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Abstract

For several decades, inequalities in public transportation systems have been of significant

consideration to transport researchers and urban planners. Increasing concerns regarding

the climate crisis, coupled with improved standardisation of public transit data, has led to

a myriad of studies highlighting apparent disparities in transit service and infrastructure.

However, research on transit inequalities typically focus on a singular urban mechanism. In

this thesis, we present three perspectives, and their respective frameworks, that are crucial

for assessing how disparities in public transit can be exhibited. We argue that, in order to

develop a well-rounded understanding of inequalities in public transit infrastructure, one must

consider how transit intersects with (a) disparities in residential-workplace dependencies,

(b) experienced segregation, and (c) features of the physical environment. Focusing on

cities in the United States of America (US), we analyse transit with respect to residential

and employment landscapes, highlighting how housing and occupational disparities are

exacerbated by transit service, further disadvantaging vulnerable communities. Then, we

estimate experienced segregation in daily mobility patterns, underscoring the segregated

nature of transit service in terms of mobility opportunity and empirical mobility patterns.

Finally, we identify transit inequalities for neighbourhoods with similar physical environ-

ments, highlight how spatial characteristics elucidate the types of environment in which

socioeconomic transit disparities arise. The presented frameworks emphasise how public

transit heightens the inequalities that are present in housing landscapes, mobility patterns,



iv

and the built environment, ultimately providing a quantitative perspective on how US transit

systems provide opportunities for fulfilling different types of mobility desires.
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Chapter 1

Introduction

Inequality has existed in urban areas for centuries, albeit at varying scales and forms. Inequal-

ity refers to an uneven distribution of resources, goods, or conditions [62]. Regardless of the

various scales and types of inequalities that individuals face, the need to move is universal

across all people. That is, mobility plays a crucial role not only in terms of commuting, but

also for satisfying lifestyle necessities, leisure desires, and social connectivity [41]. However,

policies that regulate land-use, such as zoning laws and investments in employment and retail

areas, can lead to residential inequalities, such as segregation [264, 102, 71]. Furthermore,

poor transit links between residential, retail and employment areas may limit individuals,

who are already facing residential inequalities, from satisfying their mobility desires [281].

Accordingly, it is crucial to understand mobility in various urban contexts, as when mobil-

ity is a forced process, it can reflect deprivation, whereas when mobility is an option, it

can be indicative of privilege [104, 203]. Moreover, given that lower income individuals

tend to have higher rates of transit dependency [139], it is essential to clearly articulate the

role that public transit plays in providing different demographics access to varying types

of destinations. In doing so, policy-makers and transportation engineers can understand

how changing public transit systems (i.e., increasing frequency of transit, adding routes in

particular neighbourhoods) can enable mobility opportunities.
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Mobility equity aims to explore this issue, with early studies analysing the spatial

connectivity of residential and workplace locations [294, 143]. Since this initial research,

increased access to high-resolution mobility data allowed mobility research to shift from

a population level to an individual level [247]. Mobile network operators and smartphone

applications have since been providing mobility datasets of varying scale and detail, allowing

researchers to identify universal mobility patterns or disparities in mobility behaviour across

particular demographics. For example, a recent study leveraged high resolution mobility data

to unveil the distinct urban routines that neighbourhoods of various deprivation levels have

[46].

Studies such as this allude to the concept of mobility justice, which encapsulates mobility

disparities arising from the quality of experience, access to infrastructure, and temporalities

of mobility [149, 262]. The latter refers to the impact that waiting for and overtaking other

vehicles has on transit journeys. Thus, mobility justice refers to understanding why space

connects certain individuals, while fragmenting others, in order to develop solutions that

ensure that vulnerable demographics (low-income individuals, older adults, racial and ethnic

minorities, etc.) are not socially excluded from the larger population due to a lack of mobility

options.

Additionally, as issues concerning the climate crisis become more prominent, it is

critical to consider how to fairly transition to more sustainable modes of transit, such that

mobility remains affordable and accessible for all fragments of the population. However,

distinguishing transport poverty as a distinct, systemic problem, rather than a consequence

of individual economic poverty, remains an open challenge. [177]. Furthermore, research

that does focus on transport poverty spans numerous topics, including mobility poverty,

accessibility poverty, transport affordability, and exposure to transport externalities [176].

Research in these fields has shown that low-income residents face the highest public transport

fares, but spend a larger portion of their earnings on owning cars because of inadequate public
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transit options [69, 126]. The lack of clarity in defining transport poverty as a significant,

stand-alone problem, makes it difficult to clearly articulate when, where, and for whom

transport systems can be improved. This often leads to ineffective policies, such as providing

transit fare subsidies or loaning private vehicles to vulnerable demographics [183, 177].

These approaches to reduce transport poverty typically fall short due to data availability,

targeting the wrong demographics, and being unfeasible to adopt on a large scale [178].

Thus, in order to creates policies that are effective in targeting transit poverty, it is crucial

to understand how transit systems serve different areas and demographics in a region, with

respect to various mobility purposes.

1.1 Research Questions

The previous section demonstrates how transport poverty is still a nascent and developing

concept. Moreover, understanding transport inequality as a subset of mobility justice moti-

vates defining disparities in public transportation with respect to various types of mobility

purposes. However, using mobility data to analyse transit poverty can lead to creating strong

transit links between areas with high mobility flows, while providing those areas with few

transit options to other parts of the city. Thus, as urban landscapes shift, support networks,

employment hubs, and amenities may become fragmented from the communities that depend

on them. Accordingly, in this thesis, we argue that transport inequality should be understood

with respect to its ability to fulfil both potential and empirical travel demands, while also

accounting for spatial disparities that arise due to various urban mechanisms, such as housing

markets and amenity accessibility. Thus, we contend that it is critical to understand public

transit in terms of how it (1) connects individuals to employment opportunities, (2) serves as

a tool to overcome residential segregation by reducing levels of experienced segregation in

other domains of urban life and (3) contributes to socio-spatial inequalities, when considering

features of a neighbourhood’s physical environment.
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In doing so, we capture how disparities in transit service intersect with the following urban

mechanisms: residential-workplace dependencies, human mobility, and the built environ-

ment. The frameworks we outline not only consider structural characteristics of commuting

networks, segregated transit networks, and the built environment, but also provide insight

regarding the experience of using transit in the context of these different urban functions.

That is, we consider how housing insecurity, which measures the several dimensions in which

housing can be inadequate, impacts the employment areas one can commute to using transit,

within a reasonable time frame. Moreover, we assess how mobility can serve as a function to

overcome residential segregation, allowing for points of interaction at amenities and while

using transit systems. Finally, we analyse how socioeconomic inequalities arise in access

to workplaces and essential amenities, when considering neighbourhoods with similar built

environment features. We ask the following questions, with respect to various major cities

in the United States of America (US). This region of analysis was chosen for three main

reasons. First, the US has a wealth of socioeconomic, geographic, and mobility data available

[43, 252]. Second, the US is comprised of many cities, exhibiting a large heterogeneity in

urban landscapes and quality of transit infrastructure [293]. Finally, the US is unique in that

it has openly accessible eviction data for numerous cities, which is useful for quantifying

measures of housing insecurity [72].

Residential-Workplace Dependencies:

RQ1 How can commuting networks capture socioeconomic disparities in residential-

workplace dependencies that are overlooked when using measures of place-based

inequality? How do structural network properties correspond with conventional segregation

metrics?
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RQ2 How can we develop a comprehensive measure for housing insecurity that

extends beyond measuring one dimension of it (i.e. affordability, stability)? How can

we leverage available data to identify neighbourhoods that are particularly vulnerable to

housing insecurity? How do estimations of housing insecurity correspond with various

sociodemographic characteristics?

RQ3 In what ways does transit service inhibit employment accessibility? Are there

similarities in commuting characteristics across housing demographics? How does public

transportation facilitate job accessibility for different demographics?

Human Mobility:

RQ4 To what extent does residential segregation persist in travel behaviour? How

do changes in segregation levels, from the residential to the mobility dimension, impact

socioeconomic groups differently?

RQ5 How can we leverage transit modelling to estimate how transit systems con-

tribute to existing levels of residential segregation? In what ways do different socioeco-

nomic groups experience segregated transit service? How can we estimate the extent to which

inequalities in mobility patterns create disparities in the transit routes that socioeconomic

groups would use?

Built Environment:

RQ6 How does accounting for physical features of a neighbourhood reveal spatial

disparities in transport service? How can we define neighbourhoods based on how its

urban planning bolsters flexibility in mobility choices? Are there inequalities in how transit
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systems serve neighbourhoods with different spatial characteristics?

RQ7 To what extent does incorporating both socioeconomic and spatial features

reveal additional insights regarding how transit accessibility may disadvantage vulnera-

ble demographics? In what types of neighbourhoods are socioeconomic transit inequalities

prevalent? How are socio-spatial transit inequalities exhibited when considering access to

workplaces, nearby amenities, and overall mobility opportunity within a city?

1.2 Document Structure

In this document, we explore inequalities in human mobility with respect to three urban

perspectives: residential-workplace dependencies, experienced segregation, and the built

environment.

The current chapter, Chapter 1, presents a high-level overview of inequality in mobility

and public transit. It lists the research questions that will be addressed in the thesis and

outlines the overall structure of the document.

Chapter 2 provides a literature review on transport poverty on a theoretical and quan-

titative level. It begins by exploring various political philosophies on justice. Then, we

address static approaches to analysing urban areas, based on inequalities in residential and

occupational landscapes. This is followed by a more dynamic conceptualisation of urban

analytics, introducing the field of human mobility, along with accompanying models, meth-

ods, and applications. Finally, we narrow in on the concept of transport justice, which lies in

the intersection of social justice, urban planning, and human mobility. The following three

chapters explore how transit disparities intersect with residential-occupational mismatches,

experienced segregation, and the built environment, respectively.

Chapter 3 provides an overview of data sources that are used in the thesis, along with

details regarding fundamental methods used to define core metrics, outlining the segregation
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metrics we use and the mobility data characteristics. We introduce measures that characterise

urban areas based on their physical features. Finally, we use transport data to highlight the

differences in open-source transport modelling tools, as well as the reasons for which they

arise.

In Chapter 4, we explore the spatial connection between residential and employment lo-

cations, particularly highlighting inequalities and inefficiencies in public transport commutes.

We begin by highlighting how structural inequalities in commuting networks capture dispar-

ities that conventional segregation metrics overlook; then, we introduce a framework that

estimates housing insecurity to highlight how transit infrastructure restricts employment ac-

cessibility. This chapter underscores the significance of residential-workplace dependencies

in the context of transit service.

Chapter 5 incorporates mobility data to elucidate how segregation spills over from the

residential dimension, impacting experienced segregation on public transit lines and at various

amenities. Furthermore, it demonstrates how transit service itself facilitates segregation by

providing inadequate access to a diverse range of neighbourhoods. In doing so, we highlight

the importance of measuring transit inequality with respect to how individuals experience

segregation throughout multiple urban dimensions.

In Chapter 6, we identify disparities in transit service, comparing socioeconomic in-

equalities in areas that have similar urban features. We define each city based on how well

the urban planning supports flexibility in mobility options. Then, we evaluate transit service

with respect to how it provides access to all other neighbourhoods in a city, nearby amenities,

and employment locations. Thus, we show how incorporating built environment features

into transit analysis helps to pinpoint the types of neighbourhoods in which socioeconomic

transport disadvantage is prevalent.
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Finally, Chapter 7 reconciles the three urban mechanisms, providing concluding remarks

and discussing limitations in data and methodology. Additionally, we address how future

work could build upon the methodologies introduced in this thesis.



Chapter 2

Literature Review

Shifts towards more sustainable modes of transportation have placed a large emphasis on

improving public transit options for residents of urban and rural areas. During this transition,

it is critical to ensure that "improvements" to transit infrastructure do not solely benefit

those in privileged positions. This thesis outlines three spatial perspectives to consider

when analysing inequalities in transit systems: residential-workplace dependencies, urban

segregation, and the physical features of an environment. In this chapter, we highlight

relevant research that emphasises the importance of each of the aforementioned perspectives.

We begin by outlining theoretical arguments for social equity and justice, addressing the

importance of mitigating inequality. Furthermore, we review how different schools of thought

define equality in a society. Then, we discuss approaches to estimating inequality in urban

areas, in terms of how urban spaces are used and designed. Finally, we centre our focus on

inequalities in transit infrastructure, providing an overview of transport research.

2.1 Sociodemographic Inequality

Although inequality is typically considered from a normative perspective, not all individual

characteristics should be analysed from this point of view. For instance, traits such as hair
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colour may have uneven distributions, but are not necessarily reflective of an unfair society.

Furthermore, it is important to distinguish between poverty and inequality, as the former

focuses on the lower end of the entire distribution, while inequality consider the entire

distribution altogether.

Some economists and researchers argue that inequality is an inevitable artefact that

creates a healthily competitive market and leads to positive economic outcomes [114]. A

bulk of these arguments rely on Simon Kuznet’s hypothesis, which suggested that increasing

inequality is a sign of development in a country [157]. Specifically, he suggests that inequality

and development have an inverted U-shaped relationship, such that inequality will increase

as a region develops, until it reaches a critical point, after which inequality will decrease.

However, the return to high levels of inequality, particularly in developed countries such as

the United States of America and the United Kingdom, has cast doubt on this hypothesis

[234]. Moreover, others have demonstrated the importance of developing policies to mitigate

excessive inequalities that extend beyond moral obligation [132, 281]. These arguments

focus on negative consequences of rising inequality, such as health outcome disparities and

imbalanced political power.

Disparities in urban areas have long been studied across multiple disciplines, with initial

research focusing on place-based inequalities such as residential and occupational segregation,

with segregation referring spatial inequalities in housing or employment opportunities are

distributed. [150, 95, 143]. Previous research has identified that social inclusion fuels the

productivity of cities [75, 292]. Accordingly, investing in improving the diversity of cities

can lead to positive socioeconomic outcomes, fostering innovation and entrepreneurship

[239]. These types of research highlight the instrumental value of equality by revealing

the association between inequality and positive economic outcomes. However, numerous

philosophers and economists support the notion that reducing inequality has intrinsic value as



2.1 Sociodemographic Inequality 11

well, arguing that equality is a basic human right and that ensuring equality of opportunities

and outcomes is inherently good [184, 244, 140].

In this manner, inequality can be considered at either the opportunity level or the outcome

level [12]. Equality of opportunity strives to provide individuals with the same set of

opportunities, which can help them reach their preferred outcomes. Meanwhile, equality of

outcomes refers to individuals having comparable levels of material wealth and economic

capital. While a majority of inequality research focuses on reducing inequality of opportunity,

to "level the playing field", economists, such as Atkinson, point out that inequality of

outcomes deserves a similar level of scrutiny. This if for three reasons: (1) it is difficult to

separate unequal outcomes due to chance from unequal outcomes due to hardship, (2) the

perceived importance of equality of opportunities stems from the unequal distribution of

rewards, and (3) inequality of outcomes directly impacts inequality of opportunity for future

iterations of society. Thus, identifying inequality from both the opportunity and outcome

perspective is crucial for developing a complete understanding of inequality in a region.

Theories of justice can be used to address inequality, as they advocate for diffrent way in

which benefits should be distributed and the moral principles under which they should be

distributed [218, 60]. Here, we cover three different theories of justice: utilitarianism, egali-

tarianism, and the capabilities approach. Utilitarianism focuses on maximising a particular

dimension of human experience, such as happiness or human welfare [38]. Additionally, it

has an outcome-oriented approach, in which the welfare of individuals is weighted equally.

Meanwhile, Rawls’ egalitarianism builds upon two principles, the first of which takes prece-

dent over the second: (1) every individual is entitled to basic liberties and (2) resources and

goods should be distributed to maximise benefit to most disadvantaged and should be a con-

sequence of equal opportunity [148, 244]. Rawls’ formulation of egalitarianism suggests that

under the premise of equality of opportunity, inequalities in outcomes are justifiable as they

are reflective of individual choice. While utilitarianism prioritises helping individuals who
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benefit the most, egalitarianism focuses on helping individuals who are in a disadvantaged

position [280]. At times, these two theories lead to the same outcome, particularly when the

individuals who gain the most are also the most disadvantaged.

These two theories overlook "doings" (the activities in which individuals can engage)

and "beings" (who individuals are able to be). Amartya Sen argues that distributive theories

that focus solely on resources dismiss how different groups and social contexts have varying

abilities to transform these goods into a beneficial outcome [259]. Moreover, he introduces

the capabilities approach, which refers to the freedom individuals have to achieve their

"beings" and "doings". Translating the capabilities approach into a quantitative analysis

requires extending accessibility measures beyond travel time, and incorporating features

such as residential inequality, affordability, safety, and reliability. Furthermore, it entails

understanding disparities in how transit serves demographics, with respect to varying trip

purposes. Michael Walzer, a political theorist, advocates for a more nuanced understanding

of justice, which he terms "complex equality" [298]. Here, he argues in favour of categorising

goods into various spheres (i.e., community membership, kinship and love, political power),

such that each sphere has a separate distribution principle and dominance in one sphere

does not diffuse into dominance in another sphere. Ultimately this overview underscores

how despite being aligned under the pursuit of autonomy and moral equality, differences in

conceptualising justice can still arise.

2.2 Place-based Inequalities

Understanding the effects of social integration has been at the forefront of sociological

research for centuries, highlighting the many benefits of well-integrated communities, such

as lower crime rates and better health outcomes [145, 258, 11]. In this section, we discuss

the various way in which disparities, based on the characteristics of where individuals live or

work, can be measured.
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2.2.1 Residential Segregation

A majority of research on integration, and its counterpart, segregation, tend to focus on

residential characteristics, assuming the individuals that one interacts with are likely to be

from one’s neighbourhood. Segregation is typically derived by comparing the empirical

distribution of demographics in different neighbourhoods to an equally distributed version of

the population across the entire region. This is often followed by disclaimers that an equal

distribution may not be ideal or just from a social perspective [40], offering a subtle nod to

sociological studies that elucidate how the tendency for individuals to associate with others

that are similar to them (known as homopholy [196]), is not strictly a positive or negative

force. Therefore, it is important to distinguish whether homophilic processes are occurring

as a result of individual preferences or systemic constraints. Often, cities have highly

concentrated pockets of individuals from similar backgrounds, which, depending on the

environmental context, has the potential to provide a sense of community to residents while

also exposing the broader population to different cultures and practices [228, 200, 152]. The

disparity arises when urban infrastructure does not provide sufficient or adequate resources

to facilitate journeys to other neighbourhoods, for individuals within these communities.

Instances such as these allow systemic inequalities to shape segregation in mobility behaviour.

Residential segregation has been in the spotlight of sociological and urban studies for

centuries, with research consistently churning out new methods for conceptualising and

measuring how sociodemographic groups share spaces. Segregation estimates the extent of

spatial separation for two or more demographics in a given region. It is often distilled into

five dimensions: evenness, exposure, concentration, centralisation, and clustering [191].

Evenness

Given a region of interest, the evenness dimension captures how uniformly demographic

groups are distributed across the sub-regions, often measured using the dissimilarity in-
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dex, Gini coefficient, or mutual information index. The dissimilarity index is usefule for

understanding the spatial spread of a demographic in a given region. Specifically, it con-

veys the percentage of a minority population that would have to change in order for each

neighbourhood to have the same demographic distribution as the entire region [191]:

Dissimilarity =
∑

n
i=1

(
ti|pi−P|

)
2T P(1−P)

(2.1)

where pi and P reflect the fraction of minority demographics in a neighbourhood i and the

entire region, respectively. T is the total population in the entire region, while ti refers

to the population in a neighbourhood i. For regions in which the minority population is

equally distributed across neighbourhoods, |pi−P| will be smaller for all neighbourhoods,

resulting in a lower numerator and, in suit, a lower dissimilarity index. Meanwhile, when a

region has some neighbourhoods that significant minority over-representation (with other

neighbourhoods consequently having noteable minority under-representation), |pi−P| will

be larger, leading to higher values of dissimilarity. In this manner, larger values of the

dissimilarity index, which is bounded between 0 and 1, indicate higher levels of segregation

for the minority population.

The mutual information index, proposed by Theil, is a multi-group measure of diversity in

a given region, based on information theory, that estimates how knowing a group’s represen-

tation in a given neighbourhood impacts the uncertainty level of knowing its representation

in another area [285]:

Mutual Information =
∑

n
i=1

[
ti(E−Ei)

]
ET

,

where Ei = piln(
1
pi
+(1− pi)ln(

1
1− pi

)

and E = Pln(
1
P
)+(1−P)ln(

1
1−P

)

(2.2)
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where pi coveys the fraction of the population in a spatial unit (neighbourhood), i, and P

denotes the minority population across the entire region of analysis. Furthermore, T denotes

the total population of the entire region. Thus, E captures the diversity score given an

entire region, while Ei does the same, but for a specific neighbourhood, i, within the region.

Thus, the mutual information index uses a weighted average, accounting for the population

distribution across neighbourhoods, to estimate how much each neighbourhood’s diversity

deviates from that of the entire region. It is bounded between 0 and 1, with higher values

indicating a greater deviance from the region’s overall demographic composition (i.e., more

segregation).

Exposure

Exposure reflects the likelihood of interaction between demographics, under the notion that

living in the same area increases the likelihood of contact. The motivation for estimating

segregation in this dimension is similar to the methodologies used in this thesis, because

it attempts to measure the experience of segregation in a residential setting. The two most

common metrics are isolation and interaction. Isolation captures the probability that a

vulnerable demographic shares a neighbourhood with their own sociodemographic group.

Meanwhile, interaction shows the likelihood that a vulnerable demographic shares a space

with the majority demographic:

Isolation =
n

∑
i=1

[
xi

X
xi

ti

]
; Interaction =

n

∑
i=1

[
xi

X
yi

ti

]
(2.3)

where xi, yi, and ti reflect the number of individuals in the minority, majority, and total popu-

lation, respectively, in a spatial unit i. Meanwhile X reflects the entire minority population

across the whole region of analysis.

With this in mind, isolation considers the minority population in a neighbourhood, with

respect to the minority population in the entire region (xi
X ) and the total population in the



16 Literature Review

neighbourhood ( xi
ti

). Isolation has an upper bound of 1, when the entire minority population,

X , makes up the entire population in neighbourhood i. On the other hand, interaction accounts

for the fraction of a minority population that lives in a neighbourhood (xi
X ) as well as the

majority representation in the same neighbourhood (yi
ti

). Thus, an interaction value closer

to 1 reflects a higher likelihood that an individual from the minority group lives in the same

neighbourhood as someone belonging to the majority group.

Concentration

Concentration incorporates spatial attributes, identifying areas where minority groups reside

in a small proportion of a region. The most common metric for estimating concentration

is Delta, which measures the distribution of a vulnerable demographic, with respect to the

distribution of space in a neighbourhood [129]:

Delta = 0.5
n

∑
i=1

∣∣∣∣xi

X
− ai

A

∣∣∣∣ (2.4)

where ai is defined by the land area in a neighbourhood i and A measures the entire land area

of the city.

In this thesis, we use the Index of Concentration at the Extremes (ICE), proposed by

Douglas Massey, to understand how inequalities are spatially distributed, in regards to

both the most affluent and most poor households in the relevant US cities [190]. This

metric was conceived in an attempt to describe a region using both spatial attributes and the

characteristics of polarised demographics. While most segregation metrics account for how

segregated the minority group is in relation to the entire population, ICE incorporates both

ends of the demographic spectrum: :

ICEi =
Ai−Pi

Ti
, (2.5)
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where the ICE for a neighbourhood, i, is defined as the difference between the number of

affluent residents, Ai, and the residents below the poverty line, Pi, over the entire population,

Ti. While the numerator captures the imbalance between the extremes, the denominator

expresses the degree of imbalance in relation to the entire population of neighbourhood i.

Thus, ICE aims to measure the imbalance between affluence and poverty by measuring the

concentration of both the extremely disadvantaged and advantaged in a given population.

In Chapter 5 we compare ICE to many of the segregation indices outlined in this chapter,

including the social similarity index.

The social similarity was introduced in a recent study, which used a rank-based approach

for measuring the distance between socioeconomic groups [315]. It is particularly useful for

incorporating perceived levels of inequality, with respect to different demographics (i.e. low

income individuals may perceive segregation to be worse than their high income counterparts).

This measure requires high resolution socioeconomic data, in which each individual x is

associated with an income rank rx, such that higher ranks imply higher socioeconomic status.

Furthermore, it defines Ai j as the set of individuals who are closer to a socioeconomic rank i

than a socioeconomic rank j, defined as Ai j = {x
∣∣∣|rx− ri|< |ri− r j|}, for all individuals x in

a population of size N. The social distance between two ranks i and j can be defined as:

di→ j =


||Ai j||+0.5

N−1 , if there exists a rank k (k ̸= j) such that|rk− ri|= |ri− r j|

||A||
N−1 , otherwise

(2.6)

In defining social distance in this manner, di→ j may not be equal to d j→i, incorporating

how various demographics may perceive socioeconomic distance differently. The social

similarity can be calculated by taking the complement of social distance: si→ j = 1−di→ j.

Thus, a larger value of si→ j, which is bound between 0 and 1, implies more social similarity

and, consequently, more segregation. In this thesis, we use income brackets to define the
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socioeconomic rank of individuals in a neighbourhood, given the neighbourhoods income

distribution across these brackets. Then, the social similarity that an individual, x, experiences

in her neighbourhood can be described by calculating the average of her social similarity to

all other individuals, y, in their neighbourhood:

Social Similarityx =
∑

m
j=1 sx→y j

m
(2.7)

where m is the number of other individuals living in the same neighbourhood as x and y j

reflects the socioeconomic rank of a given individual. This can be aggregated to a spatial unit

by measuring the average social similarity that each individual in a spatial unit experiences.

We use the social similarity index, as well as the index of dissimilarity, isolation, and mutual

information, to validate our use of ICE in Chapter 6.

Centralisation and Clustering

Finally, centralisation reflects residential proximity to the urban core, while clustering defines

how much spatial clustering minority groups express in their residential distribution. While

some dimensions are related to one another, each is conceptually distinct and important

for characterising the state of segregation in a region. It is important to note that spatial

versions of these segregation metrics have been proposed to incorporate a more nuanced

understanding of how demographics are distributed across space. In this thesis, we use resi-

dential segregation as a baseline for comparison between more dynamic forms of experienced

inequalities derived from high-resolution mobility data. Consequently, spatial extensions

of the above segregation measures are not strictly relevant in this context, as they make

assumptions, typically through the use of kernel density estimations, that enforce rules about

how proximity to other neighbourhoods influences residential segregation. In this manner, we

can account for both residential and mobility inequalities, while also being able to compare

across these two dimensions of urban life.
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2.2.2 Residential Mobility

While residential segregation measures sociodemographic inequality of a neighbourhood at a

given time, neighbourhoods can be conceptualised as a more dynamic entity, with an inflow

and outflow of households that define the demographic composition of a neighbourhood over

time. Residential mobility is often an outcome of life stages, housing markets, and urban

structure [61]. Moreover the authors of Ref. [61] show how residential mobility can broken

down into two forces: the motivation to leave one’s current house and choosing the area to

which one will relocate. Disparities exist in both of these components. That is, the motivation

to move can arise from shifts in household needs due to a change in household structure or

from urban mechanisms such as gentrification and evictions, which lower-income residents

tend to experience more frequently [70]. Similarly, residential choice has been shown to be

associated with mechanisms such as neighbourhood attachment, which refers to a pull force

between individuals and their physio-social environment [58].

Other works have shown how low-income households that are given cash in place of

subsidies, move to areas with a similar sociodemographic composition to their original

neighbourhoods. Furthermore, the households that do move to more integrated neighbour-

hoods still maintain their contacts from their previous neighbourhood [249]. As employment

opportunities moved to the suburbs, researchers began evaluating how urban poverty may,

in turn, suburbanise [128, 243]. While this could be interpreted as a consequence of less

discrimination in housing policies, it is essential to accommodate these residential shifts by

creating effective anti-poverty programs in the suburbs [27, 154]. Identifying the increasing

suburbanisation of poverty is particularly interesting, considering that poverty had previously

been associated with urban and rural areas. More recent research in this domain demonstrates

how forces such as gentrification push more vulnerable demographics to less accessible

regions [127, 167]. Thus, we see how inequalities arise in the residential dimension, both
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when housing is interpreted as a static feature (segregation), and when residential mobility is

considered.

2.2.3 Housing Insecurity

The rapidly increasing density of urban areas poses a threat to exacerbate the ever present

housing crises around the world [318, 105]. Housing crises are often linked to economic

and political forces, as seen by the Global Financial Crisis of 2007–2008 [57, 142, 307].

Social scientists and urban planners have consistently and carefully studied the sources and

consequences of unstable housing using different granularities. In particular, the COVID-19

pandemic enforced the importance of studying housing insecurity. As travel restrictions

limited mobility, individuals were confined to their places of residence, emphasising the

significance of housing quality [232, 26]. Over the years, understanding the motivation

for residential movements of disadvantaged groups has posed a considerable challenge.

Desmond et. al suggest eviction, coupled with neighbourhood dissatisfaction, gentrification,

and slum clearance as potential explanations for the high levels of moves among the urban

poor [70]. Furthermore, housing insecurity has been shown to have a negative effect on job

accessibility, wellbeing, and the stability of support networks [71, 73, 151].

Although these works focus on housing insecurity, they tend to quantify this concept using

a single measure, such as eviction rates or rent burden, as a proxy. Furthermore, developing a

consistent metric for housing insecurity has been a long-standing obstacle [164]. In an effort

to provide a universal metric for housing insecurity, Cox et al. survey existing research in

housing issues to define seven dimensions of housing insecurity: housing stability, housing

affordability, housing quality, housing safety, neighbourhood safety, neighbourhood quality,

and the last, optional dimension, homelessness [63]. Housing stability focuses on concepts

such as overcrowding in houses, evictions, and frequent moves. Housing affordability

encompasses financial aspects of housing such as rent burden, incomplete or late payments,
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mortgage, and taxes. Meanwhile, housing quality focuses on the robustness of the house

as a physical structure. This includes characteristics such as the functionality of appliances

and how rundown a house’s interior and exterior are. Housing safety differs from housing

quality, in that is measures the presence of vital housing facilities such as heating, water

access, and (a lack of) pests. The neighbourhood level characteristics portray the notion that

residential locations are not based solely on the house, but also account for the environment

in which the house exists. Neighbourhood safety can be described by crime rates, abandoned

buildings, proximity to environmental threats, noise levels, and traffic. Neighbourhood

quality encompasses urban infrastructure quality, such as amenity accessibility.

2.2.4 Beyond the Residential Dimension

The urban inequalities presented thus far assume that spatial inequality can be explained by

residential characteristics. The emergence of connected enclaves (areas that share cultural or

sociodemographic similarities, but are spatially separated) and new mobility data sources

have resulted in considering how other aspects of urban life contribute to sociodemographic

inequality [310]. The environment in which individuals live has been shown to shape the

mobility choices they make [198]. Therefore, understanding inequality based on the physical

context in which one resides can provide a clearer understanding of how urban inequality is

expressed in a manner that is not solely derived from the demographic composition of one’s

neighbourhood. The urban experience, in terms of mobility, is largely comprised of trips

to work [138], underscoring the importance of considering social inclusion not only from

the residential dimension, but the employment perspective as well. In this sense, mobility,

specifically commuting patterns, can be viewed as a potential way to improve diversity and

integration by creating points of social inclusion in employment areas [111].

In the social sciences, occupational inequality has been a main factor for understanding

economic inequality [246, 211]. Occupational inequalities can arise from differences in
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productivity valuation of employees, worker-job skill mismatches, and variations in perceived

reward from jobs [120]. Furthermore, it is well established that the nature of residential and

occupational choice is deeply intertwined [304, 269]. Initial urban spatial models were de-

veloped to understand residential demand and how employment changes can spur residential

relocation [174, 6]. However, the majority of these models assume that workplace choice

affects residential choice [295, 260]. From a spatial perspective, misaligned employment and

residential landscapes can lead to spatial inequalities. Metropolitan areas tend to have a close

association between levels of segregation based on residential distributions and workplace

segregation [113, 209]. It becomes clear, therefore, that solely analysing inequality from a

residential dimension does not accurately depict how residents may experience inequality in

their day to day lives.

The environment in which individuals reside and spend time can have a range of impacts

on their well being, from affecting one’s health through pollution and noise to influencing

one’s behaviours based on mobility options and urban design [161]. The physical area

that is human-made is referred to as the built environment. It is comprised of land use

patterns, transportation systems, and physical road and sidewalk infrastructure [115]. The

built environment is conventionally characterised with respect to density, diversity, and

design [49]. Density is often estimated with respect to the spatial unit being considered.

It can be defined to estimate density from a population perspective (i.e., persons per area)

or from a structural perspective (i.e., dwelling units per area). Diversity is often captured

by measuring the variety of land uses in a region, which is found by applying Shannon

entropy to land use distributions. Meanwhile, design pertains to quantifiable features of urban

planning styles. This can be defined in numerous ways, from the density of intersections

and pedestrian crosswalks to the grid-like patterns of urban roads, in contrast to sparser

suburban streets that generally exhibit a larger degree of curvature. More recent research on

the built environment has extended the 3D’s to include features such as distance to transit,
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and destination accessibility [85]. Distance to transit is often interpreted as the proximity to

the closest transit stop or density of the transit system.

In this section, we have considered fairly spatial aspects of inequality in urban areas.

While complex, and influenced by political, cultural, and numerous other forces, these

inequalities are fairly static. The next section introduces the field of human mobility, which

can provide fine-grained estimations of how inequality exists and is experienced in urban

settings.

2.3 Human Mobility

Human travelling patterns underpin many urban and social processes such as information

spread, disease dynamics, disaster response, and traffic management. While these processes

can impact how individuals interact with their environment, individuals and communities

can influence urban mechanisms to change. Although it is clear that the dynamics between

individuals and their environment is symbiotic in nature, the extent to which these two forces

are intertwined remains fairly ambiguous. The field of human mobility studies patterns in the

movement of humans with respect to a variety of dimensions [15]. These dimensions include,

but are not limited to, space, time, and economic resources, and can be applied to fields such

as sociology and urban transportation science. Some believe mobility patterns arise solely as

an artefact of individuals achieving a goal [283]. For example, mobility patterns to grocery

stores arise from humans’ dependence on food. Contrarily, others argue that mobility in itself

can be an end goal [186].

Moreover, individuals from different socioeconomic classes may influence and be influ-

enced by their urban setting to varying degrees. Understanding how different demographics

coordinate with urban infrastructure is crucial, particularly when environmental contexts

change. In the case of a natural disaster, a demographic’s dependence on public transporta-

tion may leave them vulnerable to harm. Similarly, shifts in cultural values and norms may
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impact common working hours for a certain demographic, narrowing the amenities that are

accessible to them. Thus, it is crucial to understand whether sociodemographic disparities are

an artefact of structural disparities or if they reflect behavioural preferences of a demographic.

2.3.1 Mobility Models

Mobility offers opportunities for overcoming the segregation that residential mechanisms,

such as the housing market, impose on individuals. The prevalence of GPS (Global Posi-

tioning System) data and Call Detail Records has allowed for high-resolution analysis of

travel behaviours [15, 4]. Studying mobility trajectories has highlighted the predictability of

travel patterns, and, in turn, resulted in mobility models that can reproduce such behaviour

[322, 267, 272, 226]. Human mobility models provide a quantitative perspective on human

travel behaviour that help in understanding patterns in migration, traffic congestion, and

information spread [15, 273, 106]. On one hand, they can be used to emulate individual

trajectories and shed light on the mechanistic processes that fuel travel patterns. On the

other hand, mobility models can capture travel patterns aggregated across the population, by

drawing upon physics and network science to model human mobility as particle movements

in a larger system.

The Gravity model, for instance, defines mobility flows between two regions as increasing

when the population of either region increases [322]. Additionally, mobility flows decrease as

the distance between the two regions increases. The Gravity model provides an important con-

tribution to modeling heterogeneous mobility flows. Inspired by the radiation and absorption

process from physical models, the Radiation model incorporates employment opportunities

(proportional to resident population size), employment benefits (income, working hours,

etc.), and distance between the job opportunity and one’s residence to create a parameter-free

model that predicts mobility patterns [268]. In doing so, it addresses some of the significant

limitations of the Gravity model, such as its inability to capture travel fluctuations and the
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theoretical gap in defining how distance impacts that probability of mobility flow between

regions. The Intervening Opportunity model incorporates the radiation model’s opportunity

prioritisation by considering opportunities in the destination region as well as in regions

between the source and destination [169].

Mobility models can also be constructed with respect to individual behaviour, capturing

the stochasticity that emerges from free will [15]. The most fundamental of these models

is the Random Walk, which forms a path defined by random displacements draw from a

probability distribution at discrete time steps. Extensions to such models have been devel-

oped, modelling random walks over a continuous time period, accounting for individuals’

predilection to return to previously visited locations or explore new destinations, and incor-

porating the effect that the frequency and recency of visits has on daily mobility trajectories

[204, 272, 16]. It becomes clear that there are various ways to approach modelling human

mobility patterns, and choosing which model to implement is determined by both the research

question and the resolution of available data.

2.3.2 Spatial Networks

Although mobility models are commonly used to capture fundamental laws in travel be-

haviour, spatial networks are also often leveraged to understand the context in which mobility

exists [19]. In spatial networks, nodes are located in a conventionally two-dimensional

space. Meanwhile, edges may or may not be associated with space, depending on the type of

network. For example, in social networks, encoding edges with spatial features may not be

informative or relevant. Spatial networks are useful in scenarios where space and proximity

is non-negligible. Street networks, for example, can be used to understand different routes

individuals may take to travel between two locations. Typically, node (V = v1,v2, ...,vn)

reflect an intersection, while the edges (E = e1,e1, ...em), which are typically directed and

weighted, reflect streets [19]. This method for modelling street networks is referred to as
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a primal graph. Conventionally, an edge, evi,v j is weighted with a cost of driving from

intersection vi to intersection v j, which can be measured based on time, speed, emissions, or

many other cost objectives. The lack of distinction between intersections, road-ends, and

network boundaries in primal graphs motivates alternative approaches for representing road

networks. To address these limitations, dual graphs can be used to model road networks, by

using nodes to represent streets and edges to capture intersections. When roads, themselves,

are the focus of a study, using a dual graph is generally a suitable choice [236]. Whereas, a

primal graph may be more contextual if one is focusing on analysing the locations in a city

[23].

2.3.3 Inequalities in Human Mobility

In 1968, John Kain proposed the "Spatial Mismatch Hypothesis", which revealed how

less-privileged individuals face disadvantages in their labour market outcomes due to their

residential location [143]. Kain suggested that residential-workplace mismatches were the

result of two urban processes in the US: employment opportunities moving to the urban

periphery and discrimination against Black residents, preventing them from moving out of

the city centre. Businesses, particularly those hiring low-skilled minorities, were incentivised

to move to the suburbs, where the price of land was cheaper. Kain’s original hypothesis

focused on spatial mismatch in the context of racial discrimination, however, discrimination

is not fundamental to the spatial mismatch hypothesis. That is, mismatches can arise from

demographic preferences for particular residential characteristics or for specific types of jobs.

These mechanisms are mentioned, not to downplay the consequences of discrimination, but

rather emphasise how disparities in commuting origins and destinations can be a result of

both structural inequalities and demographic preferences.

Regardless, long commuting distances can deter individuals from accepting a job with

many benefits, if the cost of commuting is too high [102]. Moreover, low-skill jobs tend
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to rely more on local and informal methods of hiring (i.e., word of mouth). Furthermore,

individuals in areas with low transit access and car ownership rates may be limited by their

job search radius.

The three main approaches to addressing residential-workplace mismatches are (a) mov-

ing jobs to individuals, (b) moving individuals to jobs, or (c) connecting individuals and

jobs [131]. The first two mechanisms directly address spatial mismatch. However, the last

mechanism, despite being the least invasive intervention, serves as an indirect solution that

minimises the consequences of spatial mismatch rather than the direct issue itself. Thus, it is

necessary to understand the underlying forces that are driving spatial mismatch. If a high

job search radius is the force disconnecting individuals and employment opportunities, then

interventions could entail ensuring that ad agencies in city centres include job opportunities

in the suburbs. Alternatively, improving efficiency and accessibility in public transit systems

would benefit spatial mismatches caused by high commuting costs.

Extracting how individuals perceive travel poses a difficult challenge, but there have

been efforts to use the necessity of trips, destination choice, and route choice as a proxy for

this value [202]. These metrics provide valuable alternatives for incorporating individual-

level motivation in human mobility models. This can be further extended to understand if

and how trip purposes differ across sociodemographic groups [147]. Access to descriptive

mobility data has provided insight into whether one’s mobility patterns are influenced by

their economic standing and gender [17, 3]. Through these findings, we emphasise that

understanding human mobility requires a deep understanding of how individuals choose to

fulfil different types of mobility desires.

The increased availability of mobility data has supported extending static measures of

inequality to account for one’s activity space. Activity spaces represent all the locations that

an individual has direct contact with in her daily mobility trajectories. Segregation indices,

such as isolation and exposure indices, have been modified to account for activity spaces [256,
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312]. Furthermore, Farber et al. have presented a series of indices that incorporate trip lengths

and space-time prisms to understand inequalities in mobility patterns [89, 90]. Moro et. al.

use mobility data to build an extension of the Exploration and Preferential Return model,

which identifies an association between experienced income segregation and individuals’

level of place exploration [206]. In doing so, they demonstrate how experienced segregation

is related to residential features and amenity visitation patterns. The methodology of these

studies are in line with mobility justice, which introduces the new mobility paradigm, in

which "activities are not separate from the places that happen contingently to be visited...[and]

travel is not just a question of getting to the destination" [263]. Various research in mobility

inequalities has identified exacerbated levels of income segregation following natural disasters

and relationships between income inequality and segregation in various countries, hindering

social mobility [316, 214].

While these studies highlight the benefits of considering segregation from both a resi-

dential and a mobility-based perspective, they are vulnerable to the Modifiable Areal Unit

Problem (MAUP), which refers to variance of statistical results because of how spatial scales

or boundaries are defined [220]. MAUP motivates the adoption of individual mobility data,

with studies elucidating how smaller spatial scales typically lead to larger segregation values

[311, 155]. Using individual-level mobility data, however, requires carefully considering

how to define a neighbourhood to appropriately aggregate individual-level measures to a

neighbourhood scale [317].

Furthermore, mobility data can consist of demographic, temporal, and spatial biases.

Often, mobility data, such as GPS positions from third-party smartphone applications, can

provide high-resolution trajectories of individuals. However, the demographics that are

sampled in the data may not be representative of the region being analysed [241, 166]. This

can lead to identifying mobility patterns that reflect only a portion of the entire population

[306]. Furthermore, this data, as well as mobility data from Location Based Social Networks
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that require actively checking in, are vulnerable to temporal biases. That is, certain appli-

cations may be used or avoided at certain times of day or during specific periods in a year

(i.e., holidays, weekends) [3, 271]. If temporal fluctuations are overlooked, findings may

reflect erratic behaviour, conveying mobility patterns during periods of atypically high or low

application usage as general mobility behaviour [175]. Finally spatial biases can arise based

on the extent of network coverage, leading to inaccuracies in reported GPS locations [320].

This bias is crucial to consider as it can lead to lower accuracy of findings in rural areas than

compared to urban areas [166]. In essence, data is likely to consist of one or more of these

biases, highlighting the need to engage with comprehensive preprocessing techniques (i.e.

post-stratification weighting to correct demographic biases, temporal aggregation), before

conducting any quantitative analysis.

A vast amount of research that focuses on human mobility and the built environment,

quantifies mobility in terms of trip frequency, trip length, vehicle miles travelled, and vehicle

hours travelled. These mobility characteristics are, then, compared to built environment

features. Through an extensive literature review, Ewing and Cervero found that, generally,

trip frequency is more reflective of socioeconomic factors than those of the built environment

[85]. On the other hand, trip lengths have been found to mainly be a function of the built

environment, with socioeconomic characteristics playing a less distinctive role. When

considering inequalities in the built environment, issues pertaining to self-selection bias

frequently arise [219]. That is, a high concentration of a demographic group in the urban core

could be an expression of that group’s preference to live in downtown areas. Alternatively, it

could be reflective of urban constraints that limit where individuals in that group can live.

Existing works on transport inequality show how more vulnerable groups tend to live in

more accessible areas [5]. In line with the self-selection bias, discussed earlier, disentangling

choice from constraint remains difficult.
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Many urban analysts consider how housing supply and job distributions influence resi-

dential landscapes [120, 269, 260, 209]. Similarly, others analyse how the built environment

impacts individuals’ mobility choices [85, 5, 198]. Both residential distributions and mobility

behaviour are vulnerable to self-selection bias, a prevalent issue in urban analytics [219].

For example, we might observe higher transit ridership in high-income neighbourhoods be-

cause that demographic chooses to live in neighbourhoods that prioritise transit, not because

transit serves higher income neighbourhoods better. However, it is important to note that

self-selection bias, in the context of urban dynamics, is not an equally distributed phenomena.

That is, financial, social, and urban constraints can limit where less privileged groups can

live or the areas to which they can reasonably travel, consequently restricting their ability

to "self-select". Harvey reaches this conclusion in Social Justice and the City, stating “The

rich, who have plenty of economic choice, are moveable to escape such consequences of

monopoly, than are the poor whose choices are exceedingly limited. We therefore arrive

at the fundamental conclusion that . . . the rich can command space whereas the poor are

trapped in it.” [119]. Thus, even the concept of self-selection biases contains inequalities in

terms of the extent to which the biases they can be expressed by different sociodemographic

groups.

2.4 Inequalities in Public Transit

While inequalities in access to particular destinations and travel modes have been studied for

some time, research on transport justice has only recently started to gain traction [294, 143].

In this section, we introduce transit justice from a theoretical perspective, addressing how

various justice frameworks interpret inequalities in transit. We highlight features of public

transit networks that distinguish them from other mobility networks. Then, we shift our focus

from theory to applied studies that estimate transit inequality, paying particular regard to the

three urban mechanisms underscored in this thesis.
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2.4.1 Transport Justice

The focus on improving public transportation systems is motivated by environmental and

social factors. Primarily, advocates of public transit highlight how it reduces car accidents,

traffic, and pollution [189, 208]. However, transit also provides opportunities for interaction

[178, 176]. Accordingly, many researchers have considered how various features of transit

systems can give rise to sociodemographic inequalities, with respect to physical ability,

gender, and numerous other demographics [178, 189]. Merriman et. al suggest that transport

infrastructure has been developed for particular industries that do not necessarily reflect the

values and ideals of everyone in a city [197]. Furthermore, transport researchers have revealed

the contrast between stated political goals of shifting to sustainable urban mobility and urban

planning decisions that prioritise cars [14]. Allegiance to car-oriented planning began as

early as the 1930s in the United States [217]. The rise of ‘jaywalking’ as a concept withdrew

the right to the street from pedestrians. Road construction and lane additions reflected how

planning agencies prioritised automobiles as the ideal form of mobility. This shift in urban

design has been identified to be spearheaded by oil lobbies and car manufacturers [197, 217].

Moreover, the prominence of cars facilitated suburbanisation processes [217].

Transport poverty, a field that has a large overlap with human mobility, has been gaining

prominence in the urban planning realm. It is often conflated with terms such as transport

affordability, mobility poverty, accessibility poverty, but these terms are merely a subset of

what transport poverty represents [177].

Pereira et. al. highlight how transport research focus on three main components of

transport disadvantage: uneven allocation of transport-related resources, daily mobility pat-

terns, and transit accessibility [231]. Disparities in transit resources overlook the capabilities

approach to justice, discussed in Section 2.1. For example, frequent transit service may not

be useful if residents do not travel to the areas that transit serves. Similarly, individuals

may not be able to use particular travel modes due to financial or physical ability-related
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constraints. Empirical mobility patterns have been used to explain which transport modes

and trajectories are fulfilled, rather than only considering mobility opportunities. However,

similar to the issues discussed in Section 2.2.1, disentangling individual preference from

urban constraints remains a challenge with this approach [119]. Moreover, empirical mobility

patterns tend to overrepresent privileged individuals [166]. Thus, defining inequalities solely

based on observed mobility behaviour may poorly reflect how mobility patterns align with

mobility desires.

2.4.2 Modelling Transport Networks

Transportation networks model mobility routes for numerous travel modes, from pedestrian

paths to railways. While graphs can also be used to model transportation networks, applying

the same shortest-path finding algorithms used for road networks leads to worse computa-

tional performance [20]. Choosing the appropriate pathfinding algorithm is crucial as it is

the primary bottleneck for developing efficient transit accessibility tools [59]). Shortest-path

algorithms tend to appear in transit networks in two ways: frequency and schedule-based

algorithms [170]. Frequency-based approaches condense transit timetables into travel times

and headways (the duration between consecutive transit services). Meanwhile, schedule-

based networks maintain departure and arrival information from transit data, using numerous

nodes to reflect various departure and arrival times at transit stops. Thus schedule-based

algorithms account for the variance in headways between services as well as the issue of

competing transit lines serving the same locations [171].

Dijkstra’s Algorithm is typically used to estimate the shortest path between two points

in a road network [77]. The most efficient form of Dijkstra’s Algorithm leverages a priority

queue to identify the shortest path or distance between any two nodes in a graph. Given

an origin node, O, and a destination node, D, the algorithm assigns infinity to all nodes

except the origin node, which is assigned zero. This value represents the cost of travel, either
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in length or time. Then, traversing all outgoing edges, each edge is relaxed, meaning the

algorithm checks whether destination D is reachable by an outgoing edge, at a lower travel

cost. After the current node is settled, the node with the smallest current travel cost is chosen,

and the algorithm proceeds, relaxing all of the new node’s outgoing edges. A node is settled

when all of its edges have been relaxed. The algorithm is complete with the destination node,

D has been settled. This method can be extended to a bidirectional search, in which Dijkstra’s

algorithm is simultaneously applied forwards to the source node and backwards to the target

node until a node has been visited from the two directions [66]. Ultimately it is crucial to

be intentional about how one chooses to represent road and mobility infrastructure. This

idea is further explored in the Section 2.4, in which we discuss conceptual and quantitative

differences between road and transport networks, when modelling and routing.

A prominent method for finding shortest paths in frequency-based algorithms is contrac-

tion hierarchies, a variant of Dijkstra’s algorithm introduced in Section 2.3.2 [99]. Since

frequency-based algorithms collapse travel times between nodes to a representative value,

networks can be modelled similarly to road networks, such that nodes represent transit

stops and pedestrian intersections. Then, edges between nodes can reflect travel distance or

travel time. Depending on the type of source node (transit or pedestrian node), travel time

is typically calculated as a function of distance, walk speed, and transport vehicle speed.

Contraction hierarchies exploit the hierarchical nature of road networks. That is, motorways,

country lanes, and national highways have different functions and features. In turn, roads

that are more connected have a higher importance, allowing more nodes to be settled. Thus,

contraction hierarchies depend on a two-phased process:

The first phase is preprocessing, which categorises nodes based on some formulation of

importance and contracts nodes from least to most important. Although node ordering is

known to be a difficult problem, simulating node contractions can give a reasonable result

[24, 99]. This involves sorting nodes by their edge difference and storing the nodes in a
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Algorithm 1 Shortest Path using Contraction Hierarchies

1: Input: Graph G = (V,E)
2: Output: Contraction Hierarchy CH
3: procedure GETCONTRACTIONHIERARCHY(G)
4: CH← G
5: order← compute node order ▷ ordered using edge difference
6: for all v ∈ order do
7: shortcuts← NODECONTRACTION(CH,v)
8: CH←CH ∪ shortcuts
9: return CH

10: procedure NODECONTRACTION(CH,v)
11: shortcuts← /0
12: for all (u,v) ∈CH ∧ (v,w) ∈CH do
13: if ISNECESSARYSHORTCUT(CH,u,v,w) then
14: shortcuts← shortcuts∪{(u,w)}
15: Remove node v and its adjacent edges from CH
16: return shortcuts
17: procedure ISNECESSARYSHORTCUT(CH,u,v,w)
18: shortest_path← SHORTESTPATHQUERIES(CH,u,w)
19: return length of (u,v)+(v,w)< length of shortest_path
20: procedure SHORTESTPATHQUERIES(CH,u,w)
21: Use bi-directional Dijkstra’s to find the shortest path from u to w
22: return length of the shortest path
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priority queue. The edge difference for a node v can be found by simply subtracting the

number of shortcut edges added when a node is removed, from the number of edges removed

from v.

Then, the node contraction step follows, where U refers to the set of source nodes that

have incoming edges for a node v and W represents the destination nodes to which v has

outgoing edges. For each node v, from least to most important ordering, edge differences are

recomputed for all nodes that have still not been settled. If the current node v no longer has

the smallest edge difference, the priority queue is rebalanced and the first node in the updated

priority queue is now considered the focal node. Then, a series of local shortest path queries

are run from all incoming nodes in U on a subgraph that excludes node v. If the shortest path

that is found is less than the edgeweight(u,v)+edgeweight(v,w), then a shortcut edge is

added between nodes u and w with the weight found by Dijkstra’s algorithm. This process is

repeated until the most important node is removed. Then, a new graph, G′, is constructed

such that it has the original nodes and edges, as well as the shortcut edges found through the

contraction process.

The second phase consists of querying shortest paths from a set of origin and destination

points, in which a bidirectional Dijkstra search is applied to the contracted graph, G′. Details

on the bi-directional can be found if the following references [21, 66]. The main point to

emphasise is how the modelling of transport networks diverges from the reality of using them.

While contraction hierarchies are computationally efficient for routing on road networks,

and are frequently used in the context of transit networks, the next paragraph offer potential

alternatives that steer away from the use of priority queues and hierarchical speedups.

Contraction hierarchies leverage the hierarchical nature of road networks. This may

be suitable when modelling transit networks using representative timetable data, however,

constructing networks to incorporate the specifics of transport timetables requires considering

alternate techniques, which incorporate the time spent waiting for transit and transferring
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between travel modes. Public transit networks are fairly similar to road networks as both

networks model spatial information. However, they diverge from road networks, in that

transit networks need to account for the timetables of public transportation.

When modelling the temporal components of transit, the most straightforward approach

is through using a time-dependent model [238]. Time-dependent models configure nodes

to capture the arrival or departure of a given transit vehicle at a given station. Then, edges

can reflect either waiting at a station between an arrival and departure event or travelling

from a departure event in one station to an arrival event at another. Another approach is the

time-expanded model, that builds off the time-dependent model, to incorporate the time it

takes to transfer between transport vehicles [238, 20]. Thus, each node in the time-dependent

model is duplicated in the time-expanded model, such that one node will represent being

on board a vehicle at the station, and the duplicated node reflects being at the station after

alighting the vehicle.

When we consider modelling transport networks on such a detailed level, three major

issues with using contraction hierarchies for pathfinding arise [20]. First, bidirectional

searches are more complex when applied to time-expanded constructions of transit networks,

as usually the target station is known, but the node at the target station is still ambiguous.

Second, the hierarchical structure of road networks does not simply translate to that of the

time-expanded transit network, because it requires applying local searches to a significantly

larger set of nodes. Third, the high node degree in transit networks does not lead to a

significant speedup when contracting nodes. Additionally, contraction hierarchies optimise

for the criteria of finding the shortest path without considering other objectives that are

relevant when using public transit, like financial costs and the number of transfers.

Thus, solutions such as the Connection Scan Algorithm (CSA) and the Round-bAsed

Public Transit Optimised Router (RAPTOR) were proposed [76, 65]. Notably, both these

algorithms do not depend on the use of graphs. CSA models transit timetables by defining
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the set of transit stops, transit connections, and pedestrian footpaths, in a given region, where

connections refer to a transit vehicle departing a stop pi at time tx and arriving at stop p j at

time ty:

Algorithm 2 Shortest Path using Connection Scan Algorithm [76]
Input: timetable, source stop s, target stop t, minimum departure time τs, maximum
arrival time τt

2: Output: The set of all ( jdep_time, jarr_time) over journeys j s.t.
• j departs at or after τs at s

4: • j arrives before or at τt at t
• the pair (− jdep_time, jarr_time) is Pareto-optimal among all journeys

6: • j contains at least one leg
for all stops x do

8: S[x]← ∞

for all trips x do
10: reset T [x]

for all footpaths f from s do
12: S[ farr_stop]← τ + fdur

Find first connection c0 departing not before τ using binary search
14: for all connections c increasing by cdep_time starting at c0 do

if S[t] ≤ cdep_time then
16: Algorithm is finished.

if T [ctrip] is set or S[cdep_stop]≤ cdep_time then
18: raise T [ctrip]

if carr_time < S[carr_stop] then
20: for all footpaths f from carr_stop do

S[ farr_stop]← min(S[ farr_stop], carr_time + fdur)

Trips can, then, be defined by subsequent connections between the same vehicle. A single

array represents every connection, sorted in order of departure time, with a value representing

the earliest time a stop can be reached. When initialised, the only non-infinite representative

value is the departure time of the source stop. Then, CSA iterates though each connection

and, in the case that the arrival time at the current connection improves the arrival time at the

destination, the representative value at the destination is relaxed. In this manner, the array is

only scanned once. Although it does not require a computationally expensive preprocessing

phase, its efficiency is dependent on the size of the timetable. Furthermore, CSA can be
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extended to include multi-objective searches [76]. A particularly relevant limitation of CSA,

that is not present in RAPTOR, is the fact that restrictions in features of the footpath graph

(i.e., the need for it to be transitively closed) do not allow for instances that model unrestricted

walking [296].

RAPTOR offers another efficient, non-graph based solution to routing within transit

networks [65]. Using simple data structures and dynamic programming, RAPTOR works

in rounds, where each round represents a transit transfer, ensuring that every route is only

traversed at most once for each round. In this manner, RAPTOR can optimise not just

shortest journeys in terms of travel time, but also in terms of transit-related objectives, such

as number of transfers or transit fares (when using McRAPTOR, an extension of RAPTOR).

To initialise the RAPTOR algorithm on a given transit timetable, each transit stop is defined

with a label, τ∗(pi). Here, pi reflects a given stop and τ∗ represents the earliest time one can

arrive at stop pi with at most i−1 transfers:

All lists are initialised to infinity, except for the source transit stop, ps, which is initialised

to τ , the departure time. Furthermore, the associated footpath, F , models footpath transfers

between transit stops, such that F is transitive and l(pi, p j) reflects the walking time between

stops i and j. As a reminder, each round, k, determines how to reach every stop with at

most k−1 transfers. The RAPTOR algorithm can be succinctly summarised into three steps,

that occur for a given round k, for which the goal is to compute τk(p), for all p. First, the

algorithm applies the upper bound for τk(p) to be τk−1(p). In simpler terms, for a given

number of transfers, this limits the earliest arrival time, at a given stop, to be no greater

than the earliest arrival time at that stop, when we consider any smaller amount of transfers.

Second, the algorithm finds all stops that are accessible and traverse the associated RAPTOR

of those stops, updating any stops with improved arrival times, if fitting. Finally, RAPTOR

accounts for any transfers using footpaths. That is, for any footpaths that connect the current

stop pi to another stop p j, if τk(pi)+ l(pi, p j) is less than τk(p j), τk(p j) is updated to this
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Algorithm 3 RAPTOR Algorithm [65]
1: Input: Source and target stops ps, pt , and departure time τ .
2: // Initialization of the algorithm
3: for all i do
4: τi(·)← ∞

5: τ∗(·)← ∞

6: τ0(ps)← τ

7: mark ps
8: for k← 1,2, . . . do
9: // Accumulate routes serving marked stops from previous round

10: Clear Q
11: for all marked stop p do
12: for all routes r serving p do
13: if (r, p′) ∈ Q for some stop p′ then
14: Substitute (r, p′) by (r, p) in Q if p comes before p′ in r
15: else
16: Add (r, p) to Q
17: unmark p
18: // Traverse each route
19: for all routes (r, p) ∈ Q do
20: t←⊥ // the current trip
21: for all stops pi of r beginning with p do
22: // Can the label be improved in this round?
23: Includes local and target pruning
24: if t ̸=⊥ and arr(t, pi)< min{τ∗(pi),τ

∗(pt)} then
25: τk(pi)← τarr(t, pi)
26: τ∗(pi)← τarr(t, pi)
27: mark pi

28: // Can we catch an earlier trip at pi?
29: if τk−1(pi)≤ τdep(t, pi) then
30: t← et(r, pi)

31: // Look at foot-paths
32: for all marked stops p do
33: for all foot-path (p, p′) ∈ F do
34: τk(p′)←min{τk(p′),τk(p)+ l(p, p′)}
35: mark p′

36: // Stopping criterion
37: if no stops are marked then
38: stop
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value. RAPTOR provides an efficient solution that can be parallelised and can provide

dynamic results due to its lack of preprocessing.

Having described the differences between various transit routing algorithms, we now intro-

duce two, state-of-the-art, open source tools for modelling transit accessibility: UrbanAccess

and r5py [31, 230]. We use both these tools throughout this thesis and despite them having

similar functionality, they have distinct differences in design and methodology that are

worth addressing. In terms of similarities, however, UrbanAccess and r5py depend on

General Transit Feed Specification (GTFS) data and road network extracts, which we gather

from OpenStreetMap [221]. GTFS refers to a popular data format that describes transit

service by defining transit stops, routes, and schedules. OpenStreetMap is an open-source

database of geospatial information, such as roads and amenity coordinates. Further details on

OpenStreetMap and GTFS data structures are outlined in Chapters 3.3 and 3.4.1, respectively.

UrbanAccess configures nodes represent transit stops and street nodes. Thus, there are

four types of edges: (1) edges connecting two transit stops (2) edges connecting two street

nodes (3) edges connecting a street node to a transit node and (4) edges connecting at transit

node to a street node. The directed, transit-transit edges, and corresponding edge weights,

are created from the GTFS operational schedule, with respect to the user-specified day and

time window. The directed, transit-pedestrian edges connect every transit stop to its closest

pedestrian node, deriving travel time using distance and an assumed walking speed of three

miles per hour. Meanwhile, the undirected, pedestrian-pedestrian edges use the distance

between each node pair in the road network to weight the edges with travel time, again

assuming a walking speed of three miles per hour. Finally, the directed, pedestrian-transit

edges, similar to the transit-pedestrian edges, maps every transit node to its nearest pedestrian

node. However the pedestrian-transit edges account for wait time at the transit stops based on

average transit headway – the amount of time between transport vehicles at a stop. Thus, the

pedestrian to transit edges differ from the transit to pedestrian edges, in that they account for



2.4 Inequalities in Public Transit 41

both the walking time from pedestrian to transit nodes and the wait time at the transit stop.

Further details regarding the construction of the transit-pedestrian network can be found

in [31]. To calculate transit accessibility, UrbanAccess uses Pandana, which leverages

contraction hierarchies to efficiently calculate travel access [94]. With this package, it is

possible to calculate travel metrics such as the travel times between points or the cumulative

opportunities accessibility index for a given zone.

While UrbanAccess is built using C++, r5py is a Python library that seamlessly inte-

grates with the Rapid Realistic Routing on Real-world and Reimagined networks (R5) routing

engine, which was created by Conveyal [230, 59]. r5py leverages RAPTOR, a dynamic

pathfinding approach that is easily parallelisable, as opposed to Dijkstra variants, and can

solve multi-objective tasks, which can include minimising travel times, wait times or the

number of transfers [65].

2.4.3 Accessibility

Accessibility can take on multiple definitions, due to the fact that it spans the fields of socioe-

conomic inequality, urban planning, and transportation [78]. We point out that accessibility

can sometimes be used to refer to how easily people with disabilities can enter or access

different facilities. However, within the context of this thesis, accessibility describes how

individuals can reach different areas, through various mobility services such as transport sys-

tems or street networks. Early formulations of accessibility aimed to encapsulate opportunity

attractiveness by describing how land use intersects with transportation systems. Other early

definitions include measuring how easy it is to reach any land-use activity from a given point

[116, 56]. Over time, socioeconomic and temporal dimensions were incorporated, to develop

a better understanding of whether more privileged groups command space in terms of the

areas to which transit provide access, while less privileged demographics are constrained by

it [119, 45, 28].
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Most methodologies for defining transit accessibility can be classified as either system

accessibility, system-facilitated accessibility, or integral accessibility. These categories

are similar to the concepts of relative and integral accessibility, introduced by Ingram, where

relative accessibility estimates how connected two locations are and integral accessibility

reflects how connected a location is to all destinations in a region [133]. System accessibility

analyses proximity to transport links, essentially examining topics surrounding first mile

problems that evaluate the ease at which individuals can reach a transit stop to begin their

desired journey via transit. System-facilitated accessibility assesses how individuals can

arrive at their desired destinations using the transit system, contrasting system accessibility,

which determines how easy it is to reach an entry point in the transit network that will

presumably connect them to their destinations. Integral accessibility captures overall access to

numerous endpoints, incorporating multiple forms of transit modes and types of destinations

[193]. Each of these categories reflect different objectives individuals may have when

considering to use public transportation. Of particular importance to this thesis is system-

facilitated and integral accessibility. We leverage both concepts to provide a thorough

overview of how transit accessibility changes depending on the theoretical perspective being

considered. That is, system-facilitated accessibility can capture how transit serves particular

types of journeys, be it commutes or amenity visitations, whereas integral accessibility

combines the privilege of choice with transit service to understand general accessibility

considering all potential destinations. Thus, we focus on describing modelling approaches to

measure these two categories of accessibility. For details on models of system accessibility,

which is not covered in this thesis, we refer readers to the following references [92, 55].

Models that analyse system-facilitated accessibility account for both proximity to entry

points in the transit network and distance to particular destinations through the transit network.

There are several methods for estimating shortest paths in a transport network, which is

outlined in Section 2.4.2. As a result, depending on the chosen algorithm variations in
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accuracy can arise. While some methods incorporate wait times, transfer times, and transit

frequency, others model public transit as a static network and apply classical shortest-path

algorithms, such as Dijkstra’s, which is described in Sections 2.3.2 and 2.4.2 [289, 210].

Typically, system-facilitated methods measure travel cost in terms of travel time, which is

function of travel mode and distance [185]. This avoids the conflation of differences in speed

between pedestrians and transit vehicles that would occur if travel costs were measured

in distance. Moreover, Aman and Smith-Colin introduce the comprehensive public transit

accessibility (CPTA) score to estimate access at different spatial resolutions. This metric

includes features of system and system-facilitated accessibility as well as characteristics of

transit frequency, flexibility, and efficiency [7].

Integral accessibility models have proposed metrics for representing general accessibility

to opportunities, but most tend to fall short at incorporating destination quality and importance

into their measures. While numerous such models exist, a significant contribution is the

approach introduced by Farber et. al., which incorporates temporal features of the transit

system by measuring travel times to the ten closest supermarkets from 06:00 to 22:00 [88].

This method, similar to the approaches we use, leverages GTFS feeds and Dijkstra’s algorithm.

Integral accessibility models have also been used to highlight how transit inequalities exist

when considering affordability, specifically showing the significant impact that financial

costs have on accessibility [176, 80]. The following sections highlight relevant research

in transport poverty regarding residential-workplace landscapes, segregation, and the built

environment, to better frame how transit accessibility fits into each spatial perspective.

2.4.4 Transit-Oriented Commuting Behaviours

Having addressed different ways of measuring transit accessibility, we now shift to discussing

how such metrics can be incorporated into understanding commuting behaviours. Many

works have highlighted the various reasons how proximity plays a role in connecting employ-



44 Literature Review

ment and housing landscapes. Some explanations include the cost of commuting [108] and

residential markets supplying housing to particular demographics, resulting in dense com-

muting flows between specific neighbourhoods [122]. Moreover, the interconnected nature

of residential and workplace segregation emphasises how housing markets and employment

opportunities further contribute to experienced inequalities [82, 282]. Suburbanisation of

particularly low-earning jobs, concentration of low-income households in urban cores, and

outdated transit systems that support suburb to city centre flows all contribute to the growing

inaccessibility of employment opportunities [5, 243, 197, 167, 56]. Commuting burdens, in

terms of time and distance, have been shown to be connected with numerous health problems,

including depression [117].

The rising availability of transit data has allowed for temporal, high-resolution of com-

muting behaviour. This is useful when exploring socioeconomic disparities in how transit

connects residential and employment landscapes. Temporal data is relevant as low-wage

workers tend to have work schedules that diverge from the typical 9-5 work day, around

which transit systems plan their service [159, 91]. Furthermore, low-wage workers tend

to have the highest rates of transit dependence, underscoring the importance of reducing

commuting transit burdens they face [139]. While decades of literature exploring the validity

of spatial mismatch exist, few quantitative works have interpreted spatial mismatch from

both a residential-employment landscape perspective and a public transportation one [84].

Some works that have studied the intersection of public transportation and spatial mismatch

have used a gravity model, weighted by job demand, transit travel time, and transit costs, to

measure job accessibility at a neighbourhood level [264, 168]:

Ai =
n

∑
j=1

E j f (Oi j)

S j
, (2.8)

f (Oi j) = exp(−β (wTi j +Ci j)), and (2.9)



2.4 Inequalities in Public Transit 45

S j =
n

∑
k=1

Pk f (Ok j). (2.10)

In these equations, Ai measures the transit access for low-wage job seekers in a neigh-

bourhood i. It is calculated as a function of the number of jobs (E j) in a neighbourhood j,

the travel friction between two neighbourhoods ( f (Oi j)), and the demand for jobs in j (S j),

for all neighbourhoods, J, in a region. The travel friction ( f (Oi j)) is simply a function of

the minimum wage (w), travel time (Ti j), and travel cost (Ci j). Meanwhile, the demand for

jobs in a neighbourhood j (S j) can be derived by summing the product of the number of

poor job seekers in a neighbourhood k (Pk) and the travel friction between the two neigh-

bourhoods ( f (Ok j), for all neighbourhoods, K, in a region. Consequently, the authors of

Ref. [168] find that, for all 50 US metropolitan regions analysed, transit provides higher

access to high-earning employment opportunities than to low-earning ones. Furthermore,

they confirm hypotheses of job suburbanisation by identifying how vulnerable demographics

that reside in the core of the city suffer from poor service to their jobs, which are located in

the suburbs. These findings highlight how transit planning is still shaped around outdated

urban landscapes, in which transit provided job access when jobs were concentrated in the

core.

Apart from the aforementioned research, summarising the extent to which vulnerable

demographics suffer due to spatial mismatch remains fairly unexplored from the transit

perspective. Even more unexplored is the role that housing mechanisms, such as housing

stability and affordability, play in spatial mismatch and transit service. An existing study

analyses the relationship between availability of affordable housing and commute distances,

hypothesising that more availability is associated with smaller commute distances [314]. To

calculate the jobs-housing fit, they employ a linear distance decay function to estimate the

ratio of jobs to rentals in proximate neighbourhoods. In doing so, they find that a lower stock

of affordable housing relates to longer commute distances. This study explores residential

landscapes in a more nuanced manner, by defining residential locations based on housing
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availability rather than socioeconomic composition. However, it is limited in that it only

interprets commutes in terms of distance, overlooking the significant role that transit service

plays for providing mobility options to more vulnerable demographics.

While these papers use the same employment datasets as we do in this thesis (from

the US Census Bureau), they are either lacking in nuanced modelling of transit service

or detailed estimation of housing characteristics. Although the framework we present in

Chapter 3 of this thesis does not account for transit fare, we analyse spatial mismatch in

residential-employment landscapes in the context of transit, specifically contributing novel

definitions of residential vulnerabilities, by proposing a metric to quantify the numerous

dimensions of housing insecurity. Furthermore we estimate commuting times by using transit

networks to model transit journeys from residential to employment locations. Accordingly,

we provide a nuanced look as to how inadequate and unstable housing conditions intersect

with employment opportunities and different travel modes for commuting.

2.4.5 Segregation in Public Transit

Public transit is a crucial component of urban environments, providing access to employment

opportunities and amenities within a region. However, characteristics of transit systems,

such as its urban layout and service frequency, can create pockets of transport deprivation,

isolating particular neighbourhoods from conveniently accessing transit service [213]. This

is dire for demographics that rely more on public transportation as their mode of transport

[130, 139]. Lack of access to transport can impact how individuals perceive their activity

space, by restricting or providing access to particular destinations [287]. Inequalities in

transport systems, and the types of amenities and neighbourhoods they provide access to,

is important to consider as it can impact the level of choice that disadvantaged groups have

when using transit [287].



2.4 Inequalities in Public Transit 47

There has been a considerable body of literature that focuses on segregation, public

transit and mobility [216, 1, 319]. The authors of Ref. [216] utilise difference-in-differences

estimations to analyse the causality between rail transit investments and income segregation

in the US, measuring segregation at both the neighbourhood and metropolitan scale. To offset

bias, considering that the process of adding new rail stations to particular neighbourhoods is

not random, the authors further incorporate propensity score matching to compare similar

neighbourhoods. They measure segregation at the neighbourhood level using the index of

ordinal variation, whereas they use the information theory index for calculating metropolitan-

level segregation [158, 286]. They used a fixed effects model to ultimately determine

that the addition of rail stops over a 20 year period, does not significantly impact the

residential segregation of a metropolitan area. While this work analyses how changes in

transit system accessibility are associated with changes in residential inequalities, other

works have incorporated high-resolution mobility data to estimate relationships between

transit infrastructure and more dynamic forms of segregation, based on activity spaces.

For example, Abbasi et. al. use smart-card data in Seoul, South Korea, to understand

temporal patterns in destination-based socioeconomic segregation [1]. By applying segre-

gation indices of dissimilarity, exposure, and diversity to the socioeconomic composition

of destinations, they uncover temporal patterns of segregation in Dongs, the administrative

spatial subunit in South Korea. Namely, they highlight how throughout the afternoon and

evening more central areas tend to have lower levels of segregation across all social groups.

Furthermore, weekends tend to have more homogeneity, in terms of social interaction. Finally,

passengers with disabilities tend to be more segregated during the weekends, compared to

other sociodemographic groups. Another study uses Safegraph, which is the same mobility

data source used in this thesis, to understand experienced partisan segregation in the US

[319]. After calculating the partisan composition of different destinations they calculate

segregation at the place-level:



48 Literature Review

PPSi =
3
4

3

∑
p=1

∣∣∣∣τp−
1
3

∣∣∣∣, (2.11)

where τp reflects the proportion of each group, p, in a place, i, considering Republicans,

Democrats, and others as the three partisan groups. 3
4 acts as a normalisation factor, such that

PPS ranges from 0 to 1. This equation is inspired by previous mobility research that looks at

experienced income segregation [206]. They further aggregate this to a community-level:

EPS j =
M

∑
i

PPSi ·ηi, (2.12)

where M is the number of destinations, and ηi is correlated with how many residents in j are

visiting destination i. We point out these metrics as there are similarities across this method-

ology and the one we present in Chapter 5, particularly when aggregating from place-based

segregation to a neighbourhood-level measure. In defining these metrics, the authors show

that destination-based partisan segregation exhibits larger stratification that that of income or

racial segregation. They highlight cities in Southern and Northeastern regions as having dis-

tinctively higher levels of partisan segregation. One limitation, that our framework also faces

due to using the same data source, is inferring mobility patterns from neighbourhood-level

features. Furthermore, the authors implement ordinary least squares regression models to

predict place-based partisan segregation using metropolitan-level characteristics. In doing

so, they find that geographically central, liberal, lower socioeconomic status, and majority

black cities tend to have significantly higher levels of partisan segregation. While both

these works apply segregation indices to mobility data, they consider segregation only at

the destination-level. This leaves room to explore how residential and amenity layouts can

lead to segregated mobility flows. In addition, one can analyse how transit facilitates these

flows and how experienced segregation changes from these different urban contexts (i.e.,

residential, transit use, amenity).
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A recent work, which studies transit inequality in Shenzen, China, uses two mobility

datasets to compare disparities in activity spaces based on travel mode [98]. The authors

leverage transit smart card data and license plate recognition data to analyse differences

in accessibility based on travel mode. They reveal that individuals using private cars have

higher access to amenity opportunities. They also showed how disparities in activity space

were less present in the urban core, compared to the urban periphery. Finally, they find that

areas that are vulnerable to transit-related social exclusion exist in the urban periphery. Both

the methodology in Ref. [98] and the framework we introduce in Chapter 5 analyse social

exclusion from a transit-oriented perspective. However, while the methods in Ref. [98]

compare differences in mobility and accessibility between public transit and private vehicle

users, our approach leverages amenity visitations data to understand how segregation can be

experienced not only in terms of destinations, but also while using transit, due to residential

landscapes, amenity locations, and transit dependence. Thus, our research focuses on how

segregation is exhibited both in terms of transit service and transit use.

2.4.6 Transit and the Built Environment

Existing works on transport inequality show how more vulnerable groups, such as low-income

households, tend to live in more accessible areas [5]. In line with the self-selection bias,

discussed earlier, disentangling choice from constraint remains difficult. Another prominent

concept within transportation research is transit-oriented development (TOD), introduced by

Peter Calthorpe, which combines land-use, transportation, and urban planning to improve

accessibility and use of transit systems [47]. TODs encourage making neighbourhoods

mixed-use spaces that have access to transit within a 600 meter radius. The goal of TODs

was to shift away from car-dependence and balance travel modes. Understanding how

neighbourhood characteristics impact transit use has revealed how TOD residents are more

likely to walk, cycle, and use transit compared to their non-TOD counterparts [144].



50 Literature Review

While these studies underscore relationships between transit-related features in neigh-

bourhood and transit use, concerns regarding self-selection bias, discussed in Section 2.3.3,

have lingered. In other words, individuals who prefer to use public transit may choose to

live in neighbourhoods with better transit service. Consequently, neighbourhoods with high

transit access may exhibit higher rates of transit use, not because better access motivates

more travel by transit, but because these neighbourhoods attract residents who prefer using

transit. In response to these concerns, Millard-Ball et. al. leverage the competitiveness of

residential lotteries in San Francisco to control for self-selection bias in residential choice

[198]. Thus, they show how having transit-rich neighbourhoods reduces car usage and that

higher walk and cycle access similarly increases the chances of these travel modes being used.

Interestingly, they also highlight how unavailability of parking spaces more significantly

impacts car ownership, compared to transit access.

Although TODs offer potential solutions to encouraging transit use, other researchers

have focused on understanding transit in the context of the urban built environment [51, 97].

Considering urban form is distributed differently across space and that transit largely relies

on urban forms, the built environment is typically thought to have some degree of impact on

transit service and use [290, 51]. However, it is not solely transit access that is spatially varied

across different neighbourhood characteristics, but also residential locations (due to zoning

restrictions and housing markets) and employment locations [314, 265]. This is a crucial

point to consider, because just as similar individuals can cluster due to demographic-level

preferences, discriminatory housing and employment policies can perpetuate residential

distributions [150]. Keeping in mind that transit has been shown to better serve areas with

more urban features and that numerous mechanisms can contribute to residential segregation,

it is crucial to understand how transit inequalities exist in different types of urban settings

[52]. Overlooking the overlap between the built environment and residential distributions

can lead to identifying better transit access for low-income individuals [314, 5, 223]. These
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works briefly acknowledge the importance of considering how low-income individuals living

in the urban periphery may encumber multiple burdens as a result of their financial and

mobility disadvantages.

Furthermore, these studies, that span the regions of Bogotá (Colombia), 8 metropolitan

regions in Canada, and Seattle (USA), typically use variations of accessibility metrics

discussed in Section 2.4.3 [314, 5, 223]. The study in Seattle defines transit access with

respect to the density of transit stops, routes, and transit frequency as a proxy for good service

in a housing cluster’s buffer [314]. While these proxies are informative to an extent, frequent

service can be rendered useless if it does not provide access to desirable locations. The

studies analysing Colombia and Canada provide a more nuanced look at transit accessibility

[5, 223]. The authors in Ref. [223] use a function of travel time, travel cost, and the

number of non-work opportunities, such as amenities associated with healthcare and leisure.

Additionally, this function is fit with a calibration parameter, β , which is based on least-square

linear regression models that use empirical transit trips to estimate how travel costs relate

to reduced accessibility. The limitations with this work, include travel data being derived

from outdated survey data and dependence on linear relationships to describe accessibility.

Finally, the authors of Ref. [5] focus on accessibility with respect to commuting behaviour.

Thus, their measure of transit accessibility is a function of job opportunities, commute

times, and workers in the employment location. Again, their main limitation, aside from

not controlling for the intersection between residential and built environment landscapes,

is how they compute travel times, as they depend on a inverse-power decay function that

returns a value of 0.5 for commutes that are a half hour, and returns 1 for commutes that

are zero minutes. Thus, shorter commutes have a larger weight. To address this gap, we

introduce a framework that analyses socioeconomic inequalities in transit service, with

respect to different types of urban neighbourhoods, leveraging built form characteristics to
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define these categories. Moreover, we use more nuanced estimations of travel time via transit

by integrating open-source transport modelling tools.

As a final point, in Section 2.2.4, we introduced the 3D’s (design, density, diversity),

which have been conventionally viewed as the three main components of the built environ-

ment. The majority of research in this field analyses how the built environment impacts

transit ridership. Thus, their measure of the built environment includes expressions of transit

service, such as distance to transit and destination accessibility. In this manner, these works

can incorporate features of transit service into their built environment measure, to compare it

against transit ridership characteristics.

2.5 Literature Gap

The previous sections provided a general background on inequality, human mobility, and

transportation research, with a particular focus on urban areas. In this section, we leverage

these concepts to draw attention to the two main research gaps our work aims to fill. At

large, research on transit poverty tends to treat measuring complex inequalities and detailed

transit modelling as mutually exclusive. We distil this larger issue into two distinct gaps

in the literature. First, research on transit poverty that leverages detailed transit models

tend to overlook the capabilities approach to justice. Second, few works in transit research

that incorporate complex inequalities, such as housing instability or the effects of the built

environment, tend to quantify transit systems using coarse proxies (i.e., transit stop density,

number of routes). The lack of modelled complexity from either the sociodemographic

inequality or transport system perspective makes research findings difficult to translate into

effective policies that can reduce disparities in public transit.

The first research gap highlights how conventional approaches to transport research

overlook how neighbourhoods with high transit access may still have embedded inequalities

due to financial constraints, physical disabilities, and fear for safety, all of which are associ-
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ated with vulnerable demographics [37]. As discussed in Section 2.4.3, much of transport

research focuses on access to public transportation, be it from a system, system-facilitated,

or integral perspective. Although these approaches reveal blatant spatial disparities in transit

systems, they do not account for the capabilities approach to justice, discussed in Section

2.1. Specifically, they do not address how demographic groups, that already face other urban

inequalities, may experience compounded burdens due to how transit serves them [185, 7].

Policies shaped from these findings, such as transit subsidies or the addition of new transit

lines, likely reduce spatial disparities in transit accessibility, but disregard how constraints

due to spatial dependencies or financial status may still prevent individuals from using transit.

On the other hand, the second research gap emphasises the importance of detailed transit

modelling. That is, research that accounts for compounded inequalities in various aspects of

urban life (i.e., housing, employment, support network connectivity) tend to model transit

service using methods that simplify public transportation infrastructure [1, 98]. In doing

so, the nuances that come with using transit, such as the number of transfers or time spent

waiting for transit, are overlooked, making it difficult to identify which transit journeys are

reasonable for demographics that are trying to avoid long walks to transit links, high travel

fares, or long wait times due to safety or financial burdens. Furthermore, while research

in human mobility addresses inequalities in activity spaces of various sociodemographic

groups, few works in transport research have interpreted transit inequality from a similarly

dynamic perspective. Thus, despite measuring features of inequality, such as segregation,

they fail to capture the complexity of transit systems and, importantly, how transit service fits

into the larger context of various urban mechanisms (employment landscapes, urban sprawl).

Consequently, it remains unclear how inequalities in transit service arise for different trip

purposes.

Ultimately, it is crucial to incorporate intricate features from the perspective of sociode-

mographic inequalities and transit modelling. Forsaking one of these perspectives can lead to
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misinterpreting where and why transit inequalities arise and can potentially lead to unsuccess-

ful interventions. To contribute to filling these gaps in the literature, we incorporate theories

and methods from the research fields of demographics and human mobility to consider struc-

tural and experiential transit inequalities within three urban mechanisms: housing insecurity,

urban segregation, and the built environment. Accordingly, in the following chapters, we

present three frameworks for understanding how spatial inequalities in urban areas intersect

with transport justice.



Chapter 3

Materials and Methods

In this chapter, we introduce the main data sources that are used throughout this thesis.

The data sources are delineated by four different categories: demographic, geospatial,

mobility, and public transit. For each of the three perspectives explored in this thesis, transit

and socioeconomic data sources are necessary for assessing disparities in public transport

service. Meanwhile, housing data is particularly useful for characterising neighbourhood-

level vulnerability to housing insecurity, which we leverage to highlight inequalities in

residential-workplace dependencies. Furthermore, mobility data serves to parameterise agent-

based models, which are used to estimate more dynamic forms of experienced segregation.

Finally, spatial data informs features of physical spaces, serving to contextualise transit

inequality in the context of the built environment.

3.1 Population Data

Residential neighbourhoods have long been studied to better understand the context in

which individuals live [137, 233, 54]. Geodemographics, which entails deriving quantitative

measures of individuals based on where they live, is often made available by national-level

census surveys [225]. Smaller spatial subdivisions (for example, states or counties in the US
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context) have also provided extensions to such data sources. In this section, we outline the

relevant population-level surveys that can be used to inform the sociodemographic makeup of

different regions. Furthermore, we discuss estimation errors that exist within such datasets as

a result of anonymisation and protecting civilians’ privacy. Finally, we focus specifically on

characteristics related to housing conditions, which we use in 3 to define residential locations

that are vulnerable to housing insecurity.

3.1.1 Socioeconomic Status

This thesis focuses on transit inequality in the context of the United States of America (US).

While national census surveys exist for other countries, at varying scales, this section focuses

on socioeconomic data provided by the US Census Bureau. Additionally, our work analyses

disparities at the census tract and block group level. Census tracts are subdivisions of a

county and aim to have a population of 4,000, although the population can range from 1,200

and 8,000 people. Meanwhile, census block groups CBGs, which are the smallest spatial unit

that the Census Bureau publishes data for, typically consist of 600 to 3,000 individuals. When

data is available, we conduct our analyses at the CBG-level, as it is a higher spatial resolution.

Regardless, the following chapters will specify the spatial resolution that is chosen.

The American Community Survey (ACS) is a recent addition to census data, providing

a more detailed overview of US residents, compared to the decennial census, which would

provide national survey data of large sample sizes, but at a low frequency. [275]. While the

decennial census is conducted less frequently, its large sample size tends to result in smaller

margin of errors. However, because the ACS depends on monthly surveys of much smaller

sample sizes, it suffers from less certainty. Thus, while it is helpful in terms of informing

population changes at a higher temporal resolution, it should not be considered as the ground

truth. Furthermore, two points should be noted. First, regardless of transparency, any survey

that depends on sampling methods will be accompanied by some degree of uncertainty.
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Second, both the decennial and ACS censuses provide complementary datasets informing the

extent of error in sampling. Sampling errors tend to be exacerbated in more heterogeneous

neighbourhoods due to the small sample size of the ACS [242, 275]. While uncertainty in

the ACS is a result of sampling techniques and trade-offs made by the Census Bureau, it

remains the best option for high-resolution geospatial data analysis.

In this thesis, we measure socioeconomic demographics using median household income

[17, 10, 303] and household income distributions [309, 254, 299]. Median household income

indicates, for a given spatial unit, the income level of which half the households earn less

and the other have earn more (central tendency). Some limitations of the median household

income include that it does not incorporate either features of household composition or

regional characteristics reflecting the local cost of living. However, this omission allows

cross-regional comparison across the US, as adjusting income levels using local features

obscures differences in purchasing power across larger spatial regions. Furthermore, the

median household income is useful, in that it is robust to outliers in income distribution.

Income data from the US Census Bureau is typically reported at the household level, and can

be found in Table B19013 of the ACS [42]. It includes the incomes of household members

older than 14 years old and is derived from the distribution of income for all households in a

region, even those that have no reported income.

We define segregation by leveraging information regarding the income distribution in

an area. While the median household income is useful for conveying the socioeconomic

level of the typical household in a region, household income distributions are helpful for

identifying the extent of poverty or inequality within a neighbourhood. That is, while the

median household income is convenient for inter-neighbourhood comparisons that are robust

to outliers, the household distribution is sensitive to change, making it a convenient tool for

identifying from which end of the distribution inter-neighbourhood disparities are arising.

Thus, we define residential segregation by drawing upon Table B19001 in the 2020 American
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Community Survey 5-Year Estimates (ACS), provided by the US Census Bureau. Household

income distributions across 16 income brackets, from Table B19001 of the ACS, inform the

economic composition of a neighbourhood, at the Census Block Group (CBG) level [43].

We define segregation with respect to income brackets provided by national economic

indicators, as this allows for cross-regional comparisons and prevents any biases that may

arise for local economic features. One such bias includes cities using different methodologies

to measure and report socioeconomic indicators, leading to variances in accuracy across

regions. Incorporating local income characteristics can provide a clearer picture of segre-

gation within a particular city. For example, segregation measures for a wealthy city with

high segregation may be diminished due to national economic indicators not accounting for

local income distributions. However, using local indicators makes it harder to perform a

nation-wide comparison.

Our analysis in Chapter 5 discusses how changing the income bracket thresholds, which

refer to affluence and poverty, impacts measures of segregation. In short, stricter constraints

can precisely identify segregation dynamics, considering how the most extreme ends of the

income distribution share space. However, looser threshold constraints lead to larger variance,

or spread, of segregation values and capture how a greater proportion of the population shares

space. This could lead to dampened segregation values in non-residential aspects of urban life

(i.e., destination segregation, segregation on transit routes). Thus, using a larger portion of

the population to define the presence of affluent and poor household can introduce challenges

when identifying segregation in dynamic aspects of urban life, which have been shown to

exhibit more social mixing than residential segregation [216, 206, 90, 312, 256]

3.1.2 Housing Data

In short, housing insecurity can be distilled into seven categories: Housing Stability, Housing

Affordability, Housing Quality, Housing Safety, Neighbourhood Safety, Neighbourhood
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Quality, and Homelessness. In Chapter 2.2.3, we describe characteristics of these seven

housing dimensions as defined by Cox [63]. Cox points out how many quantitative studies

tend to use one dimension as a proxy for housing insecurity, and therefore only capture

particular disadvantages. Accordingly, in this work, we attempt to define housing insecurity

using as many dimensions as possible. We do not include the Neighbourhood Safety,

Neighbourhood Quality, and Homelessness dimensions as the available data sources provide

information at larger geographical units. Thus, incorporating these dimensions would require

sacrificing the census tract granularity at which we measure housing insecurity. Cox states

that the Homelessness dimension is optional in defining housing insecurity, bolstering the

decision to not include it in our definition. Finally, we combine the Housing Quality and

Safety dimensions because their data sources largely overlapped.

The majority of our data is sourced from the 2019 American Community Survey (ACS).

We use 2019 data to define housing insecurity because eviction data in 2020 was distorted due

to the temporary eviction moratoria that were enforced as interventions during COVID-19

[123]. The national scale of ACS data enables us to apply our analysis to various cities

within the US. We define housing characteristics at the census tract level. Although the ACS

provides housing data at a census block group level, which are statistical divisions of census

tracts, the data availability of eviction rates is limited to the census tract spatial scale. An

overview of the data sources outlined in the following sections is presented in Figure 3.1

Housing Affordability

To define the dimension of housing affordability, we use census tract-level data from the

following ACS tables: (a) B25070: Gross Rent as a Percentage of Household Income (b)

B25097: Mortgage Status by Median Value and (c) B25001: Housing Units. Rent as a

Percentage of Household Income helps to define rent burdened households, which the U.S.

Department of Housing and Urban Development (US HUD) define as households that spend
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Dimension
of Housing
Insecurity

Concept Data
Attributes

Data
Source

(Temporal
Resolu-

tion)

Spatial
Granular-

ity

Housing
Affordability

# of severely rent-burdened
households per surveyed

households

Relative to
survey
sample

ACS Table
25070
(2019)

Census
tract

Median mortgage Raw value ACS Table
25097
(2019)

Census
tract

# of housing units per census
tract population

Relative to
population

2019 ACS
Table
25001

Census
tract

Housing
Safety/
Quality

# of households lacking
complete kitchen facilities per

surveyed households

Relative to
survey
sample

2019 ACS
Table
25051

Census
tract

# of households lacking
complete plumbing facilities

per surveyed households

Relative to
survey
sample

2019 ACS
Table
25047

Census
tract

# of households lacking
telephone service per
surveyed households

Relative to
survey
sample

2019 ACS
Table
25043

Census
tract

Housing
Stability

# of eviction court filings per
tract population

Relative to
population

January -
March
2020

Eviction
Lab

Census
tract

Median household size of all
housing units

Raw Value 2019 ACS
Table
25010

Census
tract

Median # of rooms Raw Value 2019 ACS
Table
25018

Census
tract

Median # of bedrooms Raw Value 2019 ACS
Table
25041

Census
tract

Table 3.1 Summary of data sources for the three housing dimensions used in the clustering
framework. Most of the data is provided by the US Census American Community Survey,
with the Eviction Lab providing data on formal eviction rates to characterise the housing
stability dimension.
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30% or more of their income on rent [279]. They extend this definition, labelling households

at least 50% of their income on rent as severely rent-burdened. We normalise the number of

severely rent burdened households in each tract with respect to the total number of surveyed

households in that tract. Moreover, we measure a census tract’s housing stock by dividing

the number of housing units by the population of each tract.

Housing Quality and Safety

Due to the range of data available from the ACS, we combine housing quality and housing

safety into one dimension. Other potential data sources include the American Housing Survey

and data hubs managed by individual counties or cities. The American Housing Survey

provides data on neighbourhood safety and quality, but the finest resolution it provides is

metropolitan areas. On the other hand, city-managed data sources provide highly detailed

accounts of housing complaints, but each city has methodologies for cleaning the data and

reporting it, introducing difficulties when expanding the analysis to different regions. Thus,

we use the following tables from the ACS to define the quality and safety of housing: (a)

B25051: Kitchen Facilities for All Housing Units, (b) B25047: Plumbing Facilities for

All Housing Units, and (c) B25043: Tenure by Telephone Service Available by Age of

Householder. Households must contain a sink, a stove, and a refrigerator to be considered

as having complete kitchen facilities. Similarly, they must have hot and cold running water,

a flush toilet, and a bathtub or shower to qualify as a household with complete plumbing

facilities. Telephone service provides one way of measuring household isolation. This is

pertinent for providing adequate medical and crime-related services to households. For a

household to be considered as having available telephone service, they must have access

to telephone service and have a functional phone. All of the above data is measured, for

each census tract, as a fraction of households without these services over the total number of

households surveyed.
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Housing Stability

Finally, to quantify housing Sstability, we draw on eviction and overcrowding data. The

American Housing Survey does not provide eviction data, leaving us to depend on county and

city-level governments to make the data accessible. Cities like New York City, Dallas, Detroit,

and San Francisco have processed eviction court filings to publish data referring to evictions.

This introduces a significant array of issues. First and foremost, eviction data assumes

that each eviction is processed through a judicial means. However, landlords often enforce

informal evictions as they provide a more affordable means for the same outcome. This

includes changing the locks or paying a family to move [118]. Other informal evictions range

from cities declaring the housing inhabitable or the threat of foreclosure [25]. Documented

evictions also impact tenants’ abilities to rent in higher income neighbourhoods with lower

crime rates, as landlords often check prospective tenants’ housing history, giving landlords

an often underestimated influence in neighbourhood composition and gentrification [74]. Yet

another issue is data processing from the courts’ perspective. Errors in data entry and nuanced

rulings lead to inaccurate measures of evictions when compounded into accessible tables

[237]. Despite all of these issues, leveraging eviction court filings is the most promising

option for estimating forced moves. Projects like Anti-Eviction Mapping Project and the

Eviction Lab are vocal about increasing eviction data availability. While both projects work

with local organisations, the former provides a broader range of analyses and case studies

spanning many North American cities. Meanwhile, the latter focuses on how evictions were

impacted by COVID-19 and publish weekly and monthly eviction counts for various cities

on a census tract and ZIP Code Tabulation Area (ZCTA) level. For this study, we focus on

cities for which the Eviction Lab has processed eviction rates on a census tract level.

We return to the ACS to estimate overcrowding in housing. Drawing on studies by

the US HUD, which measure overcrowding using Persons-Per-Room (PPR), Persons-Per-

Bedroom (PPB), and Unit-Square-Footage-Per-Person, we use the following ACS tables:
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(a) B25010: Average Household Size of Occupied Housing Units by Tenure, (b) B25018:

Median Number of Rooms and (c) B25041: Bedrooms [30]. These tables capture PPR and

PPB. However, the ACS does not provide data on the physical size of housing units. The

American Housing Survey, which we previously alluded to in Section 3.1.2, does provide

physical housing characteristics, but only on a metropolitan level, which is not fitting for the

granularity of our studies. Thus, we capture housing stability by combining eviction filing

data from the Eviction Lab and overcrowding metrics, such as PPR and PPB, derived from

the ACS.

3.2 Mobility Data

Gathering mobility data is crucial for capturing human trajectories. It can be collected

through various means at different magnitudes of resolution. Historically, aggregated travel

flows were collected through national census data, local travel surveys, and tax revenue data

[15]. The lack of standardisation in these approaches posed issues for studies focusing on

different regions as well as research conducted over a long time range. As technological

advances progressed, it became possible to extract mobility data by tracking bills and, more

successfully, credit card transactions [39, 270, 162]. Compared to the low time resolution on

surveys, financial transactions were accompanied by a geographic location and a specific

time, increasing the level of detail in the data. However, the increasing prevalence of

smartphones in daily life provided a new level of data resolution through anonymised Call

Detail Records (CDR), which estimate caller locations based on geographic coordinates of

cell towers. Similarly, mobile phone data can be procured through third-party applications

and social media platforms [288]. Moreover, mobile phone indicators are a consistent data

source across regions whereas the accuracy of travel survey data often depends on how

structured the local government is. While CDRs provide high resolution mobility data on a

large scale, issues such as inconsistent temporal frequency and cell tower density limit the
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precision of identifying callers’ locations [308]. Throughout this thesis, we use two main

forms of mobility data: commuting data and amenity visitations. While the former informs

mobility patterns with respect to residential-workplace locations, the latter provides insight

into mobility trends for other domains of urban life that are not strictly associated with

workplace. While these datasets do not have the level of detail that mobile phone records do,

they have the advantage of being openly accessible, allowing for reproducibility of results.

3.2.1 Commuting

We use the LEHD Origin-Destination Employment Statistics (LODES) dataset from the

United States Census’s 2019 Longitudinal Employer-Household Dynamics (LEHD) program

[44]. The LODES dataset captures the residential patterns of the surveyed workforce by

measuring the number of individuals commuting from one census block group to another.

However, for consistency across results in Chapter 4, we evaluate residential-employment

trends on a census tract level. LODES data provides characteristics of survey participants

with respect to the census tract that they live in and the census tract in which they work. This

information includes income groups, industrial sectors, and age. By combining a census

tract’s housing and public transit characteristics with its employment attributes, we can

explore how individuals from various housing demographics may have access to different

types and magnitudes of employment opportunities.

Figure 3.1 captures the socioeconomic makeup of each city, according to the LODES data.

Orange and purple reflect low-income (earning below $1,250 per month) and high-income

(earning above $3,333 per month) workers, respectively. The dashed lines indicate what

an even distribution across demographics would look like. Thus, we observe that, within

the context of the LODES dataset, cities such as Boston and San Francisco have skewed

representation of socioeconomic groups. To measure levels of residential segregation, we
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Fig. 3.1 Representation of socioeconomic groups in the LODES commuting data. Work-
force distribution by income level split into three socioeconomic groups (low, middle and
high-income) across 25 US cities.

use Table B19001 from the 2019 ACS 5-Year Estimates, which measures the population

distribution across income brackets for each census tract [43].

3.2.2 Amenity Visitations

Our mobility data is sourced from SafeGraph, a data company that aggregates anonymised

location data from numerous applications in order to provide insights about physical places,

via the SafeGraph Community [252]. To enhance privacy, SafeGraph excludes census block

group information if fewer than two devices visited an establishment in a month from a given

census block group. The SafeGraph Weekly Patterns data provide visitation counts, on a

weekly level, to amenities across the US, along with the distribution of CBGs from which

the visitors came. Safegraph defines amenities as physical places that provide services or

interests to individuals. This can range from restaurants and cafes to banks and religious

facilities. Furthermore, the CBGs in which individuals reside are defined by SafeGraph,

using users’ locations from 18:00 to 07:00 over a six-week time frame. The SafeGraph data

provides business visitation counts on a weekly level. Moreover, it includes the home Census
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Distribution of Amenity Counts across 
Census Block Groups

Fig. 3.2 Prevalence of amenities in a neighbourhood, for a given city. Each box plot
reflects the distribution of the number of amenities in a census block group, with respect to
each US city used throughout this work.

Block Group (CBG) of the business’ visitors. Figure 3.2 shows the distribution of amenities

in each CBG, for each city that amenity visitation data is used.

Furthermore, Table 3.2 shows the relationship between outgoing trips from a census block

group to the population of that CBG. We also consider the relationship between SafeGraph

mobility and population for the CBGs in the bottom and top Median Household Income

quintiles. Thus, Table 3.2 supports research that shows differences in travel behaviour

for socioeconomic groups [181, 17, 206]. The differences in how the population of a

socioeconomic group corresponds to the mobility behaviour of a neighbourhood could

potentially be attributed to under-representation of minorities in mobile location data [166].

3.3 Spatial Data

Two main approaches arise in the context of geospatial data analysis [153]. The first

considers spatial data as an expression of social processes, while the other approach views

geography as embodying social processes. That is, geospatial data science often focuses
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Table 3.2 Correlation between number of outgoing visits and CBG population from the
January 2021 Weekly Patterns from Safegraph and 2021 American Census Survey, respec-
tively. The second column considers all CBGs in a city, while the the third column compares
mobility rates and population from the bottom income quintile of CBGs. Similarly, the last
column does the same, but for the top income quintile. Asterisks indicate the significance of
correlation coefficients.

Pearson Correlation Coefficient

City All CBGs 20th pctile 80th pctile

Dallas 0.183*** 0.121 0.254***
Fort Worth 0.196*** -0.0 0.387***
Bridgeport 0.316*** 0.275** 0.333***
Gainesville 0.331*** 0.167 0.619**
Kansas City 0.359*** 0.151 0.367***
Boston 0.362*** 0.383*** 0.248*
Philadelphia 0.395*** 0.288*** 0.442***
Cleveland 0.418*** 0.197** 0.557***
Hartford 0.418*** 0.317*** 0.615***
San Francisco 0.443*** 0.469*** 0.496***
Columbus 0.468*** 0.507*** 0.517***
New Orleans 0.469*** 0.31** 0.427***
Jacksonville 0.471*** 0.344** 0.619***
Houston 0.479*** 0.331*** 0.542***
Albuquerque 0.493*** 0.246 0.684***
Charleston 0.505*** 0.572*** 0.762***
Cincinnati 0.506*** 0.433*** 0.569***
Milwaukee 0.532*** 0.459*** 0.651***
Greenville 0.654*** 0.427** 0.653***
Las Vegas 0.794*** 0.55*** 0.858***

*p< 0.05;**p < 0.01; ***p< 0.001
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on quantifying demographic features of predefined statistical boundaries. However, an

equally viable approach consists of defining spatial structure based on patterns that emerge

from sociodemographic characteristics. The main distinction lies in how geography is

used. Expressive methods use geography as a means for explaining social processes, while

embodying methods leverage social structures to delineate spatial divisions [276, 96]. While

spatial analyses conventionally concentrated on demographic distributions in residential

contexts, more recent research has expanded to include activity spaces or egohoods to capture

spatial patterns of how demographics interact with their environment [277, 172, 278]. It is

critical to note, however, that the above approaches are all susceptible to the MAUP discussed

in Chapter 2.3.3. Moreover, assigning quantitative features to spatial units allows for testing

spatial autocorrelation on a global and local level [9, 248, 100, 222], a geostatistical tool

we employ in Chapter 4.4. Quantitative human geography has shifted between prioritising

spaces and places, where space refers to the physical features of an area and place captures

how those areas are used [255, 141]. While space characterises an area as a setting in

which activities take place, place considers how spaces are a product of society. Moreover,

places frame space with respect to individual-level behaviours and decisions [141]. Our

work aims to capture both spatial features of a neighbourhood, as well as how it used,

through defining the built environment. In order to define regions in a city by their built

environment characteristics, we retrieve street networks, building footprints, and points of

interest from OpenStreeMap (OSM) to define street design, building density and amenity

diversity, respectively [221].

OSM is an open-source database of geospatial information. Road layouts, intersection

locations, enforced speed limits, buildings footprints, land-use, and amenities, are just a

handful of the geographic information it provides [112]. In the context of the US, informa-

tion pertaining to roads uses TIGER (Topologically Integrated Geographic Encoding and

Referencing) shapefiles, provided by the US Census Bureau, as a foundation off of which to
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build. Street network data from OSM is comparable to proprietary providers such as Tele

Atlas and NAVTEQ [321]. The following metrics make use of the vast amount of geospatial

data that OSM offers.

3.3.1 Street Network Design

The layout of streets in US cities, specifically their level of griddedness, has historical roots

established by the US Homestead Act [302] and can be indicative of urban planning goals

in a region [274]. As car-centric mobility preferences have grown, modern suburban roads

layouts have evolved to match these mobility needs [34]. Thus, given that street design

has changed over time, it is critical to interpret street layouts with respect to the time and

geographical context in which they exist. Moreover, it is essential to note that grid-like streets

are not directly reflective of the extent of urban planning, which is showcased by how various

designs emerge as a result of differences in cultural mobility preferences [188, 250]. To

calculate how grid-like a region’s road layout is, we follow Boeing’s methodology, denoting

griddedness to be a function of the straightness of streets, street orientation order, and the

proportion of four-way intersections [34]. For a given census tract, ct, straightness can be

measured as follows:

ς(ct) =
D(ct)
L(ct)

(3.1)

where D(ct) reflects the average great-circle distance between the endpoints of each street

in ct. L(ct) is the average length of the street segments in a neighbourhood ct. By defining

straightness with the ratio in 3.1, ς captures the extent to which streets in a neighbourhood

resemble straight lines, with values closer to one indicating straighter streets.

Street network order captures another aspect of how grid-like a city’s street layout is [32].

Using Boeing’s street network orientation definition, we apply entropy to the orientation of a



70 Materials and Methods

city’s street network, and take the complement of this value:

ϕ(ct) = 1−
(

Ho,ct−Hg

Hmax−Hg

)2

= 1−
(
−∑

36
i=1 P(oi,ct) ln(P(oi),ct)− ln(4)

ln(36)− ln(4)

)2

(3.2)

where the order (ϕ) of a given census tract, ct, is described with respect to the entropy of the

tract’s street orientation distribution (Ho,ct), the entropy of the idealised city grid (Hg), and

the maximal entropy (Hmax). The empirical entropy for a tract is measured by binning street

orientations into 36 groups, where each group reflects a range of 10◦. Thus, the entropy can

be measured with respect to the probability of a street, in a given census tract, ct, belonging

to one of these groups (Poi,ct). The ideal city grid entropy, Hg,applies entropy to the scenario

in which all streets are equally distributed across 4 groups, assuming each group represents

an orthogonal orientation. In proposing this metric, Boeing noted the importance of shifting

each bin by -5◦ to ensure that bins for common orientations, such as 90◦, would include

streets with orientations slightly lower or higher (i.e. 89.9◦ and 90.1◦) in the same bin

group. Furthermore, the maximal entropy, Hmax, is calculated using an equal probability

distribution across all 36 groups. Incorporating the ideal grid entropy and maximal entropy

serve to normalise the empirical entropy value using min-max scaling. Finally, by taking the

complement of the normalised value, we end up with a metric in which values approaching

one denote streets that point in similar directions to one another.

The last component of the grid index is the proportion of nodes in the street network that

are four-way intersections, γ . To derive a single measure that represents these three metrics,

Boeing proposes taking the cube root of the product of each component:

G(ct) = 3
√

ς(ct)∗ϕ(ct)∗ γ(ct) (3.3)

where ς(ct), ϕ(ct), and γ(ct) denote the straightness, orientation order, and proportion

of four-way intersections of streets in a census tract, ct, respectively. Since each component



3.3 Spatial Data 71

Street Grid Index Examples
in San Francisco

CT: 06075047701
CT: 06075047902

CT: 06075060400

Grid Index: 0.270

Grid Index: 0.803
Grid Index: 0.994

Fig. 3.3 Examples of street networks and their corresponding grid indices, for different
census tracts (CT) in San Francisco. The FIPS code, which identifies each CT, is displayed
at the bottom of each plot. The grid index is shown at the top. Nodes reflect intersection and
edges denote streets in each CT’s street network.

has a lower bound of 0 and upper bound of 1, G(ct) is, consequently, bound between 0 and 1,

with larger values being indicative of neighbourhood with more grid-like streets. Section C.1

in the Appendix discusses other possible ways of computing G(ct), validates the approach in

Equation 3.3, and explores how these alternate approaches would impact the results found in

Chapter 6.

Figure 3.3 displays three Census Tract (CT)s in San Francisco with different grid index

values. The left most street network in Figure 3.3 depicts a CT with a highly gridded street

design, while the centre plot exhibits a gridded, but not fully orthogonal street network. The

right most panel has a much lower grid index. It highlights how natural features, such as

bodies of water or mountains, can impact street design, as this census tract is located along

the coast of the Pacific Ocean and contains Lake Merced on the right of the displayed street

network.
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3.3.2 Building Density

Urban theory and research highlight how measures of density can capture urban vibrancy by

measuring the concentration of an urban resource [107, 207]. We calculate building density

using building footprints from OpenStreetMap. Specifically, we divide the cumulative area

of all buildings in a census tract by the total land area, provided by US Census TIGER

shapefiles, for that tract. Thus, building density reflects the proportion of total land area

that consists of buildings. Since build footprint area cannot exceed the amount of land in a

neighbourhood, this ratio is also bound between 0 and 1, with larger values reflecting areas

with higher building density.

3.3.3 Amenity Diversity

We have established how density can capture the abundance of a particular resource and

design can reflect the general mobility preferences that have been integrated through urban

planning. However, we have yet to discuss how an environment can be defined by the

variety of resources it has. This is a distinguishing feature as a dense, grid-like area may

only consist of a limited set of amenities, and consequently, attract a specific demographic

[87]. To estimate amenity diversity, we define amenities with respect to 10 categories:

Food, Education, Healthcare Facilities, Finance, Religious Venues, Government Facilities,

Recreational Areas, Entertainment, Retail, and Professional Services [109]. OpenStreetMap

provides amenity tags to delineate the categories to which each amenity belongs. We, once

again, apply normalised Shannon Entropy to the distribution of amenities in a census tract,

across all categories:

Hamenity(ct) =
−∑

10
i=1 P(ct,c) lnP(ct,c)

ln(10)
(3.4)
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where Hamenity(ct) captures the the amenity diversity in a census tract, t, and P(ct,c) reflects

the empirical probability of an amenity in tract ct belonging to category c. The denominator

serves to normalise the entropy using the maximal entropy scenario in which there is an

even distribution of all amenities in a tract. Thus, amenity diversity also ranges from 0

to 1, with higher values suggesting a more uniform distribution of types of amenities in a

neighbourhood.

3.4 Public Transportation Data

3.4.1 GTFS Feeds

Akin to the increasing prevalence of mobile phone data, public transit data has quickly

improved in terms of both standardisation and availability. Although the availability of this

data depends on resources of local transit agencies, the usefulness of openly available transit

data for transport planning is widely recognised [313, 48]. Only a couple decades ago, Google

and TriMet (a Portland transit agency) worked together to introduce General Transit Feed

Specification (GTFS) as a standard for transit data [195]. GTFS data has two forms: static

and real-time. This work leverages static data, which provides information regarding transit

schedules and stops. Meanwhile, real-time GTFS data describes traffic conditions and delays.

The GTFS standard requires at least six text files: stops, stop_times, trips, routes,

agency, and calendar. stops provides geographical references for where transit stops are,

in a given region. stop_times describes the flow of transit through a given stop, while trips

provide the frequency of particularly routes, which are defined in routes. calendar defines

a high-level overview as to how trips vary across the week. Finally, agency delineates which

transport agencies are in charge of particular routes in a city, which is specifically useful

when considering cities that have multiple agencies and public transport options available.

We leverage General Transit Feed Specification (GTFS) data, from the Mobility Database,
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to build public transportation networks for 16 US cities [201]. The Mobility Database is an

updated version of TransitFeeds, a commonly used source for acquiring GTFS data. However,

the Mobility Database includes over 100 corrected sources and over 150 new sources, in

comparison to TransitFeeds.

3.4.2 Transport Network Data and Features

Throughout this thesis, we measure features of public transit systems using UrbanAccess

and r5py. While both tools are open source projects, the former leverages Djikstra-variants

to estimate transit travel times, while the latter uses RAPTOR. The differences between these

methods are discussed in 2.4.2. Furthermore, the first two spatial inequalities (residential-

workplace dependencies and experienced segregation) use UrbanAccess to measure features

of transit systems, while the last perspective, which incorporates built environment charac-

teristics, depends on r5py estimates. Although the data sources for the two tools are the

same, this section outlines how the frequency-based modelling approach of UrbanAccess

and the schedule-based approach of r5py lead to divergent estimates in transit time. Below,

we compare estimates of transit times between the two tools, identifying positive correlations

between median travel times. However, we also discuss differences between the two that

explain why each tool may give different travel time estimates between two tracts.

In both tools, we set the walking speed to 3 miles per hour, or 4.82803 kilometres per

hour. Although r5py has a default walking speed of 3.6 kilometres per hour, for consistency,

we ensured that both transport routing tools had the same baseline assumption for how fast

pedestrians can travel. We use San Francisco as a case study to emphasise the similarities

between the tools, despite their varying efficiency and pathfinding approaches. The three

cities that we applied both r5py and UrbanAccess routing to were Boston, Philadelphia and

San Francisco. That is, for these three cities we measure transit times between every pair of
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Table 3.3 Comparing estimated transit times between transport routing tools, for Boston, San
Francisco, and Philadelphia. The second column lists the Pearson correlation coefficient
between transit time estimates for census tract pairs in each city. Asterisks indicate the degree
of significance for the coefficients. The last two columns denote median transit travel times,
considering all pairs of census tracts, as measured by UrbanAccess and r5py, respectively.

Median Transit Times
City Correlation UrbanAccess r5py

Boston 0.9*** 42.900 50.826
San Francisco 0.944*** 38.394 39.790
Philadelphia 0.918*** 40.329 53.400

*p< 0.05;**p < 0.01; ***p< 0.001

census tracts in the respective city. The second column of Table 3.3 highlights the strong and

significant correlations between transit time estimates.

The last two columns show the median transit times between all pairs of census tracts, as

defined by UrbanAccess and r5py, respectively. We observe longer estimated transit times

when using r5py. These differences are mostly due to variations in our implementation of the

tools and inherent discrepancies in the pathfinding algorithms used by each tool. In terms of

our implementation, when using UrbanAccess in Chapter 4, we use a deterministic approach,

leveraging the internal point of each census tract, as defined by the US Census Bureau. The

internal point, in most cases, reflects the centroid of a census tract or geographical area.

However, in cases of irregularly shaped tracts, the internal point is the closest point to the

centroid, favouring a point that is not on water1 Accordingly, each census tract is associated

with one geographical point. Thus, when we route between a pair of census tracts, we are

only routing the path between the tracts’ centroids. This contrasts our approach to estimating

times using UrbanAccess in Chapter 5 and r5py in Chapter 6, in which we introduce a

stochastic approach. Chapter 5 discusses, in detail, the approach to calculating transit times.

Thus, in this section, we focus on the stochastic approach that we implement while using

1Details about the Census Bureau’s definition of an internal point are available at
<https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_3>.

www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_3
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r5py. For each census tract, ct, we sample ten random points, {ct1,ct2, ...ct10}, within the

tract that do not intersect with any bodies of water. Then, for a journey from census tract cto

to ctd , we estimate the average travel time:

Jtransit(cto,ctd) =
∑

10
x=1 ∑

10
y=1 J′transit(ctx

o,cty
d)

100
(3.5)

Thus, for each census tract pair we estimate a hundred potential transit paths that originate

from ten points in the origin tract and ten points in the destination tract. Figure 3.4 uses San

Francisco as a case study for showing differences in the implementation and methodology

when using UrbanAccess and r5py. Panels A and C in Figure 3.4 highlight the difference

between the deterministic approach used with UrbanAccess and the stochastic sampling used

with r5py. In Panel A, there is only one source and one destination node, each representing

the centroids of their census tracts. Thus, the transit-pedestrian network is used to calculate

the shortest path between the pair of nodes. Panel C, on the other hand, has 10 origin and

10 destination nodes. Thus, RAPTOR is used to calculate 100 shortest path estimated for

each potential pair of origin and destination nodes. In effect, we observe that different origin

and destination points in a census tract can lead to various transit routes being quicker, as

opposed to using the centroid as a representative point.

The second way in which the discrepancies in travel time estimation emerge is through

the methodologies incorporated in the tools themselves. UrbanAccess generates a transit-

pedestrian network, given geospatial and GTFS data. Then, it applies contraction hierarchies

to the transit-pedestrian network to improve the efficiency of pathfinding. Given any pair

of origin-destination points, UrbanAcccess finds the closest node in the network, calculates

the shortest path between these two nodes, and then calculates the walking time between

the nodes and the queried points. Alternatively, r5py uses Dijkstra’s algorithm to route

queried points to closest transit nodes. Then, it applies RAPTOR to find transit paths that

solve multiple objectives such as minimising walk time, wait time, and number of transfers.
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Pathfinding Discrepancies: 
San Francisco Case Study

A B CUrbanAccess
Deterministic

r5py
Deterministic

r5py
Stochastic

63 min 66.40 min48 min

Fig. 3.4 Differences in travel time estimates between different transport routing tools,
using San Francisco as a case study. The green and red points reflect the queried origin and
destination points, respectively. Panels A and B both query one path between the internal
points of the two census tracts. Panel A, uses UrbanAccess to estimate travel times, while
Panel B used r5py. Panel C uses a stochastic approach to calculate 100 shortest paths between
10 randomly sampled points in the origin and destination tracts, each.

The major difference, however, is that r5py incorporates the concept of a departure time

window to address the modifiable temporal unit problem (MTUP). MTUP suggests that

accessibility can significantly change based on the time frame being considered [229, 165].

This is relevant to transit routing as leaving a few minutes after the queried departure time

may have a large impact on the available transit routes. r5py accounts for this by applying

RAPTOR at multiple departure times. Specifically, r5py computes a travel time estimate for

each minute, stopping when it reaches 10 minutes past the queried departure time. Panel B

in Figure 3.4 exemplifies this concept, applying the deterministic approach in UrbanAccess

to r5py. That is, only one pair of origin-destination points are queried, both of which are the

internal points in their respective census tracts. Panel B showcases the different paths found

within the departure time window beginning at 08:00AM on a Monday in January 2020. The

value returned from querying the internal points of the origin and destination tract is the

median of all the travel times calculated for every minute between 08:00AM and 08:10AM.



78 Materials and Methods

We can compare Panels A and B in Figure 3.4 to understand how the tools’ methodologies,

themselves, lead to variances in travel time estimates, since we use the same deterministic

approach for querying paths. Thus, it becomes clear how r5py’s departure timeframe solution,

to address the MTUP, leads to different potential transit routes. Contrarily, UrbanAccess

simply queries the shortest path from the specified departure time. However, both tools have

their own strengths and are helpful in different contexts. Although UrbanAccess was released

in 2017, it remains highly useful for analysing which specific transit lines are being used.

This is particularly relevant for our analysis in Chapter 5, in which we estimate experienced

segregation while using public transportation. On the other hand, r5py is particularly useful

for multi-objective transit routing, since its use of RAPTOR can account for numerous

mobility goals, such a minimising time spent waiting for transit or the number of transfers.

Finally, we provide network characteristics for the transit-pedestrian networks used in

UrbanAccess. Table 3.4 includes details regarding the transit layer of the transit-pedestrian

networks, as well as GTFS data specifications, such as the number of unique routes and

unique trips, considering the GTFS data from all transport agencies in a city. These networks

are used for estimating travel times with UrbanAccess. The second and third columns reflect

the number of nodes and edges in the transit layer of the transit-pedestrian networks that

we construct. As discussed in Chapter 2.4.2, contraction hierarchies will be applied to these

multi-edge directed graphs to condense them into networks that are more efficient for solving

routing queries.

We note that the networks vary in terms of the types of transit included. For example,

San Francisco and New York City include transit by ferries, as it is a common mode of

commuting for some residents. Moreover, some the suburbs of some cities tend to be better

served than other. Chicago, for instance, has 231 unique routes in its transit system, 101 of

which are run by Pace, a suburban bus service which provides connections to more central

transit authorities [199]. The remaining 130 routes are run by the Chicago Transit Authority,
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Table 3.4 Characteristics of the transit layer in transit-pedestrian networks for various US
cities. These networks reflect the transit service schedule for Mondays, from 06:30AM to
10:30AM, in January 2020 This table only includes the 20 cities, for which graph-based
routing algorithms were used.

City # Nodes # Edges # Trips # Routes

Houston 11845 439474 7616 112
Kansas City 4478 46294 1380 57
Milwaukee 4768 226099 4688 52
Boston 6957 76688 4278 204
Jacksonville 2963 28492 1036 39
Columbus 3866 25991 501 37
New Orleans 2931 18605 527 37
Dallas 7813 65250 1859 105
Fort Worth 2005 14228 545 38
Albuquerque 2517 14196 361 36
Greenville 462 7716 220 12
Philadelphia 12152 174578 3897 126
Cleveland 6684 95421 1739 45
Gainesville 1927 24038 1136 42
Hartford 6943 39562 1232 98
Bridgeport 1473 8299 205 16
Cincinnati 5284 286662 1379 50
New York City 10489 458024 15704 197
Detroit 11858 58195 1124 96
San Francisco 4488 65510 2310 99
Memphis 4274 17323 336 32
Charleston 1071 10288 482 23
Indiannapolis 3533 50029 1072 32
Las Vegas 8001 62668 1631 76
Chicago 24997 529034 11117 231
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8 of which are train routes and 122 of which are bus routes. Thus, it is apparent that transit

across US cities is fairly heterogeneous not only in terms of the transit service across different

routes, but also in the travel modes that transit infrastructure accommodates. Although, we

present networks for 25 US cities, we calculate shortest paths, using UrbanAccess, for 20 of

these cities, barring Chicago, Detroit, Indianapolis, Memphis, and New York City. We omit

these cities as their eviction data was not available from the Eviction Lab. However, as we

move away from focusing on residential disparities, we reincorporate some of these cities,

particularly those with prominent transit systems, for our analysis in Chapter 6.

3.4.3 Road Networks

We estimate travel times, when using a car, between two neighbourhoods to provide a

baseline to which transit service can be compared. We accomplish this using three dif-

ferent tools: Openrouteservice (ORS), Open Source Routing Machine (OSRM), and

Pandana [93, 179, 94]. All three of these tools apply routing algorithms to road networks,

which are retrieved from OpenStreetMap (OSM) [221].ORS uses the A* pathfinding algorithm

to query travel time matrices. A* follows the same general approach to routing as Dijkstra’s

Algorithm, which was introduced in Chapter 2.3.2. It differs from Dijkstra’s, in that it

includes a heuristic function that roughly estimates the distance remaining to the destination

node. It should be noted that the heuristic should be developed in a manner, such that it

never overestimates the cost to the destination node. Thus, the performance of A* depends

greatly on an appropriate heuristic function. Meanwhile, OSRM and Pandana use Contraction

Hierarchies, which was introduced in Chapter 2.4.2, to determine shortest paths. We use ORS

in Chapter 4, OSRM in Chapter 5, and Pandana in Chapter 6.

We incorporate OSRM, despite its similarities with Pandana, because the stochastic ap-

proach used in Chapter 5 required significantly more computational power than the envi-

ronment, in which Pandana was installed, supported. Although Chapter 5 will outline the
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Table 3.5 Comparing driving time estimates for different routing tools in five US cities. The
second to fourth columns reflect median driving times for all pairs of census tracts in city,
using Openrouteservice, Open Source Routing Machine, and Pandana, respectively. The last
three columns show the similarities in tract-level driving time estimates between the different
routing tools. These values are reflective of the Pearson correlation coefficient, with asterisks
denoting the significance of the correlation.

Median Driving Times Pearson Correlation between Routing Tools
City ORS OSRM Pandana ORS-OSRM ORS-Pandana Pandana-OSRM

New Orleans 11.1 11.48 11.2 0.977*** 1.0*** 0.974***
Dallas 23.13 21.06 23.17 0.846*** 1.0*** 0.846***
Philadelphia 17.6 15.93 17.67 0.964*** 1.0*** 0.964***
Cincinnati 21.53 19.18 21.55 0.869*** 1.0*** 0.871***
San Francisco 11.68 10.65 11.75 0.902*** 1.0*** 0.903***
1*p<0.05; **p<0.01; ***p<0.001

methodology in further detail, we provide a brief overview in this section, in order to explain

why differences in shortest path estimations may arise. We use OSRM to estimate average

transit times between all CBGs pairs in the five aforementioned cities. In order to derive

these estimates, we randomly sample 100 locations in each origin and destination CBG,

and use OSRM to calculate the shortest paths between origin node ni
o and destination node

ni
d , for i ∈ 1...100. Here, ni

o belongs to the origin CBG and ni
d is a point in the destination

CBG. Then, we define the average time between the origin and destination CBG by simply

determining the mean, given all 100 shortest paths.

To justify the use of all three tools throughout this thesis, we explore characteristics

of how each tool estimates driving times. We compare driving times for the 5 cities that

were studied in all the analyses: New Orleans, Dallas, Philadelphia, Cincinnati, and San

Francisco. The second to fourth columns in Table 3.5 show the median driving times for

all origin-destination pairs, in a city. For ORS and Pandana, this compares travel times via

cars between every possible census tract combination. Meanwhile, for OSRM, this describes

driving times for all possible census block group pairs, due the higher spatial resolution in

Chapter 4’s analysis. While ORS and Pandana vary in terms of routing algorithms, Table 3.5
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highlights the strong correlation between the median driving times between census tracts.

Since A* is merely a variation of Dijkstra, we expect to see strong correlations between the

two measures. However, we explain the less strong correlations between OSRM and other

tools, due to the differences in spatial resolution. That is, we use the same deterministic

approach as we outlined for UrbanAccess, discussed in the previous section, to measure

driving times between census tracts using ORS. Whereas, for OSRM and Pandana, we use a

stochastic approach, in which origins and destinations are not determined by the centroids

of their respective tracts, but through a random sampling of points over multiple iterations.

Furthermore, when we measure the median driving time for a given tract using ORS or

Pandana, we simply find the median value from a particular census tract, to all other tracts

in the city. However, we use OSRM in Chapter 5 to understand transit at a census block

group level. Thus, when we estimate the median driving time of an origin census tract

to a destination tract, we consider the shortest paths from all CBGs in the origin tract to

all the CBGs in the destination tract. Then, by finding the mean of all these values, we

have the average travel time from one tract to another. Accordingly, we can apply the same

methodology as we did when using ORS or Pandana, to determine the median driving time for

an origin tract to all other tracts. Thus, we can see how despite different routing algorithms

and computational efficiencies, all three tools (ORS, OSRM, and Pandana) provide similar

estimates of travel times, when using a car.

3.4.4 Routing Notation

Throughout this thesis, we often use metrics derived from the transit networks. This section

aims to establish a consistent notation, which we will refer to throughout the following

chapters. First, we refer to census tracts and census block groups as ct and bg, respectively.

We define the time, in minutes, that a transit journey between two points, (i, j), takes as

J′transit(i, j). Similarly, J′driving(i, j) reflects the number of minutes it takes to drive from point



3.5 Discussion 83

i to point j. We can aggregate these values to reflect travel times between administrative

boundaries using Jtransit/driving(ct1,ct2) to measure the transit or driving times from an origin

census tract, ct1, to a destination tract, ct2. Furthermore, J can be derived through a stochastic

approach, in which numerous journeys from origin points in ct1 to destination points ct2 are

calculated using J′, then aggregated to the tract level. Alternatively, Jtransit/driving(ct1,ct2)

can be derived by simply calculating the J′ value using the internal points of ct1 and ct2,

respectively. The process of calculating J will be explained in each chapter.

We also aggregate Jtransit/driving(ct1,ct2) to the origin census tract level to convey mobility

opportunity, average commute times, and amenity accessibility. The notation for these, in

the context of transit times from a census tract ct, are T opp
transit(ct), T comm

transit(ct), and T am
transit(ct),

respectively. The driving times are represented using T opp/comm/am
driving (ct). As a quick note,

mobility opportunity captures the notion of integral access by averaging the travel times from

a census tract to all other census tracts in a region. We elaborate on how these values are

calculated, and the concepts they convey, as we encounter them in the chapters. Although we

use census tracts as an example in this section, they can be replaced with other administrative

boundaries, such as census block groups, depending on the spatial resolution of the analysis.

3.5 Discussion

In this chapter, we described the different data sources we will utilise throughout the thesis

in order to highlight how transport inequality is exhibited within various urban mechanisms.

In particular, we introduce demographic, mobility, spatial, and transportation data. All the

datasets, barring SafeGraph, are openly accessible. SafeGraph is a safegaurded dataset,

however it is accessible to academics for research purposes. As a brief summary, we analyse

transit inequalities in residential-workplace dependencies (Chapter 4) at a census tract level

for 2019. We choose 2019 because the temporary eviction moratoria led to low rates of

evictions throughout 2020, which reflected COVID-19 interventions, rather than eviction
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dynamics [123]. Furthermore, the spatial scale of the eviction and commuting data limits

our analysis to the census tract level. Chapter 5 is conducted at the census block group level,

as both the SafeGraph mobility data and the American Community Survey (ACS) data are

available at this high spatial resolution. We use the 5-Year estimates from 2020 for this

analysis, as our transport data is from the first month of 2021 and, at the time of this analysis,

the 2021 ACS survey had not been released. Finally, we continue using 2020 ACS 5-Year

estimates to explore transit disparities with respect to the built environment, in Chapter 6.

Similar to the analysis in Chapter 4, our use of commuting data limits the spatial resolution

in Chapter 6 to the census tract level. In addition to showing data characteristics of each

dataset in this chapter, we discuss their limitations, from data collection to analysis. The

following chapter leverages the sociodemographic, commuting, and transit data to explore

how transit facilitates commutes between residential and employment locations.



Chapter 4

Inequalities in Residential-Workplace

Dependencies

4.1 Introduction

Throughout this thesis, we analyse transport justice in the context of different urban mecha-

nisms, which refers to processes that drive functionality and change in an urban area (i.e.,

housing markets, demographic trends, development of infrastructure). In doing so, we ensure

to consider complexities from both a sociodemographic inequality perspective and a transit

modelling one. This chapter investigates expressions of transit inequality when considering

residential-workplace dependencies. In this manner, we study how transit inequality aligns

with commuting processes, while also emphasising how measures of residential-workplace

dependencies and housing insecurity can reveal disparities in transit service, that are novel to

the field of transit poverty.

This chapter addresses long standing nuances regarding how public transportation inter-

sects with the spatial mismatch hypothesis. Research has shown how long commute times

and low workplace accessibility can lead to negative labour market outcomes for low-income

individuals [143, 102]. Thus, we apply measures of network entropy to commuting networks,
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in order to understand disparities in residential and employment locations. Specifically,

we consider how differences in the heterogeneity of employment locations, between low-

income and high-income workers, can be more informative in characterising different types

of residential-workplace dependencies, compared to conventional measures of segregation.

Furthermore, we incorporate empirical transit times to see how the spatial inequalities in

residential-workplace dependencies translate to time spent commuting via public transit.

Finally, we analyse transit inequalities in the context of residential disparities, proposing

a clustering approach for quantifying the complexities of housing insecurity. By applying

geospatial analysis to vulnerable housing demographics, and their respective commuting

patterns, we assess transit times to different types of employment areas. Thus, analysing

system-facilitated transit access provides insight as to how transit service can contribute to

the burden of housing insecurity, with respect to empirical employment locations and to areas

associated with better job opportunities. We note that this section leverages work that has

been previously published, as well as work that is currently under review for publication

[134, 136].

4.2 Network Entropy in Commuting Networks

Networks are particularly useful for analysing commuting behaviours, as they capture

structural patterns that other approaches may overlook [173]. Specifically, network entropy

can capture the concentration of labour supply and demand as well as the level of diversity

of where workers are commuting to or from [187]. Entropy has been used in commuting

networks to explain economic growth [103], identify spatial inequalities [163], and measure

social assortativity [35]. However, the majority of previous research on entropy in commuting

networks analyses the networks of an entire population. Thus, we not only consider the

commuting networks of an entire population, but also commuting networks comprised of

individuals from particular socioeconomic groups. Disaggregating commuting networks by
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demographics allows us to study whether disparities in structural diversity could serve as an

indicator of social exclusion.

We use the LODES data, introduced in Chapter 3.2.1, to construct commuting networks

for 25 cities in the United States, where every node reflects a census tract and directed,

weighted edges depict the number of individuals commuting from one tract to another. These

25 cities cover a wide range of population sizes and socioeconomic characteristics. The

LODES dataset also provides information about how the total commutes from a pair of

census tracts are distributed across lower, middle, and higher-income demographics. The

low-income group consists of individuals earning less than $1,250 per month, while the

minimum monthly income for the high-income group is $3,333. In addition to building the

entire commuting network of a city, we also build a low, middle, and high-income network,

which have the same nodes as the network for the entire city. However, the networks for

each socioeconomic group, which we refer to as disaggregated networks, have different edge

weights depending on the number of people in a socioeconomic group that commute between

a pair of tracts.

Throughout our analyses, we use the term commuting destinations to refer to the work-

places that a residential population commutes to, while commuting origins describe the

residential areas from which an employment area’s workforce commutes. Furthermore,

labour supply refers to employment areas that supply jobs, while labour demand reflects the

employable population of a neighbourhood. We use Shannon’s entropy, which captures the

level of information that can be extracted given a probability distribution, as a measure of

network entropy to estimate diversity in commuting destinations and origins [261]. Moreover,

network entropy can be applied at different network resolutions (i.e. local or global) and can

focus on the commuting in-flow to a work area or the commuting out-flow from a residential

region.
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Global entropy of in-flow and out-flow captures the urban concentration of labour supply

and demand, respectively, by characterising the degree of monocentricity. That is, when a

city has one area that supplies most of the labour opportunities, there is more certainty in

predicting commuting destinations, corresponding with a lower global in-flow entropy value

for the entire city. Thus, global in-flow entropy (H in
GN) leverages the node strength, ∑i pi j, of

all incoming commutes to each tract, j in a city:

H in
GN =

−∑∀ j
(
∑∀i pi j

)
log

(
∑∀i pi j

)
log(|CT|)

, (4.1)

where CT reflects the set of census tracts in a city, with each tract corresponding to a node

in the commuting network. Moreover, pi j reflects the edge weight (or number of workers)

commuting from tract i to j. Thus |CT| is defined by the number of census tracts in a given

city. Global out-flow entropy captures the distribution of labour demand, such that low

entropy values depict a scenario in which most workers live in a few areas and high entropy

values indicate where residential locations of workers are more evenly distributed across

nodes. In contrast to H in
GN , global out-flow entropy (Hout

GN) calculates the out-degree node

strength, ∑ j pi j, for all census tracts, i in a city.

Global entropy defines a city with respect to how labour supply or demand is distributed

across all census tracts. Meanwhile, local entropy defines each tract based on how evenly

distributed all its incoming or outgoing commutes are. A high local in-flow entropy (shown

in the right-most network of Figure 4.1A) for a census tract implies that the commuting

origins for individuals who work in that tract are evenly distributed across all the potential

origins. Local in-flow entropy (H in
L ( j)) for a census tract j accounts for the probability, p(i| j),

of tract j receiving commutes from a census tract i, for all possible commuting origins, i:

H in
L ( j) =

−∑i∈CT
pi j
p j

log pi j
p j

log(|CT|−1)
. (4.2)
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Fig. 4.1 Higher values of local in/out-flow entropy reflect a less concentrated dependence
of commuting origins/destinations on employment/residential areas. Panel A shows how
employment areas with a concentrated commuting flow from specific residential neighbour-
hood leads to lower values of local in-flow entropy. Similarly, Panel B conveys how lower
local out-flow entropy values arise when individuals in a residential neighbourhood tend to
concentrate their commutes to a particular employment area.

where p j reflects the weighted in-degree of node j, normalised with respect to the sum of

edge weights in the entire network. Local out-flow entropy (Hout
L (i)) can be defined similarly,

except rather than consider the probability p(i| j) for incoming commutes, it calculates the

probability, p( j|i) of workers living in tract i to commute to a census tract j, for all possible

workplaces, CT:

Hout
L (i) =

−∑ j∈CT
pi j
pi

log pi j
pi

log(|CT|−1)
. (4.3)

where pi conveys the weighted out-degree of node i, normalised with respect to the sum

of edge weights in the entire network. The right-most network in Figure 4.1B shows how

a concentrated distribution of commuting origins leads to lower values of local out-flow

entropy. In this manner, we leverage network entropy measures on a global and local scale

to understand how commuting characteristics of low-income versus high-income workers

indicate levels of segregation not only in terms of where each demographic group lives, but

also in the context of the areas where they work. The denominators in Equations 4.1, 4.2 and
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Fig. 4.2 Employment areas (global in-flow entropy) tend to be more concentrated than
residential locations (global out-flow entropy), as seen by higher Hout

GN values for all 25
US cites. The grey and white bar capture global entropy of the entire commuting network
for in-flow and out-flow commutes, respectively. The orange point measures H in

GN for the
low-income network, while the purple point does the same for the high-income network.

4.3 serve to normalise the entropy values for cities of varying sizes, based on the number of

tracts in a city (Eq. 4.1), and the focal node’s maximal possible degree (Eq. 4.2 and 4.3).

4.2.1 Global Entropy to Compare Disparities across Cities

We begin by applying global entropy measures to the commuting networks of the 25 different

cities. We reiterate that because entropy values are normalised with respect to network size,

we can make comparisons not only between cities, but also between commuting networks of

different socioeconomic groups. Figure 4.2 elucidates how, for every city, the global entropy

of commuting out-flows is consistently larger than the global entropy for commuting in-flows.

This pattern is to be expected, as employment hubs tend to emerge in particular areas of a

city, whereas residential locations tend to appear through most areas of a city [187]. Notably,

the lower values of global in-flow entropy in cities such as New Orleans, San Francisco, and

Boston indicate the presence of larger employment hubs.
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By disaggregating the commuting networks based on workers’ economic profiles, we

can analyse the networks of low-income and high-income workers separately. Interest-

ingly, within the cities we analyse, the global in-flow entropy of high-income commuters

is persistently lower than that of the low-income group. These lower values imply less

structural diversity in high-income commuting origins, which translates to a higher level

of monocentricity for high-income jobs. What is clear is that there is a distinct difference

in global entropy values for commuting in-flows when considering networks of different

socioeconomic groups. Whether these differences are indicative of socioeconomic inequality

is explored in the following sections.

When comparing normalised global entropy across cities’ commuting networks, it is

crucial to consider how common the occurrence of zeros are in the distribution of in-degrees

and out-degrees of nodes [156]. If a given distribution has a prevalence of zeros, it essential

to modify the normalisation process such that the adjusted entropy value is divided by the

number of census tracts that have a non-zero node strength (Eq. 4.1). Not accounting for

this can lead to artificially low entropy values. Tables A.1 and A.2 in Appendix A reflect the

characteristics of the commuting networks for each city, ensuring that the presence of zeros

does not drastically change the results of the analysis. This can be seen, as the largest change

between the reported and adjusted global in-flow is 0.110%, for New Orleans. Furthermore,

Boston is the only city that has the presence of any zeros in outgoing node strength, which

leads to a 0.092% change from the reported global out-flow entropy in Figure 4.2. Thus, we

show that our normalised measures of global in-flow and out-flow entropy are not skewed by

zeros in the distribution and can, consequently, be compared across cities.
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4.3 Conventional Socioeconomic Segregation in Urban Land-

scapes

We analyse socioeconomic features of neighbourhoods to better understand the mechanisms

that drive the identified differences in commuting networks across demographics. Thus, we

characterise urban areas in terms of the concentration of socioeconomic groups, using the

ICE, introduced in Chapter 2.2.1. As a reminder, ICE can be calculated using the following

formula:

ICEct =
Act−Pct

Tct
, (4.4)

where the ICE for a census tract, ct, is defined as the difference between the number of

affluent residents, Act , and the residents below the poverty line, Pct , over the entire population,

Tct . We measure residential segregation using the household income distribution data from

the ACS (Table B19001), introduced in Chapter 3.2.1. We define Act and Pct as the number

of workers with yearly incomes above $125,000 and below $20,000, respectively, for a given

tract ct.

In a similar vein, we can use Equation 4.4 to measure the level of segregation for a census

tract, ct, from an employment perspective, defining Act and Pct as the number of workers

commuting to tract ct from the high-income and low-income group, respectively. As a

reminder, the high-income group consists of workers earning above $3,333 per month, while

low-income workers have monthly earnings of less than $1,250. Thus, Tct captures the total

number of individuals commuting to ct, regardless of demographics. Accordingly, we can

use ICE to capture segregation levels at both a residential (ICEres) and employment (ICEemp)

scale. We use the LODES dataset to calculate ICEemp as it provides unique information

regarding demographic characteristics of a workforce. Meanwhile, we use the ACS household
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income distributions to calculate residential segregation as it provides a high granularity of

income levels to characterise tracts by its residents.

4.3.1 Local Entropy as a Measure of Segregation

In this section, we aim to disentangle whether overall structural diversity entails other forms

of diversity, such as lower levels of segregation. In doing so, our goal is to clarify if the

monocentricity of job opportunities, which is more present in high-income networks, is a

privilege or a burden.

Residential segregation

To better understand the differences in how housing and employment landscapes intersect

for socioeconomic groups, we evaluate whether a relationship exists between residential

segregation and the diversity of employment destinations for residents of a particular tract.

The fourth column of Table 4.1 lists the Pearson correlation coefficients when comparing the

local out-flow entropy (Hout
L ) with the residential ICE value (Eq. 4.4) of census tracts in a city.

We recall that the higher the ICEres value, the larger the proportion of high-income residents

in that area. All but three of the 25 cities have a significant, negative correlation. This

reveals that census tracts characterised by more affluent residents tend to have lower local

diversity values (i.e., concentrate commutes to fewer tracts), which indicate their dependence

on particular tracts for supplying labour to their residents. The red scatter plots in the top row

of Figure 4.3 illustrate the negative trends between residential segregation and the diversity

of commuting destinations, using Milwaukee, San Francisco, New York City, and Detroit as

examples.

On one hand, one can argue that these higher diversity values for less affluent tracts

makes them less vulnerable to any shortages in labour supply, such that if an employment

location stops providing opportunities, they have other options of commuting destinations.
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Segregation vs. Local Network Entropy
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Fig. 4.3 More diversity of commuting destinations tends to be associated with residential
segregation for low-income individuals, while higher diversity of commuting origins is
associated with employment segregation of high-income workers. Each column reflects
the relationship between segregation and local network entropy for Milwaukee, San Francisco,
New York City, and Detroit. The top row of red scatter plots conveys the relationship between
residential segregation (y-axis) and commuting destination diversity (x-axis), measured using
local out-flow entropy. The bottom row of grey scatter plots shows how employment
segregation (y-axis) related to commuting origin diversity (x-axis), measured using local
in-flow entropy.
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However, this negative correlation could also indicate the presence of inequalities in the

housing landscape (i.e. through the diversity of commuting origins). Thus, we proceed

to analyse the opposite dynamic, comparing the diversity of commuting origins (H in
L ) to

the degree of employment segregation (ICEemp), to explore whether the identified negative

correlations imply socioeconomic disparity on a residential or employment level.

Employment segregation

For completeness, we have included the results for the correlation patterns between segrega-

tion of a tract’s workforce (ICEemp, Equation 4.4) and the diversity of commuting origins

for that workforce (H in
L ) in the fifth column of Table 4.1, which shows significant positive

correlations for 20 of the cities. When considering the high-income group, we see that, from

an employment perspective, tracts in which more affluent employees work are more diverse,

expressing heterogeneity in commuting origins. However, from a residential perspective,

tracts with more affluent residents are less diverse, expressing homogeneity in commuting

destinations. Thus, we show that higher values of structural diversity do not necessarily

imply an socioeconomic advantage. The relationship between employment segregation and

commuting origin diversity can be seen in the grey scatter plots (bottom row of Figure 4.3)

This section elucidated how the structural diversity of census tracts often corresponds

with their urban characteristics. We measure the local in and out-flow entropy of entire

commuting networks to highlight how diversity of the employment landscape can be reflective

of employment and residential segregation. The next section wraps up this analysis by

disaggregating the entire commuting network of each city into low-income and high-income

networks. This allows us to examine how unequal labour distribution may be exacerbating

existing inequalities.
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Table 4.1 General network properties and Pearson correlation coefficients for different forms
of local entropy and socioeconomic segregation. The last column refers to local entropy
differences between the disaggregated networks, discussed in Section 4.3.2. Boldface is used
to indicate significant correlations, with asterisks reflecting p-value.

Network Hout
L vs. H in

L vs. ∆H in
L vs.

City Properties ICEres ICEemp ICEemp

Nodes Edges r1 r1 r1

Charleston 85 6,162 -0.313** 0.116 0.453***
San Francisco 196 25,886 -0.373*** 0.614*** 0.341***
Gainesville 56 2,803 -0.243 0.313* 0.496***
Greenville 111 10,431 -0.386*** 0.033 0.596***
Albuquerque 153 18,871 -0.385*** 0.116 0.632***
New Orleans 176 13,680 -0.309*** 0.140 0.843***
Houston 921 398,876 -0.287*** -0.018 0.716***
Boston 204 20,608 -0.401*** 0.652*** 0.646***
Indianapolis 224 33,147 -0.494*** 0.231*** 0.754***
Las Vegas 487 124,083 0.027 0.093* 0.818***
Philadelphia 384 69,364 -0.547*** 0.289*** 0.754***
Columbus 347 76,995 -0.486*** 0.272*** 0.735***
Hartford 224 33,107 -0.507*** 0.430*** 0.710***
Jacksonville 173 23,610 -0.441*** 0.473*** 0.722***
Cincinnati 222 32,801 -0.185** 0.306*** 0.751***
Milwaukee 297 50,210 -0.517*** 0.377*** 0.829***
Cleveland 446 85,609 -0.182*** 0.330*** 0.834***
Bridgeport 210 28,259 -0.425*** 0.278*** 0.665***
Fort Worth 357 76,883 -0.483*** 0.280*** 0.798***
Memphis 221 31,507 -0.135* 0.212** 0.816***
Chicago 1,318 441,406 -0.287*** 0.358*** 0.855***
New York City 2,164 990,302 -0.478*** 0.455*** 0.837***
Detroit 1,163 385,185 0.139*** 0.527*** 0.865***
Dallas 529 129,486 -0.569*** 0.350*** 0.830***
Kansas City 283 49,377 -0.165** 0.328*** 0.781***
1*p<0.05; **p<0.01; ***p<0.001

4.3.2 Socioeconomic Disparities in Diversity of Commuting Origins

In this section, we illustrate how local in-flow entropy measures of disaggregated networks

can capture experienced segregation. For improved readability, we show the results for four

representative cities of different sizes and socioeconomic profiles (Milwaukee, San Francisco,
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New York City and Detroit). Nevertheless, our findings are based on the analyses of the 25

cities.

We proceed, analysing how differences in heterogeneity of commuting origins coincide

with levels of employment segregation. We begin by splitting the commuting network of

the city into separate networks that measure the residential-work patterns of socioeconomic

groups separately. Specifically, we define the entire commuting network for a given city,

which is provided by the LODES data, as Gall = (V,E). Here, V reflects all census tracts in

a city, while an edge ei j ∈ E conveys the number of individuals that living in census tract vi

and work in tract v j. With this in mind, we can focus on the commuting flows for specific

income demographics. We denote the low-income commuting networks as Glo = (V,E lo),

in which any given edge elo
i j ∈ E lo reflects the number of low-income workers commuting

from tract i to j, as defined by the LODES data. Similarly, Ghi = (V,Ehi) represents the

high-income commuting network, ehi
i j ∈ Ehi representing the number of high-income workers

commuting from tract i to j. For a given edge in low-income and high-income commuting

network, the sum of their edge weights should never exceed the value of the corresponding

edge in the entire commuting network (elo
i j + ehi

i j ≤ ei j).

By considering commuting networks for different socioeconomic demographics, we

can understand the extent to which the diversity of commuting origins differs between the

low-income and high-income workers within a given census tract. Panels A-D in Figure

4.4 plot the local in-flow entropies of every tract in the low-income network (H in
L,lo, x-axis)

against their respective entropy values in the high-income network (H in
L,hi, y-axis), for four

of the analysed cities. The black line expresses the case in which a census tract has equal

diversity of commuting origins in both socioeconomic networks, which we see a few cases of

in New York City and Detroit, indicated by the white points on the diagonal. Orange points

reflect census tracts in which the low-income individuals have a more even distribution of

commuting origins than the high-income workforce. The purple points capture census tracts
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with the opposite characteristics: greater diversity in residential locations for the affluent

workforce.

A B C

E

D

F G H

Fig. 4.4 Comparing the local in-flow entropy between high-income and low-income
commuting networks helps to identify cities in which high-income workers tend to have
more diversity in commuting origins and reveals how network entropy can used to reveal
disparities in residential-workplace dependencies. Panels A-D compare entropy values for
tracts in the low-income and high-income network, with points below the diagonal reflecting
tracts in which low-income workers have more diverse commuting origins. Panels E-H show
how the differences in these values (black points) compare to hypothetical scenarios derived
from Figure 4.5

We observe that most census tracts in San Francisco and New York City tend to have

higher homogeneity in commuting origins for low-income workers than compared to high-

income workers. It is worth noting that because the LODES commuting dataset uses national

income levels to define high and low-income brackets, city-level economics (i.e., differences

in cost of living between cities) is not considered. Incorporating local income distributions

in San Francisco, for example, which has more representation of higher-income workers
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in its population (Figure 3.1, would create more strict constraints on what it means to a

high-income worker. Consequently, the total edge weight in the high-income commuting

network, Ghi, would likely decrease, potentially impacting the distribution of commuting

origins and lowering the diversity of commuting origins for affluent workers.

We note, however, that incorporating city-level economics introduces separate challenges,

with each city having different methodologies for standardising and identifying income

distributions. Furthermore, tract-level commuting data that can be decomposed with respect

to regional income levels is scarce and would limit the reproducibility of this chapter.

Although defining socioeconomic demographics using national income distributions only

portrays one perspective of commuting dynamics, it allows for straightforward inter-city

comparisons. Future work could build off of these results by incorporating commuting data

accounts for local economic features, to construct a more comprehensive understanding of

socioeconomic inequality in residential-workplace dependencies.

We now focus on extending our understanding of segregation from a residential dimension

to an employment one as well. In order to accomplish this, we evaluate how socioeconomic

disparities in the homogeneity of residential locations for a region relate to the employment

segregation within that region. For each tract in a city, we compare a census tract’s in-flow

entropy value in the high-income and low-income networks:

∆H in
L (ct) = H in

L,hi(ct)−H in
L,lo(ct), (4.5)

where H in
L,hi(ct) captures the local in-flow entropy of census tract ct in the high-income

commuting network, whereas H in
L,lo(ct) describes the in-flow entropy for i in the low-income

commuting network. Thus, ∆H in
L (ct) can range from−1 to 1, where negative values represent

more heterogeneity of commuting origins for the low-income population. Positive values

capture scenarios in which higher-income workers have more heterogeneous commuting

origins than lower-income workers.
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1 2 3
2 1

high-income
low-income

Fig. 4.5 Toy example highlighting the distinction between socioeconomic disparities in
commuting origin diversity (∆Hin

L (ct)) and employment segregation (ICEemp.) Panel
A shows concentration of low-income commuting origins, while B captures homogeneous
origins for the high-income group. Panel C conveys how the two scenarios of commuting
diversity relate to employment segregation.

Comparing Local Entropies in Disaggregated Networks

For each of the 25 cities, we find significant positive correlations between the difference

in local entropy values (∆H in
L (ct), Eq. 4.5) to the level of segregation in employment areas

(ICEemp, Eq. 4.4). These correlations are outlined in the last column of Table 4.1. We use

Figure 4.5 to explain how entropy values are not strictly correlated with in-degree weights.

The purple network captures the high-income commuting network and the orange network

reflects that of the low-income workers. We set the total number of individuals working in

node E to be 50. For scenarios 1 and 2, we can observe that the socioeconomic composition

of individuals working in node E remains the same (40 high-income workers, 8 low-income

workers). Thus, values of employment segregation (ICEemp) are consistent throughout the

examples. What changes across the scenarios are the values of H in
L , which describe how

evenly commuting origins are distributed across other nodes in the network. Scenario 1 (4.5,

left panel) depicts a case where low-income commutes have more concentrated origins and

high-income commuting origins are more diverse. Meanwhile, scenario 2 (4.5, centre panel)

captures homogeneity in high-income commuting origins and heterogeneous commuting
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origins for the low-income workers in the node E. We can, then, understand that ∆H in
L (ct)

serves to measure differences in heterogeneity of commuting origins between the high-income

and low-income networks. The right panel in Figure 4.5 uses scenarios 1 and 2 to elucidate

how positive correlations between ICEemp and ∆H in
L (ct) are non-trivial. Furthermore, while

the employment segregation (ICEemp) for both scenarios is the same, scenario 1 captures

higher commuting origin heterogeneity for high-income workers (i.e. positive values of

∆H in
L (ct)), while scenario 2 does the same, but for low-income workers (i.e. negative values

of ∆H in
L (ct)) In this manner, ∆H in

L (ct) can reveal the disparity in commuting origin diversity

between low-income and high-income individuals that work in a given census tract.

Modelling Hypothetical Scenarios of Disparities in Residential-Workplace Dependencies

The black scatter plots in Figure 4.4E-H illustrate the aforementioned positive correlations

between socioeconomic differences in the heterogeneity of residences (∆H in
L (ct)) and em-

ployment segregation ICEemp, for four cities. However, what remains unclear is whether the

positive correlations are an artefact of the larger representation of high-income workers in the

commuting data, as seen by Figure 3.1. More explicitly, we pose the question: is the differ-

ence in commuting origins of low and high-income commuting networks (∆H in
L (ct)) simply

conveying the concentration of socioeconomic demographics in their workplaces? We can

reflect on this question by maintaining the socioeconomic composition of employment areas

and manipulating the distribution of commuting origins for either the high-income or low-

income commuting networks. In this manner, we can assess whether the over-representation

of high-income workers leads to inequalities in commuting origin diversity (∆H in
L (ct)) con-

sistently expressing positive correlations to employment segregation, regardless of extreme

disparities in residential-workplace dependencies.

To address this issue we model two hypothetical scenarios, inspired from the examples in

scenarios 1 and 2 of Figure 4.5, to emphasise how the observed positive correlations are not
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a result of over-representation of high-income workers. Both scenarios elucidate how the

correlations between employment segregation and local entropy differences are not always

significant or positive. Each modelled scenario retains the in-degree of the disaggregated,

empirical commuting networks (number of workers in a census tract), only changing how

evenly a node’s incoming edges are distributed across other nodes in the network.

The Low-Income Concentration scenario explores the relationship between employment

segregation and inequalities in commuting origin diversity, when we enforce more diversity

of commuting origins for the affluent population than the low-income group, captured by

positive values of ∆H in
L (ct). We construct this model, such that the residential locations for a

tract’s high-income workforce is uniformly sampled across all other tracts. The origins of

the low-income workforce are defined by one, randomly sampled tract, producing smaller

values of H in
L,lo(ct) All the while, we maintain the empirical workplace composition for

each census tract, thus retaining empirical values of ICEemp and aligning the Low-Income

Concentration model with scenario 1 in the toy example. Meanwhile, the High-Income

Concentration scenario, inspired by scenario 2 in the toy example, captures negative values

of ∆H in
L (ct) by simulating high diversity of low-income commuting origins and homogeneity

for high-income commuting origins.

We emphasise that, in both hypothetical scenarios, the only difference to the empirical

commuting network comes from the distribution of incoming edges to a tract. The results

of the Low-Income and High-Income Concentration scenarios can be seen in the blue and

brown scatter plots, respectively, shown in Figure 4.4. The equivalent distributions for

ICEemp, shown along the y-axis, demonstrate how measures of employment segregation

remain consistent across the empirical and hypothetical scenarios, despite having disparities

in residential-work patterns. On the other hand, the distributions along the x-axis, illus-

trate how ∆H in
L (ct) can capture these structural inequalities by identifying tracts in which

socioeconomic groups express stark differences in their dependence on commuting origins.
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While the empirical scatter plot does not show signs of extreme structural disparities, as

expressed by the hypothetical scenarios’ scatter plots, the positive correlations indicate that

areas which have more heterogeneity of residential locations for a particular socioeconomic

group tend to be areas in which that socioeconomic group is more concentrated. The sign

of ∆H in
L (ct) specifies which demographic is segregated, with values less than zero implying

low-income employment segregation. Thus, this section highlights how measuring disparities

in structural diversity of disaggregated networks can expose dimensions of segregation in

residential-workplace dynamics, that conventional metrics of segregation may overlook.

Local Entropy as a Potential Indicator for Commuting Times

Having evaluated how local in-entropy differences compare to employment segregation, we

shift our attention to attributes of the residential dimension. That is, we focus on measuring

∆Hout
L (ct), to understand how differences in commuting destination heterogeneity correspond

with transit commuting times:

∆Hout
L (ct) = Hout

L,hi(ct)−Hout
L,lo(ct), (4.6)

which is defined similarly to Equation 4.5. In this case, negative values derived from

Equation 4.6 imply that low-income workers in tract, ct, have more heterogeneous commuting

destinations that high-income works in ct. Positive values indicate that low-income workers

in ct have more concentrated commuting destinations than their high-income counterparts.

We calculate empirical transit commuting times, T comm
transit(ct), by computing an average

of transit times from ct to all the destinations to which workers in ct commute, weighted

by the number of commuters travelling to each destination. Table 4.2 reveals that 18 of the

25 cities have significant positive correlations between commuting destination inequalities

and average transit commuting times. Positive correlations indicate that neighbourhoods,

in which low-income commuters have more concentrated destinations than high-income
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Table 4.2 Comparing socioeconomic differences in heterogeneity of commuting destinations
to commuting transit times. The first column reflects the city of analysis, while the second
column defines the average commuting time across all census tracts in a given city. The last
column reveals the relationship between commuting destination diversity and the average
commuting transit time, with respect to a given census tract. Positive Pearson correlation
coefficients imply that in neighbourhoods where high-income residents have larger diversity
of workplaces, commuting times tend to be longer. Asterisks indicate the significance of the
correlation coefficients in the last column, with non-bolded entries being non-significant.

City T comm
transit(ct) ∆Hout

L (ct) vs.T comm
transit(ct)

San Francisco 30.326 -0.051
New Orleans 54.757 -0.05
Dallas 92.822 -0.016
Albuquerque 83.614 0.034
Jacksonville 103.541 0.05
Boston 34.649 0.111
Fort Worth 142.325 0.146**
Charleston 108.557 0.164
Greenville 140.364 0.232*
New York City 80.712 0.237***
Memphis 111.954 0.27***
Indiannapolis 68.408 0.275***
Milwaukee 31.242 0.321***
Philadelphia 34.473 0.34***
Cincinnati 53.127 0.383***
Las Vegas 111.746 0.441***
Gainesville 115.301 0.453***
Houston 148.409 0.454***
Chicago 64.757 0.483***
Detroit 130.127 0.519***
Bridgeport 138.524 0.549***
Hartford 77.785 0.586***
Cleveland 61.901 0.586***
Kansas City 126.180 0.656***
Columbus 112.148 0.673***
*p<0.05; **p<0.01; ***p<0.001
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commuters, tend to have longer mean commutes via transit, under the assumption that all

commuters are using transit. We do not account for commutes by car as we want to focus on

how transit infrastructure supports job accessibility, with respect to structural inequalities in

residential-workplace dependencies. However, the following sections, which analyse more

complex features of residential disparities, integrate driving times into the analyses to act as

a baseline for comparison.

By incorporating transit times into our measure of commuting destination inequality,

we can understand how disadvantage can be exhibited in different ways, depending on the

socioeconomic group. That is, we observe smaller commuting times for neighbourhoods in

which low-income workers have a larger diversity of commuting destinations. This can be

indicative of transit systems that are facilitating commutes for low-income neighbourhoods.

Alternatively, it can be a signal of residential constraints that force low-income individuals

to live in areas that have diverse employment opportunities and transit service. Chapter 6

analyses transit inequality with respect to built form features, allowing us to disentangle

issues surrounding the self-selection bias. Furthermore, the following sections apply a more

nuanced analysis to residential-employment disparities by integrating sociological concepts

into characterising residential features and geospatial perspectives for defining employment

locations. Specifically, we analyse how transit serves particular employment hotspots for

those vulnerable to housing insecurity.

4.4 Measuring Housing Insecurity

The previous sections highlighted how structural features of socioeconomic commuting

landscapes can reveal disparities that are obscured in conventional segregation metrics.

However, the goal of this thesis is to highlight the importance of analysing transit inequality

in the context of various urban mechanisms, with respect to structural and experiential

inequalities. Thus, having introduced a structural framework for analysing spatial mismatch,
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we shift to a more humanistic approach. That is, we focus on understanding commuting

patterns of neighbourhoods, based on their vulnerability to insecurity. Numerous studies

have highlighted how housing insecurity can negatively impact how one experiences urban

life [71, 73, 151]. Thus, we analyse how neighbourhoods that are especially vulnerable to

housing insecurity may suffer from poor transit links to employment opportunities. In order

to accomplish this we, first, have to measure housing insecurity. Typically, urban studies

use a single feature, such as rent burden or eviction rates, to act as a proxy for housing

insecurity [124, 33]. To develop a more comprehensive estimate of housing insecurity, we

leverage sociological research that underscores the multifaceted nature of housing insecurity.

Accordingly, in this section, we detail our multidimensional approach for defining census

tracts based on their level of vulnerability to housing insecurity. We apply spectral clustering

to the data introduced in Section 3.1.2 and then evaluate the validity of the identified clusters

using a range of sociodemographic indicators. In doing so, we establish a comprehensive

measure of vulnerability to housing insecurity. We incorporate this variable throughout

the rest of the chapter to understand how transit systems facilitate employment access for

neighbourhoods particularly vulnerable to housing insecurity. We note that we limit our

analysis to 20 US cities, due to data availability of eviction rates. These 20 cities still

represent different geographical areas across the US, while also capturing hetergeneous

housing, transit, and employment features.

4.4.1 Defining Vulnerable Housing Regions: A Clustering Approach

In order to examine the state of housing in various US cities, we adopt an unsupervised

learning approach to define three different housing categories: most vulnerable, mildly

vulnerable, and less vulnerable. We apply spectral clustering on the housing features that

we outline in Section 3.1.2. Details about these features are summarised in Table 3.1. We

begin preprocessing the housing features by replacing all negative values with placeholder
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values (NaNs). Typically, negative values appear in the American Community Survey to

indicate insufficient data, due to sample sizes, for example. Then, we retain the data from

census tracts that have a population greater than zero and that have data on at least one of

the housing affordability features (rent burden, mortgage, or housing stock). In doing so, we

only consider census tracts in which individuals reside. We standardise the data such that, for

a given city, each housing feature has a mean value of zero and a standard deviation of one.

This is done to ensure that features with larger raw values (i.e. mortgage) will not have a

greater influence on the results than features with smaller values (i.e. evictions per capita).

We implement spectral clustering to measure levels of housing insecurity within different

urban areas. Spectral clustering is a particularly useful approach for clustering high dimen-

sional data, as it makes no assumptions about the shapes of clusters, whereas approaches such

as K-Means assumes that data clusters are spherical. Alternative approaches for clustering

such as Expectation-Maximisation and K-Means are extremely sensitive to initialisation,

requiring numerous iterations to derive high quality clusters.

The process of spectral clustering can be broken into three steps. First, one must extract

an affinity matrix, A, from a graph that is built using the data points. This entails constructing

an |N|× |N| similarity matrix where |N| is the number of records, or census tracts. This can

be done using a radial basis function, which applies a Gaussian function to the Euclidean

distances between each data point, in which distance reflects the similarity of housing features.

Since each node in our graph represents the housing characteristics of a particular census

tract, we tend to have high values of |N|. Thus, we use a K-Nearest Neighbours similarity

graph to create a more sparse matrix, in which we consider 10 of the nearest neighbours to

each tract.

The next step is spectral embedding, which leverages properties of the Graph Laplacian

to represent data points in a low-dimensional space. The diagonal matrix of degrees, D, is

necessary to calculate the Laplacian Matrix, L, for an affinity matrix, A, which was defined
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in the first step. D is simply an identity matrix, where each diagonal value is the row-wise

summation of edge weights for the respective node in the graph. The Laplacian Matrix

can, then, be defined in numerous ways. For the approach of identifying different housing

vulnerability clusters, we use the Graph Laplacian, which is calculated by subtracting the

diagonal matrix, D, from the affinity matrix, A. In this manner, all values on the diagonal of

L capture the weighted degree of each node, while each cell li j is the negative edge weight, if

an edge exists, or zero otherwise. One of many fascinating properties of the Laplacian matrix

is that its rows and columns sum to zero. Moreover, the eigenvalues of a graph’s Laplacian

matrix informs structural properties of the graph, namely the number of components it has.

If the first x eigenvalues are zero, this indicates that the respective graph built from A has x

connected components. Eigenvalues that are near-zero indicate a loosely-connected graph,

which couldn’t be split into separate components with minimal cuts. Conversely, a very dense

graph would have eigenvalues near |N|. Figure A.1 in the Appendix shows the eigenvalues,

and respective spectral gap, for the Graph Laplacian in each city.

The last step of the algorithm involves applying a classical clustering algorithm, typically

K-means, to partition the embedded data into respective clusters. It becomes clear, then,

that eigenvalues can be leveraged to identify the number of clusters into which the data,

embedded into a graph, can be clustered.

Since we are considering a variety of urban areas, the number of K-Means clusters that

are appropriate for each city’s housing characteristics differs. Thus, the spectral gap for

each city (Fig A.1) informs the number of clusters for which the K-Means algorithm is

applied. To extract meaning from each cluster, we rank the housing clusters based on the

mean values of their housing features, where larger values denote worse housing conditions.

The group that has higher ranks across the housing dimensions is deemed most vulnerable

to housing insecurity. Then, to address the varying number of clusters across cities, we

partition the ranked clusters into three housing demographic groups, in which each group
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contains a similar number of clusters. These final three groups reflect the tracts that are

the most vulnerable, mildly vulnerable, and less vulnerable to housing insecurity, in the

context of each city. In cases where the number of clusters for a city is not evenly divisible

by three (to equally partition into the three housing demographics), we assign the remainder

number of cluster to the mildly vulnerable demographic. Figure 4.6 illustrates the housing

features for the resulting housing demographics in Milwaukee (Figure 4.6A) and Cleveland

(Figure 4.6B). Each column represents the final housing demographic groups (Less, Mildly,

and Most Vulnerable), while each row illustrates the housing characteristics that were used

to define the housing demographic with respect to a city. In this manner, each cell can be

defined by the following equation:

HVf ,h =
1
|CTh|

Th

∑
t

HF( f , t) (4.7)

where HF( f , t) refers to the value of a housing feature, f , for a tract, t, which belongs to a

housing demographic, h. CTh indicates the set of census tracts in a housing demographic,

h. Accordingly, for a given housing feature (row), f , and housing demographic (column),

h, a cell’s value (HVf ,h) is defined by averaging the housing feature for each census tract in

CTh. Then, we apply row-wise normalisation to compare the differences in demographics

within each city. The upper left cell of a heat map, for example, conveys the mean percentage

of severely rent burdened households across all census tracts in the less vulnerable housing

cluster.

Figure 4.6 portrays how the housing features for Milwaukee and Cleveland map to their

final housing demographics. That is, the rows represent the features that were considered

when applying the clustering framework to end up with the final, shown by the columns. Thus,

we can see the average characteristics of the three housing demographics, with respect to each

considered feature. Figure 4.6A shows how the housing demographics (columns) are clearly

distinguishable, in terms of having consistent levels of housing insecurity across most features,
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in the context of Milwaukee. In these types of cities, using a single housing feature as a proxy

for housing insecurity could be an adequate estimation. However, the housing characteristics

in Cleveland (Figure 4.6B) emphasise the need for a multidimensional approach to defining

housing insecurity, illustrating how neighbourhoods may be vulnerable to various forms

of housing insecurity, ultimately underscoring the complexities of housing conditions. For

instance, the less vulnerable census tracts in Cleveland have higher insecurity than the most

vulnerable tracts, in terms of housing stock within the city. Moreover, the mildly vulnerable

tracts have the higher insecurity when considering housing stock, and overcrowding in the

housing stability dimension, represented by the bottom-most group of heat maps. When

considering each housing feature, however, the most vulnerable tracts have more occurrences

of the highest levels of insecurity. The intricacies of housing conditions, then, becomes clear,

with Figure 4.6 emphasising the importance of considering the multidimensional nature of

housing.
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Fig. 4.6 Incorporating multiple dimensions of housing insecurity reveal how some cities
have clear delineations between housing demographics (Milwaukee), while others unveil
less straightforward dynamics across dimensions in the housing landscape (Cleveland).
Each panel visualises the average housing characteristics for each housing demographic.
From top to bottom, each heat map captures housing insecurity levels for the dimensions of
affordability, safety/quality, and stability, respectively. Columns are the housing demograph-
ics, while rows are the housing features. Darker hues of red indicate higher levels of housing
insecurity. On one hand, Milwaukee (Panel A) reflects a case where the most vulnerable
census tracts consistently have the highest rates of housing insecurity. On the other hand,
Cleveland (Panel B) presents a convincing case against using a single housing feature as a
proxy for housing insecurity.

Ultimately, we partition the clusters within each city into three groups, based on their

housing characteristics. These final three groups reflect the most vulnerable, the mildly

vulnerable, and the less vulnerable census tracts for each urban area, with regards to housing

insecurity. Figure A.2 in the Appendix shows the population distribution across each of

the three housing demographics. While each of the housing demographics consists of a

similar number of clusters, it be comes clear that this is not necessarily indicative of an even

population distribution. Although cities such as Bridgeport and Columbus have less than ten

percent of the population living in neighbourhoods that are the most vulnerable to housing
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insecurity, it is still important to consider how urban infrastructure serves these demographics

to ensure that they do note face exacerbated levels of social exclusion [176].

4.4.2 Socio-demographic Characteristics of Housing Groups

We validate our clustering approach by exploring how the housing demographics we defined

in the previous section relate to socioeconomic variables associated with employment,

wealth, and commuting. Specifically, with respect to each tract, we gather census data

capturing (a) the percentage holding a professional degree, (b) the median household income,

(c) unemployment rates, (d) poverty rates, (e) the percentage commuting using public

transportation, and (f) the percentage of the tract with a commute longer than an hour. Figure

4.7 compares these socioeconomic variables across the tracts in the less vulnerable and most

vulnerable housing groups for Bridgeport, Albuquerque, Philadelphia, Milwaukee, Cleveland,

and Dallas. Meanwhile, Tables A.3 to A.8 in the Appendix list the sociodemographic

characteristics of the most and less vulnerable housing demographics for all 20 cities. We

choose these 6 cities as they span a range of geographic and public transport characteristics.
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Sociodemographic Characteristics for Housing Demographics
C
ity
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Fig. 4.7 Neighbourhoods that are most vulnerable to housing insecurity tend to have the
lower rates of educational attainment (Panel A), lower median households incomes (B),
higher unemployment (Panel C), higher poverty (Panel D), more dependence on transit
for commuting (Panel E) and higher percentages of commutes over an hour long (Panel
F). Dark and light red box plots reflect sociodemographic characteristics for the most and
less vulnerable housing demographic, respectively.

Panel A in Figure 4.7 illustrates how census tracts that are the least vulnerable to housing

insecurity tend to have a higher fraction of its residents holding a professional degree. This

considers Associate’s, Bachelor’s, Master’s, Professional schools, and Doctorate degrees

as qualifications for estimating the level of educational attainment in a region. Similarly,

Panel B highlights how the most vulnerable neighbourhoods have lower median household

incomes than the census tracts that are less vulnerable. On the other hand, Panels C and

D consider deprivation indicators such as unemployment and poverty. In both these cases

we see associations between housing vulnerability and higher rates of unemployment and

poverty, for all of the 6 cities considered. When we analyse commuting characteristics

of housing demographics, we generally see more dependence on transit systems for the

most vulnerable neighbourhoods. We note that Albuquerque and Dallas have much lower
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percentages of transit commutes than the other 4 cities. Finally, when considering com-

mute times, irrespective of commute mode, we observe less distinct disparities between

the housing demographics. We hypothesise that this has to do with spatial organisation

of residential and employment areas for each housing demographic. That is individuals

organise their residential and employment locations to be close to one another, an idea that is

consistent in urban commuting literature [125]. While, at first glance, it does not appear that

significant disparities exist when comparing transit commuting features of various housing

demographics, we leverage detailed transport modelling tools to better understand the spa-

tial system-facilitated employment access for individuals living in neighbourhoods that are

most vulnerable to housing insecurity. In doing so, we question whether the lack of transit

commuting disparities is reflective of effective transit service, or is an artefact of segregated

residential and employment landscapes. Ultimately, this section highlights the pertinence of

understanding the nuances in housing conditions to determine residential characteristics. In

the next section, we define the efficiency of cities’ transport infrastructure to understand how

urban services connect different parts of a city. Doing so builds the foundation for analysing

the spatial relationship between housing and employment landscapes, as well as how public

transit intersects with commuting behaviour.

4.5 Assessing Transit Service in the US

In the previous section, we introduced a clustering framework for identifying census tracts

that are vulnerable to housing insecurity. To begin exploring whether indirect policies, such

as transportation accessibility, pose further obstacles to individuals in precarious housing

situations, we draw upon GTFS feeds to characterise public transportation systems. We

begin by defining a metric for public transportation efficiency, by comparing transit and

driving times of various journeys. With this metric, we proceed to define cities based on their

transit characteristics, categorising their public infrastructure as highly efficient, adequately
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efficient or inefficient public transportation infrastructure. Furthermore, we highlight how

transit inequalities may be overlooked by neglecting to account for the spatial organisation

of the housing landscape. This section aims to elucidate how transit systems serve housing

demographics by measuring efficiency between and within cities and exploring residential

attributes associated with proximity to transport infrastructure.

4.5.1 Comparing Transit Efficiency across the US

We begin our analysis by examining the current landscape of public transportation across all

20 cities, with a particular emphasis on how effectively transit serves each city. To investigate

differences in efficiency of transportation systems, we build a transit-pedestrian network

using UrbanAccess and the GTFS feeds outlined in Section 3.4. Each city’s network consists

of transit nodes and pedestrian nodes. Edges linking transit nodes reflect transit lines, while

edges between pedestrian nodes represent paths in the road network, which is informed by

OpenStreetMap. Building off these two networks, UrbanAccess connects the transit and

pedestrian networks by mapping each transit node to the closest pedestrian node. Accordingly,

the travel time via public transit from any two points in an urban area can be calculated as

a series of transit and/or pedestrian paths. It should be noted that UrbanAccess assumes a

walking speed of 3 miles per hour (4.83 kilometres per hour) to calculate pedestrian travel

times. With a given city’s transit network, we can calculate the time it would take to travel

using from one census tract to another (Jtransit(ct1,ct2)) in a given day, during a given time

frame. We construct a network for each of the 20 North American cities from 06:30AM to

10:30AM on Mondays in January 2020. This window of time captures the bulk of commutes

during rush hour [41]. Transit time, alone, is not particularly informative when comparing

cities of different sizes, as travel time is a function of distance and road networks. Thus, we

define the efficiency of a city’s transportation system by measuring how much longer a trip

takes using public transit, compared to driving, with Jdriving(ct1,ct2) reflecting the time it
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takes to drive between two census tracts. We refer to this concept as travel impedance. The

impedance, Z , from a census tract ct1 to a tract ct2 can be formally defined as:

Z (ct1,ct2) =
Jtransit(ct1,ct2)
Jdriving(ct1,ct2)

(4.8)

Openrouteservice provides the data for estimating the time it takes to travel from one

census tract to another [93] and is discussed at length in chapter 3.4.3. A travel impedance of

one implies that driving between two points takes as long as using public transit during the

specified day and time range. A travel impedance, t, greater than one suggests that transit

trips take longer than driving trips by a factor of t. To compare the efficiency of public

transportation systems across cities, we define the efficiency of a city’s transport system as

the mean efficiency for all potential commutes (all possible pairs of census tract origins and

destinations in a city). Mathematically, this is calculated by averaging the travel impedance

between each pair of census tracts, (ct1,ct2), where CT reflects the set of census tracts in a

city, c:

effc =

ct1,ct2∈CT
∑

ct1,ct2

Z (ct1,ct2)

|CT|2
(4.9)

Figure 4.8 captures the efficiency of transport infrastructure for each of the cities we

analyse, calculated using Equation 4.9. Darker hues of green reflect more efficient systems,

while cities with whiter hues reflect regions where using transit takes significantly longer

than driving. The efficiency values range from 1.896 (Milwaukee) to 7.261 (Fort Worth),

with a median of 4.95 and a mean of 4.64 across all cities. For further details, Table 4.3 lists

the corresponding transit efficiency for each city. Notably, Milwaukee is the only city with a

transit system that, on average, serves its residents in less than double the time it takes to

drive. On the other hand, the public transportation in Fort Worth, Bridgeport, and Greenville

generally takes more than six times as long as driving.
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Transit Efficiency across the USA

Transit Inefficiency

Fig. 4.8 Map of the United States, highlight the 20 cities in our analysis and their
corresponding levels of transit efficiency. Darker hues of green indicate more efficient
public transport systems.

The above results demonstrate that using public transit in US cities typically results in

longer travel times than driving would. Moreover, Figure 4.9A illustrates how cities with less

efficient transit systems tend to have higher rates of car ownership, with a Pearson correlation

coefficient of 0.66 between the two variables. These results are consistent with research that

reveals how the quality and reliability of transport infrastructure impacts the frequency with

which residents use public transit [300, 36].
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A B

Transit Efficiency vs City Characteristics

Fig. 4.9 When consider 20 US cities, transit efficiency is associated with less car owner-
ship and more transit dependence for commuting. Panel A shows a positive relationship
between inefficient transit systems and the percentage of households with one or more vehi-
cles. Panel B highlights how more efficient transit systems tend to have a higher proportion
of households that commute using public transport. The Pearson correlation coefficients for
car dependence and transit commutes are 0.66 and -0.51, respectively.

Moreover, Figure 4.9B shows the negative correlation (Pearson correlation coefficient

of -0.51) between transit inefficiency and the percentage of the population that uses transit

for commuting. Thus, we observe that less efficient transit systems are associated with a

higher dependence on cars and lower levels of transit commutes. In this manner, we can

reflect on how less efficient transit systems contribute to the burden of insecure housing, as

the financial cost of cars depletes resources that could be otherwise invested in savings or

spent on higher quality housing, a phenomena referred to as forced car ownership [64, 192].

Moreover, choosing to commute using inefficient transit is costly from a time perspective

[177].

4.5.2 Incorporating Distance into Measures of Transit Efficiency

Our analysis of the state of public transportation in the USA has been at the city level,

allowing us to compare cities to one another. However, the cities in this analysis vary
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Table 4.3 Statistical properties of transit efficiency and area (km2) for 20 US cities, ranked by
decreasing efficiency.

City Transit Efficiency Area (km2)
Mean Median Std. Dev.

Milwaukee 1.896 1.826 0.318 625.435
Philadelphia 2.398 2.385 0.251 347.782
Cincinnati 2.580 2.404 0.590 1050.000
Boston 3.361 3.351 0.455 150.863
Cleveland 3.459 3.398 0.464 1184.094
San Francisco 3.462 3.428 0.291 121.478
Jacksonville 4.150 3.949 0.888 1975.201
Hartford 4.355 4.341 0.555 1903.544
Dallas 4.741 4.480 0.878 2259.440
Las Vegas 5.117 4.811 1.754 20439.277
Albuquerque 5.122 5.024 0.868 3007.645
Houston 5.238 4.793 1.189 9350.383
New Orleans 5.468 5.444 0.663 438.831
Gainesville 5.492 4.973 1.391 2267.635
Columbus 5.540 5.083 1.310 3833.131
Charleston 5.750 5.553 1.207 2377.463
Kansas City 5.820 5.173 1.700 5487.102
Greenville 6.776 6.557 0.969 2033.481
Bridgeport 7.239 6.998 1.357 1618.659
Fort Worth 7.261 7.165 1.158 2236.864

largely in size, ranging from 121 km2 to 20,439 km2. It should be acknowledged that there

is a possibility that cities which err on the side of transit inefficiency may have effective

transportation, but are larger, therefore obscuring the density and quality of the transit system.

Table 4.3 shows how smaller cities are not necessarily the cities with the more efficient transit

systems, with New Orleans having an impedance of 5.468. Similarly, Table 4.3 contains

large cities that are both efficient and inefficient, indicating that region size may not be a

confounding factor. To further address this potential issue, we analyse travel impedance as a

function of distance. We accomplish this by creating 6 classes of transit journeys, with each

category defined by how long a journey between two census tracts is. We refer to each class

as a distance group.
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We map each pair of census tracts to its respective distance group, based on how far the

tracts are from one another. Then, for each distance group, we find the average impedance for

all trips within that group. In doing so, we identify three signatures of transit efficiency with

respect to trip distance, which correspond with the overall transit quality in cities. This is

highlighted in Figure 4.10, which uses Cleveland, Albuquerque, and Bridgeport to exemplify

each of the discovered trends for the most, moderately, and least efficient transport systems

respectively.

A B

Transit Efficiency as a Function of Distance

C

Fig. 4.10 Transit efficiency can be understood with respect to different trip distances.
Each panel shows one of the three signatures we identify when analysing transit efficiency
as a function of trip distance. Cleveland (Panel A) reflects efficient systems in which travel
impedance decreases as trip distance increases. Albuquerque (Panel B) is a case of moderately
efficient transit service, in which the relationship between travel impedance and trip distance
switches from negative to positive at a given trip distance threshold. Panel C uses Bridgeport
as an instance of inefficient transit systems, with increasing travel impedance as trip distance
increases.

The first signature we observe is for the cities with efficient transit systems (Figure 4.10A):

Philadelphia, Boston, San Francisco, Cleveland, Jacksonville, Hartford, and Dallas. In these

cities, the travel impedance of longer journeys (30 km or more) is, on average, lower than

shorter trips, indicating that the transit system is generally more efficient for trips of larger

distances. These cities all tend to be more efficient, with the mean efficiency of all cities
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following this signature being 3.704 and the median being 3.462. The transit efficiency

of these cities never exceeds 5, conveying that transit times in these cities are typically

upper-bounded at 5 times as long as driving times. Another signature we unveil is for cities

with inefficient public transit (Figure 4.10C): Gainesville, Kansas City, Greenville, Fort

Worth, and Bridgeport. These cities exhibit an increasing travel impedance as the distance

of trips increases, implying public transit becomes less effective than driving when journey

distances increase. The mean and median efficiencies for cities in this signature are 6.518

and 6.776, respectively.

The final signature we identify is a combination of the first two signatures and is found

in cities that have moderately inefficient public transportation (Figure 4.10B): Milwaukee,

Cincinnati, Albuquerque, Las Vegas, Charleston, Houston, Columbus, and New Orleans.

These cities reveal characteristics of the first signature until a particular distance threshold.

That is, travel impedance decreases as trip distances increase for shorter length trips in that

region. Trips that are longer than the distance threshold follow the behaviour of the second

signature, displaying increasing travel impedance with trip distance. Cities in the signature

have a mean transit efficiency of 4.589 and a median of 5.180. For a more comprehensive

look at the results for all 20 cities, we refer readers to A.3 in the Appendix.

4.5.3 Exploring the Intersection of the Housing and Transit Landscape

Prior to understanding the role transit plays in constraining or facilitating mobility for various

housing groups, we analyse how housing demographics are spatially distributed around the

public transportation infrastructure. Specifically, we consider how close each tract is to the

transit system’s centre of mass, which we refer to as the transit core. We use the centre

of mass as a proxy for the location that has the most access to different transit stops in

the region. We define the transit core by calculating the average longitude and latitude for

all transit stops in the system, weighting for frequency of trips through each transit stop.
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Figure 4.11 illustrates the disparity in residential locations for the most and less vulnerable

housing groups. That is, in the vast majority of cities, the tracts that are most vulnerable

to housing insecurity tend to be situated closer to the transit core, with the exceptions

being San Francisco, Boston, Dallas, and Greenville. Cities are ordered in increasing transit

efficiency, with Milwaukee having the most efficient transportation system and Fort Worth

being characterised by the least efficient transit infrastructure. The mean distances to each

city’s transit core for all housing demographics are listed in Table A.9 in the Appendix.
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Fig. 4.11 Neighbourhoods that are most vulnerable to housing insecurity tend to live
closer to the urban core than their less vulnerable counterparts. Each pair of box plots
examine differences between housing demographics, based on their proximity to the transit
system’s centre of mass. The y-axis is the distance in kilometres, while the x-axis reflects
the distribution for each city. Lighter red represent the less vulnerable housing demographic
while dark red symbolises tracts that are most vulnerable to housing insecurity.
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In this section, we have introduced the metrics of travel impedance and transit efficiency

to compare cities to one another, based on the characteristics of their public transportation

systems. This analysis paints a clearer picture of how cities with less efficient transport

infrastructure also have higher rates of car ownership. Furthermore, cities with inefficient

transit systems provide less efficient service to areas further away, which could contribute to

additional obstacles for vulnerable demographics living in the urban periphery. However, we

observe how the most vulnerable housing demographics tend to live closer to the transit core

than their less vulnerable counterparts. This trend is consistent with transportation poverty

studies that identify less privileged residents living closer to urban infrastructure and services

[5]. These findings emphasise the importance of space in the housing landscape, as urban

constraints may force vulnerable populations to live in the core of a city. Consequently,

these demographic groups will appear to have better access to resources, yet the lack of

choice is obfuscated. This concept is further explored in Chapter 6 of this thesis, in which

we analyse transit inequalities with respect to different physical urban features. The next

section focuses on incorporating more complex spatial relationships. In doing so, we evaluate

system-facilitated transit accessibility for vulnerable housing demographics, with respect to

employment locations that are associated with better economic outcomes.

4.6 Public Transit and Job Accessibility

This section aims to shine light on how urban infrastructure may impose additional constraints

on individuals who are already encumbered by housing insecurity. In doing so, we combine

the housing demographics defined in Section 4.4.1, the transit characteristics outlined in

Section 4.5, and employment data defined in Section 3.2.1 to illustrate how the combination of

employment landscape, housing market, and transit system limits employment accessibility

using transit. To accomplish this, we investigate how public transit contributes to the
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burden that individuals facing housing insecurity experience, presenting additional barriers

to accessing better employment opportunities.

We begin analysing the intersection of the housing and employment landscape by assess-

ing whether areas with similar workforce characteristics express a notion of spatial proximity.

Then, we identify particular census tracts that employ an unusually high concentration of

its workforce from a particular housing demographic. Specifically, we use spatial autocor-

relation on a global and local level to define census tracts based on the labour force that

works there. This builds off of the previous sections, as we define census tracts using the

residential characteristics of their employment composition to understand how employment

and housing landscapes intersect. To highlight the integral role transport infrastructure plays

in job accessibility, we explore how commuting times change when individuals in vulnerable

housing areas start working in employment areas that are associated with better housing

conditions, which is associated with higher earnings [13].

4.6.1 Defining Housing and Employment Hotspots

Numerous works have underscored the important role transit plays in connecting residential

and employment locations [108, 177, 282, 82]. In this section, we argue that, of the urban and

economic forces that contribute to segregated experiences, transport infrastructure should, at

the very least, not add to such constraints. It should, ideally, provide sustainable alternatives

to accessing better opportunities. Thus, we identify residential and employment hotspots for

each housing demographic to understand how transit connects these clusters.

We apply exploratory spatial data analysis techniques on a global and a local scale. The

Moran’s I statistic, a common method for assessing global spatial autocorrelation, tests

whether spatial clustering of a specified metric exists in a geographic data set. The metric

we consider is the the workforce composition of a census tract, defined by the percentage of

a workforce that is made up by a particular housing demographic (i.e. the percentage of a
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workers who commute from neighbourhoods that are most vulnerable to housing insecurity,

with respect to the total number of workers in that employment tract). The extent of clustering

is highly dependent on a spatial weights matrix, which characterises the spatial proximity

between two areas in a city. Moreover, each census tract can be defined by how much the

tract’s employment of a housing group deviates from the mean value, across all tracts. Thus,

by combining the tract-level data with the spatial weights matrix, one can derive the degree

of spatial clustering in a city, for the workforce composition of a housing demographic. This

provides some insight as to whether clustering is a spatial pattern for the entire city. However,

it does not define where the high rates of employment occur in the city.

To identify these clusters, we use Local Indicators of Spatial Association (LISA) to

analyse spatial autocorrelation on a local level. Thus, we can determine the census tracts that

have high values of employment for a housing vulnerability group, that are also surrounded

by tracts with similarly high employment rates for that demographic. In this manner, LISAs

can pinpoint, what we refer to as, employment hotspots, which indicate regions that employ

a high percentage of individuals that live in a particular housing demographic. Both the

local and global analysis are inferential statistics, comparing the empirical data to their

randomized counterparts, in which the empirical values are maintained, but are assigned to

random locations to determine the significance of spatial clustering in the data.

Global spatial autocorrelation, in this context, assesses whether a housing demographic

relies on particular areas of a city for job opportunities. To accomplish this, we define census

tracts by the percentage of individuals working there that belong to a particular housing group.

Then, we compare the employment rates of each census tract to its neighbours, characterising

neighbours using Queen contiguity, in which neighbouring tracts are those that share a vertex

with the focal tract. Table 4.4 lists the Moran’s I statistic, with respect to employment rates

for each housing demographic, in which bold cells reflect statistically significant values. For

example, the second column conveys the extent of spatial concentration, in regard to how
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many individuals from less vulnerable residential areas make up the workforce composition.

Meanwhile, the last column captures the spatial autocorrelation of areas that employ similar

rates of individuals from the most vulnerable census tracts. Table 4.4 is sorted by Moran’s I

value for the most vulnerable demographic, showing the notable role that space plays when

considering the worker composition of individuals who live in neighbourhoods that are highly

vulnerable to housing insecurity.

Table 4.4 Moran’s I statistic, conveying the global spatial autocorrelation across census tracts
based on the fraction of individuals from each housing demographic that work there.

City Moran’s I for Housing Demographics’ Workplaces

Less Mild Most

Gainesville 0.219** 0.094 0.115*
New Orleans 0.192*** 0.014 0.132**
Greenville 0.250*** 0.516*** 0.345***
Fort Worth 0.381*** 0.388*** 0.393***
Dallas 0.329*** 0.303*** 0.406***
Boston 0.348*** 0.540*** 0.435***
Las Vegas 0.429*** 0.253*** 0.437***
Charleston 0.368*** 0.052 0.453***
San Francisco 0.543*** 0.654*** 0.499***
Albuquerque 0.203** 0.273*** 0.506***
Cleveland 0.587*** 0.249*** 0.552***
Hartford 0.287*** 0.385*** 0.558***
Cincinnati 0.424*** 0.582*** 0.560***
Columbus 0.467*** 0.644*** 0.615***
New York City 0.709*** 0.645*** 0.621***
Jacksonville 0.352*** 0.512*** 0.631***
Milwaukee 0.622*** 0.309*** 0.638***
Houston 0.430*** 0.562*** 0.640***
Philadelphia 0.620*** 0.559*** 0.656***
St Louis 0.650*** 0.423*** 0.678***
Bridgeport 0.483*** 0.205*** 0.720***
Kansas City 0.630*** 0.523*** 0.767***

1*p<0.05; **p<0.01; ***p<0.001

Higher values of Moran’s I in the last column of Table 4.4 indicate that neighbourhoods

that are close to one another, tend to have similar employment rates of individuals that live in
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the most vulnerable tracts. To distinguish between areas that have high and low employment

rates of each housing group, we apply local spatial autocorrelation using LISAs [8]. In this

context, LISAs use the variance of employment rates and the associated spatial weights

of a region to identify clusters with a high concentration of employment of individuals

from a specific housing group, which we refer to as employment hotspots. Figure 4.12A

illustrates the housing landscape in Philadelphia and Bridgeport, with darker hues of red

corresponding to census tracts that are more vulnerable to housing insecurity. Meanwhile,

the purple geovisualisations convey employment hotspots for each of the housing groups,

with darker hues of purple reflecting employment hotspots for individuals from the most

vulnerable tracts. When we focus on the employment hotspots and residential tracts for the

most vulnerable housing group, indicated by the dark purple and red, respectively, we can

observe how home and workplace locations are often proximate to one another.

4.6.2 Transit Service to Better Job Opportunities

We leverage the housing demographics, transit networks, and employment hotspots, defined in

earlier sections, to examine how transit infrastructure interfaces with upwards social mobility.

We focus on social mobility because wealth is often the underlying constraint preventing

individuals from improving their housing conditions [13, 301, 240]. We define upwards social

mobility for individuals living in the most vulnerable neighbourhoods as having reasonable

transit access to better job opportunities. Furthermore, we refer to better job opportunities, as

a shorthand for employment hotspots for the mildly vulnerable housing demographic. This

choice is based of the assumption that mildly vulnerable housing demographics have higher

incomes and employment benefits, keeping in mind that income largely determines housing

conditions. To implement this, we reassign the employment tracts of individuals from the

most vulnerable demographic to randomly sampled employment hotspots for the mildly

vulnerable demographic. In doing so, we assume that the hotspots for the mildly and less
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vulnerable housing demographics provide better economic compensation compared to that

of the most vulnerable housing group. This assumption stems from the positive relationship

between median household income and lower levels of vulnerability in Section 4.4.1 and

shown in Figure 4.7B. Figure 4.12B visualises how changing the workplaces of individuals

commuting from the most vulnerable housing tracts impacts commuting characteristics.
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Fig. 4.12 In 15 of the 20 analysed cities, neighbourhoods that are most vulnerable
to housing insecurity have median transit commuting times of over an hour, when
accessing workplaces associated with better opportunities. Panel A reflects the spatial
distribution of the housing and employment landscapes in Philadelphia and Bridgeport.
Darker shades of red convey higher levels of housing insecurity, while darker shades of
purple reflect employment hotspots for the more vulnerable housing demographics. Panel
B depicts how transit commute times change for individuals living in the most vulnerable
neighbourhoods if they were to start working in employment areas that would facilitate social
mobility. The grey cross and white circle indicate empirical median commute times via
driving and transit, respectively. Meanwhile, the orange rectangle refers to median transit
commute times, averaged over 1000 of the social mobility simulations.

Figure 4.12B compares the commuting times for different scenarios, across each of

the 20 cities in our analysis. The grey crosses reflect median empirical driving times of

individuals that both live in census tracts that are the most vulnerable to housing insecurity
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and commute to the most vulnerable employment hotspots. Similarly, the white circles

represent the median empirical transit times for the same set of individuals. Meanwhile,

the orange rectangles symbolise the median transit times for simulated commutes to better

job opportunities. Over 1,000 iterations, we reassign the workplaces of the same set of

individuals to randomly sampled mildly vulnerable employment hotspots. We note that

the x-axis is in logarithmic scale, emphasising differences between shorter commutes. The

dashed line indicates a 30-minute commute, whereas the dotted line marks an hour-long

commute. Moreover, we reiterate that driving times do not account for traffic, but are a

reflection of the cities’ road networks. Figure 4.12B underscores the dependence between

housing and employment locations, as median driving times is approximately a half hour or

less, for all cities.

We observe how commuting times via transit increase for all cities, when compared

to commute times using cars. However, for Milwaukee, Cincinnati, Philadelphia, San

Francisco, and Boston, transit commute times remain under a half hour. The change from

empirical driving to empirical transit times in San Francisco, Cincinnati, and Milwaukee

is under five minutes. Moreover, shifting from the empirical data to the social mobility

scenario reveals how commuting using public transit to areas with better opportunities leads

to even longer commute times, barring Greenville and New Orleans. We note that transit

commutes in the social mobility simulations for Gainesville, Milwaukee, and Albuquerque

only increases travel time by less that 15 minutes, in comparison to its empirical counterparts.

While empirical transit commuting times remain under an hour for the 10 of the 20 cities,

only 5 cities maintain this characteristic in the social mobility context. Similarly, only

Milwaukee transit infrastructure provides access to improved employment opportunities

within approximately a half-hour transit commute (31.15 minutes). By using housing

demographics and commuting behaviour to simulate potential for social mobility, we show

how the majority of cities in our analysis do not have the adequate transport service for
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supporting commutes, which fall under an hour-long journey, to workplaces that provide

better employment opportunities. Furthermore, we reveal how in half of the 20 cities we

analyse, individuals in the most vulnerable housing demographic (a demographic which

tends to rely more on transit for commuting – 4.7E), have transit commute times of over an

hour.

4.7 Discussion

This chapter provides a structural and experiential approach to understanding how transport

inequalities can be expressed in the context of residential-employment landscapes. In

particular, we analyse structural inequalities by highlighting how network entropy can

capture sociodemographic inequalities in commuting patterns that conventional segregation

metrics fail to detect. Furthermore, we provide a experiential perspective by proposing a

framework to quantify the various dimensions of housing insecurity. Then, based on the

same commuting data sources, we consider how transit facilitates access to jobs associated

with better living conditions.

In analysing structural inequalities, we compare global in-flow entropy of 25 commuting

networks across the U.S. to identify cities, such as San Francisco and Boston, that have

higher degrees of monocentricity. Then, by incorporating local entropy measures for the

entire commuting network, we uncover that census tracts with a higher concentration of

affluence have residents that travel to more homogeneous workplaces. Meanwhile, tracts that

attract a higher-income workforce express trends of heterogeneity in commuting origins. By

splitting cities’ commuting networks into high and low-income networks, we demonstrate

the strength of network entropy in identifying disparities in residential-workplace trends

across socioeconomic groups. We find that larger socioeconomic differences in commuting

in-flow entropy values, which measures income disparities of a workforce in terms of their

commuting origin distribution, correspond with higher levels of employment segregation.
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Finally, we highlight how more diversity of commuting destinations for high-income workers

is associated with longer average commute times from the origin census tract.

This brings into question what has long been deliberated in sociology: how the conse-

quences of segregation may change depending on which demographic is segregated [119].

Future work can examine how these disparities in commuting flows reflect in other aspects

of urban life, by considering other trip purposes that are not related to work. Specifically,

other hypothetical scenarios can be explored to understand what mechanisms may be fuelling

the strong correlation between entropy and segregation. Moreover, this framework can be

applied to other mobility networks in the context of various demographic dimensions, such

as gender or age.

Having introduced a network science approach to identifying spatial and inequalities in

residential-employment locations, we shift our focus to understanding more nuanced forms

of inequality in the housing dimension. We, first, introduce a classification framework that

adopts a comprehensive approach to estimating levels of housing insecurity, accounting

for the various dimensions of housing conditions. Existing approaches to defining housing

insecurity, in the context of urban analytics, include using a specific housing feature as a

rough proxy, such as rent burden or forced moves [124, 33]. We focus on Cox’s definition

as it captures financial, physical, and social forces that influence the state of housing. It is

important to note that the seven dimensions proposed by Cox stem from a Global North

perspective, with its definition based on housing policies in the USA. Attempts to develop

a comprehensive measure for Global South incorporate features such as sanitation and

water access [251]. The distinction between these two definitions is imperative, considering

that different histories, cultures, and environments can re-frame the relevance of a housing

dimension, and the features that can be used to estimate said dimension. Moreover, this

work is limited in data availability of housing conditions, in that the neighbourhood and

homelessness dimensions are yet to be incorporated. However, given the flexibility of the
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proposed framework, introducing these dimensions is simply a matter of modifying the rank-

based approach for extracting meaning from the generated clusters. Potential neighbourhood

characteristics can be defined using crime data sources for safety or built form metrics for

quality. Ultimately, our approach aims to capture various mechanisms that contribute to

poor housing experiences, which we validate by comparing to a range of socioeconomic

characteristics such as income, educational attainment, and mobility behaviour.

Then, we leverage open source tools to construct public transit and street network data.

We use this data to characterise cities in the USA, based on their transport infrastructure.

Moreover, we observe three types of transit systems based on how transit efficiency relates to

trip distance. In line with research that demonstrates the decreasing significance of distance

due to improved transit systems, we find that the cities with the most efficient transit service

tend to have equally, if not more, efficient transit impedance for trips of longer distances than

compared to shorter transit trips within the same city [235].

Finally, by incorporating the commuting data from the structural analysis, we unveil how

transit infrastructure can impose additional hurdles to accessing workplaces that provide better

financial opportunities. Studies have shown that targeted efforts in improving transit access

to job opportunities has a positive effect on individual employment probability and individual

income, particularly improving employment probabilities for lower-income individuals

[253, 22]. However, we explore the geospatial layout of employment opportunities and

residential landscapes to see how these efforts may also perpetuate inequalities in accessing

jobs with different characteristics. Thus, this analysis contributes to research that motivates

exploring inequality analyses from a spatial perspective, emphasising the importance of

transit opportunity in social processes. Ultimately, housing conditions impact the level of

comfort and belonging individuals experience within their environment [79, 224]. Thus,

we aim to highlight how the disadvantage of housing insecurity is exacerbated by urban

features that can hinder vulnerable populations from breaking out of the cycle of poverty. In
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this manner, we show how transit infrastructure, coupled with residential and employment

disparities, can impede individuals’ abilities to live in improved housing conditions, for

various cities.

By coupling network science, machine learning, geospatial analysis, and transport routing,

we unveil inequalities in residential-employment disparities. In essence, we highlight how

transit can act as a source of friction in accessing better job opportunities, for vulnerable

demographics that face residential constraints.





Chapter 5

Mobility and transit segregation in urban

areas

5.1 Introduction

The previous chapter analysed transit inequalities in residential-workplace dependencies.

This chapter focuses on exploring socioeconomic transit disparities with respect to amenity

visitations, rather than commuting patterns. That is, we analyse transport justice in the

context of urban segregation. In order to do so, we incorporate mobility data to derive

empirical mobility flows. Then, we can understand how transit passengers may experience

segregation within transport infrastructure, while travelling to their destinations as well

as how individuals experience segregation at the amenities they visit. In Chapter 2.4.5,

we discussed relevant literature that combines mobility data to understand segregation in

relation to public transportation. Analysing segregation at the destination-level has become

increasingly prominent in human mobility research [1, 319, 206]. However, understanding

how public transit provides service to destinations of varying segregation levels remains

fairly unclear. It is crucial to consider transit within the reference frame of experienced

segregation as public transport offers sustainable mobility options to individuals, particularly
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for those who are unable to own a private vehicle. The few works that considered segregation,

human mobility, and transit inequality focused on comparing access between transit riders

and private vehicle users [98]. The approach we present in this chapter focuses on urban

segregation based on the types of neighbourhoods that transit provides access to and the

segregation experienced while using transit to fulfil empirical mobility demands.

In order to accomplish this, we combine census, mobility and transit data to analyse how

transportation systems intersect with segregation in different aspects of urban life. We first

define the state of residential segregation, using US Census data. Then, with anonymised

mobility patterns from SafeGraph, we define segregation levels for amenities, based on the

socioeconomic composition of its visitors. Finally, drawing upon open source resources,

such as The Mobility Database, OpenStreetMap, and UrbanAccess, we construct transit

networks to identify disadvantages within the system, analysing both the transport service

and experience of using transit routes as potential sources of inequality. Moreover, we use

Open Source Routing Machine (OSRM) to generate driving times and distances between

any pair of coordinates in a city, given an OpenStreetMap (OSM) extract. OSRM is a high-

performing routing engine that integrates well with OSM to find shortest paths on a road

network. Driving times serve as a baseline for travel time, allowing us to compare how much

longer trips take using transit than by driving. While cars and public transit vehicles both use

road networks, transit vehicles must adhere to determined schedules and routes. From this

perspective, cars have much fewer constraints as to how they can traverse the road network.

Thus, driving times are useful for understanding the impedance, in terms of travel time, of

using the transit system.
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5.2 Defining Socioeconomic Segregation using the Index of

Concentration at the Extremes

Socioeconomic segregation is generally defined as the extent to which various income-groups

live apart from each other [191]. As discussed in Chapter 2.2.1, measures of residential

segregation have been extended to account for spatial features. In this work, we quantify

segregation using the Index of Concentration at the Extremes (ICE), which reconciles the

diverging studies of concentrated affluence and concentrated poverty, to ultimately interpret

them as one continuum. This is achieved by comparing how many households or individuals

from the most deprived and privileged groups share the same residential area. As proposed

by Douglas Massey [190], for a given region n, with Tn total households, An affluent, or

privileged households, and Pn households in poverty, the ICE can be calculated as follows:

ICEn =
An−Pn

Tn
, (5.1)

Values can range from -1 to 1, reflecting extreme concentration of disadvantaged and

privileged households, respectively. Thus, the ICE can capture levels of imbalance given the

sociodemographic composition of a region. It is frequently applied to identify inequalities

in public health, incarceration, and natural resource quality [50, 309, 284]. Figure 5.1

demonstrates how ICE values correspond to other common segregation measures. We

compare how socioeconomic segregation, measured using the Index of Concentration at the

Extremes, relates to other metrics of segregation. Specifically we consider ICE with respect

to Dissimilarity, Isolation, Mutual Information Index, and Social Distance, all of which were

introduced in Chapter 2.2.1. To avoid repetition, we group cities by their mean ICE value,

where each group is a row of scatter plots. Thus, the first row depicts ICE correlations for

cities with the lowest average segregation, while the last row does so for cities with the

highest ICE segregation across all neighbourhoods. The blue scatter plots capture segregation
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correlations at the census tract level. Census block groups (CBGs) are the highest resolution

for which household income distributions can be openly accessed. Conventional segregation

measures estimate inequality in an area using the distribution of individuals across its subareas.

Thus, conventional measures such as dissimilarity (capturing the unevenness dimension) and

isolation (depicting the exposure dimension) are constrained to the census tract level, which

has a lower spatial resolution than CBGs, in terms of geographic boundaries.
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Fig. 5.1 Various residential segregation metrics tend to capture different aspects of
socioeconomic inequality. Correlations between residential socioeconomic segregation
(ICE) and other segregation metrics. ICE is compared to the index of Dissimilarity, Isolation,
Mutual Information and Social Distance in the first, second, third, and fourth column,
respectively. The x-axis of each scatter plot reflects ICE values, while the y-axis depicts
values for the respective segregation metric to which ICE is being compared. Blue plots
reflect comparisons at the census tract level, while green plots captures segregation for census
block groups. Each row reflects the ICE correlations for a group of cities that are partitioned
based on their mean ICE values.

We see that Dissimilarity and ICE do not exhibit any apparent relationship, while isolation

expresses a positive association to ICE. Thus isolation is more useful at capturing disparities

in highly segregated low-income tracts. However, isolation values have similar values
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for positive ICE values, making it hard to identify segregation in terms of high-income

concentration. The Mutual Information Index, derived from information theory, most closely

captures the inequalities that ICE does, except it does so from a range of 0 to 1 [286,

245]. As a reminder, social distance uses a fractional rank-based approach to measure

residential inequalities [315]. We see a consistently parabolic relationship between this

measure and ICE, which highlights the utility of ICE in distinguishing between segregation

of the most and least privileged demographics. Future work could focus on exploring how the

use of different segregation metrics impacts identified segregation levels throughout urban

dimensions. However, we continue with our analysis, using ICE, as it clearly distinguishes

between segregation of the most and least privileged demographics. Moreover, ICE allows

for spatial analysis at the CBG level.

Typical measures of segregation focus on inequalities experienced in residential areas.

In this work, using the Index of Concentration at the Extremes (ICE) metric from Equation

5.1, we define segregation with respect to the socioeconomic concentration in three urban

contexts: (a) residential (b) amenities and (c) public transit.

5.3 Sociodemographic Residential Segregation

We begin by exploring the state of residential segregation in 16 US cities. We take a

closer look at the relationship between racial and socioeconomic composition to develop a

better understanding of the residential landscape throughout the US. In doing so, residential

segregation acts as a baseline, to which we can compare segregation levels in the other urban

dimensions we consider in the coming sections.

We define the socioeconomic composition of a CBG using data from the American

Community Survey, specifically Table B19001, which was introduced in Chapter 3.1.1. This

data provides the number of households belonging to each of the 16 income brackets, as

defined by the US Census Bureau, for every census block group. We denote the lower three
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income brackets, that earn less than $20,000 per year, as households in poverty. Meanwhile,

the upper three income brackets indicate affluent households, which earn more than $125,000

per year. We define these brackets as high income households. Middle class households

are reflected by the middle 10 income brackets (earning between $20,000 and $125,000

per year). Thus, we can categorise each of the 16 income brackets into 3 income classes:

low-income, middle-income, and high-income. Using these cutoffs to define income classes

is common practice when measuring ICE at the CBG-level [160, 29, 297]. However, in

Figure 5.2, we explore how ICE distributions would change within each city if we were to

shift these income-bracket cutoffs.
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Fig. 5.2 Less strict thresholds for defining extreme affluence and poverty leads to a
larger range of ICE values, while also increasing the median ICE value in a city Each
scatter plot reflects distribution of ICE values in a city at the census block group level. Each
box-plot refers to the ICE distribution (x-axis) for a particular definition of what constitutes a
low and high income household. The definition of low-income cutoffs is on the left axis of
the figure, while that of the high-income is on the right axis
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Figure 5.2 explores the impact of using different income percentiles to define the number

of low income and high income households in a neighbourhood. Each plot shows how the

distribution of ICE values in a city changes when we shift the boundaries that define low

and high income groups. We observe that by creating broader definitions of what it means

to be an extremely low or high-income household, neighbourhoods tend to have a larger

range of ICE values. Conventionally, when defining ICE, low and high income groups are

defined by the 20th and 80th percentile of the income distribution, respectively. The 20th and

80th percentile correspond to the 3 lowest and 3 highest brackets. Thus, Figure 5.2 conveys

how broader definitions of high and low-income lead to an increase in cities’ median ICE

values. While having looser constraints does lead to more variation across neighbourhoods,

it shifts the focus away from the most and least privileged socioeconomic demographics in a

city, which is the aim of this analysis. Furthermore, considering that non-residential aspects

of urban life (i.e., amenity visitation, transit use) tend to have higher rates of social mixing

[216, 206, 90, 312, 256], using less strict definitions of what it means to be affluent or poor

would likely decrease measures of ICE as both demographics would represent less extreme

fragments of a region.

With this in mind, we use the ACS data to define IDbg,i as the the number of households

belonging to an income class, i, in CBG, bg. We combine this data, with our measure of

segregation (Eq. 5.1) to define residential segregation for a census block group, bg:

ICEres(bg) =
IDbg,hi− IDbg,lo

∑i∈I IDbg,i
(5.2)

where I reflects the set of three income classes (lo, mid, and hi). Conceptually, we are

computing the extent to which households from affluent and poor households live in the same

neighbourhood. The denominator reflects the total number of households in a neighbourhood,

serving to normalise the segregation metric and to account for the middle-income population.

We note that an ICEres value of 0 can indicate either an equal, non-zero amount of low and
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Fig. 5.3 Socioeconomic residential segregation in 16 US cities, calculated using ICE.
Each box plot reflects the distribution of ICE values in census block groups, for a given city.

high-income households in a CBG, or a neighbourhood that is completely comprised of

middle-income households. We emphasise that the overall socioeconomic composition varies

across cities, with San Francisco housing a larger number of affluent households, as indicated

through Figure 5.3. Each box plot in Figure 5.3 reflects the distributions of socioeconomic

ICE values for all neighbourhoods in the corresponding city. Accordingly, when evaluating

segregation within the context of one city, it is important to consider ICE values with respect

to the overall composition of the city.

For example, the ICE for the entire population in San Francisco is 0.3, while for New

Orleans it is -0.1. A San Francisco neighbourhood with a 0.1 ICE would reflect an area with

a larger concentration of relatively lower income households, compared to San Francisco’s

baseline of 0.3. Meanwhile, a New Orleans neighbourhood with the same 0.1 ICE would

exemplify the alternate case: an area with relatively high-income concentration. Despite

both neighbourhoods having the same ICE value, the economic make-up of the city in which

each area is situated, is what ascribes the severity of segregation that the neighbourhood

experiences. Therefore, it is important to refer to the economic profiles as a baseline for each

city, when interpreting the results presented.

Similarly, we compute the residential segregation of Black and White residents using

Equation 5.1, such that Abg and Pbg represent the number of White and Black residents,



144 Mobility and transit segregation in urban areas
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By comparing CBG-level segregation measures, with respect to socioeconomic and
Black-White composition, we illustrate how income and racial privilege is often
intertwined. Measuring segregation levels characterises neighbourhoods based on the
sociodemographic composition of its residents. However, accessibility can provide a
glimpse of the diversity of amenities to which a neighbourhood’s residents can travel.

Table 1. The choice of options.

City Income-Race

Houston 0.404***
Fort Worth 0.419***
Dallas 0.421***
Albuquerque 0.461***
Las Vegas 0.476***
Greenville 0.532***
Hartford 0.533***
Boston 0.539***
Columbus 0.547***
Philadelphia 0.560***
Cincinnati 0.609***
San Francisco 0.623***
Cleveland 0.637***
Bridgeport 0.748***
New Orleans 0.754***
Charleston 0.766***
***p<0.001

Mobility Segregation

In this section, we extend our analyses of residential segregation in US cities, to
explore whether residents from segregated neighbourhoods tend to exhibit segregation
in their amenity visitation patterns. To do so, we define the segregation of amenities,
based on the socioeconomic composition of its visitors during January 2021. Then,
we explore whether residents from the most segregated neighbourhoods assuage their
residential segregation by traveling to amenities that have visitors from different
economic backgrounds. Finally, we assess the relationship between how segregated a
neighbourhood’s amenities are and how segregated its residents’ amenity visitations
are. This approach allows us to understand mobility differences in highly-segregated
high-income neighbourhoods to those of highly-segregated low-income neighbourhoods.
Ultimately, we observe an association between segregation values at the residential and
mobility dimension, although segregation in the mobility domain occurs at a smaller
magnitude.
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Fig. 5.4 US cities exhibit positive correlations between income and racial segregation,
albeit to different extents. A) Pearson correlation coefficients, emphasising the relationship
between economic and racial segregation in 16 US cities. B) Maps illustrating the entangled
nature of economic and racial segregation for Dallas and New Orleans. Orange and purple
reflect low and high-income concentrations, respectively. Brown and blue capture a high
residential concentration of Black and White residents, respectively.

respectively, in a neighbourhood bg. We leverage Table B02001 from the American Com-

munity Survey, which captures the racial distribution of individuals in a CBG. Considering

US history, and its persistent discrimination against the Black population, we select Black

and White racial groups to represent the extremes in the context of racial segregation [95].

Accordingly, values of -1 indicate a high concentration of Black residents while +1 ICE

levels reflect a large share of White residents. The second column in Figure 5.4A captures

the relationship, using Pearson correlation coefficients, between a neighbourhood’s economic

and racial segregation level, for 16 US cities. A positive correlation indicates that neighbour-

hoods, or CBGs, with a large share of affluent households also have a high concentration of

white residents. While the degree of correlation between the two demographic types varies

across cities, we observe that all cities do have a positive, significant correlation between

racial and economic segregation, indicated by the asterisks.
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Figure 5.4B visualises the spatial landscape of economic and racial segregation in cities

with lower and higher correlation coefficients (Dallas and New Orleans, respectively). Com-

paring ICEincome to ICErace in Dallas reveals that areas with a large concentration of low-

income residents are not directly translatable to highly segregated Black or highly segregated

White neighbourhoods. On the other hand, New Orleans shows strong associations between

neighbourhoods that are low-income and segregated (orange CBGs) and those that are largely

composed of Black residents (brown CBGs). By comparing CBG-level segregation measures,

with respect to socioeconomic and Black-White composition, we illustrate how residential

patterns for income and racial groups can be intertwined. Measuring residential segregation

levels characterises neighbourhoods based on the sociodemographic composition of its resi-

dents. Moving forward, we focus on analysing income segregation, however, the proposed

methodology can be applied to explore whether racial segregation, or segregation for other

sociodemographic groups, persists in different urban dimensions. Ultimately, Figure 5.4

conveys the state of residential segregation in 16 US cities, acting as a baseline against which

we can compare other dynamics forms of segregation by leveraging mobility patterns and the

characteristics of transit systems.

5.4 Mobility Segregation

In this section, we extend our analyses of residential segregation in US cities, to explore

whether residents from segregated neighbourhoods tend to exhibit segregation in their amenity

visitation patterns. To do so, we define the segregation at amenities based on the socioeco-

nomic composition of its visitors during January 2021. Then, we explore whether residents

from the most segregated neighbourhoods tend to travel to amenities that have similar levels

of segregation compared to their residential neighbourhoods. This approach allows us to

understand mobility differences between highly-segregated high-income neighbourhoods

and highly-segregated low-income neighbourhoods.
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5.4.1 Segregation at the Amenity Level

We begin analysing segregation from a human mobility perspective, by measuring segregation

based on the socioeconomic makeup of an amenity’s visitors. We define ID′ as the normalised

form of the income distribution, ID, defined by the ACS data:

ID′bg,i =
IDbg,i

∑i′∈I IDbg,i′
, where I = {lo,mid,hi}. (5.3)

ID′bg,i defines the fraction of households in CBG, bg, that belong to income class, i. This

is achieved by dividing the number of households in a CBG, bg, and income group, i, (IDbg,i),

by the total number of households in the CBG (∑i′∈I IDbg,i′).The SafeGraph data provides

information regarding the mobility flow from CBGs to amenities, while the ACS data denotes

the socioeconomic composition of a CBG. Using the SafeGraph amenity visitations from

the Weekly Pattern data set, we construct a |BG|× |A| sized mobility matrix, M, for January

2021, where BG and A are the set of CBGs and amenities in a city, respectively. Mbg,a

reflects the number of trips from CBG, bg, to amenity, a, during the month. SafeGraph

reports any visitation counts that are between two and four as four, to support anonymisation.

Accordingly, we replace any cell value of four in Mbg,a with a uniformly sampled value

of two, three, or four. Combining the two sources, we can estimate the socioeconomic

composition of mobility flows between CBG-amenity pairs, by performing a weighted

sampling of ID′, indicated by the ∼ symbol:

Cbg,a = {Cbg,a,1...Cbg,a,v}, where C j ∼ ID′bg, v = Mbg,a. (5.4)

Here, C j represents an individual from CBG, bg, who visits amenity, a. Each visitor,

C j, belongs to an income class i ∈ I, which is sampled from ID′n. The size of Cbg,a is

determined by the corresponding visitor count in Mbg,a. Due to the level of anonymisation in

the SafeGraph data, this method of sampling assumes that individuals in a neighbourhood
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have an equal likelihood of travelling to each amenity. The segregation level of individuals

visiting an amenity is determined by a neighbourhood’s socioeconomic distribution and the

volume of its residents that travel to the amenity. We note that even under this assumption,

we identify segregation in visitation patterns in the following sections. To account for the

stochastic nature of this approach, we perform the weighted sampling 100 times, where Cx
bg,a

reflects the economic composition of visitors from CBG bg visiting amenity a, during the xth

iteration.

We can modify Cx
bg,a, to reflect the socioeconomic composition of each amenity, based

on its visitors, such that Cx
a = {Cx

bg,a | bg ∈ BG} and |Cx
a| = Ma. Each element in Cx

a

resembles the income group of a visitor from amenity a, during the xth iteration. As a

reminder, in defining Equation 5.4, each individual was assigned an income group that was

sampled from the income distribution of her residential CBG. Thus, Cx
a,i captures the set of

individuals visiting amenity a, in income group i, during iteration x. We can define the level

of segregation, in terms of mobility patterns, at amenity a with the following equation:

ICEamenity(a) =
1

100

100

∑
x=1

|Cx
a,hi|− |C

x
a,lo|

|Cx
a|

, (5.5)

where |Cx
a,hi| and |Cx

a,lo| reflect the number of high and low income visitors, respectively, to

amenity a in iteration x. Equation 5.5 computes the average segregation of an amenity’s visitor

composition using ICE, such that the economic makeup of visitors is determined through a

stochastic, weighted sampling with respect to visitation frequency and the socioeconomic

characteristics of visitors’ origins. Having used the Index of Concentration at the Extremes

and visitation patterns to measure amenity segregation, we define mobility segregation from

the perspective of residents in a neighbourhood, based on the level of segregation they

experience, on average, at the amenities they visit. We refer to this measure as traveller

amenity segregation (TAS) as it captures segregation based on residents’ mobility patterns.
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Traveller amenity segregation, for a neighbourhood, only considers segregation at the

amenities its residents visit. Then, the TAS of a neighbourhood, bg, is computed as the

weighted average of these amenities’ segregation levels, with respect to the frequency with

which its residents visit the amenities:

TAS(bg) =
∑a∈A Mbg,a ∗ ICEamenity(a)

∑a∈A Mbg,a
(5.6)

Where Mbg,a is the number of visits from CBG bg to amenity a and A is the set of all

amenities in a city. Thus, the amenities that are more frequently visited will play a bigger

role in characterising the average segregation of amenities to which residents travel.

5.4.2 Comparing Levels of Residential and Mobility Segregation

From a broader perspective, TAS aims to depict how individuals experience segregation based

on where they travel, by considering their amenity visitation patterns and the segregation

levels at the amenities they visit. With this in mind, we examine the relationship between

residential segregation and traveller amenity segregation (TAS). We can calculate how much

a segregation value for a given neighbourhood, bg, changes between two contexts of urban

life (i.e., changes between residential and employment segregation), given it’s ICE value, in

urban context x, and its ICE value in a different dimension, y:

∆ICEbg(x,y) =


ICEx(bg)− ICEy(bg), if ICEx(bg)< 0

−(ICEx(bg)− ICEy(bg)), if ICEx(bg)≥ 0
(5.7)

∆ICE ranges from -2 to 2, where negative values signal a decrease in segregation levels.

If a neighbourhood has a large concentration of high income residents, such that its ICEres is

positive, then having a lower ICE value in the mobility dimension is indicative of a decrease

in segregation levels when shifting from the residential and mobility dimension. However,
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having a lower ICE value in the mobility dimension, for neighbourhoods with negative ICEres

values, reveals that its residents are travelling to amenities that have a larger concentration of

low-income individuals, than compared to their neighbourhood’s residential composition.

Such instances signify an increase in segregation from the residential to mobility dimension.

Thus, the two cases account for the sign of the original ICE value. We denote the difference

between ICEres(bg) and TAS(bg) in a neighbourhood, bg, as ∆ICETAS(bg), which expresses

how segregation levels change between the residential and mobility dimension.

By using the ICE as a segregation metric, we can distinguish neighbourhoods with high

concentration of affluent households from those with a large share of households in poverty.

For each city, we split neighbourhoods, using residential ICE values, into five, equally sized

segregation groups: (1) Highly-segregated, low-income (HS-Lo) (2) Mildly-segregated,

low-income (MS-Lo) (3) Less-segregated (LS) (4) Mildly-segregated, high-income (MS-Hi)

and (5) Highly-segregated, high-income (HS-Hi). Figure 5.5 illustrates, for each city, the

distribution of ICE values that belong to each group.
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Fig. 5.5 ICE distribution values within each segregation group, for a given city. Orange
box plots depict low-income concentration segregation groups, while purple reflects segrega-
tion groups of high-income concentration. Darker colours capture higher segregation. The
y-axis shows the ICE values of census block groups belonging to a particular segregation
group.

Since we create the segregation groups with respect to each city, neighbourhoods belong-

ing to the highly-segregated, low-income group do not necessarily have high segregation

magnitudes. Rather, they reflect neighbourhoods that have a high concentration of low-

income households, relative to the segregation distribution of that city.

Through Figure 5.5, it becomes clear that a HS-Lo segregation group in one city does

not carry the same meaning when applied to another city, due to differences in the economic

composition of cities. For example, the median ICE value of the Highly-segregated, low-

income group in New Orleans is approximately 0.25, while the median ICE value of the
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same segregation group in San Francisco is approximately 0.6. Therefore, while the ICE

values of two neighbourhoods from different cities are comparable, the segregation groups

of neighbourhoods from different cities can not be compared as the groups are calculated

with respect to each city’s ICE distribution.

We focus on the highly segregated low-income and high-income neighbourhoods, repre-

sented in Figure 5.6 by the orange and purple points, respectively. The x-axis captures the

magnitude of residential segregation (|ICEres(bg)|), which allows us to compare the most

segregated neighbourhoods in a city within the same frame of reference. For cities with

particularly skewed economic compositions, such as San Francisco, we observe larger differ-

ences regarding where each group resides along the x-axis. As mentioned in section 5.3, and

illustrated in Figure 5.3, we would expect to see this in a city such as San Francisco because

its composition is largely made up of high-income households. Thus, the highly-segregated

low-income neighbourhoods, within San Francisco, tend to have smaller magnitudes.

The consistently negative slopes in Figure 5.6 can be attributed to the positive correlations

between residential segregation and TAS, shown in Table 5.1. Figure 5.6 reveals that the

majority of CBGs tend to have negative ∆ICETAS values. These smaller values suggest

a decreased level of segregation when comparing the residential segregation individuals

experience in their neighbourhood, to their TAS values that measure mobility segregation.

The key takeaway of Figure 5.6, however, is that, for most cities, the highly-segregated,

low-income neighbourhoods exhibit larger decreases in segregation (shown by larger magni-

tudes of ∆ICETAS) than their high-income counterparts, when considering changes from the

residential to the mobility dimension. Thus, Figure 5.6 reveals that, generally, segregated

low-income neighbourhoods tend to travel to amenities with a much different economic

composition, than compared to segregated high-income neighbourhoods. We hypothesise

that this finding could be a reflection of how individuals from lower income neighbourhoods

correct for their level of segregation in the residential dimension by modifying their mobility
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Fig. 5.6 When considering how segregation changes from the residential to the mobility
dimension, highly-segregated, low-income neighbourhoods tend to exhibit a larger
decrease than their high-income counterparts. Differences in segregation levels in the
residential and mobility domain, where each scatter plot resembles one of the 16 US cities.
The x-axis depicts the magnitude of residential segregation, for the HS-Hi neighbourhoods
(purple) and the HS-Lo CBGs (orange). The y-axis shows the direction and magnitude of
change in a CBG’s mobility segregation level, compared to its residential segregation level.
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behaviour [315]. However, this could also be an artefact of transit systems effectively facili-

tating social mixing for individuals in highly-segregated, low-income neighbourhoods. TO

further explore this concept, the next section studies how transit systems provide service to

neighbourhoods in different segregation groups.

Table 5.1 Pearson correlation coefficients between socioeconomic residential segregation of
a neighbourhood and the experienced segregation of its residents based on the amenities they
are visiting, for 16 US cities.

City ICEres α ∆ICETAS
r1

Las Vegas 0.7526***
Charleston 0.7640***
Greenville 0.7788***
Fort Worth 0.7969***
Cincinnati 0.7976***
Columbus 0.8001***
Houston 0.8051***
Albuquerque 0.8116***
Dallas 0.8197***
Philadelphia 0.8249***
Boston 0.8262***
Hartford 0.8378***
New Orleans 0.8547***
Cleveland 0.8597***
Bridgeport 0.8661***
San Francisco 0.9107***
1 *p < 0.05; **p < 0.01; ***p < 0.001

This can be observed by considering how each group’s points are distributed along the

y-axis. Yet, two cities emerge as exceptions to this trend. A subset of highly-segregated,

low-income neighbourhoods in San Francisco and Bridgeport exhibit distinctive patterns in

which they experience an increase in ∆ICETAS, pointing to an increase in mobility segregation

levels, despite already having high levels of residential segregation. These findings emphasise

the importance of considering segregation from various urban dimensions, as mobility can

be used as a means to decrease the overall segregation that one experiences. While, we find
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that mobility segregation has lower magnitudes than residential segregation, this section

highlights how segregation continues to exist when considering amenity visitation patterns,

finding strong associations between the two domains.

5.5 Transport Segregation

Having demonstrated the role that segregation plays in the residential and mobility facets

of the urban experience, we begin to consider the intersection between segregation and

public transportation systems. In this section we leverage public transit networks to analyse

how structural properties of transportation systems coincide with the residential landscape.

Employing the SafeGraph mobility data, we model potential transit use to estimate the level

of segregation one would experience while using transit to satisfy her mobility demands. Due

to the computational complexity of stochastically modelling transit use, we use five of the 16

cities as an example for how levels of structural and experiential segregation can be assessed

in the transit system. We specifically choose New Orleans, Philadelphia, Cincinnati, Dallas,

and San Francisco as the 5 focal cities, as each city spans different parts of the socioeconomic

residential composition, as depicted in Figure 5.3.

5.5.1 Public Transport as a Tool for Overcoming Residential Segrega-

tion

We assess segregation in the context of transport by, first, examining how transit systems serve

neighbourhoods with various segregation levels. To do so, we consider travel times between

every possible pair of neighbourhoods in a city. For every CBG pair, (bgo,bgd) we sample

100 locations from the origin census block group, {bg1
o...bg100

o }, and 100 from the destination

CBG, {bg1
d...bg100

d }, using UrbanAccess. Since edges in the transit-pedestrian networks

are weighted by travel time, we can find the shortest path length on the transit-pedestrian
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networks between points bgx
o and bgx

d , for x ∈ {1...100}. We calculate the corresponding

driving times for the same set of coordinate pairs, using Open Source Routing Machine. As

a result, we can measure the average time it takes to travel between two neighbourhoods

in a city, using public transportation or a car. Accordingly, we denote Jtransit(bgo,bgd) and

Jdriving(bgo,bgd) to reflect the average travel time for a journey between neighbourhoods bgo

and bgd , when using public transport and cars, respectively.

Next, we explore whether transit systems facilitates overcoming residential segregation

by providing service between neighbourhoods of different segregation levels. We use the

previously defined travel times to evaluate which neighbourhoods can be accessed within a

travel time threshold. Specifically, we use the previously defined segregation groups, which

are derived by partitioning a city’s neighbourhoods into 5 equally sized groups based on

their residential segregation levels. As follows, BGs refers to the set of neighbourhoods

in segregation group s. Given a travel time threshold, t, and a CBG, bg ∈ BGs, we define

BG’bg as the neighbourhoods that can be reached from bg within t minutes. That is, we only

consider neighbourhoods, bg′, for which values of Jtransit(bg,bg′) are less than the travel time

threshold, t. Subsequently, we calculate the average segregation level of all neighbourhoods

that are accessible from each CBG in BGs, within t minutes, for all neighbourhoods in

segregation group s:

NAtransit(s, t) =

BGs
∑
bg

BG’bg

∑
bg′

ICEres(bg′)

BGs
∑
bg
|BG’bg|

(5.8)

where NAtransit conveys the average socioeconomic profiles of neighbourhoods to which

transit systems provide access, within a time threshold, t, for CBGs belonging to a particular

segregation group, s. This is achieved by determining the average segregation level of areas

a segregation group can reach via transit, within a given time frame. We can calculate

the same metric, but with respect to driving times, by using Jdriving to compute the set of
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reachable neighbourhoods, for a given segregation group and time threshold. We refer to this

measure of segregation in driving access as NAdriving. We visualise both metrics in Figure

5.7, for time thresholds from 5 to 60 minutes, at 5 minute intervals. For every matrix, the

top row illustrates the changes in segregation characteristics of neighbourhoods that are

accessible by the highly-segregated, low-income neighbourhoods (HS-Lo), for various time

thresholds. Meanwhile, the bottom row captures average segregation levels, based on which

neighbourhoods the highly-segregated, high-income neighbourhoods can reach. The top row

of matrices illustrates how segregation of accessible neighbourhoods changes for transit time

thresholds, measured using NAtransit . Meanwhile the bottom row of matrices captures driving

accessibility (NAdriving), and serves as a baseline for comparison, as driving times calculated

with OSRM are void of any transit schedule, route, or traffic constraints that are within the

GTFS data used to build the transit-pedestrian networks. It is apparent that, when comparing

transit to driving access for each city, segregation values for neighbourhoods accessible by

car converge to reflect the city’s overall socioeconomic composition much quicker than their

public transit counterparts.

To some extent, we would expect transit segregation to have different values across

segregation groups, especially for smaller time thresholds, as a reflection of spatial auto-

correlation in residential segregation. However, the differences in transit segregation levels

persists beyond 60 minute journeys for Dallas, Cincinnati and New Orleans, revealing

apparent structural inequalities in the transit systems of those cities. The driving access

matrices in Figure 5.7 emphasise the disparities in transit service, using driving times to

convey the possibility for transit services to provide less segregated accessibility.

Here, we approach human mobility as an means for accessing neighbourhoods with

various socioeconomic profiles. By investigating how transit systems connect neighbourhoods

of different segregation levels to one another, we uncover structural inequalities in transit

service, particularly in Dallas, Cincinnati and New Orleans. To conclude our analysis of
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Fig. 5.7 Public transit provides limited access to neighbourhoods of different socioe-
conomic backgrounds. Average residential segregation level of neighbourhoods that are
reachable within a given travel time, by public transit (top row) and car (bottom row), for 5
US cities. The y-axis shows neighbourhood accessibility for different segregation groups,
while the x-axis defines different time thresholds. Orange cells reflect accessibility of neigh-
bourhoods that are more segregated, with a concentration of low-income households. Purple
cells capture transit service to neighbourhoods with a higher income concentration.

transit segregation, we approximate the level of segregation experienced while using public

transit, estimating transit usage based on transport networks and travel behaviours derived

from the SafeGraph mobility data.

5.5.2 Modelling Transit-Use Segregation

We continue our analysis of urban segregation by analysing how the areas to which individuals

travel can impact the level of segregation experienced when using the transit system. We

proceed, utilising the transit-pedestrian networks to calculate the shortest route, within

the transit system, between a neighbourhood and an amenity. Specifically, we sample

Mn,a points from CBG n’s geographic boundaries, resembling the origin coordinates of

visitors The destination points are defined by the longitude and latitude coordinates of

amenity a. We note that by defining the economic composition of visitors by sampling

neighbourhood income distributions, we assume uniform use of the transit system across

socioeconomic groups. Thus, transit use segregation becomes an artefact of four main
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mechanisms: (1) the neighbourhood’s income distribution, (2) the amenities its residents

visit, (3) the frequency with which residents visit said amenities, and (4) how the subset

of the transit lines its residents use to visit their amenities intersects with the transit use of

residents from other neighbourhoods. While this approach does not account for the fact that

more vulnerable demographics may rely more on transit [101, 130], we hypothesise that

incorporating disparities in transit reliance would exacerbate the levels of transit segregation

we identify under this uniform-use assumption. Future work can use higher resolution

mobility data to understand transit use, based on the speed of individual trajectories.

We define the set of edges in the transit layer of the transit-pedestrian network that

visitor v, in Cx
bg,a traverses when moving from their sampled origin coordinate to amenity

a as Px
bg,a,c. When an individual travels on a transit edge, her socioeconomic background

contributes to the level of segregation experienced by all travellers using that transit segment.

Thus, we can define the economic composition of a transit edge, e, for an iteration x as:

Cx
e = {v | bg ∈ BG,a ∈ A,v ∈ Cx

bg,a,e ∈ Px
bg,a,v} (5.9)

To calculate segregation at the transit edge-level, we define Cx
e,i to reflect the set of

individuals from the low, middle or high-income group that travel on an edge e, where

i ∈ {lo,mid,hi}. In this manner we can define the level of segregation experienced on an

edge, e, as an average of edge-level segregation across all stochastic iterations:

ICEedge(e) =
1

100

100

∑
x=1

|Cx
e,hi|− |C

x
e,lo|

|Cx
e|

(5.10)

To compare how segregation levels change across the residential, amenity, and public

transport domains, we aggregate edge-level transit segregation to the census block group

level. For a given neighbourhood, bg, we define the average segregation level experienced

while using public transport, by residents in CBG bg, as traveler transit segregation (TTS):
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T T S(bg) = Tbg, where Tbg = {ICEedge(e) | a ∈ A,v ∈ Cx
bg,a,e ∈ Px

bg,a,v} (5.11)

where Tbg reflects the transit line segregation (ICEedge) that each traveller from neighbour-

hood, bg, experiences on the edges she traverses to reach amenity, a. Accordingly, T T S(bg)

conveys the average experienced segregation when using transit for residents in CBG, bg,

with respect to empirical amenity visitation patterns.

Thus, we have estimated how, residents in a given neighbourhood experience segregation

from a residential (Eq. 5.2), amenity (Eq. 5.6), and public transport (Eq. 5.11) perspective.

Figure 5.8 highlights how segregation levels persist across the three dimensions, focusing on

the highly-segregated, low-income and highly-segregated, high-income segregation groups.

Regardless of city-level economic composition, the parallel plots convey that segregation

continues to exist in the transit and destination dimension, albeit to a lesser extent. The

smaller range of segregation experienced in the mobility and transit dimensions reveals

potential approaches to reducing the negative effects of segregation, that extend beyond

changing housing policies. For example, one such solution could include extending transit

service to connect areas of different segregation levels so that the segregated service identified

in Figure 5.5.1 is reduced. Moreover, it could be worth exploring the role that the spatial

distribution of amenities has on segregation measures in the mobility and transit dimension.

We explore the latter concept in the following section

The Role of Amenity Distributions on Transit Segregation

To gain a deeper insight regarding how disparities in mobility destinations impact segregation

while using the transit system, we develop a null model, which hypothesises that transit

segregation is an artefact of disparities in the amenity landscape. To model this, we retain the

same distribution of trip counts across neighbourhoods in a city. However, we modify the
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Fig. 5.8 Levels of experienced segregation, while visiting amenities and while using
transit to reach amenities, are lower than residential segregation measures. Urban
segregation levels in Philadelphia, Cincinnati, San Francisco, Dallas and New Orleans. From
left to right, each axis in a parallel plot conveys experienced segregation in the residential,
transit, and mobility domains, respectively. The purple and orange lines reflect segregation
levels for the highly-segregated high and low-income groups, respectively.

destinations of every trip in the SafeGraph amenity visitations data, by randomly sampling

a coordinate within a randomly sampled CBG. In other words, we maintain empirical

mobility flows from a neighbourhood, but randomise the destinations to which individuals in

a neighbourhoods travel and the locations of amenities. By doing so, we create an amenity

landscape such that amenities are evenly distributed within a neighbourhood and across all

neighbourhoods in a city. Moreover, this null model assumes an equal probability for a given

individual visiting an amenity, removing mobility patterns such a preferential return and

visitation recency [4, 16]. We construct a mobility matrix, Mnull
bg,a, using the sampled amenity

destinations, and apply the same workflow to determine amenity and transit edge segregation.

Again, to account for the stochasticity of sampling destinations, we perform this process for

100 iterations.

We can, then, compare segregation estimated from the empirical data, to that of the null

model, which eliminates apparent disparities in the amenity dimension, illustrated in Figure
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Dallas New Orleans

Fig. 5.9 Inequalities in amenity distribution and visitation patterns contribute to ex-
perienced transit segregation, for Philadelphia, Cincinnati, Dallas, and New Orleans.
We compare empirical transit segregation to that of a null model, which is characterised
by uniform amenity distributions and visitation patterns, shown on the y-axis. The y-axis
compares changes between empirical transit segregation and transit segregation derived from
the null model, where negative values reflect amenity landscapes and mobility behaviour
contributing to measures of transit use segregation. The x-axis shows empirical levels of
transit segregation as a baseline. The purple and orange points refer to segregation levels for
the highly-segregated high and low-income groups, respectively.

5.9. The scatter plots shine light on the differences in CBG-level transit segregation between

the empirical and null model.

The x-axis and its corresponding distribution above it, convey the empirical transit use

segregation, for each CBG in a city. Thus, the distributions above the x-axis more clearly

visualise the transit axis in the parallel line plots (middle axes in Figure 5.8). Meanwhile, the

y-axis, and respective distribution on the right, emphasise how transit segregation measures

change when removing inequalities in amenity visitations and the amenity landscape. This is

achieved by calculating ∆ICEtransit , as defined in Equation 5.7, comparing a neighbourhood’s
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empirical transit segregation to that measured in the null model. Negative values reveal that

uniform spatial distribution and mobility behaviour (i.e., preferential return) contribute to the

empirical transit use segregation.

San Francisco remains an exception, implying that the empirical amenity landscape and

socioeconomic inequalities in amenity visitation contribute to lower levels of segregation

that individuals experience while using its transport system. For most cities, we observe the

majority of neighbourhoods having decreased levels of transit segregation when removing

amenity visitation inequalities – indicated by points appearing below the dashed line. These

decreases suggest that the spatial distribution of amenities, coupled with inequalities in which

demographics are visiting certain amenities. To reduce the impact of transit segregation

due to spatial proximity, approaches to mitigating experiential transit segregation can focus

on improving service to amenities that exhibit high segregation in visitation patterns. The

findings in Figure 5.9 also highlight how experienced transit segregation is not solely an

artefact of segregated transit service, but can also be impacted by other urban features, which

in this case refers to the spatial distribution of amenities.

Moreover, we observe that the high income groups experience larger decreases in transit

segregation for most cities, as seen by the distribution on the y-axis (Philadelphia being an

exception). This suggests that the transit segregation experienced by individuals in highly-

segregated, low-income neighbourhoods remains consistent, despite the characteristics of

their destinations. This finding highlights how transit segregation experienced by highly-

segregated, high-income individuals is more shaped by empirical amenity visitation and

distribution patterns, than for their low-income counterparts. Coupling this finding with

the results in the previous chapter, transit service can specifically aim to better connect

individuals from highly-segregated, high-income neighbourhoods to a variety of amenities.

The low magnitudes of ∆ICEtransit in the scatter plots elucidate how removing inequalities

in amenity visitations and the amenity landscape does not significantly change segregation in
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the transit realm. Thus, we observe that experienced transit segregation is likely to be more

significantly shaped by other urban features (i.e. how the socioeconomic residential landscape

intersects with the transport service and layout). Ultimately, we identify inequalities in how

transit systems connect neighbourhoods from different socioeconomic backgrounds. We

compare the average segregation of neighbourhoods that are reachable withing a given time,

between trips taken using public transport versus cars. We note that San Francisco and

Philadelphia allow residents from different segregation groups to reach a wider array of

neighbourhoods within an hour long trip. Moreover, we stochastically model the transit

lines individuals would use to satisfy their mobility demands. Finally, we test our empirical

results against a null model to find that while disparities in amenity distribution and travel

behaviour increase the level of economic concentration on transit lines, mobility and amenity

inequalities do not fully account for the level of experienced transit segregation that we do

identify.

5.6 Discussion

This chapter aims to shine light on how urban segregation intersects with how transport justice,

when considering non-commuting mobility patterns (i.e., amenity visitations). That is, we

build upon concepts used to measure residential segregation to derive more dynamic estimates

of experienced segregation. Previous works have used mobility data to understand segregation

at the amenity level [215, 67, 266, 206]. However, framing experienced segregation in the

context of transport justice provides a means for understanding how transit infrastructure

provides service to areas characterised by varying levels of segregation. Our work puts

forward a framework for defining inequalities in transit systems in terms of where transit

provides access to and how individuals experience segregation while using transport. In

doing so, our results reveal that residential segregation levels persist through other aspects

of the urban experience, namely amenity visitations and transport usage. These results are
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consistent with research that shows residual effects of residential segregation in school, work,

and mobility dimensions [215, 67, 266].

Furthermore, we show how highly segregated, low-income neighbourhoods tend to

decrease their extreme levels of residential segregation through their mobility patterns. This

is in line with findings that unveil demographic associations with social exploration of

amenities [206]. Bridgeport and San Francisco serve as two exceptions to this trend, where a

subset of the neighbourhoods with low-income segregation tends to visit amenities with high

levels of segregation. In these cases, it is imperative to develop adequate urban infrastructure,

that is designed to benefit the disadvantaged groups that have low amenity accessibility [5].

We also find that transit systems can hinder access to neighbourhoods, limiting the potential

of exposure to individuals from different backgrounds. These results underscore findings

that underprivileged demographics, be it immigrant or ethnic minorities, tend to have more

constrained activity spaces than their privileged counterparts [121, 266]. It is unclear whether

mobility patterns are dictated by limited transit access to other neighbourhoods. However,

our findings reveal that by limiting exposure to different types of neighbourhoods, transit

systems impose constraints on the activity space and urban experience of individuals, namely

those without access to personal vehicles.

Limitations of this work include the assumption that the economic composition of a neigh-

bourhood’s travellers directly reflects the neighbourhood’s income distribution. Although it

is striking that we identify inequalities under this assumption, which removes demographic

mobility preferences within a neighbourhood, higher resolution mobility data can provide

closer approximations of urban segregation. Thus, this work can be further developed to

analyse how segregation experienced within transit lines is impacted by empirically informed

levels of socioeconomic transit usage. Moreover, using higher-resolution mobility data,

such as those that tag mobility trajectories with the associated demographics of the traveller,

could shine light on further disparities in how transport and amenity landscapes intersect.
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Additionally, the proposed methodology can be applied to data spanning a larger time frame,

to analyse temporal features of mobility and transit segregation. We emphasise that this

framework can be applied to any region, given transit feeds for modelling transport networks

and mobility data which includes or can be merged with demographic characteristics. This

framework can provide a clearer insight as to how cultural differences in mobility patterns

and the level of transit infrastructure can impact inequalities experienced in various facets of

the urban environment.

In essence, we consider segregation from multiple urban dimensions to highlight the

benefit of analysing segregation as an experience rather than a static variable. Moreover,

identifying inequalities within transit systems is the first step in providing improved transit

service, particularly to individuals from especially vulnerable demographics. By studying

segregation from multiple perspectives, we can observe whether mobility is used as a tool

to try and overcome residential segregation. Ultimately, this work motivates developing an

improved understanding for how transport can facilitate access to different areas in a city,

particularly for vulnerable demographics, while also providing sustainable transit modes that

are integrated and inclusive.





Chapter 6

Urban Inequalities: A Built Environment

Perspective

6.1 Introduction

The previous chapters have evaluated transit inequality with respect to residential-workplace

inequalities and socioeconomic segregation. Chapter 4, for instance, revealed how vulnerable

housing demographics tend to live closer to the transit system’s centre of mass (Figure 4.11).

However, a growing number of studies have identified recent trends in the suburbanisation

of poverty [128, 243, 127, 167]. Proximity to areas that are rich with transit resources,

intuitively, improves accessibility [227]. Yet, urban mechanisms, such as housing and

employment landscapes, can impact the areas in which particular demographics can live.

As a result, observed transit inequalities may be more reflective of inequalities in housing

markets or employment opportunities. To address this issue, this chapter aims to disentangle

transit inequalities with respect to the built environment (BE). In doing so, we explore

how the extent of inequality changes when we consider disparities in different types of

neighbourhoods. This is a critical perspective to consider as vulnerable demographics may

face a larger degree of setbacks in less accessible neighbourhoods. Thus, we define a city’s
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residents with respect to their social and spatial characteristics, to investigate which types of

environments tend to express larger transit inequalities. After analysing how transit service

relates to socioeconomic features and BE characteristics independently, we combine income

and BE features to define socio-spatial demographics. We contend that a just transit system

not only provides adequate access to amenities and employment areas, but also provides

neighbourhoods with comparable levels of transit service, facilitating opportunities to travel

to any other neighbourhoods in the city. Thus, we assess disparities in integral access,

system-facilitated access, and employment access, across socio-spatial characteristics. We

note that an initial version of the findings presented in this chapter is set to be published in

the proceedings of an upcoming conference [135].

6.2 A Built Environment Characterisation of Neighbour-

hoods

This section outlines our methodology to define the Built Environment (BE) of a neigh-

bourhood by using building density, urban street design and amenity diversity, commonly

referred to the 3D’s of the built environment [49]. Chapter 3.3 describes our approach to

measuring these built form components. As a brief overview, street network design com-

putes how grid-like a neighbourhood road layout is by measuring the geometric mean of the

straightness of streets, the street orientation order and the proportion of four-way intersections

(Eq. 3.3). Building density measures the proportion of building area with respect to the

total land area within a neighbourhood. Finally, amenity entropy captures how even the

distribution of types of amenities are in a census tract, by using normalised entropy across

ten amenity categories: Food, Education, Healthcare Facilities, Finance, Religious Venues,

Government Facilities, Recreational Areas, Entertainment, Retail, and Professional Services

(Eq. 3.4). These categories were defined by following the taxonomy used by Graells-Garrido



6.2 A Built Environment Characterisation of Neighbourhoods 169

et. al. [109]. Information pertaining to the street attributes, building footprints, and amenity

characteristics of a city are queried for October 11, 2021 from OpenStreetMap [221].

We estimate these measures to study transit service in different types of built environments

for eight major US cities: New York City, Philadelphia, Chicago, San Francisco, Boston,

Portland, Minneapolis and Seattle. We choose these cities as they are all in the top 30 of the

most populated cities in the US [43]. Transit commuters in New York City, San Francisco,

Boston, Chicago, and Philadelphia tend to be from higher income demographics [182, 227]

Furthermore, New York City and Boston reflect cities with significant urban development

before the popularisation of cars [110]. Meanwhile, Portland and Minneapolis reflect cities in

which observed decline in ridership is not associated with the displacement of lower income

individuals to the urban periphery whereas Seattle is one of the few cities in which transit

ridership has remained consistent, even through the COVID-19 pandemic [83, 227]. Thus,

these eight cities represent a range of transit and urban characteristics across populous areas

in the US.

Similarly to how we derive the grid index, we define the built environment (BE) index

for a census tract, ct, by taking the geometric mean of the tract’s grid index, building density,

and amenity diversity:

BE(ct) = 3
√

G(ct)∗D(ct)∗Hamenity(ct) (6.1)

where G(ct), D(ct), and Hamenity(ct) reflect the grid index, building density, and amenity

diversity, respectively. We choose the geometric mean because it allows for comparison

across different units and is non-substitutable [291, 194]. Consequently, lower values in one

BE feature (i.e. diversity) are not offset by higher values in another (i.e. density, design).

Thus, smaller BE features retain their relevance, or weighting, when using the geometric

mean, making it an appropriate choice for aggregating BE features into a single value.

Section C.1 in the Appendix discusses the validation process, considering other approaches
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Table 6.1 Built environment characteristics across eight US cities. The second to fourth
columns reflect the average values for each component of the BE index. The fifth column
defines the city-level average for the BE index. Finally, the last column indicates the presence
of spatial autocorrelation in BE features, for each city, with asterisks indicating the level of
significance.

Mean Built Environment Characteristics
City Grid Index Building Density Amenity Entropy BE Index GSA

Minneapolis 0.578 0.103 0.647 0.307 0.718***
Philadelphia 0.687 0.187 0.598 0.384 0.683***
Boston 0.456 0.226 0.621 0.384 0.330***
Portland 0.701 0.202 0.700 0.456 0.442***
Seattle 0.715 0.228 0.733 0.485 0.441***
Chicago 0.829 0.265 0.580 0.491 0.335***
New York City 0.765 0.297 0.613 0.505 0.386***
San Francisco 0.758 0.354 0.655 0.548 0.372***
*p < 0.05; **p < 0.01; ***p < 0.001

to computing the BE index. Given that all of the metrics used to calculate the BE index range

from 0 to 1, the BE index is also bounded by this range. Neighbourhoods with larger BE

indices suggest that their residents benefit from a greater flexibility in mobility options. That

is, grid-like street networks provide a range of routes to travel between two points, they have

multiple detour options in the face of traffic or construction, and they are associated with

lower pedestrian fatalities and higher transit access [86, 18]. Furthermore, higher building

density supplies numerous possibilities for origin and destination points, while larger values

of amenity diversity suggest that more types of trip purposes can be fulfilled based on the

amenity landscape of a neighbourhood. Thus, higher BE indices suggest more mobility

options in terms of routing possibilities, origin-destination points, and trip purposes. We

refer to this concept as mobility flexibility. Table 6.1 describes the average BE index, and its

corresponding components, considering all census tracts in each city.

The fifth column of Table 6.1 reveals that Minneapolis and Philadelphia have lower

average BE features, while New York City and San Francisco have larger mobility flexibility.

While we can compare built form features between cities, we can also evaluate how neigh-
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Fig. 6.1 Spatial distribution of the BE index, across all census tracts in each of the
analysed cities. Lighter hues reflect larger indices, implying a higher flexibility in terms of
mobility options.

bourhoods within a given city vary in terms of their physical environments. The last column

of table 6.1 denotes the Moran’s I value when applying global spatial autocorrelation (GSA)

to census tracts in each city. The positive values highlight how neighbourhoods with similar

BE indices tend to be located close to one another.

Additionally, the significance of the Moran’s I values conveys that when the spatial

features of the BE indices are randomly shuffled, spatial autocorrelation is not present. Thus,

the asterisks highlight how the identified GSA is not purely an artefact of randomness.

Furthermore, Figure 6.1 shows the spatial distribution of BE indices within each city, with

darker hues conveying less mobility flexibility through the BE index. Through this figure, we

can visualise how cities such as Minneapolis and Philadelphia have larger GSA magnitudes,

while cities such as Boston and Seattle exhibit GSA to smaller extent.

Having defined neighbourhoods by their built form features, we can now explore whether

socioeconomic transit disparities are present in areas with similar physical environments. We
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Table 6.2 Description of how BE features relate to socioeconomic and transit characteristics.
Columns two to four describe the average median household income for the Low, Moderate,
and High BE terciles, for each city. The second to last column lists the Pearson correlation
coefficient between a census tract’s BE index and its transit mobility opportunity. The last
column shows the correlation between tracts and their average commuting time, assuming all
workers use transit. Significance of the correlation coefficients for a city are marked using
asterisks, with significant values in bold.

Average Median Household Income Transit-BE Index
for BE Groups Correlation

City Low Moderate High Opportunity Commute

Chicago 47,007 63,262 77,996 -0.063 -0.232***
New York City 69,228 67,960 81,695 -0.261*** -0.064**
Philadelphia 45,991 52,444 58,044 -0.316*** -0.488***
San Francisco 132,552 124,389 124,613 -0.467*** -0.503***
Boston 73,774 76,468 80,928 -0.485*** -0.65***
Seattle 105,579 108,977 102,013 -0.498*** -0.16
Portland 77,324 83,793 91,802 -0.607*** -0.208*
Minneapolis 102,004 83,587 67,353 -0.783*** -0.19**
*p < 0.05; **p < 0.01; ***p < 0.001

incorporate economic characteristics by using Table B19013 in the American Community

Survey, which provides the median household income of a given census tract. We create built

environment (BE) groups by splitting the distribution of BE indices, for a particular city, into

three, equally-sized groups representing the neighbourhoods with low, moderate, and high

mobility flexibility. The second to third columns of Table 6.2 convey the average median

household income for all tracts belonging to a particular BE group. We observe that in

Chicago, Philadelphia, Boston, and Portland, neighbourhoods with lower mobility flexibility

(in the Low BE group) tend to have lower median household incomes than neighbourhoods

with higher BE features. In contrast, San Francisco, Seattle, and Minneapolis tend to have

lower median household incomes in areas with more mobility flexibility. These different

trends highlight how BE features and socioeconomic characteristics uniquely intersect for

various cities. This could potentially be explained by urban mechanisms such as housing

markets or employment opportunities that can limit where individuals can afford to live
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[127, 167]. As discussed in Chapter 2.4, transit-dependent individuals, who tend to be lower

income, may be especially vulnerable to transport poverty if they live in neighbourhoods

with lower mobility flexibility and transit service. In the next section, we incorporate transit

data to explore how transit service varies across different BE groups.

6.3 Transit Service in the Context of the Built Environment

This section discusses the transit data sources we use and how we apply them to understand

transit service in terms of accessibility and commuting patterns, for different BE Groups. We

construct transit networks using GTFS feeds from The Mobility Database and street network

data from OpenStreetMap. The time frame for which this data are gathered is October 11,

2021. We use r5py, discussed in Chapter 2.4.2 and 3.4, to query transit routes for Monday,

October 11, 2021. To ensure accurate transit time estimates for commuting, we refine the

network to model transit flow from 07:30 AM to 09:30 AM. Passing an origin and destination

coordinate pair into this transit network will return the median travel time between the points,

running five routing iterations for each minute of the defined time frame. Thus, given the

transit networks we build for each city, the travel time between two coordinates reflects the

median time over 600 Monte Carlo runs.

Then, we use journeys to define transit times for empirical commuting patterns, integral

accessibility, and system-facilitated accessibility. As a reminder, integral accessibility,

introduced in Chapter 2.4.3, denotes how connected an area is to all other areas in a given

boundary. Its counterpart, relative accessibility, highlights how connected two specific

locations are, by estimating transit travel times between the two locations. By measuring

public transit service in terms of how it provides access to every neighbourhood in a region

(integral accessibility), we aim to estimate how a city’s transit system provides individuals

with the opportunity to travel to a range of destinations. In order to arrive at these estimates,

we randomly sample 100 origin and destination points, for every potential census tract pair
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in a city. We pass these potential mobility trajectories into the transit networks to find the

weighted shortest path between each origin-destination (OD) pair, (i, j). We use J′transit(i, j)

to describe the time it takes, in minutes, to travel on a transit route from origin point i to

destination point j. Then, we aggregate these values to the census tract level, by averaging

the transit times for all origin-destination pairs beginning in census tract cto and ending in

census tract ctd:

Jtransit(cto,ctd) =
∑i∈cto, j∈ctd J′transit(i, j)

100
(6.2)

where Jtransit(cto,ctd) reflects the average transit time it takes to travel between two census

tracts in a city. Thus, we can define the transit mobility opportunity (T opp
transit) for a given

census tract ct:

T opp
transit(ct) =

∑ct ′∈CT Jtransit(ct,ct ′)
|CT|

(6.3)

where CT reflects the set of census tracts in a city. The values measured by T opp
transit(ct)

convey transit mobility opportunities, in that it estimates, for a given neighbourhood, the

average time it takes to travel, considering all other neighbourhoods in the city. In essence,

Equation 6.3 measures integral accessibility. The fifth column of Table 6.2 shows the Pearson

correlation coefficients between the mobility opportunity of a census tract (T opp
transit(ct)) and

the tract’s BE index, with asterisks indicating the significance of the coefficient. The negative

coefficients suggest that neighbourhoods in a city that have higher mobility flexibility (or BE

indices) tend to have smaller average transit times to all other neighbourhoods. Chicago is

the only city for which a significant, negative correlation is not present.

Furthermore, we use 2021 commuting data from the LODES data set, discussed in

Chapter 3.2.1, to measure the areas to which individuals in a census tract commute. Then,
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we capture the average commuting time for a census tract:

T comm
transit(ct) =

∑w∈Wct J(ct,ctw)
|Wct |

(6.4)

where Wct is the set of all workers living in census tract ct and ctw captures the census

tract that a worker w in Wct commutes to. Thus, J(ct,ctw) conveys the transit commute

time for a given worker that lives in ct. Accordingly, T comm
transit(ct) denotes the average transit

commute time for all workers that live in a census tract ct. Similar to the analysis in the

previous chapters, this metric is calculated under the assumption that all commuters use transit

to reach their workplace. However, we argue that this assumption is relevant to transit and

climate goals. That is, T comm
transit(ct) does not try to estimate real commuting times with respect

to empirical commuting mode choices. Instead, T comm
transit(ct) aims to measure employment

accessibility using transit, in the context of shifting to more sustainable travel modes. Table

6.2 evaluates the correlation between a neighbourhood’s average transit commute time and

it’s BE index, using the Pearson correlation coefficient.

In line with the identified association between integral access and the built environment,

we find that all cities, barring Seattle, have negative, significant associations between commut-

ing and the built environment. That is, neighbourhoods with higher BE indices tend to have

shorter commute times. It is important to note, that while New York City has a significant

and negative coefficient, its low magnitude suggests a weak correlation. Furthermore, Figure

6.2 shows the distribution of mobility opportunity (T opp
transit(ct)) and transit commuting times

(T comm
transit(ct)) for census tracts in each BE group.

In Figure 6.2, we can observe that transit times, in terms of opportunity and commuting,

tend to be longer for neighbourhoods with low BE features. Meanwhile, areas with high

mobility flexibility benefit from shorter transit times for accessing all other neighbourhoods as

well as empirical employment destinations. This is not necessarily the case when considering

mobility opportunity in Chicago and New York City. Moreover, this trend is not apparent
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Transit Service Differences for Built Environment (BE) Groups

Fig. 6.2 Generally, neighbourhoods in the High BE group tend to have shorter transit
times compared to those in the Low BE group, in terms of commuting and general
mobility opportunity. The left most plot for each city reflects the distribution of integral
transit access (mobility opportunity) across Low, Moderate, and High BE Groups. The right
most plot shows average transit commuting times across the same BE groups. The BE groups
are further distinguished by hues of blue, with the darkest hue depicting the High BE group
and the lightest representing the Low BE group.

in the context of commuting times for Seattle, New York City, Chicago, and Portland. A

potential explanation for this is that, in these four cities, housing, employment, and transit

mechanisms may align to provide either short distances between residential-workplace areas

for all neighbourhoods or strategic transit service that connects residential and employment

areas, based on commuting workflows.

The differences in transit times distribution across BE groups can be validated from a

statistical perspective in Tables 6.3 and C.2. These tables confirm the results discussed in the

previous paragraph. To accomplish this, we use the Kolmogorov-Smirnov test to compare

the similarity of distributions. By measuring the maximum absolute difference between the

empirical cumulative distribution functions for each sample, we can determine whether to

reject the null hypothesis that the two samples come from the same distribution. Thus, Table

6.3 reveals cities that have statistically significant distributions of transit times between Low
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Opportunity Commute
City Low-High Low-High

Boston 0.618*** 0.77***
Portland 0.76*** 0.309
Philadelphia 0.344*** 0.543***
Chicago 0.114 0.271***
Minneapolis 0.87*** 0.537***
New York City 0.228*** 0.121***
Seattle 0.667*** 0.3
San Francisco 0.56*** 0.502***
*p < 0.05; **p < 0.01; ***p < 0.001

Table 6.3 Kolmogorov-Smirnov test statistic when comparing the distribution of transit
times between the Low and High BE group, for mobility opportunity transit times (second
column) and transit commuting times (last column). Bold values reflect instances in which
the compared distributions are not the same.

and High BE neighbourhoods, which is reflected by significant values (bolded) that have

high magnitudes.

6.4 Expressions of Transit Inequality in Different Built

Form Types

So far, we have defined neighbourhoods based on their built environment features and the

extent of transit service they receive. The previous section showed how integral accessibility

and commuting transit times relate to BE characteristics in eight US cities. This section

incorporates socioeconomic data from the US Census Bureau’s American Community Survey

to assess how socioeconomic transit inequality varies across BE groups. In doing so, we

derive socio-spatial groups that are defined by a neighbourhoods BE group and income

terciles. We begin by applying methods from network science to understand socioeconomic

transit disparities, in the context of integral accessibility. That is, we leverage network

assortativity to understand whether socioeconomic homophily is present in transit service
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Table 6.4 Distribution of the number of census tracts in each socio-spatial group. Each
column reflects a socio-spatial demographics, while rows denote a city.

Socio-Spatial Low Income Middle Income High Income
Group Low Moderate High Low Moderate High Low Moderate High

City BE BE BE BE BE BE BE BE BE

Boston 18 17 14 20 20 20 18 18 21
Chicago 120 52 36 60 89 66 35 73 112
Minneapolis 9 30 47 26 34 28 54 25 14
New York City 201 184 204 237 229 185 193 217 242
Philadelphia 54 36 27 41 39 40 23 42 51
Portland 18 7 9 7 15 10 6 9 12
San Francisco 16 15 22 18 15 14 14 18 12
Seattle 13 9 10 7 8 11 5 8 4

networks that are created for different travel time thresholds. Then, we incorporate relative

accessibility by comparing differences in access to essential amenities across socio-spatial

groups. Finally, we compare socio-spatial inequalities, when considering the accessibility of

employment areas.

6.4.1 Defining Socio-Spatial Demographics

In previous chapters, we split neighbourhoods into five, equally-sized quintiles, based on their

median household income. However, in this chapter, we combine income and BE groups to

determine socio-spatial demographics. Accordingly, we split the median household income

distribution of each city into three, equally-sized terciles, which represent Low, Middle, and

High income groups. We choose income terciles rather than income quintiles so that both

BE and income groups are derived using terciles. Moreover, for cities with a particularly low

number of census tracts, such as Minneapolis, Seattle, and Portland, creating 15 socio-spatial

groups leads to an insignificant number of neighbourhood within each demographic. Table

6.4 conveys the number of neighbourhoods in each socio-spatial demographic.
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The first column in Table 6.4 indicates which city is being analysed. The remain columns

reflect the number of census tracts in a given socio-spatial demographic, with the socioeco-

nomic and spatial (BE) group defined by the first and second row, respectively. Table 6.4

shows how even when we create 9 socio-spatial demographic groups, Seattle only has four

high-income neighbourhoods that have high mobility flexibility. Thus, when interpreting

the following results, it is crucial to keep in mind the neighbourhood representation across

socio-spatial demographics in each city, particularly in the cases of Seattle and Portland.

Transit Dependence for Socio-Spatial Groups

Fig. 6.3 High BE neighbourhoods tend to express higher transit dependency, while
high-income neighbourhoods tend to have lower rates of transit dependence. The y-axis
of each heat map reflects the spatial demographic (BE groups), while the x-axis represents
the socioeconomic demographic (income group). Accordingly, each cell represents a socio-
spatial demographic, with darker hues of red indicating a higher percentage of households
that have no vehicles.

Figure 6.3 shows how transit dependence varies across the 9 socio-spatial demographics

that we define, for all eight cities. The x-axis reflects the three income groups (Low, Middle

High) and the y-axis represents the Low, Moderate, and High BE Groups. The colour bar

indicates the percentage of households in a given socio-spatial demographic that do not own

any vehicles. We observe that the left most column of each city’s grid tends to be the darkest,



180 Urban Inequalities: A Built Environment Perspective

suggesting that within the same spatial demographic, the lower socioeconomic group tends to

have more households that are dependent on transit, taxis, or potentially ride-hailing services.

When we consider each row of a city’s heat map, we see that car ownership is higher in Low

BE groups, where transit service times are larger, as shown by Figure 6.2. Ultimately, Figure

6.3 aims to provide context to rates of potential transit dependence among socio-spatial

demographics, highlighting how low-income neighbourhoods generally have lower rates car

ownership across all spatial demographics. Throughout the following sections, we compare

transit inequalities between groups at opposite ends of a particular demographics. That is,

we analyse transit disparities across the highest and lowest socioeconomic groups, in areas

with the most and least mobility flexibility, as measured by BE groups.

6.4.2 Integral Accessibility

The previous section shines light on potential transit dependence across socio-spatial de-

mographics, underscoring a notable percentage of households, in areas with less mobility

flexibility, that do not have access to cars, particularly in neighbourhoods that are low-income.

Accordingly, this section focuses on exploring how transit systems connect neighbourhoods

of different socioeconomic backgrounds, with respect to the built environment. In this man-

ner, integral accessibility can convey overall mobility opportunity, which is measured using

T opp
transit(ct). Integral accessibility, as a reminder, measures how transit serves a particular

neighbourhood, with respect to all other destinations in a city. Previous chapters analysed

mobility opportunity in order to define transit efficiency (Chapter 4.5) and the socioeconomic

composition of neighbourhoods that are accessible by transit (Chapter 5.5.1). We return

to this concept, with a different question at hand: Are there socioeconomic disparities in

how transit systems facilitate mobility opportunity for various spatial demographics? To

answer this question, we analyse how accessing neighbourhoods of different socioeconomic

backgrounds changes across spatial demographics, when using transit.
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We accomplish this by constructing transit service networks, which reflect neighbour-

hoods that are reachable within a given time threshold. We build a network, GBE(t), in which

nodes represent census tracts in a given city. An edge from node ct1 to node ct2 indicates that

census tract ct2 is reachable from tract ct1 within a travel time threshold of t minutes. Similar

to the approach in Chapter 4.2, we create ‘disaggregated’ networks that reflect transit service

from nodes belonging to a particular built environment group. That is, we create a network

G′BE(t,b), such that nodes are the same set of census tract as in GBE(t). Furthermore, we

only add edges between a pair of nodes, (ct1,ct2), if ct1 is a tract in built environment group,

b, and the transit travel time from ct1 to ct2 does not exceed the time threshold, t.

We leverage the income terciles to inform node attributes, in both GBE(t) and G′BE(t,b).

Specifically, each node in a network represents a census tract and is, accordingly, assigned

a node attribute reflecting the income group to which the respective tract belongs. Then,

we leverage network properties to analyse whether transit systems connect neighbourhoods

in the same income group. To do so, we apply network assortativity, which captures the

tendency of nodes to connect with ‘similar’ nodes. By measuring similarity using income

groups, we can assess whether transit service connects neighbourhoods that have analogous

economic characteristics to a larger extent than neighbourhoods with different economic

features. This is accomplished by creating a normalised mixing matrix, MBE [i][ j], which

captures the number of edges from nodes in income group i to nodes in income group j. This

matrix, MBE is normalised by dividing by the total number of edges in the graph, GBE . Then,

we use ai and bi to define the proportion of outgoing and incoming edges to nodes in income

group i:

ai =
I

∑
j

M[i][ j], bi =
I

∑
j

M[ j][i] (6.5)
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where I is set of three income groups (Low, Middle, and High). Finally, we can define the

assortativity coefficient based on the income attributes of each node:

r =
∑i eii−∑i aibi

1−∑i aibi
(6.6)

where ∑i eii reflects the proportion of accessible edges that provide transit access between

neighbourhoods in the same income group. In a perfectly assortative network, that is, a

network in which transit only provides service between neighbourhoods in the same income

group, r will be equal to one. Contrarily r = 0 when there is no assortative mixing. Perfectly

dissasortative networks, in which transit does not connect any neighbourhoods in the same

income group, will have negative values for r, since the term ∑i eii will be 0. While the range

is bounded by -1, perfectly disassortative networks are similar to random mixing (where

r = 0), thus the magnitude of a perfectly disassortative network should be closer to 0 than

that of a perfectly assortative network [212].

By applying network assortativity to built environment networks, GBE(t), for a given time

threshold, t, in a city, we can assess how transit systems connect neighbourhoods of similar

economic backgrounds. We note that using transit travel times to connect neighbourhoods,

rather than considering direct transit lines, allows us to capture the experience and realities

of transit service, as opposed to their structural features. The grey lines in Figure 6.4 show

how the network assortativity coefficient (r), shown along the y-axis, changes for different

travel time thresholds. The time thresholds along the x-axis range from 5 minute to 90

minute transit journeys. For all eight cities, we observe a decrease in assortativity as the

travel time threshold increases. Networks constructed to connect neighbourhoods that are

reachable within 90 minutes tend to have an assortativity that approaches 0, with Seattle

have the largest value (0.032) and Philadelphia having the lowest value (-0.003). This

implies that neighbourhoods of different socioeconomic backgrounds are reachable, given

that individuals have a travel budget of 90 minutes. A travel budget of 30 minutes, however,
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Fig. 6.4 Socioeconomic homophily in transit service decreases with longer travel times,
but tends to decrease at a faster rate for neighbourhoods in High BE areas. The bottom
panel for each city conveys how socioeconomic homophily changes given a travel time
threshold, shown by the grey line. The light and dark blue lines depict whether transit serves
neighbourhoods of similar economic compositions, for tracts in the Low and High BE group,
respectively. The top panel illustrates the difference between the assortativity of the Low and
High BE group for each time threshold, with negative values indicating more socioeconomic
homophily in transit service for neighbourhoods in the Low BE group.

shows socioeconomic homophily in transit service between census tracts, with Chicago

having the highest coefficient of 0.378 and San Francisco exhibiting the lowest coefficient

of 0.062. Thus, Figure 6.4 conveys that,while all cities express a decreasing behaviour in

assortativity as the time threshold increases (grey line), each city decreases at its own rate.

We can further extend this analysis by leveraging the networks, G′BE(t,b), introduced

earlier. G′BE(t,b) is identical to GBE(t), except that edges in G′BE(t,b) only exist if the

source node belongs to the BE group, b. By creating these networks, we can see how transit

connects neighbourhoods of different socioeconomic backgrounds, with a specific focus on

integral accessibility for neighbourhoods in the Low and High BE groups. Accordingly, we

apply network assortativity to both G′BE(t,Low) and G′BE(t,High), for all eight cities. The

assortativity coefficients for the Low and High BE groups are shown with the light blue and



184 Urban Inequalities: A Built Environment Perspective

dark blue lines in the bottom panels of Figure 6.4, respectively. The top panel compares

the assortativity between the Low BE and High BE networks (∆r), with negative values

denoting more socioeconomic homophily in transit service for neighbourhoods with lower

built environment features. We observe a decreasing trend of network assortativity, similar to

our analysis of the entire transit service network.

For each city, we maintain the same number of nodes (which represent census tracts),

regardless of the travel time threshold we are considering. It should also be noted that

each income group (i.e. low, middle, and high) has been created such that they consist

of an equal number of census tracts (nodes). However, a city’s transit access network is

expected to have fewer edges for a smaller travel time threshold than for a larger one. As a

result, networks associated with smaller travel time thresholds are expected to have more

components, since less neighbourhoods are reachable from each node. This raises concerns

when comparing assortativity for two reasons. First, the relationship between edge density

and giant component formation depends on the degree of network assortativity [212]. Second,

with this assumption of the giant component formation in mind, the largest component for

networks of smaller travel time thresholds may not have equal group representation of

the income group as it is representing a subset of neighbourhoods that may be skewed

to a particular demographic. Both these effects can misconstrue measures of network

assortativity, making comparisons across different time thresholds invalid due to variations

in group representation, edge density, and the number of components [212, 146].

To address these concerns, we build a configuration model to test whether the observed

assortativity coefficients in Figure 6.4 are merely reflecting the change in number of compo-

nents or a change in group representation. For a given city, we build a configuration model

Gcon f
BE (t) for every graph GBE(t), such that Gcon f

BE (t) has the same in-degree and out-degree

distribution as GBE(t). For each graph, GBE(t), we construction 100 configuration models

based on the empirical degree distribution. Then, we can compare, for each city, the dif-
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Table 6.5 Understanding the relationship between spatial autocorrelation of income and
differences in socioeconomic homophily between the Low and High BE group. The second
column reflects the average difference in the assortativity coefficient between Low BE and
High BE transit access networks. Meanwhile, the last columns conveys Moran’s I as an
indicator of the degree of socieoconomic spatial autocorrelation.

City ∆rt≤10 GSA

Chicago 0.001 0.761***
New York City 0.016 0.626***
Minneapolis -0.05 0.513***
Philadelphia -0.076 0.54***
Boston -0.081 0.431***
Portland 0.157 0.26***
Seattle -0.212 0.311***
San Francisco -0.28 0.422***
*p < 0.05; **p < 0.01; ***p < 0.001

ference in network assortativity between GBE(t) and its configuration model counterpart

Gcon f
BE (t). The solid blue and yellow lines in Figure C.5 reflect network assortativity of the

empirical graph (GBE(t)) and the mean assortativity, consider all 100 of GBE(t)’s respective

configuration model (Gcon f
BE (t)). The dotted blue lines highlight how both the configuration

model and empirical graph have a similar decay of weakly connected components as the .

Regardless, the decay of assortativity is unique to empirical graph, with the configuration

models express assortativity coefficients near zero. This result can also be observed when

comparing the networks that measure socio-spatial homophily in transit access networks

(G′BE(t,Low) and G′BE(t,High)) to their respective configuration models. (Figures C.6 and

C.7)

However, by incorporating socio-spatial demographics into the transit network, we reveal

that Seattle, Minneapolis, Portland, Boston, and San Francisco express a higher degree of

socioeconomic homophily for neighbourhoods in the Low BE Group, compared to that of

the High BE neighbourhoods. This can be seen by the negative ∆r values in the top panel

of each city, for travel time thresholds less than 30 minutes. ∆r measures the difference
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in assortativity between G′BE(c, t,High) and G′BE(c, t,Low), such that positive values imply

larger assortativity coefficients for the High BE Group.

Notably, by combining the results from both panels, for each city, we can observe that

within the 5 and 10 minute travel time threshold, differences in assortativity between BE

groups tend to be minimal, while the assortativity values, themselves, are close to 1, revealing

high assortativity. Thus, we note that within a 10 minute travel time, transit service expresses

trends of socioeconomic homophily, regardless of BE characteristics. We hypothesise

that high r values, yet low ∆r estimates could be an artefact of spatial autocorrelation of

socioeconomic status. That is, shorter travel time thresholds are reflective of not just transit

service, but also the immediate surroundings of a given neighbourhood. This pattern can be

observed in Table 6.5. The second column reflects average ∆r values for travel time thresholds

of ten minutes or less, denoted by ∆rt≤10. This column conveys which cities have the least

differences in network assortativity between BE groups (∆r), while still having high levels of

socioeconomic homophily in transit service (t ≤ 10). The third column in Table 6.5, however,

shows the global spatial autocorrelation, considering tract-level median incomes for each

city. Asterisks refer to the significance of Moran’s I, compared to randomly shuffled median

income levels. By comparing the second and third columns, we see initial signs that our

hypothesis is valid, as areas with lower differences in network assortativity across BE groups

and high levels of assortativity, tend to have higher magnitudes of spatial autocorrelation, as

denoted by Moran’s I. That is, less socio-spatial disparities in transit service for lower time

thresholds are associated with higher socioeconomic spatial autocorrelation, revealing how

network assortativity for shorter travel time thresholds are reflective of both transit service

features and socioeconomic characteristics of nearby neighbourhoods.

Ultimately, this analysis considers the set of neighbourhoods that are reachable within a

given time threshold, and reveals that socioeconomic homophily is present in transit service

across all cities, with socio-spatial disparities between BE groups arising for five of the
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eight cities. Consequently, these results emphasise how transit infrastructure not only has

longer travel times for neighbourhoods in the Low BE group, but also provides access

to neighbourhoods of similar economic backgrounds. Thus, we show how low-income

neighbourhoods in the Low BE category face mobility constraints, in that transit does not

provide options to travel to neighbourhoods of higher income, within a 30 minute journey.

In the next section, we shift our focus from integral accessibility (in which we consider all

possible destinations) and focus on system-facilitated accessibility in each neighbourhood.

6.4.3 System-Facilitated Accessibility

Having assessed differences across spatial demographics in how transit systems provide

mobility opportunities to access areas of different socioeconomic backgrounds, we consider

how transit provides service for different types of journeys. Thus, we build upon the spatial

inequalities in transit systems that were explored in previous chapters, to examine how

system-facilitated transit access levels vary across socio-spatial demographics, with respect

to amenity visitations (Chapter 5) and commuting trips (Chapter 4). In this section, we

include system-facilitated transit accessibility into our analysis by measuring how many

amenities are accessible within a travel time threshold.

Previous studies that have established the concept of the 15-minute city, in which ac-

cessibility is derived as a measure of reachable amenities within a 15 minute walk, cycle,

or transit trip [205, 305, 109]. Thus, we set a travel time threshold of 15 minutes. We

focus on ‘essential’ amenities, as defined by Elldér et. al., who show how providing a basic

supply of access to essential amenities incentivises more sustainable modes of travel [81].

Thus, essential amenities are comprised of grocery stores, schools, and pharmacies. It is

crucial to note that amenity features are already incorporated into the BE index metric, in the

form of amenity diversity. The distinction between amenity diversity and essential amenity

access is that the former metric measures the variety of amenity types that are present in a
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neighbourhood. Whether or not residents in a neighbourhood visit each amenity type is not

of importance, as amenity diversity reflects the opportunity to satisfy a range of trip purposes.

Meanwhile, the latter metric (essential amenity access) focuses on specific amenities, on

which we assume the majority of the population depends. Moreover, by concentrating on

the number of amenities, rather than how amenities are distributed over different categories,

we incorporate the notion that amenities vary in quality. Thus, a larger number of amenities

suggests that individuals have more choice when visiting essential amenities. OpenStreetMap

provides amenity locations with respect to these three categories.

Furthermore, we implement an approach, similar to our mobility opportunity methodol-

ogy, in which we retain the 100 randomly sampled origins for every census tract, but define

destinations as the aforementioned amenities. For every origin point in a census tract we

calculate the travel time to each point of interest in an amenity category:

Jtransit(ct,a) =
∑i∈ct J′transit(i,a)

100
(6.7)

where Jtransit(ct,a) denotes the average time it takes to reach an amenity a from a census

tract, ct, considering all 100 of the randomly sampled points within the tract. Considering all

the amenities belonging to an amenity category (pharmacies, grocery stores, or schools), we

can determine the number of amenities that are accessible within 15 minute transit journey

from census tract, ct:

RA(ct,Acat) =

∣∣∣∣{Jtransit(ct,a)
∣∣∣(Jtransit(ct,a)≤ 15

)
∧
(

a ∈ Acat

)}∣∣∣∣ (6.8)

where Acat is the set of all amenities in an amenity category, cat. Thus, RA(ct,Ac) reflects

the number of amenities of type cat, that are reachable within a 15 minute transit journey

from tract ct.
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SES Inequality in Relative Transit Accessibility 
San FranciscoNew York City

Fig. 6.5 Socio-spatial inequalities in system-facilitated access to essential amenities
reveals, for a given city, the type of built environment in which transit disparities arise.
From left to right, each panel depicts access to grocery stores, schools, and pharmacies, within
a 15 minute transit ride, for New York City and San Francisco. The y-axis shows the number
of amenities that are accessible for each amenity category. Socio-spatial demographics are
reflected through the x-axis, which delineates the spatial aspect (BE groups) and the colour
of the box plots, defining the socioeconomic component. Orange and purple box plots reflect
the low and high-income group, respectively, for the given BE group.

Figure 6.5 uses New York City and San Francisco to highlight the importance of consid-

ering system-facilitated transit access with respect to BE characteristics. Figure C.8 in the

Appendix shows the results for the other six cities. The x-axis captures the Low and High BE

groups for both cities, while the orange and purple box plots reflect Low and High income

groups, respectively. The y-axis shows the number of amenities that are accessible for each

socio-spatial demographic. For both cities, regardless of which essential amenity we consider,

we observe that the High BE group tends to have access to a larger number of amenities than

the Low BE group does. The orange and purple horizontal lines depict the median number of

amenity accessible within 15 minutes for the low and high income group, respectively. The

horizontal lines disregard BE groups, only accounting for the socioeconomic composition of

neighbourhoods.

In this manner, New York City serves as an example of a city in which the Low BE,

Low income group tends to have access to more amenities than the Low BE, High income
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group. This can be seen through the left two box plots in each plot. However, when we

consider socioeconomic transit disparities for neighbourhoods with high mobility flexibility,

we see that the lower income neighbourhoods have lower system-facilitated transit access

than higher income neighbourhoods. Figure 6.5 elucidates that New York City transit service,

in areas with higher degrees of design, density, and diversity, provides access to more critical

amenities for higher income neighbourhoods. The socioeconomic disparities in accessing

grocery stores and pharmacies, for low-income groups (shown by the dashed horizontal lines)

reveal how transit inequality is not an artefact of inadequate transit service in neighbourhoods

with low mobility flexibility. In this manner, transit planning can specifically target the spatial

demographics in which socioeconomic inequalities in system-facilitated access occur. San

Francisco depicts the opposite scenario, in which the higher-income neighbourhoods with

less mobility flexibility have more access to amenities than their lower-income counterparts

with similar BE features. Meanwhile, the High BE, Low income neighbourhoods have

greater access to essential amenities than the High BE, High income census tracts. In this

case, transport systems can improve equality in accessibility by focusing efforts on improving

service for lower income neighbourhoods in areas with lower built environment features

(mobility flexibility).

By comparing the socio-spatial disparities in system-facilitated access to the median

socioeconomic disparities (horizontal, dashed lines), we highlight the need to consider BE

features when analysing transit access. That is, in San Francisco, the high income group tends

to have lower system-facilitated transit access to essential amenities, when we do not account

for BE groups. Yet, the box plots reveal that lower income neighbourhoods in the Low BE

groups have less amenity access. These results align with other studies that show how transit

disparities arise for low income neighbourhoods that are further from the urban core [5].

When interpreting system-facilitated transit access to grocery stores and pharmacies, New

York City appears to have less overall access for low-income neighbourhoods, regardless of
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Groceries Schools Pharmacies
Low BE High BE Low BE High BE Low BE High BE

City

Boston 63.0 227.5 200.0** 250.5 60.0 104.0
Chicago 1486.0** 457.0*** 3016.5*** 1818.0 806.0*** 667.0***
Minneapolis 265.0** 473.0 195.5** 261.5 27.0 267.5*
New York City 21564.0** 12877.0*** 31664.5*** 20489.5* 19118.0** 10684.5***
Philadelphia 1202.0*** 522.5 1285.0*** 705.5 701.5 436.0
Portland 103.0 56.0 52.0 19.0 48.5 45.0
San Francisco 101.0* 132.0* 170.0 83.5 35.0*** 148.0**
Seattle 94.0 20.0* 49.0 12.0 50.0 13.0
*p < 0.05; **p < 0.01; ***p < 0.001

Table 6.6 Mann-Whitney U test statistic when comparing the distribution of transit times
between the low and high income groups, for a given BE group and essential amenity. Bold
values reflect instances in which the medians of compared distributions are not the same.
Thus, bold values imply inequalities in essential amenity access via transit, for the respective
socio-spatial demographic.

BE characteristics. Yet, we can observe that this disparity is largely due to transit inequalities

within the High BE group. We confirm the observed differences in relative transit accessibility

across socio-spatial demographics by using the Mann-Whitney U test. For a given city (row)

in Table 6.6, we highlight the BE group for which socioeconomic disparities exist in essential

amenity access. Although both the Mann-Whitney U test and the Kolmogorov-Smirnov test

do not assume that samples follow a normal distribution, the Mann-Whitney U test is more

powerful at comparing distributions with small sample sizes. While this was not relevant

when comparing transit time distributions across spatial groups, focusing on socio-spatial

groups leads to smaller sample sizes, as seen by Table 6.4. However, The Mann-Whitney U

test focuses on comparing the median of the two samples, while the Kolmogorov-Smirnov test

compares the shape and spread. The Mann-Whitney U test works by ranking the combined

samples and then comparing the sum of the ranks in each sample. The bold values in Table

6.6 reflect BE groups for which we can reject the null hypothesis that the medians of each

income group’s distribution are not equal.
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The findings from this section underscore how considering BE features can help pinpoint

which type of neighbourhood suffer from transit disparities. Accordingly, transit planning

efforts can be shaped around the observed socio-spatial disparities in transit service, for a

given city. Having considered inequalities in system-facilitated and integral transit access,

with respect to BE and socioeconomic features, we conclude this chapter by analysing

socio-spatial transit disparities in accessing workplaces.

6.4.4 Socioeconomic Inequality in Commuting via Transit

Thus far, we have shown the importance of including BE features when analysing socioe-

conomic transit inequalities, with respect to integral access and system-facilitated access to

essential amenities. Having highlighted how areas with higher mobility flexibility tend to

receive faster transit service, this final section returns to the concept of the spatial mismatch

hypothesis, which refers to a disconnect between residential and employment locations that

negatively impacts more vulnerable demographics [143, 102]. In particular, we leverage

socio-spatial demographics to assess the types of neighbourhoods in which lower income

workers have poor access to their employment opportunities. In Chapter 4.6.2, we show how

workers in neighbourhoods that are vulnerable to housing insecurity, generally have transit

commute times of over half an hour to their workplaces. Furthermore, we highlight how

vulnerable housing demographics would have even longer transit commutes to access jobs

that are associated with better opportunities, with most of the commute times being over an

hour. While this section does not consider housing demographics, we reveal socioeconomic

inequalities in job accessibility, focusing on the spatial groups in which individuals from

lower income neighbourhoods tend to face low employment accessibility.

Since 2010, the average travel time to work has increased from 25 to 28 minutes [41].

Furthermore, this report shows how, in 2019, the U.S. average travel time across all modes

was 27.6 minutes. However, individuals who commuted using light rails, buses, or subway
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systems reported average commuting times of 45.8 minutes, 46.6 minutes, and 48.8 minutes,

respectively. With this in mind, we consider employment areas accessible if they can be

reached within 50 minutes. Then, we calculate then percentage of workers from a given

socio-spatial group that can access their workplaces within a 50 minute transit journey. Given

the 2021 LODES data, we define the percentage of commuters in a particular socio-spatial

demographic as:

CAt(i,b) =
|Lt(i,b)|
|L(i,b)|

∗100 (6.9)

where L reflects the tract-level commuting flows from the LODES data, for a given city.

Moreover, Lt captures the commuting flows within a travel time threshold of t. Then, Lt(i,b)

denotes the number of commuters, in a given city, from neighbourhoods in income group i

and BE group b, that can reach their employment locations within a t-minute transit commute.

L(i,b) measures the total number of commuters in a given socio-spatial demographic in the

same city, regardless of how long their transit commutes take. Thus, CAt(i,b) indicates the

percentage of commuters in a socio-spatial demographic that can reach their workplaces

within a given transit time threshold, t, which we set to be 50 minutes.

We use CA50(i,b) to define income disparities in workplace access via transit across

different BE groups. To accomplish this we calculate the percentage point difference (∆ pp)

between high and low income neighbourhoods in comparable types of built environment.

That is, we simply subtract CA50(Low,b) from CA50(High,b), to understand the percentage

point change between workplace access, for a given built environment group b in a particular

city.

Figure 6.6 visualises the change in percentage point, with respect to the percentage of

commuters in a socio-spatial demographic that can access their workplace within a 50 minute

commute. Each city is represented along the x-axis, and BE groups are reflected along the

y-axis, with the socioeconomic workplace access disparity across neighbourhoods, regardless
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Fig. 6.6 Combining socio-spatial demographics and commuting flows reveal the type of
built environment in which employment access disparities (via transit) arise. Each of
the 8 cities are shown across the x-axis, with the top row conveying strictly socioeconomic
disparities in workplace access for all neighbourhoods, ignoring BE features. Each cell in
the bottom three rows reflects advantage for a socio-spatial demographic, with the y-axis
denoting the spatial group and the hue symbolising the socioeconomic group that has more
transit access. Purple hues represent socio-spatial in which a higher percentage of individuals
from the High income group have access to their workplaces within a 50 minute transit
commute, compared to workers in Low-income groups of the same spatial demographic.

of BE features, represented by the first row. In this manner, each cell reflects the percentage

point difference between the percentage of high-income and low-income commuters that have

a commute that is less than 50 minutes. Orange cells reflect spatial demographics in which

lower income neighbourhoods have a higher percentage of workers that can access their

workplace within the transit time threshold, compared to that of high income neighbourhoods

in the same BE group. Table C.3 in the Appendix lists the percentages of commuters with

workplace access within 50 minute transit journeys.

When we only consider socioeconomic transit disparities in workplace access (the top

row of Figure 6.6), we observe that Minneapolis, Philadelphia, and Seattle have a larger

percentage of workers in low-income neighbourhoods who have 50-minute workplace access,

compared to commuters in the High income group. On the other hand, San Francisco,

Portland, and Chicago (last three cells in the top row) convey that, when we disregard BE
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features, higher-income neighbourhoods have a higher percentage of workers with access to

their jobs than workers commuting from neighbourhoods in the Low income group. The last

three rows in Figure 6.6 reveal socioeconomic disparities in employment access, with respect

to BE features, for the Low, Moderate, and High BE Groups.

In Philadelphia, shown in the second column, neighbourhoods in the Low income, Low

BE group tend to receive more access to employment opportunities within a 50 minute transit

journey, compared to High income, Low BE neighbourhoods. However, when we compare

employment access via transit for the High BE neighbourhoods in Philadelphia, we note that

higher-income neighbourhoods have more access than lower-income tracts. This trend is

present in New York City (fourth column) and Boston (fifth column), as well. In Minneapolis

and Seattle, displayed in the first and third column respectively, we observe that lower-

income neighbourhoods with low mobility flexibility (second row) tend to have less access to

employment opportunities than their lower-income counterparts in the Moderate and High BE

Group (third and fourth row, respectively). Portland depicts a contrasting case to Philadelphia,

in which a larger fraction of workers in the High income, Low BE neighbourhoods can reach

their workplaces within a 50 minute transit commute, compared to the Low income, Low BE

tracts. Yet, lower income neighbourhoods with high mobility flexibility tend to provide their

residents with greater employment access than compare to their higher income counterparts.

In Chicago (last column), although low income neighbourhoods tend to have less workplace

access than high income neighbourhoods, across all BE groups, we point out the larger transit

access disparities occur in neighbourhoods with higher mobility flexibility. Ultimately, this

section highlights how incorporating BE features when analysing commuting flows reveals

disparities that are otherwise obscured when simply considering socioeconomic inequality in

transit access to workplaces.
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6.5 Discussion

In this chapter, we propose a methodology for defining neighbourhoods based on their street

network design, building density, and amenity diversity. By applying this framework to

eight US cities, we define three types of neighbourhoods, which we term Low, Moderate,

and High built environment (BE) groups to reflect the levels of mobility flexibility in a

census tract. We find that High BE groups tend to receive better transit service. This

is in line with other findings in the transport research field, and serve as a reasoning for

the incorporating neighbourhood features into transit analysis [53]. We compare transit

disadvantage between socio-spatial groups with respect to integral accessibility as well as

system-facilitated accessibility to essential amenities and workplaces within a commuting

time threshold. We underscore the relevance of incorporating BE characteristics when

analysing socioeconomic transit inequality by revealing how only considering socioeconomic

disparities obfuscates the types of neighbourhoods in which low accessibility measures arise.

Specifically, we identify Seattle, Portland, Minneapolis, and Boston as having increased levels

of socioeconomic homophily when considering integral access to all potential destinations.

Moreover, we show socio-spatial transit inequalities when analysing system-facilitated access

to essential amenities. For Low-Income neighbourhoods that have low BE features (which

we identify in San Francisco, Boston and Chicago), this can contribute to exacerbated forms

of social exclusion [5, 167]. Finally, we incorporating commuting patterns to show how

employment accessibility changes across socio-spatial dynamics. We show how in San

Francisco, Portland and Chicago, low income neighbourhoods with low mobility flexibility

tend to have less access to their workplaces than their high income counterparts. In Boston,

New York City, and Philadelphia we can see how simply considering socioeconomic features

obscures inequalities in employment accessibility for low income neighbourhood with high

mobility flexibility. Ultimately, by considering different forms of accessibility, we show

how inequality can arise for different mobility purposes and how the inclusion of spatial
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features helps to pinpoint what types are neighbourhoods are particularly vulnerable to transit

disparities.

Limitations of this work include the use of household median incomes to describe

the socioeconomic level of a census tract. This obscures the prevalence of individuals

with extreme poverty or wealth that reside in a given neighbourhood. Specifically, in the

context of transit poverty, the concentration of residents that earn below the poverty line

could be analysed to assess disadvantage for vulnerable socioeconomic groups in particular.

Furthermore, a high flow of travellers between two regions may not directly correspond with

high public transit usage, if all travellers use cars as their transport mode. Thus, integrating

rates of transit use within each tract would provide further clarity in assessing transit service

and inequalities.

Moreover, the commuting data can be leveraged beyond empirical commuting times.

For example, the accessibility of jobs, with respect to different industries or wages, can be

further explored. For analysing inequalities with regards to the spatial mismatch hypothesis,

introduced in Chapter 2.3.3, it would be useful to combine the identified socio-spatial

disparities in employment access with proximity between residential and workplace locations.

Additionally, our transit networks are reflective of transit service on a weekday morning.

However, transit service is temporal in nature. While we focus on a static snapshot of a city,

this work can be extended to explore how transit service inequalities fluctuate throughout

the day, or throughout the weekends. Finally, the findings of this work can be reconciled

with data that estimates the ability to accommodate more public transit. For instance, street

frontage can be assessed to determine whether neighbourhoods that have poor transit service

have the built environment characteristics to allow for bus stops or transit stations to be built.

In essence, this study aims to highlight the importance of the built environment when

measuring transit inequality. By considering disparities in transit service across socio-spatial

demographics, we show how built environment features are associated with varying levels
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of transit service and should, therefore, be considered in the context of transport poverty.

Neighbourhoods that have poor transit service, coupled with low levels of design, density,

and diversity, are vulnerable not only in terms of their socioeconomic standing and the quality

of their immediate environment, but also with respect to the mobility options provided

by public transit. Thus, physical features should be accounted for when assessing transit

disparities, in order to provide improved mobility options to vulnerable demographics and

bolster accessibility.



Chapter 7

Conclusions

Inequality in urban areas has been a persistent trend throughout much of history [114]. While

urban inequality has been conventionally framed in the context of residential segregation

or income disparities, access to high resolution mobility data has allowed researchers to

conceptualise a more nuanced understanding of how disparities are exhibited within urban

spaces [256, 312, 90, 316]. Human mobility, however, does not exist in a vacuum. That is,

urban and transport infrastructure can influence the areas to which individuals travel, the

modes of transport they use, and the reasons for which they travel [206, 198]. A consistent

finding across developed countries, is that lower income households tend to spend a larger

portion of their earning on transport and are more vulnerable to forced car ownership [64].

Despite a handful of similarities, identified transport inequalities across these countries tend

to contradict one another [177]. Moreover, inconsistencies across travel surveys and data

sources pose obstacles in comparing results of transit analysis across different regions [2].

Thus, the importance of considering the geographical context when measuring transport

inequality becomes clear, as each region is subject to its own set of economic, cultural, and

social structures.
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7.1 Residential-Workplace Dependencies

The work presented in this thesis provides a nuanced perspective on public transit service in

the US, accounting for how transit intersects with various dimensions of urban inequality. In

doing so, we explore how public transportation systems facilitate different types of journeys,

from commutes to amenity visitations, using detailed pathfinding algorithms for transit

schedules. The first urban inequality we analyse is residential-workplace dependencies. We

build off of decades of research on the spatial mismatch hypothesis to reveal structural and

experiential commuting disparities for vulnerable demographics.

7.1.1 Disparities in Diversity of Spatial Dependencies

First, we leverage network entropy to highlight how conventional segregation metrics, which

focus on segregation within residential or employment areas, obscure the spatial depen-

dencies that exist between these two urban dimensions. In doing so, we address our first

research question regarding how commuting networks can be leveraged to inform complex-

ities in residential-workplace dynamics. Furthermore, we find that areas in which lower

income workers have a greater diversity of commuting destinations, tend to have a lower

average commuting time, leading us to discuss whether shorter transit times are reflective

of well planned transit service or of residential choices being constrained by employment

opportunities. Thus, we highlight how diversity of commuting origins and destinations can

have different implications, depending on which demographic group is being considered.

These findings are in line with previous research that assesses how privileged demographics

command space, while deprived demographics are constrained by it [119, 45, 28].

In Section 2.3.3 we discuss three approaches to addressing spatial mismatch in residential-

workplace dependencies [129]. On one hand, local in-flow entropy can identify employment

hubs and inform where to apply incentives to move individuals to jobs. On the other

hand, local out-flow entropy reveals the diversity of workplaces for a given residential area,
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informing the neighbourhoods where policy makers can invest in creating employment

opportunities. Finally, combining transit service with commuting network entropy can

address the last approach to spatial mismatch: connecting individuals to jobs. That is, local

out-flow entropy can identify neighbourhoods that largely depend on a small subset of

employment areas. Then, urban planners and policy makers can assess how improving transit

service to bolster commutes to different employment areas may increase opportunities for

individuals in a given neighbourhood.

7.1.2 Housing Insecurity

Then, we focus on the experiential aspect of commuting behaviour, paying particular attention

to demographics that are vulnerable to housing insecurity. We address our second research

question by developping a clustering framework to define housing demographics, with respect

to a neighbourhood’s level of housing affordability, quality, safety, and stability. We apply

local spatial autocorrelation to identify employment hotspots based on where individuals

from each housing demographic work. To address the role that transit service plays in

providing access to better employment opportunities (our third research question) we build

transit-pedestrian networks to estimate transit travel times. Then, we measure how average

commuting times shift between empirical driving commutes, empirical transit commutes,

and potential transit commutes to workplaces associated with better housing conditions. We

unveil the inefficiency of US transit systems, compared to driving, when studying workplace

accessibility.

In essence, transport infrastructure has the potential to provide accessibility, such that it

accounts and, perhaps, even corrects for disparities in residential-workplace dependencies.

Previous research indicates that increased workplace access improves employment probabili-

ties and income levels, particularly for lower income demographics [253, 22]. However, our

results highlight how transit service, in its current state, does not provide individuals who



202 Conclusions

live in areas that are already vulnerable to housing insecurity, with opportunities to commute

to employment areas that are associated with better economic outcomes, within less than an

hour.

The findings from this analysis can be applied to understand how zoning policies, which

can impact the types of households that live in a neighbourhood [265], intersect with levels

of housing insecurity. Approaches to enabling social mobility tend to focus on introducing

housing policies, such as the Section 8 Housing Choice Vouchers in the US [257]. However,

our work highlights how social mobility can be addressed from a transit perspective, by

improving connections between neighbourhoods that are vulnerable to housing insecurity

and workplaces that are associated with better housing conditions.

7.2 Urban Segregation

Having analysed transit systems based on how they connect residential and employment

locations, we shift our focus to understand how transit inequalities can be shaped by dis-

parities in residential-amenity dependencies. By combining amenity visitation data with

transport routing tools, we analyse socioeconomic segregation at the residential, amenity,

and public transit level. We use the Index of Concentration at the Extremes to address our

fourth research question, showing how individuals experience lower levels of segregation

at the amenities they visit than in their residential areas. This finding that is consistent with

other research studies [206, 319, 1, 215, 67]. However, lower income neighbourhoods tend

to decrease their levels of residential segregation to a larger extent than their high income

counterparts. This is in line with previous findings that show how vulnerable demographics,

such as immigrants, have more constrained activity spaces [120, 266].

We answer our fifth research question by, first, contrasting neighbourhood accessibility

between transit systems and cars. In doing so, we reveal how travelling by car provides

accessibility to a larger range of neighbourhoods, while transit service limits neighbourhood
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access to areas with a similar socioeconomic composition as the origin neighbourhood. This

supports previous findings that individuals travelling by car tend to have higher accessibility

than those using transit [98].

Finally, we measure experienced segregation on public transit lines based on empirical

mobility journeys, to respond to the second half of our fifth research question. In doing

so, we show trends of experienced segregation in transit use, albeit at a smaller magnitude

than residential segregation. Moreover we underscore how spatial inequalities in amenity

distributions across a city generally lead to higher levels of experienced transit segregation.

This work can be applied to understand which neighbourhoods segregated transit service

arises.

7.3 Built Environment

The last section considers spatial inequalities with respect to the built environment. Consider-

ing transit planning is shaped around travel demand and urban landscapes, we analyse how

transit service characteristics change across different types of neighbourhoods. Responding

to our sixth research questions, we highlight how areas with lower mobility flexibility tend

to face longer transit times. To address our final research question we show how areas with

low built environment features lack access to neighbourhoods of different socioeconomic

backgrounds, within a half hour journey. Furthermore, we reveal how overlooking built

environment features can obscure what types of neighbourhoods face the largest disadvan-

tages in terms of essential amenity and workplace access. Literature on transport poverty

supports these findings, showing that low transit access and low income can limit activity

spaces and employment outcomes [5, 176]. In doing so, resources to improve transit service

can be focused on the types of neighbourhoods, in regards to the built environment, that

socioeconomic transit disparities arise, to ensure that transport policies are not targeting the

wrong spatial demographic [176].
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7.4 Discussion

Urban life is composed of numerous dynamics, from commuting and shopping for groceries

to exploring leisure activities and meeting friends for a meal. Thus, while conventional

metrics, such as residential segregation, are useful for understanding constraints in hous-

ing affordability and availability, they fall short at understanding the dynamic nature of

cities. Different facets or urban life can impact the magnitude of inequality in a particular

region. These mechanisms include, but are not limited to, housing markets, employment

opportunities, income inequality, and urban design.

The increasing availability of mobility and public transit data has provided researchers

with the tools to evaluate how transportation infrastructure (i.e. public transit systems, street

networks) bolsters or hinders individuals from travelling to different types of areas. Our work

is novel in that it develops a multi-dimensional approach to measuring housing insecurity in

the US. Moreover, it introduces a framework for estimating segregation in multiple urban

dimensions, revealing segregation in transit service and showing how amenity landscapes

can impact the level of experienced segregation while using public transit. Finally, our work

underscores the importance of considering built environment features when using transit, as

transit disadvantages may be prevalent in particular types of neighbourhoods. These three

contributions, coupled with detailed transit modelling that estimates system-facilitated and

integral transit accessibility, show the importance of incorporating the complexities of urban

dynamics (i.e., housing markets, urban design) and transit systems (i.e., fluctuations of travel

time based on departure time, time spent walking to or waiting for transit) to appropriately

identify neighbourhoods that are vulnerable to transit poverty. Ultimately, the work presented

in this thesis highlights how the coupled effects of spatial and transit inequalities can serve

as barriers to accessibility for vulnerable demographics.
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7.5 Limitations and Future Work

In this thesis, we leverage a wide variety of datasets and methodologies to provide a quantita-

tive perspective of transport justice in urban areas. In doing so, we hope to motivate future

work in developing a nuanced understanding of how vulnerable demographics may face

transit-related social exclusion. Accordingly, this section discusses limitations in our work

and how future work can be adapted to avoid such constraints.

First, our analysis is largely dependent on census surveys, provided by the US Census

Bureau. As discussed in Chapter 3.1.1, survey samples are vulnerable to margins of error,

especially surveys that have smaller sample sizes. Throughout our work, we prioritise the

high temporal resolution of the American Community Survey over the larger data certainty

that comes with the Decennial Census. Moreover, our use of SafeGraph amenity visitations

requires making a few assumptions in mobility behaviour, due to the level of aggregation in

the data. That is, given a certain flow of visitors from a census block group to an amenity, we

assume that all residents in the block group are equally likely to visit the amenity. In doing

so, we overlook differences in the types of amenities demographics may visit. Furthermore,

to ensure privacy of users, SafeGraph reports amenities that receive between two to four

visits from a census block group as four. In cases such as these we randomly sample the

visitor count to be either two, three, or four visits. While most mobility datasets are subject

to biases in demographic representation [166], high-resolution data that provides individual

and anonymised trajectories, would eliminate the need for the aforementioned assumptions.

Furthermore, individual-level mobility data would enable research that could explore time-

dependent fluctuations of transit segregation levels or analyse how the amenity types that

certain demographic groups tend to visit change throughout the day or week.

Second, the majority of the results presented in this thesis focus on socioeconomic

disparities in US public transit systems. However, these frameworks can be applied to

understand transit inequalities with respect to different demographic groups, similar to how
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human mobility studies cover a range of demographic inequalities, from gender to race

[3, 180, 68]. Furthermore, the LODES commuting dataset, used in Chapter 4, informs origin-

destination commuting flows with respect to workers’ ages, earnings, and the industries in

which they work. In this manner, structural inequalities in residential-workplace dependencies

can be explored with respect to age and industry. Additionally, the American Community

Survey (ACS), from which we derive our segregation metric in Chapter 5, can inform a vast

array of sociodemographic groups, including, but not limited to gender, race, disability status,

age, and educational attainment. Thus, the methodologies presented in this thesis can be

extended beyond the socioeconomic dimension.

In Chapter 4.4, we present a clustering approach for measuring housing insecurity. This

approach quantifies a neighbourhood’s vulnerability to housing insecurity with respect

to housing affordability, quality, safety and stability. However, sociological definitions

conceptualise housing insecurity to also include neighbourhood safety, neighbourhood

quality and homelessness. The data sources for these additional dimensions were only

available for all cities at a spatial resolution that was lower than the census tract-level that

we used in our analysis. Moreover, the measures of amenity diversity defined in Chapter 6

could be incorporated into the definition of neighbourhood quality. Neighbourhood quality

could also account for exposure to pollution. Meanwhile, neighbourhood safety could

include features of essential amenity accessibility, used in Chapter 6.4.3. Crime and road

accidents data could also be used to inform neighbourhood safety. Ultimately, future work

can leverage these potential data sources to define vulnerability to housing insecurity with

respect to all seven dimensions. Finally, the classification approach, outlined in Chapter 4.4,

provides a fundamental building block to quantify housing insecurity in a comprehensive

manner. However, it falls short, in that it considers all neighbourhoods in the most vulnerable

demographic as equally burdened by housing insecurity, when, in reality, they may be
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burdened to different degrees and in different dimensions. Thus, future work could focus on

developing a continuous metric for vulnerability to housing insecurity.

Fourth, we calculate transit travel times using transit schedules for a weekday morning.

However, public transit service changes throughout the day, as well as between weekdays

and weekends. Thus, future work could address how integral and system-facilitated transit

accessibility changes over time, with respect to different types of trip purposes. Doing so

would shine light on what types of neighbourhoods, employment areas, and amenities are

accessible during and outside of conventional working hours. Furthermore, incorporating

high-resolution transit ridership data could reveal demographic-level relationships between

temporal transit service and usage.

Finally, the analysis in this thesis focuses on transit systems in the United States of

America. Future work could expand this to other countries in the Global North, to compare

spatial inequalities in transit systems across regions with similar traits. Previous findings point

to how, even in the context of Global North countries, demographic inequalities in public

transit vary greatly [177]. Measures of housing insecurity and the built environment must be

translated to a Global South context with caution, as cultural and economic differences may

require different data sources in order to adequately quantify these urban mechanisms [251].

Ultimately, by analysing transit with respect to the spatial inequalities explored in this thesis,

future work can explore whether these contrasting findings result from disparities in transit

service or in spatial landscapes.
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The impact of human mobility data scales and processing on movement predictability.
Scientific Reports, 11(1):15177.

[272] Song, C., Koren, T., Wang, P., and Barabási, A.-L. (2010). Modelling the scaling
properties of human mobility. Nature physics, 6(10):818–823.

[273] Song, X., Kanasugi, H., and Shibasaki, R. (2016). Deeptransport: Prediction and
simulation of human mobility and transportation mode at a citywide level.

[274] Southworth, M. and Ben-Joseph, E. (2004). Reconsidering the cul-de-sac. Access
Magazine, 1(24):28–33.

[275] Spielman, S. E., Folch, D., and Nagle, N. (2014). Patterns and causes of uncertainty
in the american community survey. Applied geography, 46:147–157.

[276] Spielman, S. E. and Logan, J. R. (2013). Using high-resolution population data
to identify neighborhoods and establish their boundaries. Annals of the Association of
American Geographers, 103(1):67–84.

[277] Spielman, S. E. and Yoo, E.-h. (2009). The spatial dimensions of neighborhood effects.
Social science & medicine, 68(6):1098–1105.

[278] Spielman, S. E., Yoo, E.-H., and Linkletter, C. (2013). Neighborhood contexts, health,
and behavior: understanding the role of scale and residential sorting. Environment and
Planning B: Planning and Design, 40(3):489–506.

[279] Steffen, B., Carter, G. R., Martin, M., Pelletiere, D., Vandenbroucke, D. A., and Yao,
Y.-G. D. (2015). Worst case housing needs: 2015 report to congress. Available at SSRN
3055230.

[280] Stein, M. S. (2008). Distributive justice and disability: Utilitarianism against egali-
tarianism, pages 1–2. Yale University Press.

[281] Stiglitz, J. E. (2012). The price of inequality: How today’s divided society endangers
our future. WW Norton & Company.

[282] Strömgren, M., Tammaru, T., Danzer, A. M., van Ham, M., Marcińczak, S., Stjern-
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Appendix A

Details on Residential-Workplace

Disparities

A.1 Spectral Clustering

Chapter 4.4.1 provides details regarding how we choose the number of clusters to create

housing demographics for each city. Considering that each city has its own housing char-

acteristics, we apply choose the initial number of clusters with respect to Graph Laplacian

properties, for each city. Specifically, given the sorted eigenvalues derived from a city’s

Graph Laplacian, we set the number of clusters to reflect the largest gap in the first fifteen

eigenvalues. Furthermore, we do not consider gaps for the first two eigenvalues, as we

need a minimum of three clusters to derive the less vulnerable, mildly vulnerable, and most

vulnerable demographics.

Figure A.1 shows the spectral gaps for each city, reflected by the vertical dashed line.

Then, we apply K-means clustering to housing features, setting the number of clusters, |SC|,

to to reflect the spectral gap. Given that each census tract belongs to a cluster in SC, we

rank each K-Means cluster with respect to its housing features (discussed in detail in chapter

4.4.1). Then, we define the housing demographics, such that number of k-means clusters in
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# Census Tracts Hin
GN

City ∑
CT
i Pi j = 0 Total Original Adjusted % Change

San Francisco 1 196 0.7573 0.7580 0.097
New York City 13 2164 0.8336 0.8342 0.078
Charleston 0 85 0.8808 0.8808 0.000
Bridgeport 0 210 0.9023 0.9023 0.000
Las Vegas 0 487 0.7869 0.7869 0.000
Albuquerque 0 153 0.8308 0.8308 0.000
Jacksonville 0 173 0.8342 0.8342 0.000
Chicago 3 1318 0.7982 0.7984 0.032
Detroit 2 1163 0.8653 0.8655 0.024
Philadelphia 1 384 0.8140 0.8144 0.044
Cincinnati 0 222 0.8702 0.8702 0.000
Milwaukee 0 297 0.8500 0.8500 0.000
New Orleans 1 176 0.7116 0.7124 0.110
Boston 1 204 0.7588 0.7595 0.092
Cleveland 0 446 0.8408 0.8408 0.000
Columbus 0 347 0.8541 0.8541 0.000
Dallas 0 529 0.8229 0.8229 0.000
Fort Worth 0 357 0.8616 0.8616 0.000
Gainesville 0 56 0.8127 0.8127 0.000
Greenville 0 111 0.8674 0.8674 0.000
Hartford 0 224 0.8671 0.8671 0.000
Houston 0 921 0.8728 0.8728 0.000
Indiannapolis 0 224 0.8093 0.8093 0.000
Kansas City 1 283 0.8887 0.8892 0.063
Memphis 0 221 0.8116 0.8116 0.000

Table A.1 The occurrences of zeros in the in-flow distribution has a minimal impact on global
in-flow entropy measures. The second column reflects the number of census tracts in which
the incoming node strength is zero. The third column lists the total number of census tracts
in the given city. The fourth and fifth columns present the global in-flow entropy shown in
Figure 4.2 and the global in-flow entropy, when adjusting for zeros. The final column shows
the percent change between the original and adjusted global in-flow entropy in the previous
two columns.



A.1 Spectral Clustering 233

# Census Tracts Hout
GN

City ∑
CT
j Pi j = 0 Total Original Adjusted % Change

San Francisco 0 196 0.9824 0.9824 0.000
New York City 0 2164 0.9815 0.9815 0.000
Charleston 0 85 0.9405 0.9405 0.000
Bridgeport 0 210 0.9843 0.9843 0.000
Las Vegas 0 487 0.9809 0.9809 0.000
Albuquerque 0 153 0.9827 0.9827 0.000
Jacksonville 0 173 0.9761 0.9761 0.000
Chicago 0 1318 0.9838 0.9838 0.000
Detroit 0 1163 0.9805 0.9805 0.000
Philadelphia 0 384 0.9835 0.9835 0.000
Cincinnati 0 222 0.9772 0.9772 0.000
Milwaukee 0 297 0.9830 0.9830 0.000
New Orleans 0 176 0.9787 0.9787 0.000
Boston 1 204 0.9754 0.9763 0.092
Cleveland 0 446 0.9759 0.9759 0.000
Columbus 0 347 0.9765 0.9765 0.000
Dallas 0 529 0.9854 0.9854 0.000
Fort Worth 0 357 0.9784 0.9784 0.000
Gainesville 0 56 0.9520 0.9520 0.000
Greenville 0 111 0.9715 0.9715 0.000
Hartford 0 224 0.9847 0.9847 0.000
Houston 0 921 0.9693 0.9693 0.000
Indiannapolis 0 224 0.9772 0.9772 0.000
Kansas City 0 283 0.9734 0.9734 0.000
Memphis 0 221 0.9647 0.9647 0.000

Table A.2 The occurrences of zeros in the out-flow distribution has a minimal impact on
global out-flow entropy measures. The second column reflects the number of census tracts in
which the outgoing node strength is zero. The third column lists the total number of census
tracts in the given city. The fourth and fifth columns present the global out-flow entropy
shown in Figure 4.2 and the global out-flow entropy, when adjusting for zeros. The final
column shows the percent change between the original and adjusted global out-flow entropy
in the previous two columns.
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Fig. A.1 Sorted eigenvalues of the Graph Laplacian, for housing features in each city. The
x-axis reflect the number of eigenvalues, while the y-axis shows the sorted eigenvalues
themselves. The vertical dashed line denotes the number of clusters for which the spectral
gap occurs.
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the less and most vulnerable demographic are ⌊|SC|/3⌋. Meanwhile, the number of clusters

in the mildly vulnerable housing demographic is ⌊|SC|/3⌋+ |SC| (mod 3).

A.2 Socioeconomic Characteristics of Housing Demograph-

ics

In chapter 4.4.1, we introduce a spectral clustering approach for defining census tracts

based on their vulnerability to housing insecurity. This consists of measuring housing

affordability (i.e. rent burden, mortgage, housing density), quality (kitchen, plumbing, and

phone facilities), and stability (i.e. evictions, overcrowding). In doing so we define three

types of housing demographics: most vulnerable, mildly vulnerable, and less vulnerable.

Figure A.2 displays the population distribution across each of the housing demographics. The

dark red bar denotes the number of residents in census tracts that are the most vulnerable to

housing insecurity. In this manner, we can observe that Fort Worth, Cleveland and Gainesville

have the largest number of individuals living in vulnerable housing areas. Meanwhile, St.

Louis Bridgeport, and Columbus represent cities in which less than ten percent of the

population lives in neighbourhoods that are vulnerable to housing insecurity. In line with

the capabilities approach to distributive justice, it is still crucial to consider accessibility for

vulnerable individuals, regardless of how representative of the entire population they are.

The following following tables compares statistical features for each housing demo-

graphic in a given city, with respect to different sociodemographic characteristics. Each row

in the Tables A.3 to A.8 reflects one of the 20 analysed cities. Columns one and two reflects

the mean of the sociodemographic characteristic being considered for the less vulnerable and

most vulnerable demographic, respectively. Columns three and four denote the median value,

while the last two columns list the standard deviations.
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Fig. A.2 Population distribution across each housing demographic. The x-axis reflects the
percentage of the population that lives in a particular housing demographic, denoted by the
colour of the bar. Lighter hues convey individuals living in neighbourhoods that are less
vulnerable to housing insecurity. The y-axis specifies which city is being considered.
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Table A.3 Statistical properties of educational attainment levels in the census tracts that are
less and most vulnerable to housing insecurity. Generally, the most vulnerable tracts tend to
have a lower fraction of their population holding an Associate’s Degree or higher.

% holding an Associate’s Degree or higher

Housing Vuln Mean Median Std. Dev.

City Less Most Less Most Less Most

Philadelphia 80.119 23.396 80.749 19.360 9.610 14.604
Milwaukee 55.803 18.191 56.072 17.002 17.464 9.302
Boston 58.571 35.095 58.734 28.301 17.983 16.826
San Francisco 80.389 45.850 82.193 45.643 7.345 16.154
Cincinnati 72.222 31.664 75.347 26.736 12.531 18.211
Cleveland 53.462 27.862 54.572 24.836 17.920 14.763
Jacksonville 65.295 22.711 64.205 19.490 7.747 10.979
New Orleans 73.245 26.684 75.641 24.974 9.834 13.116
Albuquerque 45.388 41.100 43.834 37.610 20.369 19.230
Las Vegas 50.848 19.058 49.053 16.347 12.000 10.010
Houston 56.746 24.969 60.206 16.701 18.521 19.410
Gainesville 57.918 57.915 63.921 58.528 18.829 19.306
Columbus 71.569 23.727 72.214 18.338 13.078 14.697
Charleston 66.389 34.246 64.399 30.604 12.650 17.964
Kansas City 59.111 24.743 60.354 23.201 15.818 12.798
Greenville 60.974 33.848 61.077 29.318 15.321 14.950
Fort Worth 49.099 25.094 47.810 21.889 17.381 14.777
Bridgeport 87.083 20.912 86.994 15.518 5.616 13.968
Hartford 69.616 22.199 72.019 19.743 11.235 14.066
Dallas 41.521 41.458 38.129 30.318 24.376 30.201
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Table A.4 Statistical properties of median income levels in the census tracts that are less and
most vulnerable to housing insecurity. Generally, the most vulnerable tracts tend to have a
lower household incomes than the less vulnerable tracts.

Median Household Income

Housing Vuln Mean Median Std. Dev.

City Less Most Less Most Less Most

Philadelphia 92314 30770 95430 29656 30282 11558
Milwaukee 78811 30854 71563 30051 27030 10087
Boston 102007 44970 101769 48055 31691 15349
San Francisco 165592 46839 163226 44504 32195 21257
Cincinnati 102469 37120 100419 32658 27703 18578
Cleveland 80359 37918 73854 32944 34264 18610
Jacksonville 95083 34874 93378 34149 20081 11993
New Orleans 97843 30681 93193 26728 33092 13186
Albuquerque 68917 52552 58308 48651 31672 20258
Las Vegas 99783 42305 91823 39302 30376 16136
Houston 103621 51605 102798 41707 34873 31687
Gainesville 62339 33310 62327 30355 28860 13363
Columbus 116719 33665 110059 35250 32699 9550
Charleston 99792 39785 97486 33933 36397 12531
Kansas City 101569 40974 95282 38789 31163 12126
Greenville 86751 44149 82284 45844 26603 10843
Fort Worth 90964 55642 80820 52006 38736 21510
Bridgeport 244254 39408 250001 39862 17490 12716
Hartford 126334 36465 124215 33518 30665 13081
Dallas 77307 87544 67630 48750 38263 75188

Table A.3 displays statistic properties (i.e. mean, median, standard deviation) for ed-

ucational attainment in neighbourhoods that are less vulnerable and most vulnerable to

housing insecurity. Barring Gainesville and Dallas, we highlight that Table A.3 reveals

much larger percentage of individuals in less vulnerable neighbourhoods hold an associate’s

degree or higher, compared to individuals in the most vulnerable census tracts. Comparing

their median values, which is more robust to extreme values, we observe that even the less

vulnerable demographics in Gainesville and Dallas have a higher fraction of residents with

more educational attainment.



A.2 Socioeconomic Characteristics of Housing Demographics 239

Table A.5 Statistical properties of unemployment levels in the census tracts that are less and
most vulnerable to housing insecurity. Generally, the most vulnerable tracts tend to have a
higher unemployment rates, with the two exceptions being Albuquerque and Boston.

% Unemployed

Housing Vuln Mean Median Std. Dev.

City Less Most Less Most Less Most

Philadelphia 2.020 6.743 1.745 6.332 1.458 3.658
Milwaukee 2.103 5.489 2.048 5.000 1.241 3.054
Boston 3.587 6.206 2.959 5.965 3.092 2.637
San Francisco 2.643 4.910 2.729 4.977 1.095 2.182
Cincinnati 1.854 6.423 1.626 5.695 1.200 4.165
Cleveland 3.014 6.620 2.524 6.067 1.991 4.438
Jacksonville 1.801 5.091 1.915 4.894 0.971 2.537
New Orleans 2.672 7.779 1.968 6.926 2.135 5.950
Albuquerque 2.639 3.968 2.511 3.526 1.803 2.632
Las Vegas 2.959 5.285 2.674 4.928 2.032 2.540
Houston 3.197 5.056 2.797 4.702 1.967 3.179
Gainesville 3.317 3.460 2.582 2.641 2.761 2.204
Columbus 1.769 6.514 1.433 5.466 1.321 3.618
Charleston 1.894 4.041 1.428 3.830 1.515 2.515
Kansas City 2.309 4.453 1.931 3.865 1.571 3.068
Greenville 1.887 4.002 1.504 3.254 1.523 3.096
Fort Worth 2.727 3.887 2.422 3.624 1.799 2.152
Bridgeport 2.704 9.015 2.534 7.837 1.926 3.441
Hartford 2.170 6.715 1.896 6.501 1.257 3.080
Dallas 3.046 3.361 2.848 3.072 1.888 2.015
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Table A.6 Statistical properties of poverty levels in the census tracts that are less and most
vulnerable to housing insecurity. The most vulnerable tracts tend to have much higher rates
of poverty than the less vulnerable tracts.

% Households in Poverty

Housing Vuln Mean Median Std. Dev.

City Less Most Less Most Less Most

Philadelphia 12.820 36.373 8.201 35.345 13.306 11.983
Milwaukee 7.187 37.104 6.240 35.231 4.120 13.678
Boston 9.832 27.269 7.946 25.214 7.270 11.130
San Francisco 6.073 21.947 5.568 21.908 3.258 8.956
Cincinnati 4.854 33.685 4.551 32.708 2.972 16.573
Cleveland 7.838 27.423 5.958 27.612 6.693 12.705
Jacksonville 6.626 28.542 6.006 27.585 4.006 13.677
New Orleans 7.425 32.906 6.820 30.253 3.968 14.370
Albuquerque 13.406 17.642 10.991 17.431 9.214 8.978
Las Vegas 5.568 24.521 5.172 25.010 3.381 10.614
Houston 6.942 24.196 5.148 25.927 5.992 13.353
Gainesville 15.440 34.209 7.347 32.663 17.478 14.196
Columbus 3.467 35.648 2.541 35.802 2.470 11.374
Charleston 5.904 26.539 5.569 27.570 2.893 10.405
Kansas City 3.685 23.448 3.114 22.395 3.167 10.727
Greenville 6.067 17.952 4.240 14.480 4.541 8.252
Fort Worth 7.475 18.609 6.355 17.460 5.376 11.507
Bridgeport 2.691 31.134 2.430 28.311 1.748 10.849
Hartford 3.349 29.652 3.045 27.418 2.067 11.725
Dallas 12.004 15.867 9.694 15.005 9.150 11.072
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Table A.7 Statistical properties of transit-based commuting levels in the census tracts that are
less and most vulnerable to housing insecurity. The most vulnerable tracts have higher rates
of transit-based commutes than the less vulnerable tracts.

% Commuting via Public Transit

Housing Vuln Mean Median Std. Dev.

City Less Most Less Most Less Most

Philadelphia 17.101 35.238 17.137 33.522 4.676 10.905
Milwaukee 2.176 11.393 1.245 9.453 2.591 9.159
Boston 26.087 34.146 26.303 33.251 10.222 7.438
San Francisco 30.810 29.142 30.237 27.606 8.647 11.926
Cincinnati 1.183 11.053 0.703 9.987 1.424 7.867
Cleveland 2.018 9.853 1.014 6.870 3.138 9.375
Jacksonville 0.182 6.122 0.000 4.241 0.302 6.156
New Orleans 3.461 11.331 2.590 8.401 3.809 10.271
Albuquerque 1.758 1.137 0.587 0.486 2.489 1.695
Las Vegas 0.731 8.027 0.000 6.478 1.449 6.872
Houston 1.820 3.460 1.144 1.997 1.981 4.357
Gainesville 1.997 7.977 0.679 6.787 2.664 7.744
Columbus 0.828 6.982 0.256 7.556 1.363 4.251
Charleston 0.960 4.607 0.506 1.955 1.466 6.912
Kansas City 0.676 5.433 0.000 3.854 1.239 6.112
Greenville 0.407 0.640 0.000 0.000 0.951 1.179
Fort Worth 0.420 0.757 0.000 0.339 0.755 1.280
Bridgeport 25.208 14.798 25.975 12.354 6.591 8.226
Hartford 1.092 11.899 0.842 8.482 1.149 10.187
Dallas 2.113 3.212 1.315 1.607 3.108 4.509
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Table A.8 Statistical properties of commuting times in the census tracts that are less and most
vulnerable to housing insecurity. This value includes all commuters, regardless of what mode
of transit they use for commuting. The distinction between housing demographics based on
commuting times tends to be less clear than other sociodemographic indicators.

% Commuting over an Hour

Housing Vuln Mean Median Std. Dev.

City Less Most Less Most Less Most

Philadelphia 8.451 16.599 7.138 14.732 4.743 7.555
Milwaukee 2.949 5.597 2.690 4.492 1.761 4.214
Boston 11.518 15.397 10.362 13.412 5.490 7.756
San Francisco 13.594 8.530 13.026 7.996 4.267 3.645
Cincinnati 2.332 6.745 1.981 5.824 1.839 4.811
Cleveland 3.776 6.352 3.292 4.762 3.331 5.511
Jacksonville 3.273 5.983 3.039 5.570 2.268 3.777
New Orleans 3.963 6.697 3.325 5.523 2.493 5.357
Albuquerque 5.888 4.345 4.779 3.231 4.991 4.033
Las Vegas 3.021 7.154 2.463 6.356 2.522 4.773
Houston 8.545 9.977 8.177 9.090 5.031 5.583
Gainesville 4.064 3.039 3.547 1.842 2.945 2.710
Columbus 3.101 6.598 2.540 6.429 2.460 4.540
Charleston 3.936 5.073 2.469 3.600 3.918 6.056
Kansas City 3.333 3.494 2.743 2.979 3.354 3.461
Greenville 3.261 3.663 2.363 3.404 3.093 2.763
Fort Worth 6.637 7.723 6.057 7.162 3.773 3.673
Bridgeport 35.148 14.149 36.190 12.915 6.890 6.525
Hartford 5.847 5.608 5.914 4.832 2.344 4.052
Dallas 7.117 7.185 6.195 7.031 4.973 4.784
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A.4 Residential Proximity to Transit Core
Table A.9 Mean distance (km) from tracts to transit core, with respect to housing vulnerability.

Most Mildly Less
City Vulnerable Vulnerable Vulnerable

Philadelphia 6.267 6.729 8.512
Milwaukee 5.003 6.889 9.650
Boston 5.007 5.571 4.085
San Francisco 3.959 4.454 3.065
Cincinnati 5.355 9.800 13.344
Cleveland 7.063 11.800 16.417
Jacksonville 10.702 10.226 15.331
New Orleans 5.193 5.218 6.116
Albuquerque 8.530 9.107 11.138
Las Vegas 8.333 18.854 17.406
Houston 19.868 22.007 21.452
Gainesville 4.160 10.509 8.510
Columbus 8.514 13.957 17.122
Charleston 8.338 12.028 10.397
Kansas City 8.594 17.018 22.131
Greenville 13.575 8.748 10.541
Fort Worth 13.530 15.031 17.993
Bridgeport 11.411 18.355 22.971
Hartford 6.749 14.600 13.577
Dallas 15.034 14.182 13.770

A.3 Transit Efficiency for All Cities

In chapter 4.5.2, we highlight three cities (Cleveland, Albuquerque, and Bridgeport) to show

distinct trends in transit systems, when considering how transit efficiency corresponds with

the length of a particular transit journey. Figure A.3 expands on this idea, showing transit

efficiency as a function of distance for all 20 cities in our analysis.

Figure 4.11 in chapter 4.5.3 highlights how the neighbourhoods that are most vulnerable

to housing security tend to live closer to the transit system’s centre of mass. Table A.9

expands on this, listing the average distance (km) between tracts in a housing demographic

and the transit core.
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Structural Transit Distance vs Impedance

Fig. A.3 Transit efficiency as a function of trip distance for 20 US cities. Lighter orange
plots reflect efficient systems in which travel impedance decreases as trip distance increases
(Philadelphia, San Francisco, Boston, Cleveland, Jacksonville, Hartford, Dallas, and New
Orleans). Dark orange plots indicate inefficient transit systems, with increasing travel
impedance as trip distance increases (Gainesville, Kansas City, Greenville, Bridgeport, Fort
Worth). The remaining orange plots capture cities with moderately efficient transit service, in
which the relationship between travel impedance and trip distance switches from negative to
positive at a given trip distance threshold (Milwaukee, Cincinnati, Albuquerque, Las Vegas,
Charleston, Houston, Columbus).



Appendix B

Details on Transit Segregation

B.1 Segregation across Multiple Urban Dimensions in the

Null Model

This section serves to complement Figure 5.9 in this main manuscript. Figure B.1 shows

how measures of segregation change across urban dimensions, using amenity visitations that

are generated for the null model rather than empirical mobility patterns. We observe that

when spatial disparities in amenity segregation are removed, segregation in the transit dimen-

sion (middle axis) continues to exist. Furthermore, by building a null model in which we

define mobility destinations as amenities that are sampled from uniform spatial distribution,

segregation at the destination level (right axis) converges to one value. Moreover, destina-

tion segregation converges to values that are reflective of the city’s overall socioeconomic

composition.
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San Francisco

CincinnatiDallas

Urban Segregation in the Null Model

Philadelphia

New Orleans

Fig. B.1 Changes in segregation between the residential, transit, and mobility domains, using
mobility journeys generated for the null model comparison. Shown for 5 US Cities, for
which the null model simulates mobility patterns to amenities that are uniformly distributed
across a given city. Orange reflects the HS-Lo segregation group and purple represents the
HS-Hi segregation group.



Appendix C

Details on the Built Environment Analysis

C.1 Built Environment Index: Robustness Check

Our approach to calculating the built environment (BE) index consists of calculating the

geometric mean of its three components: street griddedness, building density, and amenity

diversity. We choose the geometric mean as it is less sensitive to outliers, which is particularly

given that some of the components’ distributions are skewed. Figure C.1 shows the correlation

coefficient between each of the BE components and the BE index. Darker colours denote

larger correlation coefficients. Non-significant correlations, with p-values greater than or

equal to 0.05, are indicated by the grey cells. Design refers to the grid index which measures

the griddedness of a census tract’s street layout. Diversity reflects the distribution of amenity

types in a neighbourhoods, while density conveys the fraction of land area that consists

of buildings. By looking at the last columns (or row) of each city’s heat map, we can see

that each component tends to have a stronger correlation with the BE index, than with the

other components. Thus, we observe that each component captures different aspects of the

built environment. We note how diversity tends to be the least correlated with the BE index,

having non-significant correlations in Portland and Seattle.



248 Details on the Built Environment Analysis

Correlation between BE Components

Fig. C.1 Correlation of BE components and the BE Index. Darker colours imply larger,
significant correlations. Grey cells indicate non-significant correlations.

Since each BE component has different distributions, we consider different approaches

to deriving the BE index, similar to the robustness tests for the grid index [34]. Figure C.2

shows the results of the validation, with the left most panels reflecting the distributions of

BE features that we use for our analysis in chapter 6. The black line shows the distribution

of the BE index, while the dashed lines show the spread of the components used to build

the BE index. The orange, green, and yellow lines denote the distribution of grid indices,

building density, and amenity diversity, respectively. The two alternative approaches we use

involve mean normalisation and quantile normalisation of the components. The first involves

standardising each component using mean normalisation, before scaling each dimension

to range from 0 to 1, using min-max normalisation. Then, the BE index is calculated in a

similar manner, taking the cube root of the three components. This can be seen through the

centre plots for each city. By comparing the geometric mean (left most panels) to the mean

normalised geometric mean (centre panels), we see that the shape of BE index distribution

has minimal changes. Thus, standardising each component to have a mean of 0 and standard
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Validating BE Index

Fig. C.2 Comparing the distribution of BE components for various approaches to measuring
the BE index. Pink, green, and orange dashed lines correspond to the street grid index,
building density, and amenity diversity respectively. The black, solid line reflects the final
BE index measured using the three components. The left most panel shows distributions for
the geometric mean (GM), while the centre and right most panel convey the distribution for
the mean-normalised GM and the quantile-normalised GM, respectively.

deviation of 1, impacts the distribution of each component, but does not lead to any drastic

changes in the final spread of the BE index.

The second approach involved applying quantile standardisation to all the components,

then applying min-max normalisation. This approach assumes all three components have a

similar distribution and limits the effects of outliers. The effects quantile normalisation has

on the BE components and index are shown in the right most panel for each city. While the

distribution is more even across the entire range, the skews of the distributions themselves

are not retained. Ultimately, we choose to retain the non-standardisation approach (left-most

panels) as it allows for comparability across cities. Furthermore, standardisation allows
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Table C.1 Correlation between BE index and transit characteristics, for different approaches
of BE feature standardisation.

Geometric Mean Mean-Standardised Quantile-Standardised
(GM) GM GM

City Opportunity Commute Opportunity Commute Opportunity Commute

Chicago -0.063 -0.232*** -0.03 -0.192*** 0.05 -0.102**
New York City -0.261*** -0.064** -0.261*** -0.065** -0.239*** 0.023
Philadelphia -0.316*** -0.488*** -0.311*** -0.484*** -0.435*** -0.528***
San Francisco -0.467*** -0.503*** -0.375*** -0.42*** -0.373*** -0.372***
Boston -0.485*** -0.65*** -0.483*** -0.649*** -0.476*** -0.611***
Seattle -0.498*** -0.16 -0.434*** -0.186 -0.431*** -0.143
Portland -0.607*** -0.208* -0.515*** -0.175 -0.554*** -0.157
Minneapolis -0.783*** -0.19** -0.784*** -0.205*** -0.679*** -0.168**
*p < 0.05; **p < 0.01; ***p < 0.001

for less interpretability of each of the components. Table C.1 shows how the correlations

between the BE index and transit characteristics changes based on the chosen standardisation

approach. The first two columns of Table C.1 reflect the chosen approach, used in the formal

analysis. These columns are the same as the last two columns in Table 6.2.

We can observe how the mean-standardised and quantile-standardised approaches result

in fewer cities having significant correlations between their built environment and transit

commuting times. Meanwhile, we see that for each approach, neighbourhoods with higher

mobility flexibility, conveyed through the BE index, tend to have shorter commute times.

This holds true for all cities except Chicago. As a final justification, we compare the spatial

distribution of BE indices for each approach in Figure C.3, using New York City as an

example. We observe that the distribution between the geometric mean (GM) and mean-

standardised GM are similar. This can be confirmed through the left two plots in Figure C.2

for New York City, as the shape of the distribution remains the same, but the mean-normalised

index spans a greater range. Thus, we would expect to see a larger range of colours in the

mean-normalised spatial distribution, despite the two version having a similar spread. We
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Spatial Distribution of BE Index in New York City
Geometric Mean 

(GM)
Mean Standardised

GM
Quantile Standardised

GM

Fig. C.3 Comparing the spatial distribution of different BE index approaches for New York
City. Lighter hues convey a larger BE index and, in turn, higher mobility flexibility for a
given census tract.

choose the GM method over the mean-normalised, to ensure a BE index in one city captures

the same value as a BE index in another.

The quantile-normalised version reflects a much starker difference and, most notably,

does not identify high built environment areas in Queens (middle right of NYC) or the Bronx.

Thus, to ensure explainability of the BE Index and comparability across cities, we retain the

original approach, in which we simply take the cube root of the street griddedness, building

density, and amenity diversity.

C.2 BE Group Characteristics

This section provides additional details regarding the characteristics of the built environment

(BE) groups, discussed in section 6.2. Figure C.4 shows the distribution of different BE

components across each BE tercile. The top panel highlights the distribution of the grid

index, which reflects street design, for each BE group, across all of the eight US cities shown
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Fig. C.4 Distribution of BE features across the three BE groups. The x-axis refers to the
city being analysed. The top panel reflects levels of street design, while the bottom two
panels convey building density and amenity diversity, respectively. The y-axis shows the
values for each of the features. Finally, lighter shades of purple reflect the distribution of BE
characteristics for tracts in the Low BE group, while the darkest purple shows the features
for neighbourhoods in the High BE Group.

on the x axis. The centre and bottom panels convey building density and amenity entropy,

which represent the density and diversity components of the built environment, respectively.

Table C.2 conveys statistically significant distribution across Low and Moderate BE

groups, as well as Moderate and High BE groups, that are shown in Figure 6.2

C.3 Integral Accessibility

Section 6.4.2 explores how socioeconomic homophily in transit service changes across

different travel time thresholds. To do so, we compare levels of network assortativity in
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Opportunity Commute
City Low-Mod Mod-High Low-Mod Mod-High

Boston 0.382*** 0.471*** 0.41*** 0.565***
Portland 0.335* 0.595*** 0.298 0.411**
Philadelphia 0.086 0.406*** 0.165 0.45***
Chicago 0.052 0.1 0.143* 0.189***
Minneapolis 0.457*** 0.517*** 0.211* 0.382***
New York City 0.19*** 0.067 0.102** 0.116***
Seattle 0.407** 0.348* 0.269 0.308
San Francisco 0.297** 0.328** 0.255 0.313*
*p < 0.05; **p < 0.01; ***p < 0.001

Table C.2 Kolmogorov-Smirnov test statistic when comparing the distribution of transit
times between the Low and Moderate BE group (columns two and four) as well as between
the Moderate and High BE Group (columns three and five). We consider differences in
distributions with respect to mobility opportunity transit times (second and third columns)
and transit commuting times (last two columns). Bold values reflect instances in which the
compared distributions are not the same.

transit access networks. Furthermore, we discuss the need to ensure that the increasing

socioeconomic homophily associated with longer travel time thresholds is not an artefact

of unequal socioeconomic demographic representation or the number of components in the

network. Figures C.5, C.6, and C.7 reflect how our empirical transit access networks compare

to configuration models, when considering all neighbourhoods, low BE neighbourhoods, and

high BE neighbourhoods, respectively.

C.4 Relative Accessibility

Section 6.4.3 uses New York City and San Francisco as examples to underscore the impor-

tance of considering BE features when analysing transit inequality. Figure C.8 shows relative

accessibility across socio-spatial groups for the remaining six cities.
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Fig. C.5 Comparing empirical transit access networks to their respective configuration models.
For each city, the solid blue and yellow lines (top panels) show the coefficients of network
assortativity (y-axis) for the empirical network and configuration models, respectively, across
different travel time thresholds (x-axis). Meanwhile the dotted blue and yellow lines convey
how the number of components (y-axis) changes for empirical and configuration models,
respectively, as travel time thresholds increase (x-axis).
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Fig. C.6 Comparing empirical transit access networks from Low BE neighbourhoods to
their respective configuration models. For each city, the solid blue and yellow lines (top
panels) show the coefficients of network assortativity (y-axis) for the empirical Low BE
network and configuration models, respectively, across different travel time thresholds (x-
axis). Meanwhile the dotted blue and yellow lines convey how the number of components
(y-axis) changes for Low BE empirical and configuration models, respectively, as travel time
thresholds increase (x-axis).
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Fig. C.7 Comparing empirical transit access networks from High BE neighbourhoods to
their respective configuration models. For each city, the solid blue and yellow lines (top
panels) show the coefficients of network assortativity (y-axis) for the empirical High BE
network and configuration models, respectively, across different travel time thresholds (x-
axis). Meanwhile the dotted blue and yellow lines convey how the number of components
(y-axis) changes for High BE empirical and configuration models, respectively, as travel time
thresholds increase (x-axis).
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SES Inequalities in Relative Transit Access 

Fig. C.8 Socio-spatial inequalities in relative transit accessibility to essential amenities. The
x-axis denotes the spatial demographic (BE Group), while the orange and purple reflect the
low and high income socioeconomic groups, respectively. The orange and purple horizontal
lines convey the accessibility of low and high socioeconomic groups, when the BE is not
considered.
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C.5 Workplace Access

In chapter 6.4.4 we discuss accessibility differences across socioeconomic groups in similar

built environments, with respect to workplace accessibility within a 50 minute transit com-

mute. Figure 6.6 shows the difference between the percentage of workers in high and low

income neighbourhoods, in similar built environments, who have workplace accessibility.

Table C.3 expands on this.
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Table C.3 Percent of individuals in each socio-spatial demographic that can commute to their
employment locations within a 50 minute transit journey. This table accompanies Figure 6.6,
which compares percentage point differences in the Low and High income group across all
BE groups.

BE Group
City Income Group Low Moderate High All

Boston Low 71.36 74.66 87.74 77.81
Middle 48.4 67.86 87.84 68.38
High 55.55 77.33 92.35 77.52

Chicago Low 34.06 33.40 33.44 33.77
Middle 35.22 34.75 34.85 34.90
High 44.32 55.47 55.26 53.48

Minneapolis Low 13.41 33.44 46.21 39.16
Middle 11.76 25.83 42.84 25.87
High 11.34 24.26 38.31 20.14

New York City Low 22.58 27.28 29.24 26.38
Middle 18.27 22.42 27.46 22.94
High 15.04 20.69 38.29 25.61

Philadelphia Low 70.98 74.67 79.04 73.84
Middle 56.2 58.42 67.08 60.84
High 44.04 43.96 84.76 61.61

Portland Low 35.33 42.99 61.69 42.16
Middle 34.50 43.23 58.05 45.56
High 47.05 53.54 55.03 52.23

San Francisco Low 76.98 82.81 90.98 83.25
Middle 83.17 81.80 92.51 86.24
High 90.49 92.75 95.63 92.44

Seattle Low 13.66 20.99 44.56 21.89
Middle 7.37 11.86 22.74 13.73
High 8.34 9.48 16.19 10.10
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