32–37. doi:

10.1016/0377-2217(89)90269-5 (Cited on page 29).

A. Chaudhuri and K. De (2010). ‘Fuzzy genetic heuristic for university course

timetable problem’. In: International Journal of Advances in Soft Computing and

its Applications 2.1, pp. 100–123 (Cited on page 48).

C. Chen and J. Chou (2017). ‘Multiobjective Optimization of Airline Crew Roster

Recovery Problems Under Disruption Conditions’. In: IEEE Transactions on

Systems, Man, and Cybernetics: Systems 47.1, pp. 133–144. doi: 10.1109/TSMC.

2016.2560130 (Cited on page 159).

C. Chen, T. Liu and J. Chou (2013). ‘Integrated Short-Haul Airline Crew Scheduling

Using Multiobjective Optimization Genetic Algorithms’. In: IEEE Transactions

on Systems, Man, and Cybernetics: Systems 43, pp. 1,077–1,090. doi: 10.1109/

TSMC.2012.2234943 (Cited on page 159).

M. C. Chen, S. N. Sze, S. L. Goh, N. R. Sabar and G. Kendall (2021). ‘A Survey of

University Course Timetabling Problem: Perspectives, Trends and Opportunities’.

In: IEEE Access 9, pp. 106,515–106,529. doi: 10.1109/ACCESS.2021.3100613

(Cited on pages 26, 56 and 64).

R. M. Chen and H. F. Shih (2013). ‘Solving University Course Timetabling Prob-

lems Using Constriction Particle Swarm Optimization with Local Search’. In:

Algorithms 6.2, pp. 227–244. doi: 10.3390/a6020227 (Cited on page 55).

W. Chinnasri, S. Krootjohn and N. Sureerattanan (2012). ‘Performance Study of

Genetic Operators on University Course Timetabling Problem’. In: International

229

https://doi.org/10.1016/j.cor.2011.09.014
https://doi.org/10.1016/j.ejor.2022.07.011
https://doi.org/10.1016/0377-2217(89)90269-5
https://doi.org/10.1109/TSMC.2016.2560130
https://doi.org/10.1109/TSMC.2016.2560130
https://doi.org/10.1109/TSMC.2012.2234943
https://doi.org/10.1109/TSMC.2012.2234943
https://doi.org/10.1109/ACCESS.2021.3100613
https://doi.org/10.3390/a6020227

Journal of Advancements in Computing Technology 4.20, pp. 61–71. doi: 10.

4156/ijact.vol4.issue20.8 (Cited on pages 47 and 48).

N. Chmait and K. Challita (2013). ‘Using Simulated Annealing and Ant-Colony

Optimization Algorithms to Solve the Scheduling Problem’. In: Computer Science

and Information Technology 1.3, pp. 208–224. doi: 10.13189/csit.2013.010307

(Cited on page 78).

M. Clark, M. Henz and B. Love (2008). ‘QuikFix A Repair-based Timetable Solver’.

In: 7th International Conference on the Practice and Theory of Automated Time-

tabling (PATAT) (Cited on page 61).

A. Colorni, M. Dorigo and V. Maniezzo (1992). A genetic algorithm to solve the

timetable problem. Technical Report, Politecnico di Milano, Italy (Cited on

page 63).

T. B. Cooper and J. H. Kingston (1996). ‘The Complexity of Timetable Construction

Problems’. In: pp. 283–295 (Cited on page 2).

S. Daskalaki, T. Birbas and E. Housos (2004). ‘An integer programming formulation

for a case study in university timetabling’. In: European Journal of Operational

Research 153.1, pp. 117–135. doi: 10.1016/S0377-2217(03)00103-6 (Cited on

page 25).

D. Datta, K. Deb and C. M. Fonseca (2007). ‘Multi-Objective Evolutionary Algorithm

for University Class Timetabling Problem’. In: Evolutionary Scheduling, pp. 197–

236 (Cited on page 60).

D. de Werra (1985). ‘An introduction to timetabling’. In: 19, pp. 151–162 (Cited on

page 28).

K. Deb (2001). Multiobjective Optimization Using Evolutionary Algorithms. Wiley,

New York (Cited on pages 157 and 159).

K. Deb and H. Jain (2013). ‘An Evolutionary Many-Objective Optimization Al-

gorithm Using Reference-point Based Non-dominated Sorting Approach, Part I:

Solving Problems with Box Constraints’. In: IEEE Transactions on Evolutionary

Computation 18.4, pp. 577–601. doi: 10.1109/TEVC.2013.2281535 (Cited on

pages 118, 135, 159 and 163).

230

https://doi.org/10.4156/ijact.vol4.issue20.8
https://doi.org/10.4156/ijact.vol4.issue20.8
https://doi.org/10.13189/csit.2013.010307
https://doi.org/10.1016/S0377-2217(03)00103-6
https://doi.org/10.1109/TEVC.2013.2281535

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan (2002). ‘A fast and elitist mul-

tiobjective genetic algorithm: NSGA-II’. In: IEEE Transactions on Evolutionary

Computation 6.2, pp. 182–197. doi: 10.1109/4235.996017 (Cited on page 135).

K. Deb and S. Tiwari (2008). ‘Omni-optimizer: A generic evolutionary algorithm

for single and multi-objective optimization’. In: European Journal of Operational

Research 185.3, pp. 1,062–1,087. doi: https://doi.org/10.1016/j.ejor.2006.

06.042 (Cited on page 160).

S. Deris, S. Omatu and H. Ohta (2000). ‘Timetable planning using the constraint-

based reasoning’. In: Computers and Operations Research 27.9, pp. 819–840. doi:

10.1016/S0305-0548(99)00051-9 (Cited on page 35).

S. Deris, S. Omatu, H. Ohta and P. Saada (1999). ‘Incorporating constraint propaga-

tion in genetic algorithm for university timetable planning’. In: Engineering

Applications of Artificial Intelligence 12.3, pp. 241–253. doi: 10.1016/S0952-

1976(99)00007-X (Cited on page 34).

C. Desai and S. S. Williamson (2009). ‘Optimal design of a parallel Hybrid Electric

Vehicle using multi-objective genetic algorithms’. In: 2009 IEEE Vehicle Power

and Propulsion Conference, pp. 871–876. doi: 10.1109/VPPC.2009.5289754

(Cited on page 160).

L. di Gaspero and A. Schaerf (2003). ‘Multi-neighbourhood local search with applic-

ation to course timetabling’. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinform-

atics) 2740, pp. 262–275. doi: 10.1007/978-3-540-45157-0_17 (Cited on

page 41).

M. Dimopoulou and P. Miliotis (2004). ‘An automated university course timetabling

system developed in a distributed environment : A case study’. In: European

Journal of Operational Research 153.1, pp. 136–147. doi: 10.1016/S0377-

2217(03)00104-8 (Cited on page 25).

J. J. Dinkel, J. Mote and M. A. Venkataramanan (1989). ‘An efficient decision

support system for academic course scheduling.’ In: Operations Research 37.6,

pp. 853–864 (Cited on pages 29 and 30).

231

https://doi.org/10.1109/4235.996017
https://doi.org/https://doi.org/10.1016/j.ejor.2006.06.042
https://doi.org/https://doi.org/10.1016/j.ejor.2006.06.042
https://doi.org/10.1016/S0305-0548(99)00051-9
https://doi.org/10.1016/S0952-1976(99)00007-X
https://doi.org/10.1016/S0952-1976(99)00007-X
https://doi.org/10.1109/VPPC.2009.5289754
https://doi.org/10.1007/978-3-540-45157-0_17
https://doi.org/10.1016/S0377-2217(03)00104-8
https://doi.org/10.1016/S0377-2217(03)00104-8

D. Djamarus and K. R. Ku-Mahamud (2009). ‘Heuristic Factors in Ant System

Algorithm for Course Timetabling Problem’. In: Ninth International Conference

on Intelligent Systems Design and Applications, 232––236. doi: 10.1109/ISDA.

2009.62 (Cited on page 78).

M. Dorigo (1992). Optimization, Learning and Natural Algorithms. PhD thesis,

Politecnico di Milano, Italy (Cited on page 54).

G. Dueck (1993). ‘The Great Deluge Algorithm and the Record-to-Record Travel’.

In: Journal of Computational Physics 104.1, pp. 86–92 (Cited on page 56).

G. Dueck and T. Scheuer (1990). ‘Threshold accepting: A general purpose op-

timization algorithm appearing superior to simulated annealing’. In: Journal of

Computational Physics 90.1, pp. 161–175. doi: 10.1016/0021-9991(90)90201-B

(Cited on page 44).

J. S. Dyer and J. M. Mulvey (1976). ‘The implementation of an integrated optimiza-

tion/information system for academic departmental planning.’ In: Management

Science 22, pp. 1332–1341 (Cited on page 29).

H. A. Eiselt and G. Laporte (1987). ‘Combinatorial Optimization Problems with

Soft and Hard Requirements’. In: Journal of the Operational Research Society

38.9, pp. 785–795 (Cited on page 26).

J. A. Ferland and S. Roy (1985). ‘Timetabling problem for university as assignment of

activity to resources’. In: Computers and Operational Research 12.2, pp. 207–218

(Cited on page 31).

T. Feutrier, N. Veerapen and M. E. Kessaci (2023). ‘When Simpler is Better: Auto-

mated Configuration of a University Timetabling Solver’. In: IEEE Congress

on Evolutionary Computation (CEC). doi: 10.1109/CEC53210.2023.10253986

(Cited on page 59).

J. E. Fieldsend (2020). ‘Data structures for non-dominated sets: Implementations

and empirical assessment of two decades of advances’. In: Proceedings of the 2020

Genetic and Evolutionary Computation Conference, pp. 489–497. doi: 10.1145/

3377930.3390150 (Cited on page 144).

232

https://doi.org/10.1109/ISDA.2009.62
https://doi.org/10.1109/ISDA.2009.62
https://doi.org/10.1016/0021-9991(90)90201-B
https://doi.org/10.1109/CEC53210.2023.10253986
https://doi.org/10.1145/3377930.3390150
https://doi.org/10.1145/3377930.3390150

L. R. Ford and D. R. Fulkerson (1962). Flows in Networks. Princeton University

Press (Cited on page 30).

J. Frausto-Solis, F. Alonso-Pecina, M. Larre, C. M. Gonzalez-Segura and J. L. Gomez-

Ramos (2006). ‘Three heuristics to solve Timetabling’. In: Proceedings of the 10th

WSEAS International Conference on Communications, pp. 564–570 (Cited on

page 1).

M. F‌o‌t‌o‌v‌v‌a‌t ‌i and S. M ‌i ‌r‌g‌h‌a‌d‌e‌r‌i (2023). ‘Automated University Course Timetabling

U ‌sing H ‌yper-heuristic Approach’. In: Sharif Journal of Industrial Engineering

amp; Management 39.1, pp. 155–167. doi: 10.24200/j65.2022.57866.2212

(Cited on page 76).

P. Garg (2009). ‘A Comparison between Memetic algorithm and Genetic algorithm

for the cryptanalysis of Simplified Data Encryption Standard algorithm’. In:

International Journal of Network Security and Its Applications (IJNSA) 1.1,

pp. 34–42 (Cited on page 26).

L. di Gaspero, A. Schaerf and B. McCollum (2007). ‘The Second International

Timetabling Competition: Curriculum-based Course Timetabling (Track 3)’.

In: Proceedings of the 1st International Workshop on Scheduling a Scheduling

Competition, pp. 1–21 (Cited on page 14).

M. J. Geiger (2008). ‘An application of the Threshold Accepting metaheuristic for

curriculum based course timetabling’. In: Proceedings of the 7th International

Conference on the Practice and Theory of Automated Timetabling (PATAT). doi:

10.48550/arXiv.0809.0757 (Cited on page 61).

M. J. Geiger (2009). ‘Multi-criteria Curriculum-Based Course Timetabling — A

Comparison of a Weighted Sum and a Reference Point Based Approach’. In:

Proceedings of Evolutionary Multi-Criterion Optimization, 5th International Con-

ference (EMO), pp. 290–304 (Cited on pages 120, 148, 149 and 152).

M. J. Geiger (2012). ‘Applying the threshold accepting metaheuristic to curriculum

based course timetabling’. In: Annals of Operations Research 194.1, pp. 189–202.

doi: 10.1007/s10479-010-0703-4 (Cited on pages 44, 120, 142 and 152).

233

https://doi.org/10.24200/j65.2022.57866.2212
https://doi.org/10.48550/arXiv.0809.0757
https://doi.org/10.1007/s10479-010-0703-4

S. L. Goh, G. Kendall and N. R. Sabar (2019). ‘Simulated annealing with improved

reheating and learning for the post enrolment course timetabling problem’. In:

Journal of the Operational Research Society 70.6, pp. 873–888. doi: 10.1080/

01605682.2018.1468862 (Cited on page 44).

S. L. Goh, G. Kendall, N. R. Sabar and S. Abdullah (2020). ‘An effective hybrid

local search approach for the post enrolment course timetabling problem’. In:

Opsearch 57.4, pp. 1,131–1,163. doi: 10.1007/s12597-020-00444-x (Cited on

pages 44 and 45).

P. Golding, S. Kapadia, S. Naylor, J. Schulz, H. R. Maier, U. Lall and M. van der

Velde (2017). ‘Framework for minimising the impact of regional shocks on global

food security using multi-objective ant colony optimisation’. In: Environmental

Modelling and Software 95, pp. 303–319. doi: 10.1016/j.envsoft.2017.06.004

(Cited on page 77).

C. C. L. B. G. Gotlib (1963). ‘The construction of class-teacher timetables’. In:

Proceedings of IFIP Congrass 62, pp. 73–77 (Cited on page 2).

A. A. Gozali and S. Fujimura (2020). ‘Solving University Course Timetabling Problem

Using Multi-Depth Genetic Algorithm’. In: SHS Web of Conferences 77.9. doi:

10.1051/shsconf/20207701001 (Cited on page 61).

A. Grech and J. Main (2005). ‘A case-based reasoning approach to formulating univer-

sity timetables using genetic algorithms’. In: Lecture Notes in Computer Science:

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 3681,

pp. 76–83. doi: 10.1007/11552413_12 (Cited on page 58).

G. R. Greenfield (2003). ‘Evolving aesthetic images using multiobjective optimization’.

In: Proceedings of the IEEE Congress on Evolutionary Computation 3, pp. 1,903–

1,909. doi: 10.1109/CEC.2003.1299906 (Cited on page 159).

S. S. Habashi and A. H. Yousef (2018). ‘Approach for Timetabling Problems’. In:

Proceedings of IEEE 9th Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), pp. 259–266 (Cited on page 60).

M. Hafsa, P. Wattebled, J. Jacques and L. Jourdan (2021). ‘A Multi-Objective

Evolutionary Approach to Professional Course Timetabling: A Real-World Case

234

https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1007/s12597-020-00444-x
https://doi.org/10.1016/j.envsoft.2017.06.004
https://doi.org/10.1051/shsconf/20207701001
https://doi.org/10.1007/11552413_12
https://doi.org/10.1109/CEC.2003.1299906

Study’. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 997–

1004 (Cited on page 120).

J. K. Hao and U. Benlic (2011). ‘Lower Bounds for the ITC-2007 Curriculum-Based

Course Timetabling Problem’. In: European Journal of Operational Research

212.3, pp. 464–472. doi: 10.1016/j.ejor.2011.02.019 (Cited on pages 34 and

162).

A. Hertz (1991). ‘Tabu search for large scale timetabling problems’. In: European

Journal of Operational Research 54.1, pp. 39–47 (Cited on page 26).

A. Hertz (1992). ‘Finding a feasible course schedule using tabu search’. In: Discrete

Applied Mathematics 35.3, pp. 255–270 (Cited on page 40).

Z. Houhamdi, B. Athamena, R. Abuzaineddin and M. Muhairat (2019). ‘A multi-

agent system for course timetable generation’. In: TEM 8.1, pp. 211–221. doi:

10.18421/TEM81-30 (Cited on page 58).

R. Ilyas and Z. Iqbal (2015). ‘Study of hybrid approaches used for university course

timetable problem (UCTP)’. In: Proceedings of the 10th IEEE Conference on

Industrial Electronics and Applications, (ICIEA), pp. 696–701. doi: 10.1109/

ICIEA.2015.7334198 (Cited on pages 26, 53 and 58).

S. Imran Hossain, M. A. Akhand, M. I. Shuvo, N. Siddique and H. Adeli (2019).

‘Optimization of University Course Scheduling Problem using Particle Swarm

Optimization with Selective Search’. In: Expert Systems with Applications 127,

pp. 9–24. doi: 10.1016/j.eswa.2019.02.026 (Cited on page 55).

A. Jaszkiewicz and T. Lust (2018). ‘ND-Tree-Based Update : A Fast Algorithm for

the Dynamic Nondominance Problem’. In: IEEE Transactions on Evolutionary

Computation 22.5, pp. 778–791 (Cited on page 144).

N. S. Jat and Y. Shengxiang (2008). ‘A memetic algorithm for the university course

timetabling problem’. In: Proceedings of 20th IEEE international conference on

tools with artificial intelligence, pp. 427–433. doi: 10.1109/ICTAI.2008.126

(Cited on pages 53 and 54).

M. Joudaki, M. Imani and N. Mazhari (2011). ‘Using improved Memetic Algorithm

and local search to solve University Course Timetabling Problem (UCTTP)’. In:

235

https://doi.org/10.1016/j.ejor.2011.02.019
https://doi.org/10.18421/TEM81-30
https://doi.org/10.1109/ICIEA.2015.7334198
https://doi.org/10.1109/ICIEA.2015.7334198
https://doi.org/10.1016/j.eswa.2019.02.026
https://doi.org/10.1109/ICTAI.2008.126

Procedings of the International Conference on Artificial Intelligence (ICAI) 2

(Cited on pages 39 and 54).

W. Junginger (1986). ‘Timetabling in Germany - a survey’. In: Interfaces 16, pp. 66–

74 (Cited on page 29).

E. H. Kampke, W. D. S. Rocha, M. C. S. Boeres and M. C. Rangel (2015). ‘A GRASP

algorithm with Path Relinking for the University Courses Timetabling Problem’.

In: Proceeding Series of the Brazilian Society for Computational and Applied

Mathematics 3.2. doi: 10.5540/03.2015.003.02.0108 (Cited on page 31).

E. H. Kampke, L. M. Scheideger, G. R. Mauri and M. C. S. Boeres (2019). ‘A

Network Flow Based Construction for a GRASP+SA Algorithm to Solve the

University Timetabling Problem’. In: Lecture Notes in Computer Science 11621,

pp. 215–231. doi: 10.1007/978-3-030-24302-9_16 (Cited on pages 30 and 35).

F. Karami and A. Dariane (2022). ‘A review and evaluation of multi and many-

objective optimization: Methods and algorithms’. In: Global Journal of Ecology

7.2, pp. 104–119. doi: 10.17352/gje.000070 (Cited on page 118).

A. Kiefer, R. F. Hartl and A. Schnell (2017). ‘Adaptive large neighborhood search

for the curriculum-based course timetabling problem’. In: Annals of Operations

Research 252.2, pp. 255–282. doi: 10.1007/s10479-016-2151-2 (Cited on

pages 59, 61 and 62).

S. Kirkpatrick, C. D. Gellat and M. P Vecchi (1983). ‘Optimization by simulated

annealing’. In: Science 4598.220, pp. 671–680 (Cited on page 44).

M. S. Kohshori, D. Zeynolabedini, M. S. Liri and L. Jadidi (2012). ‘Multi Population

Hybrid Genetic Algorithms for University Course Timetabling Problem’. In:

International Journal of Information Technology and Computer Science 4.6,

pp. 1–11. doi: 10.5815/ijitcs.2012.06.01 (Cited on pages 50 and 53).

P. Kostuch (2005). ‘The university course timetabling problem with a three-phase

approach’. In: Proceedings of the 5th International Conference on the Practise

and Theory of Automated Timetabling (PATAT), pp. 109–125 (Cited on page 58).

236

https://doi.org/10.5540/03.2015.003.02.0108
https://doi.org/10.1007/978-3-030-24302-9_16
https://doi.org/10.17352/gje.000070
https://doi.org/10.1007/s10479-016-2151-2
https://doi.org/10.5815/ijitcs.2012.06.01

G. Lach and M. E. Lübbecke (2012). ‘Curriculum based course timetabling: New

solutions to Udine benchmark instances’. In: Annals of Operations Research 194.1,

pp. 255–272. doi: 10.1007/s10479-010-0700-7 (Cited on page 34).

M. Laszczyk and P. B. Myszkowski (2019). ‘Improved selection in evolutionary

multi–objective optimization of multi–skill resource–constrained project schedul-

ing problem’. In: Information Sciences 481, pp. 412–431. doi: https://doi.org/

10.1016/j.ins.2019.01.002 (Cited on page 158).

N. L. Lawrie (1969). ‘An integer linear programming model of a school timetabling

problem’. In: The Computer Journal 12.4, pp. 307–316. doi: 10.1093/comjnl/

12.4.307 (Cited on page 31).

R. Lewis (2008a). ‘A time-dependent metaheuristic algorithm for post enrolment-

based course timetabling’. In: Proceedings of the 7th International Conference on

the Practice and Theory of Automated Timetabling, (PATAT), pp. 1–15 (Cited

on page 43).

R. Lewis (2006). Metaheuristics for University Course Timetabling. PhD thesis,

Napier University (Cited on page 14).

R. Lewis (2008b). ‘A survey of metaheuristic-based techniques for University Time-

tabling problems’. In: OR Spectrum 30.1, pp. 167–190. doi: 10.1007/s00291-

007-0097-0 (Cited on page 26).

R. Lewis and B. Paechter (2002). ‘New Crossover Operators for Timetabling with

Evolutionary Algorithms’. In: Practice 44, pp. 1–6 (Cited on page 51).

R. Lewis and B. Paechter (2005). ‘Application of the grouping genetic algorithm to

University Course Timetabling’. In: Lecture Notes in Computer Science 3448,

pp. 144–153. doi: 10.1007/978-3-540-31996-2_14 (Cited on pages 13, 26 and

74).

R. Lewis and B. Paechter (2006). ‘Finding Feasible Timetables Using Group-Based

Operators’. In: IEEE Transactions on Evolutionary Computation 11.3, pp. 397–

413. doi: 10.1109/tevc.2006.885162 (Cited on page 44).

237

https://doi.org/10.1007/s10479-010-0700-7
https://doi.org/https://doi.org/10.1016/j.ins.2019.01.002
https://doi.org/https://doi.org/10.1016/j.ins.2019.01.002
https://doi.org/10.1093/comjnl/12.4.307
https://doi.org/10.1093/comjnl/12.4.307
https://doi.org/10.1007/s00291-007-0097-0
https://doi.org/10.1007/s00291-007-0097-0
https://doi.org/10.1007/978-3-540-31996-2_14
https://doi.org/10.1109/tevc.2006.885162

M. Lindahl, M. Sørensen and T. R. Stidsen (2018). ‘A fix-and-optimize matheuristic

for university timetabling’. In: Journal of Heuristics 24.4, pp. 645–665. doi:

10.1007/s10732-018-9371-3 (Cited on pages 34, 61 and 62).

L. Lopes and K. Smith-Miles (2010). ‘Pitfalls in Instance Generation for Udine

Timetabling’. In: Lecture Notes in Computer Science: Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics 6073, pp. 299–302. doi: 10.

1007/978-3-642-13800-3_31 (Cited on page 44).

H. R. Lourenço, O. C. Martin and T. Stützle (2010). ‘Iterated Local Search: Frame-

work and Applications’. In: Handbook of Metaheuristics. Springer US, pp. 363–397.

doi: 10.1007/978-1-4419-1665-5_12 (Cited on page 197).

Z. Lü and J. K. Hao (2010). ‘Adaptive Tabu Search for course timetabling’. In:

European Journal of Operational Research 200.1, pp. 235–244. doi: 10.1016/j.

ejor.2008.12.007 (Cited on pages 41, 42 and 44).

Z. Lü, J. K. Hao and F. Glover (2011). ‘Neighborhood analysis: A case study on

curriculum-based course timetabling’. In: Journal of Heuristics 17.2, pp. 97–118.

doi: 10.1007/s10732-010-9128-0 (Cited on page 41).

T. Lutuksin, A. Chainual and P. Pongcharoen (2009). ‘Experimental Design and

Analysis on Parameter Investigation and Performance Comparison of Ant Al-

gorithms for Course Timetabling Problem’. In: Naresuan University Engineering

Journal 4.1, pp. 31–38 (Cited on page 76).

V. W. Marek and M. Truszczynski (1999). ‘Stable models and an alternative logic

programming paradigm’. In: The Logic Programming Paradigm, pp. 375–398. doi:

10.48550/arXiv.cs/9809032 (Cited on page 36).

V. D. Matijas, G. Molnar, M. Cupic, D. Jakobovic and B. Dalbelo Basic (2009). ‘Uni-

versity Course Timetabling Using ACO: A Case Study on Laboratory Exercises’.

In: Proceedings of the 14th international conference on Knowledge-based and

intelligent information and engineering systems, pp. 100–110. doi: 10.1007/978-

3-642-15387-7_14 (Cited on pages 73, 74 and 75).

N. R. Maya, J. J. Flores and H. R. Rangel (2016). ‘Performance Comparison of

Evolutionary Algorithms for University Course Timetabling Problem’. In: Com-

238

https://doi.org/10.1007/s10732-018-9371-3
https://doi.org/10.1007/978-3-642-13800-3_31
https://doi.org/10.1007/978-3-642-13800-3_31
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1016/j.ejor.2008.12.007
https://doi.org/10.1016/j.ejor.2008.12.007
https://doi.org/10.1007/s10732-010-9128-0
https://doi.org/10.48550/arXiv.cs/9809032
https://doi.org/10.1007/978-3-642-15387-7_14
https://doi.org/10.1007/978-3-642-15387-7_14

putacion y Sistemas 20.4, pp. 623–634. doi: 10.13053/CyS-20-4-2504 (Cited

on page 25).

A. Mayer, C. Nothegger, A. Chwatal and G. Raidl (2012). ‘Solving the post enrolment

course timetabling problem by ant colony optimization’. In: Annals of Operations

Research 194.1, pp. 325–339. doi: 10.1007/s10479-012-1078-5 (Cited on

pages 17, 75, 80 and 81).

R. H. McClure and C. E. Wells (1984). ‘A mathematical programming model for

faculty course assignment’. In: Decision Science 15, pp. 409–420 (Cited on

page 31).

N. Mladenović and P. Hansen (1997). ‘Variable neighborhood search’. In: Computers

Operations Research 24.11, pp. 1,097–1,100. doi: https://doi.org/10.1016/

S0305-0548(97)00031-2 (Cited on page 45).

M. Mühlenthaler and R. Wanka (2016). ‘Fairness in academic course timetabling’.

In: Annals of Operations Research 239.1, pp. 171–188. doi: 10.1007/s10479-

014-1553-2 (Cited on page 64).

T. Müller (2009). ‘ITC2007 solver description: A hybrid approach’. In: Annals of

Operations Research 172.1, pp. 429–446. doi: 10.1007/s10479-009-0644-y

(Cited on pages 61 and 88).

T. Müller, R. Bartak and H. Rudová (2004). ‘Conflict-based statistics’. In: Proceed-

ings of the EU/ME Workshop on Design and Evaluation of Advanced Hybrid

Metaheuristics 201 (Cited on page 35).

T. Müller, H. Rudová and Z. Müllerová (2018). ‘University course timetabling

and International Timetabling Competition 2019’. In: Proceedings of the 12th

International Conference on the Practice and Theory of Automated Timetabling

(PATAT), pp. 5–31 (Cited on pages 11 and 19).

J. M. Mulvey (1982). ‘A Classrooms/Time Assignment Model’. In: European Journal

of Operational Research 9, pp. 64–70 (Cited on page 29).

M. Munirah, M. Mokhairi, F. K. Ahmad, K. Ahmad and M. A. Mohamed (2019).

‘University course timetabling model using ant colony optimization algorithm

239

https://doi.org/10.13053/CyS-20-4-2504
https://doi.org/10.1007/s10479-012-1078-5
https://doi.org/https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1007/s10479-014-1553-2
https://doi.org/10.1007/s10479-014-1553-2
https://doi.org/10.1007/s10479-009-0644-y

approach’. In: Indonesian Journal of Electrical Engineering and Computer Science

13.1, pp. 72–76 (Cited on page 76).

P. B. Myszkowski and M. Laszczyk (2021). ‘Diversity based selection for many-

objective evolutionary optimisation problems with constraints’. In: Information

Sciences 546, pp. 665–700. doi: 10.1016/j.ins.2020.08.118 (Cited on

page 158).

J. A. Nelder and R. Mead (1965). ‘A Simplex Method for Function Minimization’. In:

The Computer Journal 7.4, pp. 308–313. doi: 10.1093/comjnl/7.4.308 (Cited

on page 56).

G. A. Neufeld and J. Tartar (1974). ‘Graph coloring conditions for the existence

of solutions to the timetable problem’. In: Communications of the ACM 17.8,

pp. 450–453 (Cited on page 27).

D. C. H. Nguyen, H. R. Maier, G. C. Dandy and J. C. Ascough (2016). ‘Framework

for computationally efficient optimal crop and water allocation using ant colony

optimization’. In: Environmental Modelling and Software 76, pp. 37–53. doi:

10.1016/j.envsoft.2015.11.003 (Cited on page 77).

I. Niemelä (1999). ‘Logic programs with stable model semantics as a constraint

programming paradigm’. In: Annals of Mathematics and Artificial Intelligence

25.3/4, pp. 241–273 (Cited on page 36).

H. E. Nouri and O. B. Driss (2016). ‘MATP: A multi-agent model for the university

timetabling problem’. In: Advances in Intelligent Systems and Computing 465,

pp. 11–22. doi: 10.1007/978-3-319-33622-0_2 (Cited on page 58).

J. H. Obit (2010). Developing novel meta-heuristic, hyper-heuristic and cooperative

search for course timetabling problems. PhD Thesis, Universiti Malaysia Sabah

(Cited on page 60).

R. A. Oude Vrielink, E. A. Jansen, E. W. Hans and J. van Hillegersberg (2019).

‘Practices in timetabling in higher education institutions: a systematic review’.

In: Annals of Operations Research 275.1, pp. 145–160. doi: 10.1007/s10479-

017-2688-8 (Cited on pages 2 and 158).

240

https://doi.org/10.1016/j.ins.2020.08.118
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1016/j.envsoft.2015.11.003
https://doi.org/10.1007/978-3-319-33622-0_2
https://doi.org/10.1007/s10479-017-2688-8
https://doi.org/10.1007/s10479-017-2688-8

B. Paechter, R. C. Rankin, A. Cumming and T. C. Fogarty (1998). ‘Timetabling

the classes of an entire university with an evolutionary algorithm’. In: Lecture

Notes in Computer Science: Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics 1498, pp. 865–874. doi: 10.1007/bfb0056928 (Cited

on page 48).

J. Pandey and A. K. Sharma (2016). ‘Survey on University timetabling problem’. In:

Proceedings of the 3rd International Conference on Computing for Sustainable

Global Development, pp. 160–164 (Cited on page 26).

K. Patrick and Z. Godswill (2016). ‘Greedy Ants Colony Optimization Strategy

for Solving the Curriculum Based University Course Timetabling Problem’.

In: British Journal of Mathematics & Computer Science 14.2, pp. 1–10. doi:

10.9734/bjmcs/2016/23143 (Cited on pages 75 and 77).

S. Petrovic and E. Burke (2004). ‘University timetabling’. In: Handbook of Scheduling:

Algorithms, Models, and Performance Analysis, pp. 1–24 (Cited on page 29).

N. Pillay (2012). ‘Hyper-heuristics for Educational Timetabling’. In: pp. 316–340

(Cited on page 1).

N. Pillay (2016). A review of hyper-heuristics for educational timetabling. Vol. 239,

pp. 3–38. doi: 10.1007/s10479-014-1688-1 (Cited on pages 26, 59 and 60).

N. Pillay and E. Özcan (2019). ‘Automated generation of constructive ordering

heuristics for educational timetabling’. In: Annals of Operations Research 275.1,

pp. 181–208. doi: 10.1007/s10479-017-2625-x (Cited on pages 124 and 125).

M. Preuss, C. Kausch, C. Bouvy and F. Henrich (2010). ‘Decision Space Diversity Can

Be Essential for Solving Multiobjective Real-World Problems’. In: Lecture Notes

in Economics and Mathematical Systems 634, pp. 367–377. doi: 10.1007/978-

3-642-04045-0_31 (Cited on page 156).

E. Psarra and D. Apostolou (2023). ‘A Combination of Genetic Algorithms and Local

Search to Solve a Real Data University Timetable Scheduling Problem’. In: 14th

International Conference on Information, Intelligence, Systems and Applications

(IISA), pp. 1–8. doi: 10.1109/IISA59645.2023.10345845 (Cited on page 46).

241

https://doi.org/10.1007/bfb0056928
https://doi.org/10.9734/bjmcs/2016/23143
https://doi.org/10.1007/s10479-014-1688-1
https://doi.org/10.1007/s10479-017-2625-x
https://doi.org/10.1007/978-3-642-04045-0_31
https://doi.org/10.1007/978-3-642-04045-0_31
https://doi.org/10.1109/IISA59645.2023.10345845

D. M. Pérez, E. A. Portilla-Flores, E. Vega-Alvarado, M. B. Calva-Yañez and

G. S. Cervantes (2021). ‘A Novel Multi-Objective Harmony Search Algorithm

with Pitch Adjustment by Genotype’. In: Applied Sciences 11.19, p. 8931. doi:

10.3390/app11198931 (Cited on page 159).

P. Rakshit, A. Konar and S. Das (2017). ‘Noisy evolutionary optimization algorithms

– A comprehensive survey’. In: Swarm and Evolutionary Computation 33, pp. 18–

45. doi: 10.1016/j.swevo.2016.09.002 (Cited on page 221).

F. de la Rosa-Rivera, J. I. Nunez-Varela, C. A. Puente-Montejano and S. E. Nava-

Muñoz (2021). ‘Measuring the complexity of university timetabling instances’. In:

Journal of Scheduling 24.1, pp. 103–121. doi: 10.1007/s10951-020-00641-y

(Cited on pages 105 and 182).

P. Ross, D. Corne and H. L. Fang (1994). ‘Improving evolutionary timetabling with

delta evaluation and directed mutation’. In: Lecture Notes in Computer Science:

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 866,

pp. 556–565. doi: 10.1007/3-540-58484-6_298 (Cited on page 142).

O. Rossi-Doria, C. Blum, J. Knowles, M. Sampels, K. Socha and B. Paechter

(2006). ‘A local search for the timetabling problem’. In: Proceedings of the 4th

International Conference on the Practice and Theory of Automated Timetabling

(PATAT), pp. 124–127 (Cited on page 12).

O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. M. Gam-

bardella, J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter et al. (2003). ‘A

comparison of the performance of different metaheuristics on the timetabling

problem’. In: Lecture Notes in Computer Science: Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics 2740, pp. 329–351. doi: 10.1007/978-

3-540-45157-0_22 (Cited on pages 10, 13, 26 and 55).

N. R. Sabar, M. Ayob, G. Kendall and R. Qu (2012). ‘A honey-bee mating optimiza-

tion algorithm for educational timetabling problems’. In: European Journal of

Operational Research 216.3, pp. 533–543. doi: 10.1016/j.ejor.2011.08.006

(Cited on page 56).

242

https://doi.org/10.3390/app11198931
https://doi.org/10.1016/j.swevo.2016.09.002
https://doi.org/10.1007/s10951-020-00641-y
https://doi.org/10.1007/3-540-58484-6_298
https://doi.org/10.1007/978-3-540-45157-0_22
https://doi.org/10.1007/978-3-540-45157-0_22
https://doi.org/10.1016/j.ejor.2011.08.006

A. Salehi and S. Doncieux (2022). ‘Towards QD-suite: developing a set of benchmarks

for Quality-Diversity algorithms’. In: Proceedings of the Genetic and Evolutionary

Computation Conference Companion. doi: 10.1145/3520304.3533994 (Cited on

page 159).

R. Santiago-Mozos, S. Salcedo-Sanz, M. Deprado-Cumplido and C. Bousoño-Calzón

(2005). ‘A two-phase heuristic evolutionary algorithm for personalizing course

timetables: A case study in a Spanish university’. In: Computers and Operations

Research 32.7, pp. 1761–1776. doi: 10.1016/j.cor.2003.11.030 (Cited on

page 25).

A. Schaerf (1999). ‘Survey of automated timetabling’. In: Artificial Intelligence

Review. Vol. 13. 2. Artificial Intelligence Review, pp. 87–127. doi: 10.1023/A:

1006576209967 (Cited on pages 17 and 26).

M. D. Schmidt and H. Lipson (2010). ‘Age-Fitness Pareto optimization’. In: Proceed-

ings of the 12th Genetic and Evolutionary Computation Conference, pp. 543–544.

doi: 10.1145/1830483.1830584 (Cited on page 192).

P. H. Schoute (1911). Analytic treatment of the polytopes regularly derived from the

regular polytopes. J. Muller in Amsterdam (Cited on page 93).

M. K. Shahvali, M. S. Abadah and H. Sajedi (2011). ‘A fuzzy genetic algorithm

with local search for university course timetabling’. In: Proceedings of the Third

International Conference on Data Mining and Intelligent Information Technology

Applications (ICMiA), pp. 250–254 (Cited on page 39).

D. F. Shiau (2011). ‘A hybrid particle swarm optimization for a university course

scheduling problem with flexible preferences’. In: Expert Systems with Applications

38.1, pp. 235–248. doi: 10.1016/j.eswa.2010.06.051 (Cited on page 55).

W. Shin and J. A. Sullivan (1977). ‘Dynamic course scheduling for college faculty via

zero-one programming’. In: Decision Science 8, pp. 711–721 (Cited on page 31).

B. Sigl, M. Golub and V. Mornarh (2012). ‘Solving timetable scheduling problem

using genetic algorithms’. In: Proceedings of the 25th International Conference

on Information Technology Interfaces (ITI), pp. 519–524 (Cited on page 48).

243

https://doi.org/10.1145/3520304.3533994
https://doi.org/10.1016/j.cor.2003.11.030
https://doi.org/10.1023/A:1006576209967
https://doi.org/10.1023/A:1006576209967
https://doi.org/10.1145/1830483.1830584
https://doi.org/10.1016/j.eswa.2010.06.051

M. Sniedovich and S. Voß (2006). ‘The corridor method: A dynamic programming

inspired metaheuristic’. In: Control and Cybernetics 35.3, pp. 551–578. issn:

03248569 (Cited on page 34).

K. J. S. M. Socha K. (2002). ‘A MAX-MIN ant system for the university course

timetabling problem’. In: Lecturer notes in computer science 2463, pp. 1–13

(Cited on pages 55, 71 and 79).

K. Socha, M. Sampels and M. Manfrin (2003). ‘Ant Algorithms for the University

Course Timetabling Problem with Regard to the State-of-the-Art’. In: Lecture

Notes in Computer Science: Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics 2611, pp. 334–345. doi: 10.1007/3-540-36605-9_31

(Cited on pages 73 and 74).

T. Song, S. Liu, X. Tang, X. Peng and M. Chen (2018). ‘An iterated local search

algorithm for the University Course Timetabling Problem’. In: Applied Soft

Computing Journal 68, pp. 597–608. doi: 10.1016/j.asoc.2018.04.034 (Cited

on pages 13 and 44).

K. Sörensen (2015). ‘Metaheuristics-the metaphor exposed’. In: International Trans-

actions in Operational Research 22.1, pp. 3–18. doi: 10.1111/itor.12001 (Cited

on page 56).

S Srinivasan, J. Singh and V. Kumar (2011). ‘Multi-agent based decision Support

System using Data Mining and Case Based Reasoning’. In: International Journal

of Computer Science Issues 8.4, pp. 340–349 (Cited on page 57).

D. Strnad and N. Guid (2007). ‘A multi-agent system for university course time-

tabling’. In: Applied Artificial Intelligence 21.2, pp. 137–153. doi: 10.1080/

08839510601147554 (Cited on page 57).

T. Stutzle and H. H. Hoos (1999). ‘MAX-MIN Ant System’. In: Future Generation

Computer Systems 16 (8), pp. 889–914. doi: 10.1016/S0167-739X(00)00043-1

(Cited on page 55).

S. R. Sutar and R. S. Bichkar (2016). ‘Genetic Algorithms based Timetabling using

Knowledge Augmented Operators’. In: International Journal of Computer Science

and Information Security 14.11, pp. 570–579 (Cited on pages 47, 50, 51 and 52).

244

https://doi.org/10.1007/3-540-36605-9_31
https://doi.org/10.1016/j.asoc.2018.04.034
https://doi.org/10.1111/itor.12001
https://doi.org/10.1080/08839510601147554
https://doi.org/10.1080/08839510601147554
https://doi.org/10.1016/S0167-739X(00)00043-1

Suyanto (2010). ‘An Informed Genetic Algorithm for University Course and Student

Timetabling Problems’. In: Lecture Notes in Computer Science 6114, pp. 229–236

(Cited on page 52).

H. Y. Tarawneh, M. Ayob and Z. Ahmad (2013). ‘A hybrid simulated annealing with

solutions memory for curriculum-based course timetabling problem’. In: Journal

of Applied Science 13.2, pp. 262–269. doi: 10.3923/jas.2013.262.269 (Cited

on page 44).

T. Thepphakorn and P. Pongcharoen (2012). ‘Heuristic ordering for ant colony

based timetabling tool’. In: International Journal of Production Economics 149,

pp. 131–144. doi: 10.1016/j.ijpe.2013.04.026 (Cited on page 76).

Y. Tian, R. Cheng, X. Zhang and Y. Jin (2017). ‘PlatEMO: A MATLAB Platform

for Evolutionary Multi-Objective Optimization’. In: Computational Intelligence

Magazine 12.4, pp. 73–87. doi: 10.1109/MCI.2017.2742868 (Cited on page 121).

A. Tripathy (1984). ‘A case in large binary integer linear programming’. In: Manage-

ment Science 30.12, pp. 1473–1489 (Cited on page 31).

A. Tripathy (1992). ‘Computerised decision aid for timetabling - A case analysis’. In:

Discrete Applied Mathematics 35.3, pp. 313–323 (Cited on page 31).

H. Turabieh, S. Abdullah, B. McCollum and P. McMullan (2010). ‘Fish swarm

intelligent algorithm for the course timetabling problem’. In: Lecture Notes in

Computer Science: Lecture Notes in Bioinformatics 6401, pp. 588–595. doi:

10.1007/978-3-642-16248-0_80 (Cited on page 56).

UniTime (2023). UniTime: University timetabling – Comprehensive academic schedul-

ing solutions. https://www.unitime.org/. [Accessed August 2, 2023] (Cited on

page 25).

K. Vermirovsky (2003). Algorithms for Constraint Satisfaction Problems. Master

Thesis, Facultas Artis Informaticae, Universitas Masarykiana (Cited on page 25).

D. S. Vianna, C. B. Martins, T. J. Lima, M. d. F. D. Vianna and E. B. M. Meza

(2020). ‘Hybrid VNS-TS heuristics for University Course Timetabling Problem’.

In: Brazilian Journal of Operations and Production Management 17.2, pp. 1–20.

doi: 10.14488/BJOPM.2020.014 (Cited on page 45).

245

https://doi.org/10.3923/jas.2013.262.269
https://doi.org/10.1016/j.ijpe.2013.04.026
https://doi.org/10.1109/MCI.2017.2742868
https://doi.org/10.1007/978-3-642-16248-0_80
https://www.unitime.org/
https://doi.org/10.14488/BJOPM.2020.014

J. Wahid and N. M. Hussin (2017). ‘Hybrid harmony search with great deluge for UUM

CAS curriculum based course timetabling’. In: Journal of Telecommunication,

Electronic and Computer Engineering 9.1-2, pp. 33–38 (Cited on pages 25 and

66).

K. Wang, W. Shang, M. Liu, W. Lin and H. Fu (2018). ‘A Greedy and Genetic

Fusion Algorithm for Solving Course Timetabling Problem’. In: Proceedings of

the 17th IEEE/ACIS International Conference on Computer and Information

Science, pp. 344–349. doi: 10.1109/ICIS.2018.8466405 (Cited on page 48).

J. Ward and J. S. Schlipf (2010). ‘Answer Set Programming with Clause Learning’.

In: Lecture Notes in Artificial Intelligence 2923, pp. 302–313 (Cited on page 38).

B. Webster (2004). Solving Combinatorial Optimization Problems Using a New

Algorithm Based on Gravitational Attraction. PhD thesis, College of Engineering

at Florida Institute of Technology (Cited on page 57).

D. J. A. Welsh and M. B. Powell (1967). ‘An upper bound for the chromatic number

of a graph and its application to timetabling problems’. In: The Computer Journal

10, pp. 85–86 (Cited on page 27).

A. Wren (1995). ‘Scheduling, timetabling and rostering—a special relationship?’

In: Proceedings of the International Conference on the Practice and Theory of

Automated Timetabling (PATAT), pp. 46–75 (Cited on page 1).

K. Xiang, X. Hu, M. Yu and X. Wang (2024). ‘Exact and heuristic methods for

a university course scheduling problem’. In: Expert Systems with Applications

248.123383. doi: 10.1016/j.eswa.2024.123383 (Cited on page 54).

S. Yang and N. S. Jat (2011). ‘Genetic algorithms with guided and local search

strategies for university course timetabling’. In: Transactions on Systems MAN,

and Cybernetics-PART C: Applications and Reviews 41 (1), pp. 93–106 (Cited on

page 39).

M. Yoshikawa, K. Kaneko, Y. Nomura and M. Watanabe (1996). ‘A constraint-

based high school scheduling system’. In: IEEE Expert 11.1, pp. 63–72 (Cited on

page 34).

246

https://doi.org/10.1109/ICIS.2018.8466405
https://doi.org/10.1016/j.eswa.2024.123383

A. H. Yousef, C. Salama, M. Y. Jad, T. El-Gafy, M. Matar and S. S. Habashi

(2017). ‘A GPU based genetic algorithm solution for the timetabling problem’.

In: Proceedings of the 11th International Conference on Computer Engineering

and Systems (ICCES), pp. 103–109. doi: 10.1109/ICCES.2016.7821982 (Cited

on pages 52 and 54).

E. Yu and K. S. Sung (2002). ‘A genetic algorithm for a university weekly courses

timetabling problem’. In: International Transactions in Operational Research 9.6,

pp. 703–717. doi: 10.1111/1475-3995.00383 (Cited on page 50).

M. Yusoff and N. Roslan (2019). ‘Evaluation of Genetic Algorithm and Hybrid Genetic

Algorithm-Hill Climbing with Elitist for Lecturer University Timetabling Problem’.

In: Lecture Notes in Computer Science 11655, pp. 363–373. doi: 10.1007/978-

3-030-26369-0 (Cited on pages 52, 53 and 66).

L. Zhang and S. Lau (2005). ‘Constructing university timetable using constraint

satisfaction programming approach’. In: Proceedings of the International Confer-

ence on Computational Intelligence for Modelling, Control and Automation, and

International Conference on Intelligent Agents, Web Technologies and Internet

Commerce (CIMCA-IAWTIC), pp. 55–60 (Cited on page 35).

X. Zhang, Y. Tian, R. Cheng and Y. Jin (2015). ‘An Efficient Approach to Nondom-

inated Sorting for Evolutionary Multiobjective Optimization’. In: Transactions

on Evolutionary Computation 19.2, pp. 201–213 (Cited on page 143).

E. Zitzler and S. Künzli (2004). ‘Indicator-based selection in multiobjective search’.

In: Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics 3242, pp. 832–842. doi: 10.1007/978-3-

540-30217-9_84 (Cited on page 136).

247

https://doi.org/10.1109/ICCES.2016.7821982
https://doi.org/10.1111/1475-3995.00383
https://doi.org/10.1007/978-3-030-26369-0
https://doi.org/10.1007/978-3-030-26369-0
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivations and objectives
	Contributions
	Publications
	Thesis outline

	Background
	University course timetabling problem
	Constraint modelling

	Formulations and benchmarks
	Metaheuristics Network 2000-2004
	The Sixty Instances.
	International Timetabling Competition 2002
	International Timetabling Competition 2007
	International Timetabling Competition 2011
	International Timetabling Competition 2019
	Problem interrogation

	Other real world instances

	Approaches to solving the UCTP
	Operational Research techniques
	Reduction to Graph Colouring
	Direct constructive heuristics
	Network flow
	Mathematical Programming
	Constraint Satisfaction Programming
	Logic Programming

	Single-solution-based metaheuristics
	Local search
	Tabu search
	Iterated Local Search
	Simulated Annealing
	Variable Neighbourhood Search

	Population-based metaheuristics
	Genetic Algorithm
	Representation
	Operators
	Selection
	Approaches to fitness evaluation

	Ant Colony Optimisation
	Particle Swarm Optimisation
	Other nature-inspired algorithms

	Multi-agent systems
	Novel intelligent methods
	Hybrid algorithms/heuristics
	Hyper-heuristics

	Multi/many-objective approaches

	State of the art
	Summary
	Formulations
	Solvers: A thematic summary

	A Study on Course Ordering in an Ant Colony Optimiser
	Introduction
	Background
	ACO
	Course assignment order
	Constraint handling
	Summary

	Methodology
	MMAS design
	Solution representation
	Penalty scheme
	Pheromone update
	Dynamic hard constraint handling
	Full relaxation
	Zero-tolerance

	Smart function evaluations

	Local search routine
	Regression model T0
	Genetic Algorithm

	Experimental setup
	Proof of concept
	Permutation testing
	Training a predictor

	Final model training data
	Feature types and composite features
	Target values
	Mapping

	Problem Instances
	Parameterisation
	CPU budgets

	Results and analysis
	Final model training set permutation results
	Genetic Algorithm results
	Benchmark Experiment 1 - PP vs. RP
	Any-time performance comparison
	Significance testing

	Benchmark Experiment 2 - PP-LS vs. RP-LS

	Conclusions and further work

	A Many-Objective Optimiser for the UCTP
	Introduction
	Background
	Methodology
	Encoding
	Initialisation
	Search space size and sample bias

	Core algorithm
	Selection and constraint handling
	Genetic operators
	-evaluations
	Non-dominated sorting
	Archiving
	Summary

	Experiments
	Relaxed hard constraints experiments
	Two-phase system experiments
	Hypervolume reference points

	Results
	Conclusions

	Genotype Diversity, Enhanced Operators and Robustness
	Diversity measures
	Background
	Methodology
	Metric entropy in equivalent solutions
	Standard form encoding
	Distance metrics

	Experimental setup
	Results and analysis
	Conclusions on genotype diversity

	Operators
	Destroy-repair
	Perturbation
	Experiments on enhanced swapPlace

	Tournament selection
	Experiments on tournament selection

	Conclusions on operators

	Robustness
	Disruptors
	Idealised robustness metric
	Experiment on fixed scenarios
	Results
	Analysis of general robustness
	Conclusions on robustness

	Summary and Further Work

