RUNNING SELF-OPTIMISATION:

ACUTE AND SHORT-TERM ADAPTATIONS TO RUNNING MECHANICS
AND RUNNING ECONOMY

Submitted by Isabel Sarah Moore to the University of Exeter

as a thesis for the degree of Doctor of Philosophy in Sport and Health Sciences

July 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: ..
Abstract

The intuitive link between a runner’s gait and their metabolic cost of running, or running economy (RE), has led to many trying to compare the running mechanics of economical runners to those of less economical runners. However using this approach has created controversy about whether running mechanics meaningfully contribute to RE. Additionally only a limited number of studies use a broad, explorative, inter-disciplinary approach, encompassing physiological parameters, flexibility, kinematics, kinetics and muscular activity. The purpose of this thesis was to primarily assess ‘self-optimisation’ through considering acute and short-term adaptations to running mechanics and RE. To assess the biomechanical and physiological mechanisms behind changes to RE three studies were conducted, in addition to a fourth study which investigated biomechanical familiarisation. Study one investigated whether there were any biomechanical or physiological changes in beginner runners after 10 weeks of running and whether any of these changes contributed to a change in RE. There was an 8.4% improvement in RE (224 ± 24 vs. 205 ± 27 mL·kg⁻¹·min⁻¹) and an increase in treadmill time-to-exhaustion (16.4 ± 3.2 vs. 17.3 ± 2.7 min), but no change in \(\dot{V}O_{2\max} \), minute ventilation or heart rate. Several kinematic, kinetic and flexibility measures were found to change over time, but joint moments and stiffness remained similar, with knee extension at toe-off, rearfoot velocity at touch down and timing of peak dorsiflexion explaining 94.3% of the variance in change in RE.

Results from study one suggested that changes in muscular activity might have contributed to kinematic differences, and subsequently an economical gait. Specifically, as joint moments were unchanged after 10 weeks it is possible that muscular coactivation may have changed since varying levels of agonist-antagonist activation can produce the same joint moment. Consequently study two examined the relationship between muscular coactivation and the metabolic cost of running, as thus far there was conflicting evidence. Results showed that in trained, recreational runners greater thigh coactivation was associated with a greater metabolic cost of running. Furthermore, the speed of running was found to affect the level of coactivation at the shank and of the flexor-flexor muscle pair, with less coactivation reported at faster submaximal speeds.

The final part of the thesis focused on a manipulation investigation into barefoot (BFT), minimalist shod (MS) and shod (SH) running. Applying the novel findings from studies one and two to this topical area would hopefully provide new insight into the
BFT running debate. Prior to applying this knowledge of kinematic and muscular activity changes in relation to RE whilst running BFT, an investigation into the time required to become familiar with barefoot treadmill running was needed. Results revealed that barefoot familiarisation was characterised by less plantarflexion and greater knee flexion at touch down, whilst stride length appeared to be adopted instantaneously. Reliability (intra-class correlations) and accuracy (standard error of mean) of the kinematic data appeared strongest once individuals had been running for 20 mins. Furthermore there were no significant differences in the kinematics after 20 mins of running.

The final study considered how changing the levels of proprioception and cushioning (BFT, MS and SH) influenced RE and the potential running mechanics that contributed to any changes in RE. The ramifications of such changes on injury risk were also considered by investigating impact accelerations, effective mass and pronation. Additionally, the effect of naturally changing stride length from a shorter BFT stride to a longer SH stride on RE were examined. Heightened proprioception and no external cushioning (BFT running) appeared to improve RE by at least 5% regardless of stride length, when compared to SH running with a SH stride length. However less proprioception and no external cushioning (MS running) only improves RE, compared to SH running with a SH stride length, when runners run with their SH stride length, rather than their shorter BFT stride length (~2.5% shorter). Improvements in RE are attributed to a lower vertical oscillation and effective mass, greater dependency on efficient, Type I muscles i.e. tibialis anterior, and less plantarflexion at toe-off. However higher impact accelerations, earlier heel off and low pronation angles, suggest there may be an increase in injury risk.

Therefore the findings from this thesis have demonstrated that runners naturally self-optimise the way they run. This is seen both as an acute (changes in footwear) and short-term (10 weeks) response to changing running gait. Study two demonstrated that economical runners appear to use different muscular strategies, with study one and four showing they also adopt specific movement patterns that may promote efficient storage and release of elastic energy. Additionally study three found that runners can become familiar with BFT treadmill running in 20 minutes. It is also important to note that economical biomechanical adjustments do not always favour a reduction in injury risk. But the thesis findings seem to suggest that perhaps performance denominates in terms of self-optimisation, rather than injury prevention.
Table of Contents

Abstract .. 2

Table of Contents .. 4

List of Tables ... 9

List of Figures ... 10

List of Equations .. 12

Symbols and Abbreviations .. 13

Declaration, Communications and Publications .. 18

Acknowledgements ... 20

Chapter 1 Introduction .. 21

Chapter 2 Review of Literature I ... 26

 2.1 Kinematics and Spatiotemporal Variables ... 26
 2.1.1 Vertical Oscillation ... 26
 2.1.2 Stride/step length .. 28
 2.1.3 Lower Extremity Kinematics ... 30
 2.1.4 Contact time ... 32

 2.2 Kinetics ... 33
 2.2.1 Ground Reaction Force ... 33
 2.2.2 Stiffness ... 36

 2.3 Flexibility and stretch-shortening cycle .. 37

 2.4 Summary ... 39

 2.5 Aims I ... 40

 2.6 Hypotheses I ... 40

Chapter 3 Review of Literature II ... 41

 3.1 Muscular Activity and Oxygen Consumption .. 41

 3.2 Muscular Coactivation and Oxygen Consumption .. 44

 3.3 Relationship Between Muscular Activity, Kinematics and Oxygen Consumption 47

 3.4 Summary .. 48

 3.5 Aims II ... 49

 3.6 Hypotheses II .. 49

Chapter 4 Review of Literature III .. 50

 4.1 Background Regarding the Interest in Barefoot Running ... 50

 4.2 Performance Benefits .. 52
8.3 Results

8.3.1 Reliability

8.2 Methods

8.2.5 Data reduction

8.2.3 Marker placement

8.2.2 Apparatus

8.2.1 Participants

8.2.4 Procedures

8.2.5 Running economy (RE) test

8.2.6 10 week beginners’ running programme

8.2.7 Statistical Analysis

8.1 Introduction

8.1.1 Physiological measurements

8.1.2 Flexibility

8.1.3 Biomechanical variables

8.1.4 Regression Analysis

8.1.5 Relationship between running mechanics and running economy

8.1.6 Conclusion

8.1.7 Further Data Analysis from Study 1 (not included in above paper)

8.1.8 Relationship between running mechanics and running economy

8.1.9 Statistical Analysis

8.1.10 Discussion

8.1.11 Further Results from Study 1

8.1.12 Practical Implications

8.1.13 Relationship between Metabolic Cost and Muscular Coactivation across Running Speeds

7.6 Discussion of Further Results from Study 1

7.6.2 Resultant GRF and leg axis

7.6.1 Joint moments and stiffness

7.6.3 Gait Analysis

7.6.4 Graded exercise test (GXT) to \(V_{O_2 max} \)

7.6.5 Conclusion

7.6.6 Relationship between running mechanics and running economy

7.6.7 Further Results from Study 1

7.6.8 Discussion of Further Results from Study 1

7.1 Introduction

7.1.1 Participants

7.1.2 Apparatus

7.1.3 Marker placement

7.1.4 Procedures

7.1.5 Data reduction

7.1.6 Statistical analysis

7.1.7 Results

7.1.8 Practical Implications

7.1.9 Conclusion

7.1.10 Additional Results from Study 1

7.1.11 Relationship between running mechanics and running economy

7.1.12 Additional Results from Study 1

7.1.13 Discussion of Additional Results from Study 1

7.1.14 Further Results from Study 1

7.1.15 Discussion of Further Results from Study 1

7.1.16 Practical Implications

7.1.17 Conclusion

7.1.18 Additional Results from Study 1

7.1.19 Discussion of Additional Results from Study 1
Chapter 9 The Pursuit of Improved Running Performance: Can changes in cushioning and proprioception influence running economy and injury risk? 135

9.1 Introduction .. 135
9.2 Methods .. 138
 9.2.1 Procedure .. 138
 9.2.2 Treadmill familiarisation ... 139
 9.2.3 Experimental procedure ... 139
 9.2.4 Data analysis ... 140
 9.2.5 Statistical analysis ... 142
9.3 Results .. 143
 9.4 Discussion .. 145
 9.4.1 Preactivity .. 147
 9.4.2 Foot angle .. 148
 9.4.3 Heel off ... 149
 9.4.4 Pronation, stiffness and muscle activity ... 149
 9.4.5 Impact acceleration and effective mass ... 150
 9.4.6 Kinematics .. 151
 9.4.7 Limitations .. 153
9.5 Conclusion ... 153

Chapter 10 General Discussion ... 155
10.1 Summary of Main Findings ... 156
 10.1.1 Does a 10wkRP improve the RE of beginner runners? .. 156
 10.1.2 Are the short-term improvements in RE a result of changes in running mechanics and/or running physiology? ... 156
 10.1.3 Is greater muscular coactivation associated with a higher metabolic cost of running? ... 158
 10.1.4 Does running at faster speeds elicit higher muscular coactivation in the lower extremities? .. 160
 10.1.5 Can runners produce a consistent gait pattern within 10 minutes of running BFT on a treadmill? ... 161
 10.1.6 What specific gait adjustments occur as a result of familiarisation? 161
 10.1.7 Will running BFT with a BFT stride length be the most economical way to run when compared to BFT with a SH stride length, MS with a BFT stride length and with a SH stride length, and SH with a BFT stride length and with a SH stride length? ... 162
 10.1.8 Does running with a SH stride length during MS running produce a better RE than running with a BFT stride length and are both more economical than SH running? ... 162
10.1.9 What mechanisms are behind changes in RE during different stride lengths when varying cushioning and proprioception 163

10.1.10 Do both BFT and MS running elicit higher impact accelerations compared to SH running? ... 166

10.2 Influence of Footwear on Potential Injury Risks 166

10.3 Biomechanical and Muscular Activity Influence upon Running Economy .. 167

10.4 Self-optimisation: Implications for Performance and Injury Risk........ 171

10.5 Limitations ... 177

10.5.1 The running mechanics of the upper body .. 177

10.5.2 Does electromyography data represent the underlying muscular activity? ... 178

10.5.3 Impact acceleration as representative of tibial acceleration 179

10.5.4 Mathematically adjusting $\dot{V}O_2$.. 179

10.6 Applications .. 180

10.7 Topics of Further Research ... 182

10.7.1 Could an economical running gait be trained? 182

10.7.2 Long-term running economy and gait development 183

10.7.3 The potential for stability training to improve running economy 183

10.7.4 Modelling the effective mass based on energy demand 184

10.7.5 Transitioning to barefoot and minimalist shod running 186

10.8 Recommendations ... 187

10.9 Conclusions .. 188

References ... 190

Appendices ... 213