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Picture a man
Seen like a speck out from the shore
Swimming out beyond the breakers like he’s done his life before
He feels the coming of a squall will drag him out a greater length
But knows his strength
Tries to gather it

Andrew John Hozier-Byrne
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UNIVERSITY OF EXETER

ABSTRACT

New applications of wavefront shaping – from taming dynamic scattering
media to precision optical tweezing

by Christina Sharp

Over the last 15 years, wavefront shaping has emerged as a powerful technique to control the
propagation of light within scattering media by precisely sculpting the spatial distribution of an
electromagnetic field. Today, wavefront shaping is a cornerstone approach to solving many light
scattering problems in optics. This technique is being used to see and probe deep into tissue,
replace traditional optical components like lenses, and render opaque objects transparent. Here
we explore applications of wavefront shaping to two new problems.

The first of these is wavefront shaping in the face of dynamic media that results in light
scattering that fluctuates in time. Existing wavefront shaping applications rely on light scattering
from static scattering media – imagine the constant distortions of sunlight through a frosted
glass window. We envisage a scattering scenario wherein some parts of the medium are static,
while others are moving – like trying to image inside of a living organism with blood vessels
flowing through largely static tissue. We demonstrate, numerically and experimentally, a new
suite of wavefront shaping tools that determine paths for the light that carefully navigate through
static and around dynamic scattering areas. These tools include an assortment of matrices and
optimisation algorithms that use information about the time fluctuations of a light field to find
such paths. This research opens the door to combining our new techniques with the plethora
of existing methods such as the transmission matrix, phase conjugation, and iterative wavefront
optimisation to offer expanded applications in the field of wavefront shaping.

The second problem we investigate is in the field of optical tweezing. Optical tweezers, which
use the transfer of momentum from a focused laser beam to a micro-scale object, to trap the object
and control its motion, have allowed researchers to gain unrivaled access to and control over the
mesoscale world. We aim to trap micro-spheres immersed in water more tightly by moulding the
spatial distribution of an optical trap. The interaction between the light and the trapped particle
is changed by manipulating the incident optical field. We develop new ways to optimise the optical
trap shape, both numerically and experimentally, such that our final optimised traps reduce the 3D
motion of trapped micro-scale particles in water by orders of magnitude compared to conventional
Gaussian traps. These enhanced optical traps hold promise for many applications in the field of
micro-manipulation, including trapping of previously un-trappable particles.

Our work demonstrates that wavefront shaping can be applied to dynamic scattering media
and optical tweezers, opening avenues to new applications in imaging, optical communications,
and optical micro-manipulation.

HTTPS://WWW.EXETER.AC.UK/
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Chapter 1

The scattering of light

L
ight travels in straight lines, unless it interacts with obstacles in its path. Ex-
amples of interactions that redirect the path of light include shadows behind
illuminated objects, the perceived bending of an object halfway submerged in

water, and the reduction of visibility in fog. Light scattering encompasses all such in-
teractions between optical fields and their environment. Light scattering can be classed
as either elastic, such that energy of scattered light is conserved, or inelastic, such that
the scattered light experiences a shift in energy (shift in wavelength). In many situations,
such as inside biological tissue, elastic optical scattering – refraction, reflection, diffraction
– dominates. For the applications discussed here, elastic scattering fully characterises the
light scattering effects.

Figure 1.1: Scattering of light rays due to a scattering material.

The term scattering material, as it will be used here, means any material which scatters
light. Fig. 1.1 shows an example of such a material, where four incident light rays are
scattered within the medium. Here such a scattering material will be imagined as a
discrete collection of points in space (circles that the light rays encounter in Fig. 1.1)
whose collective action mimics a continuous scattering medium. A few things can happen
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to light rays within such a scattering material, as illustrated in the figure: single scattering
(ray 2), multiple scattering (rays 1 and 3), or no scattering (ray 4).

Such optical scattering can be quantified by several commonly used parameters. The
first of these, the scattering coefficient 𝜇𝑠, is the total scattering cross-sectional area in
a scattering medium per unit volume. The higher the scattering coefficient, the more
light rays are multiply scattered. The reduced scattering coefficient 𝜇′

𝑠 is also used to
describe the scattering of photons. It is commonly determined experimentally and given
mathematically by

𝜇′
𝑠 = 𝜇𝑠(1 − 𝑔) (1.1)

where 𝑔 is called the anisotropy factor which ranges between -1 (backward scattering)
and 1 (forward scattering). A value of 𝑔 = 0 corresponds to isotropic scattering.

Given the scattering coefficient, the scattering mean free path 𝑙 (the average distance
between scattering events) and the transport mean free path 𝑙𝑡 (the average distance before
the direction of the incident light is randomised) can be used to describe the behavior of
light scattering within a medium. These two quantities are given by

𝑙 = 1
𝜇𝑠

(1.2)

𝑙𝑡 =
1

𝜇𝑠(1 − 𝑔) = 1
𝜇′𝑠

. (1.3)

If the thickness of a scattering material is much larger than the transport mean free
path 𝑙𝑡, the material is said to be diffusive. In the diffusive regime, the incident light is so
strongly scattered that the direction of the light has become randomised and only a small
amount of the incident light arrives at the far side of the scattering material.

Scattering impedes the ability of light to transmit information from one point to
another in space, for example in an image. Here, an image refers to a specific spatial
distribution of an electromagnetic field’s intensity; generally, an image can include all of
light’s degrees of freedom in phase, polarisation, and intensity. The scrambling of such an
image due to the scattering of light caused by a scattering medium between the source
and receiver is a difficult phenomenon to undo, but has nevertheless been extensively
studied [1]. Everyday examples of light scattering distorting spatial intensity information
include scenes blurred by frosted glass, the distortion of the light from distant stars by the
Earth’s atmosphere, and loss of visibility due to fog. However, because elastic scattering
is deterministic, the spatial intensity information is merely scrambled, not lost as long
as all scattered light is collected. In recent years, significant progress has been made in
‘unscrambling’ scattered light. Recent advances in counteracting scattering have opened
the doors to many exciting new applications in optics, biophysics, and communications
technologies [2, 3].

For some applications, however, the scattering of light is beneficial, even essential. Op-
tical tweezers is one such area, completely reliant on the momentum transferred through
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the scattering action between an incident light field and mesoscale matter. Optical tweez-
ers are created by highly focused laser light and are capable of exerting spatial control
over micro-particles.

This thesis explores these two sides of the topic of light scattering. Part I focuses on
exploring approaches to undoing the scrambling of information due to scattering, while
Part II focuses on harnessing the scattering to maximise momentum transfer between the
light and a targeted microscopic object. In the former, scattering is seen as a problem
that needs to be addressed or prevented; in the latter, scattering is a powerful tool that
is maximised to precisely manipulate the objects light encounters.

1.1 Light scattering - an obstacle to overcome
Approaches to imaging when faced with light scattering are many and varied, and have
been and continue to be vigorously researched [4, 5]. Perhaps the simplest technique is
to ignore light scattering effects by using methods that remove multiply scattered waves.
These include optical coherence tomography [6] and multiphoton microscopy [7]. These
approaches that throw away the scattered light however become unusable when light
diffusion begins to dominate through strongly scattering media larger than a few scattering
mean free paths (the average propagation distance between scattering events).

In recent years, another route has emerged that offers a solution to the problem of
optical scattering – wavefront shaping. Wavefront shaping changes the spatial distribution
of a light field’s complex amplitude (amplitude and phase) to counteract the scattering
effects of a material. This method, in contrast to those mentioned above, aims to use as
much light as possible.

This solution has birthed a rich and varied field in modern optics [5, 8], developing out
of the use of adaptive optics in astronomy to correct images of far-away galaxies distorted
by the Earth’s atmosphere [9, 10]. Wavefront shaping in wave physics harnesses the
deterministic nature of scattering to undo or counteract the scattering action. Advances
in technology have allowed modern wavefront shaping devices to manipulate orders of
magnitude more modes than the low dimensional aberrations corrected by deformable
mirrors in adaptive optics for astronomy, allowing this technique originally designed for
lower scattering levels due to the atmosphere to be used in the diffusive regime in highly
scattering media. Wavefront shaping has been used to focus several hundred microns
inside biological tissue [11], enhance focusing and fluorescence imaging in combination
with meta-surfaces [12], and increase the amount of diffuse light transmitted through a
scattering sample [13], to name only a few examples.

Approaches to manipulating the scattering of light using wavefront shaping can be
broadly categorised into three techniques: iterative wavefront optimisation [14–18], optical
phase conjugation [19–24], and transmission matrix measurement [25–29].
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The field of wavefront shaping was pioneered in 2007 by Vellekop and Mosk, who
showed how to focus light through strongly scattering and diffuse media [14]. Using a spa-
tial light modulator (SLM) and an iterative wavefront optimisation technique, Vellekoop
and Mosk iteratively adjusted the phase and thereby structured the optical field incident
on a visibly opaque scattering sample (a ∼10µm layer of TiO2 particles). This optimisa-
tion determined how the relative spatially varying phase of the incident beam needed to be
adjusted to promote constructive interference to create a diffraction limited focus through
the rutile sample. The publication of this work marked the beginning of a plethora of
studies into the control of light propagation in scattering media using wavefront shaping.

The second wavefront shaping technique, optical phase conjugation, relies on the prin-
ciple of time-reversal [30] which states than an electric field is unchanged if the spatially
separated source and detector are interchanged. Over half a century ago, Leith and Up-
atnieks demonstrated optical phase conjugation using a hologram to undo the scattering
effects of a ground glass diffuser [31]. More recently, in 2008, Yaqoob et al. demonstrated
optical phase conjugation to suppress the scattering effects through 0.69 mm thick chicken
breast tissue [19]. Using a photorefractive crystal to record and generate the phase conju-
gated field, it was shown that a focus could be reconstructed through the chicken breast
tissue even at thicknesses well into the diffusive scattering regime.

The third approach to wavefront shaping, the measurement of the transmission ma-
trix, provides information on how an incident field is transmitted through a scattering
material. The first experimental implementation of this method at optical frequencies
was performed by Popoff et al. in 2010 [25], who used a spatial light modulator and a
full-field interferometric measurement to capture the transmission matrix of an opaque
∼80µm thick deposit of ZnO on a microscope slide. The transmission matrix is obtained
by sending a set of probing fields through the medium, and then measuring and storing
the corresponding output fields in the columns of the matrix. In this work it was also
shown that the measured transmission matrix can be applied to generate a desired field
at the detectors (here, a focus) by wavefront shaping the field incident on the scattering
sample.

Many variants of wavefront shaping have been developed, incorporating different as-
pects of these three approaches. This is also the case for the research presented in this
thesis. In this work we build on ideas from these methods and apply them in new ways.

Overall, the field of optical wavefront shaping continues to be an area of active research,
with new developments and applications emerging all of the time. By improving the ability
to manipulate light waves, this technology has the potential to unlock new capabilities
in many scientific fields, ranging from medicine and biology to telecommunications and
materials science.
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1.1.1 Dynamic scattering media

The vast majority of wavefront shaping methods introduced above rely on the medium in
question remaining static for the duration of the wavefront shaping process. Overcoming
the effects of time-varying scattering media, in which the media changes on time scales
shorter than those needed for wavefront shaping techniques, is a much more challenging
problem that remains largely unsolved. The first part of this thesis focuses on the devel-
opment of new wavefront shaping techniques that are compatible with dynamic scattering
media. Chapter 2 investigates existing methods and their applicability to dynamic scat-
tering media. Chapter 3 develops several new approaches to wavefront shaping tailored
to the problem of time-varying scattering materials.

The process of wavefront shaping can be time-intensive, and often this is the bottleneck
in applications. Typically this process takes minutes to hours depending on the spatial
light modulator speed, numbers of iterations used, and the number of measurements
required to characterise the scattering material. To speed up this process, work has been
done primarily in two areas: speeding up the wavefront shaping, and reducing the number
of measurements needed e.g. for transmission matrix measurements. These approaches
however still require that the medium in question remains static throughout the wavefront
shaping process.

Current approaches to overcoming the effects of dynamic scattering media rely largely
on decreasing the time needed for applications such that wavefront shaping is performed
at a rate greater or equal to the rate of movement of the scattering material [23, 32–35].
To perform this ultra-fast wavefront shaping, spatial light modulators (SLMs) operating
at hundreds of kHz [36, 37] or fast digital micro-mirror devices (DMDs) operating at
kHz [21, 38, 39] have been used. Faster SLMs, operating at megaHertz to gigaHertz, hold
promise as future advances to wavefront shaping technologies [40, 41].

To reduce the number of measurements required to construct a usable transmission
matrix, prior knowledge about the scattering medium can be exploited. Such knowl-
edge includes correlations between elements of the transmission matrix known as memory
effects, predictions about how the power is distributed over the transmission matrix el-
ements, or a recent but slightly degraded measurement of the transmission matrix [26,
42–48].

Here we take a different approach. We consider an edge case of partially dynamic
material, where localised pockets within a largely static scattering material vary on time-
scales shorter than the wavefront shaping process. Examples of applications in such edge
cases are imaging through a living biological system with blood flowing through capillaries
within relatively static tissue, improving internet signals in an office building of moving
humans, or counteracting the effect of hot air escaping chimneys into colder, more static
air above houses to improve telecommunication signals. The goal of this approach is
to develop new wavefront shaping approaches to guide light around localised dynamic
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regions within scattering media. We hope to achieve this without any prior knowledge of
the number or location of these regions.

1.2 Light scattering - a highly customisable tool
Fundamentally, in addition to scrambling the spatial information carried by an optical
field, light scattering causes an exchange of momentum between the light and matter it
is interacting with. This occurs anytime a ray of light experiences an inhomogeneity in
its path, such as a change in the refractive index, where the ray changes direction. When
this occurs, then by conservation of momentum, the ray must have exerted a force on the
inhomogeneity. This force is called the radiation pressure. Although predicted by Maxwell,
the concept of light carrying momentum and imparting force onto massive objects was not
experimentally proven until 1901 [49, 50]. Since the advent of the laser, radiation pressure
has been harnessed to all-optically reconfigure the operation of integrated photonic circuits
[51], damp mechanical oscillations [52], and power solar sails in outer space [53, 54].

Under the right conditions, the light of a focused laser beam scattering from a mi-
croscopic particle transfers momentum such that an optical trap is formed. This can be
understood to be due to the combined change in momentum of the light rays as they strike
the interface between media of two different refractive indices (in this case the particle
and the media that surrounds it). This change in momentum induces a net backwards
force on the particle which counteracts the forward pointing radiation pressure. These
two forces balance each other at the equilibrium position of the optical trap, where the
net force felt by the particle is zero.

In contrast to Part I of this thesis, where the aim of the research is to create lights
fields that minimally interact with a region of scattering material via wavefront shaping,
in Part II the goal is to maximise the interaction between the incident light and the
optically trapped particle, thereby increasing the momentum transfer to create better
optical tweezers by wavefront shaping.

Optical tweezers can be used to trap and manipulate microscopic objects. The technol-
ogy was first demonstrated in the 1970s by Arthur Ashkin [55], who shared the 2018 Nobel
Prize in Physics for his work on optical tweezers. Since then, optical tweezers have been
used to trap myriad particles from simple spheres [56] to cells [57–59]. Optical tweezers
have become a powerful tool in biology and physics research, allowing scientists to study
the bio-mechanics of molecular motors and protein-DNA interactions [60, 61] and power
artificial micro-machines [62, 63].

Recent developments in optical tweezers technology have focused on increasing their
capabilities from simply holding a micro-particle. It is now also possible to create arrays
of multiple stable traps [64], create a “tractor beam” that pulls particles back towards the
laser beam source [65], rotate particles [66], image surfaces using trapped particles [67,
68], and even cool a single atom to its quantum ground state [69–71], all using optical
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tweezers. These improvements have opened up new avenues for research in biophysics,
nanotechnology, and materials science, and continue to push the boundaries of what is
possible with this versatile technology.

1.2.1 Enhancing optical tweezing

For some applications, such as the experiments and simulations presented here, the micro-
particles are submerged in water, meaning the micro-particles undergo Brownian motion
due to the thermal motion of the water molecules. This results in even optically trapped
particles exhibiting some degree of motion within the trap. The gradient force on an
optically trapped micro-sphere acts as a restoring force that responds to displacements of
the micro-sphere from the trap’s equilibrium position, such as the displacements due to
the collisions with water molecules.

The force felt by an optically trapped micro-particle is given by a Hookean force:
𝐹𝑥 = −𝜅𝑥𝑥, and similar equations for 𝑦 and 𝑧 directions. This is an approximation of the
force which only holds for small 𝑥 displacements from equilibrium. The stiffness 𝜅𝑥 is a
common measure of the strength of an optical trap, which describes the magnitude of the
force felt by an optically trapped particle for a small displacement 𝑥 from equilibrium. The
most straightforward way to more stiffly trap a given particle is to increase the laser power
in the optical trap. This, however, can lead to issues in experiments such as increasing the
temperature of the particle and its surroundings [72], damaging photosensitive biological
systems [73], and increasing decoherence effects in quantum ground state experiments [70].
To avoid such situations, here an alternate paradigm is considered. Namely, is it possible
to use wavefront shaping to enhance optical trap stiffness without increasing the amount
of laser power used?

This question opens the door to two ways of thinking about enhancing optical trapping:
increase the optical trap stiffness using the same total laser power, or decrease the total
laser power to achieve the same optical trap stiffness. These are two sides of the same
coin.

To utilise the full potential of a focused laser beam, Chapters 4, 5, and 6 approach
this problem from the point of view of wavefront shaping. Past work in optical tweezers
with wavefront shaping has shown that it is possible to tailor traps to increase trapping
stiffness for just some dimensions of motion. This includes increasing trapping stiffness
using doughnut modes [74, 75], multiple carefully spaced conventional Gaussian optical
traps [76, 77], and super-oscillating Hermite–Gauss, Laguerre–Gauss, and Airy function
beams [78]. This thesis delves into the depths of a yet unexplored cave of wonders – three
dimensional (3D) enhancement of holographic optical tweezers. It is not straightforward
to extend the methods used to increase trapping stiffness in 1D and 2D to 3D. Inspired by
existing mathematical techniques, both numerical and experimental implementations are
developed and their results presented in this thesis, showing for the first time that it is
possible to improve existing optical trap performance by one-to-two orders of magnitude.
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Part I

Investigating dynamic scattering
media
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Faithless is he that says farewell when the road darkens.

J. R. R. Tolkien

In this part, various existing (Chapter 2) and novel (Chapter 3) applications of wave-
front shaping techniques are applied to the problem of unscrambling light scattered by
dynamic media. The research presented in this part was conducted by Dr. Chaitanya
Mididoddi (CKM), Prof. Simon A. R. Horsley (SARH), Dr. Philipp del Hougne (PdH),
Prof. David B. Phillips (DBP), and me. The contributions of each person were as follows:
DBP conceived the idea for the project and developed it with all other contributors. CKM
performed all experiments and data analysis, with support from DBP. SARH derived the
physical adjoint optimisation method and the objective functions investigated here. DBP
and PdH conceived the time-averaged TM method. I performed simulations of the various
iterative wavefront optimisation approaches, with guidance from DBP and SARH. The
numerical results presented in the coming chapter were generated using code written by
me, and compared with results from a code provided by SARH to ensure validity of the
results. Special thanks to SARH and Dr. James Capers, for their help in the derivations
of the discrete dipole approximation and the constraints on dipole polarizability.
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Chapter 2

Dynamic scattering media and
existing wavefront shaping
methods

M
uch research has been done in the field of wavefront shaping, specifically with
the aim of unscrambling scattered light. A challenging, yet mostly unaddressed
problem, is that of moving scattering media. Existing methods begin to fail

once the scattering material changes its properties at a rate faster than those changes can
be characterised. This is because these existing methods were designed to control light
propagation within static scattering media.

Here, an edge case between fully dynamic media and fully static media is considered.
What if, embedded within a largely static scattering medium, there existed a pocket of
dynamic material? In this chapter, existing methods are explored for this edge case of
partially dynamic scattering material.

2.1 Background information

2.1.1 Discrete dipole approximation

Many methods exist to simulate the phenomenon of scattering. The work for this chapter
was simulated using the discrete dipole approximation (DDA) [79, 80] in two dimensions.
This approach turns the problem of multiple scattering and absorption of electromagnetic
waves by particles of arbitrary geometry and composition into a system of linear equations.
This approach can be used to model much larger objects by considering them to be periodic
arrangements of individual dipoles. In the simulations presented here, the scattering of
light by random configurations of dipoles is considered to investigate how light can be
manipulated in such general multiply scattering systems.

To derive the equations used to apply the DDA to such configurations of dipoles, we
follow the derivation provided by SARH.

First, we consider the Helmholtz equation, which can be derived from Maxwell’s equa-
tions (see Appendix A), assuming that we are in a uniform and static material in time
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and space. The incident electric field 𝜙 at every point can be written as the the sum of
a scattered field (the field scattered by the combination of dipoles) and an applied field
(the field as if no dipoles existed in the space) at each of those points, yielding

[∇2 + 𝑘20] 𝜙 = [∇2 + 𝑘20] (𝜙s + 𝜙0) (2.1)

where ∇2 denotes the Laplacian, 𝑘0 is the wavevector, and the incident electric field 𝜙 is
separated into the scattered field 𝜙𝑠 and the applied field 𝜙0.

Recognizing that [∇2 + 𝑘20] 𝜙0 = 0 to satisfy the free space Helmholtz equation, this
can be simplified to

[∇2 + 𝑘20] 𝜙 = [∇2 + 𝑘20] 𝜙s. (2.2)

Treating each of the 𝑛 dipoles as a source, the inhomogeneous Helmholtz equation (see
Appendix A) for an assortment of 𝑛 dipoles can also be written as

[∇2 + 𝑘20] 𝜙 = −𝑘20
𝑁
∑
𝑛=1

𝛼𝑛𝛿(𝑥 − 𝑥𝑛)𝜙inc(𝑥𝑛) (2.3)

where 𝜙inc is the field incident on each dipole, 𝛼𝑛 and 𝑥𝑛 are the polarizability and location
of the 𝑛th dipole, respectively, and 𝛿(𝑥 − 𝑥𝑛) is a Dirac delta function centred at the 𝑛th

dipole location 𝑥𝑛. Therefore, comparing Equations 2.2 and 2.3,

[∇2 + 𝑘20] 𝜙s = −𝑘20
𝑁
∑
𝑛=1

𝛼𝑛𝛿(𝑥 − 𝑥𝑛)𝜙inc(𝑥𝑛). (2.4)

The Green’s function as a solution to the Helmholtz equation is described by

[∇2 + 𝑘20]𝐺(𝑥, 𝑥𝑛) = 𝛿(𝑥 − 𝑥𝑛). (2.5)

𝐺(𝑥, 𝑥𝑛) is described in 2D by

𝐺(𝑥, 𝑥𝑛) =
1
4𝑖H

(1)
0 (𝑘0|𝑥 − 𝑥𝑛|) (2.6)

where H(1)
0 (𝑘0|𝑥− 𝑥𝑛|) is the Hankel function of zeroth order and first kind. This Green’s

function describes circular waves emanating from a point. This is exactly what we need
here to describe the source field from point sources and the multiply scattered field by
arrangements of scattering dipole.

From Equations 2.4 and 2.5, the field scattered by the combination of dipoles 𝜙𝑠 is
given by

𝜙𝑠 = −𝑘20
𝑁
∑
𝑛=1

𝛼𝑛𝐺(𝑥, 𝑥𝑛)𝜙inc(𝑥𝑛) (2.7)

where 𝐺(𝑥, 𝑥𝑛) is the Green’s function describing the field at point 𝑥 due to the 𝑛th dipole
located at 𝑥𝑛.
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To account for multiple scattering, the applied field on the 𝑚th dipole is the sum of
the incident field and the field scattered by each of the other dipoles, giving

𝜙inc(𝑥𝑚) + 𝑘20 ∑
𝑛≠𝑚

𝛼𝑛𝐺(𝑥𝑚, 𝑥𝑛)𝜙inc(𝑥𝑛) = 𝜙0(𝑥𝑚). (2.8)

The polarisability 𝛼 of a dipole is found using

𝑝 = 𝛼𝜙 (2.9)

describing the relation between the dipole moment 𝑝 and the electric field 𝜙. This equation
can be extended to the 𝑛th dipole in a system and written as

𝑝𝑛 = 𝛼𝑛𝜙inc(𝑥𝑛). (2.10)

This equation allows the polarisability of all dipoles to be solved for, and subsequently
the applied field everywhere can be found.

𝜙0(𝑥𝑚) = 𝑝𝑚
𝛼𝑚

+ 𝑘20 ∑
𝑛≠𝑚

𝐺(𝑥𝑚, 𝑥𝑛)𝑝𝑛 (2.11)

Equations 2.7 and 2.11 can then be used to calculate the total electric field everywhere,
incorporating the multiple scattering from each of the dipoles.

Constraints on the dipoles’ polarisability

The acceptable values of polarisability of the dipoles are dictated by conservation of energy.
To derive the constraints for these values, start from Poynting’s theorem, which describes
the electromagnetic power flow into a differential volume:

−∇ ⋅ S = J ⋅ E + Jℎ ⋅ H (2.12)

where S is the Poynting vector, J is the electric current, E is the electric field, Jℎ is the
magnetic current, and H is the magnetic field.

Alternatively,
−∇ ⋅ S = 𝜕

𝜕𝑡(𝑢𝑒 + 𝑢ℎ) + (𝑤𝑒 +𝑤ℎ) (2.13)

where 𝑢𝑒 and 𝑢ℎ are the energy stored in the electric and magnetic fields, respectively,
and 𝑤𝑒 and 𝑤ℎ are the energy dissipated by those same fields. Time averaging Equations
2.12 and 2.13 yields an equation for the time-averaged dissipation of energy by a material
[81]:

⟨𝑤𝑒⟩ = ⟨J ⋅ E⟩ = 𝜔
2 𝜖0 Im [𝜖] Im [𝐸]2 (2.14)
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where 𝜔 is the frequency, 𝜖0 is the vacuum permittivity, and 𝜖 is the relative permittivity.
Recalling that

𝜖 = 1 + 𝜒 (2.15)

where 𝜒 is the susceptibility, it is clear that the power dissipated by the dipoles must be
proportional to Im[𝜒].

To obtain an expression for Im[𝜒], first consider the Helmholtz equation for a system
with relative permittivity 𝜖𝑟 = 𝜖/𝜖0:

(∇2 + 𝜖𝑘2) 𝜙 = 0, (2.16)

and substituting the susceptibility such that

(∇2 + 𝑘2) 𝜙 = −𝑘2𝜒𝜙. (2.17)

Multiplying both sides by 𝜙∗ and taking the imaginary part,

Im [𝜙∗∇2𝜙] + Im [𝑘2|𝜙|2] = −𝑘2|𝜙|2Im [𝜒] . (2.18)

The second term is purely real, so the imaginary part vanishes. The first term can be
expanded using a vector calculus identity:

∇ ⋅ (𝜙∗∇𝜙) = 𝜙∗∇2𝜙 + (∇𝜙∗) ⋅ (∇𝜙) (2.19)
= 𝜙∗∇2𝜙 + |∇𝜙|2. (2.20)

The final term here is real, and the imaginary part vanishes. With this,

−∇ ⋅ Im [𝜙∗∇𝜙] = 𝑘2|𝜙|2Im [𝜒] , (2.21)

which can be rearranged to find an equation for Im[𝜒].
To go further, note that the incident and scattered fields obey the free-space and

inhomogeneous Helmholtz equations respectively:

(∇2 + 𝑘2) 𝜙0 = 0 (2.22)
(∇2 + 𝑘2) 𝜙𝑠 = −𝛿(𝑥)𝑘2𝛼𝜙0(0). (2.23)

Adding these gives
(∇2 + 𝑘2) 𝜙 = −𝛿(𝑥)𝑘2𝛼𝜙0(0), (2.24)

where 𝜙 = 𝜙0 + 𝜙𝑠. The total field from a single dipole scatterer is

𝜙 = 𝜙0 − 𝑘2𝛼𝐺(𝑥)𝜙0. (2.25)
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Multiplying Equation 2.24 by 𝜙∗:

𝜙∗∇2𝜙 + 𝑘2|𝜙|2 = −𝛿(𝑥)𝑘2𝛼𝜙0(0)𝜙∗. (2.26)

Now Equation 2.25 can be used to write

𝜙∗ = 𝜙∗
0 (1 − 𝛼∗𝑘2𝐺∗(0)) . (2.27)

Taking the imaginary part of Equation 2.26 and substituting Equation 2.27 into the right
hand side (RHS) yields

−Im [𝜙∗∇𝜙] = 𝛿(𝑥)𝑘2|𝜙0|2Im [𝛼 + |𝛼|2𝑘2𝐺(0)] , (2.28)

where Im[𝐺∗(0)] = −Im[𝐺(0)] was used.
Assuming the power flow into the scatterer is positive (at best the flow in equals the

flow out, at worst much less comes out), the following equation constrains the imaginary
part of the polarizability, 𝛼, of a dipole:

Im[𝛼] > −|𝛼|2𝑘20Im[𝐺(0)] (2.29)

The simulations in this thesis are for 2D propagation, such that

Im[𝐺(0)] = Im [ 1
4𝑖H

(1)
0 (0)] = −1

4 (2.30)

and so
Im[𝛼] > 1

4|𝛼|
2𝑘20 (2.31)

For lossless particles, the inequality is saturated, and writing 𝛼 = |𝛼| exp(i𝜃) results in

sin 𝜃 = 1
4|𝛼|𝑘

2
0. (2.32)

In practice, if the maximum physically allowable polarisability is to be used, this would
result in the following equations:

|𝛼| = 4
𝑘20

(2.33)

Im(𝛼) = arcsin(|𝛼| 𝑘20
4 ) (2.34)

𝛼 = |𝛼| exp [𝑖 Im(𝛼)]. (2.35)

For the numerical results presented in this chapter, the maximum physically allowable
polarisability of each dipole is used to simulate the most extreme cases of scattering. To
investigate a lower scattering scenario, |𝛼| will be set to 0.4𝑘−2

0 , i.e. 10% of this maximum
value.
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Example implementation of the discrete dipole approximation

Figure 2.1: Example results of applying the discrete dipole approx-
imation to a randomly configured scattering region of 100 dipoles.
The sources emit circular waves, and are all in phase with each other; the
source field is effectively a plane wave incident from the left. (a) Low scatter-
ing scenario where |𝛼| = 0.4𝑘−2

0 . (b) High scattering limit where |𝛼| = 4𝑘−2
0 .

An example of the scattering of an incident plane wave induced by a random configuration
of 100 dipoles is shown below in Figure 2.1 for low and high scattering scenarios. The
wavelength of the simulations is set to 𝜆 = 1 for simplicity, and the size dimensions
normalised to wavelengths for ease of interpretation. The size of the simulations shown in
Fig. 2.1 are 30×30 wavelengths, sampled at 6 points per wavelength for a total simulation
grid size of 180×180 pixels at which the field needs to be calculated. At minimum 4 points
per wavelength are required to accurately sample the area.

The sources act as individual circular wave point sources – such an array of sources can
approximate a plane wave – in fact represent a truncated plane-wave (i.e. one with edges
where diffraction takes place) – if all sources emit a circular wave with the same initial
phase and amplitude. The detectors are located on the opposite side of the scattering
region from the sources, and, as with the sources, separated by a distance of 𝜆/4 to ensure
accurate sampling of the field.

The dipoles are randomly located within the simulation area, and the sources and
detectors are separated by a distance of 𝜆/4 to ensure accurate sampling of the field. The
locations of the dipoles are determined using MATLAB’s rand() function and normalising
the outputs, which by default are numbers between 0 and 1, to values determined by the
simulation area. The simulation results in the subsequent sections of this chapter will be
presented in the same layout: a line of sources on the left incident on some scattering
region and a line of detectors on the right.
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Figure 2.2: Example of a randomly configured scattering region
with a pocket of moving dipoles.

The low scattering and high scattering scenarios shown in Fig. 2.1 will be used in
the next chapter to investigate how different methods of finding wavefronts that navigate
around moving scatterers perform in these two scenarios.

Additionally, to investigate the novel area of partially moving scattering media, some
of the dipoles are allowed to move. For example, a pocket of scatterers within a given
region of the medium can be allowed to randomly move, such as those indicated by
yellow asterisk markers in Fig. 2.2. The movement of these dipoles is generated using a
normal distribution of random 𝑥𝑦-positions, centred on the initial positions, and with an
adjustable standard deviation which limits the total area explored by the dipoles. Fig. 2.3

Figure 2.3: Example of position probabilities for a pocket of 15
randomly moving dipoles inside a dynamic pocket within a static
configuration of 100 total dipoles (a) with a standard deviation of motion
𝜎𝑚 = 1.25𝜆 and (b) 𝜎𝑚 = 2.5𝜆.
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shows an example of the probability heatmap of the positions of example moving scatterers
for the two levels of movement considered later on with standard deviations 𝜎𝑚 = 1.25𝜆
and 𝜎𝑚 = 2.5𝜆. Different snapshots in time of the dipole locations are referred to as
dipole configurations in the coming sections.

2.1.2 Quantifying intensity fluctuations

The movement of a scattering material changes the path that incident light fields travel
through the medium. This results in fluctuations of the transmitted intensity, which is
used in this work to provide feedback on how an electromagnetic field interacts with a
partially dynamic scattering medium.

To quantify the level of fluctuation due to the motion of a scattering medium, the
ratio 𝜉 is introduced:

𝜉 = 𝜎√
𝐼
̄𝐼 . (2.36)

This is the ratio of 𝜎√
𝐼 , the mean standard deviation of the field amplitude at the de-

tectors over time, over ̄𝐼 , the mean total intensity at the detectors over time. In the
simulations presented here, 𝜎√

𝐼 is calculated by calculating the standard deviation of the
field amplitude at each detector location over time and then averaging this result over all
detector locations. ̄𝐼 is calculated by averaging the intensity at the detectors over all time
and detector locations.

Initially, the ratio of the mean standard deviation of the intensity at the detectors
over the mean intensity at the detectors was suggested to quantify fluctuations. However,
due to a happy accident in forgetting to raise the amplitude of the field to the power
of two, I discovered that the above ratio was a better objective function in the novel
methods presented in a Chapter 3. The level of fluctuations 𝜉 is minimised in less time
and the resulting wavefront shaped fields transmit more average intensity than if the ratio
of the standard deviation of the intensity over time and the average intensity is used
to quantify the fluctuations. We believe that the reason for this can be illustrated by
rewriting Eqn. 2.36 as

𝜉 = 𝜎√
𝐼√
𝐼

1
√
𝐼

(2.37)

where it becomes clear that this objective function is weighted towards the denominator,
so it will more favorably find fields that increase the average transmitted intensity that
reaches the detectors.

The goal of the coming sections is to minimise 𝜉, thereby minimising the fluctuations
of the intensity of the field at the detector locations due to the motion of pockets of dipoles
in a region of scattering dipoles.
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2.2 Existing approaches to wavefront shaping applied to
dynamic scattering media

Scattered light can be unscrambled. Information can be recovered from scattered light in
many different ways. Here, existing techniques are applied to the previously unaddressed
problem of partially dynamic scattering media.

2.2.1 Phase conjugation

It has been shown experimentally that digital optical phase conjugation (DOPC) can be
used to create an arbitrary field [19–24, 82], such as a focus, through a strongly scattering
material. DOPC relies on the principle of the reciprocity of light propagation [30], meaning
that light is transmitted from point A to point B in the same way as the reverse path from
point B to point A. Because of this principle, a known limit of the technique of DOPC
is that it doesn’t perform as well for high and multiple scattering scenarios where good
amounts of the light emanating from the sources do not reach the detectors.

In practice, DOPC involves the creation of an exact copy of a detected field, but
travelling in the opposite direction back to the initial source location. Mathematically
two plane waves 𝜓𝑎 and 𝜓𝑏, propagating in opposite directions, can be written as

𝜓𝑎 = 𝐴 exp (−𝑖k ⋅ x) (2.38)
𝜓𝑏 = 𝐴 exp (𝑖k ⋅ x) (2.39)

where 𝐴 is the amplitude of the waves, k is the wave vector, and x is the position. These
two plane waves are simply the phase conjugate of one another. This is the basis of DOPC.

In 2D simulation, the DOPC process involves generating the desired field distribution
(such as a focus) on the line of detectors, and propagating this field through the scattering
region backwards (from right to left). The scattered field reaching the line of sources is
calculated, phase conjugated, and then propagated through the scattering region forwards
(from left to right). In the results presented here, the desired field distribution on the line
of detectors are three foci at different locations.

To illustrate the effect of partially dynamic scattering media on an existing wave-
front shaping technique, phase conjugation was combined with the above described DDA
simulations to model the propagation of light through a region of randomly configured
scattering dipoles containing a dynamic pocket.

Fig. 2.4 shows three such light fields forming foci at three distinct locations in the
low scattering scenario, where the polarisability 𝛼 is low (10% the physically allowable
maximum value). For all three foci, optical phase conjugation successfully reconstructed
the desired intensity distribution at the line of detectors. In this limit, movement inside
the dynamic pocket (indicated by the circled dipoles) does not have a significant impact
on the formed field.
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Figure 2.4: Optical phase conjugation in the low scattering scenario.
Three foci are formed at different locations on the detector side (right) of the
simulation. Here, the polarisability of the dipoles is |𝛼| = 0.4𝑘−2

0 , which
is 10% of the maximum physically allowable value. The circled dipoles are
allowed to randomly move.

Fig. 2.5 shows the results for applying optical phase conjugation to create the same
three foci as above in Fig. 2.4 in the limit of high scattering. In this case, unlike above, the
fields fail to form a clean focus that is stable with the motion of the dynamic dipoles. The
proportion of intensity that is transmitted through the scattering region is much lower,
and it is necessary to saturate the heatmap (see Fig. 2.5b) to identify the focus.

Fig. 2.5c shows the fluctuations of the intensity of the field at the line of detectors as
the pocket of dynamic dipoles moves in time. The movements of the dipoles are described
by normal distributions centred on their initial location, with a standard deviation of 2.5𝜆.
The 𝑥 axis of the heatmaps corresponds to a different configuration of the dipoles (i.e.
different snapshots in time), and the 𝑦 axis corresponds to the line of detectors. The focus
created in the middle of the line of detectors is most heavily impacted by the movements.
Intuitively, the simplest path for the light to take to form a focus in the middle of the line
of detectors is through the centre of the simulated area, which is also where the dynamic
dipole pocket is located in this scenario.

This approach to wavefront shaping does not use any information to selectively nav-
igate light through a scattering region. This method presents an example of existing
techniques failing to address the problem of partially dynamic scattering media. If scat-
tering is weak, then the contribution from the scattered light is low and in in this case
digital phase conjugation is mainly accounting for free-space diffraction. If scattering is
strong, then the dipole positions become important because the contribution from the
scattered light is high. To counteract the motion of the dynamic dipoles, phase conjuga-
tion would need to be performed at the rate of the motion of the dipoles to form a stable
output field. In terms of experimental implementation, this approach typically requires
access to and control over the wavefront on both sides of the scattering region. This isn’t
feasible for applications such as imaging inside biological tissue, where one only has access
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to one side of the scattering material.

Figure 2.5: Optical phase conjugation through a partially dynamic
scattering region in the high scattering limit. (a) Three foci are formed
at different locations on the detector side (right) of the simulation. Here, the
polarisability of the dipoles is |𝛼| = 4𝑘−2

0 , the maximum physically allowable
value. (b) Saturated plots from (a), showing the focus. (c) Fluctuations of
the intensity at the detectors as the dynamic dipoles (circled) move. Dipole
configurations here are equivalent to time (variations in the locations of the
dipoles).
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2.2.2 The transmission matrix

Elastic scattering is a deterministic and linear process. It can be described using the
language of linear algebra, such that the entire scattering process is encapsulated in a
matrix. Several such matrices exist - they are discussed in this and coming sections.
These matrix formulations are helpful tools across many applications, enabling researchers
to gain insight into the scattering process.

One such matrix is the transmission matrix (TM), 𝒯, which provides information
about how an incident field is transmitted through a scattering medium. It is a subset of
the full scattering matrix, 𝑆, which is discussed in the next section. 𝒯 can be defined as

u = 𝒯v . (2.40)

Here v is the incident field and u is the transmitted field that has interacted with the
medium. This matrix was first measured in coherent optics by Popoff et al. in 2010 [25],
and has since been used to characterize multimode fibres [26], determine the multispectral
transmission matrix [83], or demonstrate endoscopic imaging through a single multimode
optical fibre [84].

Following from Eqn. 2.40, the input field v needed to form a desired transmitted field
u can be determined mathematically by inverting 𝒯:

v = 𝒯−1u . (2.41)

To illustrate the limitations of this approach, we simulate the performance of the TM
under partially dynamic scattering conditions. The input wavefront is expressed in the
pixel basis (though, in principle, any orthogonal complete set of modes would work). A
vector of length 𝑛𝑠 containing complex numbers defining the amplitude and phase of each
of the 𝑛𝑠 sources becomes the incident field v. To build the TM, each source is turned
on individually, and the resulting transmitted field on all of the 𝑛𝑑 detectors is recorded
as vector v of length 𝑛𝑑. Each one of these individual vectors becomes one column of the
𝑛𝑑 × 𝑛𝑠 transmission matrix.

Once 𝒯 has been calculated, Eqn. 2.41 can be used to determine the input field u
needed to form a focus (or other arbitrary field) through the scattering material. Because
the matrix is not necessarily square or unitary (𝑛𝑑 need not equal 𝑛𝑠), 𝒯−1 can be found
using the pseudo-inverse. In MATLAB, the pseudo-inverse of a matrix can be calculated
in several different ways including performing a singular value decomposition, or approx-
imated with the conjugate transpose of the TM (ctranspose() in MATLAB) assuming 𝒯
is close to unitary. This assumption holds if most of the light reaches the detectors (i.e.
the light is not lost/scattered away).

The choice of inverse impacts the performance of this method. Choosing the conjugate
transpose for the inverse of the TM is suitable in the low scattering scenario. Indeed, this
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is identical to the method of optical phase conjugation described in the previous section.
Here, the singular value decomposition is used instead of calculating the inverse.

Singular value decomposition to find the inverse transmission matrix

A matrix can be factorized into the product of three matrices:

𝐴 = 𝑈Σ𝑉 ∗ (2.42)

where matrices 𝑈 and 𝑉 act as basis transformation matrices from a given coordinate
system to singular vector coordinates, and Σ is a diagonal matrix with the singular values
𝜎𝑖 on its diagonal. The asterisk indicates the conjugate transpose.

To then find the inverse of 𝐴, calculate

𝐴−1 = 𝑉 Σ−1𝑈∗ (2.43)

where Σ−1 is found by taking the reciprocal of all non-zero elements of Σ.
An important detail with this method of calculating the inverse in the case of the TM

is how low-valued singular values are dealt with. If all singular values of the TM are used
to construct the inverse TM, a desired field can be formed optimally at the cost of low
total power in the desired field. The trade-off between the quality of the transmitted field
and the total power in the field must be considered whenever this approach is used.

One way to adjust this balance between field quality and power is included in MAT-
LAB’s pinv() pseudo-inverse function, which allows the inclusion of a tolerance. This sets
all singular values below the tolerance to zero – effectively ignoring the contributions of
the corresponding singular vectors. Another similar way to adjust this balance is to man-
ually determine how many singular values are to be included in calculating the inverse
TM, which is done in the next section to illustrate this method’s application.

Using the inverse transmission matrix

Figure 2.6: Normalised singular values of a transmission matrix.
Higher singular values correspond to singular vectors which are transmitted
through the scattering region with more power.
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Figure 2.7: Applying the inverse transmission matrix constructed
with the first 40 singular values for focusing through a partially
dynamic scattering region in the high scattering limit. (a) Heatmaps
of the intensity through the scattering dipole region, and lineplots showing
the desired intensity (dashed red line) and the achieved intensity (solid dark
green line) at the detectors. (b) Saturated heatmaps from (a). (c) Fluctu-
ations of intensity at detectors for movement of pocket of dipoles. Dipole
configurations here are equivalent to time (variations in the locations of the
dipoles).
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Fig. 2.6 shows an example of sorted normalised singular values of a simulated TM for
a specific configuration of 100 dipoles. The largest values indicate the singular vectors
with the largest transmitted power through the scattering dipole region.

To investigate the application of the transmission matrix method to the problem of
partially dynamic scattering media, the transmission matrix whose singular values are
shown in Fig. 2.6 and its corresponding dipole configuration were probed in more detail.

Fig. 2.7 shows the results of using the first 40 singular values to construct the inverse
TM, which is in turn used to focus onto three locations on the line of detectors, as was
done in the previous section by applying the technique of optical phase conjugation. The
intensity heatmaps and line plots in Fig. 2.7a show the creation of precisely the desired
field on the detectors. Fig. 2.7b show the same results, this time normalised to the
maximum intensity at the detectors, such that the focus is easily visible. If the dipoles in
the dynamic pocket move, the focus disappears into fluctuating noise over time, as seen
in Fig. 2.7c. The movements of the dipoles are described by normal distributions centred
on their initial location, with a standard deviation of 2.5𝜆. With this it is clear that
the wavefront found using the inverse transmission is extremely sensitive to the precise
configuration of a scattering system.

Fig. 2.8 shows the same results, this time using the first 20 singular values to construct
the inverse TM. Here, the resulting intensity distributions resemble those found using
optical phase conjugation in the high scattering limit in Fig. 2.5. The quality of the focus
is lower, with increased noise, when compared to the case of the inverse TM constructed
from the first 40 singular values in Fig. 2.7.

As discussed above, although the TM can be successfully used in experiment to both
create and practically use light that has propagated through static scattering media, its
performance decreases if the medium is no longer completely static. As above with optical
phase conjugation, this approach does not enforce that the generated wavefront should
avoid dynamic pockets within the scattering material. Therefore, as expected this existing
tool does not provide a good solution to the problem of finding light fields that navigate
through partially moving scattering systems.

2.2.3 The scattering matrix

The scattering matrix, 𝑆, provides all of the information needed to determine how an
incident field will interact with a given scattering medium, detailed in [85]. 𝑆 can be
described mathematically as

u = 𝑆v (2.44)

where u is the scattered field (reflected and transmitted parts) and v is the field incident
on the scatterer.

Although this is not experimentally measurable in many scenarios – especially those
in which the light is not purely forward scattered – 𝑆 is a powerful mathematical tool.
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Figure 2.8: Applying the inverse transmission matrix constructed
with the first 20 singular values for focusing through a partially
dynamic scattering region in the high scattering limit. (a) Heatmaps
of the intensity through the scattering dipole region, and lineplots showing
the desired intensity (dashed red line) and the achieved intensity (solid dark
green line) at the detectors. (b) Saturated heatmaps from (a). (c) Fluctu-
ations of intensity at detectors for movement of pocket of dipoles. Dipole
configurations here are equivalent to time (variations in the locations of the
dipoles).
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In the next section, it is used to find light fields that specifically focus onto or avoid a
specific location within a scattering medium.

2.2.4 Generalized Wigner-Smith Operator

The Generalized Wigner-Smith (GWS) operator provides an existing approach to ma-
nipulating incident wavefronts specifically to target certain points within scattering envi-
ronments [86]. In this section, we investigate a new approach using the GWS operator.
Previous work on applications of GWS operator only moved a single degree of freedom
of a single particle. Therefore the behavior of the operator in scenarios where multiple
particles are moved simultaneously is not yet well understood, and we explore how well
the GWS operator would work if we randomly move multiple particles as in a dynamic
pocket of dipoles. Although it was not specifically designed for this situation, the GWS
operator’s application to partially dynamic scattering systems is investigated and offers a
promising route to investigating these types of systems.

The GWS operator, 𝑄𝛼 is defined as

𝑄𝛼 = −𝑖𝑆−1𝑑𝑆
𝑑𝛼, (2.45)

where 𝑆 is the scattering matrix and 𝛼 is a configurational degree of freedom of the system
of interest. For the work presented here, 𝛼 will be a spatial degree of freedom (e.g. 𝑥,
𝑦, or 𝑧). This operator has its roots in the quantum mechanics time-delay operator by
Wigner and Smith [87, 88], where 𝛼 = 𝜔 (the frequency), such that the eigenvalues of 𝑄𝜔
provide the so-called “proper time delays” – the time delay between a mode entering and
exiting a system. Ambichl et al. generalised the operator in [89] to that shown above in
Eqn. 2.45.

In the same way that the eigenvalues of the time-delay operator𝑄𝜔 provide information
about the time delays experienced by the corresponding eigenstates, the eigenvalues of
the generalised operator 𝑄𝛼 provide information about the conjugate variable of 𝛼 in the
system described by the matrix 𝑆 due to a given eigenstate. For example, 𝑄𝑥 provides
information about the fields which impart momentum 𝑝𝑥 (and consequently force 𝐹𝑥 =
𝑑𝑝𝑥/𝑑𝑡) on the system, and the eigenstate corresponding to the largest eigenvalue of 𝑄𝑥
imparts the most momentum (and force).

Intuitively, the field that imparts the most momentum 𝑝𝑥, given by the eigenstate of𝑄𝑥
with the largest eigenvalue, will also focus the most light into the system. Alternatively,
the field that imparts the least momentum will focus the least light into the system.
Our hope in applying the GWS to an arrangement of dipoles such as that shown in
Fig. 2.2 is that eigenstates will be found that focus the least light into the dynamic pocket,
thereby minimising the interaction of the incident wavefront with the moving dipoles, and
subsequently minimising the fluctuations of the intensity at the detectors.
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For a system such as those considered in this chapter, calculating 𝑄𝛼 involves replacing
the derivative in Eqn. 2.45 with a finite difference:

𝑄𝛼 = −𝑖𝑆−1Δ𝑆
Δ𝛼. (2.46)

This is necessary because no analytical derivative of the scattering matrix with respect to 𝛼
is readily available in experiment. Because the aim of the analysis here is to investigate the
practical (experimental) applications of existing methods, including the GWS operator,
this is important.

Furthermore, to calculate this difference, three measurements of 𝑆 are needed:

𝑄𝛼 = −𝑖𝑆−1
0

𝑆Δ𝛼/2 − 𝑆−Δ𝛼/2
Δ𝛼 . (2.47)

Here 𝑆0 is the scattering matrix with the moving dipoles in their initial position, and
𝑆±Δ𝛼/2 are the scattering matrices with the dipoles displaced from these initial positions
by ±Δ𝛼/2.

Implementing this expression with the DDA simulations used in this chapter involves
approximating the scattering matrix to be the transmission matrix, such that the expres-
sion used here to determine the GWS operator in simulation is given by

𝑄𝛼 = −𝑖𝒯−1
0

𝒯Δ𝛼/2 −𝒯−Δ𝛼/2
Δ𝛼 . (2.48)

In contrast to existing investigations of the GWS operator, here a new situation is
explored. To determine how the random motions of dipoles influence the behavior of
the GWS operator, 𝛼 becomes 𝑟 here, which describes the individual random motions
of each single dipole within the dynamic pocket. Each dipole is allowed to make 3 ran-
dom movements as described above, and the transmission matrix for each of these three
configurations is calculated. These three matrices are then used to calculate 𝑄𝑟.

Decomposing 𝑄𝑟 into its eigenvectors and eigenvalues reveals information about the
force in the 𝑟 direction, 𝐹𝑟, exerted by the field onto the moving dipoles. Intuitively this
does not have a clear meaning because 𝑟 is random movement of multiple dipoles, but it
is expected that the lowest value eigenvalues still correspond to fields that interact least
with the dynamic pocket.

Each of the eigenvectors of 𝑄𝑟 contain the amplitude and phase of the individual
sources, which is propagated through the entire scattering region. A propagated eigen-
vector field will be called an eigenfield in this thesis for brevity. The eigenfields are ordered
from largest eigenvalue magnitude to smallest.

For the low scattering scenario, where the polarisability of the dipoles used is |𝛼| =
0.4𝑘−2

0 (10% of the maximum allowable value), approximating the scattering matrix with
the transmission matrix works well. Fig. 2.9 shows intensity heatmaps for 8 of the 120
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Figure 2.9: Intensity heatmaps showing eigenfields of 𝑄𝑟 for 100
randomly configured scattering dipoles in the low scattering sce-
nario where |𝛼| = 0.4𝑘−2

0 (10% of maximum value). The moving dipoles are
circled. The magnitude of each eigenvalue is included in the top left of each
heatmap. The indices of the eigenvalues are included in the bottom left of
each heatmap.

eigenfields of 𝑄𝑟 for this configuration of 100 dipoles. These plots are roughly representa-
tive of the trends seen in all 120 eigenfields. The index of the eigenvalue is included in the
bottom left corner of each heatmap. The magnitude of the eigenvalue, abs(𝜈), is included
in the top left corner. As before, the yellow dots indicate dipole locations, and the circled
yellow dots are the moving dipoles. The same information is replotted on a log scale to
emphasize the regions of the eigenfield with the lowest intensity in Fig. 2.10.

For eigenvalue 1 of 𝑄𝑟, which is the largest magnitude eigenvalue, the corresponding
eigenfield forms a focus onto the region containing the majority of the moving dipoles.
Intuitively, this agrees with the fact that this field will impart the largest force 𝐹𝑥 on the
pocket of moving dipoles. For all other eigenvalue indices (8-120), the field dances around
the pocket of moving dipoles. These eigenfields impart less and less force on the moving
scatterers for decreasing eigenvalue magnitude (increasing eigenvalue index).

In addition to finding fields that navigate around pockets of moving dipoles, it is
useful for the transmitted intensity to be as high as possible – this is useful for potential
future applications, such as imaging. Fig. 2.11 investigates the intensity transmitted to the
detectors, as well as the levels of fluctuations quantified by the standard deviation and the
ratio 𝜉, for all eigenfields of 𝑄𝑟. The solid light red line shows that for increasing eigenvalue
index, the mean intensity reaching the detectors decreases dramatically. The solid light
green line shows the mean of the standard deviation of the intensity at the detectors
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Figure 2.10: Log scale intensity heatmaps showing eigenfields of 𝑄𝑟
for 100 randomly configured scattering dipoles in the low scattering
scenario where |𝛼| = 0.4𝑘−2

0 (10% of maximum value). The moving dipoles
are circled. The magnitude of each eigenvalue is included in the top left of
each heatmap. The indices of the eigenvalues are included in the bottom left
of each heatmap.

Figure 2.11: Performance of the eigenfields of 𝑄𝑟 for 100 dipoles in
the low scattering scenario. Here 𝛼 = 0.4𝑘−2

0 (10% of maximum). The
normalised lines indicate 𝜉 (dark green), mean intensity (light red), and mean
standard deviation (light green) of the intensity at the detectors.

over 55 time steps/configurations of the moving pocket of dipoles. The solid dark green
line plotting 𝜉 for all eigenvalues, which clearly shows the trade-off occurring between
the intensity and the standard deviation. This plot is normalised to show the relative
differences in the values plotted. Only ∼15 out of the 120 total eigenfields (roughly,
indices 20-35) decrease the mean standard deviation of the intensity over time while
simultaneously transmitting approximately the same amount of intensity to the detectors.
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Figure 2.12: Intensity heatmaps showing eigenfields of 𝑄𝑟 for 100
randomly configured scattering dipoles in the high scattering limit
where |𝛼| = 4𝑘−2

0 (the maximum value). The moving dipoles are circled. The
magnitude of each eigenvalue is included in the top left of each heatmap. The
indices of the eigenvalues are included in the bottom left of each heatmap.

Next, the high scattering limit is considered in the same way as above. 𝑄𝑟 for 100
randomly configured dipoles is calculated, this time with 𝛼 = 4𝑘−2

0 (the maximum phys-
ically allowed value). Fig. 2.12 and Fig. 2.13 show 8 of the 120 eigenfields for 𝑄𝑟 on a
linear and log scale, respectively. It is less obvious that the lower magnitude eigenvalues
steer around all of the moving scatterers, as was seen above in Fig. 2.9. Here, the shaped
fields need to not only avoid the region containing the moving dipoles themselves, but
also avoid exciting all of the static dipoles in a way that causes the multiply scattered
waves from these dipoles to constructively interfere onto and therefore excite the moving
dipoles.

As above for the low scattering scenario, the mean intensity, standard deviation, and 𝜉
at the detectors were calculated to get a better picture of the performance of each eigenfield
in the high scattering limit. Fig. 2.14 shows these normalised results. In contrast to the
low scattering scenario, fewer fields exist that decrease 𝜉 by simultaneously decreasing
the mean standard deviation of the intensity at the detectors and increasing (or at least
maintaining) the mean intensity at the detectors.

In summary, although it is possible to find fields that thread light around pockets
of moving dipoles in these scenarios, there are no constraints on what the intensity at
the detectors must look like for the eigenfields. The simplest solution to minimising the
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Figure 2.13: Log scale intensity heatmaps showing eigenfields of 𝑄𝑟
for 100 randomly configured scattering dipoles in the high scatter-
ing limit where |𝛼| = 4𝑘−2

0 (the maximum value). The moving dipoles are
circled. The magnitude of each eigenvalue is included in the top left of each
heatmap. The indices of the eigenvalues are included in the bottom left of
each heatmap.

Figure 2.14: Performance of the eigenfields of 𝑄𝑟 for 100 dipoles
in the high scattering limit. Here 𝛼 = 4𝑘−2

0 (the maximum value). The
normalised lines indicate 𝜉 (dark green), mean intensity (light red), and mean
standard deviation (light green) of the intensity at the detectors.

interaction with the moving scattering pockets is to reduce the intensity everywhere – in-
cluding the detectors. This result is clearly visible in the mean intensity at the detectors
of the fields corresponding to the smallest magnitude (largest index) eigenvalues in both
the low scattering and high scattering scenarios, such that only a small percentage of the
total intensity reaches the detectors. Therefore, these eigenfields may not be useful for ap-
plications, such as imaging through dynamic scattering media, which rely on information
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extracted by probing the far side of a scattering system with light.
Furthermore, approximating 𝑆 with the TM works well for the low scattering case

(low polarisability, 𝛼, of scattering dipoles). For higher amounts of scattering, however,
the transmission matrix and therefore the approximated GWS operator approach do not
perform as well.

Another limitation of this method is that determination of the full scattering matrix
in experiment is very challenging, if not impossible. Even for the simulations presented
here, not all of the light is incident on the detectors – this means that the full scattering
matrix is not captured, and the calculated matrix is not actually unitary. This issue is
clearly seen in the decrease in performance of the GWS operator eigenfields for the high
scattering case. Experimentally then, it is most feasible to apply this operator in the low
scattering scenario. However, even in this limit, this method requires knowledge of, access
to, and control over the moving dipoles.

An additional difficulty that the GWS operator faces in experimental implementation
is that the entire scattering or transmission matrix needs to be calculated quickly (at
speeds far exceeding scattering motion). In order to build the derivative of the scattering
matrix in Equation 2.45, we need to measure an entire scattering or transmission matrix
while the moving pockets are essentially stationary, and repeat this 3 times for 3 different
configurations of scatterers. Measuring full scattering or transmission matrices in short
times is challenging and already a major bottle-neck in wavefront shaping techniques
based on these matrices. This strongly reduces the viability of the GWS approach for real
applications.

2.2.5 Deposition matrix

Another existing method that uses a wavefront shaping based approach to generating fields
that target certain points within scattering environments is the deposition matrix. It was
recently introduced as a way to deposit energy into a specified area within a scattering
region in waveguide experiments in [90]. Bender et al. defined the deposition matrix 𝑍 as

𝑍𝑚𝑛 ≡ [𝜖(𝑦𝑚, 𝑧𝑚)𝐴/𝑀]1/2𝐸𝑛(𝑦𝑚, 𝑧𝑚), (2.49)

where 𝐴 is the deposition area uniformly sampled by 𝑀 points, (𝑦𝑚, 𝑧𝑚) gives the location
of the 𝑚th sampling point, and 𝜖 is the dielectric constant.

Calculating the deposition matrix 𝑍 and taking the eigenvalues and eigenvectors of
𝑍†𝑍 provides input wavefronts given by the eigenstates that deposit energy equal to the
magnitude of the eigenvalues into the targeted region. Eqn. 2.49 can be interpreted as
stating that the deposition matrix 𝑍 can be calculated by determining the transmission
matrix to every point within the desired deposition area in a scattering region and nor-
malising by the factor in square brackets in the equation.



56 Chapter 2. Dynamic scattering media and existing wavefront shaping methods

Intuitively, this approach can be understood as determining the fields that deliver the
most energy 𝑒 to a region which is proportional to the following:

𝑒 ∝ 𝐸†
𝑛(𝑦𝑚, 𝑧𝑚)𝐸𝑛(𝑦𝑚, 𝑧𝑚) = 𝐸†

in𝒯†𝒯𝐸in (2.50)

where the transmission matrix describes the transformation from input field 𝐸in to the
field at a location within the deposition area 𝐸𝑛(𝑦𝑚, 𝑧𝑚) via

𝐸𝑛(𝑦𝑚, 𝑧𝑚) = 𝒯𝐸in. (2.51)

The fields within the deposition area are excited by the input eigenfields of 𝑍†𝑍,
ordered in terms of how much energy they deliver to the output plane (given by the
magnitude of the corresponding eigenvalue) – thus revealing internal fields that minimally
interact with the deposition area containing the time-varying parts of the medium. This
seems like a promising approach to the problem of finding light fields that avoid a desired
area in a scattering region as long as the field in that region can be probed.

This recently developed method is investigated in coupled dipole simulations, as de-
scribed previously. Here, the normalising factors in Eqn. 2.49 are ignored because all that
we are concerned with here is the relative amounts of energy deposited into a given area,
not the absolute values.

First, the case of the forward-scattering limit is considered. For 100 randomly config-
ured dipoles in a simulated space of dimensions 30 × 30 wavelengths, a deposition area
with radius 5 wavelengths centred in the simulated region is defined. The dipoles’ polaris-
ability is set to 𝛼 = 0.4𝑘−2

0 (10% of the maximum value), and the necessary transmission
matrices to each point within the deposition area are calculated. The deposition matrix
𝑍 then consists of 𝑛𝑠 (number of sources) columns and 𝑛𝑎 (number of sampled points
in the deposition area) rows, such that each column contains the information of how a
single input mode is transformed to the field in the deposition area. Next, as described
above, the matrix product 𝑍†𝑍 is calculated, and the resulting matrix is decomposed into
its eigenvectors and eigenvalues. The eigenvalues are ordered from smallest magnitude to
largest, corresponding to the smallest and largest amounts of energy deposited into the
deposition area, respectively.

Fig. 2.15 and Fig. 2.16 show intensity heatmaps for 8 of the 120 eigenfields of the
deposition matrix in the low scattering scenario on both the linear and log scales, re-
spectively. The eigenfields corresponding to the lowest magnitude eigenvalues completely
avoid the entire scattering region. These fields deposit the least amount of light into the
deposition area, as expected. The reason that these fields completely avoid the entire
scattering region, and not just the deposition area, is to remove the light that would reach
the deposition area through multiple scattering off of the other dipoles. Eigenfield 86
(bottom row, 2nd heatmap from left in both figures) interestingly seems to navigate com-
pletely around only the deposition area. The largest eigenvalue (eigenfield 120 – bottom
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row, last heatmap in both figures), on the other hand, focuses the maximum amount of
light into the deposition area. Again, this is as expected because the largest magnitude
eigenvalue of 𝑍†𝑍 corresponds to the field which deposits the largest amount of energy
into the deposition area.

Fig. 2.17 investigates the intensity that reaches the detectors. The normalised log
scale plot reveals that the eigenfields of 𝑍†𝑍 increase the mean intensity that reaches the
detectors for increasing eigenvalue. This corresponds to an increase in the mean standard
deviation of the intensity at the detectors as well. However, the intensity at the detectors
increases orders of magnitude more than the standard deviation, therefore resulting in a
reduction in 𝜉 for increasing eigenvalue index.

Figure 2.15: Eigenfields of 𝑍†𝑍 for 100 randomly configured scat-
tering dipoles in the low scattering scenario where |𝛼| = 0.4𝑘−2

0 (10%
of the maximum value). The magnitude of the eigenvalue (top left of each
heatmap) indicates the corresponding amount of energy deposition into the
pocket of moving dipoles (circled) for that eigenfield. The indices of the
eigenvalues are included in the bottom left of each heatmap.
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Figure 2.16: Eigenfields of 𝑍†𝑍 for 100 randomly configured scat-
tering dipoles in the low scattering scenario where |𝛼| = 0.4𝑘−2

0 (10%
of the maximum value). The magnitude of the eigenvalue (top left of each
heatmap) indicates the corresponding amount of energy deposition into the
pocket of moving dipoles (circled) for that eigenfield. The indices of the
eigenvalues are included in the bottom left of each heatmap.

Figure 2.17: Performance of the eigenfields of 𝑍†𝑍 for a configura-
tion of 100 dipoles in the low scattering scenario. Here 𝛼 = 0.4𝑘−2

0
(10% of the maximum value). The normalised lines indicate 𝜉 (dark green),
mean intensity (light red), and mean standard deviation (light green) of the
intensity at the detectors.

Figure 2.18: Eigenfields of 𝑍†𝑍 for 100 randomly configured scatter-
ing dipoles in the high scattering limit where |𝛼| = 4𝑘−2

0 (the maximum
value). The magnitude of the eigenvalue (top left of each heatmap) indicates
the corresponding amount of energy deposition into the pocket of moving
dipoles (circled) for that eigenfield. The indices of the eigenvalues are in-
cluded in the bottom left of each heatmap.
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Figure 2.19: Eigenfields of 𝑍†𝑍 for 100 randomly configured scatter-
ing dipoles in the high scattering limit where |𝛼| = 4𝑘−2

0 (the maximum
value). The magnitude of the eigenvalue (top left of each heatmap) indicates
the corresponding amount of energy deposition into the pocket of moving
dipoles (circled) for that eigenfield. The indices of the eigenvalues are in-
cluded in the bottom left of each heatmap.

Next the high scattering limit is considered for the same system of scattering dipoles.
Fig. 2.18 shows 8 of the 120 eigenfields. As before, the eigenfields corresponding to the
lowest magnitude eigenvalues completely avoid the scattering region. Although eigenfield
86 shows reduced intensity within the deposition area, it is not as dramatic as in the low
scattering scenario shown in Fig. 2.15. Eigenfield 120, as above, focuses the light into the
deposition area, therefore depositing the most energy, as anticipated.

The intensity that reaches the detectors is again analysed, this time for the high
scattering limit. Fig. 2.19 shows log scale normalised plots of the mean intensity, mean
standard deviation, and 𝜉 for the above describe scenario. As before, the eigenfields of
𝑍†𝑍 prioritize depositing energy into the deposition area, and do not accomplish the
desired task of increasing mean intensity while decreasing mean standard deviation of the
intensity.

An obstacle that the deposition matrix approach faces is experimental implementation.
Though possible in waveguide experiments, it is much more challenging in free-space optics
to measure this matrix. Experimental implementation of the deposition matrix in such
an optics experiment would prove incredibly difficult due to the necessary calculation
of many transmission matrices. As mentioned in the previous section, calculating the
transmission matrix is often the biggest bottleneck in an experiment. Having to calculate
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Figure 2.20: Performance of the eigenfields of 𝑍†𝑍 for a configura-
tion of 100 dipoles in the high scattering limit. Here 𝛼 = 4𝑘−2

0 (the
maximum value). The normalised lines indicate 𝜉 (dark green), mean inten-
sity (light red), and mean standard deviation (light green) of the intensity at
the detectors.

a multitude of these transmission matrices would take an prohibitively large amount of
time. Additionally, one needs access to the full field information at every point sampled
in the deposition area, which would not be possible in the case of tissue, for example.

Ultimately, although the deposition matrix succeeds in finding fields that avoid a
specified area in a scattering region, it seems difficult to envision its practicality in a real
world scenario such as imaging through partially dynamic scattering media.

2.2.6 Brief conclusion on existing approaches

Although some of the methods presented in this chapter hold promise for finding light
fields that carefully navigate through partially dynamic scattering media, it is clear that
novel approaches are required to perform the dual objectives set out in this thesis –
creating a light field that simultaneous maintains or increases the amount of intensity at
the detectors while also decreasing the standard deviation of the intensity at the detectors
due to the movement of pockets of dynamic dipoles. None of the methods presented so
far achieve both of these objectives simultaneously.
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Chapter 3

Novel approaches to wavefront
shaping in dynamic scattering
media

The art of life lies in a constant readjustment to our surroundings.

Kakuzo Okakura

T
his chapter provides a path forward in the quest to overcome the challenges
posed by partially dynamic scattering media. Traditional methods have strug-
gled to perform effectively in such complex environments, necessitating a fresh

approach. Here, novel techniques are crafted specifically for the realm of partially dy-
namic scattering media. Wavefront shaping in the presence of dynamic scattering is a
formidable challenge, and while one common solution involves speeding up the charac-
terization of scattering materials through faster spatial light modulators (SLMs), this
presents technological bottlenecks for widespread application. Instead, we venture into
the uncharted territory between static and fully dynamic scattering media: partially mov-
ing scattering media. This domain features pockets of moving scatterers embedded within
a predominantly static matrix of scatterers.

The motivation behind this exploration stems from a deeper examination of dynamic
complex media. Many dynamic materials exhibit various decorrelation rates, potentially
classifying them as partially moving scattering media if wavefront shaping techniques can
operate at the pace of the slowest decorrelations. This effectively renders the slowest
moving components of a dynamic scatterer as quasi-static with respect to the wavefront
shaping process.

Our hope in conducting this research is to provide new tools for future technologies
that enable innovation in many fields. The applications of such research extend far be-
yond academic research, promising breakthroughs in fields ranging from medical imaging
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to telecommunications, where manipulating light in complex, partially dynamic environ-
ments opens new vistas of possibility. A poignant example is found in the human body,
where blood vessels carrying blood flow represent faster moving regions amidst a more
slowly changing scattering material; counteracting this dynamic scattering could allow fu-
ture technologies for enhanced in vivo medical imaging. For autonomous vehicles, imaging
through dynamic scattering materials could assist in precisely navigating through chal-
lenging conditions, such as fog, rain, or snow, by providing real-time information about
the environment and obstacles. The performance of free-space optical communication sys-
tems could also be enhanced, especially in adverse weather conditions, by understanding
and mitigating scattering effects in dynamic atmospheric conditions.

In the preceding chapter, we introduced a performance metric denoted as 𝜉 to evaluate
methods. This metric serves a dual purpose: minimizing fluctuations in detector intensity
while preserving the incident light on detectors. In the current chapter, we continue to
employ this metric to assess the efficacy of novel techniques. Additionally, within this
chapter, we explore a range of fresh figures of merit tailored to several phase optimization
algorithms. The primary objective is to guide wavefront-shaped light fields through par-
tially dynamic scattering media while either maintaining or enhancing transmitted light
levels and concurrently diminishing the standard deviation of transmitted intensity.

This chapter introduces innovative techniques, the first of which is a novel matrix
operator we call the time-averaged transmission matrix. This matrix enables the compu-
tation of various incident wavefronts designed to circumvent the dynamic regions within
partially moving scattering media. Furthermore, three novel iterative phase optimization
algorithms are unveiled. The initial algorithm is a straightforward iterative phase opti-
mizer that seeks to minimize 𝜉 in order to identify a wavefront that avoids the dynamic
pocket. The subsequent two algorithms are adjoint iterative phase optimizers engineered
to minimize novel figures of merit specifically designed to tackle the challenges posed
by partially dynamic media. The chapter wraps up with a discussion of each approach,
elucidating their respective strengths and weaknesses.

3.1 Time-averaged transmission matrix
Drawing inspiration from the existing wavefront shaping method of the transmission ma-
trix, a novel matrix operator is introduced that is specifically tailored to the problem
of dynamic scattering materials. The time-averaged transmission matrix, Tav, presents
an eigenvalue-based approach to a solution that provides multiple fields that carefully
navigate through partially dynamic scattering materials.

This new matrix operator is developed in [91]. As the name suggests, the columns
of this matrix consist of the time-averaged output field at the detectors. The intuition
behind applying Tav is that, over time, the contributions of a randomly moving pocket of
scatterers will average to near-zero, while the contributions of the light paths that avoid
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the pocket of dynamic scattering will average to constant, higher values. The information
in this matrix could then be used to find fields that avoid moving scattering regions.

The total time-averaged power 𝑃 arriving at the detectors can be written in terms of
Tav as

𝑃 = v†
avvav = u†T†

avTavu. (3.1)

where vav is the vectorised time-averaged field at the detectors, and u is the field incident
on the scattering material.

Unlike the Generalized Wigner-Smith (GWS) operator and the Deposition matrix, the
time-averaged transmission matrix doesn’t require access to the inside of the scattering
material – which often is not feasible in real optics scenarios, such as with biological
tissue. Although similar concepts have been considered in the field of wireless communi-
cations [92–94], here we demonstrate the first application of this matrix in optics, and the
first application to reducing temporal fluctuations in transmitted fields.

3.1.1 Experimental results

This approach to finding optimised wavefronts that will navigate around areas of moving
scattering material is first implemented in experiment. Proof-of-principle experiments
were recently uploaded in a pre-print on ArXiv [91]. These experiments were led by
Dr. Chaitanya Mididoddi.

We experimentally emulate a dynamic scattering material with a cascade of phase
planes separated by free-space. This type of representation has been shown to accurately
simulate the scattering that occurs in the atmosphere [95–97] and multiple scattering
samples [98, 99]. We implemented such a scattering scenario with an SLM and a mirror,
creating a multi-pass configuration where the incident laser light is reflected multiple times
between the two, incident on three separate sections of the SLM screen at each pass [99].
This experimental scatterer demonstrates this technique in the forward scattering case,
where nearly all of the light that is incident on the scattering sample is transmitted to
the output.

Fig. 3.1a shows a simplified schematic of the experiment: probe fields are sequentially
sent through the scattering region and imaged onto a camera using off-axis digital holog-
raphy [24] to recover the full complex field at the camera, where the fields are averaged
to create the columns of Tav. Fig. 3.1b shows the differences in eigenvalue magnitude for
weak (solid red) and strong (dotted purple) fluctuations, where weak fluctuations corre-
spond to a single small pocket such as from the slow optimisation experiment, and strong
fluctuations are shown in Fig. 3.1c. Fig. 3.1d shows three snapshots in time of experi-
mentally created transmitted eigenfields for the weakly scattering scenario at the camera
from largest (left) to smallest (right) eigenvalue. The largest eigenvalue fields fluctuated
very minimally, while the smallest eigenvalue fields fluctuate quite a lot. Fig. 3.1e shows
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Figure 3.1: Figure 3 and the corresponding caption from [91] show-
ing experimental implementation of Tav.(a) Schematic of experimental
set-up. A sequence of orthogonal probe fields are individually transmitted
through the medium, e.g. u1,u2,u3. For each input, the corresponding
time-averaged output field is recorded, e.g. ⟨v1⟩, ⟨v2⟩, ⟨v3⟩, and arranged
column-by-column to build the time-averaged TM Tav. (b) The magnitudes
of the eigenvalues of T†

avTav, for a weakly (i) and strongly (ii) fluctuating
dynamic medium. Both are arranged in ascending order and normalised to
a maximum value of 1. The weakly fluctuating medium is the same as used
in the earlier experiments. An example of the strongly fluctuating medium
is shown in (c), with moving regions highlighted in red. (d) Excitation of
selected fluctuation-eigenchannels in the weakly fluctuating medium. Each
column shows the output when the medium is illuminated with different
eigenvectors. Each row shows the output at a different time – i.e. for 3 dif-
ferent configurations of the dynamic regions of the medium. We see the high
index eigenvectors are stable with respect to these movements, while the low
eigenvectors are not. (e) Eigenvector projection through a strongly fluctuat-
ing medium. (f) Enhanced focusing through strongly fluctuating scattering
media using the time-averaged TM. Left column: an attempt to make a fo-
cus using the conventional inverse TM, which is measured while the medium
fluctuates. We see a poor contrast focus which fluctuates strongly as the
medium reconfigures. Right column: An output focus created through the
same medium, with the input field generated using the top 100 most stable
eigenvectors of T†

avTav. Here we see that the contrast and stability of the
output focus is significantly improved.
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experimentally created fields of the largest and smallest eigenvalues for a strongly fluctua-
tion scatterer. Using the eigenvectors corresponding to the top 100 eigenvalues, enhanced
focusing was demonstrated and compared to using the inverse TM for focusing through a
strongly fluctuating scattering region, as seen in Fig. 3.1f.

3.1.2 Simulation results

The experiment presented in the previous section demonstrates the utility of the time-
averaged transmission matrix in the forward scattering scenario. My role in this project
was to investigate how well this new wavefront shaping technique works for more difficult
scenarios when high levels of multiple scattering and the effect of diffusion are taken into
account.

The time-average transmission matrix can be easily calculated using the DDA for
a random configuration of scatterers, such as the one illustrated in Fig. 2.1. Each of
the sources can have their amplitude and phase individually manipulated, such that any
arbitrary incident wavefront can be created to create the probe fields to build the time-
averaged transmission matrix. The spacing between the sources and between the detectors
must be no larger than 𝜆/2; this is to allow full control of the wavefront by sampling and
creating fields at the diffraction limit.

The array of sources can be described by a vector containing complex numbers that de-
scribe the phase and amplitude of each individual source, which can be easily manipulated
to generate the needed fields. The results below offer insight into the typical behavior of
this method in simulation for highly diffusive samples. Because this is a high-dimensional
problem, and the numerical simulation has many parameters that can be individually
adjusted, several scenarios are considered.

First, a region of size ∼ 30 × 30 wavelengths is considered. The simulation space
contains a slab of 100 randomly positioned dipoles, with a dynamic pocket in the centre
of the slab containing 15 dynamic dipoles. For these simulations, the high scattering limit
(|𝛼| = 4𝑘−2

0 ) is used unless otherwise stated. In these situations, the least amount of
light reaches the detectors, with much of the scattered light lost by the multiple highly
scattering events in the light’s path. In comparison to the forward scattering experiments
presented in the previous section, these simulations represent a more difficult scenario
wherein the wavefront shaping process must compensate for the maximum physically
allowable scattering of a sample containing many scattering dipoles within a relatively
small area.

The time-averaged TM is calculated as described above for the scattering system.
Next, the matrix product T†

avTav is calculated and the resulting matrix’s eigenvectors
and eigenvalues are determined. The magnitude of the eigenvalues corresponds directly
to the amount of power transmitted to the detectors through the scattering region. The
corresponding eigenvectors provide the wavefronts that are launched from the sources.
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Figure 3.2: Fluctuations of transmitted field for each eigenfield of
T†

avTav for a system of 100 dipoles, 15 of which move, in the high scattering
limit (|𝛼| = 4𝑘−2

0 ). The standard deviation of movement of the dynamic
dipoles is 1.25𝜆, and the fields are averaged over 𝑛 = 55 configurations. The
sources and detectors are spaced evenly 𝜆/4 apart. The normalised values of
the level of fluctuation 𝜉 (dark green), mean transmitted intensity (light red),
and mean standard deviation of the transmitted amplitude over time (light
green) are plotted.

Here, these eigenvalues and eigenvectors are sorted by ascending magnitude of the eigen-
values.

Fig. 3.2 shows values of the mean transmitted intensity, mean standard deviation of
the transmitted field amplitude, and fluctuations of the transmitted field quantified by
𝜉 for each of the eigenvalues. As expected from Eqn. 3.1, there is a trend of increasing
intensity transmitted to the detectors for larger eigenvalues. Notably, there are a few
fields corresponding to some of the largest eigenvalues that see a decrease in the mean
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Figure 3.3: Last 8 eigenfields of T†
avTav for a system of 100 dipoles,

15 of which move, in the high scattering limit (|𝛼| = 4𝑘−2
0 ). The

standard deviation of movement of the dynamic dipoles is 1.25𝜆, and the
fields are averaged over 𝑛 = 55 configurations. The sources and detectors are
spaced evenly 𝜆/4 apart.

Figure 3.4: Log scale version of eigenfield heatmaps from Fig. 3.3.

standard deviation of the field amplitude as well. The last 8 eigenfields are plotted in
Fig. 3.3 and Fig. 3.4, the last few of which clearly steer light around the pocket of dynamic
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dipoles.
The optimiser does not rely on knowledge about the pocket of dipoles, including the

actual location of this pocket within the scattering material. To illustrate this, the sim-
ulation is re-run where the pocket of dynamic scatterers is moved to a different location.
Fig. 3.5 shows that several eigenfields exist that show a reduced mean standard deviation
of the transmitted field amplitude with an increased mean transmitted intensity for this
new situation. Fig. 3.6 and Fig. 3.7 show the last 8 eigenfields for the time-averaged TM
in this scenario. As before, the last few eigenfields send most of the light into the regions
around the dynamic dipoles.

Figure 3.5: Fluctuations of transmitted field for each eigenfield of
T†

avTav for a system of 100 dipoles, 15 of which move, in the high scattering
limit (|𝛼| = 4𝑘−2

0 ), where the pocket has been translated away from the centre
of the scattering region. The standard deviation of movement of the dynamic
dipoles is 1.25𝜆, and the fields are averaged over 𝑛 = 55 configurations. The
sources and detectors are spaced evenly 𝜆/4 apart. The normalised values of
the level of fluctuation 𝜉 (dark green), mean transmitted intensity (light red),
and mean standard deviation of the transmitted amplitude over time (light
green) are plotted.



3.1. Time-averaged transmission matrix 69

Figure 3.6: Last 8 eigenfields of T†
avTav for a system of 100 dipoles,

15 of which move, in the high scattering limit (|𝛼| = 4𝑘−2
0 ), where

the pocket of dynamic dipoles has been translated to a new location. The
standard deviation of movement of the dynamic dipoles is 1.25𝜆, and the
fields are averaged over 𝑛 = 55 configurations. The sources and detectors are
spaced evenly 𝜆/4 apart.

Figure 3.7: Log scale version of eigenfield heatmaps from Fig. 3.6.
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This method also works if the dynamic dipoles’ motion is larger. To demonstrate this,
the standard deviation of the motion of the dynamic dipoles is doubled to 2.5𝜆. Fig. 3.8
shows the performance of each eigenfield. Notably, there are now less fields for which
the intensity is increased while the standard deviation is also decreased when compared
with the previous scenario with a smaller standard deviation of movement. Fig. 3.9 and
Fig. 3.10 show the last 8 eigenfields for this simulation.

Figure 3.8: Fluctuations of transmitted field for each eigenfield of
T†

avTav for a system of 100 dipoles, 15 of which move, in the high scattering
limit (|𝛼| = 4𝑘−2

0 ). The standard deviation of movement of the dynamic
dipoles is 2.5𝜆, and the fields are averaged over 𝑛 = 200 configurations. The
sources and detectors are spaced evenly 𝜆/4 apart. The normalised values of
the level of fluctuation 𝜉 (dark green), mean transmitted intensity (light red),
and mean standard deviation of the transmitted amplitude over time (light
green) are plotted.
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Figure 3.9: Last 8 eigenfields of T†
avTav for a system of 100 dipoles,

15 of which move, in the high scattering limit (|𝛼| = 4𝑘−2
0 ). The

standard deviation of movement of the dynamic dipoles is 2.5𝜆, and the
fields are averaged over 𝑛 = 200 configurations. The sources and detectors
are spaced evenly 𝜆/4 apart.

Figure 3.10: Log scale version of eigenfield heatmaps from Fig. 3.9.
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Finally, the low scattering case is considered. Fig. 3.11 shows the performance of the
eigenfields for this scenario. Here the forward transmission of as much light as possible
is prioritised over reducing the fluctuations due to the movement of the dynamic dipoles.
However, there are still a few fields that avoid the moving scatterer (most obviously
eigenfield 100). Fig. 3.12 and Fig. 3.13 show heatmaps of some of the last eigenfields,
including eigenfield 100.

This method for the low scattering case does not perform as well as for the high scat-
tering limit because it increases time-averaged power levels on the detector plane. There
are two ways this can happen: first the way we want, by reducing the fluctuations (hence
the moving media is avoided) so the field doesn’t time-average to near zero. However,
if the fluctuations don’t average to zero, then the time-average intensity on the detector
plane can also be increased a second way, by shaping the input wavefront to transmit more
scattered light to the output plane, regardless of if the fluctuating region is avoided or not.
This second way is dominating here, because lower levels of scattering mean a dipole’s
movement makes less of a difference to the structure of the output field. Therefore, the
field doesn’t average away as effectively as in the highly scattering case.

Notably, the fluctuations of the field don’t go completely to zero in any of the situations
considered here. This is due to the highly multiply scattering nature of the samples. Even
if the incident wavefront is shaped such that all of the light is focused to the furthest
point from the dynamic pocket within the scattering material, the dynamic dipoles will
still be excited by the incident light. This is because each of the dipoles scatters circular
waves in response to the incident wavefront, allowing such a focused field to interact with
the dynamic pocket after multiple scattering events. The eigenfields feature ‘stripes’ of
intensity which increase in spatial frequency as the eigenvalue increases. We speculate
that a possible explanation for this phenomenon is that by avoiding diffraction out to the
side similar to the behavior of a Bessel beam [100], such that the maximum amount of
power is transmitted to the detector plane.
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Figure 3.11: Fluctuations of transmitted field for each eigenfield of
T†

avTav for a system of 100 dipoles, 15 of which move, in the low scattering
scenario (|𝛼| = 0.4𝑘−2

0 ). The standard deviation of movement of the dynamic
dipoles is 1.25𝜆, and the fields are averaged over 𝑛 = 55 configurations. The
sources and detectors are spaced evenly 𝜆/4 apart. The normalised values of
the level of fluctuation 𝜉 (dark green), mean transmitted intensity (light red),
and mean standard deviation of the transmitted amplitude over time (light
green) are plotted.

Figure 3.12: Last 8 eigenfields of T†
avTav for a system of 100 dipoles,

15 of which move, in the low scattering scenario (|𝛼| = 0.4𝑘−2
0 ). The

standard deviation of movement of the dynamic dipoles is 1.25𝜆, and the
fields are averaged over 𝑛 = 55 configurations. The sources and detectors are
spaced evenly 𝜆/4 apart.
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Figure 3.13: Log scale version of eigenfield heatmaps from Fig. 3.12.
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Although this approach finds multiple eigenfields that navigate around the dynamic
pocket in the highly scattering scenario, the exact behavior of the eigenfields and sub-
sequently which of those eigenfields successfully avoid the pocket is highly dependent on
the scattering material. Choosing the best eigenfield is not straight-forward. This limits
the applicability of the time-averaged transmission matrix because one would need to test
each eigenfield to determine how it fluctuates at the detectors before being certain the
field avoids the dynamic pocket of scatterers. This limitation does not apply to the exper-
iments presented above, because in the experiments all of the light is forward scattered.
Therefore, the eigenvalues are well correlated with the light fields that avoid the moving
regions.

3.2 Simple iterative phase optimisation
Another method for finding fields that navigate around pockets of moving scatterers within
a sample of static scatterers is to introduce an iterative phase optimiser which attempts
to minimise the intensity fluctuations quantified by 𝜉 = 𝜎√

𝐼/ 𝐼 in Eqn. 2.36 for a light
field that travels through a partially moving scatterer. This simple iterative phase opti-
misation iteratively adjusts the phase of each source such that the light in the scattering
region interacts minimally with the moving scatterers, resulting in a reduction in 𝜉 at the
detectors, and thereby choosing a path that selectively avoids these regions.

This straight-forward algorithm is detailed below:
1. For the 𝑖th source, a small phase change Δ𝜙 is added to the complex amplitude such

that the phase of the source 𝜙𝑖 is now given by 𝜙𝑖 +Δ𝜙.

2. The total input field is propagated through the partially dynamic scattering medium,
and the intensity at the detectors is recorded for 𝑛𝑚 random movements of the
dynamic dipoles. This is analogous to recording the intensity at a camera for a fixed
integration time, for example. Each measurement is saved separately, not averaged
at this point.

3. The figure of merit (FOM) 𝜉Δ𝜙 is calculated from these intensities.

4. Steps 1-3 are repeated, this time for a small phase change −Δ𝜙, such that 𝜉−Δ𝜙 can
be calculated.

5. Steps 1-3 are again repeated, this time for the initial phase of the source, such that
𝜉0 can be calculated.

6. From these three scenarios, the phase configuration which minimises the FOM 𝜉 is
selected.

7. The chosen phase configuration that minimises 𝜉 is saved and becomes the initial
phase of the chosen source for the start of next iteration, when these steps are
repeated for the next consecutive source.



76 Chapter 3. Novel approaches to wavefront shaping in dynamic scattering media

Subsequently, one iteration of the optimiser will refer to one optimisation of every source
(i.e. 𝑛𝑠 repetitions of the above described steps).

We have chosen to use the pixel basis - this basis is easy to handle in simulation where
there are no problems due to the signal-to-noise ratio. Other bases may be chosen [15,
18, 101] where multiple pixels are changed at once, however there is no strong reason why
any basis would be better than any other for the scenarios considered here.

3.2.1 Experimental results

Proof-of-principle experimental implementations of this method were recently released in
an ArXiv pre-print [91]. A version of this paper is currently under review in a peer-
reviewed journal as of the time of this writing.

Fig. 3.14 shows these results from [91]. The experiment consisted of a basic wavefront
shaping optical setup, briefly sketched in the simple schematic in Fig. 3.14a, wherein
an expanded laser beam has its phase modulated by an SLM. This shaped beam then
propagates through a mock dynamic scattering region – here, three phase masks displayed
side-by-side on another SLM with a mirror placed parallel to the SLM screen such that
the propagating laser beam is reflected off of each phase mask in sequence. To create
the necessary phase masks, random phase matrices were created, up-scaled in size, and
interpolated across to create smoothly varying, random phase masks.

Each of these three phase masks contains a dynamic pocket – labelled ‘Fluctuating
regions’ in Fig. 3.14e, top row – wherein the phase is randomly fluctuating. The locations
of the pockets are different for each phase mask. The optimised transmitted field reduces
the fluctuation levels compared to the initial transmitted field before optimisation, as seen
in the difference between the standard deviation of the intensity fluctuations in Fig. 3.14c
and d.

The simple iterative optimisation succeeded in finding fields that navigate through
the scattering region, avoiding all three pockets of movement. Off-axis holography was
used to determine the amplitude and phase of the field on each of the three phase masks,
shown by the color (phase) and brightness (amplitude) of the field in Fig. 3.14e, middle
row, which clearly shows the field avoiding the pocket of movement on each plane of the
scattering region containing the dynamic scatterers. The intensity on each of these planes
is shown in Fig. 3.14e, bottom row, and illustrates the same thing.

These proof-of-principle experimental results show that it is possible to experimentally
find fields that navigate through a scattering region with multiple fluctuating pockets.
This experiment demonstrates the utility of this technique in the low scattering scenario,
because the scattering material was digitally mimicked by a reflective SLM, such that
minimal light was lost via scattering in other directions. The simulations presented in
the previous section demonstrate that this technique can work even in the high scattering
limit.
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Figure 3.14: Experimental results for simple iterative optimiser.
Recreated from Fig. 1 and the corresponding caption in [91]. a) Schematic
of experimental set-up. An input wavefront is iteratively modified to reduce
the intensity fluctuations in transmitted light. (b) A plot of fluctuation level
as a function of iteration number throughout the optimisation procedure.
Convergence is reached after several thousand iterations: the fluctuation level
does not fall to zero, but plateaus when the residual fluctuations fall below the
experimental noise floor, indicated (approximately) in pink. (c) Fluctuations
in the output field for a randomly chosen input field used as the starting point
of the optimisation. Upper heat maps show the mean intensity of transmitted
light at the output plane, and lower heat maps show the fluctuation level
around the mean, represented as a standard deviation around the mean. The
line-plots show line-profiles through the output field along the lines marked
with white hatched lines, with mean intensity (red line) and fluctuations
about the mean (gray shading). (d) Equivalent plot to (c) but now showing
the optimised transmitted field. We see the fluctuations have been strongly
suppressed in (d) compared to (c). (e) Measured shape of the optimised field
inside the dynamic scattering sample. The top row shows the 3 phase planes
that form the scattering system, with a fluctuating region on each plane
highlighted by a red box. The middle and bottom rows show the optical field
(middle row) and intensity pattern (absolute square of the field – bottom row)
incident on each plane. We see that the optimised field arriving at each plane
has a low intensity region corresponding to the location of the fluctuating
region – highlighted by white arrows – thus ‘avoids’ these regions.

3.2.2 Simulation results

Next, this iterative optimisation approach to finding light fields that navigate through
partially dynamic scattering media is investigated numerically. As before with the time-
average transmission matrix, the simple iterative phase optimiser can be easily integrated
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with the DDA for a random configuration of scatterers, such as the one illustrated in
Fig. 2.1. Each of the sources can have their amplitude and phase individually manipu-
lated, such than any arbitrary incident wavefront can be created. The same scenarios are
considered as in the previous section.

The intensity heatmaps in Fig. 3.15 show an example of both a plane wave (left) and
an optimised wavefront (right) propagating through this array of 100 randomly configured
dipoles. The circled dipoles explore a normally distributed area about their initial loca-
tions, with a standard deviation of 1.25𝜆. To emphasize the path that the shaped wave-
front takes through the scattering region, Fig. 3.15b shows the same intensity heatmaps
as Fig. 3.15a, but on a log scale. From these intensity plots it is clear that the light bends
around the pocket of dynamic dipoles.

Fig. 3.16 shows the progression of the optimiser. One iteration consists of optimising
every one of the sources consecutively once. Throughout the 100 iterations, the chosen
phase configurations simultaneously maintain the mean intensity reaching the detectors,
while also decreasing the mean standard deviation of the amplitude at the detectors. This
is seen by the decrease in the FOM, 𝜉 over the course of the simulated optimisation to
∼ 20% of its initial value. For each iteration, the moving dipoles explore 55 random
locations, chosen as described above.

To demonstrate that this method works for situations with more movement, this opti-
misation is simulated again with the same parameters as above but with a higher standard
deviation of motion of the dynamic dipoles. Fig. 3.17 and Fig. 3.18 show the results of this
simulation with a standard deviation of motion of 2.5𝜆, twice the value considered above.
To ensure that this does not also mean that the calculated FOM suffers from higher error

Figure 3.15: Simulation of simple iterative phase optimisation in
the high scattering limit. Sources are spaced 𝜆/2. St. dev. of motion
of dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantifi-
cation. Δ𝜙 = 𝜋/10. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale versions of plots
in (a). (c) Progression of the optimisation.
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Figure 3.16: Progression of the simple iterative phase optimisation
in the high scattering limit.

Figure 3.17: Simulation of simple iterative phase optimisation in
the high scattering limit. Sources are spaced 𝜆/2. St. dev. of motion
of dipoles is 2.5𝜆, 𝑛m = 200 configurations are used for fluctuation quantifi-
cation. Δ𝜙 = 𝜋/10. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale version of plots
in (a).

introduced by under-sampling the moving dipoles’ movement, 𝑛𝑚 = 200 configurations
are used for quantifying the level of fluctuations (previously used 𝑛𝑚 = 55).

For the case of larger random movements of the dipoles, less of the final optimised field
is transmitted to the detectors. The mean intensity of the field at the detectors decreases
to ∼ 70% of the initial value. This is due to the overall locations sampled by the larger
movement occupying a larger percentage of the total simulated space, meaning that the
wavefront must be shaped more dramatically to bend the incident light completely around
the dynamic pocket. Doing so becomes more difficult for larger pockets within the same
area, and subsequently fewer detectors directly behind the pocket receive any transmitted
light.
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Figure 3.19: Simulation of simple iterative phase optimisation in
the high scattering limit. Sources are spaced 𝜆/2. St. dev. of motion
of dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantifi-
cation. Δ𝜙 = 𝜋/10. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale version of plots
in (a).

Figure 3.18: Progression of the simple iterative phase optimisation
in the high scattering limit with more movement.

Next, the pocket of dynamic dipoles is translated to a different location within the
scattering region, as before. Fig. 3.19ab show heatmaps of the intensity of the initial
plane wave (left) and an optimised wavefront (right) propagating through an array of 100
scatterers, containing a pocket of 15 moving dipoles. Here, the pocket has been moved to
the upper left area of the scattering region. The optimised wavefront clearly avoids this
pocket of dynamic dipoles, as emphasized by the log scale heatmaps in Fig. 3.19b, where
most of the light navigates through the lower portion of the scattering region.

The progression of the optimiser is plotted in Fig. 3.20, showing the decrease in the
fluctuations of the field at the detectors, quantified by 𝜉 (dark green line), as the optimiser
converges to a solution. The mean intensity at the detectors decreases to ∼ 80% of its
initial value, while the standard deviation of the intensity decreases to less than ∼ 20%
of its initial value. This results in a reduction of the 𝜉, as anticipated.
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Figure 3.20: Progression of the simple iterative phase optimisation
in the high scattering limit with translated dynamic pocket.

Figure 3.21: Simulation of simple iterative phase optimisation in
the low scattering scenario. Sources are spaced 𝜆/2. St. dev. of motion
of dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantifi-
cation. Δ𝜙 = 𝜋/10. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale version of plots
in (a).

Finally, the low scattering scenario is considered. Fig. 3.21 and Fig. 3.22 show the
results for similar parameters as above, but with |𝛼| = 0.4𝑘−2

0 . The mean intensity at
the detectors decreases alongside the standard deviation of the intensity in this scenario.
This is because most of the light from the initial, un-optimised wavefront still reaches
the detectors in the low scattering scenario. By wavefront shaping the wavefront to avoid
the dynamic scattering pocket, some of the light is diffracted away from the detectors
to create the final intensity distribution that avoids the pocket. However, the standard
deviation of the intensity at the detectors decreases more than the mean intensity at the
detectors, resulting in a reduction in 𝜉 and an optimised field that successfully avoids the
dynamic pocket.

To summarise, the numerical simulations and experimental results in this section have
demonstrated the following. This simple iterative optimisation is a powerful tool, capable
of finding fields that selectively avoid pockets of dynamic dipoles within a larger scattering
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Figure 3.22: Progression of the simple iterative phase optimisation
in the low scattering scenario.

region, in both the forward scattering and diffusive regimes. This method requires no a
priori knowledge about the exact behavior or location of the moving region. It does
not require access to or control of the dynamic region. However, this approach takes an
objectively slow route to this solution. Ideally, such solutions would be found as quickly
as possible.

3.3 Adjoint iterative optimisation
The above described method succeeds in the main objective of this research – finding
light fields that carefully navigate around moving parts of a scattering region. However,
it is a slow process, because each source mode is adjusted individually. This can quickly
become a very high-dimensional problem to solve in macroscopic optical systems. Ideally,
to efficiently optimise fields, all of the source modes should be adjusted at the same time.
To do this, a fast way of calculating the gradient of the objective function of the optimiser
is needed. In the coming sections, several different figures of merit (used to quantify
the performance of the optimisation) and objective functions (the function that will be
optimised) are investigated to this end. It is interesting to note, that many other figures
of merit exist that could be used for similar optimisations. One must decide, for a specific
application, how much knowledge of and control over a system one has, and choose an
appropriate FOM from this information.

3.3.1 Figure of merit 1: Overlap of fields at all times

One FOM that is explored through this research is the overlap of the fields at the detectors
over time. Intuitively, if the field is the same at all times (for all configurations of the
pocket of moving scatterers), the overlap would be maximised, and the fluctuations of the
field would be minimised. The following derivation was led by Dr. Simon Horsley.

For a 2D system such as those considered in this work, this the overlap of the fields at
the detectors, FOM 𝐹 , can be written as
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𝐹 = ∣∑
𝑡

∑
𝑡′

∫𝑑𝑥 v𝑡(𝑥)v∗
𝑡′(𝑥)∣

2

(3.2)

where v𝑡(𝑥) is the field at time 𝑡 at the detectors located at 𝑥. This FOM will be referred
to as FOM 1 later.

From this it follows that the objective function of this adjoint optimisation is to max-
imise the FOM from Eqn. 3.2.

The field at the detectors 𝑣𝑡(𝑥) can be written as

v𝑡(𝑥) = ∫𝐺𝑡(𝑥, 𝑥′)u(𝑥′)𝑑𝑥, (3.3)

where the integral over the Green’s function 𝐺𝑡 for the configuration of particles at time
𝑡 is equivalent to multiplying the transmission matrix 𝒯 by the source field - the notation
used previously to describe this propagation.

In order to understand how to iteratively maximise 𝐹 , it is necessary to determine
how a small change in the output field 𝛿v𝑡 affects 𝐹 .

𝐹 = ∣∑
𝑡

∑
𝑡′

∫𝑑𝑥 [v𝑡(𝑥) + 𝛿v𝑡] [v∗
𝑡′(𝑥) + 𝛿v∗

𝑡′]∣
2

(3.4)

= ∣∑
𝑡

∑
𝑡′

∫𝑑𝑥 [v𝑡(𝑥)v∗
𝑡′(𝑥) + v𝑡(𝑥)𝛿v∗

𝑡′ + 𝛿v𝑡v∗
𝑡′(𝑥) + 𝛿v𝑡𝛿v∗

𝑡′]∣
2

, (3.5)

where the red term is dropped because it is the product of two small numbers, and
therefore can be considered negligible compared to the rest of the sum. One can write
𝑧 = 𝛿v𝑡v∗

𝑡′(𝑥) and its complex conjugate 𝑧∗ = v𝑡(𝑥)𝛿v∗
𝑡′ , such that the above equations

become

𝐹 ∼ ∣∑
𝑡

∑
𝑡′

∫𝑑𝑥 [v𝑡(𝑥)v∗
𝑡′(𝑥) + 𝑧∗ + 𝑧]∣

2

(3.6)

∼ ∣∑
𝑡

∑
𝑡′

∫𝑑𝑥 [v𝑡(𝑥)v∗
𝑡′(𝑥) + 2Re[𝑧]]∣

2

(3.7)

∼ ∣∑
𝑡

∑
𝑡′

∫𝑑𝑥 (v𝑡(𝑥)v∗
𝑡′(𝑥) + 2Re [𝛿v𝑡v∗

𝑡′(𝑥)])∣
2

(3.8)

∼ ∣𝑀 + 2Re[∑
𝑡

∑
𝑡′

∫𝑑𝑥 𝛿v𝑡v∗
𝑡′(𝑥)]∣

2

, (3.9)

where 𝑀 = ∑𝑡∑𝑡′ ∫𝑑𝑥 v𝑡(𝑥)v∗
𝑡′(𝑥) = ∫𝑑𝑥 (∑𝑡 v𝑡) ⋅ (∑𝑡′ v𝑡′)

⋆, which is always positive
and real. In the second term on the right of Eqn. (3.9) the sum over 𝑡′ can be moved
inside the integral and onto v∗

𝑡′ as this is the only quantity that depends on 𝑡′. The change
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in the FOM then becomes

𝐹 ∼ ∣𝑀 + 2Re[∑
𝑡

∫𝑑𝑥 𝛿v𝑡∑
𝑡′

v∗
𝑡′(𝑥)]∣

2

. (3.10)

The sum of v∗
𝑡′ over 𝑡′ can be rewritten in terms of the time average of the transmitted

field,
∑
𝑡′

v∗
𝑡′ (𝑥) = 𝑛 ⟨v∗ (𝑥)⟩ , (3.11)

where 𝑛 is the total number of time points and ⟨v∗⟩ is the time averaged field. In terms
of this averaged field the FOM now equals

𝐹 ∼ ∣𝑀 + 2Re[∑
𝑡

∫𝑑𝑥 𝛿v𝑡 𝑛 ⟨v∗ (𝑥)⟩]∣
2

. (3.12)

From this, to determine the change needed in the input field 𝛿u(𝑥′) (which should not
depend on time) to induce this small change in the transmitted field, use Eqn.3.3:

𝛿v𝑡 (𝑥) = ∫𝑑𝑥′ 𝐺𝑡 (𝑥, 𝑥′) 𝛿u(𝑥′). (3.13)

Combining this with Eqn. 3.12, the FOM can now be written in terms of changes to the
input field 𝛿u:

𝐹 ∼ ∣𝑀 + 2𝑛Re[∑
𝑡

∫𝑑𝑥∫𝑑𝑥′𝐺𝑡 (𝑥, 𝑥′) 𝛿u(𝑥′) ⟨v∗(𝑥)⟩]∣
2

. (3.14)

Multiplying out the absolute square in this expression yields

𝐹 ∼ 𝑀2 + ∣2𝑛Re∑
𝑡

∫𝑑𝑥∫𝑑𝑥′𝐺𝑡(𝑥, 𝑥′)𝛿u(𝑥′) ⟨v∗(𝑥)⟩∣
2

+ 4𝑛𝑀Re[∑
𝑡

∫𝑑𝑥∫𝑑𝑥′𝐺𝑡(𝑥, 𝑥′)𝛿u(𝑥′) ⟨v∗(𝑥)⟩] .

The red term, which is the square of a small number and so negligible compared to the
other terms, is dropped. To increase the FOM (the overlap of the field at the detectors
at all times) it is thus required that

𝛿𝐹 = 4𝑛𝑀Re[∑
𝑡

∫𝑑𝑥∫𝑑𝑥′𝐺𝑡(𝑥, 𝑥′)𝛿u(𝑥′) ⟨v∗(𝑥)⟩] > 0 (3.15)

Assuming that the system is reciprocal 𝐺𝑡(𝑥, 𝑥′) = 𝐺𝑡(𝑥′, 𝑥), Eqn. 3.15 states that to
increase the FOM, the conjugate of the time averaged field must be propagated back
through the time varying system, this result averaged (the sum over 𝑡) on the input side,



3.3. Adjoint iterative optimisation 85

and then 𝛿u must be chosen so that its overlap with this averaged field has the largest
possible real part. There are several ways of achieving this, but because only the phase
of the source field is being modulated the input field is adjusted by a fixed amplitude 𝛿𝐴
and a spatially varying phase denoted by column vector 𝛉(𝑥):

𝛿u(𝑥) = 𝛿𝐴e𝑖𝛉(𝑥), (3.16)

where each element of the column vector 𝛉(𝑥) is exponentiated on an element-by-element
basis. Applying Eqn. 3.16 to Eqn.3.15, this phase 𝜃 can be determined via

𝛿𝐹 = 4𝑛𝑀Re[𝛿𝐴∑
𝑡

∫𝑑𝑥 e𝑖𝛉(𝑥)∫𝑑𝑥′𝐺𝑡(𝑥, 𝑥′) ⟨v∗(𝑥)⟩] . (3.17)

To maximize the value of Eqn. 3.17 the phase 𝜃 is chosen such that it equals the negative
of the argument of the term highlighted in blue in Eqn. 3.17

𝛉(𝑥) = −arg[∑
𝑡

∫𝐺𝑡(𝑥′, 𝑥) ⟨v∗(𝑥)⟩ 𝑑𝑥] (3.18)

With this choice the FOM 𝐹 will be increased by the largest amount, for a fixed small
value of 𝛿𝐴.

This result is encouraging; it implies that it is possible to find fields that avoid pockets
of dynamic scattering by minimising fluctuations without any measurements inside of the
scattering region, and without any prior knowledge about the location or behavior of the
dynamic pocket.

Experimental results

To perform this optimisation in experiment proved incredibly intricate, and required hours
of painstaking alignment and unwavering dedication by postdoctoral researcher Dr. Chai-
tanya Mididoddi. The optical system required for this experiment ended up spanning the
vastness of most of a large optical table, and involved a maze of multiple spatial light
modulators, mirrors, lenses, and cameras. Briefly, this optimisation passes a wavefront
backwards and forwards through a scattering system, and the wavefront is iteratively
adapted to travel a path that avoids areas of time-varying scattering. Fig. 3.23a shows a
simplified schematic of this process. Fig. 3.23b shows the progression of this optimisation.
Fig. 3.23c shows the field at each plane of the scattering system avoids the moving pockets
(outline in white dashed lines).
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Figure 3.23: Experimental adjoint phase optimisation. Recreated
from Fig. 2 and the corresponding caption in [91].(a) Schematic of experi-
mental set-up. On iteration 𝑖 an input field u(𝑖) is transmitted through the
dynamic medium from the left-hand-side (LHS). The output field is time-
averaged on the right-hand-side (RHS) – the schematic shows output fields
recorded at individual times v(𝑡1),v(𝑡2),…v(𝑡𝑁) (where 𝑁 is the total num-
ber of recorded output fields). These are averaged to yield ⟨v⟩𝑡. Digital
optical phase conjugation (DOPC) is carried out to transmit the phase con-
jugate of ⟨v⟩𝑡 back through the medium. The resulting field emerging on the
LHS is then time-averaged, and used to calculate 𝛿u, such that the input of
the next iteration (𝑖 + 1) is given by u(𝑖+1) = u(𝑖) + 𝛿u. (b) A plot of fluc-
tuation level as a function of iteration number throughout the optimisation
procedure. In this scheme, convergence is reached after ∼ 15 iterations. (c)
The experimentally recorded intensity of the optimised field arriving at the
three phase planes. The maximum intensity at each plane is normalised to 1.
The white squares indicated the location of the moving region on each plane.
We see that, once again, the optimised field avoids these moving regions of
the sample.

Simulation results

As with the time-averaged transmission matrix and the simple iterative phase optimiser,
I next investigate this adjoint phase optimisation in simulations where the scattering
material is no longer only forward scattering. The same scenarios as before are considered
for high and low scattering, higher levels of motion of the dynamic dipoles, and for a
translated dynamic pocket. Again, a ∼ 30 × 30 wavelength simulation area is set up
containing a region of 100 scattering dipoles. 15 of these dipoles are allowed to randomly
move within a pocket at the centre of the scattering region.

Fig. 3.24 and Fig. 3.25 show numerical results for the adjoint phase optimisation using
the overlap of the fields at the detectors over time as the FOM, as described in Eqn. 3.2,
for motion of the moving dipoles with a standard deviation of 1.25𝜆. The figures here are
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Figure 3.24: Simulation of adjoint phase optimisation in the high
scattering limit using the overlap of the fields at the detectors over time
as the FOM. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).

formatted in the same way as in the previous section. This optimisation performed as it
should – increasing the overlap of the field with each iteration. It also increases the mean
intensity transmitted to the detectors. The mean standard deviation of the amplitude
of the field at the detectors has reduced slightly to ∼ 85% of its initial value. Hence, 𝜉
decreases to ∼ 40% of its initial value. The optimised field is mostly focused below the
dynamic pocket.

Fig. 3.26 and Fig. 3.27 show results for the low scattering scenario with |𝛼| = 0.4𝑘−2
0 .

In this case, the seemingly poor performance of the optimisation is similar to that seen for
the time-averaged transmission matrix for the low scattering scenario. Again, this is due
to the reduced contribution of the scattered field to the overall field at the detectors. Here,
the duality of the desired outcome in this situation becomes clearer and points to potential

Figure 3.25: Progression of the adjoint phase optimisation in the
high scattering limit using the overlap of the fields at the detectors over
time as the FOM.
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Figure 3.26: Simulation of adjoint phase optimisation in the high
scattering limit using the overlap of the fields at the detectors over time
as the FOM. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).

Figure 3.27: Progression of the adjoint phase optimisation in the
low scattering scenario using the overlap of the fields at the detectors over
time as the FOM.

short-comings of this FOM. We desire the optimised field to simultaneously navigate
around the dynamic pocket while also ensuring at least constant intensity transmission
through the scattering region, and FOM 1 prioritizes the latter.

The scenarios of a translated dynamic pocket and higher levels of movement of the
dipoles for the high scattering limit are investigated in Appendix B.3.1. In short, the
optimised fields also successfully maximise the FOM in these situations, and the optimised
fields navigate around the pocket of moving dipoles. The intensity and standard deviation
at the detectors also follow the same trend as above for the high scattering scenario.

In summary, the adjoint optimisation with the FOM given by the overlap of the
fields over time in Eqn. 3.2 succeeds in threading light around a moving region within
a scattering material in higher scattering scenarios. It decreases 𝜉 while also increasing
the FOM, as anticipated. However, it does not necessarily decrease the standard deviation
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of the amplitude of the field at the detectors; in some scenarios, the standard deviation
actually increases, but because the mean intensity transmitted to the detectors increases
a larger amount, this still results in an overall decrease in the levels of fluctuations of the
field. Ultimately, this approach will prioritize increasing the overlap of the fields over time
at the detectors over decreasing the standard deviation of the field over time, because the
FOM does not constrain the standard deviation in any way.

3.3.2 Figure of merit 2: Normalised variance of fields over time

Next, inspired by the success of the FOM 𝜉 from the simple iterative optimisation, and
with knowledge of how FOM 1 only prioritizes half of our objective, another FOM is
investigated numerically. The following derivation was provided by Dr. Simon Horsley.

We let 𝐹 be the variance of the field at the detectors over time

𝐹 = ∫Var(𝑥) 𝑑𝑥 (3.19)

= 1
𝑁 ∫|𝜙𝑡|2𝑑𝑥 − 1

𝑁2 ∑
𝑡

∑
𝑡′

∫𝜙𝑡(𝑥)𝜙∗
𝑡′𝑑𝑥 (3.20)

= 1 − 1
𝑁2 ∑

𝑡
∑
𝑡′

∫𝜙𝑡(𝑥)𝜙∗
𝑡′(𝑥)𝑑𝑥, (3.21)

this is more similar to the ratio 𝜉 than the previous FOM 1 (overlap of the fields).
Dropping the pre-factor and addition of one, as they will make no difference in the

optimisation, this simplifies to the same as FOM 1 from Eqn. 3.2 with an added normal-
isation. The new FOM 𝐹 can then be written as

𝐹 = −∑
𝑡

∑
𝑡′

∫𝜙𝑡(𝑥)𝜙∗
𝑡′(𝑥)𝑑𝑥

[∫ |𝜙𝑡(𝑥)|2𝑑𝑥 ∫ |𝜙𝑡′(𝑥)|2𝑑𝑥]
1/2 . (3.22)

If the same derivation as above in Section 3.3.1 is performed on this FOM, the resulting
change that needs to be made to the phase of each mode of the input field becomes

𝛉(𝑥) = −arg[∑
𝑡

∫𝑑𝑥𝐺𝑡(𝑥′, 𝑥)
𝑁𝑡

[⟨𝜙∗(𝑥)⟩ − 𝜙∗
𝑡(𝑥)
𝑁𝑡

𝐴𝑡]] (3.23)

where
𝐴𝑡 = Re [∫ 𝜙𝑡(𝑥)

𝑁𝑡
⟨𝜙∗(𝑥)⟩𝑑𝑥] (3.24)

and the normalisation factors are given by

𝑁𝑡 = ∫|𝜙𝑡(𝑥)|2𝑑𝑥 (3.25)

and similar for 𝑡′.
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Interestingly, Eqn. 3.23 is very similar to the change in phase for FOM 1 in the previous
section. The first term in the inner square brackets is the complex conjugated of the time-
averaged field at the detectors – this is FOM 1! The second term in the inner square
brackets is new for FOM 2 – this term is the complex conjugated of the field at the
detectors at all measurement times 𝑡, scaled by the factors 𝑁𝑡 and 𝐴𝑡.

In contrast to FOM 1, FOM 2 should decrease (thus the negative sign), and the field
must propagate through the same configurations of the moving dipoles going forwards
and backwards (due to the second term). Unlike FOM 1 introduced for the adjoint
optimisation, this FOM requires control of or extensive knowledge of the movements of
the dipoles in the moving pocket or the ability to perform the measurements and wavefront
shaping faster than the movement of the dynamic dipoles such that the second term in
the inner square brackets of Eqn. 3.23 can be experimentally created.

This approach was developed after the conclusion of Dr. Mididoddi’s experimental
work. Therefore, no experiments were conducted for this approach. However, I inves-
tigated this adjoint phase optimisation numerically as before for the other optimisation
algorithms.

Fig. 3.28 shows simulated results of adjoint optimisation using the normalised variance
FOM (FOM 2) with similar simulation parameters as above. The optimised field forks
around the dynamic pocket. Fig. 3.29 shows the levels of fluctuation (solid dark green line)
and the FOM (solid light red line) decreasing as the optimisation progresses, converging
to a solution that reduces 𝜉 to approximately 40% its initial value. This method seems
to check all of the boxes: the mean intensity at the detectors has increased slightly, the
mean standard deviation of the amplitude of the field at the detectors has decreased, the
ratio 𝜉 has decreased, the FOM has decreased, and the optimised field skirts the edges of
the pocket of dynamic dipoles.

Next, the low scattering scenario is considered with this method. Fig. 3.30 and
Fig. 3.31 show the results for the scenario where |𝛼| = 0.4𝑘−2

0 for a similar configura-
tion of 100 dipoles as seen above. The heatmaps in Fig. 3.30 show the intensity of the
initial (left) and optimised (right) wavefronts, which show the later field clearly avoiding
the pocket of moving dipoles. The plots showing the performance of the optimiser across
all iterations in Fig. 3.31 show that the mean intensity remains nearly constant through-
out the optimisation, but the standard deviation, FOM, and 𝜉 decrease significantly, with
the levels of fluctuation falling to ∼ 20% of their initial value.

The scenarios of a translated dynamic pocket and higher levels of movement of the
dipoles for the high scattering limit are investigated in Appendix B.3.2. In short, the
optimised fields also successfully minimise the FOM and 𝜉, and the optimised fields nav-
igate around the pocket of moving dipoles. The intensity and standard deviation at the
detectors also follow the same trend as above for the high scattering scenario.

If the motion of the dynamic pocket is periodic, we expect that the requirement of
fast wavefront shaping could be relaxed. To investigate this numerically, I simulated a



3.3. Adjoint iterative optimisation 91

Figure 3.28: Simulation of adjoint phase optimisation in the high
scattering limit using the normalised variance of the fields at the detec-
tors over time as the FOM. Sources are spaced 𝜆/4. St. dev. of motion
of dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quan-
tification. 𝑑𝑗 = 0.1. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale version of plots
in (a).

Figure 3.29: Progression of adjoint phase optimisation in the high
scattering limit using the normalised variance of the fields at the detectors
over time as the FOM.

scenario wherein the dynamic dipoles are allowed to move to random new locations for
the measurement of the conjugate field 𝜙∗

𝑡(𝑥). Because the movement of the dipoles used
here are normally distributed about some initial location, we believe that this method
should still successfully optimise the phase of an incident wavefront.

Fig. 3.32 and Fig. 3.33 show the results for the scenario where |𝛼| = 4𝑘−2
0 for a similar

configuration of 100 dipoles as seen above. As before, the dynamic dipoles explore 55
different normally distributed positions for each iteration. The heatmaps in Fig. 3.32ab
show the intensity of the initial (left) and optimised (right) wavefronts, which show the
latter field clearly steering around the pocket of moving dipoles. The plots showing the
performance of the optimiser across all iterations in Fig. 3.33 show that the mean intensity
increases slightly throughout the optimisation, and the standard deviation, FOM, and 𝜉
decrease, with the levels of fluctuation falling to ∼ 60% of their initial value.
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The performance of this optimisation was decreased in comparison to the previously
considered scenarios where the dipoles are considered to be static over each calculation of
the average and instantaneous fields at the detectors. Because of the normally distributed
nature of the motion considered here, we believe that increasing the number of time steps
over which the optimised phases are calculated should also increase the performance of
the optimisation. To test this, I simulated the same scenario as above but for 200 different
normally distributed positions for each iteration, effectively increasing the number of time
steps considered by ∼ 4×.

Fig. 3.34 and Fig. 3.35 show the results for this scenario. Notably, the final fluctuations
are decreased to ∼ 40% of their initial value, indicating that higher sampling rates improve
the performance of this phase optimisation in this situation. Additionally, the progress
curves are smoother in this case of 200 time steps in comparison to those from Fig. 3.33
where 55 time steps were used. This is due to better sampling the overall periodic nature
of the dynamic pocket’s motion.

The adjoint optimisation with the FOM given by the normalised variance of the fields
over time in Eqn. 3.19 succeeds in threading light around a moving region within a scat-
tering material in all considered scattering scenarios. It decreases 𝜉 while also decreasing
the FOM, as anticipated. It also decreases the standard deviation of the amplitude of the
field at the detectors while also increasing the mean intensity transmitted to the detectors.
Ultimately, this approach allows the desired control over the field through the scattering
material, but it also requires fast wavefront shaping for the measurement of the field at
the detectors or knowledge that the motion of the dynamic regions is periodic.

Figure 3.30: Simulation of adjoint phase optimisation in the low
scattering scenario using the normalised variance of the fields at the de-
tectors over time as the FOM for an off-centre pocket of dipoles. Sources are
spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆, 𝑛m = 55 configurations are
used for fluctuation quantification. 𝑑𝑗 = 0.1. (a) Intensity heatmaps showing
plane wave (left) and optimised wavefront (right) propagating through 100
scattering dipoles (yellow dots), 15 of which are dynamic (circled). (b) Log
scale version of plots in (a).
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Figure 3.31: Progression of adjoint phase optimisation in the low
scattering scenario using the normalised variance of the fields at the de-
tectors over time as the FOM for an off-centre pocket of dipoles.

3.4 Discussion of approaches
There are many parameters that can be adjusted in the simulations presented here, but the
general trends seen across each method are summarised in this section. The advantages
and disadvantages of each method are also discussed below.

The time-averaged transmission matrix requires no knowledge or control of the dy-
namic pocket. This method exploits the eigenchannels of T†

avTav, where the channels
corresponding to the highest magnitude eigenvalues fluctuate the least as the dynamic
scatterers move. There are always at least a handful of eigenchannels that steer clear of
the dynamic pocket. Another advantage of this method is that measuring Tav in exper-
iments is reasonably easy; this technique could be implemented in any existing optical
system where the standard transmission matrix can be measured. The biggest drawback
to this approach is that we cannot determine which eigenfields will perform best for a

Figure 3.32: Adjoint phase optimisation with FOM 2 with continu-
ous movement. Sources are spaced 𝜆/4. St. dev. of motion of dipoles
is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantification.
𝑑𝑗 = 0.1. (a) Intensity heatmaps showing plane wave (left) and optimised
wavefront (right) propagating through 100 scattering dipoles (yellow dots),
15 of which are dynamic (circled). (b) Log scale version of plots in (a).
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Figure 3.33: Progress of adjoint phase optimisation with FOM 2
with continuous movement over 𝑛m = 55 configurations.

given scattering material without testing each eigenfield.
The simple iterative phase optimiser requires the least information on and control of a

scattering system. The downside of this approach is the large number of iterations required
for it to converge to a solution (𝑛𝑠×𝑛𝑖 total loops of the optimisation steps, where 𝑛𝑠 is the
number of sources/modes and 𝑛𝑖 is the total number of iterations). However, this method
succeeds in reliably and repeatably finding fields that carefully navigate through scattering
regions with a pocket of dynamic scatterers, for every set of parameters tested. This
approach could be implemented in any wavefront shaping experiment where a researcher
has only intensity fluctuation information on the far side of a partially dynamic scattering
material.

The first adjoint phase optimisation using the overlap of the fields at the detectors over
time as the FOM requires the ability to send light through the scattering material from two
directions – very challenging in experiment. However, no control of the scattering material

Figure 3.34: Adjoint phase optimisation with FOM 2 with contin-
uous movement. Sources are spaced 𝜆/4. St. dev. of motion of dipoles
is 1.25𝜆, 𝑛m = 200 configurations are used for fluctuation quantification.
𝑑𝑗 = 0.1. (a) Intensity heatmaps showing plane wave (left) and optimised
wavefront (right) propagating through 100 scattering dipoles (yellow dots),
15 of which are dynamic (circled). (b) Log scale version of plots in (a).
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Figure 3.35: Progress of adjoint phase optimisation with FOM 2
with continuous movement over 𝑛m = 200 configurations.

itself is necessary. This method succeeds in increasing the intensity at the detectors, which
corresponds to avoiding the pocket of moving scatterers in most situations. For the low
scattering scenario, however, this method is less effective because the increase in intensity
outweighs the fluctuations induced by the scattering scenarios considered here. This is
due to the chosen FOM and objective function, not a failing of the optimiser – in short,
it does exactly what it should: increase the overlap of the field at the detectors over time.

The second adjoint optimisation using the normalised variance of the fields at the
detectors over time as the FOM also requires the ability to send light through the scattering
material from both sides of the material, and additionally requires that the configuration
of the scatterer is known so the appropriate correction can be made to send backwards
through the medium. This means experimentally one of three things must be true: the
fields must be created at the rate of the motion of the dynamic pocket, the motion of
the dynamic pocket must be controllable, or the motion of the dynamic pocket must be
periodic such that higher sampling rates of this motion accurately capture this periodicity.
In many experiments the former may be more feasible. Unlike the previous figure of merit,
this FOM performs well for all scattering scenarios tested here, even the low scattering
case. To perform this optimisation in experiment ‘as is’ would require the ability to chose
the configuration of the dynamic scattering region while simultaneously launching the
corresponding fields forwards and backwards through the system. This faces the same
experimental difficulties as the first adjoint optimisation FOM.

There is a trade-off that needs to be considered between the amount of control one
has of a scattering system, and the amount of control one can expect to have of the
wavefront shaped field. We have investigated a handful of scenarios here, but as mentioned
before there are countless possible combinations of figures of merit and objective functions
that can be tailored to a specific situation or experiment. In waveguide experiments, for
example, it is possible to have exact control over the location and movements of scatterers,
which are typically centimetre-scale cylinders in this case. However, in living tissue this
level of information on and control over the scattering system is not possible. The different
approaches are compared in the table below, providing a basic overview of the trade-offs
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of the different optimisation algorithms.

Wavefront optimisations in partially dynamic scattering scenarios

Method Pros (+) & cons (–) Relative time to
solution

Suitable applica-
tions

Time-
averaged
TM

+ Finds multiple fields,
ordered from least to
most fluctuating

High (∼ 106 − 107
measurements)

Atmosphere, thin
(forward scattering)
tissue, optical fibres,
and other forward
scattering scenarios.

+ Beam-shaping can be
done slower than the
movement
– Forward scattering
only

Simple iter.
phase opt.

– Finds one field

High (∼ 103 − 104
measurements)

Any scattering
scenario

+ Beam-shaping can be
done slower than the
movement
+ All levels of scatter-
ing

Adjoint
opt., FOM 1

– Finds one field

Low (∼ 102
measurements)

Atmosphere, thin
(forward scattering)
tissue, optical fibres,
and other forward
scattering scenarios.

+ Beam-shaping can be
done slower than the
movement
– Forward scattering
only

Adjoint
opt., FOM 2

– Finds one field

Low (∼ 102
measurements)

Any scattering
scenario

– Beam-shaping must
be done at the rate or
faster than the move-
ment
+ All levels of scatter-
ing

The findings presented in this section demonstrate important progress in the field and
have significant implications for future wavefront shaping applications in dynamic situa-
tions. In scenarios with precise control, such as waveguide experiments, these methods
offer great promise. However, in more complex environments, like living tissue, where
control over the scattering system is limited, careful consideration is needed to select the
most suitable approach. We hope that our research in combination with breakthroughs
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in other areas will pave the way for the development of tailored wavefront shaping strate-
gies and ultimately advancing their application in a wide range of dynamic scattering
situations.
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Part II

Enhancing optical tweezers
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Out of that childhood country what fools climb
To fight with tyrants Love and Life and Time?

Patrick Kavanagh

In this part, wavefront shaping and scattering play as much of a role as they did in
the previous chapters. Here however, the focus is on the momentum transfer from light to
a mesoscopic particle. In a way, while Part 1 of this thesis concentrated on creating light
fields that avoid regions within a scattering material to minimise light-matter interactions
in this region, Part 2 probes the possibility of generating light fields that specifically
maximise momentum transfer between light and an optically trapped particle.

Chapter 4 introduces the concept of optical tweezers and explores previous work done
to optimise the stiffness of optical traps, as well as introduces the novel numerical 3D
optical trap enhancement optimisation developed for this research project. Chapter 5
details the experimental holographic optical tweezers setup and procedures developed to
create high quality optical traps through aberration correction. Chapter 6 presents, to
our knowledge, the first ever experimental realisations of 3D enhanced holographic optical
traps.

The main contributors to this project are Dr. Unė G. Būtaitė (UGB), Dr. Michael
Horodynski (MH), Dr. Graham M. Gibson (GMG), Prof. Miles J. Padgett (MJP), Prof.
Stefan Rotter (SR), Prof. Jonathan M. Taylor (JMT), Prof. David B. Phillips (DBP),
and me. UGB, JMT and DBP conceived the idea for the project, and developed it with
all other contributors. DBP and JMT supervised the project. UGB led the development
of the optimiser and performed all simulations, with support from me. MH and SR
developed the theory of the GWS operators and derived the gradients and Hessians used
in the optimisation. JMT derived the analytical expressions for the differential of the
scattering matrix used in the optimisation. GMG and I built the optical setup, with
support from DBP and MJP. UGB and I modified the experimental control software. I
performed the experiments and data analysis with support from UGB and DBP.
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Chapter 4

Wavefront shaping and optical
tweezers

I
n this chapter, we provide an overview of the background theory of optical tweez-
ers. Previous work that focuses on enhancing optical tweezers via wavefront
shaping is highlighted and discussed. Simulations of the Generalized-Wigner

Smith approach to finding optimum traps are presented, demonstrating one previously
developed approach to enhancing optical traps via wavefront shaping.

Finally, in this chapter, a numerical treatment of the problem of three dimensional
optical trap enhancement using wavefront shaping is developed. Ultimately, three di-
mensional optical trap enhancement is shown in simulation for the first time with up to
two orders of magnitude reduction in the confinement volume of optically trapped micro-
spheres using a novel constrained optimisation. Later, in Chapter 5, the experimental
setup needed to attempt such an optical tweezing experiment is detailed, and finally in
Chapter 6 the first ever experimental realisations of 3D enhanced optical traps are pre-
sented.

4.1 Light and momentum
James Clerk Maxwell theorised the existence of radiation pressure in the 1860s in his
groundbreaking work developing electromagnetic theory [102]. This effect was not proven
experimentally until nearly half a century later in 1901 by Lebedew [49]. Because the
laser had not been invented yet, the first experiments proving the existence of radiation
pressure [49, 50] seemed to show that it would never be possible to exploit optical forces for
anything practical. This is due to the tiny scale of the forces – on the order of picoNewtons
(10−12). The technology at the beginning of the 20th century, when Lebedew and Nichols
published their findings, was not advanced enough to harness these forces.

The invention of the laser in the mid-21st century opened new doorways across physics,
and one of those doors led to optical tweezers. A laser (light amplification by the
stimulated emission of radiation) emits photons which are identical in their wavelength
and propagation direction, unlike a flashlight or the sun. This enables a lot of power to
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be tightly focused into a small region of space. For researchers this meant that it became
easier to investigate optical forces, and exploit them for many practical applications.

Thanks to the laser, today the field of optical tweezers, a tool that has proven powerful
as a mesoscale matter manipulator, is thriving [103]. Additionally, optical forces are also
being harnessed for many other applications, such as in integrated photonic circuits [51],
damping of mechanical oscillations [52], and solar sails in outer space [53].

4.2 Optical tweezers
As mentioned above, the invention of the laser in the mid-1900s made it possible to exploit
the minuscule optical forces of light. Ashkin discovered in the 1970s and 1980s that, with
tightly focused laser light, it is possible to manipulate micro-particles. The future Nobel
laureate found that a focused Gaussian laser beam could not only propel particles forward
via radiation pressure, but also stably trap them near the focal point of the beam [55,
104]. This can be explained using simple ray optics.

Let’s consider a pair of highly focused rays (such as those emerging from a high nu-
merical aperture (NA) microscope objective) incident on a spherical glass micro-particle
submerged in water. Fig. 4.1, reproduced from Fig. 1a in [56], shows this pair of rays
changing direction at the interfaces between the water and glass. This change in direction
of a light ray can be calculated using Snell’s law:

𝑛𝑤 sin 𝜃𝑤 = 𝑛𝑔 sin 𝜃𝑔 (4.1)

where 𝑛𝑤 and 𝑛𝑔 are the refractive indices and 𝜃𝑤 and 𝜃𝑔 are the angles between the
normal and the ray’s direction in water and glass, respectively.

This change in direction also indicates a change in the momentum of the rays. New-
ton’s 3rd law dictates that the micro-sphere must experience an equal and opposite change
in momentum (force) such that momentum is conserved. The forces felt by the micro-
sphere due to the change in direction of the pair of rays A is indicated by FA in Fig. 4.1.
The transverse components of the force are equal and opposite, such that they sum to zero.
The axial components add together to give a net backwards force – a restoring force. The
combination of this restoring force, which pulls the micro-sphere towards the focal point,
and radiation pressure from the incident laser beam, which pushes the micro-sphere in the
direction of laser propagation, creates a stable equilibrium position for the micro-sphere
where the particle is said to be optically trapped slightly downstream of the focal point.

The initial experiments by Ashkin proved to be the conception of an entire field in
physics, and optical tweezers have since been used to stably trap myriad particles, from
simple spheres [56] to cells [58, 59]. It is now also possible to create arrays of multiple
stable traps [64], create a “tractor beam” that pulls particles in the opposite direction of
light propagation [65], rotate particles [66], image surfaces using trapped particles [68],
indirectly trap particles using hydrodynamic flows from micro-machines [63], and even cool
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Figure 4.1: Spherical Mie particle trapped in water by the highly
convergent light of a single-beam gradient force trap. Image repro-
duced from Fig.1a [56].

a single atom to its quantum ground state [69], all using optical tweezers. Potential future
applications of optical tweezers include probing and imaging photosensitive biological
systems [73], or creating micro- or nano-scale robots to assemble matter piece by piece
[105, 106].

In the dipole approximation, the gradient force can be written as [107]

𝐹grad(r) =
1
2

𝛼
𝑐𝜖0

∇𝐼(r) (4.2)

where r is the position, 𝛼 is the polarisability of the trapped dipole, and 𝐼 is the intensity
of the optical trap. This equation provides intuition for the behavior of optical traps –
the forces felt by a particle are dependent on the intensity gradient of the focused laser
beam. Changing the intensity distribution of the optical trap in turn changes the optical
forces experienced by an optically trapped particle. This concept is at the core of this
research, where we ask how an intensity distribution can be manipulated using wavefront
shaping to enhance the optical forces on a particle.

In the field of optical tweezing, it is a well known fact that the forces on an optically
trapped particle in three-dimensions can be approximated as Hookean restoring forces for
small displacements from the equilibrium position:

𝐹𝑥 ≈ −𝜅𝑥Δ𝑥. (4.3)

Here 𝐹𝑥 is the 𝑥-force felt by a trapped particle, 𝜅𝑥 is the so-called stiffness of the optical
trap, and Δ𝑥 is the displacement of the particle from its equilibrium position. Similar
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Figure 4.2: Optical force curves for a 1.5µm radius silica (𝑛 = 1.45)
microsphere in a Gaussian trap of NA = 1.3 and 𝜆 =1064 nm in water (𝑛𝑤 =
1.33).

equations can be written for the 𝑦 and 𝑧 directions. The stiffness is a commonly used
quantity to determine the performance of an optical trap. Hence, we use it to quantify
the enhancement of our wavefront-shaped traps.

The Optical Tweezers Toolbox (OTT) [108] is an open source code enabling users
to model optical tweezers, and calculate optical forces. The toolbox uses the T-matrix
approach which is discussed later. Here we use it for such a calculation of the force curves
for a 1.5µm radius silica microsphere in water trapped in a Gaussian beam. Fig. 4.2 shows
these forces in the 𝑥 (solid dark green), 𝑦 (dotted light green), and 𝑧 (dashed dark green)
directions.

The linear Hookean force described above is clearly visible in Fig. 4.2 about the equi-
librium location of the trap where the forces go to zero. This plot demonstrates how a
particle displaced from equilibrium experiences a force that pulls it back to said equilib-
rium. As the sphere is displaced enough so that only its edge is immersed in the beam,
the linear force-displacement response breaks down. The force increases to a certain point
before sharply dropping off – at this point the particle is moved entirely out of the beam
and has escaped the trap. This maximum magnitude of force can be thought of as the
energy barrier preventing the particle from escaping the optical trap.

Brownian motion and the confinement volume

If micro-particles are suspended in water and allowed to a freely move (i.e. in the absence
of an optical trap), the water molecules around the particle continuously jostle it. This
causes the particle to undergo a random walk through the surrounding space, also called
Brownian motion. This motion is dependent on the temperature of the water, as this
dictates how energetically the water molecules are moving. Optical traps suppress this
motion by exerting a restoring force every time a trapped micro-particle is bumped out of
the equilibrium position. The particle is restricted to randomly exploring a small volume
around the equilibrium trapping position.

To quantify the enhancement of the optimised traps presented in the coming sections,
the thermal motion of an optically trapped particle is considered. The extent of this
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motion can be described by a thermal ellipsoid [109] which characterises the 3D motion
of the centre of mass (CoM) of an optically trapped particle as a tri-variate normal dis-
tribution. This thermal ellipsoid is hereafter dubbed the confinement volume, 𝑉𝑐 of the
trapped particle.

For each direction, the empirical rule for normally distributed data states that the
probability of finding the CoM of the particle within 3 standard deviations of the mean
position in that direction is 𝑝 ≈ 0.997. Therefore, in 3D, the confinement volume is the
region of space in which there is a 𝑝 ≈ 0.9973 ≈ 0.99 (∼ 99%) probability of finding the
particle’s CoM.

This volume is given by
𝑉c =

4
3𝜋(3𝜎𝑥)(3𝜎𝑦)(3𝜎𝑧) (4.4)

where 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 are the standard deviations of the motion in the 𝑥, 𝑦, and 𝑧 directions,
respectively.

The confinement volume can be written in terms of the optical trap stiffness by con-
sidering the Equipartition Theorem. This theorem states that, for a system in thermal
equilibrium, each degree of freedom of the system contributes, on average, 1

2𝑘B𝑇 to the
kinetic energy. The energy stored in an optical trap in 1D can be written as

𝑈(𝑥) = 1
2𝜅(Δ𝑥)2. (4.5)

This expression can be used to directly link the thermal motion of a trapped particle
to the stiffness of the optical trap:

1
2𝑘B𝑇 = 1

2𝜅𝑥𝜎2
𝑥 (4.6)

where 𝑘B is Boltzmann’s constant, T is the absolute temperature, and 𝜎2
𝑥 is the variance

of 𝑥 motion equivalent to ⟨(Δ𝑥)2⟩.
Consequently, the standard deviation of the motion along the 𝑥 direction can be writ-

ten in terms of the optical trap stiffness 𝜅𝑥:

𝜎𝑥 = √𝑘B𝑇
𝜅𝑥

. (4.7)

Similar expressions can be written for 𝜎𝑦 and 𝜎𝑧, which combined with 4.4 yield an
equation for the confinement volume in terms of optical trap stiffness:

𝑉c = 36𝜋√ 𝑘3B𝑇 3

𝜅𝑥𝜅𝑦𝜅𝑧
. (4.8)

Enhancing the stiffness of an optical trap corresponds to a decrease in the confinement
volume 𝑉𝑐 of a micro-particle in the trap. The aim of our work is to exert tighter control
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over an optically trapped particle by enhancing the stiffness in all directions simultaneously
using wavefront shaping – thus reducing the volume the particle can explore.

4.3 Optical tweezers and the T-matrix
In order to allow us to investigate stiffness enhancements of optical traps, we make use of
the T-matrix method to model optical tweezers. The matrix 𝑇 is similar to the scattering
matrix, 𝑆, in that it provides information on how a field incident on a scattering medium
is transformed into outgoing fields. The basis for 𝑇 is conventionally the vector spherical
wavefunctions (VSWFs), as they are a complete set of solutions to the free space Helmholtz
Equation (see Appendix A) in spherical coordinates. The incident and scattered fields can
be written as linear combinations of these VSWFs:

𝐸inc =
∞
∑
𝑛=1

𝑛
∑

𝑚=−𝑛
(𝑎𝑚𝑛M1

𝑚𝑛 + 𝑏𝑚𝑛N1
𝑚𝑛) (4.9)

and
𝐸scat =

∞
∑
𝑛=1

𝑛
∑

𝑚=−𝑛
(𝑓𝑚𝑛M3

𝑚𝑛 + 𝑔𝑚𝑛N3
𝑚𝑛) . (4.10)

The VSWFs are given by

M(𝑗)
𝑛𝑚(𝑘r) = 𝑁𝑛ℎ(𝑗)

𝑛 (𝑘r)C𝑛𝑚(𝜃, 𝜙) (4.11)

N(𝑗)
𝑛𝑚(𝑘r) = ℎ(𝑗)

𝑛 (𝑘r)
𝑘r𝑁𝑛

P𝑛𝑚(𝜃, 𝜙) + 𝑁𝑛(ℎ(𝑗)
𝑛 (𝑘r) − 𝑛ℎ(𝑗)

𝑛 (𝑘r)
𝑘r )B𝑛𝑚(𝜃, 𝜙) (4.12)

where 𝑁𝑛 is a normalization constant, ℎ(𝑗)
𝑛 are spherical Hankel functions of order 𝑗, and

B𝑛𝑚, C𝑛𝑚, and P𝑛𝑚 are the vector spherical harmonics. These are given by

𝑁𝑛 = [𝑛(𝑛 + 1)]−1/2

B𝑛𝑚(𝜃, 𝜙) = 𝑟𝑌𝑚
𝑛 (𝜃, 𝜙)

C𝑛𝑚(𝜃, 𝜙) = ∇× (r𝑌𝑚
𝑛 (𝜃, 𝜙))

P𝑛𝑚(𝜃, 𝜙) = ̂𝑟𝑌𝑚
𝑛 (𝜃, 𝜙)

where 𝑌𝑚
𝑛 are normalized scalar spherical harmonics.

The sum over 𝑛 in Eqn. 4.9 and Eqn. 4.10 will be truncated at 𝑛max, determined by
[110]

𝑛max = (𝑘𝑟) + 4.05(𝑘𝑟)1/3 + 2 (4.13)

This choice of 𝑛max ensures that the field is accurately captured over the volume of interest
containing the particle of radius 𝑟.



4.3. Optical tweezers and the T-matrix 109

The T-matrix is defined as
( f

g
) = 𝑇 (a

b
) (4.14)

which relates the beam shape coefficients (BSCs) of the incident (a, b) and scattered (f,
g) VSWFs from Eqn. 4.9 and Eqn. 4.10. These BSCs are the respective weights of each
individual VSWF which is included in the total linear combination of a given field.

The BSCs can be combined into a single vector, and Eqn. 4.14 can be rewritten as

u = 𝑇 v. (4.15)

The T-matrix method is useful because the matrix depends only on the geometry of
the particle to be investigated. The freely available library known as the Optical Tweezers
Toolbox (OTT) [108] in MATLAB utilizes this approach to model optical tweezers. The
toolbox has the built-in capability to do many things, ranging from optical force calcu-
lations, to trapping landscape visualisations, to modelling optical trapping of multiple
shapes of micro-particle. Here we utilised this library and extended it by adding new
functions to explore three-dimensional optical trap enhancement.

4.3.1 The Bessel basis transformation

The Bessel basis is ideally suited to modelling light passing through the hard-edged aper-
ture of a microscope objective, as it would in an experiment. Therefore, transformations
from the Bessel basis to the VSWFs are implemented here.

In the pupil plane, each basis vector in the Bessel basis consists of an infinitely thin
ring with an origin coinciding with the centre of the pupil. Each ring has constant ampli-
tude and azimuthally varying phase described by 𝑙𝜃, where 𝑙 denotes the orbital angular
momentum of the beam (the number of times that the phase of a ring wraps between 0
and 2𝜋) and 𝜃 is the azimuthal angle.

For infinitely thin Bessel rings, the resulting fields are infinite in extent in the particle
plane. Here a finite Bessel basis is considered, such that the rings have finite width. This
limits the extent of the field needed to model the plane of the particle. The electric field
of such a finite-width Bessel beam can be described by [111]

𝐸Bess(r) = 𝐸0∫
2𝜋

0
𝑒(𝛼, 𝜃)e𝑖𝐾(𝛼,𝜃)⋅re𝑖𝑙𝜃𝑑𝜃 (4.16)

where 𝐸0 is the complex amplitude of the Bessel beam in the far field, 𝑒 is the polarisation
vector, 𝛼 is the cone angle, 𝜃 is the azimuthal angle, and r is the point at which we are
evaluating the electric field.

One can think of a single finite Bessel ring in the pupil plane as a continuum of plane
waves emitting from the points around the ring, propagating towards a focus with a set
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cone angle 𝛼, and interfering to form an intensity pattern consisting of a series of dark
and bright rings.

For the finite-sized discrete basis we consider here, these transformations from a finite
Bessel basis to the VSWFs can be represented in matrix form. The T-matrix equation
(Eqn. 4.15) can thus be rewritten as

u = 𝑇(𝑀B2VvB) (4.17)

where v = 𝑀B2VvB. The matrix 𝑀B2V transforms from the Bessel basis to the VSWF
basis.

4.4 1D optimum stiffness optical traps
It has been shown that the globally optimum optical trap capable of most stiffly trapping
a micro-particle in one dimension can be found using techniques based on the Generalized
Wigner-Smith (GWS) operator [86], which was already discussed in detail in Section 2.2.4.
We note that other methods are also able to identify such a field [89, 112–114].

To begin investigating the concept of spatially shaping optical traps for stiffness en-
hancement, this global optimum solution was simulated by integrating such techniques
based on the GWS operator into the OTT. This problem was previously detailed in [111].
We recall from Section 2.2.4 that the GWS operator is given by

𝑄𝛼 = −𝑖𝑆−1𝑑𝑆
𝑑𝛼, (4.18)

where 𝑆 is the scattering matrix and 𝛼 is a configurational degree of freedom of the system
of interest. We also recall that the eigenvectors of e.g. 𝑄𝑥 corresponding to the largest
eigenvalues form the fields that apply maximum momentum in the 𝑥 direction.

It has also been shown that the operator that provides information about the stiffest
possible optical trap in 1D is given by the derivative of the GWS operator with respect
to a given direction [86]:

𝐾𝑥 = −𝜕𝑄𝑥
𝜕𝑥 . (4.19)

Here, 𝐾𝑥 is this stiffness operator, 𝑄𝑥 is the GWS operator for the 𝑥 degree of freedom.
To calculate 𝐾𝑥, the derivatives are replaced with finite differences as before with the

GWS operator. For 𝐾𝑥, for example:

𝐾𝑥 ≈ 𝑄𝑥(Δ𝑥) − 𝑄𝑥(−Δ𝑥)
2Δ𝑥 (4.20)

where 𝑄𝑥 is the GWS operator for optimum momentum along 𝑥, evaluated at ±Δ𝑥.
Similar equations can be written for 𝐾𝑦 and 𝐾𝑧. The inverses needed to calculate the
GWS operators 𝑄𝑥 are estimated using the conjugate transpose.



4.4. 1D optimum stiffness optical traps 111

Figure 4.3: Solution for optimum 𝜅𝑥 trap for a 1.5µm radius silica
(𝑛 = 1.45) microsphere in an optical trap of NA=1.3 with circularly po-
larised 1064nm light. (a) Heatmaps showing cross-sections of the intensity
distribution of the optimum field at the 𝑧 equilibrium position. The cross-
sections show the two focused lobes just inside the surface of the microsphere
(white circle), aligned along the 𝑥 direction. (b) Force curves showing the
stiffness of the optimum field along 𝑥 (solid), 𝑦 (dotted), and 𝑧 (dashed).

In order to integrate this stiffness operator with the capabilities of the OTT, a trans-
formation matrix from the the Bessel basis to the VSWF is used. This also effectively
constrains the maximum angle of the light used to create the simulated optical traps and
provide an easy and intuitive way to modulate the complex wavefront. This also accu-
rately simulates the experimental setup used later to create optimised optical traps in the
lab.

The Bessel basis used in this section consists of 50 cone angles, spaced evenly in radius
across the pupil plane, and orbital angular momentum up to 𝑙 = 10. Smaller rings have
a lower maximum 𝑙, because small radii and high OAM rings correspond to an intensity
distribution in the object plane where most of the light is concentrated well outside of the
trapping area. Here, a total of 560 different modes is used. We choose this number to
simultaneously keep the computational time as low as possible while still incorporating
enough degrees of freedom to find a solution. Additionally, we choose to use circularly
polarized light to remain consistent between simulations and experiments discussed later.
Using circularly polarized light counteracts the changes in polarization induced by a high
NA objective lens on the highest angle rays.

We apply this GWS-based approach to determine the optical trap with the highest
stiffness 𝜅 for a 1.5µm radius silica microsphere with a refractive index of 𝑛 = 1.45.

First, for this set of particle parameters, 𝐾𝑥 is calculated. Fig. 4.3 shows the 𝜅𝑥
optimum trap for this operator. Fig. 4.3a shows normalised heatmaps of the intensity of
the 𝜅𝑥 optimum trap in the 𝑥𝑦 plane along the transverse direction (left), and in the 𝑥𝑧
plane along the propagation direction (right). The field forms bright intensity lobes along
the 𝑥 direction just inside the surface of the microsphere – this is where the majority of
the exchange in momentum between the light and particle now takes place. Fig. 4.3b
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shows the force curves for this trap in all three dimensions. As expected, the stiffnesses
along 𝑦 and 𝑧 are not as large as along 𝑥. the trap

Fig. 4.4 compares the 𝑥 force curve for a Gaussian (light red line) and the 𝜅𝑥 optimum
traps (dark green line). In this case, there is an 11.7× enhancement in the optical trap
stiffness (the slope of the force curve for small displacements from equilibrium) for the
𝑥 direction. Additionally, the maximum magnitude of the optical force is lower for the
optimised trap – this means that the energy barrier preventing a particle from escaping
the trap is reduced for the optimised trap. This suggests a trade-off between stiffness
enhancement and ability to keep a particle trapped that must be considered for such an
optimised trap.

Next, for the same set of particle parameters, 𝐾𝑦 is calculated. Given the circular
symmetry of the particle and pupil plane, we predict that we will see the lobes of the
optimised 𝜅𝑥 field rotated. Indeed, the optimised field in Fig. 4.5a shows the 𝜅𝑦 optimum
trap for this operator forms bright intensity lobes along the 𝑦 direction just inside the
surface of the microsphere. The force curves in Fig. 4.5b show similar results as above in
Fig. 4.3b for the 𝜅𝑥 optimum optical trap, but with 𝑥 and 𝑦 swapped. Here, the force
curve along the 𝑦 direction shows a higher stiffness/steeper slope of the curve about the
origin.

Fig. 4.6 compares the 𝑦 force curve for a Gaussian (light red line) and the 𝜅𝑦 optimum
traps (dark green line). Here, as above for the case of 𝐾𝑥, the stiffness was enhanced by a
factor of 11.7, as expected because the particle is spherical and therefore rotationally sym-
metric. Intuitively, one would imagine the optimum field for stiffness along any arbitrary
axis lying in the transverse to be the same solution, rotated to align with that arbitrary
axis. Also, the energy barrier keeping the particle inside the optical trap is again reduced.

Finally, 𝐾𝑧 is calculated. Fig. 4.7 shows the 𝜅𝑧 optimum trap for this operator. The
field forms two bright, adjacent foci just inside the back surface of the microsphere in
the 𝑥𝑧-plane. Fig. 4.7b shows the force curves for this field in all three dimensions. As
was explored in [111], the 𝐾𝑧 operator does not explicitly find the highest stiffness, stable

Figure 4.4: Force curves along 𝑥 of the optimum 𝜅𝑥 trap (dark
green) vs. Gaussian trap (light red) for a 1.5µm radius silica (𝑛 = 1.45)
microsphere in an optical trap of NA=1.3 with circularly polarised 1064nm
light. The stiffness along 𝑥 is enhanced by a factor of 11.7.
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Figure 4.5: Solution for optimum 𝜅𝑦 trap for a 1.5µm radius silica
(𝑛 = 1.45) microsphere in an optical trap of NA=1.3 with circularly po-
larised 1064nm light. (a) Heatmaps showing cross-sections of the intensity
distribution of the optimum field at the 𝑧 equilibrium position. The cross-
sections show the two focused lobes just inside the surface of the microsphere
(white circle), aligned along the 𝑦 direction. (b) Force curves showing the
stiffness of the optimum field along 𝑥 (solid)), 𝑦 (dotted), and 𝑧 (dashed).

trap - instead, it finds the steepest negative force gradient at 𝑧 = 0. The force does
not necessarily cross from positive to negative in this region to create a stable trapping
equilibrium. the z-force itself is positive over the entire diameter of the bead, as can be
seen in Figure 5.16(b). An equilibrium does exist, at about z = −5 μm but the stiffness
there is two orders of magnitude smaller than in a Gaussian beam trap.

Fig. 4.8 compares the 𝑧 force curve for a Gaussian (light red line) and the 𝜅𝑧 optimum
traps (dark green line). Although the slope of the force curve is increased by a factor of
5.82, this ‘trap’ is not stable due to the lack of an equilibrium position. This is indicated
by the force not crossing zero in the region of linear slope. This optimum beam would
continuously push the particle downstream, and away from the trap entirely.

These improvements in one-dimensional optical trap stiffness are encouraging to the

Figure 4.6: Force curves along 𝑦 of the optimum 𝜅𝑦 trap (dark
green) vs. Gaussian trap (light red) for a 1.5µm radius silica (𝑛 = 1.45)
microsphere in an optical trap of NA=1.3 with circularly polarised 1064nm
light. The stiffness along 𝑦 is enhanced by a factor of 11.7.
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Figure 4.7: Solution for optimum 𝜅𝑧 trap for a 1.5µm radius silica
(𝑛 = 1.45) microsphere in an optical trap of NA=1.3 with circularly po-
larised 1064nm light. (a) Heatmaps showing cross-sections of the intensity
distribution of the optimum field at the 𝑧 equilibrium position. The cross-
sections show a focused ring just inside the back surface of the microsphere
(white circle). (b) Force curves showing the stiffness of the optimum field
along 𝑥 (solid)), 𝑦 (dotted), and 𝑧 (dashed).

goal of this project, but no constraints are placed on the other dimensions. This means
that the optical traps need not be enhanced or even stable at all in these dimensions
[103], as seen in Fig. 4.7. Additionally, extending one-dimensional optimum stiffness
enhancement to three dimensions is not straight forward. In fact, the naive solution of
finding the optimum in multiple dimensions and superimposing those results does not
yield straightforward results [111], because the different optimum beams interfere and
therefore affect one another and altering the overall intensity distribution of the optical
trap. Analytically solving for the globally optimum solution in all dimensions is not
possible because the operators for each dimension do not commute – the stiffnesses in
each direction are not independent of one another. This remains an open problem in the
field [103].

Figure 4.8: Force curves along 𝑧 of the optimum 𝜅𝑧 trap (dark
green) vs. Gaussian trap (light red) for a 1.5µm radius silica (𝑛 = 1.45)
microsphere in an optical trap of NA=1.3 with circularly polarised 1064nm
light. The stiffness along 𝑧 is enhanced by a factor of 5.82.
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Therefore, a novel approach to 3D optical trap enhancement is needed to solve this
challenging problem facing the field of optical tweezers. In the next section, an optimisation-
based approach is introduced that has the ability to numerically determine 3D-enhanced
optical traps.

4.5 Novel numerical approach for 3D trap enhancement
In this section, a novel approach to provide a solution to the problem of 3D optical trap
enhancement is presented. This approach and its results were recently released in an
ArXiv pre-print [115]. In it, a constrained interior point optimisation algorithm is used to
create complex-modulated optical traps that demonstrate up to two orders of magnitude
reduction in the confinement volume of a trapped particle.

This novel optimisation addresses two of the biggest challenges for this project. The
first being the lack of an analytical solution, and the second being the computational
bottleneck. Previous optimisations in the field, which have only been in 1D [116] or 2D
[111], have been computationally expensive and taken on the order of days to converge
to a solution. In comparison, the optimisation presented in the coming sections takes
seconds to minutes to converge to a 3D solution using a desktop PC.

4.5.1 Constrained interior point optimisation

The optical trap to be optimised is expressed in the pupil plane in terms of finite Bessel
rings, each with an associated amplitude and phase which can be modulated during the
optimisation to affect wavefront shaping. Dr. Unė G. Būtaitė led the effort of developing
this numerical optimisation and the simulations included in this section were carrier out
by her.

Using the T-matrix approach in combination with the GWS operator and a constrained
interior point optimisation, we find 3D enhanced optical traps. The details of this op-
timisation are elaborated on in [115]. Briefly, we describe the optical trap incident on
a particle as a set of Bessel rings in the pupil plane, where we can perform wavefront
shaping on the beam. Using a transformation from the Bessel to the VSWF basis, we
then express these fields in the near-field of the particle as VSWFs – this allows us to use
the OTT to calculate the T-matrix and subsequently calculate the GWS operators for
force and stiffness. By using the scattered representation of the T-matrix in the OTT, we
can write the operators as follows:

𝑓opt
𝑥 = u†𝑄𝑥u = u† (−iS†𝜕𝑥S)u, (4.21)

𝜅𝑥 = u†𝐾𝑥u = u† (−𝜕𝑥𝑄𝑥)u, (4.22)
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where 𝑓opt
𝑥 is the force in the 𝑥 direction acting on the particle due to the incident wavefront

u, S is the scattered representation of the T-matrix describing how the light interacts with
the particle, 𝜕𝑥 indicates a partial derivative with respect to the 𝑥-position of the particle,
and † indicates a conjugate transpose. The vector u describes the incident field contains
the BSCs in the VSWF basis.

The operators 𝑄𝑥 and 𝐾𝑥 are the cornerstones for this novel approach, allowing us to
calculate the force and stiffness for any incident beam quickly because the T-matrix need
only be calculated once at the start of the optimisation. This significantly reduces the
computational time for 3D stiffness enhancement optimisations.

Fig. 4.9, reproduced from [115], shows results for 3D optimised traps found using our
novel approach for 900 different microspheres of varying refractive index and radius. The
heatmaps show the levels of enhancement to the stiffnesses and confinement volumes, as
well as the corresponding reduction in needed power for the same trapping performance as
a conventional Gaussian trap at 1064nm. For a sizable portion of these optimised traps,
the stiffnesses are increased by over ∼ 10× in all dimensions and the confinement volumes
are reduced by over ∼ 50×. Interestingly, these traps are stable for situations in which
microparticles in a conventional trap are unstable (lilac regions of the enhancement plots
in Fig. 4.9a-e).

Fig. 4.10 shows a handful of these 900 optimised traps. The common thread between
the scenarios plotted here is that the intensity is mainly focused to just inside the surface
of the microsphere. This can be understood by considering that the momentum transfer
occurs at the interface between the particle and the surrounding medium, so concentrating
the light there maximises the momentum transfer, thereby increasing the stiffness of the
optical trap.

These results are encouraging, demonstrating for the first time that it is possible to
make better use of available light by wavefront shaping the incident light to a shape that
increases the resulting optical trap’s stiffness. There are two sides to this: it is possible
with these traps to either trap a particle over an order of magnitude more stiffly, or use
over an order of magnitude less laser power to achieve the same trapping stiffness as a
conventional Gaussian trap.

However, it was not expected that these traps would be easily implementable in an
experiment. There are a multitude of reasons for this. The performance of the optical
traps is strongly dependent on the precise intensity distributions and gradients, and slight
deviations in these values result in immediate deterioration of the performance of the
trap, as explored in the Supplementary material in [115], and commercially available
silica microspheres have a statistical variation in their size. Because the optimised traps
presented here are very sensitive to the exact size of the microsphere, and because we do
not know the exact size of a trapped microsphere in experiments, implementing one of the
numerically optimised traps in experiment is not straight forward. Additionally, optical
aberrations in the created field cause deviations in the generated intensity distribution,
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Figure 4.9: Part of Figure 2 from [115] showing the levels of enhance-
ment for a range of 900 microspheres with different radii and refractive in-
dices. The lilac colored areas correspond to beads that are unstable in a
conventional Gaussian optical trap. The wavelength of the optical trap in
these simulations was 1064nm.

which would directly reduce the performance of the optical trap. The equipment used in
a typical holographic optical tweezers system also introduces elements with some degree
of uncertainty or deviation from simulation, such as the cross-talk between SLM pixels
and the behavior of high angle rays in high NA microscope objectives.

Nonetheless, in the next chapter, we introduce the experimental set up used to try
and experimentally demonstrate such 3D trap enhancements for the first time.
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Figure 4.10: Part of Figure 2 from [115] showing intensity cross-sections
of 6 numerically optimised optical traps. Each trap is optimised for the mi-
crosphere with radius 𝑎 and refractive index 𝑛 indicated above each subfigure
(g-l). The cross-sections show the transverse (left) and axial (right) planes at
the equilibrium position.
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Chapter 5

Holographic optical tweezers
setup

W
ith the aim of enhancing optical trapping in three dimensions, and heeding
the sensitivity of numerically optimised optical traps to minute differences in
micro-sphere properties, it was clear that the experimental implementation

of this approach needed to be incredibly precise. With this goal in mind, I redesigned and
rebuilt the holographic optical tweezers (HOT) system I was provided at the start of my
postgraduate research.

The finalised system is described in the next section, followed by details of various
methods of aberration correction performed on the system, with the goal of generating
the highest quality optical traps possible with this HOT setup.

5.1 Experimental setup
The laser path in the HOT

The HOT system used for the experiments presented in this thesis is shown schematically
in Figure 5.1. A 1064 nm continuous wave laser (Laser Quantum: VentusIR, 3 W) is
expanded (5×) onto the screen of a liquid crystal spatial light modulator (Boulder Non-
linear Systems: XY-series, 512×512 resolution). The phase is spatially adjusted here by
displaying a phase mask such as the one inset above the SLM in the schematic. The
polarization of the laser is converted from linear polarisation to circular polarisation. The
laser beam is then passed through a lens of focal length 𝑓1 before splitting into two paths.
A dichroic beamsplitter designed to reflect the laser wavelength diverts the laser into the
main beam path, through a lens of focal length 𝑓2, and onto the back of a 1.3 NA 100x
microscope objective (Olympus, Thorlabs, RMS100X-PFO). This objective tightly focuses
the wavefront-shaped laser beam to create the desired optical traps in the sample plane.
A secondary laser path consists of the beam transmitted through the imperfect dichroic
beamsplitter, which allows a fraction of a percentage of the incident laser to transmit
instead of reflect. This transmitted beam is then collimated by a lens of focal length 𝑓3,
and then focused onto Camera 2 (Thorlabs, DCC1545M) by a lens of focal length 𝑓4. The
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Figure 5.1: Schematic of the HOT setup. The laser is expanded to
fill a liquid crystal spatial light modulator. An example of the phase mask
displayed on the SLM is shown in the inset on the top left. The SLM is then
re-imaged onto the back of the objective lens. The sample slide is placed in the
front focal plane of the objective, where the micro-spheres can be manipulated
using wavefront-shaped optical traps. The sample is back-illuminated with
two red LED sources, forming twin views of the sample from different angles.
The two images are collected by the same objective lens and later passed
through two spatially adjacent prisms, positioned in the Fourier plane of the
sample, to separate the two ‘eyes’ of the stereo-vision system. Finally the two
spatially separated views of the sample are imaged side-by-side onto Camera
2, as seen in the inset on the bottom right. The intensity distribution of the
wavefront-shaped optical trap can be recorded using Camera 2, as seen in the
inset on the middle right.

inset above Camera 2 in the schematic shows an example of such an image of an optimised
beam.
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Live 3D position measurements with stereomicroscopy in the HOT

We need to track trapped microparticles in 3D. To do this we use stereomicroscopy, which
gives images of the sample from two different perspectives – enabling 3D tracking of
particle positions using 2D image analysis of each image and combining the information
from these two images using parallax.

Displacement of an object in 𝑧 corresponds to opposite displacements in the two 2D
images along the direction parallel to the axis that the illuminators are mounted along.
For example, if the illuminators are mounted along 𝑥, a displacement of a trapped micro-
particle in 𝑧 results in a displacement in ±𝑥 according to

Δ𝑧 = (Δ𝑥1 −Δ𝑥2)
2 tanΘ (5.1)

where Θ is the separation half-angle between the illuminators (as seen in Fig. 5.1), Δ𝑧 is
the calculated displacement along 𝑧, and Δ𝑥1 and Δ𝑥2 are the displacements of the object
along 𝑥 in the left (1) and right (2) images respectively. This approach allows nanometric
tracking precision [117].

Experimentally, the necessary stereomicroscope is created by back-illuminating the
sample with two LED illuminators angled at Θ from the normal to the sample. The
light from the illuminators passes through the sample and the front of the microscope
objective, is collimated by the lens of focal length 𝑓2, before transmitting through the
dichroic beamsplitter. The illumination is then filtered through a rectangular aperture,
which reduces the field of view so both images of the sample fit side-by-side on the camera,
before passing through a lens of focal length 𝑓5. The light from the two ‘eyes’ of the system
is separated by two prisms at the focal plane of the lens, and the rectangular images are
finally collimated by a lens of focal length 𝑓6 and reach Camera 1 (Mikrotron, EoSens
CL)). The inset above Camera 1 shows a cropped region of interest of the left and right
eye images.

Details of the lenses used in the HOT

For the experiments presented in this thesis, the focal lengths of the lenses were: 𝑓1 =
150 mm (Thorlabs, LA1433-YAG); 𝑓2 = 100 mm (Thorlabs, ACA254-100-1064); 𝑓3 =
125 mm (Thorlabs, LA4235-1064); 𝑓4 = 75 mm (Thorlabs, LA1608-YAG); 𝑓5 = 150 mm
(Thorlabs, LA1433-A); and 𝑓6 = 175 mm (Thorlabs, LA1229-A). The lenses in the laser
beam path are AR coated for 1064 nm.

The focal lengths of the lenses were carefully chosen to achieve the proper magnifica-
tions 𝑀 throughout the system, which are calculated by

𝑀𝑎𝑏 = −𝑓𝑏
𝑓𝑎

(5.2)

where 𝑓𝑎 and 𝑓𝑏 are the focal lengths of lens 𝑎 and 𝑏 respectively.
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Lenses 1 and 2 (which yield a magnification of 𝑀12 = −0.67) were used to de-magnify
the SLM, which has a screen diameter of 7.68 mm, to fill the back aperture of the objective
lens, which has a diameter of 4.7 mm. This means that a circular area with diameter
7.05 mm on the SLM screen – 92% of the total SLM screen width – is needed to be able
to modulate the phase of the entire numerical aperture (NA) of a created optical trap.
Lenses 3 and 4 (𝑀34 = −0.60)) create a focused image of the phase modulated optical
trap on Camera 2, with high enough resolution for it to capture the details of the trap (see
inset by Camera 2 in Fig. 5.1). Lenses 5 and 6 (𝑀56 = −1.17) create slightly magnified,
collimated images of the left and right eyes on Camera 1 to generate the stereo-images
necessary for live 3D centre-of-mass symmetry tracking (see inset by Camera 1 in Fig. 5.1).

Sample and objective mounting in the HOT

The sample is mounted in a spring loaded microscope slide holder, which is in turn
mounted on a motorised 2D translation stage, allowing the entire sample to be viewed
easily. To adjust the height of the focal plane within the sample, the microscope objec-
tive was mounted on a motorised 1D translation stage. In the experiments detailed in
Chapter 6, the focal plane was translated 25µm from the bottom of the sample by trans-
lating the objective lens, to ensure that a trapped microsphere does not bounce into the
coverslip, and can freely explore its full 3D confinement volume. For details about sample
preparation, see Appendix C.

One fact which we neglected to take into account at the time is the impact of boundary
effects within the water of the sample. This interaction is created when an object moves
close to a wall of the container, and is described by Faxén’s law. This law is a correction
to Stokes’ law for the friction on spherical objects in a viscous fluid between two paral-
lel boundaries [118]. However, we do not believe that this impacted the performance of
our optimization. Plotting a histogram of the movement of an optically trapped micro-
sphere displaced 25µm above the bottom of the sample revealed a normal distribution
of positions, lacking the asymmetry to indicate interactions of the microsphere with the
boundary of the sample.

Software control of the HOT

To control the system for experiments, the Red Tweezers LabVIEW software from [119]
was modified. Custom LabVIEW subVIs were written and integrated with this existing
experimental software framework to generate the desired phase patterns on the SLM
(inset by the SLM in Fig. 5.1) and perform the aberration correction and optical trap
enhancement experiments detailed in this and the next chapters. Appendix E details the
use of this software and provides and overview of the back panel of the program.
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5.2 Aberration corrections
Optical aberrations introduced into the focused laser cause distortions in the intensity
gradients, which are extremely detrimental to the desired performance of a generated
optical trap. In an attempt to reduce the effect of such aberrations in experiments, aber-
ration correction of the optical system can be performed. In the case of the experiments
presented here, this is done using the SLM in the optical setup. The SLM counteracts
the optical aberrations by adding the inverse of the phase aberrations to the laser beam
reflecting from it.

These optical aberrations are caused by misalignments, manufacturing imperfections,
etc. of components within the setup. They can be corrected by subtracting a fixed, pre-
calculated phase mask from every hologram displayed on the SLM. Several methods of
aberration correction were tested and implemented throughout the course of the work
presented in this thesis, and are discussed in detail below. They include a superpixel,
Gerchberg-Saxton, and Zernike optimisation approach, as well as simply reducing the NA
used in the system. Naturally, the resulting phase corrections are highly dependent on the
exact configuration of the optical system, requiring re-measurement anytime the system
changes (i.e. an optical component is adjusted).

Notably, aberration correction has been used in the past to increase the stiffness of
optical traps. Previous work has included 2D optical trap enhancement through aberration
correction [120–123]and the use of Laguerre-Gaussian beams [124]. This highlights the
sensitivity of optical trap performance to the precise intensity distribution of the trap, and
the importance of aberration correction in the quest for 3D-optimised optical tweezing
stiffness.

5.2.1 Superpixel method

One method to correct aberrations along the laser path in a coherent optics setup was
introduced in 2010 in [17]. Čižmár et al. demonstrated diffraction limited focusing through
strongly scattering media by shaping the field incident on the scattering material using an
SLM in the Fourier plane of the focus. In this approach, the SLM screen displaying some
diffraction grating is divided into 𝑛 × 𝑛 superpixels – individual modes on a rectangular
lattice of lower resolution than the number of SLM pixels available – which splits the
incident wavefront into 𝑛2 independent spatial modes. Here, 𝑛 is the 1D resolution of the
superpixel grid.

Next, a reference superpixel is chosen, which will have constant global phase delay
with respect to the other superpixels. We iterate over each of the other superpixels to
determine the phase aberrations across the superpixel grid. Two such reference and tester
spatial modes are seen in Fig. 5.2a – in this case the simulated SLM screen is split into
10 × 10 superpixels. All other superpixels except the reference and tester superpixels are
turned off (zero phase in these locations). A camera is used to re-image the focused laser;
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this image is in turn used to probe the intensity of the generated focus. The phase delays
of the other superpixels which are needed to correct the aberrations are determined as
follows.

Fundamentally, this method works by determining the relative phase differences be-
tween all 𝑛2 modes of the incident field, such that they all maximally constructively
interfere at a chosen location. This interference between fields due to the reference and a
single tester superpixel is described in [17] by

𝐼𝑝(𝑡) ∝ |𝐸𝑡|2 + |𝐸𝑟|2 + 2|𝐸𝑡||𝐸𝑟| cos (𝜓𝑡 − 𝜓𝑟 + 𝑣𝑡) (5.3)

where 𝐸𝑡 and 𝐸𝑟 are the fields on the camera due to the tester and reference superpixels,
respectively, and 𝜓𝑡 and 𝜓𝑟 are their phases. The phase term 𝑣𝑡, where 0 = 𝜓𝑡 −𝜓𝑟 + 𝑣𝑡,
corresponds to the optimal phase delay for maximum constructive interference between
the reference and tester superpixel modes.

To determine the optimal phase delay, the intensity at the location of the first diffracted
order on the camera (or indeed at the location of a chosen camera pixel) is sequentially
probed for values of 𝑣𝑡 between 0 and 2𝜋. The optimal phase delay for one pair of
reference and tester superpixels can be extracted by Fourier-transforming the interference
signal 𝐼𝑝(𝑡). Once all of the relative phases for each of the superpixels is determined, the
𝑛 × 𝑛 phase delays are turned on together to form a grid of phase corrections.

To understand this method in more detail, it was simulated in LabVIEW using a
10×10 grid of superpixels. Fig. 5.2 illustrates the approach for a single tester superpixel.
The reference superpixel was chosen near the middle of the lattice, where the intensity
incident on the SLM is expected to be maximum in experiments. The fields from the

Figure 5.2: Simulated superpixel aberration correction, as demon-
strated in [17]. (a) An example phase mask showing 2 superpixels – 1 tester
and 1 reference – from a 10 × 10 grid of superpixels. (b) The modulation of
the intensity of a selected pixel in the Fourier plane of the simulated SLM
due to the shifting of the interference fringes created by the two superpixels.
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tester and reference superpixels will interfere at the location of the 1st diffractive order
focus, generating interference fringes which will have a bright maximum at the location
of the focus if the appropriate phase delay is added to the tester superpixel.

Fig. 5.2b shows the simulated intensity of one pixel of the camera image within the
image of the interference fringes, illustrating how adding a global phase to the tester
superpixel causes this intensity to sinusoidally vary with respect to the added phase. For
this superpixel, an added phase of ∼ 4 radians optimises the constructive interference at
the chosen pixel in the camera image. This process is then repeated for all other tester
superpixels within the superpixel grid.

In addition to determining the phase delays between all superpixels to perform the
aberration correction, it is possible to measure the intensity distribution of the laser profile
on the SLM screen by iteratively probing the intensity of the 1st diffractive order focus for
individual superpixels. This is useful to perform complex modulation of the wavefront,
if needed, and also to provide information on alignment of the laser path. The latter
application of the intensity distribution information was applied in this thesis to ensure
precise alignment: if the circular region of intensity is not centred on the SLM, the laser
is not aligned.

Fig. 5.3 shows experimental results of applying the above method in the HOT system
shown in Fig. 5.1 used for the experiments detailed in this thesis. The intensity distribution
in Fig. 5.3a indicates that the laser is well-aligned, as it is centred on the SLM; it also
provides insight into the actual size of the expanded laser beam in the system. From the
configuration of the system, it was calculated that ∼ 92% of the SLM screen corresponds
to the full NA of the system; this is experimentally verified by the spatial extent of the
intensity distribution shown here.

The measured phase delays in Fig. 5.3b illustrate the aberrations present in the laser
path of the system. The noise present at the edges is due to a lack of light reflecting
from those superpixels. Fig. 5.3c shows the same intensity and phase information in the
form of a complex plot where the phase is represented by the color and the amplitude is
represented by the brightness.

The camera images shown in Fig. 5.4 were obtained before (left) and after (right)
aberration correction with this superpixel method. The images were taken using the same
camera exposure settings, so that they are directly comparable. The quality of the focus
has improved - the shape is more symmetric, and the intensity has increased.

This method of aberration correction relies on the light reflected from the glass-water
interface of the sample reaching the camera that re-images this plane (Camera 1 in
Fig. 5.1). An issue that arose in the implementation of this method was the low per-
centage of the laser light incident on the sample that actually made it to the imaging
camera. This light has to be both reflected from the sample and also transmitted through
the dichroic beamsplitter (designed to reflect light at the laser wavelength) to the imaging
arm of the system. To address these low levels of light on the camera, special samples were
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Figure 5.3: Experimentally measured aberration correction of the
HOT system for 30 × 30 superpixels, using the method described in [17].
(a) Intensity distribution of the laser on the SLM screen. (b) Phase delays
of individual superpixels, which taken together form the necessary phase cor-
rections to remove aberrations. (c) Full field representation of the results in
(a) and (b); here the color represents phase and the brightness represents
amplitude.

fabricated in which half of the coverslip was covered with ∼ 40 nm of sputtered gold. This
half-gold coverslip was used to create a sample such that the gold interface was between
the glass of the coverslip and the water of the sample chamber (i.e. inside the sample).
For a photograph of such a sample see Appendix C, Fig. C.4. In principle, a better (more
reflective) metal could be used, however 40 nm of gold coverslips were readily available
thanks to Dr. William Wardley, who provided then for my use. This enhanced the level
of reflected light reaching the imaging arm sufficiently to perform higher resolution su-
perpixel aberration correction, such as the one presented in Fig. 5.3 for a grid of 30 × 30
superpixels. Without such a sample, the system was limited to correction using a grid of
∼ 10 × 10 superpixels.

Figure 5.4: Camera images of a focused laser beam. (a) Initial focus.
(b) Focus after superpixel aberration correction. Both images were taken
with the same exposure settings; this means the increase in brightness is due
to more light being focused to the desired location, and not due to changes
in the camera settings.
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5.2.2 Gerchberg-Saxton method

A method to correct for the surface deviations of the SLM screen, specifically to avoid
reduction in optical trapping performance due to aberrations of the trapping beam, was
introduced in 2007 by Jesacher et al. which relies only on a camera image of an aberrated
beam in the focal plane [125]. Jesacher et al. induced aberrations by transmitting a
beam through an angled piece of glass. Using a camera image of an aberrated beam in a
Gerchberg-Saxton (GS) algorithm, the phase errors that constitute the phase aberrations
of the experimental focus can be quickly calculated.

The GS algorithm is a well-known iterative algorithm [126–132] to find the unknown
phase profile of an optical field from intensity only measurements. It relies on the fact
that the phase affects how a beam diffracts as it propagates through space, so two planes
of intensity-only measurements can reveal information about the phase of the field.

The algorithm is briefly described here, but it is discussed in greater detail in [125]. In
short, we follow the same approach but with a beam reflected from a glass-water interface
instead of transmitted through it. The algorithm functions as follows:

Figure 5.5: Flowchart illustrating the Gerchberg-Saxtion aberra-
tion correction procedure.

1. An initial condition (initial field, 𝜙) is chosen – a complex field with a circular
aperture for its amplitude 𝑎0 and a vortex for its phase 𝜃0.

2. A fast Fourier transform (FFT) is performed on the initial field to propagate the
field from the SLM plane to the image plane. The field in the image plane is called
Φ.

3. The root-mean-square error (RMSE), 𝜀, between |Φ|2 and the intensity image of the
aberrated beam from the camera is calculated. If the percent change of 𝜀 from one
iteration to the next is less than 1% (%Δ𝜀 < 1), this procedure ends.

4. The amplitude 𝐴 of the complex array representing the field Φ is replaced with the
square-root of the intensity image of the aberrated beam, 𝐴𝑖.

5. An inverse FFT (FFT−1) is performed on Φ to propagate it back to the SLM plane.



128 Chapter 5. Holographic optical tweezers setup

6. At the SLM plane the amplitude 𝑎 of the complex array representing the field 𝜙 is
replaced by the circular aperture 𝑎0 which was used as the amplitude of the initial
field in Step 1.

These steps are repeated until %Δ𝜀 < 1. The phase array 𝜃 from the last loop of these
steps can then be subtracted from the initial phase mask used in the SLM plane to correct
for the recovered aberrations.

Figure 5.6: Simulated intensity distributions and aberrations for
the Gerchberg Saxton aberration correction method for a Laguerre
Gaussian beam with 𝑙 = 1. (a) Ideal and aberrated images of the beam;
the insets show the corresponding phase in the SLM plane. (b) The phase
distortions added in the SLM plane, to generate the aberrated beam shown
in (a). The top row corresponds to results for levels of aberration with the
same maximum variation of phase as demonstrated in [125]; the bottom row
corresponds to larger variations of phase and therefore larger levels of aber-
ration.

As with the superpixel method discussed above, this approach to aberration correction
was first investigated in simulations. The phase of a Laguerre Gaussian beam with radial
index 𝑟 = 0 and azimuthal index 𝑙 = 1 was chosen as the initial phase in the SLM plane.
The initial amplitude was a circular aperture with the same diameter as the resolution of
the field, which was chosen to be 512 × 512 pixels to match the size of the SLM screen
used in the optical tweezing experiments presented in this thesis.

In our test simulation, we are able to specify the degree of aberration, and then run
the algorithm to see if we are able to recover the aberrations. To simulate the aberrations
that would be corrected by this method experimentally, a weighted combination of the
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first 8 radial Zernike polynomials, as defined in [133], was calculated. This is done using

𝜁 = 𝛼∑
𝑚,𝑛

𝑐𝑛𝑚𝑅𝑚
𝑛 (5.4)

to generate the aberrating phase 𝜁, consisting of individual radial Zernikes 𝑅𝑚
𝑛 each

weighted by a different randomly chosen constant 𝑐𝑚𝑛 , such that the sum is normalised to
1. This is in turn normalised to a maximum value of 𝛼. A value of 𝛼 = 4 is approximately
the level of phase distortions presented for the simulations in [125].

These aberrations were added to the Laguerre Gaussian phase in the SLM plane,
and Fourier-transformed to generate the aberrated beam in the image plane. Fig. 5.6a
shows the intensity distributions of the ideal and aberrated Laguerre Gaussian beams in
the image plane, as well as their corresponding phases in the SLM plane, for two levels
of aberrations. The added phase distortions used to generate the aberrated beams are
shown in Fig. 5.6b.

The beams in Fig. 5.6 were used to initialise the Gerchberg-Saxton optimisation al-
gorithm. The phase of the ideal beam in the SLM plane was used as the initial field’s
phase. The intensity of the aberrated field in the image plane was used in place of the
experimental camera image to calculate the RMSE, 𝜀. Fig. 5.7 shows the optimisation
results for the algorithm described above. The progression of the algorithm is shown in
Fig. 5.7a with the normalised RMSE, 𝜀. Included are the intensities in the image plane
of the initial aberrated and final corrected fields, after subtraction of the recovered aber-
rations. Fig. 5.7b shows the aberrations that were recovered by the algorithm and the
remaining aberrations.

For levels of aberration similar to those considered in [125], the remaining aberrations
consist of mostly flat and uniform phase without any visible distorting phase features
missed by the phase retrieval of the GS-algorithm, indicating this method of aberration
correction succeeded. The remaining distortion in the centre is due to the singularity
in the initial field phase, which was explained in [125] as being due to a violation of
the sampling criteria in the central region of the phases. However, for larger levels of
aberrations, the algorithm failed to retrieve the phase aberrations. This indicates that
this algorithm is not reliable for cases in which the aberrations become more extreme.
This is because the GS algorithm optimises towards a local solution which could be far
from the globally optimum solution if the initial field is too distorted in comparison to
the ideal field, i.e. the case where aberrations are severe.

In the experimental implementation of this technique, it is important to properly re-
size the initial field such that the FFT that generates the field in the image plane is
the same size in pixels as the real experimental image on the camera. This is done here
by padding the initial condition with the needed number of rows and columns of zeros.
Fig. 5.8 shows experimental results for aberration corrections found using this method.
The figure shows camera images of the reflected laser beam on Camera 1 in the HOT
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Figure 5.7: Simulated performance of the Gerchberg-Saxton aber-
ration correction method (top) for lower levels of aberration and (bot-
tom) higher levels of aberration. (a) Progression of the optimiser, showing
the decrease in the RMSE 𝜀 with increasing iterations. The insets show the
intensity of the initial aberrated and final corrected fields in the image plane.
(b) Phases recovered by the algorithm, and remaining aberrations calculated
by subtracting the recovered phases from the full aberrations in Fig. 5.6b.
For higher levels of aberration, this algorithm fails to retrieve the phases and
therefore cannot correct the aberrations.

setup; the insets show the phase masks displayed on the SLM, minus the diffraction
grating phases, used to generate the traps. As was also presented in [125], multiple cycles
of this method can be used to further improve the quality of the focused image, as seen
in Fig. 5.8b.

This method of aberration correction does not perform as well for the HOT system
used in this research, as the optical setup presented in [125], which was much simpler. The
optical setup there images the Fourier plane of the SLM directly, while the HOT setup
used here re-images reflections of the tightly focused laser from the glass-water interface
of a sample. A combination of effects from the high NA objective in the HOT setup and
differences in using the reflected or transmitted light may be at the root of this reduction
in algorithm performance.

5.2.3 Zernike method

The focal plane of the objective lens for the previously described aberration techniques
is located at the glass-water interface of the sample, and therefore these techniques only
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Figure 5.8: Experimental aberration correction performed using
the Gerchberg-Saxton algorithm. (a) Camera image showing the initial
aberrated, focused beam. The inset shows the phase mask, minus the neces-
sary diffraction grating, displayed on the SLM screen to generate the camera
image.

Figure 5.9: Performance of experimental Gerchberg-Saxton aber-
ration correction algorithm. (a) Progression showing normalised RMSE
𝜀 for two consecutive cycles of the optimiser. (b) The recovered phases after
each of the two consecutive cycles.

correct aberrations to the glass-water interface. They use the light reflected at this inter-
face, which is re-imaged onto a camera, as the marker to measure aberrations. Therefore,
the superpixel and Gerchberg-Saxton methods of aberration correction neglect any aber-
rations introduced between the interface and the trapped particle itself. As it turns out,
this is not a negligible omission, as discussed below.

In this section, a novel approach to aberration correction in HOT setups is detailed
which uses live feedback from an optically trapped microsphere in an optimiser to retrieve
the necessary linear combination of Zernike radial polynomials to recreate the aberrating
phases present in the HOT system.
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Note about the aberrating effect of the glass-water interface

The glass-water interface introduces additional aberrations to the focused optical trap,
which cannot be measured with either the superpixel or GS methods described previously
because these methods use light reflected from the interface itself, not the location within
the water at which experiments will be performed. This is a well known problem in the
field of optical tweezers and microscopy [107, 134, 135] that results in the distortion of a
focus through an interface, mainly through spherical aberration. Of the methods intro-
duced here, only this Zernike optimisation approach can inherently take these additional
aberrations into account.

Zernike optimiser for aberration correction

Instead of using an image of the reflected laser light to extract information about the
system’s aberrations, here a new method is proposed using live tracking data from a
trapped micro-sphere as the marker for these aberrations. Ideally, a focused laser beam
would form an ellipsoidal trap in three dimensions, such that it is elongated along the
axial direction (propagation direction) of the laser beam. In the presence of aberrations,
however, this ellipsoid becomes distorted.

Because optical tweezers fundamentally rely on the exchange of momentum between
the incident laser and the trapped micro-particle, the precise intensity distribution of the
focused trap including aberrations impacts how tightly the micro-particle is trapped, for
better or (usually) for worse. For spherical particles it intuitively follows that aberrations
of a focused Gaussian beam will induce a reduction in the three dimensional trapping
stiffness. The optimisation algorithm detailed here attempts to correct these distortions
by extracting information about the trap stiffness from live tracking data of a trapped
micro-sphere and compensating for the aberrations on the displayed phase hologram used
to generate the optical traps.

Before starting the optimisation, a 15.03µm diameter silica micro-sphere was trapped
in the zero-th diffractive order focus. The bead was translated 25µm from the bottom of
the sample using the translation stage, to ensure its 3D motion in the trap is not restricted
by the coverslip.

The basis for this optimiser consists of the first 12 radial Zernike polynomials as
defined by Zernike in [133]. Using an algorithm relatively robust to noise, similar to the
one presented in [91], it is possible to extract the optical aberrations present within an
HOT system such as the one used here. These aberrations can be expressed as a linear
combination of each of the radial polynomials. Because of the configuration of the HOT
setup (see Appendix C), the phase correction patterns were generated within a circular
aperture centred on the SLM screen with a diameter of 92% of total SLM screen width.

Each polynomial is considered consecutively, so that only one is probed at a time. The
amplitude of each radial polynomial needed to create the total sum of all aberrations is
determined as follows.
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Figure 5.10: Flowchart illustrating the Zernike aberration correc-
tion optimisation.

1. For a chosen radial polynomial, a small amount Δ𝜙 of it is added to the phase mask
𝜙 displayed on the SLM.

2. The centre-of-mass (CoM) of the trapped micro-sphere in three dimensions is tracked
for a time Δ𝑡 = 10 s, an integration time that is long enough to accurately calculate
statistics from the tracking data – a full discussion of the choice of integration time
is presented in Section 6.2.3.

3. From the 3D tracking data, the standard deviation of the three dimensional motion
of the CoM of the microparticle is calculated. Using the Equipartition Theorem as
in Eqn. 4.6, the stiffness of the current aberrated optical trap 𝜅+Δ𝜙 is calculated.

4. Steps 1-3 are repeated, this time with a small amount Δ𝜙 of the chosen radial poly-
nomial subtracted from the starting phase mask, such that 𝜅−Δ𝜙 can be calculated.

5. Steps 1-3 are then repeated for the initial phase mask, and 𝜅0 is calculated.

6. From these three scenarios, the phase configuration 𝜙 which maximises the objective
function is selected. The objective function chosen here was that the average of
stiffness in the 𝑥 and 𝑦 directions, ̄𝜅𝑥𝑦, must increase, and the stiffness in the 𝑧
direction, 𝜅𝑧, must not decrease. The chosen phase configuration that maximises
the objective function then becomes the initial phase mask displayed on the SLM for
the start of next iteration, when these steps are repeated for the next consecutive
radial polynomial.

The optimiser is allowed to cycle through the polynomials, trying to find the optimum
amount of each needed to correct the aberrations, until it is manually stopped once it has
converged.

Fig. 5.11a shows the experimentally measured confinement volume of the centre of mass
of a 15.03µm silica micro-sphere. This size – the largest available within the research group
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– was used because it was anticipated that larger micro-particles will be more heavily
impacted by trap aberrations and therefore less stiffly trapped due to the distortions
of the beam. The left subplot shows the confinement volume of the micro-sphere in a
conventional Gaussian trap before aberration correction. The right subplot shows the same
micro-sphere in the trap after optimisation as described above to determine aberrations
present in the system. Fig. 5.11b shows (top left) the recovered aberrations, (top right) the
stiffness enhancements between the aberration corrected beam and the original Gaussian
beam, and (bottom) the progression of the optimisation as the stiffness enhancement vs.
iteration. For the optimisation included in Fig. 5.11, correcting the aberrations of the
focused trap resulted in a stiffness enhancement of 1.15× in 𝑥, 1.90× in 𝑦, and 1.18× in
𝑧, and an overall 1.61× confinement volume reduction.

Unfortunately, I was unable to successfully repeat this experiment. This is believed to
be due to the many local minima that may exist on the complicated landscape of 3D optical
trap enhancement. Perhaps the signal-to-noise ratio was too low for the algorithm to make
correct choices about how to change the Zernike coefficients. A variety of microsphere radii
and laser power settings were tested to try and recreate the above presented result, to no
avail.

Figure 5.11: Experimental Zernike Aberration Correction results.
(a) CoM tracking data showing the confinement volume of an optically
trapped 15.03µm diameter silica microsphere in a Gaussian (left) and in
an optimised (right) trap. The 2D projections show the probability of finding
the particle in a given location. (b) Results of the optimiser, including the
recovered phase aberrations (top left), stiffness enhancements and volume re-
duction (top right), and the live stiffness enhancement progression (bottom).
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Future improvements to the Zernike aberration correction method

In future work, possible improvements to this method include a more spohisticated ob-
jective function; perhaps one, similar to the one described in the previous chapter in the
constrained interior point optimiser section, in which the diagonal axes between 𝑥 and 𝑦
are also considered, would be sufficiently constraining to ensure convergence. Addition-
ally, beginning the optimisation with a more stiffly trapped micro-particle may enhance
the method’s sensitivity to the aberrations because stiffer traps’ performance is more
affected by the presence of optical aberrations. Such a stiffer trap may be one like the 3D-
enhanced optical traps discussed later in this thesis. Expanding the optimiser to include
more Zernike polynomials, as well as allowing the optimiser to change multiple polynomi-
als at once, may also prove beneficial to the process. Also, a metric could be easily built
in to automatically end the optimiser once it has converged on a solution. This was not
done here due to the sensitive nature of the experiment, which requires careful supervision
to ensure the trapped micro-sphere is not ejected from the trap for any reason during the
optimisation.

5.2.4 Reduced numerical aperture method

The previously introduced methods of aberration correction did not correct optical traps
that extended over larger regions of the image plane than Gaussian beams, beams carrying
low values of OAM. Because the optical traps generated in the experiments detailed in
the coming sections were more spatially spread out than this, a new method to correct
aberrations was needed.

The most reliable aberration correction for the optical tweezers experiments presented
in this thesis was determined to be simply reducing the NA of the system by displaying a
circular aperture on the SLM screen, limiting the region of the SLM used to generate the
1st diffractive order. This was discovered much to my disdain, as I had spent many long
hours in the lab performing the previously described methods of aberration correction.

The aberrations cut out by reducing the NA are hypothesized to be due to a combi-
nation of aberrating effects of the SLM itself [99, 136] and the behavior of the high NA
objective lens [137–139]. The SLM itself causes aberrations due to its potentially non-flat
surface, and this warping is potentially more severe at the edges – therefore, cutting out
light from these regions improves the quality of the laser beam’s intensity distribution.
The objective lens suffers from what is known as apodization, wherein rays exiting the
objective at different angles may experience different loss and/or phase delays.

The NA of the objective lens is 1.3. With the specific lenses in the optical system, this
corresponds to a circular region on the SLM with a diameter of ∼ 92% of the SLM screen
width. Utilizing this full NA results in a more aberrated optical trap as seen on the left
in Fig. 5.12. The right of the figure corresponds to a circular aperture of 80% of the SLM
screen width, and displays significantly reduced aberrations. This discovery was critical
to the success of the experimental trap enhancement results in the next section, as the
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Figure 5.12: The same focused optical trap with different NA, taken
using Camera 2. Reducing the numerical aperture from 1.3 to 1.13 reduced
the levels of aberration significantly.

previously discussed methods of aberration correction failed to correct optical traps with
a larger footprint in the sample.
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Chapter 6

Enhancing optical tweezers by
wavefront shaping

If you liked it then you shoulda put a ring on it
Oh, oh, oh, oh, oh, oh, oh, o-ohh

Beyoncé Giselle Knowles-Carter

A
rmed with the experimental tools from the previous chapter, this chapter will
address the problem posed in detail in Chapter 4 – can the stiffness enhance-
ment of an optimised optical trap such as those presented previously be attained

in experiment? For the many reasons discussed at the end of Chapter 4, the pre-designed
traps presented earlier cannot be directly implemented experimentally with the capabili-
ties of the holographic optical tweezers (HOT) used for this research. To briefly summarise,
these reasons include aberrations of the laser beam, uncertainty in the exact parameters
for experimental micro-spheres, cross-talk between pixels on the spatial light modulator
(SLM), and apodization due to the high numerical aperture (NA) objective. Although
we address the distortions of the laser through the aberration correction techniques de-
scribed in Chapter 5, it is important to note that these techniques are not perfect – the
remaining small imperfections of the laser intensity distribution are enough to disrupt the
performance of a pre-designed optimised trap.

Instead, to overcome these issues, a live optimisation strategy is developed which
allows the incident trap to be slowly adapted from a conventional Gaussian trap to a
3D enhanced trap, which ensures the particle is stably trapped for the entirety of the
experimental optimisation. The experimentally optimised traps presented in this chapter
demonstrate order of magnitude reduction in the confinement volume of the centre of
mass of trapped microspheres for the first time.

Because spherical micro-particles are used in these experiments, the finite Bessel basis
is ideally suited for this approach, as before for the pre-designed optimal traps. The
traps generated with the Bessel ring phases in the pupil plane are also ring-shaped in the
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focal plane where the optical trapping occurs. In other words, the answer was to put a
(wavefront-shaped) ring on it (the SLM).

6.1 Live 3D stiffness optimisation strategy
To perform a live optimisation, the HOT system (Fig. 5.1) introduced previously is used
here. Using only feedback from the live centre-of-mass (COM) symmetry tracking of
a trapped microsphere, the phase mask displayed on the SLM is iteratively adjusted
to optimise the stiffness of said trap. The strategy is the same as that described in
Section 5.2.3, but instead of Zernike polynomials as the basis of the phase masks displayed
on the SLM a basis of finite Bessel rings (as described in Section 4.3.1) is used.

𝑁 = 30 rings are typically used here. The phase between these rings is linearly
interpolated to prevent abrupt jumps in the phase displayed on the SLM. Abrupt jumps
in the phase masks reduce the efficiency with which the trap is generated. This reduction
in efficiency appears as a false reduction in the enhancement of the optical trap due to a
reduction in the total laser power that is used to create the wavefront-shaped trap.

The phase of each ring is determined as follows:

1. For a randomly chosen half of the 𝑁 rings, a small amount Δ𝜙 is added to the phase
of each chosen ring in the phase mask displayed on the SLM.

2. The centre-of-mass (CoM) of the trapped micro-sphere in three dimensions is tracked
for a time (normallyΔ𝑡 = 10 s is sufficient, this is discussed in detail in Section 6.2.3),
an integration time that is long enough to accurately calculate statistics from the
tracking data.

3. From the 3D tracking data, the standard deviation of the particle motion is calcu-
lated. This is related to the stiffness of the current aberrated optical trap 𝜅+Δ𝜙 via
the Equipartition Theorem, as previously shown in Eqn. 4.6.

4. Steps 1-3 are repeated, this time with a small amount Δ𝜙 subtracted from the phase
of the chosen half of the rings, such that 𝜅−Δ𝜙 can be calculated.

5. Steps 1-3 are then repeated for the initial phase mask, and 𝜅0 is calculated.

6. From these three scenarios, the phase configuration which maximises the objective
function is selected. The objective function chosen can vary – a full list of tested
objective functions and their constraints will be discussed later. An example of an
objective function and its constraints that was used is that the stiffness in the 𝑥,
𝜅𝑥, must increase, and the stiffness in the 𝑧 direction, 𝜅𝑧, must not decrease. The
chosen phase configuration that maximises the objective function then becomes the
initial phase mask displayed on the SLM for the start of next iteration, when these
steps are repeated for a new randomly chosen half of the rings.
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The live 3D stiffness optimiser is allowed to repeat the above steps until it is manually
stopped.

Ordinarily, such an optimisation takes on the order of a few hours to converge to a
solution, due to the necessary integration times and number of iterations (typically a few
hundred). To ensure that drift of the laser power over time or changes in the sample’s
temperature do not influence the results, the 3D tracking data in the initial conventional
trap are remeasured at the end of the optimisation. This remeasured data can then
be directly compared to the 3D tracking data for the optimised optical trap to extract
enhancement factors of the stiffnesses in all directions, and subsequently the reduction of
the confinement volume of the trapped microsphere.

6.1.1 LabVIEW implementation of the live 3D stiffness optimiser

The optical tweezers experiment is controlled using a modified version of the Red Tweezers
software [119]. This program, which was originally developed by Richard Bowman, allows
all-in-one control of the HOT system in a single interface. The ability to perform 3D COM
symmetry tracking with the stereo-vision capabilities of the HOT used here is added to
the software, as well as the above described optimisation algorithm. Using parallax, the
LabVIEW software implements 3D live symmetry tracking by extracting the 3D motion
of the CoM of a trapped micro-sphere from the two 2D camera images (left eye and right
eye images) of the micro-sphere. This is discussed in more detail in Chapter 5.

Phase holograms

The hologram generation method included in the Red Tweezers is also replaced with a
custom piece of LabVIEW code that creates the needed Bessel rings and phase gratings.
Although slower, we did not need fast GPU-based hologram generation included in the

Figure 6.1: Example of finite Bessel ring phase hologram with 30
rings.
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Figure 6.2: Example phase holograms showing (a) diffraction grating
and (b) diffraction grating and interpolated Bessel rings.

software [119] for our optimisation experiments. The holograms are scaled to the appro-
priate size dependent on the HOT setup (magnifications, size of SLM pixels, size of camera
pixels, etc.) using built-in parameters in the RedTweezers software (see Appendix E for
more details).

The Bessel rings are generated at the resolution of the SLM (512 × 512 pixels), with
a programmable number (here 𝑁 = 30) of rings which are linearly interpolated between
with 4 sub-rings for each main Bessel ring. Fig. 6.1 shows an example of a phase hologram
created with these Bessel rings.

The diffraction gratings used to create the first order focus which is used as the optical
trap in experiments are generated using the WaveTrace library for LabVIEW originally
written by Johannes Courtial at the University of Glasgow. Fig. 6.2a shows an example
of such a diffraction grating. The Bessel rings and the diffraction grating can be added
together to produce the phase hologram that is displayed on the SLM screen, as seen in
Fig. 6.2b. The Bessel rings are interpolated over 4 sub-rings per ring to ensure that the
phase does not abruptly jump – abrupt jumps in phase reduce the efficiency of the SLM,
negatively impacting the performance of our optimisation.

6.1.2 Discussion of different objective functions and constraints

The choice of objective function and which constraints it is subject to is of course important
for any optimisation. For this research, several different options are considered. The
objective functions and constraints detailed below are not the only options – these could
be tailored to a researcher’s specific needs and adapted to other scenarios. For example,
because spherical microparticles and traps with cylindrical symmetry were used in this
research, the 𝑥 and 𝑦 stiffnesses were assumed to be the same. However, for non-spherical
particles the constraints would need to be adjusted.
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Figure 6.3: Example of measurement axes showing the lab axes (black)
and major axes of the thermal ellipsoid (red) for a 9µm diameter silica micro-
sphere.

Choice of measurement axes

The live 3D stiffness optimiser presented above minimises the standard deviation of the
3D motion of a trapped micro-sphere. This is a selectable parameter in the optimisation.
This standard deviation can be calculated along different sets of axes. The live 3D stiffness
optimiser here has the following three choices for these sets of axes.

1. Lab axes
The first set of axes considered is the lab axes, such that the 𝑥𝑦 plane is parallel
to the floor of the lab, and the +𝑧 axis points towards the ceiling (which is also
the laser propagation direction). This choice of axes doesn’t take into account any
misalignments in the laser or imaging systems, such that the axes do not necessarily
correspond to the major axes of the confinement volume.

2. Evolving thermal ellipsoid axes
Next, to account for any misalignments in the laser or the stereo-microscope imaging
systems, the thermal ellipsoid made up of the 3D tracking data are chosen for the
measurement axes. As a reminder, the thermal ellipsoid, or confinement volume,
is the volume of space explored by the CoM of a trapped micro-particle (this is
discussed in detail in Chapter 4). The axes of the ellipsoid are remeasured for
each configuration of the phase of the rings on the SLM. The axes are given by the
eigenvectors of the covariance matrix of the 3D tracking positions. This choice allows
the major axes of the ellipsoid to vary over time, which corresponds to a rotation of
the thermal ellipsoid which is not desirable here because the goal is to optimise the
stiffness of the optical trap along specified directions and compare these stiffnesses
over the course of the optimisation.

3. First measurement thermal ellipsoid axes
To address the shortcomings of the previous two choices of measurement axes, the
major axes of the thermal ellipsoid corresponding to the initial Gaussian optical
trap is chosen. Again, the eigenvectors of the covariance matrix of the 3D tracking
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positions provide the major axes. In this case, the live 3D stiffness optimiser can take
any misalignments into account and also prevent the thermal ellipsoid from rotating,
consistently comparing the same axes throughout the course of the optimisation.

Objective functions and constraints

The specific objective functions and constraints can be tailored to fit a desired scenario.
The following combinations were included in the live 3D stiffness optimiser LabVIEW
program.

1. mean(XY) & Z
One possible set of objective function and constraints to the optimisation is to ensure
that the average standard deviation of the motion in the 𝑥 and 𝑦 directions (the
objective function) must decrease, while the 𝑧 standard deviation must not increase
(the constraint). In principle this combination would allow a phase pattern that
increases 𝑥 at the expense of 𝑦 stiffness to be found, as there were no additional
constraints in place to prevent this from happening.

2. X & Z
Another possible combination that takes advantage of the symmetries of the mi-
crospheres and traps considered in this research is to ensure 𝑥 standard deviation
decreases (the objective function) and 𝑧 standard deviation does not increase (the
constraint). By symmetry the 𝑦 standard deviation should also decrease.

3. Y & Z
Alternatively, the 𝑦 standard deviation should decrease (objective function) and 𝑧
must not increase (constraint).

4. Z & Y
Finally, the 𝑧 standard deviation should decrease (objective function) and 𝑦 standard
deviation must not increase (constraint).

At a first glance it may seem that items 3 and 4 are identical, however they are
indeed different. Item 3 prioritizes 𝑦 stiffness enhancement; in theory the live 3D stiffness
optimiser could choose a path that never enhances the 𝑧 stiffness of the optical trap.
Alternatively, item 4 prioritizes 𝑧 stiffness enhancement without the need to enhance the
𝑦 stiffness. In practice, these two objective functions behave identically, however there
may be scenarios where this is not the case (i.e. non-spherical particles or a different basis
for SLM phase patterns that lacks cylindrical symmetry).
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6.2 Results: Experimental trap enhancement
The main experimental results of this project were recently released in the previously
mentioned ArXiv pre-print [115], demonstrating an order of magnitude reduction factor
in the confinement volume of silica microspheres with radii between 2.5 and 5µm.

The above described live optimisation strategy was applied to this range of microsphere
sizes. First, for a 4.99µm radius silica microsphere, the results for this optimisation are
shown in Fig. 6.4. The integration time for this scenario is Δ𝑡 = 10 s, and a diffraction
grating resulting in a shift of (5µm, 5µm,−1µm) of the generated optical trap is used. The
objective function for this run of the live 3D stiffness optimiser is the standard deviation
of the motion along the lab axes, with Y&Z constraints as discussed above.

Figure 6.4: Experimental 3D enhancement of an optical trap for a
4.99µm radius silica microsphere. (a) Live 3D tracking data for the micro-
sphere trapped in the initial Gaussian trap (left) and the final optimised trap
(right), demonstrating 11.0× reduction in 𝑉𝑐. (b) Progression of the live 3D
stiffness optimiser, resulting in final stiffness enhancements of (7.1, 6.1, 2.8)
for each direction respectively. (c) Final optimised phases of the rings on the
SLM.
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The confinement volumes for the microsphere trapped in an initial Gaussian (left) and
final optimised (right) trap are shown in Fig. 6.4a, illustrating a volume reduction factor
of 11.0× after optimisation. The progress of the live 3D stiffness optimiser is shown in
Fig. 6.4b for the enhancement of all three stiffnesses over the course of the optimisation.
The final stiffness enhancement factors are 7.1, 6.1, and 2.8 for 𝑥, 𝑦, and 𝑧 stiffnesses,
respectively. Fig. 6.4c shows the final optimised phases of the rings that are added to the
diffraction grating to generate the final optimised optical trap.

While the 𝑥 and 𝑦 stiffnesses are enhanced approximately the same amount, the 𝑧
stiffness is enhanced to a lesser extent. To investigate if a different set of constraints
would impact this outcome, the experiment is repeated for a 4.99µm radius microsphere,
with 10 s integration time, and an underlying diffraction grating resulting in a shift of

Figure 6.5: Experimental 3D enhancement of an optical trap for a
4.99µm radius silica microsphere. (a) Live 3D tracking data for the micro-
sphere trapped in the initial Gaussian trap (left) and the final optimised trap
(right), demonstrating 13.3× reduction in 𝑉𝑐. (b) Progression of the live 3D
stiffness optimiser, resulting in final stiffness enhancements of (8.0, 8.9, 2.5)
for each direction respectively. (c) Final optimised phases of the rings on the
SLM.
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the optical trap of (5µm, 5µm, −2.5µm). In this case, the objective function was the
standard deviation of the stiffness along the major axes of the thermal ellipsoid of the
initial Gaussian trap, constrained by Z&Y, as described above.

Fig. 6.5 shows the results for this experiment. In this case, the stiffnesses are enhanced
by factors of 8.0, 8.9, and 2.5 respectively, resulting in a total reduction in the confinement
volume of 13.3×. Notably, there is no improvement in the amount of enhancement in 𝜅𝑧
due to prioritizing 𝑧 enhancement over 𝑦 enhancement (the constraints Z&Y vs. Y&Z).

To investigate a different size particle, next a 2.59µm radius silica microsphere is con-
sidered, using the same parameters as above (10 s integration time, objective function as
the st. dev. of the major axes of first measurement of thermal ellipsoid, Z&Y constraints)
and a diffraction grating that translates the trap to (5µm, 5µm, −0.5µm). Fig. 6.6 shows

Figure 6.6: Experimental 3D enhancement of an optical trap for a
2.59µm radius silica microsphere. (a) Live 3D tracking data for the micro-
sphere trapped in the initial Gaussian trap (left) and the final optimised trap
(right), demonstrating 7.0× reduction in 𝑉𝑐. (b) Progression of the live 3D
stiffness optimiser, resulting in final stiffness enhancements of (4.8, 4.5, 2.3)
for each direction respectively. (c) Final optimised phases of the rings on the
SLM.
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Figure 6.7: Experimental 3D enhancement results for a range of mi-
crosphere sizes.

the experimental results for this scenario.
The optimisation was repeated for a range of microsphere radii between 2.59µm and

4.99µm. Fig. 6.7 shows the volume reduction factors for these experiments. The light
green circles indicate volume reductions for each repeated run of the live 3D stiffness
optimiser with different microspheres in the same sample. The dark green circles indicate
the median volume reduction run, where applicable, for each size. For the largest 3 sizes
of microspheres tested, this optimisation strategy consistently enhances the confinement
of the trapped microsphere by over an order of magnitude. The smallest size microspheres
tested are enhanced slightly less than 10×.

The error for the median results (dark green circles in Fig. 6.7) are analysed in Fig. 6.8
and Fig. 6.9. The error bars on these plots are calculated as described in Section 6.2.3.

Figure 6.8: Stiffness enhancement for all three dimensions for the
median runs of the live 3D stiffness optimiser indicated by the
dark green circles in Fig. 6.7. Error bars determined as described in
Section 6.2.3.
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Figure 6.9: Volume reduction factors for the median runs of the
live 3D stiffness optimiser indicated by the dark green circles in
Fig. 6.7. Error bars determined as described in Section 6.2.3.

6.2.1 Sensitivity of optimised traps to micro-sphere radius

Optimised optical traps are also extremely sensitive to the exact size of the microsphere.
This is true for both numerically designed traps and live optimised ones. Experimentally,
for example, optimising the trap for a specific micro-particle in a given sample does not
mean that all micro-particles in the sample will experience higher confinement. This is
due to the statistical variation of the size of the commercially available micro-spheres.
This was tested in the sample of 4.99µm radius silica microspheres presented in Fig. 6.4.
Of the 10 total microparticles tested, none except for the bead that was optimised for had
their confinement enhanced by 11.0×. Fg. 6.10 shows 3 of these 10 micro-spheres: the
optimised (Bead 1), worst (Bead 2), and next best (Bead 3) volume reductions.

An important thing that this experiment accounts for is that, by translating to different
areas in the sample to select different beads, the thickness of the coverslip, and therefore
the amount of spherical aberration introduced by the glass-water interface, varies across

Figure 6.10: Experimental 3D tracking data of different 4.99µm
micro-spheres within the same sample. The optimised trap was optimised
for Bead 1. Beads 2 and 3 show no/reduced enhancement of the confinement
volume for the optimised trap for Bead 1.
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the sample. The volume reductions quoted in the figure compare each optimised trap mea-
surement with its corresponding conventional trap measurement – the differences in the
confinement volumes of different beads in the conventional trap illustrate a combination
of effects from the minute differences in micro-sphere radii to variations in the spherical
aberrations.

To understand the differences in the Gaussian confinement volumes, we need to con-
sider which factors in the experiment can impact the changes in stiffness from bead to
bead. The beads could all have slightly different radii, due to statistical variations arising
from the manufacturing of the micro-spheres. This is an unavoidable part of these exper-
iments. We also wondered about possible laser drift causing variations in the total power
of the incident laser, and the effects this could have on this experiment with multiple
beads. To investigate this I tracked a single micro-sphere in a Gaussian trap for several
hours – there was no recognizable drift in the stiffness of the optical trap, indicating that
this is not a problem for our experiments.

Due to these findings, we think that the differences in the conventional Gaussian
confinement volumes across the different beads in this experiment are mainly due to vari-
ations in the coverslip thickness throughout the sample. This thickness directly impacts
the levels of spherical aberration of an optical trap, which directly effects the 3D stiffness
of the trap. The manufacturer-quoted variation in the coverslip thickness is 0.17−0.19
mm, which indicates even small variations in the thickness of the coverslip significantly
impact the intensity distribution of the final optimized optical trap.

6.2.2 Micro-particle size constraints of current HOT setup

The range of sizes of microspheres that can be used in the 3D stiffness optimiser is strongly
dependent on the wavefront shaping capabilities of the HOT system. For the system used
here, for example, 1.5µm radius microspheres were too small, because they are only a few
wavelengths in size and it is difficult to create precise fields on this scale. On the other
hand, 5.99µm and 7.52 µm radius microspheres were too large. This is believed to be due
to limitations of the SLM/objective lens system in generating fields over a larger area in
the sample plane. Larger traps require more space throughout the optical system, meaning
the path that these fields take comes closer to the edges of lenses, even potentially clipping
the edges. This introduces aberrations, which is extremely detrimental to the performance
of the optimised optical traps.

Fig. 6.11 shows an example of the live 3D stiffness optimiser failing to enhance the
trapping stiffness of a 5.99µm radius microsphere. The confinement volumes shown in
Fig. 6.11a are not significantly different between the initial conventional Gaussian trap and
the final ‘optimised’ trap. The noise between iterations is much higher than in previously
presented results, and there is no general trend of increasing stiffness in Fig. 6.11b.
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Figure 6.11: Failed experimental 3D enhancement of an optical trap
for a 5.99µm radius silica microsphere. (a) Live 3D tracking data for the
microsphere trapped in the initial Gaussian trap (left) and the final optimised
trap (right), demonstrating 1.2× reduction in 𝑉𝑐. (b) Progression of the live
3D stiffness optimiser, resulting in final stiffness enhancements of (1.3, 1.2,
1.0) for each direction respectively. (c) Final optimised phases of the rings
on the SLM.

6.2.3 Measurement errors and noise

Errors and noise are, unfortunately, a fact of life for experimental optics. Here several
sources of these and steps taken to account for their impact are discussed.

3D tracking error

The inherent error on the 3D tracking is investigated in Appendix C. There it is determined
that it is possible to track the centres-of-mass of microspheres with nanometer precision,
as was previously also shown in [140]. The error on the 3D tracking data is determined
to be less than 1nm in 𝑥 and 𝑦, and less than 3nm in 𝑧.
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Error in stiffness calculations from 3D tracking data

The integration time Δ𝑡 plays a large role in the amount of error introduced by the
noise on the live 3D tracking data used to calculate the stiffnesses of a given optical
trap. To determine the integration needed for sufficiently low-noise measurements while
also minimising the duration of the experiment, the coefficient of variation (CV) of the
stiffness across different chunks of time was investigated.

Fig. 6.12 shows the CV for a 2.57 µm radius micro-sphere in a conventional Gaussian
trap for integration times between 0 and 30 seconds. An integration time of Δ𝑡 = 10 s is
chosen as a ‘happy medium’ to simultaneously reduce the error on stiffness calculations
while also keeping the total time needed to optimise an optical trap to a few hours.

Figure 6.12: Coefficient of variation of the stiffness for different
integration times for a 2.57 µm radius micro-sphere in a conventional
Gaussian trap. Figure from Supplementary Information of [115].

Errors on stiffness enhancement and volume reduction factors

The confinement volume of an optically trapped microsphere is given by

𝑉𝑐 = 36𝜋√ 𝑘3𝐵𝑇 3

𝜅𝑥𝜅𝑦𝜅𝑧
(6.1)

The error on this quantity is determined by the individual errors on the three stiffness
measurements. Assuming that the errors are independent of one another and obey a
normal distribution, such an error is then given by
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The partial derivatives are given by

𝛿𝑉𝑐
𝛿𝜅𝑥

= −18𝜋√ 𝑘3𝐵𝑇 3

𝜅3𝑥𝜅𝑦𝜅𝑧
(6.4)

and similar equations for 𝜅𝑦 and 𝜅𝑧.
Additionally, the error for the ratio of volumes 𝑅 = 𝑉Gauss/𝑉opt is given by
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where the individual volume errors are calculated as above in Eqn. 6.3.

Contamination of samples

Another source of error in experiments is the microbiological contamination of the silica
microsphere samples. Although precautions were taken to reduce this contamination, the
sample fabrication facilities used were not sterile environments. For a detailed discussion
of the sample fabrication steps, and precautions against contamination, see Appendix C.
Nonetheless, the contamination occurs and is a common issue in the field [141].

If microorganisms are present in the sample, given enough time they will inevitably
find their way towards the optical trap location in the sample. If they are then also sucked
into the optical trap, the 3D tracking data for a trapped microsphere will be impacted.
The microsphere could even be knocked out of the trap entirely by a particularly energetic
bacterium, for example.

It is sometimes possible to ‘rescue’ a trapped microsphere from surrounding contami-
nation by translating the trap to a different, cleaner location within the sample. This is
done with the translational stage, not by changing the diffraction grating used on the SLM
because this changes the efficiency with which the optimised trap is generated. The sharp
dip in 𝑥 and 𝑦 stiffness enhancement around 500 iterations in Fig. 6.6b is due to such a
rescue mission, where I sprinted from my office to the lab to save the microsphere in its
time of need when a rogue contaminant was spotted approaching the optical trap during
routine monitoring. One iteration of the optimisation is sacrificed (seen in the sharp dip
of the enhancement) to quickly translate the bead within the sample. Such rescues are
not without their own risks, however, as the thickness of the coverslip could vary between
locations, impacting the levels of spherical aberrations present and potentially altering
the achieved enhancements thus far in the optimisation.
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6.3 Comparison with pre-designed optimised traps
Although this chapter has presented order of magnitude enhancement in microsphere
confinement, it is fair to ask why there is such a large disparity between these experimen-
tal results and the previously presented pre-designed optimised trap enhancements that
demonstrated up to ∼ 200× enhancement. To investigate where this difference arises,
further simulations were performed. This is also discussed in the Supplementary Material
for [115].

First, in addition to the complex amplitude modulation presented in Chapter 4, the
same constrained interior point optimisation was performed with phase only modulation
of the incident field. Next, a simulation of the live iterative optimisation presented in this
chapter was run. Fig. 6.13 shows the comparison of these methods. The pre-designed
traps generated using the complex amplitude optimisation see the greatest reduction in
confinement volume, as expected. The pre-designed traps generated with phase only
optimisation see the next greatest reduction in confinement volume, about 60% lower
than the best case scenario.

The iterative optimisation used for experiments was simulated, with and without noise.
Without noise, the phase only iterative optimised traps performed about 50-90% as well as
the phase only pre-designed traps. Upon addition of noise, the levels of volume reduction
fell another 10-30%. The levels of noise used for these simulations were determined by the
coefficient of variation (as in Fig. 6.12). Finally, all of these simulations were compared to
the actual experimental results, which achieved approximately 70-90% of the anticipated
volume reduction presented by the simulation of the iterative optimisation with noise.

It is possible that, with more intricate knowledge of one’s HOT system, the experimen-
tal phase only iterative optimisation approach could reach it’s full, simulated potential.

Figure 6.13: Comparison of optimisation methods for 3D optical
trap enhancement for various sizes of silica (𝑛 = 1.45) micro-spheres at
1064nm. Plot originally from Supplementary Information of [115].
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Additionally, this analysis has made it clear that it is very much possible to further in-
crease the trapping enhancement in optical tweezers experiments. There are plenty of
stones left unturned, and rabbit holes yet unexplored. One could, for example, anticipate
an increase in performance of the experimental optimiser if the ability to do complex
amplitude modulation were added.

6.4 Discussion
The experiments presented here demonstrate the first known attempts to enhance the
stiffness of an optical trap in all three dimensions with passive methods, i.e. wavefront
shaping. For microparticles ranging in radii from 2.57 µm to 4.99µm, significant improve-
ments in the confinement of such particles in optical traps is demonstrated, with average
increases of an order of magnitude for all but the smallest size micro-spheres. Larger parti-
cles have larger enhancements - in simulation and experiment - because wavefront shaping
is diffraction limited, so that the wavefront can be better shaped for larger particles for
which the optimum traps themselves are larger than the diffraction limit.

Comparing these experimental results with the previously discussed numerically op-
timised traps, there are a few major differences. In its current form, the live iterative
optimisation exhibits no control over the aspect ratio of the final 3D stiffnesses/confine-
ment volume, unlike in simulations of pre-designed traps. This could be addressed with
more rigorous constraints to the objective function. Another difference is that the number
of degrees of freedom tested is much lower for the experimentally optimised traps, due to
the time requirements of such experiments. Additionally, with the current HOT system,
complex amplitude modulation in such an optimisation is not feasible due to e.g. changes
in the total power in the generated optical trap, which is already an important issue for
phase only modulation discussed next. The action of the SLM itself plays a big role in
the performance of the optimisation, as discussed below.

The ‘steepness’ of the diffraction grating plays a large role as well. This is one parame-
ter that was critical to the success of the optimisation – if the optical trap generated in the
first order is translated too far from the zero order focus, the performance of the live 3D
stiffness optimiser decreases drastically. This was probed in two different ways: by trans-
lating a live-optimised trap and bead at the end of an experiment, and by experimentally
optimising a trap at a location further from the zero order focus.

In the case of the former scenario, a trap for a 4.99µm was optimised for experimentally
with the same parameters as in Fig. 6.4, and then the final optimised trap was translated
a distance of (13µm, 13µm) in 𝑥 and 𝑦 in the sample plane, respectively. The achieved
enhancement of the confinement volume dropped from 10.4× at the location nearer the
zero order focus to 6.3× at the translated location.

The latter scenario (optimising a trap further from the zero order focus) was also in-
vestigated experimentally. Typically, the optimisation was performed on a first order trap
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located between 4µm and 6µm from the zero order in the 𝑥 and 𝑦 directions, depending
on the radius of the microsphere. These distances were sufficiently far enough away that
the zero order does not also exert an optical force on the particle. The translations were
induced using a phase grating on the SLM. Here, however, a location (10µm, 10µm) was
used for the optical trap, requiring a steeper phase grating with more phase wrapping
lines where the phase goes from 2𝜋 to 0. The resulting enhancement of the optical trap
was minimal – the confinement volume was only reduced by a factor of 2.6×.

Another important note about the method presented in this chapter for enhancing the
stiffness of an optical trap in 3D is the repeatability of results. Due to the nature of the
live optimisation performed and the lack of an analytical global solution, we do not find
the global optimum trap for 3D-enhanced stiffness. Instead, we converge on (different)
local maxima each time we perform the experimental optimisation.

As noted previously, the exact size of a given microsphere heavily impacts the result of
the optimisation. The microspheres used in these experiments (purchased from microPar-
ticles Gmb) exhibit a statistical variation of sizes. For the batches used here, the diameters
of the microspheres have a standard deviation of between 0.02 and 0.2µm depending on
the exact spheres used. This minuscule distribution of the size of the microspheres (2%
or less variation in diameter) was enough to significantly impact the performance of an
optimised trap.

The optimisations presented here required on the order of ∼ 102 iterations to converge
to a solution. Each of these iterations included 3 measurements of the optically trapped
particle’s 3D motion, meaning these experiments took on the order of hours (typically
2-4 hours). This process could be sped up in the future by beginning with a better
starting optical trap – perhaps one informed by a numerically optimised trap such as
those described in Chapter 4.

Finally, we compare our approach to other approaches for increasing the stiffness of
optical traps. One such method is position clamping [142–144], in which an optical trap
is translated in real-time to more effectively counteract the thermal motion of a trapped
particle, have demonstrated order of magnitude improvements in trapping stiffness in 1D
and 2D. This method differs from what is presented here because position clamping is an
active approach to suppressing the motion of an optically trapped particle, which uses
feedback from the trapped particle to adjust the optical trap in real time. In contrast,
the optimisations presented here are passive. However, it should theoretically be possible
to also perform 3D optical trap enhancement using a position clamping approach, though
this would require higher speed control of the phase mask displayed on the SLM.
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Chapter 7

Conclusions

W
avefront shaping approaches hold promise, proposing answers to many
challenging problems in modern optics situations. In this thesis, two novel
applications of wavefront shaping have been investigated – navigating light

through partially dynamic scattering materials and optimising the confinement of optically
trapped particles in all three dimensions simultaneously. The work presented in this thesis
marks a significant milestone in the field of wavefront shaping and its applications in
optics. As we look to the future, it is clear that there are numerous exciting possibilities
and unexplored avenues for these research projects.

In Part I of this thesis, wavefronts were optimised to carefully navigate through scat-
tering regions containing pockets of dynamic scattering. Using both iterative optimisation
techniques and the time-averaged transmission matrix, stable, non-fluctuation fields were
found. The results presented here illustrate the duality of optimising the fields in this
way. Fields must be found that simultaneously satisfy two competing interests: increase
or maintain the average intensity transmitted to the output; and decrease the amount
of light within the dynamic pocket to prevent interactions of the field with the moving
dipoles, thereby causing fluctuations of the field at the output.

It is the unfortunate reality of research that not every avenue can be explored. I
believe experimental proof-of-principle experiments for the adjoint iterative optimisation
using the normalised variance of the field at the output holds great promise. Sadly, we
did not have the time to pursue this.

One can envision further advancements in the optimization techniques and the objec-
tive functions used to generate fields that can traverse complex dynamic media. Although
we have successfully found fields that navigate around a dynamic pocket within scattering
material using, in part, the two adjoint optimisations, we wonder what better objective
functions may be out there for similar optimisations. Additionally, the simulations in-
cluded here were performed in 2D. Extending such models to 3D provides an interesting
road ahead for future investigations. This may provide more insight into the capabilities
that future experiments could require.

The potential to extend this research to even more intricate scatterers, including bi-
ological tissues, opens up a vast frontier of applications. As technology continues to ad-
vance, we can anticipate the development of more sophisticated spatial light modulators
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(SLMs) with faster modulation times, enabling the transformation of currently dynamic
scattering materials into near-static media for various applications, including biomedical
imaging and laser-based communication systems.

In the far future, it is our hope that the methods for finding light fields that carefully
traverse dynamic scattering media become a part of the solution to controlling light in
highly dynamic situations. We imagine the techniques presented here will find use in exotic
future technologies that will enable seeing through fog and mist, peering into clouds, and
looking deep into the human body.

Part II of this thesis focused on a totally different application of wavefront shaping –
3D enhancement of optical trap stiffness. Notably, the numerically designed traps exhib-
ited up to ∼ 200× reduction in the confinement volume of optically trapped micro-spheres
for a wide range of refractive indices and radii. Experimentally, ∼ 10× reduction in the
confinement volume was demonstrated for a range of silica micro-sphere radii. An impor-
tant thing to note is that the confinement volume reduction and laser power reduction
are two sides of the same coin – the numerically optimised traps presented in this thesis
can either confine given particles up to 200× more tightly, or achieve the same trapping
performance as a conventional Gaussian trap but with up to ∼ 30× less power in the trap.

In the case of 3D enhancement of optical trapping, the experimental demonstrations
presented in the thesis offer a tantalizing glimpse of what can be achieved. Future re-
search may delve deeper into the underlying mechanisms of holographic optical tweezers
(HOT). I have often referred to the many possible directions for these stiffness enhance-
ment experiments as rabbit holes, each one deeper than the last. In the future, it would be
interesting to explore in depth how exactly SLMs produce various modulated beams with
varying efficiency. The impact of high numerical aperture objectives on such modulated
fields is also of future interest. Integrating complex amplitude modulation into the exist-
ing HOT represents another intriguing frontier, promising even greater enhancements in
optical trapping performance. This work could have profound implications in fields like
biophysics and nanotechnology, where precise manipulation of micro- and nanoparticles
is essential.

We envision our approaches detailed herein will be an integral part of the toolkit
required to attain the fundamental minimum amount of light to precisely manipulate
mesoscale matter. We hope these methods will support the development of future tech-
nologies that will enable the study of photosensitive cells and their mechanics and the
creation of successful quantum computing arrays of trapped atoms and ions.

Overall, the possibilities for these wavefront shaping techniques are intriguing. They
have the potential to revolutionize a wide range of optical applications, from imaging
to biophotonics and materials science. As the research community continues to explore
and innovate, we can expect to see an exciting future filled with novel applications and
breakthroughs in the field of wavefront shaping. In particular, I believe that even greater
experimental enhancements of the 3D stiffness of optical traps are just out of reach.
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Appendix A

The Helmholtz equation

A.1 The free-space Helmholtz equation
This derivation of the free-space Helmholtz equation follows that found in [145].

We start from Maxwell’s equations in the absence of charges and currents (𝜌 = 0 and
𝐽𝑖 = 0 respectively), which describe the propagation of light:

∇ ⋅ E = 0, (A.1)
∇ ⋅ B = 0, (A.2)

∇× E = − 𝜕
𝜕𝑡B, (A.3)

∇× B = 𝜇0𝜖0
𝜕
𝜕𝑡E (A.4)

where ∇⋅A denotes divA, the divergence of vector A, and ∇×A denotes curlA, the curl
of vector A.

Applying the curl to both sides of Eqn. A.3 leads to

∇× (∇× E) = −∇× ( 𝜕
𝜕𝑡B) . (A.5)

This can be rewritten by using the following identity:

∇× (∇× A) = ∇(∇ ⋅ A) − ∇2A. (A.6)

Applying the above identity, Eqn. A.5 can be rewritten as

∇(∇ ⋅ E) − ∇2E = − 𝜕
𝜕𝑡∇ × B. (A.7)

From Eqns. A.1 and A.4, this becomes the well-known electromagnetic wave equation
in free space:

(∇2 − 1
𝑐2

𝜕2

𝜕𝑡2)E(r, 𝑡) = 0. (A.8)

A similar equation can be derived for the magnetic field.
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For monochromatic waves, the time-dependence can be separated such that E(r, 𝑡) =
E(𝑟)⋅exp(𝑖𝜔𝑡) where 𝜔 is the frequency. Substituting this into Eqn. A.8 yields the vectorial
free-space Helmholtz equation:

(∇2 + 𝑘2)E(r) = 0, (A.9)

where 𝑘 = 𝜔/𝑐 is the wave number.
In the scalar wave approximation, this reduces to the scalar free-space Helmholtz equa-

tion:
(∇2 + 𝑘2)𝑈(r) = 0. (A.10)

A.2 The inhomogeneous Helmholtz equation
In contrast to the free-space Helmholtz equation, the inhomogeneous Helmholtz equation
describes the propagation of light in the presence of localised sources.

To derive this equation, the wave equation (Eqn. A.8) can be modified to become

(𝑐2∇2 − 𝜕2

𝜕𝑡2)E(r, 𝑡) = 𝐹(r, 𝑡). (A.11)

where 𝐹(r, 𝑡) is a function describing the source wavefunction. Time-harmonic solutions
to this homogeneous wave equation are given by

𝑈(r, 𝑡) = 𝑒𝑖𝜔𝑡𝑢(r) (A.12)
𝐹(r, 𝑡) = 𝑒𝑖𝜔𝑡𝑓(r). (A.13)

From here, it follows that the scalar inhomogeneous Helmholtz equation is given by

(∇2 + 𝑘2)𝑢(r) = −𝑓(r). (A.14)

A.2.1 Point sources and the inhomogeneous Helmholtz equation

For point sources, 𝑓 becomes the Dirac delta function 𝛿 located at 𝑟𝑠, the position of the
point source. The Green’s function can then be substituted for 𝑢(r) to satisfy Eqn. A.14:

(∇2 + 𝑘2)𝐺(r, 𝑟𝑠) = −𝛿(r − 𝑟𝑠). (A.15)

Notably, linear combinations of the above solution are also solutions to Eqn. A.14,
meaning the solution to multiple point sources at different locations 𝑟𝑖 is given by 𝑓(r) =
∑𝑖 𝑎𝑖𝛿(r − 𝑟𝑖) where 𝑎𝑖 is the amplitude of each source field. This solution to the homo-
geneous Helmholtz equation is used in Chapters 2 and 3 to create the source field from
an assortment of point sources in 2D.
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Appendix B

More data for the DDA
optimisations

This Appendix contains information on the DDA MATLAB code as well as more results
of the phase optimisations described in Chapter 3.

B.1 MATLAB code
The discrete dipole approximation code I used for the work presented in this thesis is avail-
able on GitHub: https://github.com/structuredlightlab/dynamicScattererDDA.git.

B.2 Simple iterative phase optimisation

B.2.1 Repeated runs of the simple iterative phase optimisation

Each of the results presented below were generated with a new random array of scattering
dipoles to show the repeatability of the resulting optimised fields.

https://github.com/structuredlightlab/dynamicScattererDDA.git


160 Appendix B. More data for the DDA optimisations

Figure B.1: Run 1 of simple iterative phase optimisation in the
high scattering limit. Sources are spaced 𝜆/2. St. dev. of motion of
dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantifi-
cation. Δ𝜙 = 𝜋/10. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale versions of plots
in (a).

Figure B.2: Progression of run 1 of simple iterative phase optimi-
sation in the high scattering limit.
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Figure B.3: Run 2 of simple iterative phase optimisation in the
high scattering limit. Sources are spaced 𝜆/2. St. dev. of motion of
dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantifi-
cation. Δ𝜙 = 𝜋/10. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale versions of plots
in (a).

Figure B.4: Progression of run 2 of simple iterative phase optimi-
sation in the high scattering limit.
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Figure B.5: Run 3 of simple iterative phase optimisation in the
high scattering limit. Sources are spaced 𝜆/2. St. dev. of motion of
dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantifi-
cation. Δ𝜙 = 𝜋/10. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale versions of plots
in (a).

Figure B.6: Progression of run 3 of simple iterative phase optimi-
sation in the high scattering limit.
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B.3 Adjoint iterative phase optimisation

B.3.1 FOM 1

Simulation results for translated dynamic pocket for adjoint optimisation with
FOM 1

Figure B.7: Simulation of adjoint phase optimisation in the high
scattering limit using the overlap of the fields at the detectors over time as
the FOM with the pocket of dynamic dipole at a different location in the scat-
tering region. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).

Figure B.8: Progression of adjoint phase optimisation in the high
scattering limit using the overlap of the fields at the detectors over time
as the FOM with the pocket of dynamic dipole at a different location in the
scattering region.

Fig. B.7 and Fig. B.8 show numerical results for this adjoint phase optimisation using
the FOM described in Eqn. 3.2 for a translated pocket of dipoles with standard deviation
of their motion equal to 1.25𝜆. As before, this optimisation performed as it should –
increasing the overlap of the field with each iteration. It also increases the mean intensity
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transmitted to the detectors. The mean standard deviation of the amplitude of the field
at the detectors has increased slighty, but overall 𝜉 decreases to ∼ 50% of the initial value.
The optimised field is mostly focused below the pocket of dynamic dipoles.

Simulation results for higher levels of movement of dynamic dipoles using the
adjoint optimisation with FOM 1

Next, higher levels of movement are investigated. Fig. B.9 and Fig. B.10 show simulated
results for this method with a standard deviation of motion of 2.5𝜆, twice the amount
considered above. Again, the overlap of the output fields over time increases and 𝜉 de-
creases over the course of the optimisation. The optimised field forks around the dynamic
pocket of dipoles.

Figure B.9: Simulation of adjoint phase optimisation in the high
scattering limit using the overlap of the fields at the detectors over time as
the FOM with the pocket of dynamic dipole at a different location in the scat-
tering region. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 2.5𝜆,
𝑛m = 200 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).
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Figure B.10: Progression of adjoint phase optimisation in the high
scattering limit using the overlap of the fields at the detectors over time
as the FOM with the pocket of dynamic dipole at a different location in the
scattering region.

Repeated simulations of the adjoint optimiser with FOM 1

Each of the results presented below were generated with a new random array of scattering
dipoles to show the repeatability of the resulting optimised fields.

Figure B.11: Run 1 of adjoint phase optimisation in the high scat-
tering limit using the overlap of the fields at the detectors over time as
the FOM. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).
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Figure B.12: Progress of run 1 of adjoint phase optimisation with
FOM 1 in the high scattering limit.

Figure B.13: Run 1 of adjoint phase optimisation in the high scat-
tering limit using the overlap of the fields at the detectors over time as
the FOM. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).

Figure B.14: Progress of run 1 of adjoint phase optimisation with
FOM 1 in the high scattering limit.
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Figure B.15: Run 1 of adjoint phase optimisation in the high scat-
tering limit using the overlap of the fields at the detectors over time as
the FOM. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).

Figure B.16: Progress of run 1 of adjoint phase optimisation with
FOM 1 in the high scattering limit.

B.3.2 FOM 2

Simulation results for translated dynamic pocket for adjoint optimisation with
FOM 2

To demonstrate that this method also does not rely on any a priori knowledge of the
location of behavior of the dynamic dipoles, this simulation was repeated with a translated
pocket of dipoles. Fig. B.17 and Fig. B.18 show the results for the scenario where the
pocket of dipoles has been translated to the top portion of the scattering material. The
fluctuations have been reduced to ∼ 40% of their initial value.
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Figure B.17: Simulation of adjoint phase optimisation in the high
scattering limit using the normalised variance of the fields at the detectors
over time as the FOM for an off-centre pocket of dipoles. Sources are spaced
𝜆/4. St. dev. of motion of dipoles is 1.25𝜆, 𝑛m = 55 configurations are
used for fluctuation quantification. 𝑑𝑗 = 0.1. (a) Intensity heatmaps showing
plane wave (left) and optimised wavefront (right) propagating through 100
scattering dipoles (yellow dots), 15 of which are dynamic (circled). (b) Log
scale version of plots in (a).

Figure B.18: Progression of adjoint phase optimisation in the high
scattering limit using the normalised variance of the fields at the detectors
over time as the FOM for an off-centre pocket of dipoles.

Simulation results for higher levels of movement of dynamic dipoles using the
adjoint optimisation with FOM 2

To further explore the capabilities of this optimisation, and compare it with previously
introduced approaches, next the amount of movement of the dynamic dipoles and the
number of configurations averaged over is increased. Fig. B.19 shows the results for a run
of the optimisation with an increased standard deviation of motion of 2.5𝜆 of the dynamic
dipoles. The heatmaps of the intensity throughout the simulation area in Fig. B.19a and
the log scale version of this data in Fig. B.19b show the optimised wavefront branching
around the pocket of moving dipoles.
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Fig. B.20 plots the progression of the optimisation, showing the FOM decreasing (solid
light red line), and the fluctuations quantified by 𝜉 (solid green line) decreasing to ap-
proximately 55% of their initial value. This figure of merit in combination with the
adjoint optimisation algorithm has succeeded in simultaneously increasing the mean in-
tensity transmitted to the detectors (dashed green line) and decreasing the mean standard
deviation of the field at the detectors (dotted green line).

Figure B.19: Simulation of adjoint phase optimisation in the high
scattering limit using the normalised variance of the fields at the detec-
tors over time as the FOM. Sources are spaced 𝜆/4. St. dev. of motion
of dipoles is 2.5𝜆, 𝑛m = 200 configurations are used for fluctuation quan-
tification. 𝑑𝑗 = 0.1. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale version of plots
in (a).

Figure B.20: Progression of adjoint phase optimisation in the high
scattering limit using the normalised variance of the fields at the detectors
over time as the FOM.

Repeated simulations of the adjoint optimiser with FOM 2

Each of the results presented below were generated with a new random array of scattering
dipoles to show the repeatability of the resulting optimised fields.
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Figure B.21: Run 1 of adjoint phase optimisation in the high scatter-
ing limit using the normalised variance of the fields at the detectors over time
as the FOM. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).

Figure B.22: Progress of run 1 of adjoint phase optimisation with
FOM 2 in the high scattering limit.
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Figure B.23: Run 2 of adjoint phase optimisation in the high scat-
tering limit using the normalised variance of the fields at the detectors
over time as the FOM. Sources are spaced 𝜆/4. St. dev. of motion of
dipoles is 1.25𝜆, 𝑛m = 55 configurations are used for fluctuation quantifi-
cation. 𝑑𝑗 = 0.1. (a) Intensity heatmaps showing plane wave (left) and
optimised wavefront (right) propagating through 100 scattering dipoles (yel-
low dots), 15 of which are dynamic (circled). (b) Log scale version of plots
in (a).

Figure B.24: Progress of run 2 of adjoint phase optimisation with
FOM 2 in the high scattering limit.
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Figure B.25: Run 3 of adjoint phase optimisation in the high scatter-
ing limit using the normalised variance of the fields at the detectors over time
as the FOM. Sources are spaced 𝜆/4. St. dev. of motion of dipoles is 1.25𝜆,
𝑛m = 55 configurations are used for fluctuation quantification. 𝑑𝑗 = 0.1.
(a) Intensity heatmaps showing plane wave (left) and optimised wavefront
(right) propagating through 100 scattering dipoles (yellow dots), 15 of which
are dynamic (circled). (b) Log scale version of plots in (a).

Figure B.26: Progress of run 3 of adjoint phase optimisation with
FOM 2 in the high scattering limit.
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B.4 Time-averaged transmission matrix

B.4.1 Repeated simulations of the time-averaged transmission matrix

Figure B.27: 8 eigenfields of T†
avTav for a system of 100 dipoles, 15 of

which move, in the high scattering limit (|𝛼| = 4𝑘−2
0 ). The standard

deviation of movement of the dynamic dipoles is 1.25𝜆, and the fields are
averaged over 𝑛 = 55 configurations. The sources and detectors are spaced
evenly 𝜆/4 apart.
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Figure B.28: 8 eigenfields of T†
avTav for a system of 100 dipoles, 15 of

which move, in the high scattering limit (|𝛼| = 4𝑘−2
0 ). The standard

deviation of movement of the dynamic dipoles is 1.25𝜆, and the fields are
averaged over 𝑛 = 55 configurations. The sources and detectors are spaced
evenly 𝜆/4 apart.
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Figure B.29: 8 eigenfields of T†
avTav for a system of 100 dipoles, 15 of

which move, in the high scattering limit (|𝛼| = 4𝑘−2
0 ). The standard

deviation of movement of the dynamic dipoles is 1.25𝜆, and the fields are
averaged over 𝑛 = 55 configurations. The sources and detectors are spaced
evenly 𝜆/4 apart.



177

Appendix C

More details of the holographic
optical tweezers system

Figure C.1: Image of the holographic optical tweezers system used
for the experiments presented in this thesis.
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C.1 Laser alignment for the holographic optical tweezers
Alignment of all parts of the holographic optical tweezers is critically important for the
generation of accurate wavefront shaped optical traps and reliable 3D tracking data of
optically trapped particles. A 1064nm laser can be tricky to align, since it is invisible to
the human eye. Accurate alignment of the stereo-illuminators used to generate the left and
right eye images needed to perform 3D tracking is necessary for low-error measurements.
The following information will hopefully contain some useful ‘tips and tricks’ for alignment
of the laser and imaging arms of a holographic optical tweezers such as the one used for the
experiments presented in this thesis for any potential future researchers who may stumble
across this thesis.

The author of this thesis also notes the importance of checking the system alignment
before every experiment. Especially important, is to ensure that the plastic back of the
inverted microscope objective has not melted off and fallen onto the lens directly below
it. One cannot aberration correct or form an optical trap through a solid chunk of melted
plastic.

Laser alignment is done sequentially from the laser head, along the beam path, to
the sample anytime the laser path is adjusted. Because this laser is invisible, an infrared
detector card (ThorLabs VRC4) is necessary to ‘see’ the beam path. It is very important
to wear laser safety goggles (such as ThorLabs LG09 for this laser) for this work.

Firstly, the laser is centred on all lenses, mirrors, and other optical elements. Option-
ally, once the laser is satisfactorily aligned to the spatial light modulator, a phase pattern
consisting of at least two rings varying in phase by 𝜋 is displayed on it. Such a phase
mask will generate a bright ring of light with a dark centre. This intensity distribution
is useful in alignment work for at least two reasons. Firstly, if the laser is not centred on
the SLM (and therefore not centred on the phase pattern), the beam will have an uneven
intensity distribution around the ring. Secondly, the exact centre of the intensity pattern
is easier to determine than that of an expanded Gaussian intensity profile.

If necessary, the alignment of the expanded laser beam onto the SLM can now be
adjusted, using the uniformity of the intensity around the ring as a marker of alignment.
Then, after confirming that the laser is still centred on the remaining optics between the
SLM and the sample, two irises are fitted at extreme ends of the vertical beam path. In
the case of the HOT setup used here, the first iris is fitted immediately above the mirror
that steers the beam upwards, and the second iris is mounted to a tube and placed in the
microscope objective (which has been removed for this step) mount, as seen in Fig. C.2.

Because the mirror that reflects the beam upwards has no tip and tilt control, the SLM
and the single mirror between the SLM and the vertical beam path are needed to align
the vertical beam path. The top iris is initially kept open, and the bottom is gradually
closed. Using the detector card above the sample mount (i.e. behind both irises in the
beam path) to see the laser beam, the tip and tilt of the SLM is adjusted until the laser
beam is centred going through the closed bottom iris. The bottom iris is then opened, and
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Figure C.2: Location of irises for laser alignment. Iris 1 screws into the
metallic vertical housing of the tweezers. Iris 2 is attached to a small length
of SM1 tubing that is screwed into the cage mount that normally holds the
microscope objective lens.

the top iris is gradually closed. Again using the detector card above the sample mount,
the tip and tilt of the mirror after the SLM is gradually adjusted to centre the laser beam
through the top, closed iris. These steps are iteratively repeated - first closing the bottom
iris, aligning the laser with the SLM tip and tilt, then opening the bottom iris and closing
the top iris, and aligning with the mirror tip and tilt - until both irises can be closed
at the same time and the laser beam remains centred through both irises. Once this is
achieved, the irises can be removed.

To test the alignment of the laser and fine-tune it if necessary, a sample is placed in the
sample mount and the reflection of the laser is imaged onto the camera. This requires the
removal of the laser filter and, if applicable, the two prisms in the imaging arm towards the
camera. The camera image of the reflected laser beam should show a circularly symmetric
spot that does not change position on the camera as the 𝑧-stage is moved up and down.
If the beam is not normally incident on the sample, the spot will change (𝑥, 𝑦) location on
the camera as 𝑧 is adjusted. Additionally, the spot should retain a circularly symmetric
intensity profile as 𝑧 is changed. If either of these things are untrue, the tip and tilt of the
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SLM and mirror after the SLM will need to be adjusted in tandem. Keeping an eye on the
camera image to see which direction the spot moves, the tip on the SLM is adjusted to
move the spot in one direction before immediately being moved back to the initial camera
location using the tip of the mirror in the opposite direction. This is repeated with tip
and tilt as often as is needed until the laser beam is largely stationary and symmetric for
different 𝑧 heights of the stage.

C.2 Stereo-microscope alignment
The ability to track a trapped microsphere in 3D using 2D camera images is possible
using stereo-vision. To facilitate minimally low errors in experiments, it is important to
align the stereo-illuminators as well as possible. To make this easier, the illuminators are
mounted on translational stages. A dummy sample of micro-spheres in water placed in
the sample holder is useful for aligning the illuminators.

Aligning the illuminators in 𝑥 and 𝑦 is fairly straight-forward. After turning the
camera and illuminators on such that the images of the sample are visible, at least one
micro-sphere should be visible in both ‘eyes’ of the camera. The appearance of the micro-
sphere is a good indicator of illuminator alignment – the spheres act as tiny lenses and will
focus the illumination light to a point, causing them to appear as dark circles with bright
centres if the stage is at the appropriate distance from the microscope objective lens (such
as in the inset in Fig. 5.1). If the illuminators are misaligned, this bright focus will be
off-centre and/or oblong. The 𝑥𝑦 translation stage that the illuminators are mounted on
can be iteratively adjusted in tandem with the mirror steering the light through the two
prisms until the bright focus in the images of the micro-sphere appear centred in both
eyes.

In addition to proper alignment in the 𝑥 and 𝑦 directions above the sample using the
stages, it is important that the angle between the illuminators is as wide as possible, i.e.
the illuminators are low and close to the back of the sample at an optimal 𝑧 position.

To investigate exactly how close the illuminators need to be to the sample, stationary
micro-spheres were ’tracked’ using stereo-vision. To fabricate samples with stationary
micro-spheres, a drop of micro-sphere dilution in water is left on a clean coverslip to air
dry. This cover slip is included in a new sample, which then allows the 3D tracking of a
stuck micro-sphere for the measurements presented in the tables and figure below.

The experiment to collect the 3D tracking data involved allowing the centre-of-mass
(CoM) symmetry tracking built into the LabVIEW software that controls the HOT system
to track one of the stationary micro-spheres, without the laser on. It is also important
to sample several stuck micro-spheres, as some of them may not be truly stuck to the
coverslip and will begin to wiggle free in the water. Once a fully-stuck micro-sphere is
located in the sample, the LabVIEW software is used to record 3D CoM tracking data.
The exact duration varies slightly from bead to bead, but each was tracked for between
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Figure C.3: 3D tracking error vs illuminator height.

30 and 50 seconds, at a camera frame rate of 250 fps. Each bead was tracked for three
different illuminator heights above the sample. These heights were measured as seen in
Fig. C.3a, from the top of the slide mount holding the sample to the bottom of the first
black cage mount holding the illuminator mount.

The optimum illuminator height was investigated for two radii of silica micro-spheres
- 2.59µm and 4.99µm. The height of the illuminators was measured by eye as seen in
Fig. C.3a, from the top of the sample holder/slide mount to the top of the illuminator
cage mount.

The 3D CoM data for a stationary 2.59µm sphere is seen in Fig. C.3b for illuminator
heights of 32, 30, and 28 mm. This data was analysed for the error on the CoM position,
𝜖CoM, which is the standard deviation of the data in each dimension. Results for the
errors are shown in Table C.1 below. Clearly, from both the visualisations of the volumes
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‘explored’ and the table of the errors, the illuminators should be mounted no higher than
30 mm.

Tracking error for 2.59µm bead
Illuminator height 𝜖CoM𝑥

, nm 𝜖CoM𝑦
, nm 𝜖CoM𝑧

, nm
32 mm 0.88 1.13 3.71
30 mm 0.66 0.73 2.62
28 mm 0.66 0.79 2.55

Table C.1: Experimentally determined 3D tracking error for a
2.59µm radius silica micro-sphere at different illuminator heights.

This same process was repeated for a 4.99µm silica micro-sphere (see Fig. C.3c for
the 3D CoM tracking data). Table C.2 contains the experimentally determined tracking
errors for this size micro-sphere.

Tracking error for 4.99µm bead
Illuminator height 𝜖CoM𝑥

, nm 𝜖CoM𝑦
, nm 𝜖CoM𝑧

, nm
32 mm 0.66 0.92 4.03
30 mm 0.51 0.80 2.73
28 mm 0.65 0.84 2.76

Table C.2: Experimentally determined 3D tracking error for a
4.99µm radius silica micro-sphere at different illuminator heights.

As above, these results indicate that the illuminators should be positioned at most 30
mm above the sample, for minimal errors in the 3D tracking data. In addition to optimis-
ing the height of the illuminators, these results allow confirmation that this experimental
setup, has the capability to track the 3D CoM of stuck micro-spheres with nanometric
precision, as in [117].

C.3 Mono-vision alignment
The stereo-illuminators can be replaced by a single illuminator normal to the sample sur-
face. This allows standard 2D microscope imaging and tracking, if desired. The alignment
for this is straight-forward: the 𝑥𝑦 translational stages that the illumination is mounted
on should be iteratively adjusted until the image created is centred through all optics and
creates an image on the camera wherein the micro-particles are illuminated properly from
directly above.

C.4 Sample preparation
The samples used in the optical tweezers experiments consisted of dilutions of SiO2 mi-
crospheres in water. To create the samples, glass microscope slides (1.0−1.2 mm thick)
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Figure C.4: Images of samples. (a) Example sample of 1:1000 4.01µm
silica micro-sphere dilution in water. (b) Half reflective sample used for su-
perpixel aberration correction.

and coverslips (24×24 mm, 0.17−0.19 mm thickness) were glued together using Norland
Optical Adhesives (NOA) 68 and 81.

First, the slides and coverslips were placed in holders which were submersed in ethanol
in glass beakers. They were then sonicated for 10 minutes before being removed from the
ethanol and dried. After this cleaning step, two coverslips were glued to the microscope
slide using NOA 81 and promptly placed in a UV curing box (RS Components, LV202E)
- this created the basis for the trough which would be filled with the microsphere dilution.
Next, a third coverslip was glued to the top of the sample with NOA 81 to cover the
trough. The sample was again UV cured. At this point, there were only two ’open’ sides
of the sample, one on either end of the trough created by the coverslips. After assembling
the empty sample slide, a dilution of glass microspheres was pipetted into the trough
which was immediately sealed using NOA 68 and UV cured.

Typically, a sample remained ‘clean’ enough (i.e. not micro-biologically contaminated)
for one to two weeks. To ensure the cleanliness of the sample, ultra-pure water was used
to make dilutions, and the glass slides and coverslips were sonicated in ethanol before
sample fabrication.
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C.5 Using the SLM
The spatial light modulator is used to shape the laser beam in the far field (Fourier plane)
to generate a given optical trap inside the sample (image plane). Typically, the patterns
used in the experiments detailed in this thesis consisted of a combination of the following
phase components:

1. A phase grating, used to position the first diffractive order at an arbitrary location
within the sample. This phase mask can consist of a standard diffraction grating
and a lens phase, allowing control of an optical trap in all three dimensions.

2. A circular aperture, used to limit which areas of the SLM will send light to the first
diffractive order.

3. A primary wavefront-shaping phase, used to create the desired intensity distribution
in the sample.
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Appendix D

More experimental 3D
enhancement results

This appendix contains the results of all 3D stiffness enhancement experiments presented
in Fig. 6.7, showing successful trap optimisation for micro-spheres ranging from 2.59 to
4.99µm.

Figure D.1: Live optimiser results for a 2.59µm radius silica micro-sphere.
Integration time Δ𝑡 = 10 s.
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Figure D.2: Live optimiser results for a 2.59µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.3: Live optimiser results for a 2.59µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.4: Live optimiser results for a 2.59µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.5: Live optimiser results for a 2.59µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.6: Live optimiser results for a 4.01µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.7: Live optimiser results for a 4.55µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.8: Live optimiser results for a 4.99µm radius silica micro-sphere.
Δ𝑡 = 5 s.
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Figure D.9: Live optimiser results for a 4.99µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.10: Live optimiser results for a 4.99µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Figure D.11: Live optimiser results for a 4.99µm radius silica micro-sphere.
Δ𝑡 = 6 s.
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Figure D.12: Live optimiser results for a 4.99µm radius silica micro-sphere.
Δ𝑡 = 10 s.
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Appendix E

Controlling the holographic
optical tweezers setup

The hardware and software in the holographic optical tweezers setup can be finicky. Here,
a detailed description of the order in which everything should be turned on/initialised is
presented to help any future researchers who may use this setup. For future researchers
looking to use the same code, it is located on the computer next to the holographic optical
tweezers system at D:\Optical Tweezers\RedTweezers\red_stereotweezers
\red_tweezers_3DstiffnessOptimiser.vi.

Before any of the LabVIEW code is run, the user should ensure that the SLM and
camera are turned on. The settings for each should be checked as described in the first
two sections of this Appendix.

E.1 Camera
The camera used in the work for this thesis is a Mikrotron, EoSens CL. Below are some
steps that need to be taken before any LabVIEW programs can call the camera.

1. Before opening the LabView program to run the camera, open the software MC
ControlTool and check that all of the settings are correct. Pay special attention to
the Tap Mode (10 x 8), which annoyingly resets everytime the camera is rebooted,
and the Baudrate (9600).

2. Once the settings are sorted, NI MAX can be used to test that the camera is working
as expected. Once the software is open, navigate to My System > Devices and In-
terfaces > NI PCIe-1433 ”img0” > Channel 0: Mikrotron MC1310 and click ”Grab”
to begin running the camera. If this works without errors or issues, CLOSE the
program (this is important!!). If you leave NI MAX open and try to run the camera
using a LabView program, it won’t work because the computer sees that the camera
is already in use.

3. Troubleshooting:
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(a) For some reason, the Channel 0: Mikrotron MC1310 has reset to a different
camera on occasion. To change it back, right click on the Channel 0 line, and
select Camera > Mikrotron > Mikrotron MC1310.

(b) If you ever need to load a new camera to NI MAX, right click as above, select
Camera > Search ni.com. Search your camera and download the appropriate
file. To load it into NI MAX, right click on Channel 0 again and select Open
Camera. Navigate to the file you downloaded from ni.com and select to. Now
this new camera can be found as described in 3.

The frame rate and exposure time are adjusted within the MC ControlTool software.

E.2 LED Illuminators
The LED illuminators are powered externally using a custom piece of hardware, that needs
to be connected to each of the LEDs used as well as a power socket. The illuminators
are controlled using a custom LabVIEW code, shown in the screenshot in Fig. E.1, which
allows the user to adjust the relative amount of intensity from each illuminator.

Figure E.1: Front panel of the LabVIEW program to control the LED illu-
minators in the optical tweezers setup.
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This is run externally to the Red Tweezers software and can be opened and run at
anytime. Once the run button is pressed, the ‘Initialise?’ Boolean will turn True for a few
seconds. Once it has returned to off/False, the illuminator intensities can be adjusted at
will. The ‘VISA resource’ needs to be set to the correct COM port, but this should default
to the correct port. If it does not, check the computer’s Device Manager to determine
which COM port should be selected.

The relative intensities of the illuminators should be adjusted such that the images of
the two eyes of the stereo-microscope have a similar contrast and intensity, after alignment.

E.3 Spatial Light Modulator
The spatial light modulator (SLM) used in this work is a liquid crystal SLM (Boulder
Nonlinear Systems: XY-series, 512 × 512 resolution). For the experiments presented here,
the Display on SLM subVI written by supervisor Professor David Phillips is used. This
program is used to display a desired U8 hologram on the SLM screen. The U8 hologram
has values between 0 and 255, which are mapped from phases between 0 and 2𝜋 according
to a blazing function shown in Fig. E.2. The blazing function can be manually adjusted
if required, however the default one displayed in Fig. E.2 has been selected specifically for
the SLM in the current holographic optical tweezers setup.

If another blazing table ever needs to be found, the cursors in the blazing function
can be manually dragged and adjusted to different locations. The optimal configuration

Figure E.2: Blazing table VI showing the relation between U8 greyscale
values and imparted phase delay.



200 Appendix E. Controlling the holographic optical tweezers setup

Figure E.3: Settings options for Dislay on SLM VI.

is determined by looking at the zero and first order intensities and optimising such that
the first order contains as much and the zero as little power as possible. The shape of the
curve should be similar to the S-shaped curve shown in Fig. E.2.

To ensure that this program functions as expected, the display settings of the computer
need to be checked. If the SLM is properly connected with the USB cable, the computer
will recognise it as an additional screen. In the display settings, determine which screen
number is given to the SLM. The Display on SLM VI requires the user to input which
screen the hologram should be displayed on using the ’Display on’ control seen in Fig. E.3.

Before running a program that calls this VI, ensure that the front panel of Display on
SLM is maximised (this is very important, otherwise the hologram isn’t in the right place
on the SLM), and the hologram is placed exactly at the top left corner of the screen, as
in Fig. E.5. Fig. E.4 shows an example of an incorrectly aligned front panel.
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Figure E.4: Incorrect location of the hologram on the front panel of the
Display on SLM VI.
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Figure E.5: Correct location of the hologram on the front panel of the
Display on SLM VI.
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E.4 Modified Red Tweezers LabVIEW program
The software that was used to run the optical tweezers experiments was a modified version
of Richard Bowman’s Red Tweezers [119].

The front panel of the modified Red Tweezers LabVIEW software is shown in Fig. E.6.
The left portion of the front panel contains tabs which contain the majority of the func-
tionality, allowing one to e.g. create an optical trap at a given location or adjust tracking
and ROI settings. There are many, many settings that one can adjust – here the author
will detail the critical settings to being using the optical tweezers with stereo-vision live
3D tracking of a trapped micro-particle.

The back panel is shown in Fig. E.7. It is complicated, but can roughly be understood
by splitting it into two sections - one that controls the optical traps, and one that performs
the symmetry tracking and converts from two sets of 2D tracking data to one set of 3D
tracking data. The camera frames, live tracking data, and optical trap information are
placed in separate queues, allowing synchronisation across the three main for-loops of the
program (one to control the traps, and two for tracking trapped micro-particles).

Figure E.6: Front panel of modified Red Tweezers LabVIEW program.
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Figure E.7: Back panel of the modified Red Tweezers LabVIEW program.
The orange box outlines the parts of the code that control the optical traps.
The green box outlines the parts that perform the live 3D tracking.

E.4.1 Enabling 3D tracking

The ability to 3D track a particle is introduced to the Red Tweezers code with a series of
subVIs and added functionality first introduced by supervisor Professor David Phillips.
Using parallax, the 𝑧 displacement can be calculated using only 𝑥 and 𝑦 displacements
from a left and right eye image. The exact relation depends on the angle between the
illuminators used in the stereomicroscope. This angle can be set in the Red Tweezers
red_tweezers_global_INTERNAL.vi subVI with the ‘Separation half-angle’ control seen
in Fig. E.9. The fastest and easiest way the author has found to open this (or any other)
subVI used in the Red Tweezers program is to go to View > Browse Relationships > This
VI’s SubVIs, as seen in Fig. E.8.
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Figure E.8: A fast way to find and open any subVI used in a LabVIEW VI.

Figure E.9: Front panel of modified red_tweezers_global_INTERNAL.vi
for 3D tracking.

Adjusting the angle between the illuminators is discussed below. This subVI also
contains controls that can be set to adjust the camera pixel size in metres. If the magnifi-
cation of the imaging arm of the system is changed, this control will need to be adjusted in
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tandem. To do this, the physical size of the camera image on the front panel is measured
in meters and divided by the number of pixels in the camera image.

Once these settings have been set, the main Red Tweezers code can be run in Lab-
VIEW. Upon clicking run, after a few seconds of initialising all of the many subVIs, a live
camera image should appear in the empty box in the middle of the front panel.

The ROIs referenced in this VI are also set within the main Red Tweezers software
once it is running and the micro-particle to be tracked is found within a given sample.
In the Video tab of the main Red Tweezers program (Fig. E.10), select ‘Set ROIs’ so
that the Boolean is True. This allows one to manually select the left and right eyes as
regions of interest (ROIs) on the live camera images. The ‘Constrain ROIs’ Boolean will
make the two ROIs the same size, once they have been roughly placed and resized. The
‘Current ROI Tool’ control sometimes defaults to the Zoom Tool as seen in the screenshot
in Fig. E.10. To adjust the ROIs, this needs to be changed to Rectangle Tool. The Global
ROI control should be set to 1280, 1024 as in Fig. E.10, which is the full pixel resolution

Figure E.10: Front panel of Red Tweezers showing the Video tab, where the
ROI can be set.



E.4. Modified Red Tweezers LabVIEW program 207

of the camera.

Figure E.11: Front panel of Red Tweezers showing the Particle Tracking tab,
where the ROI can be adjusted and symmetry tracking settings can be set.
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Once the above settings and controls have been set, the next step to enabling 3D
tracking with the modified Red Tweezers code is to adjust the mini-ROI around the
optically trapped particle used for symmetry tracking. In the Particle Tracking tab of the
main front panel, the Boolean controls named ‘Symmetry Transform’, ‘Show transformed
Image’, ‘stereo tracking’, ‘track all particles’, ‘overlay spots’, and the Boolean control at
the very bottom left hand side ‘+L&R Eye’ should all be set to True, as seen in the
screenshot in Fig. E.11.

By default, the program should only create a trap at the zero order location. This can
be changed manually after setup is complete. To create this initial trap, select ‘new spot’
on the Current Spot tab of the main front panel. The location of the optical trap should be
properly set with the ‘Zero Position On Camera/pixels’ control seen in Fig. E.9, a magenta
circle should appear, indicating the location where an optical trap will be formed once the
laser has been turned on. If this location is incorrect, it can be tested by removing the
laser filter from the imaging arm, turning the laser on (as described later), and adjusting
the 𝑥 and 𝑦 locations of the zero position on the camera until the location of the magenta
circle corresponds to the actual location of the zero order focus on the camera.

The translational stage should now be used to position the desired micro-particle
so it is centred on the magenta circle/trap location. If the Booleans listed above are
correctly configured, a small ROI should appear overlaying the image of the micro-particle.
Disabling ‘Show transformed image’ will remove this overlay. With it enabled, go to the
Particle Tracking tab and adjust the ROI shift, ROI Size, and Max. Radius controls to
resize the mini-ROI that performs the symmetry transform for tracking. ROI shift will
translate the region. ROI size adjusts the size of the region. Max. radius adjusts the
number of pixels over which the symmetry is evaluated. Typically, the transformed image
overlay should appear approximately the size of the micro-particle.

To reduce the error in the tracking, the micro-spheres should be slightly out of focus
so that they appear as a bright circle surrounded by a darker ring, as in Fig. E.12.

Figure E.12: Example of cropped left and right eye images showing slightly
out of focus 4.99µm radius silica micro-spheres.

The next step to initialising 3D tracking is to set a buffer length in the top right hand
corner of the main front panel. This determines how many latest data points are displayed
on the plots in the panel below showing the live tracking data in real time. Typically, the
author used a buffer length between 500 - 1000. If the camera is running between 250
and 500 fps, this then corresponds to ∼ 2 s of live data. The ‘Clear buffer’ Boolean will
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clear the current live tracking data. The ‘limits’ control sets the displacement limits of
the axes of the live tracking data plots.

Finally, to begin live 3D tracking, the ‘Update buffer’ and ‘3D’ Booleans should be set
to True, as seen in the screenshot in Fig. E.13. After this is done, the 3D tracking should
begin and cross-hairs should appear over the centre-of-mass of the tracked micro-particle.
At this point the author prefers to turn off the ‘Show transformed image’ Boolean, but
this isn’t necessary for the performance of the tracking. To ensure that the ROI can
also follow the motion of the particle, first the ‘Collect avg positions’ Boolean should be
enabled for a few seconds, and then the ‘ROI follow tracking’ Boolean should be enabed
after that. This is useful e.g. when tracking an untrapped, freely diffusing micro-particle.

Figure E.13: Screenshot showing the top right hand corner of the main front
panel of the modified Red Tweezers.

The final step to initialising live 3D tracking is to adjust the ‘Separation half-angle’
control. To ensure that the control is set to the correct angle, the translational stage
used to control 𝑥, 𝑦, and 𝑧 locations of the sample relative to the microscope objective is
moved in 𝑧 some known amount. The author typically moved the microscope objective up
and down 1µm and ensured that the live 3D tracking on the right side of the front panel
reflected that same displacement in 𝑧 (green lines). The buffer length and limits controls
will need to be adjusted for this step. If the live tracking data for 𝑧 do not also change by
e.g. 1µm the ‘Separation half-angle’ is adjusted to correct this. This may require several
iterations of adjusting the angle and testing the tracked 𝑧 displacement against the motion
of the motorised stage a known amount.

To get the best performance possible, it is important that the images of the beads are
not saturated on the camera. The ‘Image max’ indicator in the Particle Tracking tab tells
the user the highest intensity pixel. This should stay under 255 to prevent saturation of
the camera images. The ‘Show transformed image’ Boolean needs to be set to False for
this! Otherwise the indicator will always show 255, because of the pixel values within
the overlayed ROIs. If the images of the micro-particle are saturated, the frame rate or
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exposure time of the camera or the intensities of the LED illuminators need to be adjusted
as described above.

E.4.2 Optically trapping a particle

To protect users, the box around the system should be closed before the laser is turned
on. The stages and SLM can be controlled from the outside of the box, so the only time
the box should be opened is while the laser is off to replace samples or alignment work
(to be performed only by experience researchers with knowledge of the system and the
dangers of the laser). Details of and tips for alignment of the laser and imaging arms are
discussed in Appendix C.

Once the 3D tracking is enabled, the laser can be turned on. For the current location,
this requires turning the lab’s interlock system on – a laser safety measure to prevent
unauthorised users from entering the lab while this potentially dangerous laser is in use.
Next, the laser itself must be turned on. It is located in the gantry above the setup. Once
the laser controller has been powered up, the key needs to be inserted into it switched
on. A button should begin blinking green, and once it is a stable green can be pressed
to begin lasing. After a few seconds, the optical trap should be formed in the sample at
the zero order location designated by the magenta circle in the Red Tweezers live camera
image, if the above settings are correctly set.

Once the trap has formed, if the micro-particle is close enough to it, it should be
sucked into the trap and held there. Now the trap can be moved to a desired location
within the sample. This can be done in the Current Spot tab by adjusting the 𝑥, 𝑦, and 𝑧
Position or by clicking and dragging the magenta circle on the camera image to a desired
location. This should be done in small, relatively slow steps so the tracking ROI can
follow the bead to its new location.

When the position of the optical trap is changed, the queue containing this information
synchronises the phase mask displayed on the SLM to reflect this change. The back panel
for this part of the modified version of the Red Tweezers software is shown in Fig. E.14.
The pink wire contains the queue of optical trap information; the Move Trap subVI
converts this information into a phase mask which is output as a U8 hologram (blue wire)
that is input to the Update SLM subVI, which displays the phase mask on the display
monitor selected by the Display on SLM VI described previously.
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Figure E.14: Back panel of the modified Red Tweezers program, showing
how the phase mask displayed on the SLM is changed using a queue.

The optical trap should be moved sufficiently far from the zero order so that the zero
order does not also interact with the trapped micro-particle. For a 4.99µm radius silica
micro-sphere, for example, the author used a first order between 7 and 10µm (calculated
using the Pythagorean Theorem) away from the zero order. An example of the 𝑥 and 𝑦
locations of such a first order are (6µm, 6µm).

Next, the microscope objective is translated 25µm from the bottom glass coverslip of
the sample to ensure that the 3D motion of the trapped micro-particle is not restricted
by the coverslip (i.e. so the microparticle doesn’t continuously bounce into the glass).
Because of radiation pressure, the optical trap will push the microparticle to a different
𝑧 position which can be adjusted by changing the 𝑧 location of the optical trap slowly.
Typically changes between 0.1 and 0.25µm in the 𝑧 position were sufficiently small to
prevent the micro-particle from escaping the trap.

Adjusting the Position of the optical trap in the Current Spot tab adjusts the phase
mask displayed on the SLM screen. Changes in 𝑥 and 𝑦 position correspond to a change
in the phase grating, and changes in 𝑧 correspond to changes in the lens phase added to
the phase mask.

After completing the steps detailed in this Appendix, it should now be possible to 3D
track an optically trapped particle with nanometer precision. Further modifications can
be made to the LabVIEW program to allow any desired phase mask to be displayed on
the SLM screen. The Red Tweezers program has the built-in ability to save live tracking
data and video. The ‘Save Video’ Boolean, which should be selected first if saved video
is desired, enables saving video which is compressed by default but can be uncompressed
using the associated Boolean. The ‘Save Data’ button begins the saving process and opens
a pop-up allowing the user to name the saved data and place it in the desired file path.
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E.5 Shutting down the tweezers
To correctly turn everything off, first the LabVIEW program should be stopped. Next,
the key in the laser controller should be switched to the off position. Finally, the power
to all of the equipment can be cut and the lab’s interlock disabled.
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