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Abstract

Quantum devices are being developed to perform computation in an inherently

non-classical way. These devices are fundamentally different from conventional

computers and have unique properties due to effects such as superposition and

entanglement. At the same time, quantum devices are prone to noise, posing

limitations on the depth of calculations and scaling. It remains an important chal-

lenge for quantum computing to offer advantage in solving of currently intractable

industrial problems.

One rising area of quantum algorithms is quantum machine learning. Building

off classical machine learning, quantum machine learning concerns the training

of quantum models to learn and recognise relationships in data. Another class

is variational quantum algorithms which utilise an optimisation loop to train a trial

solution involving quantum evaluations to solve a given problem. These classes

of algorithm have possibility of advantage for problems with large amounts of data

or large search spaces due to the wide range of functions expressible and data

encodable because of the exponential working space.

A possible area of application is differential equations. Differential equations

govern many areas of industrial and research interest, from aerodynamics to fi-

nance to chemistry, yet many instances remain difficult to solve classically. Through-

out my research I have considered solving differential equations with quantum

machine learning and variational approaches.

In my thesis I describe four algorithms that I have developed for solving differen-

tial equations, each with different strengths and weaknesses, quantum resource

requirements and areas of applications. Particular techniques utilised are quan-

tum models representing functions, the parameter shift rule, kernel methods and

quantile mechanics. Additionally, I (in collaboration) develop a technique to trans-

form between computational and Chebyshev space. This technique is utilised
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for developing the algorithm for efficient encoding of physics-informed constraints

into quantum models. I conclude this thesis with an outlook into the nascent area

of quantum scientific machine learning.
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Chapter 1

Introduction

The development and advances in computing have profoundly changed the

world. Our daily lives are now closely connected to the widespread use of com-

puters, making tasks that were once considered impossible now achievable. The

capability to quickly access vast amounts of information through mobile phones

and the Internet, along with the exploration of the universe using space probes

and particle accelerators, highlights the significant influence of computing. How-

ever, despite these advancements, some problems persist, often due to time and

cost limitations stemming from inefficiencies in algorithms.

In recent times, there has been development of quantum devices capable of

harnessing quantum effects like superposition and entanglement. These devices

mark a fundamental departure from traditional computing approaches. While

these current and near-term quantum devices have limitations such as scale and

noise, ongoing progress is evident. Consequently, there is a growing interest in

determining whether quantum computing can provide advantages and accelerate

the resolution of currently challenging problems.

Research has demonstrated that the distinctive quantum properties inherent in

quantum computers provide access to a novel set of efficient computational oper-

ations when compared to classical computing. Consequently, solving a particular

problem may be efficient with quantum computing while inefficient using classical

15



methods, for specific families of problems. Currently, there is active exploration in

identifying problem types where quantum advantage can be leveraged, accompa-

nied by the development of corresponding quantum algorithms. Promising areas

include linear algebra (attributed to the linearity of quantum mechanics and the

rapidly expanding state space), quantum chemistry (owing to the intrinsic quan-

tum nature of the problem), and tasks involving substantial data quantities, such

as machine learning (exploiting the potentially exponential model capacity).

A potential domain where quantum computing can offer a significant advan-

tage is in the solution of differential equations (DEs). Differential equations find

widespread application across various academic and industrial domains, pos-

ing computationally challenging problems in physics, fluid dynamics, geoscience,

chemistry, and finance. The computational demands of differential equation solvers

currently consume a substantial share of global high-performance computing re-

sources. Many of these equations remain difficult, inefficient, and computationally

expensive to solve, often due to properties like high degrees of nonlinearity, stiff-

ness, and multidimensionality. Beyond classical inefficiencies, solving DEs ex-

hibits features that underscore potential quantum advantages. These equations

may necessitate the consideration of large datasets, especially in multidimen-

sional problems, and there exists a subset of solvers leading to linear systems of

equations.

Quantum algorithms can be sorted into classes based on defining features of

their workflow. Throughout my work I focus on two such classes — variational

quantum algorithms and quantum machine learning. In particular, I introduce and

discuss algorithms which fall into both classes.

Variational quantum algorithms are characterised by their hybrid classical-quantum

workflows, where a parametrised trial solution, incorporating quantum evalua-

tions, is optimised based on a success metric associated with a specific problem.

These algorithms find application across diverse tasks, including ground state
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energy problems, decision problems, and regression. Moreover, quantum varia-

tional algorithms often yield numerous evaluations of relatively shallow and easily

implementable quantum circuits. Consequently, there is optimism that they may

encompass valuable algorithms suitable for near-term quantum devices.

Quantum machine learning (QML) draws inspiration from the thriving field of

machine learning, characterised by training models to discern and recognise re-

lationships in data, subsequently generalising to previously unseen data. This

approach has witnessed substantial success in domains like large language mod-

els, speech recognition, and image generation. In quantum machine learning,

conventional machine learning is enhanced by incorporating quantum models for

training. The underlying intuition is that quantum models, influenced by quantum

elements (superposition, entanglement etc), can effectively represent diverse and

more complex relationships, potentially providing benefits. Given that many quan-

tum machine learning algorithms employ optimization for model training, these al-

gorithms can straddle both variational quantum algorithms and quantum machine

learning classes.

These classes of algorithm are suitable for problems with large volumes of data

and offer a highly expressive solution space which are some of the limitation of

current classical DE solvers. Therefore, throughout my thesis I focus on the devel-

opment of variational quantum machine learning algorithms for solving differential

equations.

1.1 Aims & Objectives

The overall aim of my studies throughout my PhD was to develop quantum al-

gorithms for the solving of differential equations along with tools to help aid in this

endeavour. As discussed in the introduction, the solving of differential equations

is a promising application for useful quantum computation. Therefore my aim was

to further explore and develop this field, consider new and different approaches
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and contribute a small step towards the goal of useful quantum computation.

One particular objective was to consider quantum machine learning and varia-

tional approaches. During the initial stages of my studies we found this to be an

underdeveloped direction for the solving of differential equations. Whilst there was

some initial work in the field [1], most focus was on approaches based on discreti-

sation. Variational and quantum machine learning (QML) approaches promise

flexibility, high expressivity, and the opportunity for near-term applications at the

cost of lacking guarantees for quantum advantage.

Related to the first objective, another objective was to consider near-term suit-

able approaches. Quantum computers produced now and in the near future have

substantial limitations. Therefore any algorithms hoped to be implemented in the

near future must consider these limitations. Hybrid algorithms, such as many

variational and QML approaches, allow the splitting of tasks between quantum

and classical devices. This results in being able to reduce the demands on the

quantum device and consequently can lead to near-term suitable algorithms. By

finding applications for near-term devices the hope is to hasten the introduction

of useful quantum computation.

Another objective was to specifically consider non-linear differential equations

and how to deal with the non-linear components. Quantum computers, due to the

nature of quantum mechanics, are fundamentally linear. However, the majority

of DEs of interest are nonlinear. Therefore, the careful consideration of the intro-

duction of nonlinearity is essential for my aim, the development of quantum DE

solvers, to be as widely applicable as possible.

1.2 Thesis Overview

This thesis starts with a review of relevant background such as quantum com-

puting, quantum models, variational quantum algorithms and differential equation
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solvers. Furthermore, I detail various techniques and subroutines that I will utilise

in future chapters.

In the first chapter of my work (chapter 3) I develop an algorithm for the solving

of nonlinear PDEs. A quantum model represents a trial solution which can be

optimised to solve a given problem. In particular, how to handle boundary and

initial conditions is considered. Additionally, how certain choices of the quantum

model can result in different fitting functions. Results of using the algorithm are

simulated for linear, nonlinear and systems of DEs, including an instance of the

Navier-Stokes equations.

In chapter 4, I develop an algorithm to solve stochastic differential equations

(SDEs) using quantile mechanics. By using quantile mechanics a given SDE

can be converted to a PDE in terms of a quantile function which represents a

probability distribution. A quantum model then represents a trial solution of the

quantile function which is trained to solve the given SDE. Once trained it can be

sampled to generate samples — a form of generative modelling. In particular,

the relationship between quantile functions and the function resulting from the

training of a well known generative modeling algorithm, QGAN, are explored.

Results from the simulation of the algorithm for the Ornstein-Uhlenbeck process

are shown.

In chapter 5 the use of quantum kernel methods for the solving of differential

equations is considered. A quantum model is proposed in terms of quantum ker-

nel functions with structure such that quantum evaluations are only required pre

and post training. Two approaches are then explored to solve a DE — optimisa-

tion loop (MMR) and support vector regression (SVR). Results of simulating the

algorithm for regression problems and an instance of the Duffing equation are

shown.
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In chapter 6, instead of developing an algorithm a tool for use in quantum algo-

rithms is developed. This is the quantum Chebyshev transform and correspond-

ing state encoding. This offers the ability to transform between the computational

space and the Chebyshev space. Certain actions will be easier in each space

so transforming to the appropriate space for each stage of the problem can help

greatly. In this chapter the Chebyshev transform and encoding are demonstrated

by learning a function in the Chebyshev basis and sampling in the computational.

The Chebyshev transform is also utilised in the following chapter.

The last work presented in chapter 7 is another algorithm for nonlinear PDEs.

For this algorithm a specific quantum model is chosen such that when solving

the DE the independent variable of the DE is not explicitly present. As a result,

evaluations do not need to occur at individual grid points during training. How to

construct the necessary states for the DE is explained in general and is detailed

in terms of Fourier encoding and Chebyshev encoding. Results are shown for

various problems including a multidimensional problem.

Concluding remarks and outlook are finally given.
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Chapter 2

Background

2.1 Introduction to Quantum Computing

Quantum computing is the use of quantum mechanical systems to perform

information processing tasks. The overarching goal of quantum computing re-

search and industry is to solve real-world applicable tasks with a significant speed-

up over classical solutions. This requires two different yet related directions of

research: the production of quantum computers and the development of the al-

gorithms implementable on them. This goal is known as quantum supremacy or

quantum advantage with (usually but not always) supremacy referring to any task

and advantage to a useful task. There are many models of quantum computing

such as adiabatic quantum computing [2, 3] and measurement based quantum

computing [4, 5] all using different methods to implement operations and process

quantum information. In my work I use the gate based model [6] and therefore

now introduce this model.

2.1.1 Mathematical Framework

The Qubit

In classical computing the unit of information is the bit. It is a binary digit as-

signed the possible values of 0 and 1. In quantum computing there is the quantum

bit known as the qubit. The qubit is a two state quantum mechanical system, one
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of the simplest quantum mechanical systems to express the quantum properties

which will differ classical and quantum computing. The qubit resides in a Hilbert

space of dimension two, H2. A basis of this space consists of two states. The

default basis is usually the computational basis

|0⟩ =

10
 , |1⟩ =

01
 , (2.1)

with |0⟩ referring to the ground state of the system and |1⟩ the excited state. The

labels used are similar to the labels used for the classical bit, 0 and 1. Here we

use bra-ket notation, introduced by Paul Dirac, to denote a quantum state [7].

In bra-ket notation |·⟩ is a ket and refers to a vector in H . ⟨·| is a bra and refers

to a member of the dual space H∗. The transformation between bra and ket is

the conjugate transpose, |ψ⟩† = ⟨ψ|, and vice versa.

The possible states of the qubit are the members of the Hilbert space. This

is a vector space and therefore includes the linear sum of the basis states. This

is known as a superposition — one of the unique properties of quantum versus

classical. The sum must be normalised under the Euclidean norm — intuition

for this will come later in the measurement section. Therefore, in terms of the

computational basis an arbitrary one qubit state |ψ⟩ can be written as

|ψ⟩ = α|0⟩ + β|1⟩, α, β ∈ C, s.t. |α|2 + |β|2 = 1. (2.2)

Multiple Qubits, Mixed States and Entanglement

A one qubit system is very limited, therefore for the majority of algorithms more

qubits are going to be needed. A system of N qubits spans a Hilbert space of

dimension 2N, H2N , as each qubit spans H2 and a tensor product is taken. This

exponential growth of space with respect to qubit number is another feature of

quantum computing to utilise for future advantage. An orthonormal basis {|ψ j⟩} j

of H2N can then be found to express an N-qubit system as a linear superposition
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of basis states — a generalisation of (2.2)

|ψ⟩ =

2N−1∑
j=0

α j|ψ j⟩, α j ∈ C, s.t.
2N−1∑
j=0

|α j|
2 = 1. (2.3)

So far the states we have considered are what is known as pure states. Clas-

sical uncertainty of the state results in mixed states. These mixed states are a

combination of a set of pure states as

ρ =
∑

j

p j|ψ j⟩⟨ψ j|, (2.4)

where |ψ j⟩ are pure states and p j are the probabilities of being the associated

state. Therefore each p j must be positive and
∑

j p j = 1 making (2.4) a convex

sum. These type of states generally result from either uncertainty in state prepa-

ration or when considering sub-systems.

An interesting question arises when one starts considering multiple qubit states

of whether each qubit in the state can be described independently of the other

qubits in the state. In other words, whether the multiple qubit state can be written

as the tensor product of one qubit states,

|ψ⟩N
?
=

N⊗
j=0

|ψ j⟩1. (2.5)

When this is impossible the multi-qubit state is referred to as an entangled state.

Simply, this means that there is a correlation between the entangled qubits. En-

tanglement is something that can be utilised in quantum algorithms for speed ups

over classical computing. The effect of entanglement can be seen clearly when

considering measurements.

Measurement

A classical bit can always be measured for its state and the measurement does

not affect the bit. Quantum measurement is different, in quantum mechanics ob-
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servations affects and changes the system observed. To measure a state an

observable O is chosen — this is a Hermitian operator. The eigenvectors of this

observable {|ϕm j

j ⟩} j form an orthonormal basis of the Hilbert space. The associ-

ated eigenvalues m j are the possible outcomes of the measurements.

When the measurement is taken one of the possible outcomes is observed.

The state measured then changes to an associated eigenstate of the measure-

ment outcome. This process is known as collapse. The probability of a particular

outcome m occurring is equal to the square norm of the associated eigenstates

amplitudes when the state is considered in terms of the measurement basis. A

measurement of |ψ⟩ with observable O resulting in outcome m can be written as

|ψ⟩ →
Mm|ψ⟩√

p(m)
, p(m) = ⟨ψ|Mm|ψ⟩, Mm =

∑
j s.t m j=m

|ϕ
m j

j ⟩⟨ϕ
m j

j |, (2.6)

where p(m) is the probability of measuring m and therefore of collapsing to {|ϕm j

j ⟩} j

s.t. m j = m.

This measurement process gives us some intuition into the requirement for

the norm of a state to be equal to one. The norm is equal to the sum of the

probabilities of each measurement outcome which should equal one. We also

note that measurement affecting the state means that the exact state of a system

cannot be determined with a single measurement and it cannot be measured

mid-computation without altering the computation. This is another property which

separates classical and quantum computation.

Measurement is a behaviour that strongly differentiates classical from quantum

computing. However, this difference sometimes presents itself as an issue to

work around. Because measurement changes the state, information on the state

can not be gathered and recorded mid computation, unless the state change is

desired. Therefore, there is no access to the state throughout computation, just

the final results. Additionally, each measurement only extracts partial information
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of the state. If information about the full state is desired, many measurements

would be required, scaling with qubit number. This is known as the data output

problem and is discussed further in section 2.5.4.

Operators & Gates

A quantum computer needs to be able to process and manipulate quantum

states to be able to carry out algorithms. Classical computing uses logic gates

such as AND or NOT to process the bits. Analogously, quantum computers use

operators which are often referred to as quantum gates with quantum computing.

In classical computing a gate maps bit strings to bit strings. For a quantum gate

analogue, basis states are mapped onto superpositions of basis states. Further-

more, the input state can also be a superposition, in which case the gate acts

linearly due to the fundamentally linear nature of quantum mechanics.

Û : |i⟩ −→
2N−1∑
j=0

c ji| j⟩, (2.7)

Û :
2N−1∑
i=0

αi|i⟩ −→
2N−1∑
i, j=0

c jiαi| j⟩. (2.8)

Therefore, an N-qubit quantum gate can always be represented by a matrix of

dimension equal to 2N × 2N. However not all matrices represent valid quantum

gates as quantum states need to be normalised before and after they are acted

on. Therefore the quantum gate must preserve lengths and so it must be unitary,

Û† = Û−1. This restriction means that quantum gates are reversible. This can

be shown to be the only restriction on the gates and therefore all unitary 2N × 2N

matrices represent valid N-qubit gates [6].

2.1.2 Quantum Circuits

A quantum circuit carries out information processing and is made up of wires

representing qubits connecting gates via their inputs and outputs. Similarly to

classical computing when drawing the circuits wires are expressed as lines and
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Name Symbol Matrix Representation

X

Y

Z

H

CNOT

RX(θ)

RY(θ)

RZ(θ)

Toffoli

X

Y

Z

H

RX(θ)

RY(θ)

RZ(θ)

Swap

X

Figure 2.1: Table of common quantum gates. Name, symbol and matrix repre-
sentation given for a set of common quantum gates.
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H

RY(θ)

H

X

single qubit gate

parametrised gate

multi qubit gate

1 layer

measurement
initial state

Figure 2.2: Quantum circuit example. The circuit begins with the preparation
of an initial state — in this case all |0⟩. This state is then acted upon by a mix of
single and multi qubit gates, some of which are parametrised. Finally, measure-
ment on one qubit occurs. A layer, referring to a set of gates over multiple qubits
implemented at the same step of circuit implementation, is highlighted.

gates as blocks with time flowing from the left to the right. The set of gates

implemented over the register of qubits at a given time or step in computation is

often referred to as a layer.

Whilst all unitary matrices are valid gates, it is not arbitrarily simple to imple-

ment all unitary matrices with physical devices. Therefore algorithms are often

decomposed and written in terms of a common set of gates. A non-exhaustive

list of these are shown in figure 2.1. The Pauli gates X, Y, Z and rotations in

these basis are used to alter states. The Hadamard gate creates superpositions,

the controlled NOT and Toffoli gates introduce entanglement, and the SWAP gate

swaps the state of two qubits.

A quantum circuit generally consists of a main register containing the input, but

often also contains multiple ancillary qubits. These qubits are additional qubits

used during computation to aid the implementation of certain operations but not

for input or output. An example use of ancillas is the implementation of opera-

tors which are unitary over the whole space but non-unitary if considering main

register alone. An example circuit is shown in figure 2.2.
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2.1.3 Quantum Computers

There are multiple different ways to prepare a two level quantum system to rep-

resent a qubit and correspondingly there are multiple different types of quantum

devices. Example implementations include superconducting circuits [8], trapped

ions [9] and neutral atoms [10]. These different quantum devices all have differ-

ent advantages and disadvantages, making some more useful for certain types

of algorithms than others. It is still an open question whether in the future one

design will “win” and become the standard architecture or if there will be multiple

architectures with different tasks they are best suited to.

One uniting feature of all types of quantum computers is that they are natu-

rally noisy and prone to errors in computation with this noise coming from mul-

tiple sources. One source is entanglement between the quantum system and

its environment leading to decoherence, where the quantum state is altered and

information is lost to the environment. Another is gate noise, when the gate is

not perfectly implemented. Additionally there is read-out noise. One source of

read-out noise is that the full information of the state is not gained in a single

measurement and therefore extracting information from the system is generally

probabilistic. Additionally, each measurement has its own implicit noise.

For quantum computing to reach its full potential, quantum devices will be

needed which have minimal error and can operate with a large number of qubits.

This is known as fault-tolerant quantum computing (FTQC) [11]. Whilst quantum

devices are currently being developed, these fault tolerant quantum devices are a

long-term goal. Current and near term quantum devices remain error prone and

are of limited size. Because of these limitations this era of quantum computa-

tion is known as noisy, intermediate scale quantum (NISQ) computing [12]. While

many theorised quantum algorithms will require fault-tolerant quantum devices for

implementation there has also been considerable effort in developing algorithms

suitable for near-term quantum devices. It is hoped such algorithms would lead
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to earlier useful quantum computation.

2.1.4 Potential Use Cases

Quantum computing is not going to offer advantage compared to classical com-

puting for all use cases. Instead applications have to be found with the opportunity

for speed-up. Features of problems which can indicate possibility for quantum ad-

vantage include being naturally quantum or related to linear algebra or containing

large amounts of data.

Considering naturally quantum problems often leads to operations of interest

being efficiently implementable due to the same underlying framework of oper-

ation and computation. One example is quantum chemistry [13]. Applications

include finding the ground states and excited states of systems, simulating the

dynamics of molecules and determining other properties. These tasks can cur-

rently be hard to calculate depending on the system. Being able to perform these

calculations in a time effective manner would give opportunities in many fields

such as drug discovery and material design.

Due to the mathematical formulation of quantum mechanics being fundamen-

tally linear and quantum computing natively performing large unitary matrix oper-

ations, quantum computing is suitable for linear algebra problems. For example,

solving linear systems of equations and inverting matrices. Linear algebra is used

in a variety of situations such as differential equations and data science. One of

the most well-known quantum algorithms is for linear algebra, the HHL algorithm,

named after its authors Harrow, Hassidim and Lloyd [14]. This algorithm solves

linear system of equations with a theoretical exponential speed-up over classical

algorithms for the same purpose.

Problems which contain large amounts of data are another potential area for

quantum speed-up due to the exponential size of the Hilbert space as the number

of qubits increase. Therefore, more information can be contained by a smaller
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number of bits/qubits as compared to the classical case. colorred This means for

problems with large amounts of data, this may be able to be processed with fewer

(perhaps even exponentially fewer) resources giving an opportunity for quantum

speed-up. However, it is important to note that there may be significant overhead

for utilising the whole exponential space. For example if an algorithm called for

loading information into each amplitude an arbitrary quantum state may have to

be prepared, a currently difficult, inefficient task. And then if information needs to

be extracted from the full space, full state tomography would need to be applied

with many, many measurements. Use cases include machine learning problems

such as regression and classification as well as differential equations.

2.2 Variational Quantum Algorithms Overview

Algorithms can be split into classes based on a defining feature of their imple-

mentation. One such class is variational algorithms [15]. Variational algorithms

are defined by having an optimisation loop which adjusts variational parameters

with each iteration of the loop so that a goal is satisfied. Generally these are hy-

brid algorithms – classical and quantum computers being used together – where

the quantum computer is used to define a trial solution which depends on vari-

ational parameters while the classical computer is in charge of the optimisation

loop and update of variational parameters. A typical workflow is shown in figure

2.3.

Because of the split work allocation between classical and quantum comput-

ers, these algorithms tend to be more suitable for NISQ devices than many other

algorithms. The quantum computer calculates for each epoch separately result-

ing in shallower circuits. Furthermore the workload is split between the devices

such that steps which can be completed efficiently on the classical computer are

done so. This leads to a lower workload for the quantum devices. It is important

to be aware that this workload sharing does introduce overheads in the measure-

ments and state preparation needed for the communication between classical
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Quantum Classical

update parameters θ

U(x,θ) 

post process measurements

evaluate loss and gradients

update parameters θ

Figure 2.3: Workflow of variational quantum algorithms. During typical vari-
ational quantum algorithm workflow a set of quantum circuits are evaluated for a
given set of parameters θ j. These measurements are then passed to a classical
computer to evaluate a loss function and any relevant derivatives. The loss and
loss derivatives are in turn given to an optimiser which suggests new parameters
θ j+1. These parameters are passed to the quantum computer for the next set of
evaluations. This iterates until an end condition is met.

and quantum devices which can affect (but does not prevent) the availability of

quantum benefit.

To implement a variational algorithm first the representation of the trial solution

is chosen. Then a measure of how well the trial solution with the current param-

eters satisfies the problem is needed. This is generally referred to as the loss

function and is constructed such that the minimal value represents an optimal

solution to a problem. The variational loop now occurs. For the current set of

parameters the loss value and/or gradients (dependent on choice of optimiser)

are calculated. These are fed to the classical optimiser which suggests new pa-

rameters. This is repeated until a stopping criterion is reached such as loss value

or maximum number of iterations. The final parameters and the quantum model

then give a suggested solution to the problem.

Variational algorithms are not deterministic, convergence to an optimal solution

is not guaranteed. For them to be successful first the trial solution must actually

be able to express the solution – known as expressivity. And then it needs to

be possible to find the parameters leading to this solution – known as trainability.

This is discussed later in section 2.5 and we will see how many hyperparameters
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affect both of these.

2.3 Classical & Quantum Machine Learning Overview

2.3.1 Classical Machine Learning

Machine learning has become a popular and important tool in computation, al-

lowing a wide variety of tasks to be completed. Fundamentally, machine learning

is the training of models to learn and recognise relationships in data [16]. Algo-

rithms start with a trainable model, a set of inputs and a measure of success.

This input and measure of success is used to train the model to learn what it

can to achieve the given task. Once trained the model can be given more data

and return information about it based on what was learnt from training. From

classification [17] to generative modelling [18], regression [19], natural language

processing [20] and more, machine learning has been applied and leveraged its

ability to learn relationships in data to perform tasks intractable or inefficient by

other methods.

Generally, machine learning algorithms are split into three broad categories:

unsupervised, supervised and and reinforcement learning. These are three dif-

ferent learning paradigms differentiated by what input is given for training and

how the model is ”motivated” to improve. Supervised learning begins with the

input of sets of data labelled by the properties of interest. Based on these labels

the algorithm learns how to map an input to the labels based on the input itself.

Generally once trained the purpose is to label new given data. Unsupervised

learning is trained on an input of given data but labels are not supplied. There-

fore the algorithm is making connections and separations between data by itself

and after training applies these to new unseen, data. The input of reinforcement

learning is a task to complete and a measure of success. During training the

algorithm suggests actions to take and it is then rewarded based on the success

of its action. If training is successful the resulting model will be able to achieve
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Figure 2.4: Categories of machine learning and their use cases. Visual rep-
resentation of machine learning split into the three most common sub categories:
supervised, unsupervised and reinforcement. These are further split into cate-
gories with examples of use cases. Figure reproduced from [21].

the desired task successfully. These groups and further sub-classifications and

use-cases are shown in Fig. 2.4.

Machine learning algorithms can be grouped by other means as well. For ex-

ample, what model is used [22] or training method (such as variational, iterative

or other). Machine learning algorithms don’t tend to be rigid or hard set, they are

often very flexible. By changing any of the assumptions such as input, model,

training method etc. algorithms can be altered and adapted to generate other

approaches to suitable problems. Some difficulty of utilising machine learning

comes from first how to choose all these options to improve training success (hy-

perparameter optimisation/tuning) and then how to be confident enough that the

model resulting from training is correct (trust/model confidence). With the de-

velopment of machine learning in recent times approaches and techniques for

addressing these challenges are being developed and constantly improved [23,
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24, 25, 26].

2.3.2 Quantum Machine Learning

Quantum machine learning builds upon machine learning by introducing quan-

tum computation within the workflow. Often this is by considering quantum mod-

els – models which involve quantum circuit evaluation. Examples of quantum

models, specifically to represent functions, are detailed in section 2.4. Currently,

as quantum machine learning is still in its initial stages, much progress is in con-

sidering quantum analogues of existing classical machine learning algorithms,

proposing quantum models and considering the advantages and disadvantages

of quantum vs classical for various problems.

The advantages of utilising quantum models are currently expected to include

the increased expressivity for a given number of computational resources as well

as being able to efficiently represent some relationships that cannot be expressed

efficiently classically due to differing behaviour. Another possible avenue for ad-

vantage is efficient sampling - as a quantum state effectively defines a probability

distribution, each measurement can be understood as a sample from this distri-

bution. This is generally utilised for generative problems and discussed further

in sections 4 and 6. However, currently there are also disadvantages such as

difficulties training (detailed in section 2.5), some of which even result from the

increased expressivity which is hoped to bring advantage.

Proposed quantum machine learning algorithms include classification [27], re-

gression [28] and generative modelling [29]. Some of particular interest for my

work are detailed in section 2.6. Additionally, throughout my thesis quantum mod-

els representing functions are of use so these are now introduced.
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2.4 Quantum Models of Functions

In this section quantum models for functions are introduced. These are func-

tions with definitions including quantum computation which can be trained for a

given task. Dependence on independent variable x is encoded either explicitly

or implicitly. Generally dependence on a further set of variational parameters θ

is also included. These parameters alter the function and therefore the quantum

model defines a family of functions and specifying θ specifies the function.

2.4.1 Encoding

Dependence upon independent variable x can be encoded in different ways.

Generally, all that is required is something in the model evaluation to change de-

pending on the value of x. I detail two common methods – feature map encoding

[28] and amplitude encoding [1].

Feature map encoding gives an explicit dependence upon x and consists of in-

cluding a circuit Û(x) in the quantum model definition. This circuit includes gates

with parameters dependent on x. Such a quantum model can be evaluated at any

valid value of x, leading to a continuous definition of the function. Furthermore,

depending on the choice of Û(x), the derivatives can be calculated exactly with

the parameter shift rule (discussed further in section 2.4.4). For certain problems,

such as differential equations, this is very useful as it avoids an extra source of

numerical imprecision from techniques such as finite difference methods. Most

quantum models of this form need to be re-evaluated for each considered x value.

With amplitude encoding the function is defined such that the values at a set of

points {x j} j is equal to a set of measurements of a state.

| f ⟩ = ( f0, f1, .. f2N−1), f (x j) = |⟨ j| f ⟩|2 = | f j|
2. (2.9)
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Variations on this are possible such as overlap instead of measurement or the in-

clusion of classical post processing. This leads to a function defined at a discrete

set of points and is only accessible directly at these points. Interpolation could

be used for intermediate values. It also means that 2N values are stored by an

N qubit state and full use of the exponential size of the Hilbert space is made.

For derivatives usually some type of finite difference method is used. This can be

computed classically after measuring the amplitudes for function values. Alterna-

tively, it can be processed whilst still quantum such as in [1]. Multiple copies of

the state are prepared. Some of these states then have their amplitudes cycled

via an adder circuit. These states are then added and subtracted as required by

the finite difference rule via controlled operations and projective measurements

to account for the non-unitary nature of the operation. This prepares a state with

the derivatives as amplitudes up to a normalisation factor.

2.4.2 Ansatz

Often the dependence on the variational parameters θ within the quantum

model is encoded via a circuit V̂θ known as a variational ansatz. This is a cir-

cuit including gates with parameters dependent on θ. There are many different

structures of such ansatz.

One category is hardware efficient ansatz (HEA) which utilise parameterised

and entangling gates easily implemented by the chosen quantum hardware to

maximise the entanglement and variation of the circuit whilst minimising quantum

resources [30]. It is usually formed of alternating rotational layers and entangle-

ment layers. The rotational layers consist of single qubit gates rotating with angle

defined by a variational parameter. Each gate could have unique parameters or

a parameter could be used for multiple gates. The entanglement layers consist of

multi-qubit gates which entangle qubits and does not depend on any variational

parameters. Usually the chosen entanglement operator is a two qubit gate which

acts on nearest neighbours because this is often the simplest type of entangle-
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Figure 2.5: Variational quantum circuits. (a) A variational ansatz in the
hardware-efficient form. It consists of a parametrised rotation layer forming R̂z-
R̂x-R̂z pattern, such that an arbitrary single qubit rotation can be implemented.
Variational angles θ are set for each rotation individually. The rotation layer is
then followed by an entangling layer chosen as CNOT operations between near-
est neighbours. The blocks of “rotations-plus-entangler” are repeated d times to
form the full variational circuit Ûθ. (b) Alternating blocks ansatz. The variational
circuit consists of blocks of width Nb qubits (Nb/2 for boundary qubits). Blocks are
chosen in the hardware-efficient form shown in (a) with depth of b. The blocks
are placed in a checkerboard pattern, and repeated dlayers times. The goal is to
entangle qubits locally, while avoiding global entangling operations that can result
in vanishing gradients during θ optimisation.

ment operator to implement. An example is shown in Fig. 2.5(a).

A second option is to use the alternating blocks ansatz, where instead of

global entangling layers separate subblocks are used, interleaved into a checker-

board form [Fig. 2.5(b)]. Each subblock has a hardware efficient form shown in
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Fig. 2.5(a) for the specified depth b. The motivation behind this structure is to

entangle qubits locally first, and gradually form a correlated state by interleaving

subblocks [31].

Another option is using symmetry encoding variational ansatz [32]. This is

only possible if a symmetry of the problem is known. Such an ansatz is formed

of gates which keep a state in the same symmetry sector no matter the value

of the variational parameters. For example, for a chemistry problem where it is

known the solution will have a specific number of excited states an ansatz could

be found where if the initial state has a number of excited states, post variational

ansatz it has the same number. Alternatively, a symmetry could be known that the

solution space is degenerate i.e. there is a rule describing equivalent situations.

Then an ansatz could be found which is “aware” that they are degenerate and

therefore avoids unnecessarily exploring the whole degenerate space. This is

known as geometric ansatze [33]. By utilising symmetries the search space is

decreased and potentially the problem dimension reduced, often leading to easier

training. However, if the space is restricted too far it can lead to problem becoming

classically efficient and any possible quantum advantage removed so one must

be careful [34].

2.4.3 Structure & Cost Functions

Piecing together the quantum model, how to evaluate the quantum model needs

to be defined. Amplitude encoded models are generally evaluated as in (2.9), with

| f ⟩ dependant on θ such as | f ⟩ = V̂θ|0⟩. For explicit models with feature map em-

bedding this is often an expectation value such as

f (x) = ⟨ψ0|Û
†(x)V̂†θCV̂θÛ(x)|ψ0⟩. (2.10)

The operator C is Hermitian or a sum of Hermitian operators known as the cost

function. It is the basis for the expectation value to be measured. The choice of

cost function affects what information contained by the state is prioritised. Cost
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Figure 2.6: Example Quantum Model Structures. (a) Circuit for quantum
model described in (2.10). Formed of a feature map Û(x) and variational ansatz
V̂θ applied to an initial state |ψ0⟩. Measurement is then taken for expectation
values. (b) Quantum model without distinct feature map and variational ansatz,
instead contributions from encoding variable x and variational parameters θ are
intermingled. (c) Quantum model utilising data reuploading of D layers. x is en-
coded via feature map D times with variational ansatze present between each
”uploading” of x.

functions are split into local and global types, those where each measurement

considers one “local” area and those which consider the whole “global” system

with one measurement. Local cost operators were shown to have favorable be-

haviour as compared to global when training [35]. This quantum model is easily

restricted to real functions by considering real coefficients for the sum of oper-

ators within the cost function. Depending on the problem considered this could

be a useful restriction. Classical post-processing can be added such as addi-

tional classical only parameters for scaling and shifting. An example circuit for the

implementation for this model is shown in Fig. 2.6 (a).

Alternatively the model could be an overlap such as

f (x) = ⟨0|Û†(x)V̂θ|0⟩. (2.11)

Generally this is complex, though with suitable choice of feature map and ansatz

restriction to a real only function can be implemented. To evaluate an overlap is
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not as native as measuring an expectation value but it can be done via different

techniques such as modified Hadamard tests as described in section 2.7.1.

Many other variations exist. In particular variational ansatz and feature maps

can be layered in a technique known as data re-uploading [36], this improves

expressivity without increasing qubit number at the expense of depth. An example

circuit for this is shown in Fig. 2.6(b). Additionally so far we have treated the

dependence on x and θ as separate circuits which follow one another however

they can be mixed. An example circuit for this is shown in Fig. 2.6(c). These

variations are still being developed and which are optimal is an open question.

2.4.4 Derivatives

An important property to be able to calculate for a quantum model is its deriva-

tives. These derivatives are split into two classes — feature parameter derivatives

and variational parameter derivatives. Derivatives with respect to variational pa-

rameters would be required for any variational method where the optimiser uses a

form of gradient descent. Whether derivatives with respect to the feature parame-

ter is needed depends on the problem itself. As I consider and develop differential

equation solvers this derivative technique will be very important.

There exists many methods for calculating derivatives. One way, which is clas-

sical in nature, is finite difference methods (FDM) [37]. These methods give a rule

to approximate derivatives in terms of evaluations of the functions with shifted pa-

rameter values. One of the simplest and most well known of these methods is the

Euler method which states

f ′(x) ≡
f (x + h) − f (x)

h
, (2.12)

where h > 0 is a chosen value. Smaller h tends to give more accurate approxi-

mations up to a point and then issues may be encountered such as floating point

accuracy. Other methods in these families differ by number of evaluation points,
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Figure 2.7: Parameter shift rule. Visualisation of using parameter shift rule in
(2.14). Two measurements are taken with parameter of interest shifted ± π

4u . The
difference is then taken with scaling of u to evaluate gradient. Figure from [38].

amount the parameter is shifted by and coefficients to each evaluation. Further-

more rules for higher order derivatives can be found either directly or using suc-

cessive iterations of a first order derivative rule. These methods do result in a

numeric error, with bounds generally able to be found in terms of step sizes h and

assumed bounds on analytic higher order derivatives.

Implementing these FDM for quantum models can be done by evaluating each

term of the rule separately and then classically post processing. This is common

for when the embedding used is a feature map. When the encoding is via am-

plitude encoding an alternative method also exists. Multiple copies of the state

are prepared. The amplitudes of some of these states are then shifted as asked

for by the FDM being used. These are then added and subtracted according to

the FDM rule with an operator which ends with a projective measurement to en-

able this non-unitary operation. This will then prepare a state with each amplitude

equal to the approximated derivative at that point (possibly with renormalisation).

Note that for this, as access to the function is only at a discrete set of points, a

rule has to be used which only requires access to function values at those set of

points. An example of this is in [1].
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There also exists a quantum specific method known as the parameter shift

rule. This rule is a method for calculating the derivatives of a quantum circuit with

respect to a parameter of a gate [39, 28]. Say we have a quantum model

f = ⟨0|Û†(µ)CÛ(µ)|0⟩, U(µ) =
∏

j

U j(µ j), (2.13)

and we want to calculate ∂µk f . If the gate Uk of the parameter being differentiated

µk is generated by a Hermitian operator with two unique eigenvalues then the

parameter shift rule states that

∂ f
∂µk
= u

(
f
(
µk +

π

4u

)
− f

(
µk −

π

4u

))
, (2.14)

f
(
µk ±

π

4u

)
= ⟨0|Û†±(µ)CÛ±(µ)|0⟩, Û±(µ) =

∏
j

U j

(
µ j ± δ j,k

π

4u

)
, (2.15)

where u is the value of the eigenvalues of the generator if they were shifted to

+u and −u. In particular, if the generator is a Pauli operator multiplied by 0.5, as

usual for Pauli rotations, we get u = 1/2. A visualisation of this process is shown

in Fig. 2.7.

Note that the parameter shift rule calculates the derivative with respect to the

parameter of the gate. If the parameter is a function of a variable and the deriva-

tive with respect to that variable is wanted the chain rule should be used. Addition-

ally if the derivative with respect to a variable which appears within the parameter

of multiple gates is wanted the product rule should be used.

Though this rule looks similar to a FDM it is actually a mathematically exact rep-

resentation of the derivative, therefore no numerical errors are introduced by this

method. However, in practice we remember that the errors intrinsic to quantum

computing such as gate noise and read-out error will still be present. Again this

method can be applied iteratively for higher order derivatives. There also exists

many variations of this rule commonly referred to as generalised parameter shift

rules [40, 41].
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2.4.5 Quantum Kernel Function

There exists a particular type of quantum model known as a quantum kernel

function (QK). These are based on classical kernel functions which are conjugate-

symmetric, positive definite functions. The definition of positive definite for com-

plex functions f (x, y) used is

For any n real numbers x1, x2, ...xn the n by n matrix A with components (2.16)

ai j = f (xi, x j) is a positive definite matrix. (2.17)

Here a positive definite matrix M is one such that zT Mz is greater than zero for all

non-zero column vectors z.

These kernel functions are a type of similarity function often used for regression

and classification tasks [42]. Due to some unique properties, they are utilised in

various algorithms known as kernel methods. Kernel functions and their methods

are further introduced in section 2.8.2.

Recently quantum kernel functions have been considered [43, 27]. A quantum

kernel function is simply a quantum model which fulfils the requirements of a

kernel function.

It can be shown that any quantum models of the form

κ(x, y) = ⟨ψ(x)|ψ(y)⟩ or κ(x, y) = |⟨ψ(x)|ψ(y)⟩|2 (2.18)

fulfils the requirement of a quantum kernel function [43] where |ψ(y)⟩ is a y depen-

dent state prepared with an encoding method. This is not the only possible form

of quantum kernel with various other structures being proposed [44].
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A quantum model for a kernel method typically consists of sums of evaluations

of a kernel at different points e.g.

f (x) =
∑

j

α jκ(x, y j), (2.19)

with {α j} j being classical variational parameters. Variational parameters can be

included as quantum parameters in the preparation of |ψ(y)⟩. Alternatively, varia-

tional parameters could remain entirely classical. We will make use of quantum

kernels for the solving of differential equations in chapter 5.

2.5 Training (and other) Behaviours

Variational algorithms are not deterministic and do not guarantee convergence

to an optimal solution. The training behaviour of the algorithms need to be con-

sidered and how that affects the likelihood of receiving the optimal solution. Two

important factors are the expressivity and the trainability of the model/algorithm.

The expressivity of a quantum model is the range of functions that the quantum

model can represent as the parameters vary. To have any chance of converging to

an optimal solutions the quantum model being trained must be able to represent

this solution. If no prior knowledge of the solution is known this is usually achieved

by trying to create a highly expressive model that can represent a wide range

of trial solutions. If there does exist prior knowledge, a quantum model which

exhibits this known behaviour can be prepared. This can increase the range

of likely solutions expressible for given resources as space is not ”wasted” on

expressing functions which cannot possibly be optimal.

Expressivity is solely affected by the quantum model/trial function. Therefore

anything that alters the quantum model affects the expressivity. This includes

feature map, ansatz, cost operator and any classical pre/post-processing. Ex-

pressivity of a given model can be analysed by analytically expanding the given
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model as a series [45]. E.g. consider the model fθ(x) = ⟨ψ(x)|V̂†θCV̂θ|ψ(x)⟩. We

can then analytically expand |ψ(x)⟩ to consider each amplitude as a function of x

|ψ(x)⟩ =



ψ0(x)

ψ1(x)

...

ψ2N−1(x)


. (2.20)

Thus the choice of encoding can be considered as choosing a set of basis func-

tions. Application of the ansatz then linearly mixes these functions and supplies

coefficients

V̂θ|ψ(x)⟩ =



∑
j c0

j(θ)ψ j(x)∑
j c1

j(θ)ψ j(x)

...∑
j c2N−1(θ) jψ j(x).


(2.21)

Finally, the measurement leads to multiplication and summation of terms. The

final expression of the model is

fθ(x) =
∑

i, j

c̃i, j(θ)ψ
†

i (x)ψ j(x). (2.22)

This can then be analysed for more information on expressivity.

Trainability relates to the likelihood of converging to the optimal solution. Even

if the set of parameters which represent the problem solution exist, the optimiser

could fail to identify them. Trainability is decided by what’s known as the loss

landscape – how the loss changes with parameters – and the optimiser which

explores this landscape. Many hyperparameters affect trainability, from the loss

function to the model to the optimiser.

An important consideration is how the expressivity of the quantum model can

affect trainability. Whilst the discussion on expressivity may have lead to the
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Figure 2.8: Loss landscape examples with features of interest. (a) A loss
landscape with every point decreasing to global minima. This is an example of
a convex landscape. (b) A loss landscape which contains points with gradient
moving away from global minima. Local minima are present. These are points
with minimal value in a neighbourhood but not over the whole space. (c) A loss
landscape which includes areas of exponentially small gradients known as barren
plateaus.

thought that the higher the expressivity the better this is not necessarily the case.

Whilst higher expressivity means more functions are expressible and this could

be interpreted as leading to a higher chance of the optimal solution being ex-

pressible, it can also have a negative impact on trainability [46, 47]. This gives

increased motive for utilising any prior solution knowledge to design problem spe-

cific models with controlled expressivity which are trainable. However, if this is

taken too far the resulting model could be efficiently classically simulable [34, 48],

removing most chances of quantum advantage. Therefore, a careful balance of

expressivity and trainability needs to be found and exactly where this balance is

and how to find it remains an open area of research.

2.5.1 Loss Landscape

As mentioned during the discussion of trainability, the main contributing factor

is the loss landscape – the change of the landscape as the parameters change.

When plotting the loss values with two parameters it can be seen why the term

”landscape” is chosen. As shown in Fig. 2.8 as the parameters vary and the loss

increases/decreases features such as peaks, valleys and plateaus appear.
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Figure 2.9: Emergence of barren plateaus with system size. An example
of a property which influences the formation of barren plateaus is system size.
As system size increases gradients decrease and barren plateaus form in loss
landscape. In these regions training is near impossible as not enough information
is available to navigate out of the plateau. Figure from [51]

The loss function is designed such that the global minima relates to the solu-

tion. However generally the loss landscape is not a smooth ”valley” with every

point smoothly descending to the global minima. Instead there are many ”hills”

and ”waves” leading to local minima – a point which is the minimum value for a

neighbourhood of that point but is not the true minimum value. Optimisers can

struggle to distinguish local minima from global minima and if the optimiser can’t

”escape” the loss will stagnate there until training ends. In fact, it has been shown

that variational quantum algorithms can lead to exponential local minima [47, 49].

Therefore, either reducing the number of local minima in the landscape or util-

ising optimisers effective at escaping local minima can improve training. Also,

some local minima solutions will be close to the global minima and therefore de-

pending on accuracy required by the problem, training resulting in a local minima

is not necessarily a failure. Also, it’s important to note that these exponential local

minima affect digital variational methods but they are not intrinsic to all quantum

optimisations. For example quantum annealing was originally introduced strongly

motivated by the idea of using quantum properties to avoid local minima [50].
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A training problem unique to variational quantum algorithms is known as bar-

ren plateaus [52]. This is a statement that as the system size increases and

therefore the Hilbert space size increases, the gradients with respect to the vari-

ational parameters exponentially decrease [51]. This leads to the majority of the

loss landscape to consist of near flat areas (plateaus barren of features hence

the name) which lack enough information for the optimiser to direct to the global

minima. This also affects gradient-free optimisers [53]. This phenomena is vi-

sualised in Fig. 2.9. Other factors have been shown to affect the occurrence of

barren plateaus such as global cost operators [35] and magnitude of the dynam-

ical Lie algebra of the variational ansatz generators [54, 55]. The dynamical Lie

algebra of the ansatz generators is the set of operators generated by closing the

group under commutation i.e. all commutators between the generators are cal-

culated and included in the group. Then all the commutators between the current

group members are calculated and included. This repeats until no new unique

operators are found. The number of unique operators in the final group is the

magnitude of the dynamical Lie algebra.

2.5.2 Generalisation

Once training finishes, we have access to the trained function. If the training

was successful, within error margin, the function will achieve the target of the loss

function. E.g. classifying a set of training data, fitting values at training points

etc. This can be considered as behaviour over a set of training data. For some

algorithms/use cases behaviour away from the training data is important. For

example, if we have learnt how to classify a set of training data generally you also

want to be able to classify new data correctly. How effective a solution is at this is

known as generalisation.

Generalisation is affected by the loss function. The loss function dictates what

is prioritised during training and could lead to certain information being over or un-

der emphasised, in turn leading to poor generalisation. Furthermore, the training
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data considered can have a huge impact. For example, say you want to classify

round shapes and square shapes but all the training data has the circles red and

the squares blue. This could result in the model learning to classify based on

colour instead of the desired criteria of shape and test data of a blue circle would

be misclassified as a square.

Additionally, the model affects the generalisation. If the model is overly expres-

sive it is more prone to what is known as overfitting. This is when the model

learns to map the training data exactly to the desired output but doesn’t learn the

relationship between the data and its output. This results in poor generalisation.

These problems of generalisation and overfitting are not unique to quantum ma-

chine learning and are important considerations for classical machine learning

too [56, 57].

2.5.3 Training Aids and Techniques

These difficulties in training and generalisation affect the majority of quantum

variational algorithms. Additionally many of them also affect classical variational

algorithms (though maybe in slightly altered form). Therefore, there is much in-

terest and research into techniques and approaches to either remove or mitigate

these negative behaviours.

Current existing techniques for local minima and barren plateaus generally rely

on changing the landscape in some known manner to remove or reduce the like-

lihood of these negative landscape features to appear. A selection of approaches

are now discussed

One technique to reduce local minima is overparametrisation where the number

of parameters in the variational ansatz is increased significantly past the number

required for expressivity [58]. This results in a landscape with significantly re-

duced local minima. Informally, this is as the increased number of parameters

leads to there always being an escape from points which were previously local

49



minima. The number of parameters and therefore circuit depth required for this

relates to the dimension of the lie algebra of the variational ansatz. The increased

depth required may cause issues in near-term implementations. As the depth is

linked to the magnitude of the lie algebra of the ansatz, ansatze can be con-

structed which can easily be over-parametrised however this is linked to a lack of

expressivity and resulting classical simulability.

Attempts to avoid barren plateaus include limiting the factors known to induce

barren plateaus such as entanglement [59], global measurements [35] and re-

ducing ansatz expressivity [55]. Thus models and algorithms which reduce these

are proposed [60, 61, 62]. However, none of the proposed approaches so far are

considered to have ”solved” the problem of barren plateaus. This is as current

approaches tended to either delay the onset of barren plateaus but not prevent

it, lead to some other negative behaviour or are only applicable in niche circum-

stances. How to deal with barren plateaus remains an important open question.

For generalisation, one technique is regularisation [63, 64]. This is a way of

controlling the model and/or the loss to control the chance of over-fitting and

therefore improve generalisation. One such way is an additional term in the loss

function. This term could give motive to the optimiser to reduce coefficients of

the higher order/frequency fitting functions. or it could give a term which discour-

ages high magnitude gradients at training points. Alternatively, choosing fitting

functions suitable to the problem itself can help improve generalisation as the

behaviour between training points is limited to suitable behaviour for the problem.

2.5.4 Data Input & Output Problem

Two non-training specific behaviours to note are the data input and output prob-

lems. The data input problem relates to the fact that there is currently no efficient

known way to prepare an arbitrary state, it can require exponential circuit depth

[65]. This can be an issue for algorithms which require the preparation of a state
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related to the problem considered.

The data output problem concerns the difficulty in receiving information on a

whole unknown state from measurement. As when a state is measured only par-

tial information is recovered - a single eigenvalue relating to a eigenstate of the

measurement operator - to receive full information on a state with no additional

information known requires full state tomography with a large number of mea-

surements [66]. This causes issues for algorithms where the desired information

to extract is encoded across the whole state

This discussion is particularly relevant to the choice of encoding as discussed

in section 2.4.1. This is as amplitude encoding is more prone to being affected by

these problems. As information is encoded in every amplitude it may be required

to prepare an arbitrary state based on the problem and/or reading out every am-

plitude. Feature map encoding conversely encodes information as parameters

of gates avoiding the input problem. And it generally extracts information with a

chosen set of measurements avoiding the output problem.

2.6 Selected Variational & Quantum Machine Learn-

ing Algorithm Examples

2.6.1 Variational Quantum Eigensolver

One example of a variational quantum algorithm is the variational quantum

eigensolver (VQE) [30, 67]. The goal is to find the ground state of a given system

described by Hamiltonian H . This is an example of an algorithm for quantum

chemistry.

For this a trial state is prepared

|ψθ⟩ = Ûθ|0⟩, (2.23)
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where Uθ is a chosen variational ansatz. The problem is then represented with

the loss function

L(θ) = ⟨ψθ|H|ψθ⟩. (2.24)

This can then be minimised in the standard variational loop to find an estimator

for the ground state. For computational ease of implementation generally the

Hamiltonian is written as sum of terms H =
∑M

j=1 H j where each term is easy

to measure expectation of. Thus the loss will be measured as M expectation

values. This algorithm can be generalised for other related purposes such as

finding excited states [68]

2.6.2 Quantum Circuit Learning

An algorithm for regression problems is quantum circuit learning (QCL)[28].

This algorithm is both variational and QML. The target of this algorithm is to find

a function which fit a set of points {(xj, fj)} j.

A quantum model is chosen as

fθ(x) = ⟨0|Û†(x)Û†θ |C|ÛθÛ(x)|0⟩. (2.25)

A corresponding loss function for the problem is the sum of the distances between

the target values f j and the current trial values f (x j)

Lθ(x) =
∑

j

L
(

fθ(x j) − f j

)
, (2.26)

where L is a distance measure. If fθ(x) perfectly fits the target values at the train-

ing points this loss is 0, otherwise it is positive. Therefore, an optimiser is used to

minimise this loss function to train the trial function to fit the points. If a gradient

descent optimiser is used the derivatives with respect to θ are required during

training, in particular ∂ fθ(x)/∂θ j ∀ j. If the variational ansatz is chosen appropri-
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Figure 2.10: Quantum GAN workflow. The quantum circuits are used both
for generative modelling (generator) and discrimination between real and fake
samples (discriminator). Both circuits ĜQ(z) and D̂Q(x) are composed of (different)
feature maps Ûφ(·) followed by (different) variational circuits Ûθ. They are then
trained adversarialy with minimax loss to improve generators ability to produce
samples close to target distribution and for discriminator to distinguish between
generated and target samples.

ately, the parameter shift rule as introduced in section 2.4.4 can be used.

After training a set of parameters is received θ∗ which, when substituted into

the trial function, gives a solution function which will fit the training points provided

training was successful. This algorithm is inspiration for the algorithm we develop

in chapter 3 for solving differential equations.

2.6.3 Quantum Generative Adversarial Networks

Quantum generative adversarial networks (QGAN) are an algorithm approach

for solving generative modelling problems [29]. They are heavily based off their

classical counterparts GANs – generally replacing the neural network models with

quantum models.

The structure of GAN is represented by two neural networks: a generator GNN

and a discriminator DNN. The generator takes a random variable z ∼ pz(z) from a

latent probability distribution pz(z). This is typically chosen as a uniform (or nor-

mal) distribution for z ∈ (−1, 1). The generator uses this to prepare a fake sample
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H HSb

Figure 2.11: Circuit diagram of Hadamard tests to measure overlaps.
Hadamard test for measuring Re

{
⟨0|V̂†Û|0⟩

}
and Im

{
⟨0|V̂†Û|0⟩

}
for b = 0 and

b = 1, respectively. Ŝ denotes the phase gate, defined as Ŝ = exp(−iπẐ/4).

GNN(z) from the generator’s probability distribution pG, GNN(z) ∼ pG(GNN(z)). The

goal is to make samples {GNN(z)}Ns
s=1, as close to the training dataset as possi-

ble, in terms of their sample distributions. If true samples x ∼ pdata(x) are drawn

from a (generally unknown) probability distribution pdata(x), our goal is to match

pG(GNN(z)) ≈ pdata(x). This is achieved by training the discriminator network DNN

to distinguish true from fake samples, while improving the quality of generated

samples {GNN(z)}Ns
s=1, optimising a minimax loss

min
GNN

max
DNN
LGAN = min

GNN
max
DNN

{
Ex∼pdata(x)

[
log DNN(x)

]
(2.27)

+ Ez∼pz(z)
[
log(1 − DNN(GNN(z)))

]}
,

where DNN and GNN are the trainable functions represented by the discriminator

and generator, respectively. The first loss term in Eq. (2.27) represents the log-

likelihood maximisation that takes a true sample from the available dataset, and

maximises the probability for producing these samples by adjusting variational

parameters. The second term trains GNN to minimise the chance of being caught

by the discriminator. The loss corresponds to a minimax game, therefore instead

of training to find a minimum we are instead training to find the Nash equilibrium

[69].

The generator ĜQ(z) and discriminator D̂Q(z) as quantum models for QGAN are

shown in Fig. 2.10.
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Figure 2.12: Circuit diagram of LCU. Non-unitary of interest is first decomposed
into sum of unitaries V =

∑M
j=1 α jU j. ⌈log2(M)⌉ ancillas are prepared as |0⟩. These

ancillas are then prepared into a superposition based on {α j} j by Ĝ. Each term
in the sum U j is then implemented controlled by ancillas in position | j⟩. Finally,
the ancillas have Ĝ† applied and are measured. If they are measured as |0⟩ the
process was successful, otherwise it must be repeated.

2.7 Selected Quantum Circuits & Subroutines

2.7.1 Overlap Measurement

When introducing quantum models in section 2.4 we noted how they could have

different structures. Expectations are read as measurements of the observable.

Models including overlaps such as ⟨0|V̂†θÛθ|0⟩ are another choice. To measure

an overlap one method is to use modified Hadamard tests. The relevant circuit

is shown in Fig. 2.11, representing the Hadamard tests with possible addition of

the phase gate Ŝ = exp(−iπẐ/4) [70]. First, the ancilla register is put into the

symmetric superposition state by using Hadamard, followed by the two controlled

preparation unitaries (one being reverted). Upon measurement in the Pauli X̂

basis (with and without prior phase rotation S), we get the real and imaginary

parts of overlaps, correspondingly (Fig. 2.11).

2.7.2 Linear Combination of Unitaries

All natural quantum operators are unitary but sometimes we may wish to imple-

ment a non-unitary operator. Linear combination of unitaries (LCU) is a method

of implementing a non-unitary matrix which is written as a known sum of unitaries

[71].
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So say we want to implement V =
∑M

j=1 α jÛ j. To achieve this ⌈log2(M)⌉ ancillas

are required. The ancillas are then prepared into superpositions which depend

on the coefficients {α j} j as detailed in [71]. If a uniform addition is wanted then

Hadamards are chosen. Then each term in the sum is implemented on the main

register controlled by a unique ancilla bit string. These implementations are then

combined by applying the adjoint of the ancilla preparation operator. Finally, the

ancilla is projected onto |0⟩ to effectively ”sum” the contributions. This leaves the

main register in the state γV|ψin⟩ where γ is a scaling constant.

By utilising a projective measurement this subroutine is not guaranteed success

and is probabilistic. Therefore, if it fails the whole circuit has to be re-implemented

adding a run-time overhead. There do exist techniques to mitigate this such as

amplitude amplification [72].

2.7.3 Quantum Fourier Transform

The quantum Fourier transform (QFT) is a circuit which implements the trans-

formation between the computational basis and the Fourier basis [6], i.e. the ma-

trix representation of the circuit is the classical discrete Fourier transform. Many

algorithms are reliant on this subroutine such as quantum phase estimation – an

algorithm to calculate the phase of an eigenvalue for a given unitary [6].

QFT implements the operation

| j⟩ →
1

2N/2

2N−1∑
k=0

exp
(
2πi jk

2N

)
|k⟩. (2.28)
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Figure 2.13: Circuit diagram of quantum Fourier transform (QFT). The QFT
circuit which implements (2.28). It consists of N blocks and then finished by
a series of swap gates. Each block is formed of Hadamard and controlled
rotations acting on the same qubit. The controlled rotations are of the form
Rl = diagm

(
1, exp(2πi/2l

)
.

This can then be rewritten in a product form with | j⟩ written in its bit string repre-

sentation as

| jN−1.. j1 j0⟩ →

(
|0⟩ + exp

[
2πib( j0)

21

]
|1⟩

) (
|0⟩ + exp

[
2πib( j0:1)

22

]
|1⟩

)
...

(
|0⟩ + exp

[
2πib( j0:N−1)

2N

]
|1⟩

)
2N/2 ,

(2.29)

b( j0:k) =
k∑

l=0

2l jl. (2.30)

From this representation it can be seen how to write the QFT circuit in terms

of blocks of controlled rotations. In particular we note that the last term |0⟩ +

exp
[

2πib( j0:N−1)
2N

]
|1⟩ depends on all qubits, the second term depends on all except

the N th qubit etc. until the first term |0⟩+ exp
[

2πib( j0)
21

]
|1⟩ which only depends on the

first qubit. Therefore the nth block (for the nth term) is prepared onto qubit N−n with

gates altering only this qubit, controlled by lower magnitude qubits. We note that

this prepares the desired state but with qubits in the wrong order. This is corrected

by a series of swap gates but these can often be discounted and instead qubits

can be relabeled for later operations. This is similar to the bit reversal used in the

classical fast Fourier transform implementations of the discrete Fourier transform

[73].

The nth block starts with a Hadamard on qubit N − n which acts as | jN−n⟩ →

1
√

2
(|0⟩ + exp(2πi jN−n/2)|1⟩). Then follows a series of controlled rotations of R̂l =

57



diagm
(
1, exp(2πi/2l

)
with l depending on term n and control m as l = N + 1− n−m.

These rotations leave |0⟩ unaltered and only change |1⟩ if the control qubit | jm⟩ is

in state |1⟩. Together these gates prepare the nth term. The full circuit is shown in

Fig. 2.13.

2.7.4 Adder & Subtractor Circuits

We now consider a circuit which can implement the operation:

ÛADD : |g⟩N |h⟩N |0⟩N+1 −→
∑

j,k

| j⟩N |k⟩kg jhk| j + k⟩N+1. (2.31)

This is effectively adding the N qubit states |g⟩ and |h⟩ in the bit basis. The result

is an N+1 qubit state. There are multiple different ways to implement this and I

will describe two options.

The first option is via multiple controlled nots and Toffolis [74]. CNOTs and

Toffolis are considered due to how they control on |0⟩ and |1⟩ to flip another qubit

between |0⟩ and |1⟩, what we want to do with bit addition.

For clarity we consider the case of adding two basis states | j⟩ and |k⟩ with the

full result naturally satisfied by linearity. The problem is split into N sub-problems,

one for each digit. From lowest to highest magnitude qubit we want to evaluate

| jl⟩|kl⟩|rl+1⟩|rl⟩ → | jl⟩ |kl⟩ |⌊(rl + jl + kl)/2⌋⟩ |(rl + jl + kl) mod2 ⟩, (2.32)

where |· j⟩ represents the jth bit of the related state |·⟩. This sums the two given

qubits with any carry from previous operation and sets any further carry for the

next sub-problem to consider. This can be achieved in many ways as detailed in

[74]. One such example is shown in Fig. 2.14 (a). The full adder is then formed

of successive implementations of each block.
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X

(a) (b)

Figure 2.14: Circuit diagram of Adder and Subtractor blocks. (a) Block which
implements |A⟩|B⟩|0⟩|Cin⟩ → |A⟩|B⟩|A + B + Cin⟩. Repeated blocks over different
qubits will implement full adder (2.31).(b) Block which implements |A⟩|B⟩|0⟩|Cin⟩ →

|A⟩|B⟩|A − B −Cin⟩. Repeated blocks over different qubits will implement full adder
(2.36). Note that a controlled operation denoted with a white control node acts
when the control register is |0⟩ rather than |1⟩.

The second option is to utilise the quantum Fourier transform [75]. In Fourier

space addition relates to multiplication due to exp (aG) exp (bG) = exp ((a + b)G)

and therefore alters the approach to the problem. This example operates as

ÛADD : |g⟩N |0⟩1|h⟩N −→
∑

j,k

| j⟩Ng jhk| j + k⟩N+1. (2.33)

Again we consider the case of adding two basis states | j⟩ and |k⟩ which gener-

alises. For this implementation, first the quantum Fourier transform is applied to

N + 1 qubits of |0⟩|k⟩ for

|0⟩1|k⟩N →
1

2N+1/2

2N+1−1∑
l=0

exp
(
2πikl
2N+1

)
|l⟩N+1, (2.34)

as in (2.28). We also know that the Fourier transform of | j + k⟩ would be

| j + k⟩N+1 →
1

2N+1/2

2N+1−1∑
l=0

exp
(
2πi( j + k)l

2N+1

)
|l⟩N+1. (2.35)

Therefore we would like to map (2.34) to (2.35) at which point the inverse quantum

Fourier transform can be applied for the result.

Using the intuition from how the QFT circuit was built and again considering

computational basis states as bit strings, we can find this map as a series of

controlled operations. The rotations are of the same form as in the QFT R̂ j =
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Figure 2.15: Circuit diagram of Adder via QFT. Circuit to implement (2.33) using
QFT as in Fig. 2.13 as and controlled rotations R j = diagm

(
1, exp(2π/2 j

)
.

diagm(1, exp
(
2π/2 j

)
. This circuit is shown in Fig. 2.15.

With bit addition implemented, we now consider how to implement bit subtrac-

tion as

ÛSUB : |g⟩|h⟩|0⟩ −→
∑

j,k

| j⟩|k⟩g jhk|( j − k) mod 2N⟩. (2.36)

As subtraction is the inverse operation from addition, the implementation is deeply

linked to the implementation of addition. For the CNOT and toffoli gate implemen-

tation the block considering borrowing from higher magnitude qubits is shown in

Fig. 2.14(b). For the QFT implementation the alteration is as simple as the alter-

ing of the signs in the rotations (resulting in |k − j mod 2N⟩. This is because the

Fourier transform of the subtracted state as compared to (2.35) simply has ( j+ k)

altered to (k − j).

2.8 Selected Machine Learning Techniques

2.8.1 SciML & PINNs

There exists a qualitatively distinct family of protocols where DE problems are

reformulated as machine learning (ML) tasks. The corresponding field is referred

to as scientific machine learning (SciML) [76, 77].
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SciML approaches are often based on physics-informed neural networks (PINNs)

[78, 79] — deep neural networks that include differential constraints introduced

with automatic differentiation. PINN-based solvers have been applied to many

use-cases [80, 81]. Although still remaining relatively niche [82], their flexibil-

ity allows them to compete with FEM/SEM solvers in cases involving data-based

constraints [81], optimisation loops [83], and can excel when dealing with stiff and

multidimensional problems [77]. On one hand, the training grid for PINN models

that generalise well can use relatively fewer points training points than similar

methods [83]. However, PINN-based DE solvers require a costly training pro-

cess that leads to large overheads as compared to conventional methods such

as FEM, often needing > 10, 000 epochs with many function and gradient evalua-

tions. While the required function evaluations on the grid may be parallelised on

GPUs [77], in practice the cost is often not considered worth it for many industrial

applications, despite the potential of the ML setting and what the flexibility can

offer in terms of utility in use cases. Reducing the grid evaluation cost for each

epoch, and removing Lc scaling, is crucial for making PINNs industrially practical.

2.8.2 Kernel Methods

One class of algorithms typically used for classification and regression is kernel

methods [42]. For these, the model being trained is written in term of kernel func-

tions – a type of similarity function. A kernel function is a conjugate-symmetric

positive definite function κ mapping two variables x, y ∈ X to the complex space,

κ : X × X → C. A model is then constructed in terms of these – for example

f (x) =
M∑
j=1

α jκ(x, y j) + β. (2.37)

Any suitable algorithm can then be used with this model to find the solution to a

given problem.

A unique property of kernel functions which is used in many kernel methods is

the kernel trick. The kernel trick is rewriting a problem using the fact that any ker-
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nel function can be written as an inner product in a potentially high dimensional

feature space, κ(x, y) = φ†(x)φ(y). Conversely, φ†(x)φ(y) always represents a valid

kernel function. This is a consequence of Mercers theorem [84]. Informally, it cor-

responds to the statement that for any symmetric positive definite function f (s, t)

there exists a countable set of functions {ϕi}i such that f (s, t) can be expressed

as f (s, t) =
∑

i ϕi(s)ϕi(t). By using the kernel trick the model can be expressed in

terms of a function defined over a high dimensional space but it does not need to

be evaluated in that space.

As mentioned kernel functions can be utilised in many different ways depend-

ing on the problem considered [42]. Here I explore the use of a method known

as support vector regression (SVR) for regression and differential equation prob-

lems. This method utilises the kernel trick to rewrite a given problem as a system

of equations to solve. We focus on this application as we will build upon this in a

quantum computing setting in Chapter 5.

Support Vector Regression

In this section SVR for regression is explained [85]. By following a set series

of steps a regression or classification problem can be written as system of linear

equations. The resulting problem is convex, allowing for all the known positive

qualities of solving convex problems [86].

To begin, a trial function is represented as f (x) = w†φ(x) + b, where w and b

are tunable parameters, and φ(x) is a set of functions we later use the kernel trick

upon. Note at this stage we do not have to choose specific φ(x) and can leave

this is as a statement that such φ(x) would exist for our model. The first step is to

write the problem as a primal (original) optimisation model. This reads

minw,b{wT w + γeT e}, (2.38)

subject to fi = wTφ(xi) + b + ei, i = 1 : N, (2.39)
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where e is the set of error variables which relax the constraints fi = wTφ(xi)+b+ei,

and γ is a tunable hyperparameter that changes the emphasis on minimising the

error.

The process that follows is to write the model in its Lagrangian form, introducing

a set of variables (known as dual variables) to implement each constraint. The

Karush-Kuhn-Tucker (KKT) optimality conditions are then found, which emerge

from equating the first derivative of the Lagrangian with respect to each of the

primal and dual variables to zero [87]. These conditions are then used to eliminate

a subset of the primal variables. This can intuitively be understood as turning the

variable into a constraint. This leads to a system of equations which have terms

of φ(xi)†φ(x j), and by using the kernel trick these terms can be changed to κ(xi, x j).

Now the problem is written in a dual form as a system of equations to solve with

coefficients involving kernel evaluations. Similar to the MMR method, these have

to be evaluated once at the start. The resulting system of equations is

 Ω̂ + Î/γ 1

1T 0


 α

b

 =
 f

0

 , (2.40)

where Ωi, j = κ(xi, x j), Ω̂ = {Ωi, j}i, j, and α are a set of introduced dual variables.

The system of equations can now be solved with any available method to solve

such a problem. Once solved the relevant KKT conditions can be substituted

into the expression f (x;α) = w†φ(x) + b, and the kernel trick applied to get an

expression for f (x) in terms of the dual variables, which have been solved for and

kernel evaluations. We thus write our model as

f (x;α) =
|x|∑

i=1

αiκ(x, xi) + b. (2.41)

Although we started considering φ as our fitting functions, the resulting function

of this process is based on kernel evaluations and we never need knowledge of

what φ are or to directly evaluate them. We can choose the kernel functions to

use and know simply that appropriate φ exist due to Mercers theorem/the kernel
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trick.

The workflow to prepare an SVR problem is as follows:

1. Write model with minimisation function and constraints.

2. Write out Lagrangian.

3. Find the KKT optimality conditions.

4. Eliminate subset of original optimisation variables.

5. Use the kernel trick to realise problem in terms of kernels.

6. Write out remaining relationships as system of equations.

7. Use KKT conditions and kernel trick to express function in terms of kernel

functions.

The prepared SVR model can then be used for any problem of the form as-

sumed in preparing the original model. The resulting system of equations can be

solved with any suitable method. This workflow and problem set up can then be

generalised for differential equation problems. The work flow remains the same

with the constraints now being formed of the differential equation at a set of points

along with the initial value/boundary condition. As we will make use of this later

the full process for an example DE is detailed in appendix A

2.8.3 Quantile Mechanics

Quantile mechanics is a method of formulating stochastic differential equa-

tions (SDEs) to solve [88]. In simplistic terms, an SDE is a DE which contains

a stochastic/random noise term [89]. Consequently, the solution of the SDE is a

probability distribution. With quantile mechanics the SDE is solved in terms of a

quantile function (QF) rather than directly as a probability distribution.
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Figure 2.16: Sampling of a quantile function. We plot a normal probability
density function as a red curve (PDF), being the Gaussian function with (µ, σ) =
(0, 1/2). The domain is chosen as X = [−1.5, 1.5]. The corresponding cumulative
distribution function is presented by the purple solid curve (CDF). The quantile
function, rescaled to z ∈ [−1, 1], for the corresponding CDF is shown in orange
(QF). The red diamonds correspond to a randomly drawn latent variable z, and
associated probability for the sample value, connected by dotted lines.

All probability distributions p(x) have an associated quantile function Q(z). This

quantile function is the inverse of the cumulative distribution function (CDF) F(z)

Q(z) ≡ F−1(z). (2.42)

This definition is such that if Q(z) is sampled by z following the uniform distribution

Z ∼ U(0, 1) the resulting samples X follow the associated pdf X ∼ p(x). To see this

first consider the CDF defined as FX(x) =
∫ x

−∞
p(x′)dx′. This maps possible sample

values x to a value lying in [0, 1] range on the ordinate axis (see Fig. 2.16 for an

illustration). Therefore the inverse function F−1(z) maps [0, 1] to sample values.

We note z can easily be rescaled with a popular choice of [−1, 1].

Often finding the associated quantile functions for a given PDF is difficult, find-

ing F−1(z) generally leading to a transcendental problem without a closed-form

solution. This poses computational challenges and requires graphical solution

methods [90]. Alternatively, they can be obtained by solving nonlinear partial

differential equations derived from an SDE. A general system of stochastic differ-
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ential equations can be written as [89]

dXt = f (Xt, t)dt + g(Xt, t)dWt, (2.43)

where Xt is a vector of stochastic variables parameterised by time t (or other

parameters). Deterministic functions f and g correspond to the drift and diffusion

processes, respectively. Wt corresponds to the stochastic Wiener process. The

stochastic component makes SDEs distinct from other types of partial differential

equations, adding a non-differentiable contribution and leading to a solution as a

probability distribution.

An SDE can be rewritten to be in terms of a quantile function, the resulting DE

known as quantilised Fokker-Planck equation. For the general form in (2.43) this

is (see full derivation in Ref. [88])

∂Q(z, t)
∂t

= f (Q, t) −
1
2
∂g2(Q, t)
∂Q

+
g2(Q, t)

2

(
∂Q
∂z

)−2
∂2Q
∂z2 ,

(2.44)

where f (Q, t) and g(Q, t) are the drift and diffusion terms familiar from Eq. (2.43).

Eq. (2.44) is solved as a function of latent variable z and time t. Once Q(z, t)

is known, evaluating it at random uniform z’s as t progresses we can get full

time series (trajectories) obeying the stochastic differential equation (2.43). This

approach is called quantile mechanics.

2.8.4 Fitting Bases

When trying to fit functions to a problem – such as regression or DEs – one

method is to choose a set of basis functions {T j(x)} j and then the algorithm’s goal

is to find the best approximation of the problem as a linear combination of these

basis functions.
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One popular choice is Fourier functions where

T j(x) = exp(−i2π jx/J) j = 0 : J − 1. (2.45)

Therefore the fitting functions are trigonometric and periodic and give insight into

the frequencies of the function. There are known accuracies for the fitting of

Fourier series and convergence as basis set size increases [91].

Additionally, say we took v(x) = (T0(x),T1(x), ...TJ(x))T and evaluated at integers

0:J. The resulting set of vectors forms an orthonormal base. The map from this

to identity is then the Discrete Fourier transform – as discussed in section 2.7.3.

An alternative to Fourier functions is to use Chebyshev Polynomials of the first

kind T j(x) and/or second kind U j(x). These are of the form

T j(x) = cos( j acos(x)) j = 0 : J − 1, (2.46)

U j(x) = sin(( j + 1) acos(x))/
√

1 − x2 j = 0 : J − 1. (2.47)

With x restricted to [−1, 1] these can be written as polynomials, are not periodic

but are restricted to the range given. Similar to Fourier series these have known

behaviours for fitting [92]. Associated with the Chebyshev polynomials of the first

kind are the Chebyshev nodes

x j = cos((2 j + 1)π/2J) j = 0 : J − 1. (2.48)

These are the zeros of the Jth first kind Chebyshev polynomial and are often

used as training points as their use minimises errors [92] – in particular unwanted

oscillatory behaviour at the interval edges.

Chebyshev polynomials also have other properties such as chaining, nesting,

and simple differentiation rules. The chaining properties for polynomials of the

first and second kind read as 2Tm(x)Tn(x) = Tm+n(x) + T |m−n|(x) and Um(x)Un(x) =

67



∑n
k=0 Um−n+2k(x), respectively. Derivatives can be obtained as dTn(x)/dx = nUn−1(x).

Nesting corresponds to the relation Tn(Tm(x)) ≡ Tnm(x). Finally, polynomials of

different kinds can be converted between as Un(x) = 2
∑n

j even T j(x) when n is even,

and Un(x) = 2
∑n

j odd[T j(x) − 1] when n is odd.

There are also of course many of other choices of basis functions but these

are two that are commonly used and will be used later in my work. Choice of

basis function set often comes down to what most suits the problem itself – i.e.

Fourier functions would be more appropriate than Chebyshev for a trigonometric

problem.

2.9 Overview of Differential Equations & Solvers

Differential equations govern many areas of industrial and research interest,

from aerodynamics to finance to chemistry, yet many instances remain difficult

to solve classically. A differential equation (DE) is defined as an equation of un-

known functions which includes at least one derivative [93, 94]. The aim of solving

a (DE) is to find the functions such that the equations are satisfied. Throughout

this thesis we tend to write differential equations as functionals in their residue

form e.g.

DE[f, ∂f, x] = 0. (2.49)

Here f denotes the unknown functions, ∂f the derivatives of interest and x the

independent variables. Solving a DE (when solvable) tends to lead to a family

of functions with degrees of freedom. Therefore, generally initial conditions or

boundary values are specified along with the problem to solve, such as

f (x0) = f0 or f (x) = g(x) x ∈ B. (2.50)

By specifying these values a particular solution is set.
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An example of a simple form of differential equation is

d f
dx
− g(x) f − h(x) = 0. (2.51)

This is a linear DE with a single unknown function f , first order derivatives and

single independent variable x. Most DEs of interest, particularly those hard to

solve, include other features and properties which generally increase complexity.

One property is the inclusion of higher order derivatives. Another is multidimen-

sional functions f (x) where there a multiple independent variables. Additionally,

non-linear problems can be considered where terms of the DE include products of

unknown functions and their derivatives. Also some DEs are instead systems of

DEs, including multiple DEs describing multiple unknown functions f to be solved

simultaneously. A given DE problem could have any subset of these features.

As previously mentioned, it is accepted that for quantum computing to find ad-

vantage, problems which are hard to solve classically should be considered. The

field of DEs include such problems and we consider features which can lead to

classical inefficiency. One possible type of hard problem is those with large num-

bers of dimensions. This is due to how the amount of data that needs to be

considered whilst solving scales with dimensionality and is sometimes known as

the ”curse of dimensionality” [95]. Another feature often leading to classically hard

to solve DEs, is what is known as stiffness and relates to the degree of precision

needed to be considered during solving due to numerical instability [96]. Further-

more, some DEs can be chaotic meaning any deviation in initial value leads to

wildly different solutions [97]. These properties and others lead to many DEs of

interest which are currently hard to solve classically and are therefore possible

areas to search for quantum advantage.

However, these are just possible areas for advantage, being classically hard

is not enough to guarantee quantum advantage, the problem could be hard both

classically and for quantum computation. Therefore, when developing quantum
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algorithms we generally want to focus our attention on areas where we also have

intuition for possible quantum advantage. For DEs this often becomes problems

which are large scale. Then it is hoped that the exponential computational space

could be used to represent and process the large amounts of data and/or repre-

sent complicated functions (i.e. expressivity). I now give an overview of current

DE solvers, both classical and quantum.

2.9.1 Differential Equation Solvers

Classical

As differential equations are such an area of interest there exists many methods

to solve them. First of all is solving them analytically – finding the exact expression

for the solution [98]. This gives a perfect solution and most DE applications would

ideally be solved by receiving such an expression. However, many DEs of interest

cannot be solved so. Instead numerical methods are utilised. These numerical

methods are further divided into local and global methods.

Local approaches rely on discretisation of the space of variables, with deriva-

tives being approximated with numerical differentiation techniques (such as finite

difference methods). There are different ways this can be used to solve DEs,

such as writing as linear system equations to solve or to iteratively step forward

from the initial condition point by point. When using this type of method generally

no assumption is preemptively hard-coded into the solution – it is solving for a set

of values over the discretised space and interpolation is dealt with later if needed

– giving useful flexibility. However, often a fine grid for multivariable functions is

required to represent a solution qualitatively and quantitatively [99], leading to

increasing computational cost.

Global methods represent the solution in terms of a suitable basis set [90]. This

recasts the problem to finding optimal coefficients for the polynomial approxima-

tion (e.g. Fourier or Chebyshev) of the sought function. By choosing the set of
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basis functions the type of functions easily representable is set, therefore choos-

ing a suitable basis set for the problem is important. When such a basis set is

chosen these methods tend to be good at ensuring that desired behaviour in the

solution is shown. When suitable basis functions have been chosen for a problem,

convergence generally outperforms that of local/discretised methods and can be

exponentially fast [100]. Additionally interpolation is not required as the space

has not been discretised. However, finding spectral solutions for complex prob-

lems may require ever-increasing basis sets to achieve high accuracy, enlarging

the global differential operator, and introduces difficulties when dealing determin-

istically with boundary conditions. What can be considered as a particular type of

global method is PINNs as introduced in section 2.8.1

Quantum

Because differential equations of interest can be hard to solve classically, the

solving of DEs has been highlighted as an area of potential use for quantum

computing. Referring back to section 2.1.4 there are two main ways that quantum

computers are hoped to potentially get a speed-up. One is when the differential

equation is discretised as a system of equations, and therefore the naturalness

of linear algebra to quantum computing can be used[101, 102]. The other is that

certain DEs can have huge amount of information – i.e. high dimension or a large

system. Thus the exponential large space could be utilised.

Quantum algorithms for DEs have been developed and is still an area of inter-

est. Many fall under the class of local methods and utilise the discretised space

and amplitude encoding to encode and consider an exponential number of points.

In particular the DE is reformulated as linear system of equations which can then

be solved with an algorithm such as HHL [101, 102]. Alternatively, iterative step

methods [103] and time marching techniques [104] have been considered. These

methods tend to be effective when considered for linear differential equations with

provable guarantees given efficient preparation of arbitrary states, efficient read-
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ing of final state and circuit representation of the relevant matrix. Nonlinear ver-

sions are being considered [105] however they remain harder to deal with due

to the fundamentally linear nature of quantum mechanics. This class of methods

tends to utilise amplitude encoding with the solution being encoded over all the

amplitudes of a state, therefore requiring the full state to be measured to retrieve

the solution. Additionally, these algorithms often require the preparation of an

arbitrary state based on the right hand side of the discretised DE. Therefore the

data input and output problems are as described in section 2.5.4 often need to be

considered.

A different approach for local methods is presented in [1]. This is a hybrid

variational approach and considers nonlinear differential equation. Nonlinearity

is encoded via quantum nonlinear processing units realised by ancillary quantum

registers and controlled-multiqubit operations. The approach uses amplitude en-

coding, offering memory saving while potentially facing the data input and output

problems.

There has been comparatively less work thus far for global methods. Consid-

ering such an approach to solving differential equations is the work [106]. Here

Chebyshev polynomials are used as a basis set. By using the derivative prop-

erties and multiplication properties of the Chebyshev polynomials the differential

equation can be written as a system of equations – solved this times for coeffi-

cients rather than discretised function values. For regression a variational global

method has been considered as quantum circuit learning [28] as discussed in

section 2.6.2 but not for differential equations. We therefore consider how such a

global variational approach can be utilised for the solving of differential equations.

So far my focus has been on digital approaches. Alternatively, there are quan-

tum annealing approaches. Quantum annealing encodes the solution of a prob-

lem as a ground state of a quantum system. This system is then prepared on the

quantum device and evolved to find the ground state. This type of computation

could be used to solve DEs with approaches such as in [107].
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2.10 Classical Simulation of Quantum Algorithms

During the development of quantum algorithms, often one wants to implement

and test how it runs. However, current quantum devices are limited and expen-

sive enough that this is generally infeasible during development. Instead, during

development the algorithm is often simulated on classical devices.

When classically simulating a quantum algorithm it is coded such that the clas-

sical computer mimics performing the quantum operations by utilising the mathe-

matical framework of quantum mechanics. This is often done with what is known

as full state simulation. The classical computer performs linear algebra where

the full state is known as a vector and operators are implemented via their as-

sociated matrices. The size of these operations increase exponentially with qubit

number and therefore these simulations are inefficient. This is expected, if it could

be simulated efficiently there would be no advantage for quantum computation.

Therefore these classical simulations are often of limited qubit scale.

Another difference is that classical simulation does not include any intrinsic

noise. This allows easy checking of how the algorithm would run in a fully ide-

alised situation. However, significant noise is a for now unavoidable part of quan-

tum computation and therefore it’s often desired to know how the algorithm re-

sponds to the presence of noise. For this noise models can be included which

adds in noise modeled on the noise of devices.

It is possible to encode these simulations entirely from scratch with just linear

algebra packages. However, for efficiency, generally a package specifically for

classical simulation of quantum algorithm is utilised. There are a variety avail-

able such as Qiskit [108], PennyLane [109], Yao [110] and Qadence [111]. These

packages tend to have predefined operations and functions to aid the implemen-

tation of simulations. Additionally, they often have some built in optimisation in the

application of operators than naive matrix application. Some packages are devel-
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oped related to particular devices so may have functions or noise models specific

to that device. Choosing a package to use depends on necessary functions, what

programming language you want to use and potentially desired device.

2.10.1 My Implementations

Throughout my thesis I develop algorithms and test run them on example prob-

lems. For this I classically simulate my results. I utilise the package Yao [110]

used with the programming language Julia. This package was chosen for its built

in efficient derivative calculations which are important for DEs and gradient based

optimisers.

As my focus is on QML and variational methods there are some similarities

between my simulations. Notably they start with a trial function being defined as

a quantum model. A loss function is then defined which when minimised results

in the trial function solving the given problem. We then have to decide what

optimiser to use. These are then used together to minimise the loss function

and find a set of theta. If training was successful these theta will result in the

quantum model representing the solution to the problem. Pseudocode of this

process follows below:

Algorithm 1 General Workflow
1: def trial function fθ(x; θ)
2: using number of qubits, variational ansatz, feature map
3: def loss function L(θ)
4: using training grid in x, trial function, trial function derivatives
5: def optimiser
6: using learn rate, maximum iteration number
7: def initial parameters
8: minimise L(θ) w.r.t θ loop
9: evaluate L(θ) and derivatives at current θ

10: provide to optimiser for new suggested θ
11: update θ
12: return to 9 until end condition satisfied
13: receive optimised parameters θ∗

14: if test problem with known solution evaluate accuracy of resulting function
15: using fθ(x; θ∗), known solution, measure of success, plotting
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This is a simplified view of my methodology for implementing classical sim-

ulations. The quantum model and loss function changes significantly based on

problem and algorithm and provides a lot of complexity in the algorithm and its im-

plementation. Additionally, there are variations on this simplified workflow where

significant pre or post calculations are required. Other variations include inclusion

of any training techniques such as regularisation and initialisation.

As a specific example, code for my implementation of QCL from [28] as dis-

cussed in section 2.6.2 is included in appendix B. This follows closely the work-

flow as presented in the pseudocode for the task of function learning regression.
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Chapter 3

Solving Nonlinear Differential

Equations with Differentiable

Quantum Circuits

3.1 Declaration of Contribution

The work presented in this chapter is published within [112]. My contributions

to this work involve the implementation and running of all simulations, the formu-

lation of the boundary handling and shared contributions for writing of the paper.

3.2 Introduction

In this chapter we develop a variational quantum algorithm for the solving of

nonlinear PDEs. We propose a quantum model representing a trial solution of a

given DE problem which can then be optimised for the solution by minimising the

corresponding loss function. The core of this idea relies on the differentiation of

the encoding circuit, the quantum feature map, that allows the representation of

an analytical function derivative in a quantum form and the ability to search for

the solution in the exponentially large Hilbert space. We show how the method

can be applied to industrially relevant problems, and consider a particular ex-

ample in fluid dynamics described by Navier-Stokes equations. In this example,
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we compute density, temperature and velocity profiles for the fluid flow in the

convergent-divergent nozzle and find good convergence to the correct solutions.

Notable features of this algorithm include the use of quantum feature map en-

coding allowing for exact derivatives, access to the function value for continuous

x and simpler boundary handling. Furthermore, the structure of our quantum

model helps the data input-output problem to be avoided. Also the suitable solu-

tion search takes place in a exponential space of fitting polynomials with respect

to number of qubits. This can lead to high expressivity for limited physical re-

sources. These points and the variational workflow leads to an algorithm suitable

for near-term quantum devices. Devices with increased scale and reduced noise

would be able to run the algorithm with a wider variety of quantum model circuit

choices and parallel training leading to wider variety of expressivity and potentially

improved training behaviour.

3.3 Method

3.3.1 Algorithm

3.3.2 Quantum Model

When solving a DE the target is to find the function(s) which solve the given

problem. To achieve this we represent a trial function fθ(x) as a quantum model

and train it to solve the given DE. How to form a quantum model of a function was

discussed in section 2.4. We choose to use the quantum model

fθ(x) = ⟨0|Û†φ(x)Û†θ |C|ÛθÛφ(x)|0⟩, (3.1)

where Ûφ(x) is a feature map, Ûθ the variational ansatz and C the cost func-

tion. The circuit diagram for this model is shown in Fig. 3.1(a). Our algorithm

is still valid for alternative quantum models provided that the parameter shift rule

(section 2.4.4) is valid to apply or there is an alternative method for calculating
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Figure 3.1: Differentiable quantum circuits. (a) Quantum circuit used for en-
coding the value of a function at a specific value of the variable x = xi. The circuit
consists of a feature map Ûφ that encodes the x-dependence, followed by vari-
ational ansatz Ûθ, and an observable-based readout for the set of operators Ĉℓ.
The measurement result is classically post-processed to provide a quantum func-
tion representation fθ(x) as a sum of expectations. To compose the loss function
circuit measurements for different points of optimisation grid {x j} j are required.
(b) Derivative of the sought function fθ(x) evaluated at specific point x = xi is esti-
mated as a sum of expectations for derivative quantum circuits. The full structure
follows from the feature map differentiation described in the text and shown for
example in Fig. 3.2.

derivatives. The choice however can greatly affect performance and choosing

suitable set-up for a given problem is of great importance. We now discuss some

of the options available in choosing the quantum model.

Feature Maps

As described in section 2.4.1 a quantum feature map is a way to embed de-

pendence on an independent variable x into a quantum model. It consists of a

circuit Ûφ(x) and x is a parameter of that circuit. The choice of feature map effec-

tively chooses the set of fitting basis available. In our algorithm any could be used
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Figure 3.2: Product feature map and its derivative. (a) Quantum feature map
of a product type, where single qubit rotations (here chosen as R̂y) act at each
qubit individually and are parametrised by a function of variable x. Specifically,
the expectation value of the circuit is shown, with thin pink and green blocks de-
picting the variational ansatz and the cost function measurement respectively. For
the nonlinear feature encoding the nonlinear function φ(x) is used as an angle of
rotation. The product feature map can be further generalised to several layers,
and different functions {φ}. Several feature maps can be concatenated to rep-
resent a multivariable function. (b) shows the derivative quantum circuit for the
product feature map. Differentiation over variable x follows the chain rule, with the
expectation value of the derivative written as a sum of separate expectations with
shifted phases, repeated for each x-dependent rotation.

(provided derivatives can be found) but in particular we discuss product feature

maps and the type of fitting basis they lead to. We also introduce the Chebyshev

product basis.

Product feature maps. A product feature map is a type of feature map which

consists of a single layer of rotations on each qubit. The angle of rotation is a

(possibly non-linear) function of x, φ[x].

Ûφ(x) =
N⊗

j=1

R̂ j
α(φ[x]), (3.2)

where N is the number of qubits. R̂ j
α(φ[x]) denotes a rotation on qubit j in basis

α (often chosen in Pauli basis but not restricted to) of angle φ[x]. This represents

the feature map choice used in quantum circuit learning [28], and several similar

encodings were discussed in [113, 29], and reviewed in [114]. An example with

φ(x) = arcsin x and α = Y is shown in Fig. 3.2(a). For this example the unitary
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operator Eq. (3.2) is expanded as

Ûφ(x) =
N⊗

j=1

exp
(
−i

arcsin x
2

Ŷ j

)
, (3.3)

leading to amplitudes that depend on the encoded variables as cos[(arcsin x)/2]

and sin[(arcsin x)/2]. Acting on the initial state |0⟩ this feature map encodes the

variable as an N th degree polynomial formed by {x,
√

1 − x2} and their products

[28]. Note that these functions come from after the expectation value has been

measured, to which the feature map contributes twice. The redundancy from

many qubits thus forms a basis set for function fitting [113].

As we are solving differential equations, derivatives with respect to x must be

able to be calculated. Here we make use of the parameter shift rule for efficient

evaluation of exact gradients as explained in section 2.4.4. Generally in a feature

map x is a parameter of more than one gate, therefore the product rule for deriva-

tives is used. The corresponding derivative quantum circuits for the example are

shown in Fig. 3.1(b) and Fig. 3.2(b). Alternatively, finite difference methods (FDM)

could be used. This would be an approximate derivative but depending on FDM

chosen could result in fewer measurements needed.

To generalise the product-type feature map, we can consider cases where the

encoding function φ(x) depends on qubit number j as φ j(x). This leads to a wider

range of basis functions and therefore generally increased expressivity. We refer

to this as a tower feature map.

Chebyshev product feature maps. Next, we consider a distinct choice of

nonlinear quantum feature map that we name the Chebyshev product feature

map. Belonging to the product feature map family, it drastically changes the basis

set for function representation. As a building block we use a single qubit rotation

R̂ j
y(φ j[x]) with φ j(x) = 2n[ j] arccos(x) where n[ j] is a function mapping qubit number
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to an integer, such that the encoding circuit reads

Uφ(x) =
N⊗

j=1

R̂ j
y(2n[ j] arccos(x)). (3.4)

To see the fitting basis this results in we first expand the rotation using Euler’s

formula, getting

R j
y(φ j[x]) = exp

(
−i

2n[ j] arccos(x)
2

Ŷ j

)
(3.5)

= cos(n[ j] arccos(x))1 j − i sin(n[ j] arccos(x))Ŷ j

= Tn[ j](x)1̂ j +
√

1 − x2Un[ j]−1(x)X̂ jẐ j,

where Tn(x) and Un(x) respectively denote degree-n Chebyshev polynomials of

first and second kind. The Chebyshev polynomials and their properties were

introduced in section 2.8.4. By using this feature map the fitting basis is in terms

of Chebyshev polynomials with their fitting properties.

In the present study we consider two types of Chebyshev product feature maps.

The first version corresponds to using n[ j] = 1 for all j defined as

Uφ(x) =
N⊗

j=1

R j
y(2 arccos x). (3.6)

When using this with N multiple qubits, the tensor product of the qubits results

in multiplications of the Chebyshev polynomials which when using Chebyshev

product rules results in fitting basis of Chebyshev polynomials up to degree N.

The second version we consider corresponds to a Chebyshev tower feature

map defined with n[ j] = j as

Uφ(x) =
N⊗

j=1

R j
y(2 j arccos x), (3.7)

where the encoded degree grows with the number of qubits, creating a tower-like

structure of polynomials with increasing n = j. The product rule again results
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in higher order Chebyshev polynomials but with different order starting basis the

highest order now available is the sum of integers up to N which is equal to N(N +

1)/2. This leads to higher expressivity without increasing system size or number

of gates.

Variational Ansatz

Another still open choice for our quantum model is the variational ansatz. This

is again open to free choice provided gradients can be calculated. The variational

ansatz and some common choices are discussed in section 2.4.2.

Differential equations in general do not have symmetries that can be exploited

for symmetry or geometric ansatze. Therefore we consider hardware efficient

ansatze as in Fig. 2.5. By considering these types of ansatze the algorithm

remains suitable for near-term quantum computing.

Cost Function

The final choice for the quantum model is the cost function C as our quantum

model structure is an expectation value. Cost functions are introduced in section

2.4.3. We mainly consider local cost functions due to the delayed onset of barren

plateaus when considering them. We also note that when choosing C =
∑

j α jC j,

{α j} j can be considered static coefficient or a set of variational parameters to be

optimised along with θ during the optimisation loop.

3.3.3 Loss Function

As with all variational algorithms training trial solutions to solve a problem we

need to proved a measure of how well the current function solves the problem.

This measure is the loss function as intoduced in section 2.2. The classical op-

timiser can then update the variational parameters to reduce this ‘distance’. For

this problem our loss is taken as the sum of the ’distance’ between the residue of
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the DE and 0 at a set of chosen training points. The initial value/boundary can

also be considered within the loss (see later section on boundary handling).

We can write a loss function parametrised by variational parameters θ for a

differential equation in the general form

L
(diff)
θ

[dx f , f , x] =
1
M

M∑
i=1

L
(
DE[dx f (xi), f (xi), xi], 0

)
(3.8)

with L(a, b) being a function describing how the distance between the two argu-

ments a and b is being measured. The loss is estimated on a grid of M points,

and is normalised by the grid size. Functional DE corresponds to the differen-

tial equation residue written in the form DE[dxu, u, x] = 0. It can be evaluated by

combining values of f and dx f at the training grid points.

The choice of distance definitions L alters the loss landscape and dictates

how the optimiser perceives the distance between vectors. This makes the loss

distance measure another hyperparameter that when chosen can affect conver-

gence. A standard measure to use is the mean square error (MSE) introduced

as

L(a, b) = (a − b)2. (3.9)

While being simple, we find the choice (3.9) intuitive and performing sufficiently

well in numerical simulations. Another common measure is mean absolute error

(MAE) loss defined with distance L(a, b) = |a − b|. Finally, several more complex

metrics can be used, including variants of Kullback-Leibler (KL) divergence [115]

and Jensen–Shannon divergence [116].

Regularisation

Given that our goal is to find a variational spectral representation of the differen-

tial equations solution using large basis sets, the optimisation procedure benefits
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from having a good initial guess or having access to any knowledge about ex-

pected behaviour. This helps the optimiser to avoid local minima. One way to

achieve this is regularisation.

There are many methods of regularisation. We consider one of the simplest,

bias the optimiser to favour specific behaviour/form by providing an additional

regularisation loss term. This is constructed by considering a set of regularisation

points {xreg}
R
r=1 and regularisation values {ureg}

R
r=1 as

L
(reg)
θ

[ f , x] =
R∑

r=1

ζ(n j)L
(

fθ(xreg,r) − ureg,r

)
. (3.10)

L is again a distance measure. This loss term therefore leads the optimiser to

try to fit the trial solution to the regularisation terms which describe expected

behaviour/shape/any other known information. For example if it is known that the

solution should overall increase, regularisation values which increase could be

given.

As the regularisation values given are a guide but not the exact value wanted

a weighting factor of ζ(n j) proceeds the regularisation term where n j is the epoch

number. To prevent fitting to the inexact regularisation values this term should

start large for low epoch number then decrease to/near zero as epoch number

increases. This gives the optimiser motive to find a solution with the correct gen-

eral behaviour/shape to start with. Then as the regularisation loss term falls the

trial solution should be a good inital guess and the focus goes to the DE term.

Some example choices of regularisation weighting include linearly decreas-

ing regularisation weight, ζ(n j) = 1 − n j/niter where niter is the maximum iteration

number. This strategy works for small learning rates and large number of iter-

ations, such that the optimiser has sufficient “time” to adjust to the constantly

changing loss landscape. Another choice corresponds to a reverse sigmoid opti-

misation schedule, where a smooth drop of regularisation weight is performed at
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pre-defined training stages. We parametrise this schedule as

ζ(n j) = 1 − tanh
(
n j − ndrop

δ jniter

)
(3.11)

where ndrop denotes the iteration step number at which regularisation weight drops,

and δ j assigns the transition rate. This allows the DQC to initially focus almost

entirely on the regularisation optimisation, later switching the focus towards the

gradient optimisation.

Variations of this regularisation term exist such as regularising derivatives in-

stead of function value. Alternatively, the term could be set up to avoid certain

values/behaviours instead of favouring. E.g. if it was known that the solution

should never be 0 a term which diverges if fθ(xreg,r) is 0 would discourage the

optimiser from that area.

3.3.4 Boundary Handling

As our goal is to construct a quantum circuit that satisfies a system of differen-

tial equations, together with matched derivatives we need to ensure that an initial

value or boundary value problem is solved. Generally, this corresponds to fixing

the function value at a required initial point or a collection of boundary points,

thus resembling the quantum circuit learning tasks considered in Ref. [28]. At

the same time, there are several ways how the DQC-based function fθ(x) can be

constructed, leading to varying performance and specific pros/cons when solving

particular problems.

Information about the boundary can be included as part of the loss function. A

boundary part of the loss can be written in the form

L
(boundary)
θ

[ f , x] = η
∑

j

L
(

fθ(x j
0) − u j

0

)
, (3.12)

85



where L is a distance measure, {x j
0} j represents the set of boundary points (or

an initial point), {u j
0} j is a vector of boundary values, and η is a pinning coefficient

which determines the emphasis the optimiser should place on boundary fitting

versus DE fitting.

Pinned boundary handling. The first option is to include the information about

the boundary in the expectation of the cost function, then trained with the bound-

ary loss term. This corresponds to simply choosing a cost operator Ĉ, and repre-

senting the solution in the form

f (x) = ⟨ fφ,θ(x)|Ĉ| fφ,θ(x)⟩. (3.13)

The initial value u0 is then matched via the boundary term in the loss func-

tion. The strength of the pinned boundary handling is in equivalent treatment of

boundary and derivative terms, both being encoded in the eigenspectrum of Ĉ.

At the same time, the weakness corresponds to the necessity of adjusting the

boundary value starting from the one represented by initial θinit, typically gener-

ated randomly. This can be adjusted by shifting f (x) by a constant-times-identity

term added to the cost operator, Ĉ = α01+
∑M

j=1 α jĈ j, where α0 is set such that for

θinit ∼ random[0, 2π] the function ⟨ fφ,θinit(x)|Ĉ| fφ,θinit(x)⟩ typically lies close to u0 value

when evaluated at x = x0. Another possible weakness is that the boundary and

differential terms in the loss may compete against one another.

Optimised boundary handling. Alternatively, we also propose a boundary

handing technique that relies on a classical shift of the solution, but defined by

the gradient descent procedure on par with variational angles optimisation. This

removes the need to include boundary information in the cost expectation, but

information still needs to be included in the loss function. Namely, we seek for the

solution in the form

f (x) = fc + ⟨ fφ,θ(x)|Ĉ| fφ,θ(x)⟩, (3.14)
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where fc ∈ R is a variational parameter alongside the quantum ansatz angles

and updated accordingly via the classical optimiser. Therefore, the gradients for

fc have to be calculated additionally when using this boundary handler. One

strength of the described method is that, due to the classical shift, even if the

random initial angles start such that ⟨ fφ,θinit(x0)|Ĉ| fφ,θinit(x0)⟩ is far from the initial

value u0, the optimiser can quickly and easily update fc to rectify this. However,

this approach could experience the same weakness as the pinned approach and

end up with boundary and loss terms competing.

Floating boundary handling. The boundary does not have to be considered

within the loss. Instead this choice of the boundary handler corresponds to iter-

atively shifting the estimated solution based on the boundary or initial point. For

this method the boundary information does not require a separate boundary loss

term nor is it encoded in the expectation of the cost function. Instead it is set iter-

atively within the parametrisation of the function. As the function is parametrised

to match a specific boundary, information about the boundary is still contained

within the function and its derivatives. Therefore boundary information is still

present within the loss function despite there not being a separate boundary loss

term. We parametrise the function as

f (x) = fb + ⟨ fφ,θ(x)|Ĉ| fφ,θ(x)⟩, (3.15)

with fb ∈ R being a parameter adjusted after each iteration step as

fb = u0 − ⟨ fφ,θ(x0)|Ĉ| fφ,θ(x0)⟩. (3.16)

This effectively allows the solver to find a function ⟨ fφ,θ(x)|Ĉ| fφ,θ(x)⟩ which solves

the differential equation shifted to any position, then being shifted to the desired

initial condition as shown in Eq. (3.15). This method of boundary handling guar-

antees exact matching to initial values given and does not require a separate

boundary term in the loss function, thus the derivative loss term does not have
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to compete with the boundary loss. Furthermore, as we allow the cost function

to match to the solution shifted by any amount, this simplifies the choice for op-

timal angles and removes the dependence on initial θinit. However this method

does require knowledge of an exact initial value which can be an issue in specific

situations.

3.3.5 Generalisation

Most of the discussion so far has used notation/terms so far as if the DE consid-

ered is a single, first order, one dimension DE. Many DE of interest will not be of

this form and instead of a more general form. Here we discuss how to generalise

the algorithm.

Higher Order DEs. A simple generalisation to make. The residue of the dif-

ferential equation and therefore the loss function will now require evaluation of all

the different order of derivatives present in the differential equation. This can be

done with succesive applications of the parameter shift rule.

System of DEs. When solving a system of differential equations we need

to decide how multiple functions should be encoded simultaneously. There are

several ways that this can be achieved. The first approach we consider is to use

the same quantum register for all functions, thus compressing information about

the function vector using the same feature map circuit and variational ansatz.

The functions are then defined through the choice of different cost operators at

the readout stage. This method is resource-frugal, and is suitable for certain

systems. However, the choice of suitable cost operators becomes complicated,

as in some cases shared register encoding may exhibit competition between the

optimisation of different functions. This concerns the question of expressibility of

the set of cost operators, and may potentially be solved using a weighted sum of

operators with optimised weights.
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A second option is to use separate quantum registers, and correspondingly a

different feature map and variational ansatz for each function. This removes the

issue of choosing the cost operators, and avoids the related direct competition

due to independent parametrisation. While requiring more resources we note

that function and derivative evaluation can be done in parallel. However, we note

that as a combined loss function is considered care must be taken when timing

the circuit runs.

No matter how the multiple functions are encoded the information of the system

of DEs is encoded into the optimisation loop via the loss function. Each DE forms

its own loss term as in (3.8) which are then summed for the overall differential

loss. It is possible for each DE loss term to have a different choice of L and to

have different scaling coefficients however generally it is preferred to keep them

the same. If they are kept the same the optimiser priorities all DEs in the system

the same which is often what’s wanted.

Multidimensional DEs. To solve multidimensional DEs the quantum model

of the trial solution must contain dependence on all of the variables. This can be

done in any way provided all relevant derivatives and values can still be evaluated.

How it is done will affect the expressivity and trainability of the model.

One possible choice is to layer separate feature maps for each variable along

with variational ansatze – reminiscent of data re-uploading. Or one feature map

could be used which uses contributions from all variables in determining its pa-

rameters. The second choice has a wider range of possible expressivity – espe-

cially if used in conjunction with data re-uploading. The first choice, by keeping

contributions from each variable separate, allows for easier control of how each

variable is encoded and what behaviour/dependence the trial solution is likely to

exhibit when varying that variable. e.g. it would be easier to bias one variable to

be periodic and another symmetric.

89



_input_:

boundary conditions

du1 /dx = l1 u2 + l2 u1

du2 /dx = -l2 u2 - l1 u1

u1(0) = u1,0 ,    u2(0) = u2,0 

_initialize_DQC_struct_: 

choose boundary

pinned
floating
optimized

choose varational
ansatz

hardware efficient
alternating blocks

choose cost function

qubit magnetization
total magnetization
t-Ising Hamiltonian
many-body Hamiltonian

choose loss function

MSE
MAE
Kullback-Leibner
Jensen–Shannon

choose feature map
product map
Chebyshev map

Chebyshev tower map
evolution-enhanced map

handling

_optimize_DQC_: 

Uφ

Uq

set grid x =  {xi} i=1
M set exit condition set angles q

for   nj  = 1:n      :iter

evaluate function circuits

for   xi  in x  :

evaluate derivative circuits
...

... ...

evaluate loss function derivative

update angles q using classical optimizer

evaluate function and plot solution

� (x) d� /dx|x in x

set regularization

else:

if NOT (exit condition):

differential equations

Figure 3.3: DQC optimisation workflow. The problem is set as a system of
differential equations for functions u, variables x, and specified boundary con-
ditions. The derivative quantum circuit is constructed by choosing the encoding
circuit and optimisation schedule. The solution is optimised by evaluating the
function and derivative circuits at the defined grid of points X (which may be mul-
tidimensional), and using these values to calculate the loss function derivative.
The variational angles are updated in the hybrid quantum-classical loop until a
specified exit condition is reached.

Alternatively, not all variables have to be encoded via feature map. A possible

technique is, if there is one ”evolution” parameter of importance – generally time –

that the other variables are encode via feature map but that the evolution parame-

ter t is included as a dependence of the variational parameters θ(t). i.e. θ(t) are no

longer static and change as the solution evolves. This comes with more choices,

learning a set of theta for each considered point of t and evaluating derivatives

from chain rule dθ/dt via finite difference or by constructing a model for θ(t) which

are trained as well. As well as this approach variables can be encoded within cost
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function.

As can be seen by this brief overview encoding multidimensional variables is

something easily possible but not at all trivial to work out the best way to do it.

Research into this is still ongoing.

3.3.6 Workflow

Finally, using the elements and strategies described above, we present a work-

flow for constructing the differential equation solver based on derivative quantum

circuits. This is summarised in Fig. 3.3 showing the flowchart. We start by speci-

fying the input for the solver. This comprises the problem in hand, specified as a

set of nonlinear differential equations of various types, together with their respec-

tive boundary conditions. Additionally, a set of regularisation points may be added

to ensure the optimised solution is chosen in the desired qualitative form. Next,

we set up the schedule for derivative quantum circuit optimisation and choose the

quantum circuit composition. For this we choose: a) the type of quantum feature

map; b) the ansatz of variational quantum circuit, including its depth; c) the cost

function type, also choosing if variational weights are considered; d) the type of

the loss function; e) the strategy to match the boundary terms and derivatives.

We also need to specify the classical optimiser for variational angles and weights

(with associated hyperparameters), including the number of iterations and exit

conditions. Finally, we specify whether the loss function uses a specific optimisa-

tion schedule, where it is changing during the training.

Once the DQC structure and optimisation schedule are defined, we need to

specify a set of points {x j} j for each equation variable. This can be a regular

equidistant grid, Chebyshev grid, or a randomly-drawn grid. The variational pa-

rameters are set to initial values θ ← θinit (e.g. as random angles). The ex-

pectation value over variational quantum state |uφ,θ(xi)⟩ for the cost function is

estimated using the quantum hardware for the chosen point xi. Then a potential
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solution at this point is constructed, accounting for the boundary handling proce-

dure. Next, the derivative quantum circuits are constructed and their expectation

value is estimated for the specified cost function, at point xi. This is repeated

for all xi in X where X is the chosen training grid. We then collect these func-

tion values and derivatives, and compose the loss function for the entire grid and

system of equations (forming required polynomials and cross-terms by classical

post-processing). Regularisation points may be also added, biasing the solution

to take specific values at these points. The goal of the loss function is to as-

sign a “score” to how well the potential solution (parametrised by the variational

angles θ) satisfies the differential equation, matching derivative terms and the

function polynomial to minimise the loss. With the aim to increase the score (and

decrease the loss function), we compute the gradient of the loss function with

respect to variational parameters θ. Using the gradient descent procedure (or

in principle any other classical optimisation procedure) we update the variational

angles from iteration n j into the next one n j + 1, and repeat the steps outlined be-

fore until we reach the exit condition. The exit condition may be chosen as: 1) the

maximal number of iterations niter reached; 2) loss function value is smaller than

pre-specified value; and 3) loss gradient is smaller than a certain value. Once

we exit the classical loop, the solution is chosen as a circuit with angles θopt that

minimise the loss. Finally, we extract the full solution by sampling the cost func-

tion for optimal angles ⟨uφ,θ(x)|Ĉ|uφ,θ(x)⟩. Notably, this can be done for any point

x, as DQC constructs the solution valid also between the points at which loss is

evaluated originally.

3.4 Results

3.4.1 Linear Differential Equation

Now let us see how the algorithm performs in practice. For this we choose a

differential equation with a known analytical solution, and compare it to the one

obtained by the derivative quantum circuit. We choose a single ODE for the initial
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value problem which reads

du
dx
+ λu

(
κ + tan(λx)

)
= 0, u(0) = u0, (3.17)

where λ and κ are parameters, and u0 sets the value of the function u at x = 0.

Eq. (3.17) has a solution in the form of a damped oscillating function,

u(x) = exp(−κλx)cos(λx) + const, (3.18)

where const is determined by the initial condition. While the problem is fairly sim-

ple being a single ODE, reproducing the damped oscillating solution requires a

rich basis of fitting functions, that needs to include both oscillatoric and increas-

ing/decreasing functions. As λ and κ grow the function starts to oscillate and

decay even more rapidly, and the solution becomes harder to express.

To show how the proposed method works, we use differentiable quantum cir-

cuits to solve Eq. (3.17) using optimisation of differentiable quantum feature maps.

Specifically, we choose two cases with parameters λ = 8 and λ = 20, and fixed

κ = 0.1, u0 = 1. These problem parameters are chosen to make DQC construc-

tion challenging, with λ = 20 being a complex case as the resulting solution is

highly nonlinear and oscillatoric. We consider an equidistant optimisation grid of

20 points, starting from x = 0, with maximal time of 0.9 (dimensionless units are

used). This is chosen such that the region with diverging derivative of the non-

linear feature function dφ(x)/dx is avoided, and we note that x can be rescaled to

match required boundaries. To find the solution we use a quantum register with

N = 6 qubits, and the cost function is chosen as total magnetisation in the Z di-

rection, Ĉ =
∑N

j=1 Ẑ j. For the variational circuit, we choose the standard hardware-

efficient ansatz described in the Methods section, setting the depth to d = 5. To

search for optimal angles θopt we perform adaptive stochastic gradient descent

using Adam [117] with automatic differentiation enabled by analytical derivatives.

Specifically, we code the workflow using Yao.jl package [110, 118, 119] for Julia,
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which allows fast and efficient implementation. A full quantum state simulator is

used in a noiseless setting. In this example we use the floating boundary han-

dling.

We search for the circuit-based solution using three different feature maps de-

scribed in the previous section, and compare their performance. These corre-

spond to the product feature map [Eq. (3.3)], the sparse version of the Cheby-

shev product feature map [Eq. (3.6)], and the tower Chebyshev feature map, as

defined in Eq. (3.7). We label results for these feature maps as Prod, Cheb,

and ChebT, respectively. To assess the performance we use several metrics.

The first metric is the full loss (denoted as LF). It refers to the loss calculated

from the differential equations and any boundary or regularisation terms, in this

case Lθ[dx f , f , x] = L(diff)
θ

[dx f , f , x]+L(boundary)
θ

[ f , x]+L(reg)
θ

[ f , x]. The second metric

corresponds to differential loss (LD), being a part of the full loss excluding regu-

larisation contribution. Finally, the third metric is the quality of solution (LQ). The

quality of the solution is the distance of the current DQC-based solution from the

known true solution. This is calculated by evaluating the DQC-based solution

and true solution at a set of points and using the MSE loss type, being equal to

LQ = (1/M)
∑M

i=1[ f (xi)−u(xi)]2. Quality of solution gives us a useful way to compare

how two different training setups perform, especially if they are training to solve

the same differential equations.

The results of DQC training are shown in Fig. 3.4. In the panel Fig. 3.4(a, c)

we show the solutions of Eq. (3.18) for λ = 8 and λ = 20, respectively, where

solid curves (with label 1) represent the analytical solution u(x) in Eq. (3.18). The

dashed curves represent the final DQC-based solutions sampled from the cost

function at approximation points (niter = 250 is used). In Fig. 3.4(b,c) we show

the relevant training metrics as a function of iteration number, where solid curves

denote the quality of solution and dashed curves represent the full loss.
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(a)

(c)
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(b)

(d)

(f)

Figure 3.4: DQC-based solution for a single ODE example. (a) Results from
the circuit trained to solve Eq. (3.17) for u0 = 1, λ = 8, and κ = 0.1. We present
DQC solutions fφ,θ(x) obtained using three different quantum feature maps φ(x)
labelled as Prod, Cheb, and ChebT. Corresponding DQC solutions are shown
by dashed curves and labelled for clarity (see legend). Analytical solution u(x) is
shown by the thick solid curve (label 1). (c) Same as in (a), but for λ = 20 exam-
ple. (b, d) Full loss LF (dashed curves) and quality of solution LQ (solid curves)
are shown as functions of iteration number n j for optimisation results displayed
in (a) and (c), respectively. (e) DQC-based solution of Eq. (3.17) shown for four
different ansatz depths d = 3, 6, 12, 24, with the analytical solution u(x) presented
by the solid curve. The Chebyshev tower feature map is used. (f) Full loss (dot-
ted curves) and quality of solution (solid curves) shown as a function of iteration
number for the solution in (e).
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We observe that for λ = 8 both Chebyshev feature maps converge closely to

the true solution [Fig. 3.4(a,d)]. The more expressible Chebyshev tower feature

map (curves 5, 6) takes longer to converge but reaches a solution closer to the

true solution. The less powerful product feature map fails to converge with the

loss quickly plateauing.

For λ = 20 the true solution is more oscillatoric and has stronger damping,

making the solution harder to represent [Fig. 3.4(b,e)]. The product feature map

still fails to converge (curves 1, 2), but now also failing to converge is the simpler

Chebyshev feature map (curves 3, 4). The full loss for both cases plateaus rapidly.

The more expressible ChebT feature map continues to perform well (curves 5, 6).

This supports the hypothesis that choosing a feature map expressible enough for

the problem is important, and more simulations with more qubits offers a way to

increase the power drastically.

Next, we compare the effect of ansatz depths for the variational circuit Ûθ. We

use d = 3, 6, 12, 24, λ = 20 and the Chebyshev tower feature map, and the rest of

the training set up remains the same as previously considered. These results are

presented in Fig. 3.4(e,f). We observe that for lower depths the solver is slower

to converge and does not reach as high accuracy as it does for higher depths. As

depth increases more layers of parametrised gates are included in the variational

ansatz and so the number of variational angle parameters increase. This causes

an increase in the number of gate operations needed in each iteration and how

many parameters the classical optimiser needs to update, raising the time taken

per iteration. As the depth of the ansatz continues to increase eventually the

problem of barren plateaus could be encountered [52]. Then vanishing gradients

would cause the solver to struggle to improve the parameters, however at d = 24

we had not yet ran into this with over 400 variational parameters. We also note

that the alternating blocks ansatz is designed in the way that vanishing gradients

can be avoided for certain conditions [120].
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(a)

(b)

Figure 3.5: DQC-based solution for a strongly coupled equations example.
(a) Results from the circuit trained to solve the system of differential equations
Eq. (3.19) and Eq. (3.20) for u1,0 = 0.5, u2,0 = 0, λ1 = 5, and λ2 = 3. We present
DQC solutions f1(x) and f2(x) obtained using three different boundary evaluation
techniques: pinned boundary (labelled as Pin), floating boundary (Float), and
optimised boundary (Optim). Corresponding DQC solutions are shown by dashed
curves. Analytical solutions u1(x) and u2(x) are shown by thick solid curves. (b)
Full loss LF (dashed curves 1, 3, 5) and quality of solution LQ (solid curves 2, 4,
6) are shown as functions of iteration number n j for optimisation results displayed
in (a).

3.4.2 Strongly Coupled Equations

Building up on the single ODE example, we proceed to consider a system of

differential equations, taking two strongly coupled differential equations as an ex-

ample. This describes the evolution of competing modes u1(x) and u2(x) as a

function of variable x, which in this case corresponds to time. The associated rate

equations read

F1[dxu,u, x] =
du1

dx
− λ1u2 − λ2u1 = 0, u1(0) = u1,0, (3.19)

F2[dxu,u, x] =
du2

dx
+ λ2u2 + λ1u1 = 0, u2(0) = u2,0, (3.20)
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where λ1,2 are coupling parameters, u1,0, u2,0 are initial conditions. The larger |λ1|

is in comparison to |λ2| the more strongly coupled the two equations will be. This

can be intuitively seen considering |λ1| ≥ |λ2|, leading to larger contribution of u2

into the equation for du1/dx derivative than u1, and vice versa.

To move from considering one differential equation to a system of equations

we need to encode multiple functions using quantum registers as described in

the Methods. For this specific example we choose a simple parallel encoding,

where separate cost functions and ansatze are considered. In this case each

function has a separate set of parameters to be optimised. The loss is changed

accordingly to include information on separate contributions from two coupled

differential equation that are optimised simultaneously.

We encode each function using the differentiable feature map combined with

individual variational ansatz parametrised by the set of angles θ1 and θ2 and

before deciding on the boundary evaluation type we have

f1(x) = ⟨0|Û†ϕ(x)Û†
θ1
Ĉ(1)Ûθ1Ûϕ(x)|0⟩, (3.21)

f2(x) = ⟨0|Û†ϕ(x)Û†
θ2
Ĉ(2)Ûθ2Ûϕ(x)|0⟩, (3.22)

where Ĉ(1,2) are in principle different cost functions for each equation.

For the loss function we consider the sum of the MSE losses for the first and

second differential equation. This loss is written asLθ[dxf ,f , x] =
∑M

i=1 L
(
F1[dxf ,f , xi], 0

)
+∑M

i=1 L
(
F2[dxf ,f , xi], 0

)
with F1 and F2 as written in Eq. (3.19)-(3.20), and L de-

pends on the loss choice as detailed in the Methods section. There can be addi-

tional boundary loss terms depending on boundary evaluation method chosen. If

present, they contribute to the loss function as a sum of the boundary terms for u1

and u2. Note that we consider the loss as a sum of individual contributions cou-

pled together we are trying to minimise both simultaneously with equal weight.

Due to the coupling between the two equations this could lead to competition be-
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tween the two loss terms (a parameter update which causes a loss decrease for

one DE’s loss may lead to an increase in the other). This may result in increas-

ing the chance of converging to a local minimum rather than the global minimum;

however, this effect can be mitigated if loss contributions are weighted in some

way. Another solution is to use quantum kernel methods, where loss corresponds

to the overlap between quantum feature states. Choosing a suitable loss function

in this case is an important point to consider in the future.

We define the problem setting parameters to λ1 = 5, λ2 = 3 and initial conditions

to u1,0 = 0.5, u2,0 = 0. We set up the training scheme as in section 3.4.1 using

a six-qubit register, cost choice of total magnetisation in the Z direction for both

u1 and u2, hardware-efficient variational ansatz with depth d = 5, Adam optimiser

with learning rate 0.02, and feature map choice of the Chebyshev tower feature

map. We test the performance for the three boundary evaluation types: pinned

boundary, floating boundary, and optimised boundary.

The results are shown in Fig. 3.5. The pinned and optimised boundary handlers

perform similarly, slowly converging to the analytical solution u1,2(x) within 250 iter-

ations [Fig. 3.5(a)]. The two approaches have similar convergence in terms of the

full loss [Fig. 3.5(b)], but differ in terms of quality of solution [Fig. 3.5(b)]. When

using floating boundary type a function close to the true solution is obtained [with

LQ value of approximately 10−5, see Fig. 3.5(b)]. This difference in convergence

rate is a result of boundary information having an impact on the loss, demanding

the matching for pinned and optimised boundary handlers, whereas the floating

boundary automatically matches the initial condition and no loss boundary term

is needed. The consequence of competing terms in the loss function can be seen

in the early oscillations of the full loss in Fig. 3.5(b).
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3.4.3 Fluid Dynamics Applications

An area where solvers for complex differential equations are much required is

fluid dynamics [121]. In this case several outstanding models are hard to tackle

due to their nonlinear nature. Examples include Burger’s equation and Navier-

Stokes equations. We concentrate on the latter and show how one can approach

it with the DQC solver.

Navier-Stokes equations describe a flow of viscous fluids. This highly nonlin-

ear set of partial differential equations is used to model fluids, magnetoplasma,

turbulence etc. It is heavily used in the aerospace industry and weather forecast-

ing. It can be derived from general principles. Namely, we consider fluid motion

that obeys Newton’s law and we simply track the fluid mass passing through an

(infinitesimal) volume.

The general form of the Navier-Stokes equations for incompressible fluids can

be presented in the form

∂(ρ3x)
∂t
+ ∇ · (ρ3xV) = −

∂p
∂x
+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ ρ fx, (3.23)

∂(ρ3y)
∂t
+ ∇ · (ρ3yV) = −

∂p
∂y
+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ ρ fy, (3.24)

∂(ρ3z)
∂t
+ ∇ · (ρ3zV) = −

∂p
∂z
+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ ρ fz, (3.25)

∂ρ

∂t
+ ∇ · (ρV) = 0, (3.26)

∂E
∂t
+ ∇ · (EV) = −∇ · (pV) − ∇ · (q) + ∇ · (3xτx· + 3yτy· + 3zτz·) (3.27)

where (3x, 3y, 3z) are instantaneous velocities in the (x, y, z) directions, τ is the stress

tensor, f the body force per unit mass acting on the fluid element, ρ the density,

p the pressure, and q the heat flux. Here V is a velocity field and τx·, τy·, τz· denote

the sub-vectors of τ formed of the terms with the first index being x, y, z respec-

tively. The penultimate equation is the continuity function and the final the energy

conservation equation.
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Figure 3.6: Quasi-1d fluid dynamics. (a) We consider an example of fluid dy-
namics problem corresponding to a convergent-divergent nozzle. The air flows
from converging part of the nozzle (x < 0.5), passes through the throat placed
symmetrically in the middle, and exits to diverging part (x > 0.5). (b) System vari-
ables [density ρ(t), temperature T (t), and velocity V(t)] are shown as functions of
time, near the centre of the nozzle at x0 = 0.4. For clarity, we label the corre-
sponding by 1, 2, and 3. (c) Steady state solutions are plotted as functions of the
spatial dimension x, with the same labelling.

The building blocks for the Navier-Stokes equations described above are the

continuity equation for the density ρ subjected to energy conservation and the

momentum conservation rules. Finally, as we use energy conservation, we can

rewrite equations in terms of one of the thermodynamic state functions, being

temperature, or pressure, or enthalpy etc.

While general by itself, Navier-Stokes equations are usually solved in relevant

limiting cases. Specifically, this can correspond to space reduction (2D, quasi-

1D, 1D), isotropic/anisotropic media properties, and fluid properties (viscous or

inviscid flow). The specific example we choose to start with is the flow through a

convergent-divergent nozzle, being a paradigmatic task in the aerospace industry
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[Fig. 3.6(a)] [122, 121]. The Navier-Stokes equations can be rewritten for the

inviscid fluid in quasi-1D approximation. They are now a set of Euler equations

and read [121, 122]

∂ρ

∂t
= −ρ

∂V
∂x
− ρV

∂(log A)
∂x

− V
∂ρ

∂x
, (3.28)

∂T
∂t
= −V

∂T
∂x
− (γ − 1)T

(
∂V
∂x
+ V

∂(log A)
∂x

)
, (3.29)

∂V
∂t
= −V

∂V
∂x
−

1
γ

(
∂T
∂x
+

T
ρ

∂ρ

∂x

)
, (3.30)

where Eq. (3.28) corresponds to the continuity equation, Eq. (3.29) describes the

energy conservation, and Eq. (3.30) stems from momentum conservation. A(x)

corresponds to the spatial shape of the nozzle, and is a function of the lateral

coordinate x. γ describes the ratio of specific heat capacities, and is equal to 1.4

for the relevant case of air flow. Here we used nondimensional variables [121].

We set the problem with nozzle shape

A(x) = 1 + 4.95(2x − 1)2, 0 ≤ x ≤ 1, (3.31)

and for simplicity specify boundary conditions as

ρ(x = 0) = 1, T (x = 0) = 1, V(x = 0) = 0.1, (3.32)

when solving the initial value problem for the steady-state flow. We also need to

specify the initial conditions if solving the dynamical problem. These are chosen

as [121]

ρ(x, t = 0) = 1 − 0.944x, (3.33)

T (x, t = 0) = 1 − 0.694x, (3.34)

V(x, t = 0) = (0.1 + 3.27x)T (x, t = 0)1/2. (3.35)
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We consider an initial value problem and only specify the value of our functions

at t = 0.

Let us consider the stationary state problem represented by Eqs. (3.28)-(3.30)

with conditions above, and equate the time derivatives to zero. Interestingly, when

trying to solve the system for the steady state solution using various classical

methods, as for example implemented in Mathematica’s NDSolve, the calcula-

tions do not converge. This proves to be challenging as the system is stiff. Solu-

tions may become unstable depending on initial values, and specifically the input

velocity. To understand the problem, it is instructive to rewrite the system of sta-

tionary Navier-Stokes equations in the form

dρ
dx
=
ρV2dx(log A)

T − V2 , (3.36)

dT
dx
=

TV2(γ − 1)dx(log A)
T − V2 , (3.37)

dV
dx
= −

TVdx(log A)
T − V2 . (3.38)

Immediately we observe that each function at the RHS diverges at the point x

s.t. T (x) = V(x)2. This leads to singular behaviour and breaks classical solvers,

including the ones with stiffness handling. At the same time, full dynamical so-

lution and its t → ∞ extrapolation are possible, shown in Fig. 3.6(b,c) once the

well-suited initial conditions (3.33)-(3.35) are chosen allowing to avoid instability,

as usually done in computational fluid dynamics [121, 122].

DQC solution. We proceed to solve the stationary system of Navier-Stokes

equations for the convergent-divergent nozzle by constructing optimised DQC.

We consider the case of subsonic-supersonic transition, where flow velocity in-

creases after the center of the nozzle and qualitative behaviour of other state

variables (temperature and density drop) is known. However, getting the quantita-

tive results is difficult. We show that derivative quantum circuits can find solutions

despite the challenge for the classical solution for the continuous grid.
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To construct the solution we employ a two-stage optimisation approach, where

the solution is first obtained at smaller x, and later generalised until the end of

the nozzle. For the circuit we again consider a six-qubit quantum register with

a Chebyshev quantum feature map, keeping in mind that x ∈ [0, 1). We choose

the cost functions as a total magnetisation Ĉ =
∑N

j=1 Ẑ j. As we consider three

functions {ρ(x), T (x), V(x)}, three equations contribute to the loss function in the

combined manner. We use floating boundary handling, where each curve is ad-

justed according to starting values, chosen as ρ(0) = 1, T (0) = 1, V(0) = 0.1.

The variational ansatz is taken in the standard hardware efficient form with d = 6

depth. Adam is used as a classical optimiser, and the learning rate is set to 0.01.

At the first stage we train DQC in the region (xmin, xmax) = (0., 0.4), such that

the circuit represents the region close to initial point x = 0. As expected, in the

subsonic region flow velocity grows towards the middle of the nozzle, while tem-

perature and density drop slowly [see Fig. 3.7(a), dashed curves 4, 5, 6]. The

training is set for 20 equally distributed points of x, with no prior regularisation and

using floating boundary. We optimise DQC for niter = 200 iterations for Adam with

the learning rate of α = 0.01. We find a high-quality solution based on the gradient

information in the imposed solution region x < 0.4 shown in Fig. 3.7(a).

We proceed to search for the full solution that includes the divergent nozzle

part for x > 0.5 at the second training stage. At this session we choose the grid of

40 points, where two regions of (0, 0.4) and (0.6, 0.9) with 20 points each are used.

As we discussed before, the key problem of the convergent-divergent nozzle in

the subsonic-supersonic transition case is the divergence around the middle of

the nozzle. This causes a major problem to classical solvers, that are unable to

find a steady state solution directly. Divergent contributions from this region also

impact the loss function, and makes training complicated. However, by exclud-

ing the region around the nozzle throat, (0.4, 0.6), in the training we alleviate this

problem. Proceeding with the use of the same ansatz and boundary handing, we

feed the variational angles from stage 1 as initial parameters for stage 2 training.
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(b)(a)

(c)

Figure 3.7: DQC-based solution for the Navier-Stokes convergent-divergent
nozzle problem. (a) Intermediate solution in training where dashed curves corre-
spond to solutions drawn from trained DQC and solid curves to the true solution.
Circuits are trained over twenty points in range (0, 0.4) (b) Final solution. Solid
curves show the true solutions for the density, temperature, respectively. Dashed
curves show the DQC solutions for the density, temperature, respectively. The
DQC solution matches the known solution and also what would be physically ex-
pected. As the air goes through the nozzle it accelerates and cools down. (c) Full
loss (LF, curve 7), quality of solution (LQ, curve 8), and differential loss (LD, curve
9) are shown as functions of the iteration number n j for the training resulting in
solution (b).

We employ weak regularisation to ensure that the required subsonic-supersonic

solution is made. Namely, we use 20 points in the (0, 0.4) region benefiting from

the previously found solution (in general we have access to as many points as

we need), and also add 5 points in the x ∈ (0.6, 0.9) region representing weak

bias towards supersonic solution type. We emphasise we do not provide more

boundary data to fit to, instead we provide information to bias towards V increas-

ing, and T and ρ decreasing. The training is performed for niter = 600, learning

rate of α = 0.005, and regularisation switch-off function ζ(n j) set to be removed

smoothly around n j = 150. The full solution is shown in Fig. 3.7(b). It converges to
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the expected long-time behaviour for the system, where function derivatives from

DQC match the nonlinear contributions. The increase of speed for the air flow

in the convergent part and decrease of temperature and density is reproduced

quantitatively. The details of optimisation run can be inferred from the loss plot-

ted in Fig. 3.7(c). This shows a distinct region in the presence of regularisation

(n j < 150), where quality of solution LQ remains low [Fig. 3.7(c), curve 8], while

the full loss LF improves [Fig. 3.7(c), curve 7] thanks to regularisation contribu-

tion and weakly improved derivative contribution LD [Fig. 3.7(c), curve 9]. For

the region with switched off regularisation we observe steady improvement of all

metrics, showing that DQCs are efficiently trained to approach true solution, also

evidenced by LQ decrease. Notably, as compared to many methods relying on

sparse discretisation of x, we have found the solution along the full nozzle length.

3.5 Discussion

We presented a general framework for solving general (systems of) differential

equations using differentiable quantum circuits on gate-based quantum hardware.

The method makes use of quantum feature map circuits to encode function val-

ues into a latent space, which allows us to consider spectral decompositions of

the trial solutions to differential equations. We showed how our method can ac-

curately represent non-linear solutions, using the high-dimensional Hilbert space

of a qubit register. For this we exploit a large spectral basis set of Fourier and

Chebyshev functions. We also showed how analytical circuit differentiation can

be used to represent function derivatives appearing in differential equations, and

constructed loss functions which aim to improve the prepared trial solution. This

method opens up a new way of solving general, complex, (non-)linear systems;

as an example we presented solutions to the Navier-Stokes equation, but the

same method can be applied across all disciplines where differential equations

arise.
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The method is presented is promising for future advantage but there still are

open questions. We did not yet consider the impact of noise on the algorithm

performance. Additionally, whilst not observed at the scale simulated, as the

method scales barren plateaus as introduced in section 2.5 are likely to occur

during training. Current and future efforts on mitigating/solving this variational

training behaviour should be viable for this method.

Furthermore the algorithm is heuristic and choices of hyperparameters make

a huge difference to performance. For example, the presented quantum feature

maps are a good start, but could be improved upon further, where the goal is

to find efficient representations of functions. This choice will likely be problem-

specific and in some cases problem-motivated, allowing to make optimal use of

(quantum) resources. For example, the considered feature maps all provide con-

tinuous functions with no sharp transitions. This would cause issues if trying to fit

problems with sharp transitions such as the DEs governing fluids with back flows.

For such situations the feature map and trial function would have to be carefully

engineered with those features in mind and if discontinuities were present fur-

ther developments made to the algorithm. A good choice of variational ansatz

is crucial to loss function convergence success and speed. We presented some

examples, but an active area of research is to improve upon these using for ex-

ample adaptively growing circuits or stronger interplay with intelligent classical

optimisation protocols, such as Bayesian optimisation.

In conclusion, we have developed a new way to consider solving differential

equations with quantum computers. This method does not currently have a

proven avenue for quantum advantage but we hope that with further work, adap-

tions and refinements a useful application can be found.
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Chapter 4

Quantum Quantile Mechanics:

Solving Stochastic Differential

Equations for Generating

Time-Series

4.1 Declaration of Contribution

The work in this chapter is published in [123]. My contributions consist of im-

plementing and running all simulations, the idea behind the relationship of the

quantile function and QGAN and suitability for SDEs, and shared contribution to

manuscript writing.

4.2 Introduction

Stochastic differential equations (SDEs) describe a broad range of phenom-

ena. They emerge when dealing with Brownian motion and quantum noise [124].

Fields interested in the solving of SDEs include stochastic fluid dynamics [125,

126], population dynamics [127] and financial calculus [89, 128]. Several ques-

tions arise when considering an SDE problem: how do we solve them, and what
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kind of information do we want to get by solving SDEs? These are not trivial ques-

tions to answer, because one might be interested in different aspects of SDE-

modelled processes. One possible goal for solving an SDE is to to be able to

sample from the final/evolved distribution. Therefore, we consider using quantile

mechanics for solving SDEs. Quantile mechanics involves representing probabil-

ity distributions in an easily sampleable form and consequently is well suited to

the goal of sampling [88].

We propose a quantum algorithm which represents a probability distribution

as quantum quantile function, trains and evolves it to solve a given SDE, then

samples from the final distribution. Using a quantum model with a feature map

encoding of latent variables, we represent the quantile function for an underlying

probability distribution and extract samples as expectation values. Using quantile

mechanics we propagate the system in time using a variational workflow, thereby

allowing for time-series generation. This algorithm is particularly appropriate for

SDEs where the final goal is to sample from the evolved distribution. We also pro-

pose an initialisation scheme to aid training. This combined quantum computing

and quantile mechanics approach we call quantum quantile mechanics. We test

the method by simulating the Ornstein-Uhlenbeck process [129] and sampling at

times different from the initial point, as required in financial analysis and dataset

augmentation.

Additionally, we analyse continuous quantum generative adversarial networks

(QGANs), and show that they represent quantile functions with a modified (re-

ordered) shape that impedes their efficient time-propagation. Our results shed

light on the connection between quantum quantile mechanics (QQM) and QGANs

for SDE-based distributions.
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Figure 4.1: Quantum quantile mechanics workflow. Given a system of
stochastic differential equations and initial data, differentiable quantum circuits
are trained to represent the corresponding quantile function Gθ(z, t) as a function
of a random latent variable (z) and propagate it in time (t) with quantum mechan-
ics equations. The hybrid quantum-classical loop is used for optimising variational
parameters θ through loss function L minimisation based on data and differential
equations for the initial and propagated QF. Evaluating Gθopt(z ∼ uniform(−1, 1), t)
at optimal angles, random values of the latent variable, and different time points
t, we generate time series from SDE.

4.3 Method

4.3.1 Algorithm

We have the goal to solve a given SDE which is describing a process of in-

terest. As introduced in section 2.8.3 one method for solving SDEs is quantile

mechanics where the SDE is rewritten as a PDE in terms of a quantile function

(2.44). The result of this is a quantile function (QF) Q(z) (2.42) which represents

the probability distribution solution of the SDE and can be sampled with z following

a uniform distribution.
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In general, quantile mechanics equations are not easy to solve. Power series

solution as function approximation are known [88, 130, 131, 132], as well as some

simple examples [133]. To harness the full power of quantile mechanics, we thus

propose to use neural representation of QFs. To our knowledge, this is the first

application of machine learning methods to use quantile-based sampling, and

we envisage that both classical and quantum ML can be used for the universal

function approximation [134, 135]. During this chapter, I focus on testing that this

algorithm is a valid approach for these problems, in particular using a quantum ap-

proach with a quantum model. Further in depth exploration of these approaches

performance compared to others is an important step for future work. In particular

what is the quantum benefit over the classical version. The intuition is that the use

of quantum neural networks offers a potential to reproducing complex functions

in the high-dimensional space, including systems where strong correlations are

important.

In the following, we combine quantum computing and quantile mechanics to de-

velop the quantum quantile mechanics approach. The sketch of the QQM work-

flow is shown in Fig. 4.1. We represent QFs as quantum models, thus exploiting

the large expressivity of quantum-based learning. With this we ensure that we

have the ability for solving the problem.

Quantum Model

To represent a trainable quantile function we construct a quantum model us-

ing quantum embedding through feature maps Ûφ(x) (with φ labelling a mapping

function) [28, 136, 114], followed by variationally-adjustable circuit (ansatz) Ûθ

parametrised by angles θ as introduced in section 2.4. The readout is set as a

sum of weighted expectation values [135] and the represented function can be

differentiated using the parameter shift rule. Following this structure, we assign

a generator circuit G(z, t) to represent a function parametrised by t (labels time),
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Figure 4.2: QQM Quantum Model. State preparation circuit for representing a
time-dependent quantile function. Acting on the initial state, two feature maps,
with R̂y using for time-dependence embedding and R̂x layer for the latent variable
embedding. We use HEA for the variational search, and total Z magnetisation as
a cost function.

and the embedded latent variable z. The model reads

G(z, t) = ⟨0|Ûϕ(t)†Ûϕ′(z)†Û†
θ

( L∑
ℓ=1

αℓCℓ
)
ÛθÛϕ′(z)Ûϕ(t)|0⟩, (4.1)

where Ûϕ(z) and Ûϕ′(t) are quantum feature maps (possibly different), {Cℓ}Lℓ=1 rep-

resent L distinct Hermitian cost function operators, and {αℓ}Lℓ=1 and θ are real

coefficients that may be adjusted variationally. The overall cost function may be

global, where a projector on some specific bitstring is chosen, or local as a sum

of Pauli terms. The choice of {αℓ}Lℓ=1 enables to bias for/against certain opera-

tors/qubits information – for example for lower/higher frequencies as in [137].

The circuit structure is shown in Fig. 4.2. We can also work with multiple latent

variables and thus multidimensional distributions.

Training

Our next step is developing the training procedure for G such that it represents

the QF for an underlying data distribution. Namely, we require that the circuit

maps the latent variable z ∈ [−1, 1] to a sample G(z) = Q(z).
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The training requires a dataset {Xdata} generated from a probability distribution

for the system we want to study (or measured experimentally), which serves as

an initial/boundary condition. Additionally, we know the underlying processes that

describe the system and which serve as differential constraints. The problem is

specified by SDEs dXt = fξ(Xt, t)dt+gξ(Xt, t)dWt, where we explicitly state that the

drift and diffusion functions fξ(Xt, t) and gξ(Xt, t) are parametrised by the vector ξ

(time-independent). Here, ξ contains the vector of parameters which identify the

exact SDE from its class of SDEs and could be found via model discovery [138].

For instance, for the Ornstein-Uhlenbeck model, which we refer to later, we have

ξ = (µ, ν, σ) corresponding to the mean, rate of mean reversion, and volatility,

respectively. We consider that the SDE parameters for generating data similar

to {Xdata} are known in the first approximation ξ(0). This can be adjusted during

the training to have the best convergence, as used in the equation discovery

approach [139, 140].

The loss is constructed as a sum of data-based and SDE-based contributions,

L = Ldata +LSDE. The first part Ldata is designed such that the data points in {Xdata}

are represented by the trained QF. For this, the data is binned appropriately and

collected in ascending order, as expected for any quantile function. Then, we use

quantum circuit learning (QCL) as a quantum nonlinear regression method [28]

to learn the quantile function G0(z). Ldata then takes the form Ldata =
∑

j(G(z j, 0) −

G0(z0))2 where {z j} j is a set of training points for the boundary. We note that such

an approach represents a data-frugal strategy, where the need for training on

all data points is alleviated. We also note that this binning only occurs on the

boundary/initial date to prepare it for use in training. Binning otherwise is only

used for later histogram plotting and is purely visual.

The second loss term LSDE is designed such that the learnt quantile function

obeys probability models associated to SDEs. Specifically, the generator G(z, t)

needs to satisfy the associated quantilised Fokker-Planck equation as introduced

in section 2.8.3. The differential loss is introduced using the DQC approach as in
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chapter 3 [112], and reads

LSDE =
1
M

∑
z,t∈Z,T

L
[
∂Gθ

∂t
, F

(
z, t, f , g,

∂Gθ

∂z
,
∂2Gθ

∂z2

)]
, (4.2)

where L[a, b] denotes the distance measure for two scalars, and the loss is esti-

mated over the grid of points in sets (Z,T ). Here M is the total number of points

and is equal to the number of points in Z multiplied by the number of points in

T . We also introduce the function F(z, t, f , g, ∂zGθ, ∂
2
zzGθ) denoting the RHS for

Eq.2.44, or any other differential constraint. Using a differential equation based

constraint is a core principle of physics-informed machine learning and provides

different fitting behaviour versus regression due to the requirements on derivative

values as well as function values.

Once the training regime is set, the loss is minimised using a hybrid quantum-

classical loop where optimal variational parameters θopt (and αopt) are searched

using non-convex optimisation methods.

Generalisation of this model is similar to that discussed in chapter 3. Further-

more, as a non-convex variational algorithm, the trainability considerations as

discussed in section 2.5 such as expressivity, barren plateaus, local minima etc.

are to to be considered.

4.3.2 Initialisation

In this section we describe a method of parameter initialisation that we use

to provide a good starting function when implementing QCL or DQC. This is

achieved by having a circuit structure where the variational circuit can be ini-

tialised to the identity operator and two layers of single-qubit rotation gates (which

we refer to as the initialisation layers). The parameters of the initialisation layers

can then be set to provide a good starting fit of the initial trial function to (an

estimate of) the target function.
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Figure 4.3: Initialisation circuit. We show the circuit structure used for when
implementing initialisation. It consists of layers of rotations known as the initiali-
sation layers Ûinit, variational quantum circuits made up of Û(θ) and the feature
map Ûφ(t). The variational quantum circuits are structured so that they can easily
be initialised to the identity operator. Suitable parameters for Ûinit are chosen by
performing classical function fitting. The feature map dictates which function form
a basis for the fitting.

The circuit structure that we use is shown in Fig. 4.3. The variational circuits

are formed by a parameterised circuit unitary Ûa/b(θk) followed by the circuit with

the adjoint structure but independently tuned set of variational angles, Û†a/b(θk′).

We include variational circuits before and after the feature map to aid expressivity.

For initialisation we set θ1 = θ2 and θ3 = θ4. We choose this restriction as it leads

to the variational circuits being initialised as identity and consequently the initial

trial function is efficiently classically simulable for initialisation. We stress that

during training the parameters of these circuits are considered distinct and thus

when updated by classical optimiser they do not remain equal.

With the variational circuits initialised to identity the initial trial function is now

f0(t) = ⟨0|Û(b)†
init Û

†
φ(t)Û(a)†

init CÛ
(a)
initÛφ(t)Û(b)

init|0⟩. By considering initialisation circuits

and feature map which act on each qubit individually as a product of Pauli rota-

tions (as is the case with all feature maps discussed in this paper), and cost as the

sum of individual qubit measurements, we need to treat only 1-local terms. This

means that for initialisation we have a circuit where the qubits are non-interacting

and therefore the circuit is efficiently classically tractable. As the number of qubits

N increase we can still describe the system with O(N) at the initialisation stage,

and we note that in principle k-local terms can also be included as long as the

system remains tractable. Alternatively, we can also consider the circuit based
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on Clifford gates. In this case the circuit remains classically tractable following

the Gottesman-Knill theorem. For the remainder of this section we focus on the

situation with initialisation and feature map gates acting locally on single qubits.

With the circuit structure as discussed, the general form of the initial trial func-

tion can be expressed as

f0(t) =
N∑

j=1

α j

(
c(1)

j (θinit) g(1)
j (t) + c(2)

j (θinit) g(2)
j (t)

)
. (4.3)

Here c j(θinit) are coefficients which depend on the angles parameterising the ini-

tialisation layer, α j are the coefficients of the measurements in the cost function

and g j(t) are functions of the variable encoded within the circuit by the feature

map. Because this circuit is classically tractable the exact form of c j and g j remain

calculable as N increases. To see this note that for the feature maps considered

the gate implemented on qubit j is

Û j(t) = R̂β, j(φ j(t)) = exp
(
−iP̂β

jφ j(t)/2
)

(4.4)

= cos(φ j(t)/2)Î j − isin(φ j(t)/2)P̂β
j (4.5)

where β ∈ {x, y, z} are Pauli operators and φ j are encoding functions. There-

fore, the functions cos(φ j(t)/2) and sin(φ j(t)/2) are introduced into the state by the

feature map. The feature map encoding is thus based on the sets of functions

g(1) = {cos(φ j(t))} j and g(2) = {sin(φ j(t))} j. Note that the coefficients in front depend

on initialisation layers, the feature map and the measurement operator chosen.

For instance, by choosing specific circuit structures it is possible to select only a

specific set of functions to use for initialisation.

Knowing the form of the initial trial function we can choose θinit and αi such that it

is a good starting state. We do this by performing classical regression. The fitting

function’s coefficient set {g j} are fitted to a limited subset of the target function

values. The size of {g j} is at most double the number of qubits and therefore
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when considering NISQ implementation will be relatively small. Therefore, as a

low number of fitting functions are being fitted at a limited number of points, a low-

order approximation and its associated coefficients can easily be found. These

coefficients are then first used to choose α j such that they are of suitable scale

and the coefficient magnitudes desired are reachable by α jc j. With α j set, the

expressions α jc j(θinit) are then reversed to find the values which θinit should be

initialised to.

Once the initialisation coefficients have been calculated the standard QCL pro-

cedure is then commenced. The initialisation parameters will remain fixed whilst

the variational ansatz parameters will be updated. As this happens the variational

ansatze will no longer remain identity operators and more fitting functions will be

introduced, with the set cardinality defined by the feature map. The circuit will no

longer be efficiently classically simulable. The increase in the number of fitting

functions (along with number of training points) leads to a better fit of the target

data being possible. When using initialisation a smaller learning rate is preferred

to prevent immediate divergence from the initialised function.

4.4 Results

In the next subsections we present numerical simulations of generative mod-

elling. In the first part we apply the developed quantum quantile mechanics ap-

proach for solving a specific SDE, and demonstrate a data-enabled operation.

4.4.1 Ornstein-Uhlenbeck for Financial Forecasting and Trad-

ing

To validate the QQM approach and perform time series forecasting, we pick

a prototypical test problem. As an example we choose the Ornstein-Uhlenbeck

(OU) process. This process appears in many situations such as the motion of

particle undergoing Brownian motion. In financial analysis its generalisation is
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known as the Vasicek model [141]. It describes the evolution of interest rates and

bond prices [142]. This stochastic investment model is the time-independent drift

version of the Hull–White model [143] widely used for derivatives pricing. We also

note that OU describes dynamics of currency exchange rates, and is commonly

used in Forex pair trading — a primary example for quantum generative modelling

explored to date [144, 145]. Thus, by benchmarking the generative power of QQM

for OU we can compare it to other strategies (valid at fixed time point).

The Ornstein-Uhlenbeck process is described by an SDE with an instanta-

neous diffusion term and linear drift. For a single variable process Xt the OU

SDE reads

dXt = ν(µ − Xt)dt + σdWt, (4.6)

where the vector of underlying parameters ξ = (ν, µ, σ) are the speed of reversion

ν, the long-term mean level µ, and the degree of volatility σ. The corresponding

Fokker-Planck equation for the probability density function p(x, t) reads

∂p(x, t)
∂t

= −ν
∂

∂x
(
(µ − x)p

)
+
σ2

2
∂2 p
∂x2 . (4.7)

When rewritten in the quantilised form, it becomes a PDE for the quantile me-

chanics,

∂Q(z, t)
∂t

= ν
[
µ − Q(z, t)

]
+
σ2

2

(
∂Q
∂z

)−2
∂2Q
∂z2 , (4.8)

which follows directly from the generic quantile equation as discussed in section

2.8.3. In the following we take the speed of reversion to be positive, ν > 0 and

adjust the long-term mean level to zero, µ = 0.

Having established the basics, we train the differentiable quantum circuit to

match the OU QF. First, for the starting point of time, we train the circuit to repre-
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sent a quantile function based on available data (see the workflow chart in Fig. 4.1

and the discussion below). Next, having access to the quantum QF at the starting

point, we evolve it in time solving the equation

∂G(z, t)
∂t

= −νG(z, t) +
σ2

2

(
∂G
∂z

)−2
∂2G
∂z2 , (4.9)

as dictated by Eq. (4.8) from utilising quantile mechanics. This is the second

training stage in the workflow chart shown in Fig. 4.1.

To check the results, we use the analytically derived PDF valid for the Dirac

delta initial distribution p(x, t0) = δ(x − x0) peaked at x0 that evolves as

p(x, t) =
√

ν

πσ2(1 − exp[−2ν(t − t0)])
× exp

[
−
ν(x − x0 exp[−ν(t − t0)])2

σ2(1 − exp[−2ν(t − t0)])

]
, (4.10)

and we can write the OU QF evolution as

Q(z, t) =x0 exp
[
− ν(t − t0)

]
+

√
σ2

ν

(
1 − exp

[
− 2ν(t − t0)

])
inverf(z), (4.11)

where inverf(x) denotes the inverse error function [146]. This provides us a con-

venient benchmark of a simple case application and allows assessing the solution

quality. Additionally we use Euler-Maruyama integration to compare results with

the numerical sampling procedure with fixed number of shots.

4.4.2 Ornstein-Uhlenbeck with Analytic Initial Condition

To highlight the generative power of the QQM approach we start by simulating

the OU evolution G(z, t) starting from the known initial condition. This is set as

G(z, 0) = Q(z, 0) being the analytic solution [Eq. (4.11)] or can be supplied as a list

of known samples associated to latent variable values. To observe a significant

change in the statistics and challenge the training, we choose the dimensionless

SDE parameters as ν = 1, σ = 0.7, x0 = 4, and t0 = −0.2 such that we evolve a nar-

row normal distribution with strongly shifted mean into a broad normal distribution
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Figure 4.4: Circuit diagram of variational circuit used in simulations. Pur-
ple/pink boxes represent Pauli X/Y rotation gates. Entangling layer consists of
CNOT gates on nearest neighbours and endpoints. Variational circuit of depth d
is made up of initial layer of rotations R̂xR̂z on each qubit followed by entangling
layer composed of CNOTs. Then follows d − 1 implementations of rotation layer
(R̂zR̂xR̂z on each qubit), then entangling layer. The circuit terminates after a final
set of two rotations R̂zR̂x on each qubit.

at µ = 0.

We use quantum model with N = 6 qubits and a single cost operator being the

total Z magnetisation, C =
∑N

j=1 Ẑ j. This cost operator was chosen as it collects

information from all qubits and it is local (here, the sum of single-qubit operators).

Local cost operators were shown to have favorable behaviour as compared to

global when considering barren plateaus [35]. To build a model that does not bias

certain qubits we choose to have equal coefficients for the operator on each qubit.

For simplicity we train the circuit using a uniformly discretised grid with Z con-

taining 21 points from −1 to 1, and T containing 20 values from 0.0 to 0.5, to-

talling 420 points in the full grid. To encode the function we use the product-

type feature maps [28, 112] chosen as Ûϕ(t) =
⊗N

j=1 exp
[
− i arcsin(t)Ŷ j/2

]
and

Ûϕ′(z) =
⊗N

j=1 exp
[
− i arcsin(z)X̂ j/2

]
. The variational circuit corresponds to HEA

with the depth of six layers of generic single-qubit rotations plus nearest-neighbor

CNOTs, the circuit diagram of ansatz from is shown in Fig. 4.4. We exploit

the floating boundary handling as described in section 3.3.4 [112], and choose

a mean squared error (MSE) as the distance measure, L[a, b] = (a − b)2 of our
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Figure 4.5: Training time evolution of Ornstein-Uhlenbeck process. The re-
sults are shown for runs with analytic initial condition and parameters chosen as
ν = 1, σ = 0.7, x0 = 4. (a) Surface plot for the trained DQC-based quantile function
G(z, t) that changes in time. (b) Slices of the quantum quantile function G(z, t)
shown at discrete time points t = 0 (labelled as Tmin hereafter), t = 0.25 (Tmid), and
t = 0.5 (Tmax).

loss in Eq. (4.2). Due to floating boundary handling being used, there is no Ldata

term in the loss function. The system is optimised for a fixed number of epochs,

750, and we use the Adam optimiser for gradient-based training of variational pa-

rameters θ. We implement this workflow with a full quantum state simulator in

a noiseless setting. This, as well as the other simulations presented, is realised

in Yao.jl [110] — a Julia package that offers state-of-the-art performance. For

measurement, infinite shots are used. The effects of noise is simulated later

in section 4.4.6. Gradients calculations are simulated with an in-built function

of Yao.jl which utilises automatic differentiation techniques (back propagation) or

with application of the parameter shift rule.

We present the results of training in Fig. 4.5. In Fig. 4.5(a) we show the trained

quantum QF as a function of time t and the latent variable z. Choosing three

characteristic points of time t = {0.0, 0.25., 0.50} that we label as {Tmin,Tmid,Tmax},

we plot the corresponding quantile functions at these times [Fig. 4.5]. The dashed

curves from the DQC training closely follow ideal QFs shown by solid curves. Ad-

ditionally, we note we observed the training loss smoothly and rapidly converging

in 250 epochs as the circuit is expressive enough to represent changes of initial
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Figure 4.6: Comparison of histograms from the numerical SDE integration
and QQM training. (a) Distribution of samples from the Euler-Maruyama SDE
solver (binned counts divided by the total number of samples Ns), shown against
the analytic PDF at three time points Tmin (t = 0), Tmid (t = 0.25), and Tmax (t = 0.5).
Ns = 100,000 samples are taken, and parameters are the same (ν = 1, σ = 0.7,
x0 = 4). (b). Distribution of samples generated from the DQC-based quantile
function, for the training described in Fig. 4.5. (c) Bar height difference between
(a) and (b) shown for Tmin (top), Tmid (middle), and Tmax (bottom).

QF at increasing time, and thus providing us with evolved G(z, t).

Next, we perform sampling and compare the histograms coming from the Euler-

Maruyama integration of OU SDE [147, 148] and the QQM training presented

above. The results are shown in Fig. 4.6 for the same parameters as Fig. 4.5.

In Fig. 4.6(a) we show the three time slices of Euler-Maruyama trajectories, built

with Ns = 100,000 samples to see distributions in full. The counts are binned and

normalised such that the total area of the histogram (bin width multiplied by bin

height summed) is equal to one, and naturally show excellent correspondence

with analytical results. The sampling from trained quantile is performed by draw-
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Figure 4.7: Quantile function trained on initial data. (a) Trained QF for the
Ornstein-Uhlenbeck process at t = 0 (dashed curve labeled as result), plotted
together with the known true quantile (solid line labeled as target, results over-
lay). The parameters are the same as for Fig. 4.5. (b) Training loss at different
epochs, with the final epoch producing the QF in (a). (c) Normalised histogram of
samples from the data-trained QF, plotted against the analytic distribution (PDF).
Ns = 100,000 random samples are drawn and bin counts are normalised for a total
area of one as before.

ing random z ∼ uniform(−1, 1) for the same number of samples. In Fig. 4.6(b)

we observe that QQM matches well the expected distributions. Importantly, the

training correctly reproduces the widening of the distribution and the mean rever-

sion, avoiding the mode collapse that hampers adversarial training [149, 150]. To

further corroborate our findings, we plot the difference between two histograms

(Euler-Maruyama and QQM) in Fig. 4.6(c), and observe that the count difference

remains low at different time points.

4.4.3 Ornstein-Uhlenbeck with Data-inferred Initial Condition

Next, we demonstrate the power of quantile function training from the available

data (observations, measurements) corresponding to the Ornstein-Uhlenbeck pro-
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Figure 4.8: Time-evolution of Ornstein-Uhlenbeck process with data-inferred
initial condition. The initial conditions is taken from Fig. 4.7 and we use the same
OU model parameters. (a) Surface plot for the quantile function evolved in time.
(b) Loss as a function of epoch from training in (a).(c) Quantile functions shown
at three time points. (d) Histograms for the data-trained QF evolved with quantum
quantile mechanics, shown at same three points of time.

cess. Note that compared to the propagation of a known solution that is simplified

by the boundary handling procedure, for this task we learn both the surface G(z, t)

and the initial quantile function G(z,Tmin). To learn the initial QF (same parameters

as for Figs. 4.5 and 4.6) we use QCL trained on observations. The observations

are 100,000 samples from the normal distribution with mean µ0 = x0 exp
[
νt0

]
and

standard deviation σ0 =

√
σ2

ν

(
1 − exp

[
2νt0

])
, where x0 = 4, ν = 1, t0 = −0.2, σ = 0.7

(all dimensionless units). The samples in the initial dataset are collected into

bins and sorted in the ascending order as required by QF properties. From the

original Ns = 100,000 that are ordered we obtain an interpolated curve. We get

target values for QCL training choosing Npoints = 43 points in Z between −1 and

1. We note that the training set is significantly reduced, and such data-frugal

training holds as long as the QF structure is captured (monotonic increase). The
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Figure 4.9: Quantile function trained on initial data — no initialisation. (a)
Trained QF for the Ornstein-Uhlenbeck process at t = 0 (dashed curve labeled
as result), plotted together with the known true quantile (solid line labeled as
target, results overlay). (b) Normalised histogram of samples from the data-
trained QF, plotted against the analytic distribution (PDF). Ns = 100,000 random
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togram is one. (c) Training loss at different epochs, with the final epoch producing
the QF in (a).

training points are in the Chebyshev grid arrangement as cos[(2n − 1)π/(2Npoints)]

(n = 1, 2, ...,Npoints), this puts slight emphasis on training the distribution tails

around |z| ≈ 1. To make the feature map expressive enough that it captures full

z-dependence for the trained initial QF, we use a tower-type product feature maps

defined as Ûϕ′(z) =
⊗N

j=1 exp
[
− i arcsin(z) jẐ j/2

]
, where rotation angles depend

on the qubit number j. For the training we again use a six-qubit register, and

follow the same variational strategy as in the previous subsection. We initialise

the circuit using an initialisation procedure as detailed earlier. We observe that a

high-quality solution with a loss of ∼ 10−6 for G(z, 0) can be obtained at the number

of epochs increased to few thousands, and we find that pre-training with product
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states allows reducing this number to hundreds with identical quality.

The results are shown in Fig. 4.7, with the QF trained from data shown in

Fig. 4.7(a) by the dashed curve that overlays the target QF. The circuit converges

to 10−6 loss level [Fig. 4.7(b)], being close to the model expressivity limit of the

feature map itself. Performing sample generation at the initial time, in Fig. 4.7(c)

we observe good correspondence with the expected PDF (sampling procedure is

the same as in Fig. 4.6). At the same time we note that small deviations in trained

QF (and its derivative) lead to significant deviations for statistics, stressing the

importance of expressive circuits and stable training. Using the trained QF as

the initial condition, we evolve the system as before. Results are shown in Fig.

4.8. We see the same quality of propagation as the analytic case. We perform

generative modelling at later points of time Tmid and Tmax. The histograms in

Fig. 4.8(d) confirm the high quality of sampling, and show that the approach is

suitable for time series generation.

4.4.4 Initialisation

We make use of initialisation when training the quantile function on initial data

as in Fig. 4.7. We note however that using initialisation is not a requirement for

convergence. In Fig. 4.9 the results of training the quantile function on initial data

without initialisation is shown. We can see that the loss value magnitude and

the fit reached is similar to that achieved when training with initialisation. The

difference is seen in the number of epochs — without initialisation more epochs

are required to reach the same accuracy.

4.4.5 Qubit Number

Qubit number is an important factor of model performance with number re-

quired depending on other factors such as the feature map, data reuploading

(how many layers of feature maps) and the problem considered. In general ex-

pressivity of the model scales with qubit number. Too few qubits can lead to
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Qubit Number Loss KS
2 9.40 0.276
4 0.88 0.046
6 1.08 0.025
8 0.94 0.022

10 1.52 0.046

Table 4.1: Table of convergence as qubit number increases. Ornstein-
Uhlenbeck process solved as in Fig. 4.5 for varying number of qubits. The
resulting loss and the Kolmogorov-Smirnov measure between result and known
solution are shown for each respective qubit number.

low-expressivity which in turn leads to underfitting. Too many qubits can lead

to overfitting and therefore generalise poorly. Furthermore more qubits leads to

more quantum resource required. While there are generic guidances based on

structural risk minimisation [151], in practice the choice requires heuristics and

understanding of possible implicit biases [152] (an ongoing research direction in

QML).

To see the performance of our proposed method as the qubit number scales

we run the same calculation as used in Fig. 4.5 but with varying number of

qubits. As well as noting the final loss value from training we calculate the Kol-

mogorov–Smirnov (KS) test value for an out-of-training measure of model perfor-

mance. The resulting loss and KS values are presented below.

We observe from the KS measure of performance that N = 6 and N = 8-qubit

models have the best performance for our model, while N = 2, 4 and 10 experi-

ence underfitting or overfitting. Furthermore the model remains trainable as qubit

number increases. However, more iterations are required. For instance, 250 it-

erations are used for N = 6 and 500 for N = 10. Thus, for the given problem

and chosen product feature map the middle ground is using the N = 6 embed-

ding. In Fig. 4.10 we show results as sampling histograms for the trained quantile

function, at three time points when ten qubits are used. The best performing qubit

number being six is a property of the problem and the hyperparameters used. For

larger scale problems the qubit numbers required for preferable performance will
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Figure 4.10: Time-evolution of Ornstein-Uhlenbeck process with ten qubits.
Problem set up same as in Fig. 4.5 but with ten qubits and 500 iterations.
Shown is the normalised histogram of samples from the data-trained QF, plot-
ted against the analytic distribution (PDF). 100,000 random samples are drawn
and bin counts are normalised such that the total area of each histogram is 1.

generally be much larger, at scales which classical computers cannot simulate

easily.

4.4.6 Simulated Noise

Our results presented in the main text are simulated for an infinite number of

shots. However, in physical implementations a limited number of shots is used

leading to statistical noise in the read out. This typically follows a normal distribu-

tion in the limit of large number of shots. To check if our algorithm is robust in the

presence of shot noise we perform an additional simulation, where noise is added

to the function evaluation and its derivatives. Here we use the set up shown in

Fig. 4.5. We add noise to function evaluations following N(µ = 0, σ = 0.05). This

is added to each circuit evaluation so terms made up of multiple circuit evalua-

tions (such as derivatives) would have as many contributions of noise as circuit

evaluations required in the calculation. We check that this is equivalent to the

noise coming from function evaluations with 2000–3000 shots. No noise is added

for measurements used for plotting as at this stage we are concerned with the

training. We check separately that the quantum circuit is successfully trained to
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Figure 4.11: Time-evolution of Ornstein-Uhlenbeck process with simulated
limited shots. Problem set up same as in Fig. 4.5 but with limited number of
shots simulated by noise following N(µ = 0, σ = 0.05) added to function evalua-
tions during training. No noise added for final result plotting. (a) Slice of resulting
surface for quantile functions at three time points (same as in main text). (b) Loss
as a function of epoch from training resulting in (a).

represent the solution using the same training procedures as previously.

The results of this are shown in Fig. 4.11. As can be seen a result with a similar

level of accuracy is achieved, as compared to the case of no noise. Here more

epochs are used (500 vs. 250). Despite the loss being noisy (non-smooth) as

function of epoch, we can recover a high quality solution.

4.5 QGAN and Quantile Functions

In this section, we analyse continuous quantum generative adversarial net-

works (QGANs), and show that they represent quantile functions with a modi-

fied (reordered) shape that impedes their efficient time-propagation. We inves-

tigate the connection between quantum quantile mechanics (QQM) and QGANs

for SDE-based distributions, and whether QGAN structure could be used for time

evolution and solving of SDEs.

We introduced QGANs in section 2.6.3 and now for an example look at specific

application to an Ornstein-Uhlenbeck process. We follow the training strategy

from Ref. [29]. We try to model the normal distribution with zero mean and stan-

dard deviation of 0.2. Both the discriminator and generator use N = 6 registers
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with the expressive Chebyshev tower feature map [112] followed by d = 6 HEA

ansatz of the form as in Fig. 4.4. The readout for the generator uses the cost

operator ⟨Ẑ1⟩, and the discriminator uses the same cost operator with post pro-

cessing such that we readout (⟨Ẑ1⟩ + 1)/2 ∈ [0, 1] modeling the probability. As

before, we use Adam and train the QGAN for 2000 epochs using the loss function

(2.27). Due to the minimax nature of the training, the loss oscillates and instead

of reaching (global) optimum QGAN tries to reach the Nash equilibrium. Unlike

QQM training, we cannot simply use variational parameters for the final epoch,

and instead test the quality throughout. To get the highest quality generator we

test how close together are the discriminator (LD) and generator (LG) loss terms

by measuring the mean square distance between the two values. If they are within

ϵ = 0.1 distance we perform the Kolmogorov-Smirnov (KS) test [153] and check

the distance between the currently generated samples and the training dataset.

The result with minimal KS is chosen. We stress that KS is not used for training,

and is exclusively for choosing the best result.

The results for QGAN training are shown in Fig. 4.12. A total of 10,000 sam-

ples from N(0, 0.2) are used as training data. A different random subset of 1000

samples is used at each epoch for the loss evaluation. The trained genera-

tor GQ(z) is shown as a function of the latent variable z. We note that it has a

strongly-oscillating nature. The loss as a function of epoch is shown separately

for the generator (blue curve) and discriminator (red curve) loss terms. They

oscillate around the analytic value for the Nash equilibrium (black dotted line,

NE), and briefly settle around NE after 1600 epochs where resultant circuit pa-

rameters are saved. We sample the QGAN generator using Ns = 100,000 and

plot the normalised histogram in Fig. 4.12(c). We observe that the distribution

roughly matches the target (solid curve, PDF), though finer points are missing [cf.

Fig. 4.7(c)], including the missing tail at negative values. In Fig. 4.12(b) the loss

is shown and exhibits the oscillations that are often seen in QGAN training due to

the competition in the minimax loss, and associated mode collapse phenomena

[150]. There are further techniques that could be implemented to alter this such
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Figure 4.12: QGAN training and fixed-time sampling. (a) Generator function is
shown for the optimal training angles. (b) Generator (LG, red) and discriminator
(LD, blue) loss terms at different epochs. The Nash equilibrium at − ln(1/2) is
shown by black dotted line (NE). (c) Normalised histogram for QGAN sampling
(Ns = 100,000), as compared to the target normal distribution (µ = 0, σ = 0.2).
(d) Ordered quantile QGAN(z̃) from the resulting QGAN generator shown in (a)
(dashed curve), as compared to the true QF of the target distribution (solid curve).

as [154, 155]. Naturally, the generator of QGAN GQ(z) does the same job as the

trained quantile function G(z) from previous subsections. We proceed to connect

the two explicitly.

4.5.1 Reordered Quantile Functions and their DEs

The main difference between the quantile function and the generator of QGAN

is that the true QF is a strictly monotonically increasing function, while the QGAN

generator GQ is not. We can connect them by noticing that the QGAN works

with the latent variable z ∈ Z, which we can rearrange into a QF by ordering the

observations and assigning them the ordered latent variable z̃ ∈ Z̃ (both functions

produce the same sample distribution). It is convenient to define a mapping h :

Z̃ → Z for GQ which rearranges it into increasing form, QGAN(z̃) = GQ(h(z̃)). In
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practice, finding h(z̃) requires the evaluation of GQ(z) ∀ z ∈ Z and re-assigning the

samples to values of Z̃ in ascending order. Importantly, both h and its inverse

inv[h] : Z → Z̃ can be defined in this process.

In Fig. 4.12(d) we show the results of reordering for the generator function in

Fig. 4.12(a). The reordered quantile QGAN is plotted (dashed curve), approxi-

mately matching the target quantile (solid curve). We observe that the center of

the quantile is relatively well approximated but the tails are not (particularly for

z̃ < 0). This agrees with what is observed in the sampling shown in Fig. 4.12(c).

Having established the correspondence for QGAN-based generative modeling

and quantile-based modeling we ask the question: can we apply differential equa-

tions to the quantile-like function to add differential constraints, and evolve the

system in time enabling generative modelling?

The answer to the question above is far from trivial. To use a re-ordered QGAN

quantile function for further training and time-series generation we need to ac-

count for the mapping when writing differential equations of quantile mechanics.

Let us look into a specific case to develop an intuition on the behaviour of re-

ordered quantile functions with differential equations. A quantile function Q(z̃) of

a normal distribution with mean µ and standard deviation σ satisfies a quantile

ODE [88, 130]

d2Q
dz̃2 −

Q − µ
σ2

(
dQ
dz̃

)2

= 0, (4.12)

where we use the tilde notation z̃ to highlight that this is an ordered variable.

Assuming perfect training such that QGAN(z̃) = GQ(h(z̃)) closely matches Q(z̃), we

substitute it into Eq. (4.12), and observe that the original QGAN generator obeys

d2GQ(z)
dz2 −

GQ(z) − µ
σ2

(
dGQ(z)

dz

)2

=
inv[h]′′(z)
inv[h]′(z)

dGQ(z)
dz

.

(4.13)
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The left-hand side (LHS) of Eq. (4.13) has the same form as for the true QF [cf.

Eq (4.12)], but the right-hand side (RHS) differs from zero and involves deriva-

tives of the inverted mapping function inv[h](z). This has important implications

for training GQ(z) with differential constraints, as the loss term includes the differ-

ence between LHS and RHS. Let us analyze the example of the quantile ODE

in Eq. (4.13). In Fig. 4.12(a) we plot the LHS for GQ(z) coming from the QGAN

training. The result is a smooth function, and we expect all relevant terms, in-

cluding derivatives dGQ(z)/dz or d2GQ(z)/dz2, can be evaluated and trained at all

points of the latent space. However, the problem arises when the RHS enters

the picture. The additional term strongly depends on the contributions coming

from inverse map derivatives inv[h]′ and inv[h]′′. At the same time we find that

the map from a non-monotonic to a monotonically increasing function is based on

a multivalued function. And the inverse of the map (along with the map itself) is

continuous but not smooth — it becomes non-differentiable at some points due to

GQ(z) oscillations.

As a toy-box example to see this we start by considering a quantile-like gener-

ator GA(z) and use the mapping h that reorders it into ideal quantile function (QF)

for the normal distribution. The mapping reads h(z̃) = ± (z̃ + 1) /2, and is shown in

Fig. 4.13(a) as a multivalued function. It ensures that if we start from the normal

QF, we arrive to GA(z) with a single dip. The corresponding QGAN-like generator

GA(z) with a single dip is shown in Fig. 4.13(b) (we consider µ = 0 and σ = 0.2).

Our motivation is to understand how the presence of nonmonotonicity changes

the behaviour of the system.

First, let us check that the reordering into increasing quantile function works

as expected. Assigning the values of GA(z) in the ascending order we get the

reordered QF QA(z̃). This is plotted in Fig. 4.13(c), matching the ideal Q(z̃) as

expected. Once we have established the mapping for ideal re-ordering, let us

look at its properties.
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Figure 4.13: QGAN quantile function reordering example. (a) Mapping func-
tion h(z̃) = ±(z̃ + 1)/2. (b) Non-ordered quantile function GA(z) = Q(inv[h](z)) cor-
responding to mapping in (a) and normal quantile function. (c) Known quantile
function (solid curve, Q) compared to numerical ordering of GA (dashed line, QA).
(d) Second derivative d2G(z)

dz2 plotted for GA shown in (b). Derivatives of inv[h] are
calculated using finite differencing. (e) Inverse mapping function inv[h] plotted for
different values of the latent variable z. We note the point of non-differentiability
at z = 0. (f) Analytic first derivative of inv[h] that has a discontinuity at z = 0.

We discussed how the reordered quantile function from QGAN training matches

the appropriate quantile function. We can perform the same check for the simple

re-ordering presented above. Evaluating the difference between the RHS and

LHS of Eq. (4.13) (akin to loss term) for GA(z) and known mapping h(z̃), we ob-

serve that the difference remains zero everywhere (we have a perfect solution),

apart from the middle point z = 0 where it diverges [Fig. 4.13(d)]. For calculat-

ing the derivatives of inv[h] we use finite difference (first-order forward Euler’s
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Figure 4.14: QGAN quantile function analysis. In (a) we plot the LHS of
Eq. (4.13) for the trained QGAN generator GQ(z) shown in Fig. 4.12(a). The re-
sulting function is oscillatoric but smooth. (b) Inverse mapping function inv[h]
shown as a function of z. It transforms GQ(z) into the increasing quantile function
QGAN(z̃) that is plotted in Fig. 4.12(d). We highlight the non-differentiable points by
blue circles, and zoom in on the characteristic behaviour in the inset above. The
derivative is not defined at the discontinuity (top right inset).

method with a step of 10−5), similarly for the QGAN case, thus observing small

noise coming from numerical differentiation. The noise could be further reduced

by considering alternative numerical differentiation schemes such as higher-order

schemes or those more robust to step size such as the complex step rule [156].

The reason behind the unfavorable loss term behaviour can be tracked to the

properties of the mapping function. We show the inverse mapping inv[h] plotted

in Fig. 4.13(e), and its derivative inv[h]′ is presented in Fig. 4.13(f). We see that

inv[h] has a point of non-differentiability at z = 0 and inv[h]′ is ill defined there.

This provides the intuition behind the divergence. When training the DE-based

loss for Eq. (4.13) with z = 0 included the loss becomes non-trainable. We stress

that the same is observed for the non-ideal GQ, where multiple non-differentiable

points appear that we do not know in advance.

We see this behaviour in practice for the results from Fig. 4.12. As can be

seen in Fig. 4.14, for these results the evaluation of the LHS of (4.13) results in

a smooth function. For the RHS derivatives of inv[h] are involved. Fig. 4.14(b)
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shows inv[h] from training in Fig. 4.12, highlighting the points with non-analytic

behaviour blue circles. The inset for Fig. 4.14(b) clearly shows the discontinuity.

This translates to the absence of inv[h]′(z) at a set of points, which unlike zero

derivatives cannot be removed by reshuffling the terms in the loss function. The

discovered unlikely property of the mapping puts in jeopardy the attempts to use

differential-based learning for QGAN generators. However, we do not currently

think that it will be impossible to use QGAN for differential-based learning, it may

be possible to engineer techniques to alleviate the found problems such as ways

to exclude the set of ”problem” points to yield stable training or to bias the QGAN

to learn monotonic functions. While more studies are needed to estimate the

severity of discontinuities and if techniques could be found, our interim conclusion

is that quantile functions in the canonical increasing form are more suitable for

evolution and time series generation.

4.6 Discussion

We proposed a distinct quantum algorithm for generative modelling from stochas-

tic differential equations. Summarising the findings, we have developed the un-

derstanding of generative modelling from stochastic differential equations based

on the concept of quantile functions. We proposed to represent the quantile func-

tion with a trainable (neural) representation, which may be classical- or quantum-

based. In particular, we focused on parameterising the trainable quantile function

with a differentiable quantum circuit that can learn from data and evolve in time

as governed by quantile mechanics equations. Using Ornstein-Uhlenbeck as an

example, we benchmark our approach and show that it gives a robust strategy

for generative modelling in the NISQ setting. Furthermore, we notice that adver-

sarial schemes as continuous QGAN lead to modified quantile-like function that

potentially have intrinsic obstacles for evolving them in time.

For future implementation of this algorithm for more complex problems further

work on choosing suitable feature maps that can accommodate the problem whilst
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remaining trainable is needed. One such approach could be encoding implicit bi-

ases [152] and utilising symmetries via geometric machine learning techniques

[157, 33]. This is particularly suitable for quantile functions as they are mono-

tonically increasing functions where derivatives can be constrained. Additionally,

whilst we have shown some obstacles for QGAN type models in time, whether

these could be mitigated/avoided or if they are fundamentally blocking is still to

be answered.

We conclude by saying that the strategy we propose uses the large expressive

power of quantum neural networks, and we expect that elements of the approach

can be used for other architectures.
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Chapter 5

Quantum Kernel Methods for

Solving Regression Problems and

Differential Equations

5.1 Declaration of Contribution

The work presented in this chapter is published in [158]. My contributions con-

sist of the initial idea, the development and running of simulations and majority of

manuscript writing.

5.2 Introduction

We now consider another approach to solving differential equations with a

quantum computer. This is based on kernel methods which were discussed in

section 2.8.2. Quantum kernel methods have previously been considered for

various classification tasks. Classically, kernel methods are also applicable to re-

gression and differential equations [85, 159, 160]. Therefore we work on creating

and simulating quantum kernel methods for differential equations.

We propose two approaches for solving regression problems and differential

equations (DEs) with quantum kernel methods. We compose quantum models
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as weighted sums of kernel functions, where variables are encoded using feature

maps and model derivatives are represented using differentiation of quantum cir-

cuits. While previously quantum kernel methods primarily targeted classification

tasks, here we consider their applicability to regression tasks, based on available

data and differential constraints. We use two strategies to approach these prob-

lems. First, we devise a mixed model regression with a trial solution represented

by kernel-based functions, which is trained to minimise a loss for specific differ-

ential constraints or datasets. Second, we use support vector regression that

accounts for the structure of differential equations. The developed methods are

capable of solving both linear and nonlinear systems. These two approaches for

regression and differential equations will be introduced and compared. Simulated

results are then shown.

Contrary to prevailing hybrid variational approaches for parametrised quantum

circuits, we perform training of the weights of the model classically. This results

in an approach utilising the expected increased expressivity of quantum models

yet does not require quantum evaluation throughout training - only pre and post

training. We also note that this can easily be adapted to include quantum pa-

rameters and consequently quantum evaluation during training but we focus on

the first case. Under certain conditions this corresponds to a convex optimisa-

tion problem, which can be solved with provable convergence to global optimum

of the model. The proposed approaches also favor hardware implementations,

as optimisation only uses evaluated Gram matrices, but require quadratic num-

ber of function evaluations. We highlight trade-offs when comparing our methods

to those based on variational quantum circuits such as the proposed differen-

tiable quantum circuits (DQC) approach. The proposed methods offer potential

quantum enhancement through the expected rich kernel representations using

the power of quantum feature maps and their expressivity.
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Figure 5.1: General encoding circuit for kernel function.Circuit diagram show-
ing a general form of function encoding circuit U(x) used to implement quantum
kernel. This is formed by layers of static circuitsVi and data re-uploading circuits
Uϕi(x) parametrised by x.

5.3 Method

5.3.1 Quantum Model

Similar to our previous variational algorithms one of the first steps is to consider

what quantum model we will use and how it forms a trial solution for the problem.

We will find that the exact form of the trial solution depends on the problem and

method considered but all are formed of quantum kernel functions (QK).

Earlier we mentioned a quantum kernel function of the form κ(x, y) = ⟨ψ(x)|ψ(y)⟩,

being an inner product that is generally complex for quantum states. In the follow-

ing, we consider κ(x, y) = |⟨ψ(x)|ψ(y)⟩|2 as an absolute value square of the overlap.

This also corresponds to a valid kernel function [43]. We consider this kernel func-

tion as it is real valued — an advantage when expressing real valued functions.

The kernel functions we consider contain states |x⟩, which are encoded by a

classical variable x. To create such states we choose to use feature map en-

coding, where x is embedded into the state by parametrising gates preparing

the state, |ψ(x)⟩ = U(x)|0⟩ as introduced in section 2.4. Other more complicated

feature map encodings can be considered. A useful generalisation includes the

re-uploading technique [36] where action of feature maps can be layered with

(non-variational) entangling circuits, Û(x) = ÛϕM (x)V̂M...V̂2Ûϕ1(x)V̂1 (see Fig.

5.1). This layered form terminates with a circuit encoded by a variable, as a
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Figure 5.2: Circuit diagrams for kernel function evaluation. Circuit diagrams
for evaluating the kernel κ(x, y) = |⟨ψ(x)|ψ(y)⟩|2, where in all circuitsU and H repre-
sent the kernel feature map and the Hadamard gate, respectively. (a) Naive kernel
evaluation based on consecutive application of U circuits, followed by measuring
each qubit. The kernel value is inferred from a probability of returning to the ini-
tial state. (b) SWAP test measuring |⟨ψ(x)|ψ(y)⟩|2. The controlled SWAP onto the
size 2N register is composed of qubitwise controlled SWAP on the nth qubit pair,
repeated for n ∈ 1 : N. (c) Hadamard test measuring Re(⟨0|U†(x)U(y)|0⟩) and
Im(⟨0|U†(x)U(y)|0⟩) for b = 0 and b = 1, respectively. S denotes the phase gate,
exp(−πZ/4).

final entangling circuit would cancel itself out out for kernels based on Û†(x)Û(y).

As with many variational algorithms, when choosing feature maps it is important

to have a map expressible enough to represent the solution to the problem whilst

also being trainable [151].
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We now discuss how to implement the quantum kernel function κ(x, y) = |⟨ψ(x)|ψ(y)⟩|2.

One way is to use the coherent SWAP test [161, 162]. This test requires 2N + 1

qubits, where N is the number of qubits used to express |ψ(x)⟩. |ψ(x)⟩ and |ψ(y)⟩

are both prepared on separate registers then via Hadamard gates and controlled

operations an ancillary qubit can then be measured to read |⟨ψ(x)|ψ(y)⟩|2. With this

approach only one qubit has to be read and the controlled operations is limited to

the SWAP gate. The circuit diagram is shown in Fig. 5.2(b).

We can also employ other methods. For this, we use the fact that the kernel

evaluation can be written as

|⟨ψ(x)|ψ(y)⟩|2 = ⟨0|Û†(y)Û(x)|0⟩⟨0|Û†(x)Û(y)|0⟩. (5.1)

The measurement in Eq. (5.1) can be implemented naively by the circuit in Fig. 5.2(a).

The circuit is initialised in the zero state. Then Û(y) is applied, followed by Û†(x).

The probability of remaining in the zero state and consequently the kernel func-

tion value is then calculated by measuring all qubits and finding the fraction of

times |0⟩ is measured.

Another possible implementation is two evaluations of the Hadamard test with

N + 1 qubits as shown in Fig. 5.2(c) [70] as was introduced in section 2.7.1 to

measure overlaps. This can be used to evaluate the real and imaginary parts of

⟨0|Û†(x)Û(y)|0⟩which can then be used to evaluate the kernel as Re(⟨0|Û†(x)Û(y)|0⟩)2+

Im(⟨0|Û†(x)Û(y)|0⟩)2.

Derivatives

As our goal is to solve differential equations, we need to be able to evaluate

derivatives of the kernel function. We introduce notation for the derivatives as

follows,

∇m
n κ(x, y) =

∂m+nκ(x, y)
∂xn∂ym . (5.2)
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Figure 5.3: Circuit diagrams for evaluation of derivatives of kernel func-
tions. (a) Generic circuit for differentiating kernels shown in Fig. 5.2(a) where
a parameter shift rule is used. Depending on which derivative is calculated,
gates parametrised by x and/or y have their parameters shifted up and down
(shown by h j and hk). Contributions from all parametrised gates are then summed
for overall derivative. (b) Using Hadamard test for evaluation of the overlap
⟨0|dn/dxnU

†

k (x)dm/dymU j(y)|0⟩, where k and j index over which gates with x and/or
y as parameters are differentiated. When b = 0 and b = 1 are used the
real and imaginary part is evaluated. By summing over j, k the full overlap
⟨0|dn/dxnU†(x)dm/dymU(y)|0⟩ can be evaluated. These overlaps can then be used
to evaluate kernel derivatives.

To implement derivative evaluation, one way is to consider the kernel as written

in Eq. (5.1) and the parameter shift rule [39, 28]. The parameter shift rule was in-

troduced in section 2.4.4. With this method, we take the kernel evaluation method

as in Fig. 5.2(a) but shift x and y up and down depending on what derivative is be-

ing calculated in each gate that they parametrise. For example for the first order

derivative with respect to x the number of evaluations of Fig. 5.3(a) is 2k with k be-

ing the number of gates parametrised by x. Using the parameter shift rule means

we calculate the analytic derivative though it does place some requirements on

the gates parametrised by x and y such as the generator being involutory. Gen-

eralised parameter shift rules are possible, where such requirements are relaxed

[40, 41, 163, 164, 165].

We can also implement derivatives via the Hadamard test. First, we note the

form of the first-order derivative of the kernel in x by using the product rule in
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Eq. (5.1) as

∂

∂x
κ(x, y) = ⟨0|Û†(y)d/dx(Û(x))|0⟩⟨0|Û†(x)Û(y)|0⟩

+ ⟨0|Û†(y)Û(x)|0⟩⟨0|d/dx(Û†(x))Û(y)|0⟩, (5.3)

and thus we can evaluate this derivative by evaluating ⟨0|Û†(y)d/dx(Û(x))|0⟩ and

⟨0|Û†(x)Û(y)|0⟩ (real and imaginary parts). The second term can be evaluated the

same as for evaluating the kernel shown in Fig. 5.2(b), and calculations can be

reused because the derivatives are evaluated over the same set of points as the

kernel itself. To calculate the first term a modified Hadamard test can be used.

For such a modification we consider the generalised layered form of kernel

encoding Û(x) = ÛϕM (x)V̂M...V̂2Ûϕ1(x)V̂1 with each feature map being Ûϕ j(x) =

exp(−iG jϕ j(x)). The derivative then readsU′(x) =
∑M

j=1 ÛM: j+1Ûϕ j(−iG j)ϕ′j(x)V̂ jÛ j−1:1

with Û j:k = Ûϕ j(x)V̂ jÛϕ j−1(x)...Ûϕk(x)V̂k. We can now assume that the generators

G j are unitary. When G j are unitary we can calculate each overlap term in the

derivative expansion with two Hadamard tests. However, if this is not the case,

one can decompose them into sums of unitary terms and evaluate them sepa-

rately with increased number of Hadamard tests [39].

Once the procedure for evaluating derivatives being set up, we generalise to

higher-order derivatives. By using the product rule in Eq. (5.1) whatever derivative

is required, one can express it as sums of products of overlaps with Û(x) and Û(y)

differentiated to different orders. These overlaps can be calculated with two (when

generators unitary) overlap tests for each gate with x and/or y as a parameter

(see Fig. 5.3). These overlap evaluations can be reused for calculating different

derivatives where the same overlap occurs.

5.3.2 Regression

Our goal is to use the quantum kernel functions to solve regression problems

and differential equations. We consider two main methods — mixed model re-
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gression (MMR) and support vector regression (SVR)[85]. Let us first consider

using these methods to solve data-driven regression problems. This is a simpler

case than solving differential equations yet still requires representing a solution

function via quantum kernel functions, and can be built upon to solve differen-

tial equations. For this regression problem we have a set of values {xi, fi}i and

we want to find a function f (x) that fits these points such that fi = f (xi). These

approaches are very similar to the classical version with quantum contributions

entering through the quantum kernel function as discussed earlier. We consider

how both MMR and SVR approach the described problem.

Mixed Model Regression

When using the mixed model regression we represent a trial function as

fα(x) = b +
|y|∑

i=1

αiκ(x, yi), (5.4)

where y = {yi}i is a set of evaluation points, |y| denotes the size of set y, and

α = {αi}i and b are tunable, classical coefficients. We then choose a loss function

corresponding to the problem such as L(α) =
∑|x|

i=1 ( fα(xi) − fi)2. The loss function

is chosen such that when optimised with respect to α and b the corresponding

fα(x) fit the regression problem. There are multiple different valid loss functions

for a given problem, we have used mean square error (MSE) for our loss function.

The loss function requires the evaluation of { fα(xi)}i, which in turn requires the

evaluation of {κ(xi, y j)}i, j. These evaluations are independent of α — the variable

which is adjusted during optimisation. This means that the kernel function will only

need to be evaluated once for each point in {xi, y j}i, j at the start of the optimisation

procedure. Any suitable optimisation method may be used to optimise L(α). We

can also see that the considered loss function for regression is convex.

We consider the general case L(α) =
∑|x|

i=1 L(xi;α)2 with L being a linear func-

tion of α, and represents a measure of how well the current trial function solves
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the problem at a training point. A sufficient condition for convexity of the loss

function is ∂2L/∂α2
j ≥ 0 everywhere for all α j ∈ α. We can write the second-order

derivatives as

∂2L

∂α2
j

=

|x|∑
i=1

2 (
∂L
∂α j

)2

+ L
∂2L
∂α2

j

 = |x|∑
i=1

2
(
∂L
∂α j

)2

≥ 0, (5.5)

where passing from second to third expression we use the linearity of L in α.

When a loss function is convex its minimum is global, and there are bounds on

convergence for various optimisation methods [86].

The workflow to solve an MMR problem is as follows:

1. Choose setup for training, including the kernel function, optimiser, x, y.

2. Identify the loss function for problem considered.

3. Calculate set of kernel function evaluated over x ⊗ y.

4. Optimise the loss function.

Once the model is trained, we can also evaluate it at a grid of points different

from the training grid, learning the solution in the full domain of x.

Support Vector Regression

The method of how to format a regression problem for SVR was introduced in

section 2.8.2. As a recap, the resulting system of equations is

 Ω̂ + Î/γ 1

1T 0


 α

b

 =
 f

0

 , (5.6)

where Ωi, j = κ(xi, x j), Ω̂ = {Ωi, j}i, j, and α are a set of introduced dual variables.

The associated model of the solution is

f (x;α) =
|x|∑

i=1

αiκ(x, xi) + b. (5.7)

This follows from the workflow to prepare an SVR problem as follows:

1. Write model with minimisation function and constraints.
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2. Write out Lagrangian.

3. Find the KKT optimality conditions.

4. Eliminate subset of original optimisation variables.

5. Use the kernel trick to realise problem in terms of kernels.

6. Write out remaining relationships as system of equations.

7. Use KKT conditions and kernel trick to express function in terms of kernel

functions.

The prepared SVR model can then be used for any problem of the form as-

sumed in preparing the original model. The workflow for solving an SVR problem

is as follows:

1. Choose setup for training, including the kernel function, system of equations

solver, x, γ.

2. Identify suitable SVR model for the problem considered.

3. Calculate set of kernel function evaluated over x ⊗ x.

4. Solve system of equations.

We note that the SVR method results in a form of problem that can still be

considered as an optimisation problem to be solved with an optimiser. The system

of equations Ax = b can be translated into the loss function L(x) =
∑

i[(Ax)i − bi]2.

Here we use MSE loss but other forms can be employed. This formulation can

be especially useful when considering problems resulting in nonlinear systems of

equations.

Comparison

Comparing the MMR and the SVR methods we note that the solving workflow

for the two are similar. Namely, we choose a setup, identify what to solve based

on method and problem, calculate the set of kernel function evaluations, and

solve the model identified in step two. However, identifying the model for the SVR

method is a more involved process.
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Both MMR and SVR result in a function approximation to the solution of the

problem considered. For regression this is Eq. (5.4) and Eq. (5.7), respectively.

These two functions look very similar with the difference being the kernel evalu-

ation at yi for MMR versus xi for SVR. This is a consequence of using the kernel

trick when formulating the SVR model, which necessarily results in y = x. Also to

be highlighted is that the form of Eq. (5.7) depends on the problem considered.

For example, later we see that when solving differential equations, evaluations of

the kernel derivative are involved in the function expression. However, for MMR

the form of the model remains the same no matter what problem considered.

One benefit of using the MMR model is the simpler identifying of the model to

solve. Another is the convexity when considering certain problems. The benefit

of SVR is that when linear the resulting system of equations to solve is also linear

and thus has a deterministic solution obtainable ina single step. Furthermore, the

initial trial function is in terms of φ which can be of higher dimensionality than the

kernel function yet never needs to be evaluated directly.

5.3.3 Solving Differential Equations

In the following text, we collect the described tools for model and derivative

evaluations, and apply them to solve differential equations. While there are many

possible choices, we start by considering a simple class given by the differential

constraint

DE(x, f , d f /dx) =
d f
dx
− g(x, f ) = 0, (5.8)

with initial condition f (x0) = f0, and g a smooth function of x and f which in general

can be nonlinear in either of those arguments. We now use both MMR and SVR

to solve this type of DEs in next subsections.
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5.3.4 Mixed Model Regression

When solving DEs of the type (5.8) via MMR, we choose a loss function in

the form L(α) =
∑|x|

i=1
[
DE(xi, fα(xi), d fα/dx(xi))

]2
+ ( fα(x0) − f0)2. We remind that

the trial function reads fα(x) = b +
∑|y|

i=1 αiκ(x, yi). Therefore, kernels κ and their

derivatives ∇0
1κ are evaluated over {xi, y j}i, j, leading to corresponding fα and d fα/dx

evaluations. These values are independent of α, and only need to be evaluated

once at the start, then being reused throughout optimisation. The loss function

can then be optimised via any appropriate optimiser for getting optimal weights

αopt. The resulting function is then a suitable approximation to the solution of

the differential equation, mainly being limited by expressivity of the model and

generalisation bounds.

When the differential equation is linear [i.e., g is linear in f in Eq. (5.8)] the

considered loss function is convex. This is true when the differential equation is

linear and fα (and consequently f ′α) is linear in α, meaning we are in the situation

as described by Eq. (5.5). When the differential equation is nonlinear this is not

necessarily the case. In order to determine that one needs to check for the con-

vexity of the loss function. One possibility is a numerical check by sampling the

second derivatives of the loss with respect to the optimizable parameters at many

locations. If this value is ever negative then the problem is non-convex.

5.3.5 Support Vector Regression

In appendix A how to form an SVR problem for a given differential equation

is explained. The overall process is the same as regression: state a model,

write out Lagrangian, find KKT optimality conditions, eliminate subset of prime

variables by using the KKT conditions, use the kernel trick, and finally write out

remaining equations in matrix form. But some specifics do change based on type

of DE [159, 160, 166].
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As an example the SVR formulation procedure for problems of the form DE(x, f , d f /dx) =

d f /dx − g(x, f ) = 0 with initial condition f (x0) = f0 is detailed in appendix A and

results in



Ω̃1
1 Ω1

0 h1
0 0 0̂

Ω0
1 Ω̃0

0 h0
0 1 −Î

hT 0
1 hT 0

0 h̃ 1 0T

0T 1T 1 0 0T

D̂ Î 0 0 0





α

η

β

b

y


=



g̃

0

f0

0

0̂


. (5.9)

Here, we introduced dummy variables yi. η and β are dual variables introduced

along with α corresponding to the dummy variable constraint and the initial vari-

able constraint, respectively. The remaining notation is as follows

[Ωm
n ]i, j = ∇

m
n κ(x j, xi), (5.10)

Ω̃m
n = Ω

m
n + Î/γ, (5.11)

[hm
n ]i = ∇

m
n κ(x0, xi), (5.12)

h̃ = κ(x0, x0), (5.13)

D̂ = diag
({
∂g
∂ f

(xi, yi)
}

i

)
, (5.14)

[g̃]i = g(xi, yi). (5.15)

We now have a set of generally nonlinear equations, which can be solved for

finding a vector of optimised weights. Any suitable method for solving a system

of nonlinear equations can be utilised, in our later examples we optimise for the

solution. By substituting the relevant KKT optimality conditions into f (x) = b +∑|y|
i=1 αiκ(x, yi) and employing the kernel trick, we get an expression for f in terms

of kernel functions

f (x) =
|x|∑

i=1

αi∇
0
1κ(xi, x) +

|x|∑
i=1

ηiκ(xi, x) + βκ(x0, x) + b, (5.16)
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where optimised variables (weights) are used. Note that if the differential equation

is linear, yi will not appear in both the matrix and the vector to be solved for.

This leads to a system of linear equations with lower dimension. This, similar

to regression is then solved with any suitable method. We focus on variational

approach.

5.3.6 Other Forms of Differential Equations

Many practical problems are not of the form DE(x, f , d f /dx) = d f /dx−g(x, f ) = 0

considered above. For instance, they may include terms of higher order, higher

dimension, or indeed many other different variations. When considering the MMR

method, one can readily generalise to any other form of DE simply relying on

generalised optimisation. For this, a suitable loss function needs to be formulated

for the chosen equation. Additionally, we shall be able to evaluate each term of

the differential equation. For systems of DEs the overall loss becomes the sum

of the loss of each individual differential equation within the system. For PDEs

with domains of more than one dimension, the kernel function can be considered

as κ(x, y) = |⟨0|Û†(x)Û(y)|0⟩|2, where the feature maps now encode a vector of

domain variables. The simplest form is Û(x) = Û(x1)Û(x2)...Û(xM) with M = |x|.

When the SVR method is used, the considered problem needs to be formulated

into the SVR form, resulting in a different form of matrix equation. Higher order

derivative SVRs [159, 166] and SVRs for PDEs [160] are possible, as well as

their generalisations for systems of differential equations. An example of solving a

second order differential equation and the resulting SVR formulation is presented

within the following results section.

5.4 Results

Having established quantum kernel approaches for solving DEs and learning

from data, we apply them to specific problems and show the results.
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5.4.1 Regression on Quantum Data

We start by considering the case of regression. We generate a quantum

dataset that corresponds to dynamics of total magnetisation of a biased hon-

eycomb Kitaev model [167, 168]. The Hamiltonian of the system reads

H = J

 ∑
⟨i, j⟩∈X

X̂iX̂ j +
∑
⟨i, j⟩∈Y

ŶiŶ j +
∑
⟨i, j⟩∈Z

ẐiẐ j

 + hz

N∑
j=1

Ẑ j, (5.17)

where X, Y, Z are sets of bonds. We choose antiferromagnetic coupling and

set hz/J = 0.2. Specifically, we simulate nonequilibrium effects by performing time

evolution of Mz =
∑

j Ẑ j/N for N = 12 qubits on a lattice with periodic boundary con-

ditions [169], starting from the uniform initial state. The choice of quantum dataset

with strong magnetic correlations may be especially suitable for kernel-based re-

gression, given recent advances in learning from experiments [170]. Choosing a

subset of evolved magnetisation values labeled by x values (here corresponding

to time), we proceed to perform MMR.

When implementing the MMR method we consider x with 51 values of x be-

tween 0 and 10, associated to the data, and y = x. We use and compare

the results from a classical kernel and a quantum kernel function. The classi-

cal kernel used is a commonly used radial basis function (RBF) kernel κ(x, y) =

exp
[
(x − y)2/(2σ2)

]
, with σ being a hyperparameter that describes a width of the

kernel. In calculations we choose σ = 0.2 as that shows favorable performance.

For the quantum kernel, we use layers of depth-five hardware-efficient ansatz

(HEA) and feature maps based on parametrised X̂ rotations, R̂X(ϕ(x)), acting on

each qubit. We set ϕ(x) = qx/2, where q is the qubit index, and consider a reg-

ister of eight qubits. For the loss function MSE is used with a pinned boundary

formulation (see [112] for the details of boundary handling). The loss function for

data regression is convex and is optimised via Newton’s method. In this case just

three epochs is enough for converging to low loss values. We model the system

with full state simulation using the Julia’s package Yao.jl [110]. The error of

the results of this are shown in Fig. 5.4(b) with associated loss in Fig. 5.4(a). As
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Figure 5.4: MMR and SVR used to solve a regression problem. Data to fit
is for time-evolved magnetisation of a biased honeycomb Kitaev model. (a)
Solution via SVR method for quantum kernel function with two layers and N = 8
shown by dashed purple line. Data plotted as solid light blue curve with points
used for training highlighted with green circles. (b) Error between results and
underlying data plotted over x as [ f (x) − fdata(x)], and we additionally normalise
data by the range of magnetisation values. Error plotted for result shown in (a)
and SVR method with classical RBF kernel with σ = 0.2. Also plotted results
from MMR method with same kernels considered. Newton optimiser with just 3
epochs is used for MMR method. (c) Loss value over epoch number plotted for
MMR results shown in (a) and (b).

can be seen, both kernel types are able to closely approximate the considered

function. Moreover, we note that for complicated quantum data coming from spin-

spin correlation one can benefit from specifically-designed quantum kernels that

account for the structure of the problem.
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When implementing the SVR method, we use the same points x, kernel func-

tions and the simulation package. The resulting SVR system of equations to

solve for this form of problem are as shown in Eq. (5.6). The results of this with

the quantum kernel are shown in Fig. 5.4(a). The error of the results is shown in

Fig. 5.4(b). It can be seen that both kernel types are able to closely approximate

the considered function, and that SVR outperforms the MMR method which we

believe to be an affect of the different methods of solving optimisation for MMR

versus ”exact” linear algebra computations for SVR.

5.4.2 Solving Linear Differential Equations

Next, we consider solvers of linear differential equations. In particular, we solve

the equation

d f
dx
= −λκ f − λexp(−λκx)sin(λx), (5.18)

where parameters are chosen as λ = 20 and κ = 0.1, along with initial condi-

tion f (0) = 1. The analytic solution to the differential equation (5.18) is fsol(x) =

exp(−λκx)cos(λx), being a fading oscillatory dependence.

When implementing the MMR method we consider x and y of 21 points uni-

formly spaced over [0, 1]. We use and compare the results from a classical RBF

kernel with σ = 0.2 and a quantum kernel with two layers of HEA circuits (depth

equal to five) followed by feature map of Rx(ϕ(x)) on each qubit with ϕ(x) = qx/2,

where q is the qubit index. We consider eight qubits in the register. For the loss

function MSE is used with a pinned boundary. This loss function is convex, as

the DE is linear, and is optimised via Newtons method. The error of the results

are shown in Fig. 5.5(b) with corresponding loss in Fig. 5.5(c). As can be seen

both kernel types are able to closely approximate the considered function with the

error less than 0.002 in magnitude, the quantum kernel slightly outperforms the

classical kernel although we did not further explore hyperparameter optimisation.
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Figure 5.5: MMR and SVR used to solve a linear differential equation (5.18).
λ = 20, κ = 0.1 and f (0) = 1. (a) Solution via SVR method for quantum kernel
with two layers and N = 8 shown by dashed purple line. Known analytic solution
plotted with solid light blue line. (b) Error between results and analytic solution
plotted over x as ( f (x)− fsol(x))/range( fsol). Error plotted for result shown in (a) and
SVR method with classical RBF kernel with σ = 0.2. Also plotted results from
MMR method with same kernels considered. Newton optimiser with 100 epochs
used for MMR method. (c) Loss value over epoch number plotted for MMR results
shown in (a) and (b).

When implementing the SVR method, we use the same x and kernel func-

tions. The corresponding SVR system of equations to solve for a problem of form

d f /dx + g(x) f + r(x) = 0 reads


M̂ h0

1 − D̂h0
0 g

(h0
1 − D̂h0

0)T h̃0
0 1

gT 1 0




α

β

b

 =


r̃

f0

0

 , (5.19)
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where the notation is as follows:

[Ωm
n ]i, j = ∇

m
n κ(x j, xi), (5.20)

Ω̃m
n = Ω

m
n + I/γ, (5.21)

[hm
n ]i = ∇

m
n κ(x0, xi), (5.22)

h̃m
n = κ(x0, x0)m

n , (5.23)

D̂ = diag
(
{g(xi)}i

)
, (5.24)

[g̃]i = g(xi), (5.25)

[r̃]i = r(xi), (5.26)

M̂ = Ω1
1 −Ω

0
1D̂ − D̂Ω1

0 + D̂Ω̃0
0D̂. (5.27)

We choose γ = 105 and this system is then solved with Julia’s built-in matrix-

defined linear equation solver. The error of these results is shown in Fig. 5.5(b),

with the result from using the quantum kernel shown explicitly in Fig. 5.5(a). Again

it can be seen that both kernel types are able to closely approximate the consid-

ered function, with some variation likely from optimisation versus solving linear

system of equations, with quantum kernel outperforming the classical kernel.

5.4.3 Solving Nonlinear Differential Equations

We now move on to consider solving nonlinear differential equations. As an

example we choose the Duffing equation in the absence of damping term given

by [171]

d2 f (x)
dx2 = c cos(ex) − a f − b f 3, (5.28)

where f (x) is a solution in one dimension, a, b, c and e are constants. The re-

sulting SVR formulation from following the procedure described earlier for a DE

of the form d2 f (x)
dx2 = g(x, f ) with f (x0) = f0 and f ′(x0) = f ′0 is
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

Ω̃2
2 Ω2

0 h2
0 h2

1 0 0̂

Ω0
2 Ω̃0

0 h0
0 h0

1 1 −Î

hT 0
2 hT 0

0 h̃0
0 h̃0

1 1 0T

hT 1
2 hT 1

0 h̃1
0 h̃1

1 0 0T

0T 1T 1 0 0 0T

D̂ Î 0 0 0 0̂





α

η

β1

β2

b

y



=



g̃

0

f0

f ′0

0

0̂



. (5.29)

With notation as follows

[Ωm
n ]i, j = ∇

m
n κ(x j, xi), (5.30)

Ω̃m
n = Ω

m
n + Î/γ, (5.31)

[hm
n ]i = ∇

m
n κ(x0, xi), (5.32)

h̃m
n = ∇

m
n κ(x0, x0), (5.33)

D̂ = diag
({
∂g
∂ f

(xi, yi)
}

i

)
, (5.34)

[g̃]i = g(xi, yi). (5.35)

Therefore, this is the formulation we use for this problem with g(x, f ) = c cos(ex) −

a f − b f 3.

We note that as the problem in Eq. (5.28) is non-linear, it is not guaranteed that

the MMR method stated as an optimisation problem here is going to lead to a

convex problem. This may affect the ease of convergence for the MMR method.

Furthermore the SVR method does not result in a deterministic linear problem;

instead it results in a nonlinear problem, which can be solved with optimisation

methods. First, we consider a = 0.5, c = 3, e = 3π and have b, which controls the

nonlinear contribution, increasing from 0 to 0.15. This allows testing the conver-

gence for optimisation as the non-linearity of the problem increases. We increase

b in increments of 0.001. For each value we use an SVR method repeated a hun-

dred times to solve the problem with a different random set of initial variables.
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Figure 5.6: Convergence behaviour of learning solution to the undamped
Duffing equation problem, d2 f

dx2 = 3 cos(3πx) − 0.5 f − b f 3, with increasing non-
linearity controlled by b. In (a) we plot of percentage of runs which result in
convergence (loss less than 10−10) as a function of b. In (b) we show an average
number of iterations of the runs that converged in (a) vs value of b. Mean is shown
with solid dark blue line, the interquartile range is shown with light blue shading.

We detail the hyper-parameters and set-up of the simulation as follows. A quan-

tum kernel over five qubits is used of form of two layers of HEA depth five followed

by feature map based on Rx(ϕ(x)) on each qubit with ϕ(x) = qx/2, where q is the

qubit index. Training occurs over thirteen uniformly separated points between

zero and one with initial value condition of f = 1 and d f /dx = 1 at x = 0. The

Newton method is chosen for optimisation and γ is set as 105. The simulation is

implemented the same as for the linear case.

These results are shown in Fig. 5.6, where we label a trial as converged if the

error for the kernel-based solution is close to machine precision (loss less than

10−10). For each value b we plot the percentage of convergence as 100Nconv/Ntot

with Nconv the number of converged trials and Ntot the total number of trials. We

observe that as the degree of non-linearity increases, the percentage of initialisa-

tion states which result in convergence decreases, changing from 100% at b = 0

158



0.000

0.005

-0.005

0.010

0.015

0.020

0.00 0.25 0.50 0.75 1.00
1.0

1.1

1.2

1.3

1.4

1.5

(a)

(b)

f(
x)

er
ro

r

x

0.00 0.25 0.50 0.75 1.00
x

SVR QK
SVR RBF
MMR QK
MMR RBF

analytic
SVR QK

1

2

3

4

1

2

3

4

Figure 5.7: Kernel-based solution and error for solving the instance of non-
linear Duffing equation [Eq. (5.28)]. We set a = 0.5, b = 0.15, c = 3, e = 3π.
(a) Solution via SVR method for quantum kernel with two layers, ϕ(x) = qx/2 and
N = 5 shown by dashed purple line. Known analytic solution plotted with solid
light blue line. (b) Error between results and analytic solution plotted over x as
( f (x) − fsol(x))/range( fsol). Error plotted for result shown in (a) and SVR method
with classical RBF kernel with σ = 0.8. Also plotted results from MMR method
with same form of kernels considered with σ = 0.8, ϕ(x) = 2qx/5 and N = 8.
Newton optimiser used for MMR and SVR methods.

to around 45% at b = 0.15. Furthermore the number of epochs required for con-

vergence also increases as b increases from a mean of 5 to around 9000. We

stress that the cost here is on classical optimisation, and that additional training

does not require extra quantum resources.

Fig. 5.6 demonstrates one particular situation, and the convergence may be

specific to the choice of setup. However, we find that the observed behaviour of

gradually decreasing convergence and increasing number of epochs at increas-

ing nonlinearity is the general trend. Unless specific optimisation routines are

developed, kernel methods shall be more suited for problems with limited nonlin-

earity. We also stress that the procedure does lead to a close to perfect solution

(we see abrupt decrease of loss), justifying the cost for re-running the optimisa-

tion. In the future we plan to investigate optimisers and kernel forms that may
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exploit this feature.

We also show the results from applying SVR and MMR with both quantum ker-

nel and classical RBF kernel with b = 0.15 in Fig. 5.7. The quantum kernel used

is as used in Fig. 5.6, though with an alteration to ϕ(x) = 2qx/5 and eight qubits

for the MMR case. The classical kernel used is RBF with σ = 0.2 for MMR and

σ = 0.8 for SVR. For all methods training occurs over thirteen uniformly separated

points between zero and one with initial value condition of y = 1 and dy/dx = 1

at x = 0. Newton’s method is used for optimisation. The solution for the SVR

method is shown in Fig. 5.7(a), closely matching the exact f (x). We can also see

that for the nonlinear Duffing equation example for all methods the error is mini-

mal at x = 0 [see Fig. 5.7(b)] where the initial value is set. The magnitude of error

increases with x. We see that the combination of a quantum kernel with clas-

sical SVR processing shows the best performance. However, we note that this

required the most iterations for convergence, and one to one comparison of bud-

gets is not straightforward. To have optimal behaviour, we consider that further

work for optimal choice of kernel functions and hyper-parameters is required.

5.4.4 Kernel Comparison

We show how different quantum kernel functions perform in comparison to one

another when solving the same problem with the same hyper-parameters. We

solve the linear differential equation presented in Eq. (5.18). Below we list the

kernel functions we compare by label. The kernel functions are defined over

N = 8 qubits with varying generators that include:

• 1L-prod: A single layered product feature map with |ψ(x)⟩ = Û(x)V̂|0⟩ where

V̂ is a HEA of depth five with randomised parameters which are set through-

out training and Û(x) = ΠN
j=1R̂ j

X(x).

• 1L-tower: A single layered tower feature map with |ψ(x)⟩ = Û(x)V̂|0⟩ where

V̂ is a HEA of depth five with randomised parameters which are set through-

out training and Û(x) = ΠN
j=1R̂ j

X( jx).
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• 1L-cheb: A single layered Chebyshev product feature map with |ψ(x)⟩ =

Û(x)V̂|0⟩ where V̂ is a HEA of depth five with randomised parameters which

are set throughout training and Û(x) = ΠN
j=1R̂ j

X( jarccos(x)).

• 2L-prod: A two-layer product feature map with |ψ(x)⟩ = Û(x)V̂2Û(x)V̂1|0⟩

where V̂1,2 are HEAs of depth five with randomised parameters which are

set throughout training and Û(x) = ΠN
j=1R̂ j

X(x).

• 2L-tower: A two-layer tower feature map with |ψ(x)⟩ = Û(x)V̂2Û(x)V̂1|0⟩

where V̂1,2 are HEAs of depth five with randomised parameters which are

set throughout training and Û(x) = ΠN
j=1R̂ j

X( jx).

• 2L-cheb: A two-layer Chebyshev product feature map with |ψ(x)⟩ = Û(x)V̂2Û(x)V̂1|0⟩

where V̂1/2 are HEAs of depth five with randomised parameters which are

set throughout training and Û(x) = ΠN
j=1R̂X

j
( j arccos(x)).

For describing the feature maps, we use terminology as introduced in Ref. [112],

with a product feature map referring to one where the same gate is applied to each

qubit for the generator, and a tower where rotational gates have a dependence

on qubit number.

First, we solve this differential equation with the MMR method with 21 training

and evaluation points uniformly distributed between 0 and 0.99. For the MSE loss

function, used with a boundary loss term, the kernel functions used are described

as above. The Newton method is used for optimisation. The results are shown

in Fig. 5.8. In Fig. 5.8(a) we can see that of the 2L kernel functions the Cheby-

shev kernel function performed the best over the majority of the region however

oscillated near the boundary with one. This is a known behaviour of Chebyshev

functions and can be ameliorated by transforming the training region to avoid

the boundary or with use of Chebyshev training nodes. 2L-tower performs well

throughout whilst 2L-prod captures the general shape but does not quite match

the peaks and troughs. This potentially corresponds to the reduced expressivity,

in comparison to other feature maps. In Fig. 5.8(b) we see the normalised abso-

lute error of the results. We can see that the 1L kernel functions contain the best
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Figure 5.8: Comparison of the results of solving (5.18) with different kernel
functions with MMR. Kernel functions used are described in above list. MMR
method is used with N = 8, 21 training and evaluation points uniformly distributed
between 0 and 0.99 and the Newton method is used for optimisation. (a) Solutions
from two layered kernels plotted with dashed lines. The known analytic solution
is shown with a solid line. (b) The absolute normalised error of the solutions from
different kernel functions plotted against x. The error is calculated as abs[( f (x) −
fsol(x))/range( fsol)].

and worst performing of the set with 1L-tower and 1L-prod respectively. At the

same time, the 2L kernel functions show a comparatively similar behaviour.

We then solve the same problem with the same set of kernel functions with

the SVR method. The training points are uniformly distributed between 0 and

0.99, and we use γ = 109. The results are shown in Fig. 5.9. In Fig. 5.9(a) we

can see that both 2L-tower and 2L-cheb performed well and again 2L-prod cap-

tured the overall shape but does not exactly match the known solution. Similarly

to the MMR case, Fig. 5.9(b) shows that the 2L kernels again contain the best

and worst performing kernel functions and that Chebyshev kernel again exhibits

strong oscillations near the boundary with one.

We highlight that these results are one example of the methods being applied

to one problem with a particular set up, and therefore guaranteed conclusions
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Figure 5.9: Comparison of the results of solving (5.18) with different kernel
functions with SVR. Kernel functions used are described in above list. SVR
method is used with N = 8, 21 training points uniformly distributed between 0
and 0.99 and γ = 109. (a) Solutions from two layered kernels plotted with dashed
lines. The known analytic solution is shown with a solid line. (b) The absolute
normalised error of the solutions from different kernel functions plotted against x.
The error is calculated as abs(( f (x) − fsol(x))/range( fsol)).

can not be drawn from them. However, in general we observe that the choice

of kernel functions is important to receive good results and that methods to find

kernel functions suitable for a chosen problem will be important for the future of

kernel methods. We also observe that many kernel functions are likely to have

similar performance — sufficiently good results can be obtained without having

to find the “perfect” kernel function. Choosing a suitable kernel function is an

important step for classical applications of kernel methods too, some inspiration

for how to approach quantum kernel function choice may be able to be found from

classical approaches [172].

5.5 Discussion

In this work, we proposed quantum protocols for solving differential equation

with kernel methods. We represent potential solutions as quantum models that
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are based on weighted sums of kernel functions, corresponding to overlaps of

quantum states. The adjustable weights are optimised such that for many prob-

lems the optimisation is convex, leading to fast convergence to the potential so-

lution. Specifically, we propose two approaches, being mixed model regression

(MMR) and support vector regression (SVR), where optimisation workflow is dif-

ferent. An important element of our approach is the automatic differentiation of

quantum kernels with respect to encoded feature variables using quantum circuit

differentiation. We applied both MMR and SVR for several toy problems. First,

we presented regression for a quantum dataset, corresponding to nonequilibrium

dynamics of quantum spin liquids. In this case, the use of quantum kernels may

offer advantage, as native quantum operations are used. Second, we solve linear

DEs, showing that nontrivial solutions can be routinely found with few epochs.

Finally, applying our approaches to some nonlinear problems, the optimisation

becomes non-convex, thus requiring largely increased number of epochs. At the

same time, we note that by kernelising quantum models we modify the landscape

of optimisation. This raises the question of convergence difference between pa-

rameterised quantum circuits [58, 173] and kernel models.

As the algorithms developed in this and the previous chapter are for the same

purpose, solving DEs, the question arises of how do they compare? Both algo-

rithms prepare a trial function and train it to solve a given DE. The MMR kernel

approach and the DQC approach to training are very similar, with loss functions

to optimise. The SVR approach has some differences - it is only applicable for

kernel functions and it results in a system of equations which can be represented

via a loss function to minimise or can be solved with other methods for such

systems. The trial functions themselves are a significant difference - DQC relies

on expectation measurement and kernel methods use overlaps. An expectation

method is easier for a quantum device to compute. However, DQC requires re-

measurement throughout training whilst the kernel functions, as considered, only

require evaluation pre and post training. Therefore, both algorithms are hoped

to be near-term amenable, with DQC requiring many ”easier” measurements and

164



kernel methods requiring fewer ”harder” measurements. We do note alternative

kernel functions could be considered which do require evaluation during training.

A more direct comparison can be seen in the use of these algorithms for solving

the linear DE of a damped oscillator in Fig. 3.4 and Fig. 5.5. As this is just one

example with one set of hyperparameters nothing too conclusive can be drawn

from this comparison. But as an illustrative example it shows that both meth-

ods are able to provide good fit to such a problem with a number of iterations of

magnitude 100.

While this work presents a first step towards quantum kernel-based differen-

tial equation solving, many aspects are left unexplored. We have observed that

as expected the choice of kernel function is important to receive accurate re-

sults but is not unique. Thus quantum feature map design is one such aspect,

covering how to choose kernel functions appropriately and could potentially be

problem-motivated for each specific case. Finding conditions for which non-linear

equations are guaranteed to result in a convex loss landscape is another open

question. Also left unconfirmed is any available quantum advantage. Whilst there

is intuition that quantum benefit could come from the expressivity and range of

kernel functions expressible by quantum devices it is not guaranteed. Therefore,

a topic for future work would be to either confirm or refute this current intuition,

We note the errors may limit the performance of near-term devices, often re-

quiring an increase of the number of evaluations of kernel functions and therefore

the circuit measurement budget. In particular we consider the recent work on

the topic of exponential concentration of quantum kernel methods and its effect

on trainability [174]. This work highlights that quantum kernels do have to be

chosen and used carefully. If care is not taken the chosen quantum kernel can

concentrate around a specific value leading to a model which cannot be efficiently

evaluated due to an exponential number of measurements being required. The

authors in Ref. [174] propose guidelines on how to avoid such issues, and further

work in the field is likely to build upon this in the future due to the effect this has

165



on all kernel function based methods.
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Chapter 6

Quantum Chebyshev Transform

6.1 Declaration of Contribution

The work in this chapter is released as a manuscript [175] and is currently

under consideration for publication. My contributions for this work include joint

development of the feature map and transformation (specifically including simpli-

fication process of the transform circuit and derivative consideration of the feature

map), initial development of simulation code and shared contributions for writing.

6.2 Introduction

A vital component to many quantum algorithms is the quantum Fourier trans-

form as described in 2.7.3. This circuit transforms between the Fourier space and

computational space. In different spaces certain tasks are easier or harder there-

fore transforming to an appropriate space is an important part of an algorithm.

Fourier space is not unique for this.

We develop a paradigm for building quantum models in the orthonormal space

of scaled Chebyshev polynomials. We show how to encode data into quantum

states with amplitudes being Chebyshev polynomials with degree growing expo-

nentially in the system size. Similar to the quantum Fourier transform, we de-

scribe the quantum circuit for the mapping between computational and Cheby-
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Figure 6.1: Visualisation Chebyshev Space. (a) Visualisation for mapping bit-
strings from the computational basis (labelled by integers j ∈ [0, 2N − 1]) into the
Chebyshev space with non-equidistant nodes given by xCh

j = cos
(
π(2 j + 1)/2N+1

)
,

or the Fourier space with an equidistant grid of phases (sectors on a circular
open-ended loop with 2π j/2N arcs). (b) Squared overlap between two Chebyshev
states |⟨τ(x′)|τ(x)⟩|2, where we choose x′ = xCh

7 , showing that the basis is orthonor-
mal at the nodes. Notably, the Chebyshev overlaps are real, unlike the complex
overlaps between Fourier states, but lead to similar mid-point behaviour.

shev spaces. We propose an embedding circuit for generating the orthonor-

mal Chebyshev basis of exponential capacity, represented by a continuously-

parameterised circuit with a single ancilla and one projective measurement. This

enables automatic quantum model differentiation, and opens a route to solving

stochastic differential equations. We apply the developed paradigm to genera-

tive modeling from physically- and financially-motivated distributions, and use the

quantum Chebyshev transform for efficient sampling of these distributions in ex-

tended computational basis.

6.3 Method

Our goal is designing models based on feature maps that can enable represen-

tation in a chosen space (in our case Chebyshev) and the computational space.

The computational basis corresponds to the set of orthonormal states {|x j⟩}
2N−1
j=0

such that overlaps equate to the Kronecker delta function, ⟨x j|x j′⟩ = δ j, j′. One

can easily generate states |x j⟩ by applying Pauli X̂ operators to the computational

zero, sometimes referred to as the basis encoding [43]. However, building models

in this space is difficult, as it assumes adjusting amplitudes (probabilities) for the

168



entire domain. By transforming to another space this difficulty could be avoided.

6.3.1 Chebyshev Encoding

Specifically, we want to generate an (unnormalised) state |τ(x)⟩ with amplitudes

given by Chebyshev polynomials Tk(x) ≡ cos(k arccos(x)) of the first kind and de-

gree k,

|τ(x)⟩ =
1

2N/2 T0(x)|0⟩ +
1

2(N−1)/2

2N−1∑
k=1

Tk(x)|k⟩, (6.1)

where we note the distinct amplitude for the computational zero state weighted

by T0(x) ≡ 1. Given the properties of polynomials Tk(x) and their orthogonality

conditions,

2N−1∑
j=0

Tk(xCh
j )Tℓ(xCh

j ) =



0, k , ℓ,

2N k = ℓ = 0,

2N−1 k = ℓ , 0,

(6.2)

the states in Eq. (6.1) are orthonormal at the Chebyshev nodes xCh
j B cos

(
π(2 j + 1)/2N+1

)
,

defined at zeros of Chebyshev polynomials. Namely, the set of Chebyshev states

{|τ(xCh
j )⟩}2

N−1
j=0 are such that ⟨τ(xCh

j )|τ(xCh
j′ )⟩ = δ j, j′. We note that the Chebyshev nodes

xCh
j ∈ (−1, 1) form a non-equidistant grid, unlike the standard computational basis

and Fourier basis associated to equidistant “ruler”-type and “clock”-type grids (see

Fig. 6.1(a) for the illustration). We also highlight that outside of the Chebyshev

nodes the states |τ(x)⟩ are not orthogonal. Their squared overlap is plotted in

Fig. 6.1(b), and can be derived analytically for one of the variables x′ set to one

of the Chebyshev nodes, such that

|⟨τ(x′)|τ(x)⟩|2 =
(
T2N (x′)T2N−1(x) − T2N−1(x′)T2N (x)

2N(x′ − x)
−

1
2N

)2

, (6.3)

which can be derived from the Christofel-Darboux formula for Chebyshev polyno-

mials [176]. Note for x = x′ the limit has to be calculated.

169



|0 a

s
|ø

H

H

H

H

... ...

X

X

X

X

...

X

X

X

X

...

H

0/1

H

basis
change

~exp(ix)
map

~exp(-ix)
map

adjust
norm

R (-π/2)z

collapse to
cos ( x)

P (x)
21
[-2]~P (x)21

[1]~

P (x)
22
[-2]~

P (x)
23
[-2]~

P (x)2
[-2]~
N

P (x)22
[1]~

P (x)23
[1]~

P (x)[1]~
2N

H

Figure 6.2: Quantum Chebyshev feature map. Quantum Chebyshev feature
map that creates a Chebyshev state via x-parametrised circuit with single pro-
jective meausurement — sequence of phase feature maps that embed com-
plex exponents, controlled rotation to adjust the norm of the zero frequency
term, and post-selecting the sum term with ancilla measured in 0. Scaled
single-qubit phase shift gates in the feature map circuit are defined as P̃[s]

l (x) =
diag{1, exp(is2N arccos(x)/l)}, where l grows exponentially as 2 j, with j being the
qubit number, and s takes values of 1 and −2. Here, H and X are Hadamard and
Pauli X̂ gates.

Therefore, though at the Chebyshev nodes an orthonormal basis is prepared,

preparing Chebyshev states for arbitrary x ∈ (−1, 1) is a non-unitary process.

We can use a unitary quantum circuit with an ancillary qubit, leading to nor-

malised states by definition. We denote such normalised states as |τ̃(x)⟩ B

|τ(x)⟩/
√
⟨τ(x)|τ(x)⟩, which coincide with |τ(x)⟩ for the Chebyshev nodes, and con-

verge in the large N limit.

To construct the orthonormal Chebyshev feature map Ûτ(x) as a circuit which

prepares |τ̃(x)⟩ state, we observe that Chebyshev polynomials are represented by

cosines evaluated at the specific grid. Thus, they can be prepared using a com-

bination of exponents for some scaled variable x, cos(x) = {exp(ix) + exp(−ix)}/2,

where each amplitude is embedded via the phase feature map [137]. The two

can be combined using the linear combination of unitaries (LCU) approach [177],

where maps are conditioned on the state of the (top) ancilla qubit, and effectively

interferred, choosing the ancilla collapsed to 0 outcome. LCU is further detailed

in section 2.7.2. Since exp(−ix) = exp(ix) exp(−i2x), we can condition only one of
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the phase feature maps [see corresponding blocks in Fig. 6.2 labeled as exp(±ix)

map]. With this, equal-weight combinations of exponents are prepared as am-

plitudes for variables scaled such that Tk(x) are recovered. Finally, we need to

adjust the weight of the constant term T0(x). For this we use a round of Grover

iterate circuit [6], rotating the state around |0⟩ for the fixed angle. As the measure-

ment operation on the ancilla commutes with rotation, we push it to the end and

conclude the circuit.

We highlight that the Chebyshev-based product feature maps introduced in

previous studies [112, 123] and chapters 3 and 4 of the thesis are fundamentally

different. These feature maps prepare states where the amplitudes are related

to the Chebyshev polynomials and provides them as a fitting basis. However

those feature maps do not prepare a state where each amplitude is a Chebyshev

polynomial. In particular they do not prepare an orthogonal basis when evaluated

over a grid. This prevents their conversion to amplitude encoding (standard in

quantum information processing), and building generative models in particular.

6.3.2 Chebyshev Transform

Next, we need to develop a map between Chebyshev states and the compu-

tational basis states (and reverse). Note that once we have prepared the states

forming an orthonormal basis, there exists a bijection and corresponding trans-

formation between this basis and any different orthonormal basis. Here, we in-

troduce the Chebyshev transform as ÛQChT =
∑2N−1

j=0 |τ(xCh
j )⟩⟨x j|. We show the

corresponding circuit in Fig. 6.3, and explain the reasoning below.

First, we note that the Chebyshev transform can be understood as a specific

version of the cosine transform [178]. Namely, the vector of amplitudes for state

|τ(xCh
j )⟩ corresponds to the ( j+ 1)th column of the type-II discrete cosine transform
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Figure 6.3: Quantum Chebyshev Transform. Quantum Chebyshev transform
(ÛQChT) circuit which maps computational basis states {|x j⟩}

2N−1
j=0 into Chebyshev

states {|τ(xCh
j )⟩}2

N−1
j=0 . The transform involves a QFT circuit applied to N + 1 qubits

(N-qubit system plus one ancillary qubit), followed by phase-adjusting and per-
mutation circuits. Here, we use a standard phase shift gate defined as P(ϕ) =
diag{1, exp(iϕ)}. We note that local phase rotations U1 = P(−π/2N+1)RZ(−π(2N −

1)/2N+1) and U2 = P(−π/2)RY(−π/2) acting on the ancilla can be combined into a
single gate.

matrix, DCTII
N, defined as

DCTII
N B 2−

N−1
2
{
ck cos[k( j + 1/2)π/2N]

}
k, j=0...2N−1

, (6.4)

where c0 = 1/
√

2, and ck = 1 for k , 0. We note that this matrix is strongly related

to Fourier transform matrix, but requires interfering and mixing its elements, thus

suggesting the use of an extended QFT circuit. The circuit starts with a Hadamard

gate on the ancilla, being the most significant bit, followed by a CNOT ladder that

is typically used for a cat state preparation. This is followed by a N+1 QFT circuit,

which is later converted into blocks of purely real and imaginary components

through a series of unitary gates. Namely, the single qubit gates U1 and RZ are

introduced to adjust the relative phases for states split as |0⟩a|Φ⟩ and |1⟩a|Φ⟩, for

any N-qubit intermediate state denoted by |Φ⟩. The permutation circuit is used to

reorder amplitudes of the conditioned states, followed by another CNOT ladder.

The circuit is concluded with the constant phase Û2 and multi-controlled R̂X gates

to fix weights and to ensure that the amplitudes of |0⟩a|Φ⟩ (|1⟩a|Φ⟩) are purely real

(imaginary) for any input states. We note that the ancilla starts and ends in |0⟩

state (“clean” run). Finally, concatenating the described embedding and the map,

we get Û f (x) = Û†QChTÛτ(x).
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6.3.3 Chebyshev Map Derivative

Next, we briefly discuss how to differentiate Chebyshev models. This can be

approached in several ways. First, we can use the parameter shift rule [39, 28,

40], which is valid in the training stage when cost function corresponds to projec-

tion on zero state (including ancilla qubit). In this case we need to decompose

controlled phase rotations using CNOT conjugation, and apply two shifts per in-

dividually reuploaded parameter x. In total, the orthonormal Chebyshev map can

be differentiated with 4N shifts. Alternatively, one can see this as differentiation in

presence of mid-circuit measurements [179]. Another option is to differentiate the

feature map formally, extracting an effective generator Ĝeff, and taking derivatives

as a linear combination of unitaries [39, 28, 158]. This method of derivatives will

be used in the following chapter.

6.4 Results

6.4.1 Generative Modelling

Next, we demonstrate examples of applying quantum Chebyshev transform to

generative modelling from relevant distributions. We solve the stochastic differ-

ential equation dS t = µS tdt+σS tdWt with constant drift µ, constant volatility σ and

stochastic Wiener process Wt. This is an instance of the Black-Scholes equations

[180] which have uses in finances for modelling asset and option processes. The

known solution of this SDE is ln(S t) = ln S 0 + (µ − σ2/2)t + σWt, a lognormal prob-

ability density function with form

P(S t) =
1

S tσ
√

2πt
exp

{
−[ln(S t/S 0) + (µ − σ2/2)t]2

2σ2t

}
. (6.5)

We choose ptar = P(S t0) as the target function, we use the Chebyshev model to

learn this distribution. To do this, we utilise the differentiable quantum generative

models (DQGM) framework which I now briefly introduce with full details in [137].
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Figure 6.4: Learning and sampling distributions with quantum Chebyshev
models. (a) Circuit used to train the model in latent space. (b) Circuit used to
sample the model in the computational basis. (c) Training a lognormal distribution
with parameters µ = 0, σ = 0.25, S 0 = 0.5, and t0 = 1. (d) Sampling from the
trained lognormal distribution, generated with 106 shots (binned).

Differentiable Quantum Generative Model Algorithm

The task of this algorithm is generative modelling - to prepare a way to sample

from a desired distribution based on some knowledge of the distribution. This

knowledge could be a set of data or a differential equation.

To achieve this we consider a trial function

pθ(x) = ⟨0|Û†τ (x)V̂†θ |0⟩⟨0|V̂θÛτ(x)|0⟩, (6.6)

where V̂θ is a variational ansatz and Ûτ(x) a feature map. For this method there

are limitations on the choice of feature map. It must be such that there exists a

transformation ÛT between the basis induced by the feature map and the compu-

tational basis. For example the Chebyshev basis introduced in this chapter and

the Fourier basis as discussed.
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This trial function represents a probability density function (pdf) with x being the

possible values of the distribution and pθ(x) the probability of measuring x. We

do note that this is not normalised in terms of area under curve but instead at

the discrete nodes of the basis (i.e. Chebyshev nodes and Fourier nodes). This

becomes clearer once we introduce the use of the transform. We see that this trial

function is similar to that of QCL and DQC and therefore is able to be trained to fit

a set of data points or DE in that manner. The use of the continuous feature map

allows for continuous fitting of the desired distribution, access to exact derivatives

and avoidance of data input and output problems during training.

After training we now have a function pθ(x) which represents the distribution

we want to sample from, but with the current form of pθ(x) this is not a simple

task. Therefore we consider the transformation associated to the chosen basis

and include it as I = Û†QChTÛQChT for

pθ(x) = ⟨0|Û†τ (x)Û†QChTÛQChT V̂†θ |0⟩⟨0|V̂θÛ
†

QChTÛQChTÛτ(x)|0⟩, (6.7)

pθ(x) = ⟨x|ÛQChT V̂†θ |0⟩⟨0|V̂θÛ
†

QChT |x⟩, (6.8)

where |x⟩ is in the computational basis i.e. the jth Chebyshev node xCh
j is repre-

sented by the jth computational basis state | j⟩. By considering this form of the trial

function we can see that the probability of measuring xCh
j is the same as sampling

| j⟩ from ÛQChT V̂†θ |0⟩. Therefore, we can now sample from the distribution repre-

sented by pθ(x) by preparing ÛQChT V̂†θ |0⟩ and measuring it in the computational

basis.

This method trains a representation of a probability distribution in one space

and then samples it in another space. This makes use of the different properties

of the spaces and utilises them for the tasks they are suited to.
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Application

We now apply this method to the problem considered. We begin by variationally

training the trial function in the latent space with the Chebyshev feature map Ûτ(x)

shown in Fig. 6.4(a), and then sample from the distribution in the computational

basis using the Chebyshev transform circuit ÛQChT shown in Fig. 6.4(b). The re-

sult in Fig. 6.4(c) shows the trained lognormal distribution using N = 5 qubits with

a variational hardware efficient ansatz V̂θ of depth 14 [123]. We employ a mean

squared error loss with a low learning rate of 0.005, simulated over five thousand

epochs using Julia’s Yao package [110]. The training grid consists of positive

Chebyshev nodes {xCh
j } ∀ j ∈ [0, 2N−1] and additional points between these nodes

{xCh
j/2 }. The histogram in Fig. 6.4(d) shows the resulting sampled distribution. Like

previous variational algorithms many of the choices of hyperparameters such as

ansatz and feature map greatly affect the chance of success of training.

6.4.2 Comparison with Fourier Encoding

As a further example, we consider a linear distribution with probability density

function P(x) = x. In this case, we highlight the importance of the Chebyshev

basis as compared to the Fourier basis of similar expressivity. Using only N = 2

qubits for the embedding, we learn the linear distribution with the orthonormal

Chebyshev, and compare it to the Fourier model built with the phase map [137].

The results are shown in Fig. 6.5(a), where hyperparameters are the same as

before. We note that while Chebyshev model follows P(x) closely, the Fourier

model experiences oscillations around the linear trend. Moreover, once we eval-

uate the derivatives for the respective generative models, we observe that while

Chebyshev’s derivative comes close to one, the Fourier derivatives are largely off

[Fig. 6.5(b)]. This is an important consideration for solving differential equations,

as large deviation in derivative-based loss terms lead to poor convergence over-

all. The plot in Fig. 6.5(c) shows the sampled distribution of the linear quantum

Chebyshev model, where we use the optimised V̂θ∗ for 2 qubits, and map it to an

extended register of N = 8 qubits with QChT. We remind that samples are shown
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Figure 6.5: Comparison between the quantum Chebyshev model and the
quantum Fourier model for generative modelling using the DQGM frame-
work. (a) Training a linear distribution with ansatz depth of 6 layers. (b) Deriva-
tives of the trained linear models. (c) Sampling from the trained linear distribution
on an extended register of 8 qubits, shown for integer labels of Chebyshev nodes
x j.

for the Chebyshev grid.

6.5 Discussion

In this chapter we have highlighted the idea that changing to a suitable basis

for a given problem can be of great use – demonstrated by how this is currently

used with the Fourier transform. We look at what are the requirements on a space

with associated state encoding for a different transformation to be considered -

namely that there exists a set of 2N points where the states evaluated within the

space encoding are orthonormal.

In particular we consider the Chebyshev space which consists of polynomials

useful for certain function fitting tasks. We show the encoding that prepares a

state with these polynomials as amplitudes. Due to orthogonality constraints on

this space we note the requirement for an ancillary qubit. The transformation is

then shown by relating to discrete cosine transform and consequently the Fourier
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transform. We show a use-case where this transformation is useful – function fit-

ting in the Chebyshev latent space and then sampling in the computational space.

We particularly want to emphasise that using the applicable space for your

problem is of great importance – there is not a one space solves all. We have

mentioned the existing quantum Fourier transform and introduced the quantum

Chebyshev transform but finding further types of transforms suitable for other

problems is an area of study for future work.
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Chapter 7

Physics-Informed Quantum

Machine Learning: Solving

nonlinear differential equations in

latent spaces without costly grid

evaluations

7.1 Declaration of Contribution

The work presented in this chapter is available as a manuscript [181] and is cur-

rently under consideration for publication. My contributions consist of the initial

idea and development (with supervision), implementation and running of simula-

tions and being the main writer.

7.2 Introduction

Our aim is to solve differential equations by encoding their solutions into quan-

tum models and, broadly speaking, utilising a quantum parallelism [6]. The pro-

tocol employs physics-informed constraints for learning, and efficiently evaluates
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loss terms on an entire computational grid (specifically, for the full set of inde-

pendent basis functions). By avoiding direct grid point evaluations a source of

inefficiency in many DE solvers is circumvented, particularly for problems with

significant enough number of grid points that evaluating at each is a costly proce-

dure such as multidimensional problems.

We propose a physics-informed quantum algorithm to solve nonlinear and mul-

tidimensional differential equations (DEs) in a quantum latent space. We suggest

a strategy for building quantum models as state overlaps, where exponentially

large sets of independent basis functions are used for implicitly representing so-

lutions. By measuring the overlaps between states which are representations of

DE terms, we construct a loss that does not require independent sequential func-

tion evaluations on grid points. In this sense, the solver evaluates the loss in an

intrinsically parallel way, utilising a global type of the model. When the loss is

trained variationally, our approach can be related to the differentiable quantum

circuit protocol, but does not scale with the training grid size.

Specifically, using the proposed model definition and feature map encoding,

we represent function- and derivative-based terms of a differential equation as

corresponding quantum states. Importantly, we propose an efficient way for en-

coding nonlinearity, for some bases requiring only an additive linear increase of

the system size O(N + p) in the degree of nonlinearity p. By utilising basis map-

ping, we show how the proposed model can be evaluated explicitly. This allows to

implement arbitrary functions of independent variables, treat problems with vari-

ous initial and boundary conditions, and include data and regularization terms in

the physics-informed machine learning setting. On the technical side, we present

toolboxes for exponential Chebyshev and Fourier basis sets, developing tools for

automatic differentiation and multiplication, implementing nonlinearity, and de-

scribing multivariate extensions. The approach is compatible with, and tested on,

a range of problems including linear, nonlinear and multidimensional differential

equations.
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7.3 Method

7.3.1 Informal Overview

To start with an informal overview, imagine that you need to solve a differen-

tial equation for some function f (x) of a scalar variable x. The equation involves

derivatives (d f /dx, d2 f /dx2 etc.), and it also may include the function itself, its

square, plus other functions that depend on x. This can be readily extended to

multidimensional problems that include other independent variables (y etc.). Ad-

ditionally, the problem of solving differential equations assumes specifying initial

or boundary terms. Say, we want to solve d f /dx − f (x) = 0. How can we check

if the derivative indeed matches the function itself? We posit that this can be

addressed as a global evaluation of compatibility of the two DE terms in a latent

space.

Let us imagine a collection of DE terms as the problem space (Fig. 7.1, ground

layer). Our next step is to associate each term with a quantum state living in an

N-qubit Hilbert space that spans 2N states. We refer to this as a the latent space,

where DE terms are elevated to (Fig. 7.1, middle layer). For this, we develop a

recipe (mapping f → | f ⟩, d f /dx → | f ′⟩, x → |x⟩ etc) such that each term in the

problem space has its own quantum representation. Here, we make sure that dif-

ferent DE terms can be projected in the same basis (for instance, shown as a set

of Chebyshev polynomials in Fig. 7.1), and the corresponding functions can be

read out as overlaps with states representing variables (i.e. |x⟩). Next, we need

to check if the constraints hold. Returning back to the simple example above, we

compare the terms d f /dx and f (x) in the same basis by measuring the effective

distance between latent space representations, corresponding to the overlap of

quantum states | f ′⟩ and | f ⟩. This is repeated for all terms in the problem, and

our goal is to learn the solution that satisfies constraints and initial values (or

some data). Here, we can write a total loss as a sum of individual contributions

Li (Fig. 7.1, top layer) and learn the solution variationally for an adjustable model
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Figure 7.1: A conceptual visualisation of the proposed physics-informed ap-
proach to solving nonlinear differential equations. We start from the problem
space, where differential equation (DE) terms, their relations, and the boundary
terms are provided. Next, these terms are elevated to the latent space via feature
map that prepares corresponding quantum states, with amplitudes associated to
components of independent basis functions. These states are then compared
via pairwise overlaps, forming corresponding distances in the loss space, and
boundary terms are evaluated explicitly via basis mappings. The total loss can be
minimised to learn a model that provides a solution to the problem.

fθ(x), similarly to classical physics-informed neural network approach and quan-

tum approaches for derivative quantum circuits [112]. Alternatively, we can use

the evaluated constraints to form a system of equations and solve it using quan-

tum matrix inversion techniques.

7.3.2 Technical Overview

We proceed with a formal definition of the problem. The goal of the protocol is

to solve a system of D differential equations,

DE j(x,f , df/dx, d2f/dx2, ...) = 0 for j = 1 : D, (7.1)
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where DE j(v) denotes a sum of terms v in j-th differential equation that equates

to zero. Additionally, the initial or boundary conditions have to be specified and

satisfied. We want to obtain a solution of Eq. (7.1) as functions f (x) of vari-

ables x. For this, we use a quantum model fθ(x) parametrised by a vector of

weights θ, and reformulate the problem as learning an optimal model fθ∗(x) to

represent f (x). Specific to our protocol, we set up the model in the form that can

be evaluated at any value of variable x, while also admitting the latent space rep-

resentation such that the learning process does not require explicit evaluation of

the quantum model at the grid of training points. To keep the discussion simple,

initially we consider the case with D = 1, omitting the sub-indices (DE j=1 ≡ DE),

keeping first-order derivatives only, and a single dimension for both dependent

and independent variables, i.e. DE(x, f , d f /dx) = 0. The details of generalisation

are described in the last subsection of the protocol section.

The first step is to note that the DE can be written as

DE(x, f , d f /dx) =
T∑

k=1

DE[k](x, f , d f /dx) = 0, (7.2)

where {DE[k](x, f , d f /dx)}k denote the separate terms of the differential equation

formed of products of f , and d f /dx as well as arbitrary functions of x. We instan-

tiate a quantum model in the general form

fθ(x) = ⟨x| fθ⟩⟩, (7.3)

represented by the overlap between a quantum state |x⟩ and a classical linear sum

of quantum states | fθ⟩⟩. We define this combination as a classical sum of quantum

states weighted with individual coefficients and label it using the double-ket nota-

tion, |◦⟩⟩. For example |ψ⟩⟩ =
∑

j α j|ψ j⟩. The coefficients {α j} j do not need to satisfy

any normalisation conditions. This has previously been used in quantum filter

diagonalisation [182, 183, 184]), We stress that single-state models are naturally

included in this definition, | fθ⟩ ∈ | fθ⟩⟩, and can readily be used. We also introduce
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the state |x⟩ that encodes the variable x, in particular using the computational

basis. Importantly, we can generate |x⟩ = Û(x)|0⟩ by applying an x-dependent

unitary operator to the computational zero state |0⟩ [137, 175]. Here Û(x) repre-

sents a feature map [28, 136] as introduced in section 2.4.1. Within the proposed

quantum model definition, we posit that each term DE[k] can be expressed as

DE[k](x, fθ, d fθ/dx) = ⟨x̃|DEk
θ⟩⟩, (7.4)

|DEk
θ⟩⟩ =

tk∑
ℓ=1

αk
ℓ |∆

k,ℓ
θ ⟩, (7.5)

where |x̃⟩ is a quantum state corresponding to the latent space representation of

the variable. We note that |x̃⟩ is the same for all terms when forming the model.

However, it may differ from |x⟩ and imply an alternative basis. This will be specif-

ically required when dealing with product terms later. In Eq. (7.5) we explicitly

show that each term of the differential equation DE[k] can be based on a sum of

tk parametrised quantum states {|∆k,ℓ
θ ⟩}

tk
ℓ=1, weighted by coefficients {αk

ℓ}
tk
ℓ=1. Here,

we keep the mixture states |DEk
θ⟩⟩ in the general form, and provide the details for

their construction in the following section. Substituting the expression in Eq. (7.4)

into Eq. (7.2), we get

DE(x, fθ, d fθ/dx) = ⟨x̃|
T∑

k=1

|DEk
θ⟩⟩ = 0, (7.6)

for all x. Essentially, Eq. (7.6) represents a check of T differential constraints

for the model (7.3) based on quantum state overlaps with the same state |x̃⟩.

We additionally restrict the state |x̃⟩ such that its amplitudes when considered

as functions of x (as in section 2.5) form a linearly independent set of functions

(discussed in detail later). With this restriction the differential equation is satisfied

if and only if
∑T

k=1 |DEk
θ⟩⟩ = 0, where the used notation implies that every element

of the differential constraint vector has zero value. If the restriction on |x̃⟩ is not

in place then
∑T

k=1 |DEk
θ⟩⟩ = 0 is sufficient but not a necessary condition. In this

case, valid solutions of the problem would not be valid solutions of training for∑T
k=1 |DEk

θ⟩⟩ = 0. Therefore, by constructing |DEk
θ⟩⟩ for each differential equation
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term with adjustable parameters the solution can be learnt by solving
∑T

k=1 |DEk
θ⟩⟩ =

0 in several ways.

Loss-based Variational Optimisation

For solving this problem we consider a variational approach based on minimis-

ing the loss function

LDE(θ) =
T∑

k=1

⟨⟨DEk
θ|

T∑
m=1

|DEm
θ ⟩⟩ =

T∑
k=1

T∑
m=1

tk∑
ℓ=1

tm∑
n=1

αk
ℓα

m
n ⟨∆

k,ℓ
θ |∆

m,n
θ ⟩. (7.7)

To evaluate the loss function LDE(θ) the overlaps between prepared quantum

states are measured and then post-processed classically to account for weights.

Similarly, we need to evaluate derivative-based contributions. Once states are

prepared, the overlaps are estimated using known methods, for instance the

Hadamard test [70] as detailed in section 2.7.1 and other techniques typically

used in quantum kernel methods [136, 158] or ground state estimation [184, 183].

We provide a brief summary and circuits for evaluating overlaps in section 2.7.1.

Next, we need to introduce the boundary or initial conditions for solving differ-

ential equations. The significance of this step shall not be underestimated, as

differential constraints can be satisfied in many ways, and it is the initial value

terms that pin the solution. Similarly, one can imagine problems where a set of

data is supplied to regularise fθ(x), and we need to include this information when

learning the solution. We resolve the question of introducing initial value terms by

utilising the access to our model via quantum feature map circuits. Namely, the

function can be evaluated at some initial point x0 as fθ(x0) = ⟨0|Û(x0)| fθ⟩⟩, rather

than globally. For instance, given the initial value condition f (x0) = f0, we can in-

troduce a corresponding loss term as a distance measure between fθ(x0) and f0,

which can be additionally weighted by a pre-defined constant η. Using the mean

square error (MSE) for defining the distance, this loss term is

Linit(θ) = η { fθ(x0) − f0}
2 , (7.8)

185



where η controls the importance of the initial value contribution. Similarly, we can

include data dependence for regularising the solution as

Ldata(θ) = ζ
∑
xi∈X

{ fθ(xi) − fi}
2 , (7.9)

where X = {xi}i are grid points in the supplied data set, with corresponding func-

tion values { fi}i, and ζ being a weighting parameter.

The total loss is then

L(θ) = LDE(θ) +Linit(θ) +Ldata(θ), (7.10)

which is to be minimised either by non-convex optimisation methods, finding

θ∗ = argminθL(θ), or applying other iterative methods to recover the optimal mix-

ture state | fθ∗⟩⟩. When choosing the variational optimisation, it is convenient to use

a gradient descent and adjust angles θ based on ∇θL(θ). This can be approached

by various circuit differentiation techniques, including the parameter shift rule [39,

28] as introduced in section 2.4.4 and generalisations for wider range of circuits

[40, 163, 41], or LCU-based derivatives that are specifically fitting the differentia-

tion of kernels [158, 70].

Alternatively a matrix inversion-based workflow that avoids variational approaches

and exploits the same problem encoding in the latent space could be used. In this

work we focus on the variational approach with this alternative approach left for

future development.

Finally, the overall workflow for the protocol (Fig. 7.1) is summarised below.

1. Choose DE with initial value to solve, thus specifying the problem. Split DE

into separate product terms.

2. Choose hyperparameters and set-up workflow components such as x en-

coding, mixture state for building the model, optimisation procedure etc.
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3. Run circuits to prepare relevant state(s) associated to each term (thus in-

stantiating the model in the quantum latent space).

4. Compute overlaps between terms (therefore project results back to scalars

forming individual loss contributions).

5. Optimise the total loss until differential and boundary constraints are satis-

fied.

7.3.3 Function Representation

A vital component of the proposed algorithm is being able to prepare |DEk
θ⟩⟩ for

the various terms that can exist in a generic differential equation. This prepara-

tion largely depends on how we represent the x-dependence via feature mapping

|x⟩ = Û(x)|0⟩. The basis functions of the model depend on how we choose Û(x)

acting on N qubits. Certain limitations on Û(x) are imposed such that states asso-

ciated with derivatives with respect to x, functions of x, and products can be pre-

pared. The first restriction on Û(x)|0⟩ is such that the generated basis functions

are independent. To illustrate this, let us write explicitly the state representing the

variable as a vector with amplitudes τ j that depend on x,

|x⟩ = (τ0(x), τ1(x), ..., τ2N−1(x))T, (7.11)

and choosing 2N basis functions such that {τ j} j are linearly independent, meaning

that ∀ j ∄ {ck}k s.t. τ j(x) =
∑

k∈ j̄ ckτk(x). This ensures that Eq. (7.6) is solved if and

only if
∑T

k=1 |DEk⟩⟩ = 0 holds.

Next, as discussed in the previous subsection, our model is built as the overlap

fθ(x) = ⟨x| fθ⟩⟩. Using the same basis as for encoding x, we can express the mixture

state as a vector of 2N components,

| fθ⟩⟩ = ( fθ,0, fθ,1, ..., fθ,2N−1)T. (7.12)

187



This leads to the model represented by the sum of the independent basis func-

tions,

fθ(x) = ⟨x| fθ⟩⟩ =
2N−1∑
j=0

fθ, jτ∗j(x), (7.13)

which allows introducing rules for differentiating the model.

In this subsection we further discuss how to prepare |DEk
θ⟩⟩ for the model, its

derivatives, other functions of x, and products of these functions for general

choice of Û(x)|0⟩. Later in the text we will present the specific state preparation

strategies for two choices of encoding — orthonormal Fourier and Chebyshev

bases [175].

Scaled-and-shifted Function Representation

As long as the conditions on the basis are satisfied, we can further extend the

function representation introducing additional scaling factors and additive shifts.

This is particularly important when we need to increase or limit the expressivity of

our models, also impacting the trainability. Here, the expressivity corresponds to

the range of functions it is able to represent, and the trainability defines how easy

it is to train the model to represent a particular function that can be expressed. To

highlight the need for these considerations, we note that in case of choosing the

model as fθ(x) = ⟨x| fθ⟩, it is bound in 0 ≤ | fθ(x)| ≤ 1, thus being significantly limited

in expressivity. One option that is readily available corresponds to introducing a

scaling factor for the single-state model, which reads

fθ(x) = α⟨x| fθ⟩, (7.14)

with α being a parameter (fixed or adjustable). Another option corresponds to

adding a constant to the model in the form

f sh
θ (x) = α⟨x| fθ⟩ + αsh ≡ α⟨x| fθ⟩ + αshg1(x), (7.15)

188



where we highlight that adding the constant αsh is equivalent to introducing the

function g1(x) B 1 (up to a scaling factor). For this we introduce the state |ψ1⟩ such

that ⟨x|ψ1⟩ = 1. We note that the shifted model falls into a category of mixture-

based models with | fθ⟩⟩ = α| fθ⟩ + αsh|ψ1⟩, and even more general operators than

scaling and shifting may be applied to produce | fθ⟩⟩. In order to be able to use the

shifting strategy, we note that the embedding has to be chosen such that the unity

function can be expressed by the basis, and that its latent space representation

is either analytically or variationally obtainable.

Evaluating Derivatives

To include the differential constraints we need to connect a formal model deriva-

tive with the overlap evaluation based on a modified derivative (mixture) state.

Taking the formal derivative of fθ(x) we get

f ′θ (x) =
d
dx
⟨x| fθ⟩⟩ = ⟨0|Û†′(x)| fθ⟩⟩, (7.16)

where we need to evaluate the derivative for the conjugate transposed feature

map Û†′(x). We note that for certain x-parametrisation we can associate a deriva-

tive of an operator with the product of two operators, Û′(x) = ǦÛ(x), where Ǧ is

an x-independent operator to be determined. This is the form of embedding we

rely upon. As in general the emergent operator (matrix) is not unitary, we use

the check mark ◦̌ to denote this, also marking such operators throughout. In

practice, these operations can be readily absorbed into the mixture state defini-

tion, or compiled with the linear combination of unitaries (LCU) approach [177], or

other decomposition methods (QR, Householder etc [185]). For example, taking

a feature map of the form exp(−ixĤ) generated by the Hermitian operator Ĥ we

observe that Ǧ = −iĤ is a skew-Hermitian operator. This can be decomposed

into Pauli strings and thus a sum of unitaries. Using the developed notation, the
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derivative of the model can be expressed as

f ′θ (x) = ⟨x|Ǧ†| fθ⟩⟩ ≡ ⟨x| f ′θ ⟩⟩, (7.17)

where we have introduced the derivative mixture state | f ′θ ⟩⟩ B Ǧ†| fθ⟩⟩. Crucially, the

state | f ′θ ⟩⟩ now becomes our proxy to the derivative term evaluation, and serves

as |DEθ⟩⟩ for introducing d fθ/dx into the total loss.

Dealing with Independent Functions

Another type of terms that may arise in differential equations is a function of

the independent variable g(x), which we need to include into physics-informed

constraints. In this case, we have to exploit the same model structure as for the

trial function, and postulate that

g(x) = ⟨x|g⟩⟩, (7.18)

where |g⟩⟩ is a state that labels the function. Often, it is sufficient to use a single

pure state, |g⟩⟩ = |g⟩, with a scale factor.

There are several ways how the function g(x) can be loaded into the system.

First, if the x encoding |τ(x)⟩ is such that at set of 2N points {x j} j, {|τ(x j)⟩} form

an orthonormal basis we can use a unitary map ÛT that transforms states be-

tween the encoding basis and the computational basis |x̃⟩ [137, 175]. Using the

resolution of identity, we can write the function now as the overlap model in the

computational basis, g(x) = ⟨x|Û†TÛT|g⟩⟩ = ⟨x̃|g̃⟩⟩. The state |g̃⟩⟩ can be identified

from the vector of evaluations {g(x j)} j where {x j} j are the set of points at which |x⟩

maps to |x̃⟩. From here we can use quantum state preparation algorithms [186,

187, 188] to create the required component states of |g̃⟩⟩, sans any prefactors α

that can be accounted for separately when evaluating the total loss.
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Alternatively, we can also use regression and learn states |g⟩⟩ for representing

functions with another parametrised mixed state |gϕ⟩⟩. This can be achieved for

instance via quantum circuit learning [28], set up such that g(x) = ⟨x|gϕ∗⟩⟩ for some

optimal parameters ϕ∗. Scaling and shifting factors (naturally included in the mix-

ture state representation) would help to express functions with varying magnitude.

Another alternative for the case when the basis functions in Eq. (7.11) are known,

is to utilise a classical method for spectral function decomposition [189], and load

corresponding coefficients with the quantum state preparation algorithms.

Multiplying Functions

Equipped with the knowledge of how to construct various individual functions

and derivatives, we proceed to encoding products of functions. Here, the crucial

point is that products require: a) loading information about amplitudes of multi-

plied states; b) keeping track of the basis that must be extended in the nontrivial

way. For this, let us consider a minimal example of multiplying two functions

g(x) = ⟨x|g⟩⟩ and h(x) = ⟨x|h⟩⟩, based on the corresponding states. We note that

the same procedure can be employed to multiply the model f (x) itself, for instance

representing powers f 2(x) etc.

As functions g(x) and h(x) both depend on the variable x, we can expand them

as g(x) =
∑

j g jτ j(x) and h(x) =
∑

j h jτ j(x), where g j, h j are state amplitudes. There-

fore, the product of functions corresponds to

g(x)h(x) =
∑

j,k

g jhkτ j(x)τk(x), (7.19)

and we observe that in general it also includes products of basis functions. While

previously we specified each function in terms of components for the A = {τ j(x)} j

bases, now the emerging basis is A(2) = {τ j(x)τk(x)} j,k that may not be unique

or independent. To fix this, we consider a new basis set B = {β j(x)} j which is

independent, and choose it such that it contains required products, A(2) ⊂ B,

being also padded to have a power-of-two cardinality. Next, we demand that
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there exists a state |xx⟩ that provides such basis, and that the product can be

defined via the overlap with some state |gh⟩⟩,

g(x)h(x) = ⟨xx|gh⟩⟩ =
∑

j

(gh) jβ j(x), (7.20)

where (gh) j are amplitudes for this state. We note that the encoding circuit for

|xx⟩ can differ from |x⟩, however it is often heavily related to Û(x) (see the Model

Encoding section). Furthermore when |xx⟩ does differ from |x⟩ we still need to be

able to represent every term of the DE with the same x dependence. To achieve

this any single function terms (e.g. h(x) alone) can be taken and multiplied with

g(x) = 1 as a trivial function. All terms are then expressed via |xx⟩ instead of |x⟩.

Knowing that g(x)h(x) can be expressed in terms of |xx⟩ extended variable state,

we need to know how to prepare |gh⟩⟩. Specifically, this assumes that we have

access to circuit that create |g⟩⟩ and |h⟩⟩. We note that original product bases in

A(2) can be expanded in the extended B basis as

τ j(x)τk(x) =
2Ñ−1∑
l=0

b j,k
l βl(x), (7.21)

where b j,k
l are expansion coefficients, and Ñ is the smallest integer that accommo-

dates B with the specified properties. Substituting this into Eq. (7.19), we observe

that

g(x)h(x) =
2N−1∑
j=0

2N−1∑
k=0

2Ñ−1∑
l=0

g jhkb
j,k
l βl(x) =

2Ñ−1∑
j=0

(gh) jβ j(x), (7.22)

and the linear relation between products of amplitudes {g jhk} j,k and the amplitudes

{(gh) j} j of the product state can be seen. Therefore, a matrix M̌ can be con-

structed such that |gh⟩⟩ = M̌|g⟩⟩|h⟩⟩. Implementation of M̌ depends on the choice of

Û(x). Later we describe it for the two specific choices of Fourier and Chebyshev

encodings.
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Finally, we note that similar strategy can be applied to cases where more that

two functions shall be multiplied, where essential steps correspond to defining

a suitable variable state in the extended basis, and the corresponding multiply

operator.

7.3.4 Generalisations

So far we have described a simple scenario of solving a first order, one-dimensional

differential equation. However, many differential equations of interest have more

general forms. Next, we briefly discuss how to expand our approach for a wider

range of differential equations.

Introducing nonlinearities.—In the preceding subsection we have shown that

latent space embedded functions can be multiplied in the extended basis. Sim-

ilar procedure applies for higher-order terms with powers of f M(x) arranged for

extended registers. For equations that include nonlinear function of the model,

e.g. cos[ f (x)], we need to use series expansions (Taylor, Fourier, Chebyshev

etc), truncating the degree of nonlinearity at some acceptable level.

Evaluating higher-order derivatives.—Previously we have suggested that deriva-

tives for overlap models with specific encodings Û(x) can be evaluated as f ′θ (x) =

⟨x|Ǧ†| fθ⟩⟩. This simply follows from the fact that Ǧ is a generator for our encoding.

Higher-order derivatives follow the same strategy, where we repeatedly “lower-

down” and concatenate generators, leading to the mth-order derivative

f (m)
θ (x) = ⟨x|(Ǧ†)m| fθ⟩⟩ = ⟨x| f

(m)
θ ⟩⟩. (7.23)

Solving system of differential equations.—For systems of differential equations,

we can treat each separate equation as a part of differential constraints. This

leads to the total loss that grows with the number of differential equations, being
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the sum of contributions,

Lsystem(θ) =
D∑

j=1

T∑
k=1

⟨⟨DE[k]
j |

T∑
l=1

|DE[l]
j ⟩⟩. (7.24)

Tackling multidimensional problems.—For differential equations that feature sev-

eral independent variables, generally we need to change the encoding strategy

accommodating a vector x. This can be done by developing encoding circuits for

each component, and using the tensor product structure for dealing with them.

For instance, consider the simplest generalisation to two variables x and y. The

two-variable model is then instantiated as

fθ(x, y) = (⟨x| ⊗ ⟨y|)| fθ⟩⟩, (7.25)

and we can extend the tensor product to multiple variables {xi}i with separate

registers. When working with these variables we need to employ parallel feature

maps,
⊗

i Û
i(xi). Correspondingly, the multidimensional transform operator reads⊗

i Û
i
T, where Ûi

T is the transform for the ith encoding (which can be different).

Next, to take the derivative with respect to the ith variable one needs to act on the

ith register with Ǧ†i , being the associated derivative operator for the ith encoding.

The multiplier circuit is also constructed depending on the choice of encoding.

We also note that one can employ an alternative strategy of encoding multiple

variables on the same register using serial circuits (with controls), and leave this

as a question for future investigations.

7.3.5 Model Encoding

Until this point, we have kept the approach general and valid for any choice

of encoding that satisfies requirements for the parallel (or global) evaluation. In

this section, we introduce two specific example choices of encoding models for

global physics-informed quantum DE solvers. For each choice, we detail the

components and circuits required for the full workflow. These include feature map

Û(x), differentiation rules for dÛ(x)/dx that involve the generator Ǧ, transforma-
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tion circuit ÛT, and the multiplication operator M̌. The choices are the Chebyshev

encoding [175] and the Fourier encoding [137], but we stress that other encod-

ings can be developed in a similar way, for instance the encoding used in recently

proposed harmonic neural networks [190].

7.3.6 Chebyshev Encoding

Feature Map

The Chebyshev polynomials represent a high-performing basis for regression,

function fitting, and integral evaluation tasks [92]. They are widely used in spec-

tral methods for solving differential equations, financial modelling, and describing

many-body systems. In quantum SciML Chebyshev polynomials were used for

solving differential equations with derivative quantum circuits [112, 123], though

without linear basis independence. Recently, we have proposed a protocol for

generating an orthonormal Chebyshev basis set via quantum feature maps [175]

which is detailed in chapter 6. Building up on the developed toolbox, we show that

this basis type enables building global Chebyshev models in the quantum latent

space.

We choose the encoding in such a way that amplitudes of a quantum state cor-

respond to x-dependent Chebyshev polynomials of the first kind Tk(x) ≡ cos(k arccos x),

where k denotes a polynomial degree. The corresponding variable encoding state

reads [175]

|x⟩ =
1

NN(x)

 1
2N/2 T0(x)|0⟩ +

1
2(N−1)/2

2N−1∑
k=1

Tk(x)|k⟩

 , (7.26)

where we ensure that the states {|x⟩} are orthogonal on the Chebyshev grid with

2N points. This N-qubit state is normalised by

NN(x) =
1

2(N−1)/2

1/2 + 2N−1∑
k=1

T 2
k (x)


1/2

, (7.27)
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where we note that in general it is x-dependent when evaluated outside of the

Chebyshev grid. We want the Chebyshev polynomials themselves to be the basis

functions, not rescaled by NN(x). Thus, we introduce the corresponding model

written in the form

fθ(x) = NN(x)⟨x| fθ⟩⟩. (7.28)

The multiplierNN(x) leads to a slightly modified workflow concerning post-processing,

where relevant overlaps are effectively evaluated with the state NN(x)⟨x|. How-

ever, the encoding of variable x is still based on independent basis functions, and

all steps remain valid.

Derivatives

To encode derivatives for Chebyshev-based models, we utilise the properties

of Chebyshev polynomials. Specifically, it is known that derivatives can be ex-

pressed as T ′n(x) = nUn−1(x), where Un(x) are Chebyshev polynomials of the sec-

ond kind [191]. This can then be further expanded to

T ′0(x) = 0, (7.29)

T ′2n(x) = 4n
n∑

m=1

T2m−1(x), (7.30)

T ′2n+1(x) = (4n + 2)
n∑

m=1

T2m(x) + (2n + 1)T0(x). (7.31)

Therefore, for all Chebyshev polynomials we can write the derivative in an analyt-

ical form as a sum

T ′n(x) =
2N−1∑
j=0

wn
jT j(x), (7.32)

where coefficients wn
j for each degree are simply collecting the terms from differ-

entiation rules in Eqs. (7.29)–(7.31).
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We reiterate that our goal is creating a derivative state, where amplitudes are

now differentiated with respect to x. Note that derivatives are exact (no finite

differencing is involved), and the procedure can be considered as an automatic

quantum differentiation. From this, a derivative operator Ǧ is composed such that

d
dx
NN(x)|x⟩ = ǦNN(x)|x⟩, (7.33)

with matrix elements of Ǧ corresponding to Gi, j = wi
jc j, where c0 =

√
2, and c j = 1

for j , 0. The additional scaling introduced as coefficients {c j} comes from the

distinct prefactor of zero degree polynomial T0(x) (i.e. constant term) compared

to other amplitudes of |x⟩, which originates from the Chebyshev orthonormality

conditions [175]. Since Ǧ is generally a non-unitary matrix, it can be implemented

with the LCU approach, including its ancilla-free versions without increasing the

circuit depth, and encoding the action of Ǧ with the help of an ancilla qubit [71,

192]. With this we get the derivative expressed as

f ′θ (x) = NN(x)⟨x|Ǧ†| fθ⟩. (7.34)

Transform

At the Chebyshev nodes {x j} j, x j = cos[(2 j + 1)π/2N+1], the states prepared by

the Chebyshev feature map {N(x j)|x j⟩} j form an orthogonal basis which we call

the Chebyshev basis. Therefore, there exists an operator ÛQChT which transforms

between the computational basis (real-space grid) and the Chebyshev basis. The

corresponding transformation operator is introduced in chapter 6 [175] and allows

relating functions values at {x j} j with amplitudes of a state via

g(x) = NN(x)⟨x|ÛQChTÛ
†

QChT|g⟩. (7.35)

Multiplier

Next, we discuss how to build the multiplier in the Chebyshev basis and intro-

ducing nonlinear terms in differential equations, which is a non-trivial problem.
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We begin by recalling the multiplication rules of the Chebyshev polynomials,

T j(x)Tk(x) =
[
T j+k(x) + T | j−k|(x)

]
/2, (7.36)

and aim to exploit them for the automatic multiplication. From the relation above

we observe that the basis of the product of two functions based on Chebyshev

polynomials up to T2N−1 can be expressed by a Chebyshev polynomial expansion

up to degree 2(2N − 1). As 2(2N − 1) < 2N+1 − 1 it can be represented by the N + 1

qubit Chebyshev basis. Specifically, we can write the product basis as

NN+1(x)|xx⟩ =
1

2(N+1)/2 T0(x)|0⟩ +
1

2N/2

2N+1−1∑
k=1

Tk(x)|k⟩, (7.37)

which is simply the Chebyshev encoding for N + 1 qubits. Using Eq. (7.36), the

desired product state |gh⟩ has to be of the form

|gh⟩l =
1

2N/2

min(l,2N−1)∑
j=max(0,l−2N+1)

cl

c jcl− j
|g⟩ j|h⟩l− j +

1
2N/2

2N−1∑
j=l

1
c jc j−lcl

(
|g⟩ j|h⟩ j−l + |g⟩ j−l|h⟩ j

)
,

(7.38)

where c has values c0 =
√

2 for c j = 1 j , 0, and |·⟩ j represents the jth bit of the

state |·⟩. c accounts for the different coefficient of T0(x). We need to implement

an operator M̌ that acts as

M̌ : |g⟩|h⟩|0⟩ −→
1

2N/2 |a⟩
∑

j,k

c j+k

c jck
g jhk| j + k⟩ +

1
2N/2 |ã⟩

∑
j,k

c| j−k|

c jck
g jhk|| j − k|⟩, (7.39)

where |a⟩ and |ã⟩ are (combined registers of) ancillary states that can be discarded

later. This operator can be split into two parts, where M̌+ prepares the summation

| j + k⟩ with corresponding amplitude multiplication, and M̌− prepares the summa-

tion of || j−k|⟩. For M̌+ we use the adder circuit. The adder circuits were introduced

in section 2.7.4 and can be implemented in several ways [74, 75]. We consider

198



(a)

(b)

ADD

SUB

MOD

QFT QFT

Figure 7.2: Circuit diagram for multiplying functions in Chebyshev basis. (a)
Circuit diagram of multiplication circuits M̌+ and M̌−, which together implement the
multiplier operator M̌ for the Chebyshev encoding. First, either ÛADD or ÛSUB are
applied followed by identity or ÛMOD, respectively. Details of ÛMOD are shown in
figure panel (b). Then, the block of rotations Ĉ is applied to alter the coefficients.
Finally, Hadamards on all ancillary qubits are applied before a projective mea-
surement onto |0⟩. The probability of success of the projective measurement is
used to estimate the renormalisation factors r̃±. (b) Circuit diagram of ÛMOD. First,
a layer of CNOTs are applied controlled by the most significant bit (MSB). Then
via the quantum Fourier transform (QFT) implementation of the adder circuit the
MSB is added to the remainder of the register. The phase gate P̂ j corresponds to
diag([1, exp(2πi/2 j), where j is a qubit index.

the realisation built from blocks shown in Fig. 2.14(a), which acts as [193, 194]

ÛADD : |g⟩|h⟩|0⟩ −→
∑

j,k

| j⟩|k⟩g jhk| j + k⟩. (7.40)

This is close to our desired operation, and can be used as a base for M̌+ (Fig. 7.2a).

Next, the effects of varying coefficients c need to be included. After the adder is

applied, an operator Ĉ is needed which acts according to the rules:

1. If | j⟩ = |0⟩ alter shift by 1
√

2
.

2. If |k⟩ = |0⟩ alter shift by 1
√

2
.
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3. If | j + k⟩ = |0⟩ alter shift by
√

2.

To implement this we use controlled R̂Z rotations acting on ancillas (Fig. 7.2a,

three qubits at the top). The ancillas are prepared in the uniform state. Then,

one controlled rotation is used for each shift: R̂Z(−π/2) controlled by | j⟩ = |0⟩,

R̂Z(−π/2) controlled by |k⟩ = |0⟩, and R̂Z(−π/2) controlled by | j + k⟩ = |0⟩. The last

of which if followed by a single-qubit rotation R̂Z(π/2) (not controlled). Hadamards

are then applied to the ancilla and a projective measurement onto |0⟩ reduces the

operation to

Ĉ : |0⟩
∑

j,k

| j⟩|k⟩g jhk| j + k⟩ −→
1
r+
|0⟩

∑
j,k

| j⟩|k⟩
c j+k

c jck
g jhk| j + k⟩, (7.41)

where r+ is the renormalisation factor after the measurement and is accounted

for later.

In Eq. (7.41) registers | j⟩ and |k⟩ are entangled with | j + k⟩. To discard the

loading registers safely, we want to remove this entanglement, and apply a layer

of Hadamards to all qubits within | j⟩ and |k⟩ followed by projective measurements

onto |0⟩. The corresponding operator Ď acts as

Ď :
1
r+
|0⟩

∑
j,k

| j⟩|k⟩
c j+k

c jck
g jhk| j + k⟩ −→

1
r̃+
|0⟩|0⟩|0⟩

∑
j,k

c j+k

c jck
g jhk| j + k⟩, (7.42)

which is our desired state other than the renormalisation factor r̃+. This constant

r̃+ can be estimated as the square root of the success probability of the projective

measurements onto |0⟩. We can now compile M̌+ as

M̌+ = r̃+ĎĈÛADD. (7.43)

The subtraction part M̌− of the multiplier is prepared in similar way. We start

with a subtractor circuit as a base,

ÛSUB : |g⟩|h⟩|0⟩ −→
∑

j,k

| j⟩|k⟩g jhk| j − k mod 2N+1⟩. (7.44)
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A subtractor circuit is generally an adapted adder circuit, as subtraction is the

inverse operation of addition. This was introduced alongside the adder in sec-

tion 2.7.4 with our chosen implementation being built from blocks shown in Fig.

2.14(b). An extra operator ÛMOD is now needed (Fig. 7.2b), as we want to prepare

|| j − k|⟩ but the subtractor prepares |( j − k) mod 2N+1⟩. Therefore, when ( j − k) < 0

we need to map states from |( j − k) mod 2N+1⟩ = |2N+1 + j − k⟩ to |k − j⟩. Since

| j − k| < 2N, when using N + 1 qubits we can separate the cases of ( j − k) < 0

and ( j − k) ≥ 0 by the value of the most significant bit (MSB) in the result register.

Namely, we get |1⟩ in MSB if ( j − k) < 0, and |0⟩ otherwise. To implement the

mapping, a layer of CNOTs controlled by the MSB is applied to the result register,

performing |2N+1 + j − k⟩ → |k − j − 1⟩. Then, controlled again by the MSB in |1⟩,

the state is added with the adder circuit to the result register for || j − k|⟩,

ÛMOD :
∑

j,k

| j⟩|k⟩g jhk| j − k mod 2N+1⟩ −→
∑

j,k

| j⟩|k⟩g jhk|| j − k|⟩. (7.45)

For the rest of the circuit, we also need to introduce rescaling to account for

the differing coefficient of T0. The operator Ĉ can be used same way as before.

Also similar to the previous case, the other registers need to be disentangled

from the result register with Hadamards and projective measurements, with the

renormalisation factor r̃−. This operator ˇ̃D slightly differs from Ď in that it must

also apply to the MSB of the results register. This introduces an extra scale factor

of 2. Summarising these steps, we have

ˇ̃DĈ :
∑

j,k

| j⟩|k⟩g jhk|| j − k|⟩ →
2
r̃−
|0⟩|0⟩

∑
j,k

c| j−k|

c jck
g jhk|| j − k|⟩, (7.46)

M̌− =
r̃−
2

ˇ̃DĈÛMODÛSUB. (7.47)

The entire multiplier operator can be pulled together as

M̌ =
1

2N/2

(
M̌+ + M̌−

)
, (7.48)
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and is shown in Fig. 7.2. This generalises for multiplying registers of different

sizes N1 and N2 with the prefactor of 2−N/2 changing to 2−min(N1,N2)/2.

7.3.7 Fourier Encoding

Feature Map

Another popular basis for building various mathematical models is the Fourier

basis. This basis is formed of the functions T N
j (x) B exp(i2π jx/2N), where N is

the number of qubits. The corresponding feature map with exponentially large

capacity is referred to as the phase feature map, introduced in Ref. [112]. The

phase feature map is formed by a layer of Hadamards on each qubit followed

by a layer of controlled phase gates, P̂N(x, j) = diag{1, exp(iπx2 j−N)}, where j is a

qubit index we act upon. Applied to the computational zero, the phase feature

map prepares the state

|x⟩ =
1

2N/2

2N−1∑
j=0

T N
j (x)| j⟩. (7.49)

The set of corresponding Fourier states {|x j⟩} j evaluated at integer points { j}2N−1
j=0

is orthonormal.

Derivatives

When taking derivatives we observe that

P̂′N(x, j) = diag(0, iπ2 j−N)P(x, j) = Ǧ jP̂N(x, j), (7.50)

Ǧ j =iπ2 j−N−1 Î − iπ2 j−N−1Ẑ. (7.51)

Using the product rule, we repeat the procedure for other gates, leading to Ǧ =∑
j Ǧ j as the full derivative operator for the Fourier encoding.
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Transform

We have already recalled that at the set of points { j}2N−1
j=0 the Fourier map pre-

pares an orthonormal basis. This basis can be mapped to the computational

basis by a unitary operator (bijection). The corresponding transform operator is

the quantum Fourier transform (QFT) [6] which was detailed in section 2.7.3.

Multiplier

When considering a multiplication operator, we again begin by recalling the

multiplication rules of the basis functions. In the Fourier case these simply corre-

spond to

T N
j (x)T N

k (x) = T N
j+k(x). (7.52)

The resulting product basis state reads

|xx⟩ =
1

2(N+1)/2

2N+1−1∑
j=0

T N
j (x). (7.53)

The form of |xx⟩ is similar to |x⟩, and the same encoding circuit can be used when

extended to N + 1 qubits by acting on the additional qubit with PN(x,N + 1). From

this we find the desired |gh⟩ and the multiplication operator M̌:

|gh⟩l =
1

2(N−1)/2

min(l,2N−1)∑
j=max(0,l−2N+1)

|g⟩ j|h⟩l− j, (7.54)

M̌ : |g⟩|h⟩|0⟩ −→
1

2(N−1)/2 |a⟩
∑

j,k

g jhk| j + k⟩. (7.55)

Comparing to the Chebyshev encoding case in Eq. (7.39), we see that the

Fourier multiplicator is a simplified version of the Chebyshev multiplicator, as it

does not require rescaling and subtraction. The Fourier multiplicator reads

M̌ =
1

2(N−1)/2 r̃+ĎÛADD. (7.56)
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With this, the necessary building blocks for implementing training with Fourier

encoding have been introduced.

7.3.8 Comparing the Encodings

Comparing Chebyshev encoding versus Fourier encoding, we note their most

notable differences. The first is that the Chebyshev encoding state is real for all x

(i.e. it leads to states with real amplitudes). Therefore a purely real function can

easily be enforced by using a variational ansatz which prepares states with real-

only amplitudes (for instance, based on R̂Y rotations and fixed CZ/CNOT gates).

As many problems considered are purely real, this can be a useful restriction to

be able to enforce. The Fourier encoding state is naturally complex, and therefore

such a simple enforcement for purely real functions is not available. Potentially, a

specific variational ansatz could be created for this purpose but it is not currently

known.

The next point of comparison is the basis functions themselves. Fourier encod-

ing basis functions are periodic in nature and are particularly suited to harmonic

problems. Chebyshev encoding basis functions are real polynomials, and are

known to offer best-in-class series expansion in terms of L∞ norm. For each

problem an appropriate basis (one of these two or another entirely) would have to

be found. Finally, we note that in general the required operator toolbox for imple-

menting the Fourier encoding is slightly simpler than for the Chebyshev encoding.

With two specific encodings considered, we now reconsider the general case.

For any encoding chosen the appropriate operator toolbox must be found. Gen-

erally, their implementation will vary greatly based on the encoding. The multiplier

in particular will vary. However, we believe that many encodings of interest will

have multipliers that are able to be implemented with modifications of the adder

and subtractor circuits.
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7.4 Results

Now, let us apply the developed strategy to several exemplary differential equa-

tions.

7.4.1 Linear Differential Equation Example

First, we consider a linear differential equation of the form

d f (x)
dx
+ κ exp(−κx) cos(λx) + λ exp(−κx) sin(λx) = 0, (7.57)

for some real-valued parameters λ, κ, and the initial value f (0) = 1. This dif-

ferential equation has a known analytic solution f (x) = exp(−κx) cos(λx), which

represents dynamics of a damped oscillator.

We simulate the proposed algorithm, implementing the steps discussed in the

previous sections. We use the Julia programming language and the Yao.jl pack-

age [110] for the full statevector simulation. In particular we use the Chebyshev

encoding and represent the function using four qubits. The derivative operator,

multiplier and transform follow the Model Embedding section. For building the

model we prepare | fθ⟩⟩ = θsÛθ|o⟩, where θs is a classical variational parameter

representing a scale factor, and Uθ is an adjustable circuit (variational ansatz).

For the variational ansatz we use alternating layers of R̂Y rotations and layers of

CNOTs. Specifically, seven rotational and six entanglement layers are used, ini-

tialised randomly. This ansatz prepares states with real-only amplitudes, leading

to functions that are guaranteed real-valued.

The differential equation in the latent space is formed of two terms: the function

of an independent variable g(x) B exp(−κx) (κ cos(λx) + λ sin(λx)) and the function

derivative d f /dx. The latent representation of d f /dx is |d f /dx⟩⟩ B θsǦ†Ûθ|0⟩. The

representation of g(x) in latent space is obtained from the use of the transform, as

described in the previous section. We assume the non-normalised version of this
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Figure 7.3: Results of solving a linear differential equation. Solving equation
(7.57), for κ = 1, λ = 2π, and initial value of f (0) = 1. (a) Target function and
its derivative (solid curves) plotted as a function of x, vs parallelly-learnt function
and its derivative evaluated from quantum circuits (dash curves). The functions
overlay. (b) Value of loss function over epoch (iteration of the Adam optimiser).

wavefunction can be written as a normalised part |g⟩ multiplied with some scalar

Ng, to attain the right overall scaling in the latent space representation. Aiming to

equate the derivative and the independent function, the differential equation loss

reads

LDE(θ) = θ2
s⟨0|Û

†

θǦǦ†Ûθ|0⟩ + θsNg⟨g|Ǧ†Ûθ|0⟩ + θsNg⟨0|Û
†

θǦ|g⟩ + N2
g⟨g|g⟩,

and the initial value component of the loss is Linit(θ) = ( fθ(0) − 1)2.

The total loss is then taken as L(θ) = (LDE)p + ηLinit, where we set the weight

factor for the initial value loss η = 10 to regularise solutions and emphasise the

importance of the boundary. This hyperparameter can be chosen heuristically

or meta-trained, and furthermore it can be a function of the epoch number [112,

123]. Additionally, we have introduced p as a power for scaling the DE loss, which

is chosen as p = 1/2. The square root is monotonically increasing over R+, and

does not change the optimum. However, it allows converting the loss from MSE

to RMSE (root-mean-square error) loss. This is commonly used in deep learning,

being more sensitive to outliers (or initial value pinning as in our case). The loss

L(θ) is minimised via the Adam optimiser with a small learning rate 0.005 and 4000

epochs. The results are shown in Fig. 7.3. In Fig. 7.3a the dashed curves show

functions and derivatives obtained from fθ∗(x) and d fθ∗(x)/dx, evaluated at quasi-
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optimal angles θ∗ coming from the optimisation procedure. The corresponding

decrease of loss as a function of epoch is shown in Fig. 7.3(b). The loss observed

is noisy, this may be able to be reduced with tuning of the optimiser but we found

decreasing the learning rate (the first change usually made with noisy training)

did not alleviate the behaviour in this situation. We observe that the obtained

solutions follow the ground truth for the system (Fig. 7.3(a), solid curves).

7.4.2 Shifted Linear Differential Equation Example

Next, we address an example that requires extending the expressivity of the

model, also improving the trainability. Expressivity and trainability of this model

mainly depend on choices of the encoding for |x⟩. However, this can be aided by

shifting and scaling, such that we use trainable quantum states to reproduce only

a nontrivial x dependence. In the Protocol section we introduced the modified

models (7.14) and (7.15). Here, we formulate the model f sh
θ (x) = θs⟨x|Ûθ|0⟩ + θsh

with variationally adjustable scaling and shifting parameters (θs and θsh). This

model performs well when the solution value range is significantly smaller than

the magnitude of the solution (effectively decreasing the demands for expressivity

and boosting trainability).

To showcase the use of shifted models, we simulate solving the differential

equation of the form

d f (x)
dx

− f (x) + 15 = 0, f (0) = 16, (7.58)

with both types of models (7.14) and (7.15). This problem has an analytic solution

f (x) = exp(x) + 15 as a ground truth. We use Chebyshev encoding over four

qubits and the real-only ansatz of depth six as used in previous results. With

the Chebyshev encoding g(x) = 1 is an accessible basis function, therefore the

appropriate state representation ψ1 can be found by inspecting basis functions or

using the transform.
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Figure 7.4: Comparison of solving linear differential equation with shifted
and non-shifted model. Solving equation d f (x)/dx − f (x) + 15 = 0 with initial
value of f (0) = 16, approached with two different models [Eqs. (7.14) and (7.15)].
(a) Plot of the ground truth function (solid curve) vs trained solution regular [ fθ∗(x)]
and shifted [ f sh

θ∗ (x)] models shown by dash curves. (b) Derivative of the ground
truth (solid curve) vs derivatives of solutions obtained from training the regular
and shifted models (dashed curves). The shifted model closely follows the ground
truth, while the regular scaled model starts to deviate from the ground truth, which
is evident from derivatives.

For this differentiation equation there are three DE terms: d f /dx is represented

by |DE1⟩ = θsǦ†Ûθ|0⟩; f is represented by |DE2⟩ = θsÛθ|0⟩ for the regular scaled

model in Eq. (7.14); and |DE2⟩ = θsÛθ|0⟩+θsh|ψ1⟩ for the shifted model in Eq. (7.15).

The constant function g(x) = 15 is represented by |DE3⟩ = 15|ψ1⟩. The differential

loss is then formed as in Eq. (7.7). We also include the initial value loss as

Linit(θ) = { fθ(0) − 16}2.

We follow the same training workflow as in the previously considered linear

case. We rescale and combine loss contributions as L(θ) = (LDE)p + ηLinit, with

p = 1/2 and η = 10. The loss is minimised with Adam optimiser with the learning

rate of 0.005 for both models. Results are shown in Fig. 7.4. We observe that

the shifted model performs better (purple dashed curves in Fig. 7.4a,b for func-

tion and derivative). We achieve a better performance with shifting, and require

fewer epochs roughly reduced by an order of magnitude, signifying the improved

trainability.
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Figure 7.5: Results of solving nonlinear differential equation. DE considered
d f /dx− f 2 = 0 with initial value f (0) = 0.5. (a) Plot of target function and derivative
(solid lines) versus resulting function and derivative (dash lines). (b) Value of loss
function over epoch iteration.

7.4.3 Nonlinear Differential Equation Example

We now move on to consider an example of a nonlinear differential equation,

chosen as

d f (x)
dx
+ f 2(x) = 0, f (0) = 1/2. (7.59)

This DE has an analytic solution f (x) = 1/(2− x), set as the ground truth. Notably,

even though Eq. (7.59) looks simple, we should appreciate that solving nonlinear

differential equations with amplitude encoding on quantum computing is far away

from being easy. In our approach we are able to tackle it with latent space basis

multipliers.

We solve the problem following the workflow used in the linear case, while

changing the variable state representation and using multiplier circuits M̌. We

employ the Chebyshev encoding on three qubits and the same depth-six varia-

tional ansatz. The two terms of this DE, d f /dx and f 2, are then mapped into the

latent space with |xx⟩ variable encoding. The first term is prepared by multiplying

g(x) = 1 and d f /dx for |DE1⟩⟩ = θsM̌(|g⟩ ⊗ Ǧ†Ûθ|0⟩). As unity is a naturally occurring

basis function of the Chebyshev encoding, the relevant |g⟩ can easily be found as

2N/2[1, 0, 0, ...]. The second term f 2 is represented by |DE2⟩⟩ = θ
2
s M̌(Ûθ|0⟩ ⊗ Ûθ|0⟩).

These states are used to form a differential equation loss in Eq. (7.7), supple-
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mented by initial value loss as Linit(θ) = { fθ(0) − 1/2}2. The total loss is the same

as for previous problems, L(θ) = (LDE)p + ηLinit, p = 1/2, η = 10. The loss is

minimised with Adam optimiser with the learning rate of 0.005. The resulting so-

lutions are shown in Fig. 7.5a, where the trained solution of the nonlinear DE

(blue and red dashed curves for the function and its derivative, respectively). This

follows nicely the ground truth (solid curves in Fig. 7.5a). The corresponding train-

ing is presented in Fig. 7.5b, where we observe that the optimiser explores the

landscape of solutions, and ultimately finds the suitable candidate when the loss

drops below unity.

7.4.4 Multidimensional Differential Equation Example

Finally, we test the solver for tackling multidimensional problems. We consider

a differential equation for a function f (x, y) of two independent variables x and y,

written as

d f (x, y)
dy

− 2y − x = 0, f (x, 0) = 1. (7.60)

This DE has an analytic solution f (x, y) = y2 + xy + 1 as the ground truth.

We encode the two independent variables in parallel registers using the model

fθ(x, y) = θs(⟨x| ⊗ ⟨y|)| fθ⟩. (7.61)

We choose to encode both |x⟩ and |y⟩ with Chebyshev encoding of two qubits. | fθ⟩

is prepared with the same real-only ansatz as in previous examples, applied over

four qubits in total, with an ansatz depth of six.

The two terms of the differential equation are d f /dy and g(x, y) = −2y − x. For

the derivative term, as variables are encoded in separate registers, the deriva-

tive operator Ǧ† is applied to the register of the variable being differentiated.

The remaining register is left untouched. Therefore, the corresponding state is
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Figure 7.6: Results of solving a multidimensional differential equation. Prob-
lem considered is d f /dy − 2y − x = 0 with the boundary condition f (x, 0) = 1. (a)
Result from parallel multidimensional training shown as a density plot of fθ(x, y) vs
x and y. (b) Slice of resulting function and derivatives at x = 0. Analytic solutions
shown in solid lines. Functions resulting from training shown in dashed lines.

|DE1⟩⟩ =
(
I ⊗ Ǧ†

)
Ûθ|0⟩. For the second term, the latent space state is prepared

by applying Û†QChT ⊗ Û
†

QChT to the state with amplitudes of g(x, y) evaluated at

the Chebyshev nodes for |DE2⟩⟩. Next, we need to sum the differential term and

the boundary condition term, LBC(θ) =
∑

j{ fθ(x j, 0) − x j}
2, where {x j} are a set of

boundary evaluation points. We choose 21 uniformly spaced points for x ∈ (−1, 1).

Again, the total loss is L(θ) = (LDE)p + ηLBC, p = 1/2, η = 10. Minimising this

loss via Adam optimiser with the learning rate of 0.005 we get results plotted in

Fig. 7.6. The full trained solution is shown as a density plot in Fig. 7.6a, closely

following the ground truth (average deviation is in the range of 10−3). We also take

a slice at x = 0 and plot the solution as a function of y in Fig. 7.6b. We recover the

expected behaviour from the multidimensional training.

7.4.5 Fourier Encoding

So far our presented results have made use of the Chebyshev encoding but

we have discussed another encoding, the Fourier encoding. This encoding nat-

urally represents periodic solutions. Furthermore, the encoding is naturally com-

plex and therefore we cannot easily restrict the trial function to real only values.

We remember that we cannot classical post process the trial solution for a real

only result as that would break the properties allowing for the removal of x whilst

training and how we compute multiplication. Therefore, to show this alternative
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Figure 7.7: Results of solving a nonlinear differential equation with Fourier
encoding. Problem considered is f d f /dx+πi/2 exp(−ixπ) = 0 with an initial value
of f (0) = 1. (a) Plot of real and imaginary parts of target function (solid lines)
compared to real and imaginary part of resulting function (dash lines). (b) Value
of loss function over epoch iteration.

encoding, and to emphasise the importance of choosing an appropriate encoding

for a problem we show results of using the Fourier encoding for one problem it is

suited for and another it is not.

For our first problem we consider the nonlinear first order differential equation

and initial value

f
d f
dx
+
πi
2

exp−ixπ = 0, f (0) = 1. (7.62)

This differential equation has analytic solution f (x) = exp(−ixπ/2) and is periodic

and complex. Therefore it is expected that the Fourier encoding would be very

well suited to the problem.

To solve it we simulate our algorithm in the same manner as previous results.

We utilise the Fourier encoding with two qubits. The variational ansatz used is

a hardware efficient ansatz of depth six. An adam optimiser of learn rate 0.01 is

used.

For this problem there are two terms in the differential equation, f d f /dx and

g(x) = iπ2 exp−ixπ. The first term f d f /dx is represented by |DE1⟩⟩ = θ2
s M̌(Ûθ|0⟩ ⊗
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Figure 7.8: Results of solving a real, linear differential equation with Fourier
encoding. Solving equation (7.57), for κ = 1, λ = 2π, and initial value of f (7.5) = 1.
(a) Plot of real and imaginary parts of target function (solid lines) compared to real
and imaginary part of resulting function (dash lines). (b) Value of loss function
over epoch iteration.

Ǧ†Ûθ|0⟩. For the second term, we find that g(x) is naturally expressed in the

extended multiplication basis and can be found as |DE2⟩⟩ = −iπ
√

2[0, 0, 1, 0...0].

These states are used to form a differential equation loss in Eq. (7.7), supple-

mented by initial value loss as Linit(θ) = ( fθ(0) − 1)2. The total loss is similar as for

previous problems, L(θ) = (LDE)p + ηLinit, p = 1/2, η = 20. The results of this are

shown in Fig. 7.7. It can be seen a good fit is achieved within a relatively small

number of epochs - magnitude of 100.

The second problem we consider is the same as in the linear differential equa-

tion for Chebyshev encoding (7.57), rescaled such that the range of the Fourier

nodes [0, 2N − 1] is mapped onto the domain [−1, 1], the range of the Chebyshev

nodes. A linear mapping f (x) = 2x/(2N − 1) − 1 is used for this. This function is

real only and non-periodic, which would lead to the assumption that naive Fourier

basis fitting would not be a optimal choice.

For this problem we used a Fourier encoding over four qubits and a hardware

efficient ansatz of depth ten. The terms of the differential equation are prepared

the same as the Chebyshev case though with the Fourier encoding equivalents

of each circuit. The total loss is also constructed the same and optimised with

adam optimiser with learn rate 0.005.
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The results of this are shown in Fig. 7.8. As can be seen, a good fit was not

found. In particular, it struggles to represent a real function. With a larger number

of qubits to contribute more basis functions a better fit likely could be found. But

we note that the Chebyshev encoding solution found a good fit with this number

of qubits (four) as shown in Fig. 7.3. This highlights the importance of choosing

a suitable encoding for a given problem.

7.5 Discussion

Within this chapter we develop a quantum algorithm for solving differential

equations without costly grid evaluations. In particular we show that by repre-

senting all terms of the DE in terms of an encoding which fulfill a requirement

on linear independence the encoding can then effectively be removed from con-

sideration whilst training. We detail how to achieve this with respect to Fourier

encoding and Chebyshev encoding (as introduced in chapter 6). The algorithm is

most suitable for those with large numbers of points required such as multidimen-

sional problems because this is when the lack of need to individually evaluate at

each point will be most advantageous.

This process can be used with any suitable encoding choice provided that the

relevant term preparation gates are implementable – i.e. multiplication and deriva-

tive. An avenue of future work is the development of additional encoding choices.

Additionally we have considered a variational approach and therefore the open

research questions of how best to ensure trainable and expressive optimisation

is of interest.

On that note we highlight that whilst throughout this chapter the focus has been

on a variational approach, the way the terms are encoded can lead to a linear

systems approach. This is briefly introduced but not in detail – developing this ap-

proach is for future research. Another important point is to highlight that though a

hybrid variational algorithm the circuits that require implementation during training
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are of sufficient complexity that useful NISQ implementation is unlikely. We also

don’t believe full fault tolerance would be required, instead ”intermediate scale”

quantum devices between NISQ and FTQC will likely be needed.
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Chapter 8

Conclusion

8.1 Summary

Throughout the preparation of this thesis I have researched and developed

quantum machine learning algorithms for the solving of differential equations

along with enabling tools, specifically concerning various transforms and encod-

ings — useful subroutines for building quantum models. By considering a variety

of approaches for the solving of differential equations, I have developed a range

of algorithms which have different advantages and limitations. These have been

applied to different problems, yielding different quantum resource requirements

and comparison between algorithms. I have shown that quantum machine learn-

ing is a viable approach for introducing differential constraints and searching for

solutions of differential equations. Here, there are multiple avenues for achieving

a quantum advantage in the future, including increased expressivity of quantum

models, parallelism over grid evaluations, utilisation of linear system solving with

improved scaling, and performing efficient sampling.

The first algorithm developed, differentiable quantum circuits, as introduced in

chapter 3 variationally trains a quantum model to solve a differential equation. As

a result it is very generalisable and suitable for wide range of DE problems due to

the ease of adapting the quantum model and therefore altering expressivity and

trainability. The quantum model can be chosen such that each individual quantum
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circuit evaluation is easy to implement resulting in a near-term friendly algorithm.

However, this algorithm fundamentally involves non-convex optimisation requiring

quantum circuit evaluations for every training point at every iteration, potentially

resulting in a large number of required quantum circuit evaluations.

In chapter 4 I further developed the previous algorithm whilst considering quan-

tile mechanics to consider solving SDEs. A quantum model is used to represent

a quantile function which can be trained and evolved in time to solve an SDE.

The resulting model can be sampled to generate data. As a development of the

previous algorithm it shares many properties.

The third algorithm introduced in chapter 5 utilises quantum kernel methods to

solve nonlinear PDEs. Here, the quantum model is considered in terms of quan-

tum kernel functions. The problem can then be solved as a general optimisation

procedure (MMR) which is not specific to kernel methods or via SVR which is

specific to kernel methods. When considered as a SVR problem, the problem is

then written as a system of equations and can either be solved variationally or

any other appropriate algorithm. One useful property of kernel methods is that

when the differential equation considered is linear the resulting problem to solve is

convex. Additionally, due to the form of the quantum model, quantum circuit eval-

uations are only required pre and post training. Therefore, whilst the quantum

model can be considered more complex (overlap measurement required) many

fewer evaluations are required and can still be considered near-term friendly.

Next, the quantum Chebyshev transform is developed in chapter 6. The quan-

tum Chebyshev transform converts between Chebyshev space and computa-

tional space. In different spaces certain behaviours/features can be more or

less easy to compute or influence — for example Chebyshev space is suitable

for function fitting and computational space for sampling. By transforming be-

tween spaces the appropriate space for the current task can be used, improving

efficiency. This work is utilised in chapter 7. We see that transforms are an impor-
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tant tool and further development of transforms for spaces appropriate for other

tasks is open for future work.

The final algorithm was developed in chapter 7. This algorithm constructs a

state/sum of states to represent each term of the differential equation in a latent

space. By developing multiplication operators in latent space nonlinear DEs can

be solved. Chebyshev space as developed in chapter 6 is considered along with

Fourier space but any suitable space could be used. This method can result in

either a system of equations or an optimisation problem — I have focused on the

variational approach. With this method, x-encoding can be removed from con-

sideration during training resulting in no grid evaluations required during training

(though quantum circuit evaluations do still occur). Therefore, this algorithm is

suitable for problems which result in large number of grid points such as multidi-

mensional problems. However, the circuits implemented are more complex and

are unlikely suitable for near-term use, and more likely to require quantum devices

from future generations.

Comparison

These developed algorithms are all for the purpose of solving differential equa-

tions and therefore there are similarities between them. There are also differ-

ences based on the approach for solving DEs, the trial functions and the loss

functions.

One comparison is the suitability for near-term implementation. All of the pro-

posed algorithms have many hyperparameters affecting the quantum circuits to

be implemented. To consider which algorithms are near-term suitable we con-

sider what quantum circuits need to be evaluated and how suitable they are.

For DQC as presented in chapter 3 we find that a feature map and variational

ansatz are required with no limit on their form and then a expectation value must

be taken. Therefore, by choosing an appropriate feature map, ansatz and mea-

surement basis for the device this algorithm is found to be the most near-term
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appropriate. The QQM approach in chapter 4 is similar in many respects to DQC

but there is a larger focus on multidimensional problems to allow time evolution.

Therefore, whilst still near-term possible this included extra complexity puts a

few more requirements onto the quantum device as compared to DQC. For the

kernel method approaches, what is needed is a feature map and overlap mea-

surement. As overlaps are more complicated to measure, similar to QQM, these

approaches are hopefully near-term implementable but with some more compli-

cations than the DQC approach. The final developed algorithm has much more

stringent requirements on the quantum device. Overlaps are again required and

at much greater number than the kernel approaches. Additionally, nonlinearity

is processed in a quantum manner which results in multiplier circuits which are

deep and projective measurements are required. Therefore this approach, whilst

not requiring fault tolerance, is not near-term suitable.

To finish the discussion on near-term implementation it is worth noting that

even near-term appropriate does not mean that useful quantum computation is

immediately imminent. At first the near term algorithms will be implementable for

small scale problems - such as the linear DE toy problems I consider in result

sections or even simpler. This will be an important step for the goal of quantum

computation but these problems remain easy to solve classically. Then it will be

the task to further refine the algorithms and the devices and their interactions to-

gether to scale up the problems considered until useful problems are considered.

Whilst this is still hoped to be near-term it is important to emphasise that this is

not immediate.

Another comparison is the flexibility of the algorithm and what range of prob-

lems they are suitable for and what problems it performs best for. DQC is a very

flexible approach with it easily able to be adapted to a wide range of problems.

For example QQM can be viewed as an adaption of DQC for SDEs. Conse-

quently, DQC itself does not have a particular strong point of application but once

adapted it does. The kernel method MMR approach is similarly flexible. For
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SVR it depends mostly on the formulation of the problem into the suitable form.

Consequently, it strongly favours problems with low degrees of nonlinearity. The

algorithm introduced in chapter 7s strong point is not requiring separate grid eval-

uations during training. Therefore, it performs best for problems with large implicit

grid sizes such as multidimensional problems. Additionally, the multiplier circuits

for the encodings considered are complex giving a preference for low orders of

nonlinearity. However, I do note that all these algorithms are able to solve sim-

pler problems such as the one dimensional damped oscillator in chapters 3, 5

and 7. At such problem scales the differences between the algorithm more re-

lates to near term suitability than performance. Differences in performance would

become more apparent at larger problem scales where algorithm performance

would likely favour the types of problems just discussed.

A final point to consider is what are the quantum benefits of the proposed algo-

rithms. I first of all acknowledge a lack of any algorithmic proof of advantage, or

(more positively) proof of lack of advantage. This is due to the variational nature

of the algorithms I have developed. Because convergence is not guaranteed, and

even when convergence occurs there are no promises on number of iterations,

it is hard to find the complexity of such algorithms in a concrete enough way to

declare advantage has been found. Instead we look towards the more nebulous

and where we hope to find quantum benefits. This would then be tested heuris-

tically once algorithms are implementable in comparison to other algorithms. So

where do we hope to find quantum benefits? A general answer for these type

of algorithms is expressivity - utilising quantum computing gives an exponential

space with respect to the number of qubits and therefore, depending on trial func-

tion, a huge range of functions. However, during my studies it has been shown

and discussed that we cannot rely just on expressivity as it can introduce training

issues. Therefore we look at more specific avenues for quantum advantage. In

the chapter 7 I use quantum parallelism and superposition to avoid the need to

evaluate grid points separately. This would then hopefully show advantage for

problems with large number of point such as multidimensional problems.
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8.2 Aims & Objectives

Looking back at my aims and objectives I consider whether I have succeeded in

fulfilling them. The overall goal of developing quantum DE solvers I have achieved

with the development of four algorithms in chapters 3, 4, 5 and 7. Additionally

in chapter 6 a tool utilised in chapter 7 was developed. All of these developed

algorithms utilise variational and/or QML methods. Additionally, the algorithms

developed in chapters 3 and 5 are near-term appropriate with suitable hyper-

parameter choices such as feature map/kernel function choices.

All proposed algorithms are applicable for nonlinear DE problems. In chapter 3

and 4 nonlinearity is achieved by classical post processing within the loss func-

tion. For chapter 5 we have two approaches, one (MMR) also uses classical post

processing within loss function whilst the other (SVR) considers it within the clas-

sical preparation of the problem and leads to nonlinear system of equations to

solve. In Chapter 7 I develop a new way to treat nonlinearity in a quantum man-

ner. By considering basis functions with multiplication rules such as Chebyshev

and Fourier, we can encode the multiplication rule in an operator which allows

us to implement multiplication and therefore nonlinearity. Thus I conclude I have

reached my aims and objectives.

8.3 Outlook

My primary focus has centered on variational quantum machine learning al-

gorithms, which share certain characteristics. These algorithms, for instance,

have the potential to generate near-term solutions by choosing appropriate quan-

tum models. Moreover, they exhibit versatility and flexibility, allowing for exten-

sive modifications to the quantum model and optimisation methods, making them

adaptable to a wide range of problems. However, this adaptability poses a chal-

lenge — the choices made in these algorithms are often heuristic and can signif-

icantly impact performance. Consequently, there is ongoing research dedicated
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to finding more systematic approaches for selecting suitable hyperparameters for

specific problems.

Another overarching question for these types of algorithms revolves around the

realisation of quantum advantage. While there is intuition regarding potential ad-

vantages at a larger scale, the non-convex nature of these variational problems

offers no guarantees. Related are concerns about training guarantees and con-

vergence, especially in the context of issues like barren plateaus and local minima

in the loss landscape, which persist and drive active research efforts, as these

problems impact nearly all variational scenarios. Current efforts include a focus

on designing models and choosing hyperparameters to avoid these negative fea-

tures, with approaches such as overparametrisation, ansatz designs and initiali-

sation proposed, as well as deepening understanding of what causes these be-

haviour so as to help avoid these situations. Also, to remember, quantum machine

learning algorithms are not required to be variational. Non-variational algorithms

would naturally avoid variational concerns, though perhaps at the price of near

term suitability and quantum resource requirements. In particular some frame-

works can be approached with both variational and non-variational approaches,

e.g. as mentioned for the algorithms developed in chapters 5 and 7.

When considering the future of quantum machine learning for differential equa-

tions there are still many avenues for development and unanswered questions.

Many fall under developing and identifying appropriate quantum models for a

problem as well as efficient training regimes. Of particular importance is iden-

tifying where advantage could be realised and what is still needed to access

this. I highlight large, multidimensional problems as a promising area due to

classical inefficiency from the many grid points generated, known as the “curse

of dimensionality”. By exploiting quantum properties such as superposition and

parallelism of quantum computation, separate grid point consideration could be

avoided. Additionally, if a continuous encoding is used, often the data input and

output problem can be avoided, the trained model can be evaluated continuously,
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and exact derivative methods such as parameter shift rule can be utilised. We

started on this journey in chapter 7 but further development of this approaches

scaling and how best to encode multiple dimensions for this framework is open.

The development and consideration of alternative approaches for the same goal

is also open.

Another important aspect to consider is approaches for considering nonlinear

differential equations. Many differential equations of interest are nonlinear but

non-linearity is not trivial to implement due to the natural linearity of quantum

mechanics, often leading to inefficiency. Approaches considered within this the-

sis were classical post processing within loss function, and function multiplication

operator (specific to choice of basis). Other approaches include quantum non-

linear processing units as in [1]. Further development of these approaches as

well as new approaches is an open area of research. One particular question left

open from this thesis is whether there is a basis suitable for function fitting with a

more efficient associated function multiplier operator. By improving the efficiency

of representing non-linear differential equations the variety of DE problems with a

promise for future advantaged is widened.

In summary, throughout my studies, I have developed algorithms designed to

tackle challenges in scientific computing, specifically concerning solving differ-

ential equations using quantum computing. These algorithms underscore the

suitability of the quantum machine learning paradigm for solving such equations,

hinting at the potential for future quantum advantage. There are ample opportu-

nities for refining, adapting, and utilising these algorithms. They can be used as

building blocks to progress towards useful quantum computation. I believe the

field of quantum scientific machine learning for solving differential equations will

continue to evolve, contributing to the long-term goal of realising tangible quantum

advantage.
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Appendix A

Support Vector Regression for

Differential Equations

Support vector regression for kernel methods was introduced in section 2.8.2.

This workflow and problem set up can then be generalised for differential equation

problems. The work flow remains the same with the constraints now being formed

of the differential equation at a set of points along with the initial value/boundary

condition. Derivatives are now included which we denote

∇m
n κ(x, y) =

∂m+nκ(x, y)
∂xn∂ym . (A.1)

When considering solving DEs with support vector regression, the formulation

of the problem changes depending on the form of differential equation considered

[159, 160, 166]. I work through an example of preparing and SVR problem for

the example class of problems DE(x, f , d f /dx) = d f /dx − g(x, f ) = 0 with initial

condition f (x0) = f0. We use the model formulated as f (x) = w†φ(x) + b.

242



As a first step, the problem needs to be written in primal SVR model form,

minw,bw†w + γeT e + γξTξ, (A.2)

subject to wTφ′(xi) − g(xi, yi) = ei i = 1 : N, (A.3)

wTϕ(x0) + b = f0, (A.4)

yi = wTφ(xi) + b + ξi i = 1 : N. (A.5)

Here, the minimisation function is such that the magnitude of w, e and ξ are

minimised, with w being the set of fitting coefficients. e and ξ are the errors in

the constraints. Minimising this function one finds the smallest w that fulfils the

constraints with smallest possible error. Finding the smallest possible w is a form

of regularisation helping prevent overfitting. γ is a tunable hyperparameter which

dictates how much emphasis is placed on error reduction.

The constraints correspond to the differential equation at each point xi, the

initial condition and introduced dummy variables yi = f (xi) + ξi, respectively. The

dummy variables are introduced to reflect the nonlinearity of the problem.

The second step is to find the Lagrangian of the model. This corresponds to

the minimisation function minus each of the constraints, preceded by a variable

coefficient,

L =
1
2

wT w +
γ

2
eT e +

γ

2
ξTξ (A.6)

−

N∑
i=1

αi(wTφ′(xi) − g(xi, yi) − ei) (A.7)

− β(wTφ(x0) + b − f0) (A.8)

−

N∑
i=1

ηi(wTφ(xi) + b + ξi − yi). (A.9)

The introduced variables α, η and β are referred to as dual variables.

243



The next step is to calculate the KKT conditions. These are found by equating

to zero derivative of the Lagrangian with respect to each of its variables, both

primal and dual, (w, b, e, ξ, y,α, β,η). The derivatives read

∂L

∂w
= w −

∑
i

(
αiφ

′(xi) + ηiφ(xi)
)
− βφ(x0) = 0, (A.10)

∂L

∂b
= −β −

∑
i

ηi = 0, (A.11)

∂L

∂ei
= γei + αi = 0, (A.12)

∂L

∂ξi
= γξi − ηi = 0, (A.13)

∂L

∂yi
= αi

∂g
∂y

(xi, yi) + ηi = 0, (A.14)

∂L

∂αi
= −

(
w†φ′(xi) − g(xi, yi) − ei

)
= 0, (A.15)

∂L

∂β
= −

(
w†φ(x0) + b − f0

)
= 0, (A.16)

∂L

∂ηi
= −

(
yi − w†φ(xi) − b − ξi

)
= 0. (A.17)

These are a set of 6|x| + 2 equations which necessarily need to be satisfied for

optimality.
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These conditions are now used to eliminate a subset of the primal variables

w, e, ξ leaving 3|x| + 2 equations:

∑
j

[α jφ
′(x j) + η jφ(x j)] + βφ(x0)


†

φ′(xi) (A.18)

−g(xi, yi) + αi/γ = 0,∑
j

[α jφ
′(x j) + η jφ(x j)] + βφ(x0)


†

φ(x0) (A.19)

+b − f0 = 0,

−

∑
j

[α jφ
′(x j) + η jφ(x j)] + βφ(x0)


†

φ(xi) (A.20)

+yi − b − ηi/γ = 0,∑
i

ηi + β = 0, (A.21)

αi
∂g
∂y

(xi, yi) + ηi = 0. (A.22)

For these equations we then expand out the brackets and use the kernel trick,

introducing the kernel function κ as κ(x, y) = φ†(x)φ(y) and corresponding deriva-

tives. We remember that this is a consequence of Mercers theorem, given that

φ†(x)φ(y) is a kernel for any φ. Now we are able to write the resulting equations

in matrix form as



Ω̃1
1 Ω1

0 h1
0 0 0̂

Ω0
1 Ω̃0

0 h0
0 1 −Î

hT 0
1 hT 0

0 h̃ 1 0T

0T 1T 1 0 0T

D̂ Î 0 0 0





α

η

β

b

y


=



g̃

0

f0

0

0̂


, (A.23)
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where the notation is as follows

[Ωm
n ]i, j = ∇

m
n κ(x j, xi), (A.24)

Ω̃m
n = Ω

m
n + Î/γ, (A.25)

[hm
n ]i = ∇

m
n κ(x0, xi), (A.26)

h̃ = κ(x0, x0), (A.27)

D̂ = diag
({
∂g
∂ f

(xi, yi)
}

i

)
, (A.28)

[g̃]i = g(xi, yi). (A.29)

We now have a set of nonlinear equations that can be solved for a set of vari-

able, representing solution to the original stated problem. These equations are

written in terms of κ, and not φ. Also note that these equations are true for any

valid kernel function, and we can choose our kernel function freely. We need not

know what the corresponding φ are, we simply know from Mercers theorem that

such functions exist. Therefore the formulation of these equations (in particular

the use of the kernel trick to introduce the kernel) is valid.

The remaining step is to write f (x) = w†φ(x)+ b in a form that is instead depen-

dent on the variables solved for. We find it to be

f (x) =
|x|∑

i=1

αi∇
0
1κ(xi, x) +

|x|∑
i=1

ηiκ(xi, x) + βκ(x0, x) + b, (A.30)

by using the w KKT condition and then the kernel trick.

We have now formulated an SVR method for the form of problem considered.

If a different form of DE is considered this process would have to be repeated for

that form. Once in the SVR form any relevant algorithm can be used. We do note

that when nonlinear problems are considered the resulting system of equations

is in turn nonlinear. Consequently the guarantee of convexity is lost.
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Appendix B

QCL Example Code

using Zygote, GalacticFlux, GalacticOptim #packages for optimisation

using Plots

using Statistics

#packages for classical simulation of quantum computing

using Yao, Yao.EasyBuild

n = 4 #number of qubits

d = 5 # depth of variational ansatz

x_min = 0.

x_max = 5.

n_points = 20

x_train = x_min:(x_max-x_min)/(n_points-1):x_max #grid for training

xs = reshape(collect(x_train), 1, :)

f_tar(x) = xˆ2*cos(2*\pi*x) + 1 # target function

f_m(x) = return chain(n, [put(i=>Ry(i*x)) for i=1:n]) # feature map

cost = sum([chain(n, put(i=>Z)) for i=1:n]) #measurement operator

# variational ansatz - using Yao included HEA

var_ansatz = variational_circuit(n,d)
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num_theta = nparameters(var_ansatz_qcl)+ 2

#trial function

f_train(x::Float64, theta) = theta[end-1]*real(expect(cost, zero_state(n) =>

chain(n, f_m(x), dispatch(var_ansatz_qcl, theta[1:end-2])))) + theta[end]

f_train(x, theta) = [f_train(xj, theta) for xj in x]

# loss function for regression

# MSE between current trial function values and taret values over training grid

function loss(theta, p=nothing)

fvals = f_train(vec(xs), theta)

mean(abs2, fvals .- f_tar.(vec(xs)))

end

#callback to track loss

loss_list = []

function callback(theta, l)

push!(loss_list, l)

false

end

using Random

Random.seed!(1234) # if you want reproducible randomness

theta_init = rand(num_theta) # initialise parameters

niter = 1000 # maximum iterations

# set up optimiser - using adam with automatic derivatives

opt_f = OptimizationFunction(loss, GalacticOptim.AutoZygote())

prb = OptimizationProblem(opt_f,\theta_init)
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opt = ADAM(1e-2)

# perform optimisation

res = solve(prb, opt, maxiters=niter, callback = callback)

res_theta = res.minimizer # result from training

# visualise loss over iteration

lp = plot(1:lastindex(loss_list), loss_list, yaxis = :log10)

display(lp)

# visualise result in comparison to target function

xp = x_min:0.01:x_max

p1 = plot(xp, f_tar.(xp), label="Truth", w =3, color = :lightblue)

plot!(p1, xp, f_train(vec(xp), res_theta) |> vec, label="Pred.",

style =:dash, color = :blue, w = 2)

plot!(p1, x_train, f_tar.(x_train), seriestype =:scatter, label = "Train")

display(p1)
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