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Abstract: Parkinson’s disease is a progressive neurodegenerative disorder, predominantly of the
motor system. Although some genetic components and cellular mechanisms of Parkinson’s have
been identified, much is still unknown. In recent years, emerging evidence has indicated that non-
DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the
development and progression of the disease. Here, we present an up-to-date overview of epigenetic
processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-
coding RNAs implicated in the brain of those with Parkinson’s disease. We will also discuss the
limitations of current epigenetic research in Parkinson’s disease, the advantages of simultaneously
studying genetics and epigenetics, and putative novel epigenetic therapies.
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1. Introduction

Parkinson’s disease (PD) is a debilitating movement disorder and the second-leading
cause of neurodegeneration, affecting more than ten million individuals worldwide [1].
The prevalence of the disease increases sharply with age, with 1.7% affected by the age of
80–84 [2]. With a rapidly aging population, the number of people affected is only expected
to increase. It is estimated that the number of individuals with PD will double between
2015 and 2040 [3]. PD already significantly contributes to the global burden of disease, with
an economic burden of USD 51.9 billion per year in the United States alone [4].

Parkinson’s is associated with a number of motor symptoms, including resting tremor,
bradykinesia, rigidity and postural instability [5]. In addition, the vast majority of in-
dividuals with PD also experience a range of non-motor complications, such as sleep
disturbances, olfactory deficits, autonomic dysfunction, cognitive impairment and depres-
sion [5,6]. While some non-motor symptoms such as hyposmia, depression and REM
sleep behavior disorder typically precede the onset of motor symptoms, other symptoms
such as cognitive impairment, dementia, anhedonia and psychosis more commonly ap-
pear later [6,7]. Parkinson’s is also linked with substantial morbidity and mortality, with
pneumonia and cardiovascular complications accounting for the majority of deaths [8].

Pathologically, PD is characterized by the progressive loss of dopaminergic neurons
in the substantia nigra pars compacta (Figure 1). These neurons project to the striatum,
and consequently, striatal dopamine levels are typically depleted in diseased individuals,
accounting for many of the motor defects [9]. Dopaminergic neuron loss is normally
also accompanied by the formation of α-synuclein aggregates in intracellular Lewy body
inclusions, the pathological hallmark of PD [9]. Increased levels of α-synuclein may be
toxic to human neurons and are believed to lead to further dopaminergic neuron loss [10].
It has also been suggested that misfolded α-synuclein may propagate along anatomically
connected axons in a prion-like manner, spreading from the substantia nigra to other
regions of the brain [11,12].

Int. J. Mol. Sci. 2024, 25, 6168. https://doi.org/10.3390/ijms25116168 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25116168
https://doi.org/10.3390/ijms25116168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8599-3109
https://doi.org/10.3390/ijms25116168
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25116168?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 6168 2 of 32

Int. J. Mol. Sci. 2024, 25, 6168 2 of 32 
 

 

connected axons in a prion-like manner, spreading from the substantia nigra to other 
regions of the brain [11,12]. 

 
Figure 1. Overview of PD pathology. Abbreviations: Parkinson’s disease (PD). (A) Schematic of the 
brain highlighting the substantia nigra, putamen and caudate nucleus (the latter two are both part 
of the striatum). Dopaminergic neurons are depleted in the PD substantia nigra, as shown below. 
(B) Schematic of two neurons affected by α-synuclein and Lewy body pathology, which have spread 
from one neuron to the next. Created with BioRender.com. 

Several mechanisms are thought to play a role in the pathogenesis of PD, such as 
mitochondrial dysfunction, oxidative stress, neuroinflammation, protein aggregation, 
defective autophagy and environmental toxin-induced effects [13–18], with many of these 
mechanisms interlinked. For example, protein homeostasis can be disrupted by both 
increased protein aggregation and reduced protein clearance, while the generation of 
reactive oxygen species can be exacerbated by concurrent elevation of oxidative stress and 
impairment of mitophagy [15,18,19]. 

Rare mutations in a handful of genes are known to directly cause PD (Table 1), 
including α-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced 
kinase 1 (PINK1), parkin (PRKN), parkinsonism-associated deglycase (DJ-1) and ATPase 
cation transporting 13A2 (ATP13A2) [20]. These genes were initially identified as 
monogenic causes of the disease primarily through linkage analysis of large families 
affected by PD. In addition, certain genetic risk factors are associated with the disease, 
including particular mutations in the glucocerebrosidase 1 (GBA1) and LRRK2 genes [21–
23]. For example, GBA1 mutations are estimated to result in PD development in up to 30% 
of heterozygous carriers by the age of 80 [24–27]. 

Table 1. Key rare mutations that cause PD. 

Gene Name Abbreviation Mode of Inheritance 
α-synuclein SNCA Autosomal dominant 
leucine-rich repeat kinase 2 LRRK2 Autosomal dominant 
PTEN-induced kinase 1 PINK1 Autosomal recessive 
parkin PRKN Autosomal recessive 
Parkinsonism-associated deglycase DJ-1 Autosomal recessive 
ATPase cation transporting 13A2 ATP13A2 Autosomal recessive 

Figure 1. Overview of PD pathology. Abbreviations: Parkinson’s disease (PD). (A) Schematic of the
brain highlighting the substantia nigra, putamen and caudate nucleus (the latter two are both part
of the striatum). Dopaminergic neurons are depleted in the PD substantia nigra, as shown below.
(B) Schematic of two neurons affected by α-synuclein and Lewy body pathology, which have spread
from one neuron to the next. Created with BioRender.com.

Several mechanisms are thought to play a role in the pathogenesis of PD, such as mito-
chondrial dysfunction, oxidative stress, neuroinflammation, protein aggregation, defective
autophagy and environmental toxin-induced effects [13–18], with many of these mecha-
nisms interlinked. For example, protein homeostasis can be disrupted by both increased
protein aggregation and reduced protein clearance, while the generation of reactive oxygen
species can be exacerbated by concurrent elevation of oxidative stress and impairment of
mitophagy [15,18,19].

Rare mutations in a handful of genes are known to directly cause PD (Table 1), in-
cluding α-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase
1 (PINK1), parkin (PRKN), parkinsonism-associated deglycase (DJ-1) and ATPase cation
transporting 13A2 (ATP13A2) [20]. These genes were initially identified as monogenic
causes of the disease primarily through linkage analysis of large families affected by PD. In
addition, certain genetic risk factors are associated with the disease, including particular
mutations in the glucocerebrosidase 1 (GBA1) and LRRK2 genes [21–23]. For example,
GBA1 mutations are estimated to result in PD development in up to 30% of heterozygous
carriers by the age of 80 [24–27].

Table 1. Key rare mutations that cause PD.

Gene Name Abbreviation Mode of Inheritance

α-synuclein SNCA Autosomal dominant
leucine-rich repeat kinase 2 LRRK2 Autosomal dominant
PTEN-induced kinase 1 PINK1 Autosomal recessive
parkin PRKN Autosomal recessive
Parkinsonism-associated deglycase DJ-1 Autosomal recessive
ATPase cation transporting 13A2 ATP13A2 Autosomal recessive

Identification of additional genetic loci associated with PD has come from genome-
wide association studies (GWASs), which test for allele frequency differences of hundreds
of thousands of genetic variants across large numbers of individuals. A recent large multi-
ancestry meta-analysis of PD GWASs identified 78 independent genome-wide significant
loci (including in SNCA and LRRK2), 12 of which were not previously reported [28]. A PD
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GWAS meta-analysis was also carried out in 2019 [22], with the risk variants explaining
16–36% of PD heritable risk, highlighting that the etiology of the disease remains consid-
erably unknown. It is likely that yet-to-be-identified PD genetic risk may be facilitated
by larger-scale GWASs. However, given that the majority of GWAS variants lie in non-
coding, regulatory regions of the genome [29] and PD concordance amongst monozygotic
twins is only 17% [30], additional factors such as epigenetic variation are likely to play a
pivotal role.

Epigenetics is the study of molecular processes that influence the regulation of gene ex-
pression without altering the underlying DNA sequence [31]. Key epigenetic mechanisms
include DNA methylation, DNA hydroxymethylation, histone modifications, and actions
mediated by non-coding RNAs such as microRNAs (miRNAs) [32]. Epigenetic processes
often affect the accessibility of DNA to the transcription machinery, thus regulating gene
expression levels [32]. Classic examples of epigenetic regulation include cell fate deter-
mination and specialization in embryonic development, X-chromosome inactivation and
genomic imprinting [33]. Another example relevant to PD is neuronal function, where epi-
genetics is implicated in the synaptic plasticity of learning and memory formation [34,35].
Epigenetic dysregulation can lead to disease and has been particularly well studied in
cancer [36]. In recent years, epigenetics has also been implicated in other neurodegener-
ative disorders, such as Alzheimer’s disease [37], and there is increasing evidence that
epigenetics may play an important role in Parkinson’s.

Epigenetic changes might be influenced by genetic variation, and a few studies have
started to integrate genetic and epigenetic information in PD [22,38–41]. On the other
hand, epigenetic changes could be influenced by the environment. Mounting evidence
suggests that long-lasting phenotypic changes can result from alterations in epigenetic
make-up that are caused by environmental cues [33,42,43]. One such cue is stress, and
several studies have demonstrated that stress, via epigenetic alterations, may impact the
development, age of onset and progression of neurodegenerative and neuropsychiatric
disorders, including PD, Huntington’s disease and depression [44–46]. In addition to
stress, other factors such as prior head injuries and environmental contaminants (including
toxins, heavy metals, pesticides and herbicides) have been associated with PD [47], and it
is plausible that these factors also act via epigenetics to confer PD susceptibility. Finally,
further evidence suggesting a link between the environment and epigenetic make-up comes
from studies of monozygotic twins, which show that older twins have more epigenetic
differences (and differential gene expression) compared to younger twins [48–50]. It is
thought that these differences arise from twins spending an increasing amount of time in
different environments over their lives. Therefore, the low concordance rate between twins
for PD might be attributed to different environments, which, in turn, may cause distinct
epigenetic changes that differentially influence disease susceptibility.

Importantly, epigenetic studies in Parkinson’s brains may not only unravel new mecha-
nisms underlying disease development and progression but also uncover new drug targets
and so advance novel therapeutic approaches. The development of new PD treatments
would be particularly impactful as there are currently no treatments that can cure or modify
the disease. The few treatments that do exist, including levodopa (L-DOPA), dopamine ag-
onists and monoamine oxidase-B inhibitors, are symptomatic and only alleviate symptoms
temporarily [51]. Moreover, these treatments become substantially less effective after only
a few years and typically lead to problematic side-effects such as dyskinesia [52]. Therefore,
new disease-modifying therapies that can slow, prevent or even reverse PD progression are
urgently required.

In this review, we first summarize key findings related to epigenetics within the
brain in Parkinson’s, covering DNA methylation, DNA hydroxymethylation, histone
modifications and non-coding RNAs, focusing on the utility of epigenetics in identifying
novel disease mechanisms. We then discuss the limitations of current epigenetic research
in PD, the advantages of simultaneously studying genetics and epigenetics, the potential
for epigenetic-based therapeutics and possible future directions.
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2. DNA Methylation

DNA methylation is the most well studied epigenetic modification and consists of the
addition of a methyl group to the 5-carbon position of a cytosine in a CpG dinucleotide
(cytosine followed by guanine in the 5′-to-3′ direction) (Figure 2) [53,54]. This process is
catalyzed by DNA methyltransferases (DNMTs), which are involved in either de novo
(DNMT3a and 3b) or maintenance (DNMT1) methylation [54].
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Figure 2. DNA methylation overview. Abbreviations: transcription factor (TF), DNA methyltrans-
ferase (DNMT). (A) Schematic of an unmethylated (left) and methylated (right) CpG island in a gene
promotor and target gene. When unmethylated, transcription factors can typically bind, allowing the
gene to be expressed. When methylated, transcription factor binding is typically prevented, and a
methyl-CpG binding protein is recruited. Both of these events can lead to the gene being silenced.
(B) Structural formulas of cytosine and 5-methylcytosine. DNA methylation is catalyzed by DNMT
enzymes. Created with BioRender.com.

CpG sites (CpGs) are usually concentrated in CpG islands, which are commonly
located in gene promoters [54]. Methylation of CpG islands within promoters has typically
been associated with transcriptional silencing, either through blocking transcription factor
binding or recruiting methyl-CpG binding proteins that themselves mediate transcriptional
repression [53,55–57]. However, this is not always the case; for example, gene body
DNA methylation has been associated with an increased level of gene expression and the
regulation of alternative splicing [58–60].

2.1. Single-Gene Analyses

In Parkinson’s, initial DNA methylation studies mainly focused on genes already
hypothesized to be associated with the disease (Table 2). Following bisulfite conversion of
DNA, these studies mostly used either Sanger sequencing or pyrosequencing to measure
DNA methylation. Pyrosequencing is a method of DNA sequencing that can be used to
measure the degree of DNA methylation at individual CpG sites situated in close proxim-
ity [61]. The most extensively studied candidate gene in PD is SNCA, which encodes the
α-synuclein protein. Point mutations in SNCA (including the Ala53Thr missense mutation)
were the first identified genetic causes of PD [62–64], and SNCA locus amplifications (such
as duplications and triplications) are also known to cause familial PD [65,66].

It is well established that expression can be regulated by DNA methylation levels
within regulatory regions [53], and a number of studies have investigated whether DNA
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methylation within intron 1 of the SNCA gene is altered in PD. The majority of studies
reported SNCA intron 1 DNA hypomethylation in PD brains [67–70]; however, others
found no significant differences [38,71].

Jowaed et al. went further and examined the effect of inhibiting DNA methylation in
SK-N-SH cells (a neuroblastoma cell line), which resulted in an increase in SNCA mRNA
expression [67]. Thus, a plausible mechanism for the high levels of α-synuclein found in
PD brains is DNA hypomethylation of the promoter region of SNCA.

A recent study highlighted that SNCA expression may be regulated by the binding
of methyl-CpG binding protein 2 (MeCP2) to methylated CpG sites in SNCA intron 1 [70].
Using chromatin immunoprecipitation and qPCR in SK-N-SH cells, they showed that
MeCP2 binds to SNCA intron 1 and that its binding is dependent on the degree of DNA
methylation in intron 1. In the human cortex, SNCA intron 1 was hypomethylated in
PD compared to controls, and the binding of MeCP2 also appeared to be lower in PD. In
addition, CRISPR/Cas9 editing of SK-N-SH cells suggested that increased or decreased
binding of MeCP2 to SNCA intron 1 is associated with a reduction or gain in α-synuclein
expression, respectively [70].

Furthermore, based on a suggestion that α-synuclein may itself interact with the epi-
genetic machinery, Desplats et al. conducted a series of immunoprecipitation experiments
using human brain homogenates that showed that α-synuclein does indeed interact with
DNMT1 [69]. Next, they showed increased DNMT1 staining in the cytoplasm (compared
to the nucleus) in the cells of PD brains compared to controls. Supported by further experi-
ments in rat cells, they then concluded that DNMT1 may be sequestered to the cytoplasm
by α-synuclein, which causes global DNA hypomethylation in PD brains [69].

A more recent study looked at SNCA intron 1 methylation separately in bulk frontal
cortex, neuronal nuclei and glial nuclei (isolated using fluorescence-activated nuclear
sorting) [72]. They observed borderline significant hypomethylation in neuronal nuclei but
no significant differences in glial nuclei or bulk cortex. This may explain the mixed results
of earlier studies where bulk samples were analyzed and highlights a potential advantage
of profiling DNA methylation separately in individual cell types.

Another recent study started to take into account genetic variation by separating
PD individuals with GBA1 mutations from idiopathic PD individuals [73]. Significant
hypomethylation of several CpGs in SNCA intron 1 in the frontal cortex was observed in
PD-GBA1 but not in idiopathic PD. This demonstrates that segregating PD cases according
to genetic subtype might help uncover DNA methylation changes.

In addition to the SNCA gene, DNA methylation of other PD-related genes has also
been investigated. These include PRKN, PINK1 (both involved in mitochondrial function
and mitophagy), DJ-1 (involved in oxidative stress protection) and MAPT (which encodes
the microtubule-associated protein tau that forms neurofibrillary tangles most notably in
Alzheimer’s disease) [74–77]. For example, MAPT DNA methylation changes in PD varied
according to brain region (hypermethylation in the cerebellum and hypomethylation in
the putamen). The same study also suggested that the higher incidence of PD seen in
males can possibly be explained by the higher MAPT DNA methylation levels observed in
females and indicated that increased MAPT methylation was associated with later disease
onset [77].

Some studies have investigated DNA methylation of genes that interact with key
PD genes. For example, Su et al. examined peroxisome proliferator-activated receptor
gamma coactivator 1α (PGC-1α) [78]. They found increased PGC-1α promoter methylation
in the substantia nigra of PD individuals, along with a decrease in PGC-1α gene and
protein expression. Previously, PGC-1α was shown to interact with parkin to regulate
mitochondrial biogenesis and protect dopaminergic neurons [79]. It has also been associated
with increased sensitivity to neurodegeneration [80].

It is worth noting that there are some key limitations of candidate gene studies. In
general, small sample sizes are used, limiting their statistical power to detect significant
methylation changes. Secondly, by their nature, they are based on a priori hypotheses,
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limiting the identification of novel genes epigenetically dysregulated in PD that have not
been previously associated with neurodegenerative diseases. Thirdly, they are only testing
one gene at a time rather than looking within the context of the whole genome (where it
is now standard practice to correct for multiple testing) and are therefore subject to less
statistical rigor. Therefore, rather than focusing on single genes, the field has shifted toward
genome-wide approaches, which are discussed in the next section.

Table 2. Summary of DNA methylation studies in single genes in PD brains.

Gene(s) Samples Methylation Sites
Studied

Key Findings Reference/Year

SNCA Substantia nigra and cortex
(6 PD, 6 controls), putamen
(6 PD, 8 controls)

23 CpGs in intron 1 Hypomethylation in all brain areas [67]/2010

SNCA Anterior cingulate cortex (11 PD,
8 controls), putamen (6 PD,
4 controls), substantia nigra
(3 PD, 3 controls)

13 CpGs in intron 1 Hypomethylation in substantia
nigra only

[68]/2010

SNCA Brain homogenates (4 PD,
4 controls)

Gross methylation of
intron 1

Hypomethylation [69]/2011

SNCA Cerebral cortex (12 PD, 12
controls)

Gross methylation of
intron 1

No overall differences but
methylation associated with
rs3756063 SNP

[38]/2015

SNCA Substantia nigra (8 PD, 8
controls)

23 CpGs in intron 1 No differences [71]/2017

SNCA Bulk frontal cortex (20 PD, 20
controls), sorted neuronal and
glial nuclei (12 PD, 12 controls)

23 CpGs in intron 1 Bulk tissue and glial nuclei: No
differences across all CpGs
Neuronal nuclei:
Hypomethylation in PD across all
CpGs (borderline significant)

[72]/2021

SNCA Frontal cortex (9 PD-GBA1,
11 idiopathic PD, 6 controls),
putamen (6 PD-GBA1,
9 idiopathic PD, 6 controls),
substantia nigra (8 PD-GBA1,
13 idiopathic PD, 3 controls)

17 CpGs (8 sites in
intron 1 located further
from TSS, 6 CpGs in
intron 1 located close to
TSS and 3 CpGs within
promotor)

Frontal cortex:
Hypomethylation in 5 CpGs
located further from TSS in intron
1 in PD-GBA1 compared to
controls
Hypomethylation in 2 CpGs in
intron 1 in PD-GBA1 compared to
idiopathic PD
No significant differences in any
CpGs located close to TSS in intron
1 or in the promoter
Putamen:
No significant differences in intron
1 or the promoter
Substantia nigra:
1 CpG in the promoter
hypomethylated in idiopathic PD
compared to both controls and
PD-GBA1
No significant differences in
intron 1

[73]/2023

SNCA Cortex (2PD, 2 controls) 23 CpGs in intron 1 Hypomethylation [70]/2024

PAD2 Cortex (white matter) (2 PD,
0 controls)

Gross methylation of
portion of intron 1,
exon 1, and distal
extension

No differences [81]/2007
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Table 2. Cont.

Gene(s) Samples Methylation Sites
Studied

Key Findings Reference/Year

TNF-α Substantia nigra and cortex
(7 PD, 8 controls), striatum
(3 PD, 2 controls)

10 CpGs in promoter No differences [82]/2008

MAPT,
PSEN1,
APP and
UCHL1

Frontal cortex (8 PD, 17 controls) MAPT: 20 CpGs near
exon 0.41 + 31 CpGs in
intronic regions
PESN1: 26 CpGs at TSS
APP: 18 + 16 CpGs in
promoter regions
UCHL1: 37 CpGs
around TSS

No differences [76]/2009

PRKN Substantia nigra, cerebellum,
occipital cortex (5 PD, 2 controls)

Gross methylation of
promoter

No differences [74]/2013

MAPT Cerebellum, putamen, anterior
cingulate cortex (28 PD,
12 controls)

6 CpGs within
promoter/intron 1

Hypermethylation in cerebellum,
hypomethylation in putamen, no
significant differences in anterior
cingulate cortex

[77]/2014

ADORA2A Putamen (25 PD, 26 controls) 108 CpGs in 5′

untranslated region
Hypomethylation at 2 CpGs [83]/2014

PGC-1α Substantia nigra (10 PD,
10 controls)

Gross methylation of
promoter

Hypermethylation (of mainly
non-CpG dinucleotides) and
decreased expression

[78]/2015

mtDNA
D-loop

Substantia nigra (10 PD,
10 controls)

CpGSs and non-CpGs
in D-loop

Hypomethylation in nearly all
CpGs and non-CpGs

[84]/2016

SNCA,
LRRK2,
PRKN,
PINK1 and
DJ-1

Substantia nigra, occipital cortex,
parietal cortex (5 PD, 5 controls)

SNCA: 6–8 CpGs in
promoter, 5 CpGs in
exon 1
LRRK2: 9 CpGs in
promoter, 9 CpGs in
exon 1
PRKN: 4 CpGs in
promoter, 9 CpGs in
promoter overlapping
with intron 1
PINK1: 5 CpGs in
promoter/exon 1
DJ-1: 6 CpGs in
promoter, 8 CpGs in
promoter overlapping
with exon 1

No significant differences at whole
CpG islands, although differential
methylation observed at some
specific CpGs in SNCA, PRKN and
PINK1

[75]/2018

CYP2E1,
TP73,
C21ORF56
and
CDH13

Cortex (14 PD, 10 controls) CYP2E1: 10 CpGs
(including promoter
region)
TP73: 5 CpGs
C21ORF56: 2 CpGs
CDH13: 1 CpG

Hypomethylation of CYP2E1,
TP73 and C21ORF56

No difference in CDH13
methylation

[85]/2022

Abbreviations: CpG site (CpG), transcription start site (TSS), single nucleotide polymorphism (SNP).

2.2. Epigenome-Wide Association Studies

Several epigenome-wide association studies (EWASs) have identified DNA methyla-
tion changes at both previously implicated and novel genes in PD brains (Table 3). Most
of these studies used methylation arrays, which measure DNA methylation changes at
many CpG sites throughout the genome. The first PD brain EWAS was performed by Kaut
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et al. using the Illumina HumanMethylation27 BeadChip, which covers 27,500 CpGs [86].
A few genes were found to be differentially methylated in either the putamen or cortex, but
only CYP2E1 (cytochrome P450 2E1) was significantly altered (hypomethylated) in both.
This gene, which interestingly had already been implicated in PD pathology, encodes a
protein that provides protection against xenobiotic exposure. The study also showed that
decreased methylation of CYP2E1 resulted in increased CYP2E1 mRNA expression levels
in the cortex.

Several subsequent studies used the Illumina HumanMethylation450 BeadChip, a sub-
stantially larger array that covers over 450,000 methylation sites. For example, Masliah et al.
identified many differentially methylated CpGs between healthy and PD individuals [87].
Some of the top changing loci in this study were associated with four previously identified
PD risk genes, including MAPT. It is worth noting that similar DNA methylation patterns
were observed in both the brain and blood, suggesting that blood could potentially act
as a surrogate for studying brain DNA methylation changes. This could have profound
implications for developing easy-to-perform lab-based diagnostic tests for PD. Another
study using the 450 BeadChip looked at DNA methylation changes in PD in relation to
environmental exposures, namely plantation work and exposure to organochlorines [88].
Exposure to such pesticides has been associated with PD risk [89]. Since epigenetics may
mediate environmental risk factors, the authors profiled DNA methylation changes in
the brain and identified a few differentially methylated loci in PD individuals who were
exposed to plantation work for 10+ years compared to non-exposed PD individuals [88].
Two of the loci differentially methylated between the organochlorine exposure groups
were annotated to the DNAJC15 gene, which is involved in protein translocation into the
mitochondria and the regulation of the Hsp70 class of chaperones [90].

Over the last few years, there has been an increasing focus on looking at epigenetics
in different brain cell types, and there are now a few PD studies that have isolated neu-
ronal nuclei from the brain for DNA methylation profiling. Kochmanski et al. used the
Infinium MethylationEPIC BeadChip (which contains probes for over 850,000 methylation
sites) to profile DNA methylation changes in neuronal nuclei isolated from the parietal
cortex [91]. They focused on sex-specific DNA methylation changes, given that there are
known differences in disease risk, progression and severity between men and women,
and sex-specific effects have not been investigated in previous EWASs. They found only
three differentially methylated CpGs in males compared to 87 differentially methylated
CpGs in females. The most significantly differentially methylated CpG in males was in
the PARK7 locus (hypomethylated) encoding the DJ-1 protein, while the most significantly
differentially methylated CpG in females was within the ATXN1 gene (hypermethylated).
DJ-1 hypomethylation may result in increased DJ-1 protein levels; however, DJ-1 mutations
in PD individuals have been linked with an apparent loss of function of DJ-1, leading to
the accumulation of reactive oxygen species and decreased protection against oxidative
stress [92].

Not all studies of genome-wide DNA methylation used arrays. For example, Marshall
et al. used bisulfite padlock probe sequencing (a targeted bisulfite deep-sequencing method) to
investigate genome-wide enhancer DNA methylation in neurons isolated from the prefrontal
cortex [93]. A total of 1799 differentially methylated cytosines in enhancers were observed,
which were predicted to target 2885 genes, including various PD risk genes (such as DJ-1
and PRKN) as well as TET2 (which plays a key role in DNA hydroxymethylation—see next
section). Furthermore, TET2 was also upregulated at the mRNA level in both neurons and
bulk cytosol. This group also used the same technique to look at enhancer and promoter
DNA methylation in neuronal nuclei isolated from each brain hemisphere [94]. They found
that hemispheric asymmetry in DNA methylation was greater in PD individuals compared
to controls and that this may be associated with the lateralization of disease symptoms.

Additionally, Gordevicius et al. used bisulfite padlock probe sequencing to profile
DNA methylation of autophagy-lysosome pathway genes in the olfactory bulb and neu-
ronal nuclei isolated from the prefrontal cortex [95]. In the olfactory bulb, there were
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1142 differentially methylated sites, including SNCA, which was hypomethylated. In pre-
frontal cortex neurons, there were 70 differentially methylated sites; however, when only
including PD brains with Braak stages 3–4, there were 110 differentially methylated sites,
which significantly overlapped with the changes in the whole PD cohort. The authors
suggest that alterations to DNA methylation might, therefore, begin earlier on in the disease
before the prefrontal cortex is affected by Lewy body pathology.

Interestingly, some EWASs have identified DNA methylation changes of genes that
interact with proteins encoded by key PD genes. For example, Dashtipour et al. observed
robust hypermethylation of the SNCAIP gene, which encodes synphilin-1, in the cortex of
PD individuals [96]. Synphilin-1 has been shown to interact with α-synuclein and regulate
its degradation [97]. In another study, Young et al. identified hypermethylation of the
ARFGAP1 gene (which encodes a GTPase activating protein) in the dorsal motor nucleus of
the vagus of PD individuals [98]. ARFGAP1 has been shown, both in vitro and in vivo, to
interact with and regulate the activity of LRRK2 [99,100]. In particular, downregulation
of ARFGAP1 was shown to ameliorate the toxicity caused by LRRK2 mutations [99,100],
perhaps suggesting that ARFGAP1 hypermethylation may have a protective role in PD
brains.

Several of the aforementioned studies used Gene Ontology analysis to examine the
functions of genes with altered methylation. Some of the key processes affected were
neuronal development and differentiation, synaptic transmission, neurotransmitter trans-
port, dopaminergic synapse, metabolism, immunity, bile acid secretion, cell cycle and
cell signaling (including the Wnt pathway), all of which have been implicated in PD
pathogenesis [87,91,93,94,98,101].

Some of the studies above report quite large numbers of differentially methylated
CpGs; however, it is worth noting that not all studies accounted for multiple-testing
correction. While several studies did report false discovery rate (FDR) corrected significance
values, it may be more suitable to use a more stringent significance threshold of p < 9 × 10−8,
which has been proposed to control for the false-positive rate in EPIC array studies [102].
This threshold was used in the Kochmanski et al. study [91].

Table 3. Summary of epigenome-wide association studies in PD brains.

Samples Method Key Findings Reference/Year

Frontal cortex, cerebellum
(399 healthy individuals)

Illumina
HumanMethylation27
BeadChip

Differential methylation of 1 or more
CpGs correlated with SNPs at
PARK16/1q32, GPNMB/7p15, and
STX1B/16p11 loci

[103]/2011

Cortex, putamen (6 PD,
6 controls)

Illumina
HumanMethylation27
BeadChip

Cortex:
Hypomethylation of CYP2E1 and
PPP4R2
Putamen:
Hypomethylation of CYP2E1 and
LOC84245
Hypermethylation of DEFA1 and CHFR

[86]/2012

Frontal cortex (5 PD,
6 controls)

Illumina
HumanMethylation450
BeadChip

317 hypermethylated and 2591
hypomethylated CpGs

[87]/2013

Substantia nigra (39 PD,
13 controls)

Illumina
HumanMethylation450
BeadChip

Hypermethylation of 1 CpG
(cg10917602) associated with PD
susceptibility

[104]/2016

Frontal cortex (12 PD,
12 controls)

Illumina
HumanMethylation450
BeadChip

2794 differentially methylated CpGs in
the frontal cortex of PD cases and
328 differentially methylated CpGs,
majority hypomethylated. Clear
pattern of SNCAIP hypermethylation

[96]/2017
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Table 3. Cont.

Samples Method Key Findings Reference/Year

Dorsal motor nucleus of the
vagus, substantia nigra,
cingulate gyrus (38 PD,
41 controls)

Illumina
HumanMethylation450
BeadChip and Infinium
MethylationEPIC BeadChip

234 differentially methylated regions in
the dorsal motor nucleus of the vagus
(including ARFGAP1
hypermethylation), 44 in the substantia
nigra and 141 in the cingulate gyrus

[98]/2019

Temporal lobe
(13 PD with 0 years of
plantation work,
4 PD with 10+ years of
plantation work)
(12 PD with 0–2
organochlorines,
4 PD with 4+ organochlorines)

Illumina
HumanMethylation450
BeadChip

7 differentially methylated loci between
PD individuals with 10+ vs. 0 years of
plantation work exposure
8 differentially methylated loci between
PD individuals with 4+ vs.
0–2 organochlorines in the brain
2 different loci annotated to DNAJC15
which were differentially methylated
(in both brain and blood) between the
organochlorine exposure groups

[88]/2020

Prefrontal cortex neuronal
nuclei
(discovery cohort: 57 PD,
48 controls)
(replication cohort: 26 PD,
31 controls)

Bisulfite padlock probe
sequencing of enhancers and
promoters (633,803 modified
cytosines)

6207 CpGs in PD showing hemispheric
asymmetry in DNA methylation
(3894 CpGs showed a greater
hemispheric asymmetry in PD
compared to controls). These targeted
4691 genes, including PD risk genes.
More DNA methylation and
transcriptomic differences seen in
hemisphere matched to
symptom-dominant side
Above findings validated in replication
cohort
37 PD risk genes showing more
hemispheric asymmetry in PD and/or
greater differences in
symptom-dominant hemisphere,
including SNCA, ITPKB, SATB1, ANK2
and CAMK2D

[94]/2020

Prefrontal cortex neuronal
nuclei
(57 PD, 48 controls)
(22 PD Braak 3–4, 48 controls)

Bisulfite padlock probe
sequencing (31,590 enhancers)

1799 differentially methylated cytosines
in enhancers (mainly hypermethylated)
2172 differentially methylated cytosines
in enhancers when comparing PD
Braak stage 3–4 (prior to Lewy body
pathology reaching the cortex) and
controls
Differentially methylated enhancers
targeted 2885 genes, including
15 different PD risk genes and TET2
76 of the genes with dysregulated
enhancers were also transcriptionally
altered

[93]/2020
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Table 3. Cont.

Samples Method Key Findings Reference/Year

Olfactory bulb (9 PD,
14 controls),
prefrontal cortex neuronal
nuclei—discovery cohort
(52 PD including 20 Braak
stage 3–4, 42 controls),
prefrontal cortex neuronal
nuclei—replication cohort
(13 PD, 15 controls)

Bisulfite padlock probe
sequencing of
autophagy-lysosome pathway
genes (143,553 CpGs in
olfactory bulb)
(130,733 CpGs and
696,665 non-CpGs in
prefrontal cortex discovery
cohort)
(110,397 CpGs in prefrontal
cortex replication cohort)

Olfactory bulb:
1142 differentially methylated CpGs
affecting 353 genes
(mostly hypermethylated) (SNCA
hypomethylation)
Prefrontal cortex neuronal nuclei:
70 differentially methylated CpGs
affecting 58 genes
(mostly hypermethylated) in discovery
cohort
110 differentially methylated CpGs
affecting 87 genes in PD Braak stage 3–4
1131 differentially methylated CpGs
affecting 341 genes in replication cohort

[95]/2021

Prefrontal cortex (27 PD,
26 controls)

Whole-genome bisulfite
sequencing

No association between mitochondrial
DNA methylation and disease status

[105]/2022

Cortex (14 PD, 10 controls) Illumina
HumanMethylation450
BeadChip

35 hypomethylated and
22 hypermethylated genes (not
significant after p-value adjustment).
Included 5 CpGs hypomethylated in
CYP2E1 and 6 CpGs hypomethylated
in C21ORF56

[85]/2022

Sorted neuronal nuclei from
parietal cortex (50 PD,
50 controls)

Infinium MethylationEPIC
BeadChip

3 and 87 differentially methylated
CpGs in males and females,
respectively, including PARK7
hypomethylation (males), ATXN1
hypermethylation (females) and
SLC17A6 hypomethylation (females)
258 and 214 differentially methylated
regions in males and females,
respectively, including NR4A2 (males)
and SLC17A6 (females)
1 differentially methylated region
completely overlaps between sexes
(annotated to
PTPRN2)—hypermethylated in males
and hypomethylated in females

[91]/2022

Primary motor cortex (40 PD,
38 controls)

Infinium MethylationEPIC
BeadChip

3062 hypomethylated and
1251 hypermethylated CpGs
2.07 years of accelerated epigenetic age
in PD compared to controls

[101]/2022

Prefrontal cortex neurons Targeted bisulfite sequencing 667 differentially methylated genes,
including 107 associated with stool
butyrate levels

[106]/2022

Prefrontal cortex (19 PDD,
18 controls)

Infinium MethylationEPIC
BeadChip

1151 differentially methylated CpGs
(82% hypomethylated)
1 differentially methylated region in
OTX2 gene

[107]/2023

Abbreviations: epigenome-wide association study (EWAS), Parkinson’s disease dementia (PDD). Note: Of all the
studies included in this table, only Kochmanski et al. [91] used the significance threshold of p < 9 × 10−8, which
has been proposed to control for the false-positive rate in EPIC array studies.

3. DNA Hydroxymethylation

DNA hydroxymethylation is another, although less studied, DNA modification in
which the ten-eleven translocation (TET) class of enzymes catalyze the oxidation of 5-
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methylcytosine to 5-hydroxymethylcytosine (by replacing the hydrogen atom at the carbon
5 position with a hydroxymethyl group) (Figure 3), which serves as an intermediate step
in the DNA demethylation pathway [54,108,109]. DNA hydroxymethylation has recently
gained interest as a potentially important epigenetic modification and is particularly abun-
dant in neurons in the brain [110,111]. To date, only a handful of studies have looked at
DNA hydroxymethylation in PD.
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Figure 3. DNA hydroxymethylation overview. Abbreviations: ten-eleven translocation (TET). Struc-
tural formulas depicting the conversion of 5-methylcytosine to 5-hydroxymethylcytosine, catalyzed
by TET. 5-hydroxymethylcytosine can also serve as an intermediate in the DNA demethylation
pathway and be converted back to cytosine. Created with BioRender.com.

Using ELISA, Stöger et al. analyzed both DNA methylation and DNA hydroxymethy-
lation in the cerebellum of 36 PD and 27 control individuals [112]. Although no significant
differences were found in DNA methylation levels, PD individuals had significantly higher
overall 5-hydroxymethylcytosine levels compared to the control group.

Kaut et al. examined DNA hydroxymethylation in the substantia nigra (eight PD and
eight controls), cerebellum (eight PD and eight controls) and temporal gyrus (ten PD and
ten controls) using an immunohistochemical approach [113]. They observed a significantly
higher percentage of 5-hydroxymethylcytosine-immunoreactive cells in the PD cerebellum,
supporting the Stöger study. However, no differences were seen in the substantia nigra or
the neocortex. The lack of differences in these brain regions could be related to the small
sample sizes used here.

Marshall et al. investigated whether TET2 enhancer dysregulation affected hydrox-
ymethylation levels in prefrontal cortex neurons [93]. Using hydroxymethylated DNA
immunoprecipitation sequencing in 20 PD and 23 control individuals, they found that
hydroxymethylation was considerably increased at gene bodies, promotors and enhancers
in PD neurons and overlapped with the epigenetically modified enhancers. Experiments in
mice showed that TET2 silencing was neuroprotective. Therefore, TET2 could be a potential
therapeutic target in PD [93].

Finally, Min et al. looked at genome-wide DNA hydroxymethylation in the substan-
tia nigra of twelve PD and nine control individuals using hMe-Seal, which uses chem-
ical labeling and affinity purification coupled with sequencing [114]. They identified
1800 hyperhydroxymethylated and 2319 hypohydroxymethylated regions (FDR < 0.05). In
contrast, and perhaps surprisingly, when using methylated DNA immunoprecipitation
sequencing to profile genome-wide DNA methylation, no differentially methylated regions
were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway
analyses were also carried out, which highlighted that genes annotated to differentially hy-
droxymethylated regions were enriched for processes including neurogenesis and neuronal
differentiation and were involved in multiple signaling pathways.

4. Histone Modifications

The third type of epigenetic mechanism that will be considered here is histone mod-
ifications. These are post-translational modifications to the N-terminal tails of histone
octamers and include methylation, acetylation, phosphorylation, ubiquitination, SUMOyla-
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tion and ADP-ribosylation [115,116]. These marks typically regulate chromatin structure
and so alter the accessibility of DNA to the transcriptional machinery, with highly com-
pacted chromatin (heterochromatin) associated with transcriptional repression and open
chromatin (euchromatin) associated with transcriptional activation (Figure 4). Whether
a given modification is repressive or active usually depends on the exact residue that is
marked, although acetylation (which is the most well studied type of histone modification
in PD) is normally associated with transcriptional activation [115,116].
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methylation marks. This prevents transcription factors from binding, resulting in gene silencing.
Created with BioRender.com.

So far, only a few studies have investigated histone modifications in PD brains (Table 4).
For example, Gebremedhin and Rademacher used Western blotting to examine global H3
acetylation in the primary motor cortex and found a significant increase in H3K14 and
H3K18 acetylation and a significant decrease in H3K9 acetylation, which correlated with
both Lewy body stage and substantia nigra pigmentation scores [117]. In contrast, Harrison
et al. found that H3K9 acetylation was increased in the substantia nigra of PD brains, with
the size of the increase correlated with the Braak stage [118]. Further work is therefore
needed to establish whether the direction of change in H3K9 acetylation is dependent on,
for example, different brain regions.

A genome-wide study of histone acetylation was performed in the prefrontal cortex
of PD brains, with a focus on H3K27 acetylation [119]. They identified 2877 H3K27-
hyperacetylated regions and 14 H3K27-hypoacetylated regions, indicating a genome-wide
dysregulation of H3K27 acetylation in the disease. Some of these regions were linked to
known PD or neurodegenerative disease risk genes, including SNCA, MAPT, PRKN, DJ-1
and amyloid precursor protein (APP). Perhaps interestingly, there was little correlation
between H3K27 acetylation and gene transcription in the PD group (while a positive
correlation was observed in the control group), suggesting that H3K27 acetylation may
become decoupled from gene expression in PD.

Finally, Guhathakurta et al. studied a different histone mark—methylation—in SNCA
regulatory regions and found that H3K4me3 was increased in PD bulk substantia nigra
as well as neuronal nuclei isolated from this region [120]. Next, using CRISPR-Cas9
technology, they demonstrated that the reduction in H3K4me3 at the SNCA promoter leads
to a decrease in α-synuclein levels both in SH-SY5Y cells and in idiopathic PD-iPSC-derived
dopaminergic neurons.
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Table 4. Summary of histone modification studies in PD brains.

Samples Method Key Findings Reference/Year

Midbrain, cerebral cortex,
cerebellar cortex (5 PD, 5 controls)

Western blotting and
immunostaining

Midbrain:
Increased acetylation of H2AK5, H2BK15,
H3K9 and H4K5 (in 2–3 PD individuals)
Downregulation of HDAC1, HDAC2,
HDAC4, HDAC6 and SirT1
Higher proportion of acetylated midbrain
dopaminergic neurons
Cerebral cortex: Increased acetylation
(H2AK5, H2BK15, H3K9 and H4K5) in
1 PD individual only
Cerebellar cortex: Increased acetylation of
H2BK15

[121]/2016

Primary motor cortex (9 PD,
8 controls)

Western botting Increased acetylated H3–total H3 ratio
Increased acetylated H3K14–total H3 ratio
Increased acetylated H3K18–total H3 ratio
Decreased acetylated H3K9–total H3 ratio

[117]/2016

Substantia nigra (8 early PD,
12 late PD, 10 controls)

Western blotting Increased acetylation at H3K9 in late PD
Correlation between level of histone
acetylation and Braak stage

[118]/2018

Prefrontal cortex
(global acetylation: 13 PD,
13 controls),
Prefrontal cortex, striatum and
cerebellar cortex (7 PD, 7 controls),
Prefrontal cortex (discovery
cohort: 17 PD, 11 controls),
Prefrontal cortex
(replication cohort: 10 PD,
11 controls)

Western blotting

ChIP-seq (genome-wide
H3K27 acetylation)

Prefrontal cortex:
Increased global histone acetylation
Increased acetylation at H3K27, H2BK15,
H3K9/14, H3K56 and H4K12
No significant changes at H2AK5, H4K5
and H4K16
Striatum and cerebellar cortex:
Increased acetylation at H3K27
Discovery study:
2877 H3K27-hyperacetylated regions
(corresponding to 1434 genes) and
14 hypoacetylated regions (corresponding
to 9 genes)
Replication study:
2486 H3K27-hyperacetylated regions
(corresponding to 946 genes) and
227 hypoacetylated regions (corresponding
to 253 genes)
275 hyperacetylated genes (DLG2 and
TNRC6B most significant) and
2 hypoacetylated genes (PTPRH, JUP)
replicated across both cohorts

[119]/2021

Substantia nigra (18 PD,
9 controls), substantia nigra
neuronal nuclei (7 PD, 6 controls)

ChIP (H3K4me3, H3K27ac
and H3K27me3)

Increased H3K4me3 at SNCA regulatory
region
No significant difference in H3K27ac
Increased H3K4me3 at SNCA
promoter/intron 1
Positive correlation between H3K4me3 and
α-synuclein expression

[120]/2021

Substantia nigra (9 PD, 9 controls) ChIP-seq (H3K27ac) Identification of 2770 downregulated and
2910 upregulated cis-regulatory elements

[39]/2023

Abbreviations: chromatin immunoprecipitation (ChIP), histone deacetylase (HDAC), lysine (K).

5. Non-Coding RNAs

As with DNA methylation and histone modifications, non-coding RNAs are another
epigenetic mechanism involved in the regulation of gene expression. These RNAs include
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miRNAs, long non-coding RNAs (lncRNAs), small nucleolar RNAs (snoRNAs), small
inhibitory RNAs (siRNAs) and piwi-interacting RNAs (piRNAs) [122,123]. In PD, the most
well studied of these are miRNAs, and this section will focus on miRNA and lncRNA
expression studies.

miRNAs are small non-coding RNA molecules consisting of 20–22 nucleotides that
bind to the 3′ untranslated region of target mRNAs, resulting in gene silencing by either
translational repression or mRNA degradation (Figure 5) [124,125].
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A number of studies have observed miRNA expression changes in the brains of
PD individuals (Table 5). Several studies focused both on the identification of putative
miRNAs dysregulated in PD and the subsequent functional analyses of those miRNAs
in vitro. For example, suppression of miR-133b (the expression of which was significantly
decreased in PD midbrain tissue) affected the expression of dopaminergic neuron markers
in primary embryonic rat midbrain cultures. This suggested that miR-133b is involved
in regulating the maturation and function of midbrain dopaminergic neurons [126]. In
another example, overexpression of miR-126 (the expression of which was significantly
increased in PD brains) impaired IGF-1/PI3K signaling in human SH-SY5Y cells, increased
vulnerability to the neurotoxin 6-OHDA and reduced trophic support [127]. In yet another
example, increased expression of a number of miRNAs (including miR-224, miR-379 and
miR-26b in SH-SY5Y cells) resulted in a loss of expression of LAMP-2A and hsc70, key
proteins involved in chaperone-mediated autophagy, as well as increased accumulation of
α-synuclein, a substrate normally degraded by chaperone-mediated autophagy [128].

Multiple studies identified differentially expressed miRNAs that are directly or in-
directly involved in the regulation of key PD genes, including miR-34b and miR-34c
(depletion of which led to DJ-1 and PRKN downregulation and SNCA upregulation), miR-
205 (its downregulation resulted in LRRK2 upregulation), miR-127-5p and miR-16-5p (both
previously shown to regulate GBA1 expression) [129–133]. The resulting altered expression
of key PD genes mimics the upregulation or downregulation caused by genetic mutations
in those genes, providing further evidence for their involvement in the pathogenesis and
progression of the disease.

Interestingly, some miRNAs that showed altered expression in the brain were also
found to be dysregulated in peripheral tissues. Some more commonly implicated miRNAs
in both the brain and periphery include miR-30, miR-29, let-7, miR-485, miR-132 and
miR-133b [126,132,134–148]. One study found 56 miRNAs dysregulated in both the brain
and leukocytes [136]. Together, this highlights that peripheral samples may be suitable
to use as a surrogate to identify brain miRNA changes, which can consequently help to
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identify novel pathways and mechanisms that are dysregulated in PD. Furthermore, the
identification of PD-specific miRNA changes in easily accessible peripheral samples might
lead to the development of new tests that would aid PD diagnosis.

Pathways involving some of the identified miRNAs include cell cycle regulation,
apoptosis, axon guidance, neurogenesis, synaptic function, inflammation, oxidative stress,
metabolism, ubiquitin/proteasome pathway, endocytosis and cell signaling (including
insulin, NF-κB, p53 and mTOR) [127,134,136,138,149,150]. Interestingly, Ravanidis et al.
found that certain processes (including ubiquitin-mediated proteolysis, circadian rhythm
and axon guidance) are implicated in idiopathic but not genetic (SNCA or GBA1) PD
cases [151].

Another important class of non-coding RNAs is lncRNAs, which are over 200 nu-
cleotides long [152]. Altered lncRNA expression has been observed in PD brain regions,
including the substantia nigra, cerebellum and cortex (Table 6). As with miRNAs, some
studies provided functional insights into the roles that dysregulated lncRNAs might play
in the pathogenesis of PD. For example, the expression of AL049437 was significantly up-
regulated in PD substantia nigra, and the reduction in its expression in SH-SY5Y cells led to
increases in cell viability, tyrosine hydroxylase secretion and mitochondrial transmembrane
potential and mass [153]. Another study found that the downregulation of six lncRNAs in
PD substantia nigra and three lncRNAs in PD cerebellum was accompanied by a significant
increase in SNCA mRNA levels in the substantia nigra and a significant decrease in LRRK2
and PINK1 mRNA levels in the substantia nigra and cerebellum. This highlights a putative
correlation between the expression levels of lncRNAs and nearby PD genes [154].

Table 5. Summary of microRNA studies in PD brains.

Samples Method Key Findings PD-Associated
Pathophysiology

Reference/Year

Midbrain, cerebellum
and cortex (3 PD,
5 controls)

RT-qPCR (panel of
224 miRNA
precursors),
RNase protection assay,
qPCR and Northern
blotting (including
mature miR-133b)

Downregulation of miR-133b
(precursor and mature)

Involved in the
regulation of
dopaminergic neuron
maturation and
function

[126]/2007

Amygdala (11 PD,
6 controls)
Amygdala (13 PD,
12 controls), frontal
cortex (14 PD,
21 controls),
cerebellum (11 PD,
17 controls) and
substantia nigra (7 PD,
6 controls)

miRCURY LNA™
miRNA microarray
(17 miRNAs)
RT-qPCR (miR-637,
miR-34b, miR-34c)

Downregulation of miR-637 and
miR-34c-5p in amygdala
Downregulation of miR-34b and
miR-34c validated in amygdala,
frontal cortex, substantia nigra
and cerebellum (only miR-34c
significant in cerebellum)
Could not confirm change in
miR-637 expression (measured
in amygdala)

Depletion of miR-34b
and miR-34c led to DJ-1
and PRKN
downregulation and
SNCA upregulation

[129]/2011

Substantia nigra and
amygdala (6 PD,
5 controls)

RT-qPCR (8 miRNAs) 6 miRNAs upregulated in
substantia nigra
2 miRNAs upregulated in
amygdala

Target and associated
with a reduction in
lamp-2a and hsc70
levels, key proteins
involved in
chaperone-mediated
autophagy

[128]/2013

Frontal cortex (15 PD,
11 controls), striatum
(5 PD and 4 controls)

RT-qPCR (miR-205) Downregulation of miR-205 Downregulation of
miR-205 resulted in
LRRK2 upregulation

[131]/2013
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Table 5. Cont.

Samples Method Key Findings PD-Associated
Pathophysiology

Reference/Year

Substantia nigra (8 PD,
4 controls)

TaqMan low-density
arrays (733 miRNAs)
and
TaqMan assays
(miR-198, miR-548d,
miR-385-5p and
miR-135b)

10 miRNAs downregulated
(including miR-135b)
1 miRNA upregulated
(miR-548d)

Predicted target genes
included SNCA, PRKN,
LRRK2, ATXN1,
SNCAIP and GBA

[137]/2014

Laser capture
microdissected
dopaminergic neurons
(8 PD, 8 controls)

Human MicroRNA
TaqMan Arrays
(379 miRNAs)

Dysregulation of miRNA
expression profile
Upregulation of miR-126

miR-126
overexpression
impaired
IGF-1/PI3K/AKT
signaling

[127]/2014

Midbrain tissue, laser
capture microdissected
dopaminergic neurons
(5 PD, 8 controls)

RT-qPCR (miR-133b) Downregulation of miR-133b in
midbrain tissue
No differences in miR-133b
levels in dopaminergic neurons

[146]/2014

Putamen (25 PD,
26 controls)

RT-qPCR (miR-34b
and c)

Downregulation of miR-34b,
particularly in early stages

Adenosine A2A
receptor (A2AR)
identified as potential
target of miR-34b

[83]/2014

Laser capture
microdissected
dopaminergic neurons
(8 PD, 8 controls)

Human MicroRNA
TaqMan Arrays

109 miRNAs upregulated
(miR-132 significantly
upregulated)
50 miRNAs downregulated
14 significantly differentially
expressed miRNAs associated
with target genes
Trend toward upregulation in
males and downregulation in
females

Targets associated with
several aspects of PD
pathogenesis, including
cellular function and
dopaminergic neuron
identity

[134]/2015

Prefrontal cortex
(29 PD, 33 controls)

Small RNA
sequencing—Illumina
HiSeq 2000
(911 miRNAs)

125 differentially expressed
miRNAs (downregulation of
miR-10b-5p)

Including miR-127-5p
and miR-16-5p, both
previously shown to
regulate GBA1
expression

[132]/2016

Putamen
(12 PD—mostly
L-DOPA treated,
12 controls)

Human v2 miRNA
expression assay kit
(800 miRNAs) and
RT-qPCR (4 miRNAs)

6 miRNAs upregulated
7 miRNAs downregulated
Upregulation of miR-3195 and
miR-204-5p
Downregulation of miR-155-5p
and miR-219-2-3p

miRNAs associated
with inflammatory
response and oxidative
stress

[138]/2016

Amygdala (14 PD,
7 controls)

RNA-seq 42 differentially expressed
miRNAs in premotor-stage PD
compared to controls
103 differentially expressed
miRNAs in motor-stage PD
compared to controls

[155]/2016
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Table 5. Cont.

Samples Method Key Findings PD-Associated
Pathophysiology

Reference/Year

Anterior cingulate
gyrus (22 PD,
10 controls)

TaqMan miR array
(744 miRNAs)

RT-qPCR (13 miRNAs)

43 miRNAs upregulated

5 miRNAs upregulated

13 of these each
predicted to regulate at
least one of DJ-1, PRKN,
PINK1, LRRK2, SNCA
or HTRA2
Predicted to each
regulate at least one of
SNCA, PRKN or LRRK2
and additional genes
involved in normal
cellular function

[135]/2016

Prefrontal cortex
(29 PD, 36 controls)

RNA-seq (99 novel
miRNAs)

Upregulation of miR-46 and
miR-236
Downregulation of miR-225

[156]/2016

Prefrontal cortex
(29 PD, 33 controls)

RNA-seq 321 differentially expressed
miRNAs

[136]/2017

Substantia nigra (6 PD,
5 controls)

RT-qPCR (miR-7) Downregulation of miR-7 Depletion of miR-7
results in increased
α-synuclein expression,
dopaminergic neuron
loss and reduced
striatal dopamine
content

[157]/2017

Cingulate gyrus (8 PD,
8 controls)

RNA-seq 44 miRNAs upregulated
55 miRNAs downregulated

[158]/2018

Substantia nigra (4 PD,
4 controls)

In situ hybridization
(miR-425)

Downregulation of miR-425 miR-425 deficiency
triggers necroptosis of
dopaminergic neurons

[159]/2019

Prefrontal cortex
(15 PD, 10 controls)

RT-qPCR (10 miRNAs) 3 miRNAs downregulated
(miR-124, miR-144 and miR-218)

Target KPNB1/A3/A4,
which were all
upregulated in PD
brains. Inhibition of
these miRNAs activates
NF-κB signaling

[149]/2020

Midbrain (19 PD,
12 controls)

Small and total
RNA-seq,
RT-qPCR (4 miRNAs)

4 miRNAs upregulated
(miR-539-3p, miR-376a-5p,
miR-218-5p, miR-369-3p)

Targets of miR-369-3p
(GTF2H3) and
miR-218-5p (RAB6C)
downregulated

[160]/2022

Superior temporal
gyrus (214 PD,
47 controls)

TaqMan Advanced
miRNA Assays
(10 miRNAs)

3 miRNAs downregulated
(miR-132-3p, miR-132-5p and
miR-129-5p)

miR-132-3p/-5p
significantly associated
with α-synuclein Braak
stage and may interact
with SNCA mRNA

[161]/2022

Midbrain (5 PD,
5 controls)

RT-qPCR (miR-132-3p) Upregulation of miR-132-3p GLRX identified as
potential miR-132-3p
target, GLRX mRNA
and protein expression
decreased in PD

[162]/2022
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Table 5. Cont.

Samples Method Key Findings PD-Associated
Pathophysiology

Reference/Year

Middle frontal gyrus
(16 PD Braak stage 4,
9 PD Braak stage 5–6,
19 PDD (Braak stage
5–6), 19 controls)

RNA-seq

RT-qPCR (let-7e-3p,
miR-424-3p and
miR-543)

9 miRNAs downregulated
3 miRNAs upregulated
(combined PD groups)
Upregulation of let-7e-3p in PD
with Braak 5–6 compared to
PDD in both gray and white
matter
Upregulation of miR-424-3p in
PD with Braak 5–6 in both gray
and white matter compared to
controls, and in PD in gray
matter compared to PDD
Upregulation of miR-543 in PD
compared to controls in white
matter only

SIRT1 identified as
potential miR-543
target

[150]/2022

Abbreviation: reverse transcription polymerase chain reaction (RT-qPCR).

Table 6. Summary of long non-coding RNA studies in PD brains.

Samples Method Key Findings PD-Associated
Pathophysiology

Reference/Year

Substantia nigra, amygdala
(5 PD, 5 controls)

RT-qPCR (3 lncRNAs) 3 lncRNAs upregulated in
amygdala (RP11-462G22.1,
RP11-79P5.3 and U1)
RP11-462G22.1 and
RP11-79P5.3 upregulated in
substantia nigra

[163]/2014

Anterior cingulate gyrus
neurons (20 PD, 10 controls)

RT-qPCR (90 lncRNAs) 4 lncRNAs upregulated
(lincRNA-p21, Malat1, SNHG1
and TncRNA)
Downregulation of H19
lncRNA

[164]/2017

Substantia nigra (11 PD,
14 controls)

Affymetrix Human
Genome U133A Array
(698 lncRNAs)

42 lncRNAs upregulated
(AL049437 most significantly
upregulated)
45 lncRNAs downregulated
(AK021630 most significantly
downregulated)

Reduction in AL049437
expression led to increases in
cell viability, tyrosine
hydroxylase secretion and
mitochondrial transmembrane
potential and mass

[153]/2017

Substantia nigra and
cerebellum (9 PD, 8 controls)

RT-qPCR (6 lncRNAs) 6 lncRNAs downregulated in
substantia nigra
3 lncRNAs downregulated in
cerebellum (AK127687,
UCHL1-AS1, MAPT-AS1)

Accompanied by increased
SNCA mRNA levels in the
substantia nigra and decreased
LRRK2 and PINK1 mRNA
levels in both brain regions

[154]/2019

Substantia nigra (29 PD,
24 controls)

RT-qPCR (NEAT1
lncRNA)

Upregulation of NEAT1 Neuroprotective agents induce
NEAT1 upregulation

[165]/2019

Superior frontal gyrus
(23 Braak Lewy body stage
0 controls,
61 PD/PDD/incidental
Lewy body
disease—subdivided into
19 Braak Lewy body stage
1–4, 19 Braak Lewy body
stage 5,
23 Braak Lewy body stage 6)

RNA-seq Differential expression of
34 lncRNAs between groups

[166]/2023

Substantia nigra (57 PD,
43 controls)

Bioinformatics analysis of
microarray data

37 lncRNAs upregulated
68 lncRNAs downregulated

[167]/2023

Abbreviation: long non-coding RNA (lncRNA).
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6. Discussion

Figure 6 provides a summary of the potential roles of DNA methylation, histone
modifications and miRNAs in PD from the studies discussed, including some of the key
genes and biological processes affected.
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6.1. Limitations of Current Studies

Firstly, several of the candidate gene DNA methylation and miRNA studies used
small sample sizes and might, therefore, lack the power to identify significant epigenetic
changes. This could explain some of the discrepancies between the findings reported. For
example, while several studies observed SNCA intron 1 hypomethylation [67–70], not all
studies have replicated this [38,71]. Even when the same brain regions were analyzed,
for example, substantia nigra, cortex or putamen, there were discrepant findings between
studies [38,67,68,71]. There are also some inconsistent findings between different miRNA
studies. For example, some of the key dysregulated miRNAs identified by earlier studies
include miR-34b/c, miR-133b and miR-205 [126,129,131]. However, several subsequent
studies failed to observe a difference for some or all of these miRNAs [132,134,135,137,155].
Therefore, performing studies using greater sample sizes may help provide more conclusive
answers where there are conflicting findings.

Furthermore, not all miRNA studies used the same techniques; the earlier studies
(up to 2014) almost exclusively used RT-qPCR, whereas some of the later studies used
microarrays and RNA-seq. Therefore, differences in findings between studies could be
influenced by the use of different laboratory approaches as well as small sample sizes.
A few of the miRNA brain studies used more than one technique to analyze the same
miRNAs, for example, using arrays followed by RT-qPCR [129,135,138]. This type of
approach should be encouraged to validate initial findings and help prioritize miRNAs for
further investigation in future studies. Another factor to consider is the disease stage of
the samples; for example, Miñones-Moyano et al. observed miR-34b/c downregulation in
the early stage of the disease [129], while Cardo et al. failed to replicate this finding using
advanced-stage brains [137]. Pantano et al. compared miRNA expression in both early
and late-stage PD to controls and suggested that miRNA profiles vary according to disease
stage [155]. Therefore, the variation in findings between studies could also be influenced
by differences in the disease stages of the brains profiled.
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Furthermore, it is well known that PD pathology differs between cell types. In particu-
lar, in addition to neurons (whose role in PD via α-synuclein accumulation and dopaminer-
gic neuron loss is well established) [9], multiple studies have shown that oligodendrocytes
and other types of glial cells are also involved [168–176]. However, despite this, almost all
PD epigenetic studies performed to date have only analyzed bulk brain tissue. This is a
substantial drawback since results then reflect changes in a mixture of both neuronal and
different non-neuronal cell types, and it is known that epigenetic profiles are highly cell
type-specific [177,178]. Furthermore, results may be confounded by the proportions of the
different cell populations present, which may vary from sample to sample. Therefore, bulk
brain tissue studies mask the epigenetic disease signatures of distinct cell types, hampering
both mechanistic understanding and the search for novel drug targets.

Novel protocols for fluorescence-activated nuclear sorting are now emerging, allowing
the study of epigenetics in individual cell types [179–181]. In the last few years, there
have been initial studies in PD that isolated neuronal nuclei from human brain tissue and
detected genome-wide DNA methylation changes in these nuclei [93–95,106]. Since Gu
et al. observed SNCA hypomethylation in neuronal nuclei but not in glial nuclei or bulk
frontal cortex, perhaps some of the discrepancies in the earlier candidate gene studies
could be attributed to differences in cell proportions [72]. Similarly, one study compared
miRNA expression changes in isolated neurons to bulk brain tissue. While miR-133b was
downregulated in PD midbrain tissue, no change in the level of this miRNA was observed
in laser capture microdissected dopaminergic neurons [146], perhaps indicating that the
difference found in bulk brain tissue is driven by glial cells. Separating cell populations in
epigenetic studies could also make the signals less noisy due to the enrichment of a certain
cell type, so studies will likely require smaller sample sizes to achieve the same statistical
power compared to bulk brain studies. Cell type-specific approaches are crucial going
forward to provide a more detailed picture of the role of epigenetics in PD.

In addition to this, studies so far have generally not considered different genetic sub-
types of PD. Smith et al. reported SNCA intron 1 hypomethylation in PD individuals with
GBA1 mutations but SNCA promotor hypomethylation in idiopathic PD [73], highlighting
the existence of potentially distinct epigenetic profiles between PD individuals with GBA1
mutations and idiopathic PD cases. These findings could, perhaps, explain why previous
studies (which do not separate PD-GBA1 and idiopathic PD) have led to mixed results
regarding SNCA methylation. This demonstrates the putative importance of separating the
two groups in future studies as well as further stratifying by other known PD genes to gain
a better understanding of DNA methylation changes in the disease.

6.2. Utility of Combining Genetics and Epigenetics Studies

Integrating genetic and epigenetic information is essential to further understand the
etiology of and mechanisms involved in diseases. The majority of GWAS variants are
found in regulatory regions, and it is known that epigenetic changes can be genetically
influenced [182]. Genetic variants that are associated with the levels of DNA methylation
at specific positions in the genome are called methylation quantitative trait loci (mQTLs).

One study examined the effects of PD risk variants in the SNCA locus on intron 1
methylation levels and identified rs3756063 as an mQTL associated with SNCA intron 1
methylation [38]. This SNP was found to be localized 30 bp upstream of a GATA transcrip-
tion factor binding motif within SNCA intron 1 and additionally alters a CpG dinucleotide
itself, suggesting it may affect the interaction between GATA and the SNCA gene. GATA
transcription factors have previously been shown to regulate SNCA expression [183].

Other studies have examined the overlap between SNPs in the SNCA gene and epige-
netic marks. Sharma et al. found that several SNPs distributed throughout the SNCA gene
(which were previously associated with PD) were located within or near peaks of certain
histone modification marks and DNA binding motif sequences [40]. In another example,
certain SNPs associated with PD were present in enhancer (H3K27-acetylated) regions in
the SNCA and PARK16 loci [41].
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In addition, summary-data-based Mendelian randomization (SMR) is an approach that
combines summary-level GWAS data with DNA methylation (mQTL) or gene expression
(eQTL) data to identify genes with methylation or expression levels that are either pleiotrop-
ically or causally associated with a particular trait [184]. SMR works by triangulating SNP
association statistics with the phenotypic trait on SNP association statistics with methyla-
tion/expression to provide an estimate of the effect of a genetically determined increase
in DNA methylation or gene expression on the disease phenotype [184,185]. The 2019 PD
GWAS meta-analysis by Nalls et al. used SMR and found a significant association between
the methylation or expression of 151 genes (around PD risk variants) and a potential causal
change in PD risk [22].

Finally, multiomic approaches can be used to aid in the identification of genes in-
volved in PD and provide more insights into the roles of specific cell types. A recent study
combining chromatin accessibility (snATAC-seq), transcriptomic (snRNA-seq), histone
modification (bulk H3K27ac ChIP-seq) and GWAS data investigated cell type-specific
disruptions in the PD substantia nigra [39]. A total of 2770 downregulated and 2910 upreg-
ulated cis-regulatory elements (cREs) were identified in this brain region in PD. Integration
of the dysregulated cREs and PD GWAS SNPs led to the identification of 656 target genes
(potential PD candidate genes) in specific cell types (including dopaminergic neurons,
GABAergic neurons, oligodendrocytes, oligodendrocyte precursor cells, astrocytes, mi-
croglia, endothelial cells and pericytes). Over 50% of these target genes were assigned to
only one or two cell types, indicating a high degree of cell type specificity. Oligodendrocyte
and microglial cREs were strongly enriched in more than one PD GWAS, and the authors
suggest that these are the two key cell types associated with the disease (also supported by
RNA-seq data). Active regulatory associations involving known PD genes were annotated
to different cell types. For example, certain PD GWAS SNPs were specific to dopaminergic
neurons, SNCA was involved in most cell types, and MAPT was mainly associated with
oligodendrocytes, OPCs and astrocytes. In addition, it was found that transcription factor
binding is disrupted by PD GWAS variants in cis-regulatory regions. The authors conclude
that common risk variants exhibit cell type-specific regulatory functions and that the com-
bination of both genetic predisposition and epigenetic alterations contributes to PD-related
cellular processes and pathogenesis.

This study highlights the potential advantages of integrating genetic, epigenetic and
transcriptomic information to understand more about the roles of PD risk variants in
particular cell types. Future multiomic studies should be performed, perhaps in different
brain regions, in addition to incorporating DNA (hydroxy)methylation and proteomic data
to build a more comprehensive understanding of PD risk and mechanisms, including cell
type-specific changes.

6.3. Epigenetic Therapies

An understanding of epigenetics in Parkinson’s could lead to new drug targets and
potential novel therapeutic approaches. Such therapies could take advantage of the fact
that epigenetic changes are reversible, and thus, it might be plausible to correct the altered
epigenetic modifications in PD.

Research in cancer shows that therapies based on correcting DNA methylation or
histone modification changes are possible. Here, several drugs are in clinical trials, and a
few are FDA-approved. This includes DNMT inhibitors such as azacitidine, approved for
the treatment of myelodysplastic syndrome and acute myeloid leukemia, as well as HDAC
inhibitors such as panobinostat, a third-line treatment for multiple myeloma [186].

A number of studies in cell and animal models of PD have found that HDAC in-
hibitors such as sodium butyrate and valproic acid (both increasing acetylation) can be
neuroprotective, reduce α-synuclein levels, increase autophagy, restore striatal dopamine
levels and attenuate motor and non-motor changes [187–198]. However, at present, it is
unclear whether further increasing histone acetylation would be beneficial in individuals
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with PD, as the studies to date have predominantly reported the presence of widespread
hyperacetylation in PD brains.

An alternative and more specific approach may be to module the expression of genes
that are epigenetically dysregulated in PD. For example, short hairpin RNA mini-circles
targeting α-synuclein were delivered using exosomes into a PD mouse model, which
reduced α-synuclein aggregation and dopaminergic neuron loss and improved disease
symptoms [199]. CRISPR/Cas9-based epigenome editing technologies can also be used
here. A recent study trialed a lentiviral vector-based therapy containing a deactivated form
of CRISPR/Cas9 which targeted SNCA intron 1 specifically in dopaminergic and cholinergic
neurons [200]. Introducing the therapy into iPSC-derived dopaminergic and cholinergic
neurons from a SNCA triplication patient led to the downregulation of SNCA mRNA and
protein in these specific cell types as well as increasing neuronal viability and mitochondrial
function. In another example, the observed reduction in α-synuclein levels following
the demethylation of H3K4 at the SNCA promoter using CRISPR/Cas9 [120] suggests
that a possible future PD treatment avenue might involve region-specific methylation or
demethylation of DNA or certain histones to reverse epigenetic changes in the disease.

Furthermore, the expression of miRNAs can be modulated by either miRNA mimics
or antagomirs. For example, Hu et al. observed a decrease in miR-425 expression in the
human substantia nigra, while injection of miR-425 mimics into the substantia nigra of
MPTP-treated mice attenuated necroptosis activation, protected against dopaminergic
neuron loss, increased striatal dopamine levels and reduced deficits in motor activity [159].
In another example, Zhou et al. found that miR-103a-3p was predicted to bind parkin
and was upregulated in both MPP+-induced SH-SY5Y cells and MPTP-induced mouse
models [201]. This miRNA was shown in another study to be upregulated in the blood of
L-DOPA-treated PD patients [144]. Zhou et al. observed that transfection of a miR-103a-3p
antagomir into both the cell model and striatum of the mouse model led to the upregulation
of parkin and improved mitophagy [201]. Additionally, it resulted in neuroprotection in
the mouse model, preventing the loss of TH-positive cells in the substantia nigra. This
suggests that modulating the levels of these miRNAs described may be beneficial in PD.
However, finding an appropriate miRNA to target may be difficult as a single miRNA
can have multiple mRNA targets; therefore, downstream and off-target effects need to be
considered [202].

To sum up, epigenetic-based therapies are an exciting prospect for PD and other
neurodegenerative disorders. However, this is a rather long way off, with further advances
in mechanistic understanding required and some challenges needing to be overcome.

6.4. Future Directions

There are a number of avenues that could be explored in the near future to further our
understanding of PD epigenetics. Firstly, larger-scale EWASs should be performed to both
verify previously found and identify novel epigenetic changes in PD, in particular isolating
different brain cell types and analyzing cell type-specific epigenetic changes. Secondly,
future work should also investigate the interplay between genetics and epigenetics in PD.
In particular, multiomic approaches might help shed light on the pathogenesis, for example,
by identifying biologically relevant genes and cell types as well as potential therapeutic
targets. Additionally, the concurrent screening of brain samples for genetic and epigenetic
alterations could help determine whether the presence of epigenetic modifications com-
bined with genetic mutations increases disease risk. Furthermore, future work should
involve stratifying individuals by genetics to compare epigenetic profiles between different
genetic subtypes of the disease. Thirdly, human postmortem brain studies are the most di-
rect method for studying epigenetic modifications in neurodegenerative diseases. However,
in postmortem tissue, it is difficult to establish whether epigenetic changes play a causal
role in the disease. Studies comparing epigenetic alterations in PD samples of different
Braak stages, including very early-stage individuals, may help address this question. In
addition, this could allow the study of epigenetic dysregulation over the course of disease



Int. J. Mol. Sci. 2024, 25, 6168 24 of 32

progression. Finally, continued experiments in animal models and iPSC-derived cells are
also crucial, the latter of which more closely resemble affected individuals. Therefore,
functional studies in cell and animal models should help investigate (1) whether epigenetic
dysregulation is a cause or consequence of PD pathology and (2) whether epigenetic alter-
ations can be targeted for novel therapeutic approaches. Furthermore, CRISPR/Cas9-based
epigenome editing technologies could be utilized to introduce or remove a particular epi-
genetic modification at specific sites in the genome in order to evaluate its exact biological
consequences.
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