
A Theoretical and Empirical Study on Unbiased Boundary-extended

Crossover for Real-valued Representation

Yourim Yoon1, Yong-Hyuk Kim2, Alberto Moraglio3, and Byung-Ro Moon1

1 School of Computer Science & Engineering, Seoul National University

599 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Korea

Email: {yryoon, moon}@soar.snu.ac.kr
2 Department of Computer Science & Engineering, Kwangwoon University

20 Kwangwoon-ro, Nowon-gu, Seoul, 139-701, Korea

Email: yhdfly@kw.ac.kr
3 School of Computing, University of Kent, UK

Email: A.Moraglio@kent.ac.uk

May 26, 2011

Abstract

We present a new crossover operator for real-coded genetic algorithms employing a novel
methodology to remove the inherent bias of pre-existing crossover operators. This is done by
transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and
designing a boundary extension method for making the fitness function smooth at the glued bound-
ary. We show the advantages of the proposed crossover by comparing its performance with those of
existing ones on test functions that are commonly used in the literature, and a nonlinear regression
on a real-world dataset.
Keywords: Real-coded representation, genetic algorithms, crossover bias, quotient metric space.

1 Introduction

Recently many studies on evolutionary algorithms using real-coded encoding have been done. They
include ant colony optimization [71], artificial bee colony algorithm [1, 40], evolution strategies (ES) [7],
differential evolution [13, 14, 48, 49, 55, 60, 70, 73, 86], particle swarm optimization [10, 33, 39, 47, 50],
and so on. In particular, in the field of ES, we can find many studies based on self-adaptive techniques
[8, 26, 35, 36, 37, 41, 44, 45, 46, 54, 83].

Many researchers also have concentrated on using real-valued genes in genetic algorithms (GAs),
as in [69]. It is reported that, for some problems, real-coded representation and associated techniques
outperform conventional binary representation [23, 29, 38, 53, 61, 62, 75, 84]. Several theoretical
studies of real-coded GAs have also been performed [24, 30, 42, 65, 66]. The crossover operator is one
of the most important operators in GAs and the genetic repair hypothesis [7] is introduced to explain
why crossover is useful in real-coded evolutionary algorithms.

1

Traditional crossover operators for the real-coded representation are described in [3]. The two
main families of traditional crossover operators [58] are discrete crossovers1 [68] and blend crossovers
[56]. Blend crossover operators can be distinguished into line crossovers and box crossovers. Important
variations of the last two crossover operators are the extended-line crossover and the extended-box
crossover [57].

Recently several new crossovers for the real-coded representation have been designed. Several non-
traditional crossover operators for real-coded representation are found in the recent literature. They
include SBX (simulated binary crossover) [4, 6, 15, 17, 18, 19], UNDX (unimodal normal distribution
crossover) [42, 43, 62, 61], SPX (simplex crossover) [30, 79, 80, 81], PCX (parent-centric crossover)
[5, 16], etc [27, 28, 76]. Most of them are complex and based on the specific probability distribution of
the offspring (SBX, UNDX, and PCX), self-adaptivity (SBX and UNDX), or multiple parents (UNDX
and SPX). Some of them, e.g., include the function of mutation operators. In this paper, we focus on
traditional crossover that does not consider the specific probability distribution of the offspring but
only what offspring can be generated with a probability greater than zero, given the two parents.

Pre-existing crossovers for the real-coded representation have an inherent bias toward the center
of the space. Some boundary extension techniques to reduce crossover bias have been extensively
studied [72, 77, 78]. The concept of crossover bias first appeared in [22] and it has been extensively
used in [72, 78], in which they tried to remove the bias of real-coded crossover heuristically (and
theoretically incompletely). In this paper we present the origin of this bias in geometric terms. This
bias could be potentially harmful for the search. Therefore, we design a distance naturally suited
to the glued space and study its corresponding crossover for which the bias completely disappears.
Someya and Yamamura [72] have already presented a similar idea related to gluing the opposite
boundaries of a given bounded domain. They hybridized mirroring and gluing of the search space:
after the boundaries of the search space are extended by mirroring the search space [78], they are
glued together. Their boundary-gluing idea looks similar to ours, but they simply tried to remove
the crossover bias heuristically with no theoretical base. In contrast, we provide a theoretically sound
method in which the boundaries of the search space are glued before they are extended. The fitness
landscapes on glued spaces may not preserve continuity at the boundaries of the original spaces. We
also provide a new boundary extension method of the original space that allows the continuity of
the fitness landscape on the corresponding boundary-extended glued space to be preserved. While
previous boundary extension methods [72, 77, 78] simply mirrored the given fitness landscape into
the extended domain without any theoretical basis, our boundary extension is designed to resolve the
discontinuity problem occurring when gluing the space with theoretical completeness. Furthermore,
the proposed approach is not based on the mirroring technique.

The remainder of this paper is organized as follows. In Section 2, we introduce the notion of
biased crossover and explain why traditional crossovers based on p-norms are biased. In Section 3, we
present a novel crossover defined on the glued space that is unbiased. We discuss a boundary extension
method on this glued space to make the fitness function smooth at the boundary of the domain in
Section 4. Section 5 hints at the positions of optima when they are randomly located in the domain.
Finally, we give some simulation results in Section 6 and draw conclusions in Section 7.

1It is also called dominant crossover.

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ilit

y
De

ns
ity

Domain of Offspring

(a) Parent

Uniform distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ilit

y
De

ns
ity

Domain of Offspring

(b) Offspring

Box crossover: Biased

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ilit

y
De

ns
ity

Domain of Offspring

(c) Offspring

Extended-box crossover (BLX- 1

2
[21])

Still biased

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ilit

y
De

ns
ity

Domain of Offspring

(d) Offspring

Box crossover in glued space (see Section 3)

Unbiased

Figure 1: Crossover bias in one-dimensional bounded real space

2 Crossover Bias

In this section, we formalize the notion of crossover bias and show that pre-existing crossovers for
real-coded GAs have such a bias. In the following sections, we will derive a novel crossover without
bias.

Notice that the notion of bias of a crossover operator has different definitions depending upon the
underlying representation considered. The bias toward the center of the space considered in real-coded
crossovers conceptually differs from the crossover biases on binary strings, which focus on how many
bits are passed to the offspring and from which positions, which, in turn conceptually differs from the
bias considered in Genetic Programming focusing on bloat. We introduce a geometric notion of bias
of an operator in a formal and representation-independent manner. This notion is geometric in flavor
and generalizes the intuitive notion of bias of an operator in the real-code space to any metric space,
so encompassing all combinatorial spaces as well. Let S be the search space and OP be a search
operator z = OP (p1, p2, . . . , pn) where the pi-s are the parents in S and z ∈ S is the offspring.

3

Definition 1. We say that a search operator is unbiased if, when we choose parents independently
and uniformly at random in the search space S, we obtain offspring uniformly at random in the search
space S. Formally OP is unbiased if independent and identically distributed pi-s uniformly distributed
in S imply that z = OP (p1, p2, . . . , pn) is uniformly distributed in S.

The notion of bias so defined can be understood as being the inherent preference of a search operator
for specific areas of the search space. This is an important search property of a search operator: an
evolutionary algorithm using that operator, without selection, is attracted to the areas the search
operator prefers. Arguably, also when selection is present, the operator bias acts as a background
force that makes the search keener to go toward the areas preferred by the search operator. This is
not necessarily bad if the bias is toward the optimum or an area with high-quality solutions. However,
it may negatively affect performance if the bias is toward an area of poor-quality solutions. If we
do not know the spatial distribution of the fitness of the problem, we may prefer not to have any a
priori bias of the search operator, and instead use only the bias of selection, which is informed by
the fitness of sampled solutions that constitute empirical knowledge about promising areas obtained
in the search, and which is better understood.

Now we investigate the origin of the bias. Box crossover is biased toward the center on the Euclidean
space. This is easy to verify experimentally by picking a large number of pairs (ideally infinitely many)
of random parents and generating offspring uniformly at random in the boxes identified by the pairs
of parents. In the Hamming space, the distribution of the offspring of uniform crossover tends in the
limit to be uniform on all space, whereas in the Euclidean space the distribution of the offspring tends
to be unevenly distributed on the search space and concentrates toward the center of the space. One
way to compensate, but not eliminate, such bias is using extended-line and extended-box crossovers.
Figure 1 visualizes the crossover bias in the one-dimensional real space by plotting frequency rates of
108 offspring randomly generated by each box-type crossover. As we can see, box crossover is biased
toward the center of the domain.2 We could also observe that extended-box crossover largely reduces
the bias but it is still biased toward the center.3 Another way to compensate for the bias relies on
understanding the origin of this bias. So, what is the origin of the different bias of crossover for
the Hamming space and for the Euclidean space? The answer relies on the notion of isotropy of the
underlaying metric space. Informally, a metric space is isotropic if all its points are equivalent: every
point has the same properties in terms of distance. To define formally the notion of isotropic space,
we first need to introduce the notion of isometric spaces.

Definition 2. Two metric spaces M = (S, d) and M ′ = (S′, d′) are isometric if there exists a bijective
function g : S → S ′ that is distance-preserving: so ∀x, y ∈ S : d(x, y) = d′(g(x), g(y)). The mapping g
is called isometry.

Definition 3. A metric space M = (S, d) is isotropic if for any two points x, y ∈ S, there exists an
isometry g from M to itself such that g(x) = y.

The Euclidean space, or, more precisely, a bounded hyper-rectangular subspace of the Euclidean
space, is not isotropic, because the boundaries introduce an asymmetry on the types of points: the

2Appendix A provides the distribution function of offspring for the box crossover and thus formally derives the bias
of this crossover.

3We can find consistent results with this in [72].

4

space has boundaries and has a center; hence, each point differs from each other, depending on how
far from the boundaries and the center it is. Each point has a special status, hence the space is
not isotropic. Conversely, in the Hamming space, each point is the center4 and simultaneously is a
boundary point (when we look at it as a subspace of a bounded vector space on [0, 1]n), so each point
has the same status and the Hamming space is therefore isotropic. Let us now consider a new metric
space obtained by gluing the opposite extremities of the Euclidean hyper-rectangle; in the case of a
simple two-dimensional rectangle the space we obtain is the surface of a torus. Notice that the metric
associated with this space is no longer the Euclidean metric, because points that were at opposite sides
of the rectangle are close to each other in the new space. However, the metric of the glued space can
be derived from the Euclidean metric. We present its formal derivation in Section 3. The new space is
isotropic, because the boundaries, which are the origin of the inhomogeneity of types of points in the
Euclidean space, are no longer there. Intuitively, the crossover based on this new space is unbiased
because there cannot be bias toward the center, given that every point is the center of the new space,
as in the case of the Hamming space. It is therefore the isotropy of the space that causes the bias of
the search operator to disappear. We present this idea formally in the following.

Definition 4. A distance-based operator is any search operator whose (conditional) probability dis-
tribution depends only on the distances among parents and offspring.

For example, a search operator OP of arity two is distance-based if there exists a function f such
that its conditional distribution probability Pr{Z = z|P1 = p1, P2 = p2} = f(d(p1, p2), d(p1, z), d(p2, z)).

Theorem 1. Any distance-based operator OP of arity two based on an isotropic metric space M is
unbiased.

Proof. Let OP have a conditional probability distribution Pr{Z = z|P1 = p1, P2 = p2}. The proba-
bility of obtaining z ∈ S is:

Pr{z} =
∑

p1,p2∈S

Pr{p1, p2} · Pr{Z = z|P1 = p1, P2 = p2}. (1)

OP is unbiased if: Pr{p1, p2} = 1
|S|2 implies Pr{z} = 1

|S| for all z ∈ S. So,

∀z1, z2 ∈ S :
∑

p1,p2∈S

1

|S|2
· Pr{Z1 = z1|P1 = p1, P2 = p2} =

∑

p1,p2∈S

1

|S|2
·Pr{Z2 = z2|P1 = p1, P2 = p2}.

(2)
Simplifying:

∀z1, z2 ∈ S :
∑

p1,p2∈S

Pr{Z1 = z1|P1 = p1, P2 = p2} =
∑

p1,p2∈S

Pr{Z2 = z2|P1 = p1, P2 = p2}. (3)

So, to prove that OP is unbiased we have to prove that the summations in (3) are equal, given the
hypothesis that M is an isotropic space and OP is a distance-based operator. Since M is isotropic,

4We mean the center of the space X by argminx∈X

P

y∈X d(x, y) in the case of discrete space X or

argminx∈X

R

y∈X
d(x, y) in the case of continuous space X.

5

(l , l)1 (u , l)1

(u , u)1(l , u)1

2 2

22

Figure 2: Glued space on R
2. This can be considered as a quotient space.

there exists an isometry g such that g(z1) = z2. Since g is bijective and the summation is on all pairs
of p1, p2 ∈ S, we have

∑

p1,p2∈S

Pr{Z2 = z2|P1 = p1, P2 = p2} =
∑

p1,p2∈S

Pr{Z2 = g(z1)|P1 = g(p1), P2 = g(p2)}. (4)

Since OP is distance-based, there exists a function f such that ∀p1, p2 : Pr{Z2 = g(z1)|P1 =
g(p1), P2 = g(p2)} = f(d(g(p1), g(p2)), d(g(p1), g(z1)), d(g(p2), g(z1))). Since g is an isometry, the
previous expression equals: f(d(p1, p2), d(p1, z1), d(p2, z1)) = Pr{Z1 = z1|P1 = p1, P2 = p2}. This
implies that in (3) each summand in the left-hand summation equals a summand in the right-hand
summation and vice versa. So the two summations in (3) are equal.

Theorem 1 can be generalized to all distance-based operators of any arity. In practice, all solution
spaces used in search algorithms for real-coded problems are bounded, so all these spaces would give
rise to biased crossovers. In the next section, we present a novel crossover for glued spaces, which is
bias-free, in a formal and general setting.

3 Crossover in Glued Space

Let the solution space X be {x = (x1, x2, . . . , xn) ∈ R
n : li ≤ xi < ui for each i} where l =

(l1, l2, . . . , ln) is a lower bound and u = (u1, u2, . . . , un) is an upper bound (i.e., the boundaries of
the hyper-box that define the domain of the function to optimize). If we apply traditional crossovers
on this bounded domain, offspring have a bias toward the center of the space. As discussed in the
previous section, one of the methods to eliminate this bias is gluing the boundaries by identifying u i

to li for each i, because the glued space obtained is isotropic. Figure 2 shows this glued space for the
R

2 case.
Formally, the glued space is a quotient space. To construct a quotient space which gives an effect

equivalent to gluing, the following equivalence relation on R
n is defined:

Definition 5. x ∼ y if and only if for each i = 1, 2, . . . , n, there exists ai ∈ Z such that xi − yi =
ai(ui − li), where Z is the set of all integers.

Theorem 2. The relation ∼ is an equivalence relation.

6

x

Figure 3: Equivalent class of x on R
2. The shadowed rectangle represents the given bounded domain

X. Each rectangle has the same size as X.

Proof. Assume that x, y, and z ∈ R
n.

(i) Reflexive: xi − xi = 0(ui − li) for each i = 1, 2, . . . , n. Since 0 ∈ Z, x ∼ x.
(ii) Symmetric: If x ∼ y, for each i = 1, 2, . . . , n, there exists ai ∈ Z such that xi − yi = ai(ui − li).
Then, yi − xi = −(xi − yi) = −ai|ui − li| and −ai ∈ Z. Hence, y ∼ x.
(iii) Transitive: If x ∼ y and y ∼ z, for each i = 1, 2, . . . , n, there exists ai ∈ Z such that xi − yi =
ai(ui−li) and bi ∈ Z such that yi−zi = bi(ui−li). xi−zi = (xi−yi)+(yi−zi) = ai(ui−li)+bi(ui−li) =
(ai + bi)(ui − li). ai + bi ∈ Z since ai and bi ∈ Z. So, x ∼ z.

Let 〈x〉 be the equivalence class of x ∈ R
n. In Figure 3, points indicated by bullets are in the same

equivalent class on R
2.

X can be considered as a quotient set R
n/ ∼ by considering x ∈ X as 〈x〉 ∈ R

n/ ∼. However, this
gives another topology to the same set. We need to define a distance tailored to this new topology.
We define a new distance on R

n/ ∼ using the distance on R
n. Let x, y ∈ X.

Definition 6. Let x, y ∈ X. If d is a metric for R
n,

dq(x, y) := min
x′∈〈x〉,y′∈〈y〉

d(x′, y′).

Theorem 3. If the metric d is induced by a norm, dq is a metric for X.

Proof. Assume that x, y, and z ∈ X.
(i) Positiveness: dq(x, y) ≥ 0 by the definition of dq. If x = y, x ∈ 〈y〉. Then, 0 ≤ dq(x, y) ≤ d(x, x) = 0
and hence dq(x, y) = 0. Now assume that dq(x, y) = 0. There exist x′ ∈ 〈x〉 and y′ ∈ 〈y〉 such that
dq(x, y) = d(x′, y′) = 0. Since d is a metric, x′ = y′. So, 〈x〉 = 〈y〉. Therefore x = y.
(ii) Symmetry: dq(x, y) = d(x′, y′) for some x′ ∈ 〈x〉 and y′ ∈ 〈y〉. Then, dq(x, y) = d(x′, y′) =
d(y′, x′) ≥ dq(y, x). Similarly, dq(y, x) ≥ dq(x, y).
(iii) Triangular inequality: dq(x, y) + dq(y, z) = d(x′, y′) + d(y′′, z′′) for some x′ ∈ 〈x〉, y′, y′′ ∈ 〈y〉, and
z′′ ∈ 〈z〉. Since d is induced by a norm, d(y ′′, z′′) = d(y′′ − y′′ + y′, z′′ − y′′ + y′) = d(y′, z′′ − y′′ + y′).

7

Since y′i − y′′i = ki|ui − li| for each i, z′′ − y′′ + y′ ∈ 〈z〉. Hence,

dq(x, y) + dq(y, z) = d(x′, y′) + d(y′′, z′′) (5)

= d(x′, y′) + d(y′, z′′ − y′′ + y′) (6)

≥ d(x′, z′′ − y′′ + y′) (7)

≥ dq(x, y). (8)

To calculate the distance between two points x and y using its definition directly, we should
consider the distance of any possible pair of points in the classes 〈x〉 and 〈y〉 and return the minimum.
However, this is impossible in practice, as there are an infinite number of these pairs. Fortunately,
we have a practical way to calculate the distance dq(x, y) using Lemma 1 below, which requires the
following definitions to be stated.

Let x, y ∈ X. For each i, let Ti(y) = {yi, yi +(ui− li), yi−(ui− li)} and Mi(y) = argmin
m∈Ti(y)

{|xi −m|}.

Mi(y) is a set because the number of maximizers can be more than one. Let M(y) = {(y ′
1, y

′
2, . . . , y

′
n) ∈

R
n : y′i ∈Mi(y) for each i}.

Lemma 1. Let x and y ∈ X. If a metric d is induced by p-norm and y∗ ∈M(y), d(x′, y′) ≥ d(x, y∗)
for all x′ ∈ 〈x〉 and y′ ∈ 〈y〉, i.e., dq is well-defined and dq(x, y) = d(x, y∗). Moreover, M(y) = {y′ ∈
〈y〉 : dq(x, y) = d(x, y′)}.

Proof. d(x′, y′) = (
∑n

i=1 |x
′
i − y′i|

p)1/p.
For each i, |x′

i − y′i| = |x
′
i − y′i + xi − xi + yi − yi| = |(xi − yi) + (x′

i − xi) + (yi − y′i)|. Since x ∼ x′

and y ∼ y′, (x′
i− xi) + (yi− y′i) = ki(ui− li) for some ki ∈ Z. Then, |x′

i− y′i| = |(xi− yi) + ki(ui− li)|.
If ki ≥ 2, |(xi − yi) + ki(ui − li)| is positive since xi − yi cannot be greater than ui − li. So,

|x′
i− y′i| = |(xi− yi) + ki(ui− li)| > |(xi− yi) + (ui− li)| = |xi−{yi +(ui− li)}| ≥ |xi− y∗i |. Similarly,

in the case that ki ≤ −2, |(xi − yi) + ki(ui − li)| is negative. Hence, |x′
i − y′i| = |(xi − yi) + ki(ui −

li)| > |(xi − yi) − (ui − li)| = |xi − {yi − (ui − li)}| ≥ |xi − y∗i |. Finally, if ki = 0, 1, or −1, then
|x′

i − y′i| = |(xi − yi) + ki(ui − li)| ≥ |xi − y∗i | by the definition of M(y).
So, d(x′, y′) = {

∑n
i=1 |x

′
i − y′i|

p}1/p ≥ {
∑n

i=1 |xi − y∗i |
p}1/p = d(x, y∗).

Now, we will show that M(y) = {y′ ∈ 〈y〉 : dq(x, y) = d(x, y′)}. Suppose that y′ ∈ 〈y〉 satisfies
dq(x, y) = d(x, y′) but y′ /∈ M(y). Then, there exists a nonempty index set J = {j : |xj − y′j| 6=
|xj−y∗j |}. For each j ∈ J , |xj−y′j| = |xj−yj−kj(uj−lj)|. If kj ≥ 2 or kj ≤ −2, then |xj−y′j| > |xj−y∗j |
by the same way as the above. If kj = 0, 1, or −1, then |xj − y′j| ≥ |xj − y∗j |. By the assumption,

|xj−y′j| 6= |xj−y∗j | and hence |xj−y′j| > |xj−y∗j |. Therefore, d(x, y′) = (
∑n

i=1 |xi−y′i|
p)1/p > d(x, y∗)

and it is a contradiction.

According to Lemma 1, to calculate dq(x, y), we need only to find y∗ by choosing the minimizer
among three elements from Ti(y) for each coordinate and get the Euclidean distance between x and
y∗. The segment between x and y on the quotient space is induced by the segment between x and y∗

on R
n, as shown as follows for the class of p-norms.

8

Find the closest point to
among equivalent points to

Choose a random point
in the line segment

Return as an offspring

Get parents and

lies in the given bounded domain
Find the equivalent point to such that

PSfrag replacements

x

x

y

y

ŷ

z′

z′
[x; ŷ]d

z
z

z

Figure 4: Flowchart of the proposed unbiased crossover

Theorem 4. If d is induced by the p-norm, the segment [x; y]dq
is the set

⋃

ŷ∈M(y)

{z ∈ X : z ∼ z′ for some z′ ∈ [x; ŷ]d},

where [u; v]d = {w ∈ X : d(u,w) + d(w, v) = d(u, v)}.

Proof. Let y∗ ∈M(y) and z ∼ z′ for some z′ ∈ [x; y∗]d. Then, dq(x, z)+dq(z, y) ≤ d(x, z′)+d(z′, y∗) =
d(x, y∗) = dq(x, y∗). Since dq(x, z) + dq(z, y) ≥ dq(z, y) by triangular property, dq(x, z) + dq(z, y) =
dq(z, y). So, z ∈ [x; y]dq

.
Now, let z ∈ [x; y]dq

. There exist z′ such that dq(x, z) = d(x, z′) and y′ such that dq(z, y) = d(z, y′)
in R

n by Lemma 1. Let y∗ := y′ − z + z′. Then, y∗ ∼ y′ ∼ y and dq(x, y) = dq(x, z) + dq(z, y) =
d(x, z′) + d(z, y′) = d(x, z′) + d(z′, y′ − z + z′) = d(x, z′) + d(z′, y∗) ≥ d(x, y∗) since d is a metric. By
the definition of dq, dq(x, y) ≤ d(x, y∗) is true and hence dq(x, y) = d(x, y∗). This implies y∗ ∈ M(y)
and d(x, z′) + d(z′, y∗) = d(x, y∗).

Theorem 4 allows us to construct segments in the glued space starting from corresponding segments
of the original space. This, in turns, allows us to implement unbiased crossovers on the glued space
from the corresponding biased crossovers on the original space. Figures 4 and 5 show the flowchart
and the pseudo-code of the unbiased crossover on the glued space, respectively. It takes linear time
in the size of the vector. In Figure 6, (a) shows the segment on Euclidean space and (b) shows the
segment on glued space (quotient space). Segments may cross the boundaries in the quotient space.

9

UX(x, y)
{

for i← 1 to n
Ti ← {yi, yi + (ui − li), yi − (ui − li)};
Mi ← argminm∈Ti

|xi −m|;
ŷi ← a random number in Mi;

z′ ← a random vector in [x; ŷ]d;
for i← 1 to n

find zi ∈ [li, ui] by adding some c · (ui − li) to z′i, where c ∈ {−1, 0, 1};
return z = (z1, z2, . . . , zn);

}

Figure 5: Pseudo-code of the proposed unbiased crossover

PSfrag replacements
x

y

(a) [x; y]d2

PSfrag replacements x

yŷ

(b) [x; y]dq

Figure 6: Line segments on Euclidean space and glued space

4 Boundary Extension in Glued Space

Whereas using the quotient space makes the corresponding crossover operator unbiased, at the same
time it causes an issue. In the quotient space, ui is identified to li, so corresponding points on opposite
boundaries are considered equivalent. However, this creates an ambiguity about the fitness of the
points on the glued part of the space because each of these points inherit two fitness values from the
original space, one from its fitness on the boundary ui and the other from its fitness from the boundary
li. So, its fitness is not clearly defined. This issue seems to be easily resolvable using a criterion to
disambiguate the fitness on the gluing threshold, for example, by assigning always the fitness of the
points from the lower boundary. However, doing this introduces discontinuity in the fitness landscape
on the gluing threshold. We show that this discontinuity can be completely removed by appropriately
extending the boundaries of the space as follows.

First, let us consider the function defined on a one-dimensional bounded domain. Let X be
{x ∈ R : l ≤ x ≤ u}. For a small real number ε ∈ R,

fε(x) :=

{

f(x) if l ≤ x ≤ u
x− u

ε
f(l) +

u + ε− x

ε
f(u) if u < x < u + ε.

The function fε connects f(u) and f(u + ε) = f(l) linearly on [u, u + ε) and it has the property that
fε|X = f . That is, fε is a continuous extension of f on [l, u + ε). Figure 7 shows this idea. It looks
quite natural. We can also apply a similar method to higher dimensional real spaces using a recurrence

10

l u
x

Fitness

(a) f(x) on [l, u]
l u

x

Fitness

u+ε

(b) fε(x) on [l, u + ε)

Figure 7: Boundary extension in one-dimensional bounded domain

relation. In the following, we first consider an analogous boundary extension for a two-dimensional
bounded domain and then we tell how it can be generalized to the n-dimensional case.

Let X be {(x1, x2) ∈ R
2 : l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2}. If x ∈ X, we just take the fitness value

of f(x). However, if x1 > u1 or x2 > u2, we have to define the fitness value at that point. There
are two natural candidate functions we can consider to obtain a continuous extension of f(x) in the
bi-dimensional case, as follows. In the case that l1 ≤ x1 < u1 + ε1 and l2 ≤ x2 ≤ u2,

f1(x1, x2) :=

f(x1, x2) if l1 ≤ x1 ≤ u1
x1 − u1

ε1
f(l1, x2) +

u1 + ε1 − x1

ε1
f(u1, x2) if u1 < x1 < u1 + ε1.

In the case that l1 ≤ x1 ≤ u1 and l2 ≤ x2 < u2 + ε2,

f2(x1, x2) :=

f(x1, x2) if l2 ≤ x2 ≤ u2
x2 − u2

ε2
f(x1, l2) +

u2 + ε2 − x2

ε2
f(x1, u2) if u2 < x2 < u2 + ε2.

If l1 ≤ x1 < u1 + ε1 and l2 ≤ x2 < u2 + ε2, fε may be defined in two ways. One consists of applying f1

first and then applying f2, and the other consists of applying f2 first and then applying f1. That is,

f1
ε (x1, x2) :=

f2(x1, x2) if l1 ≤ x1 ≤ u1
x1 − u1

ε1
f2(l1, x2) +

u1 + ε1 − x1

ε1
f2(u1, x2) if u1 < x1 < u1 + ε1

or

f2
ε (x1, x2) :=

f1(x1, x2) if l2 ≤ x2 ≤ u2
x2 − u2

ε2
f1(x1, l2) +

u2 + ε2 − x2

ε2
f1(x1, u2) if u2 < x2 < u2 + ε2.

The following theorem shows that both methods give rise to the same extension.

Theorem 5. f 1
ε (x1, x2) = f2

ε (x1, x2) on [l1, u1 + ε1)× [l2, u2 + ε2).

Proof. We consider the following four sub-domains that partition the extended domain [l1, u1 + ε1)×
[l2, u2 + ε2).
Case 1: If l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2,

f1
ε (x1, x2) = f2

ε (x1, x2) = f(x1, x2). (9)

11

Case 2: If l1 ≤ x1 ≤ u1 and u2 < x2 < u2 + ε2,

f1
ε (x1, x2) = f2

ε (x1, x2) =
x2 − u2

ε2
f(x1, l2) +

u2 + ε2 − x2

ε2
f(x1, u2). (10)

Case 3: If u1 < x1 < u1 + ε1 and l2 ≤ x2 ≤ u2,

f1
ε (x1, x2) = f2

ε (x1, x2) =
x1 − u1

ε1
f(l1, x2) +

u1 + ε1 − x1

ε1
f(u1, x2). (11)

Case 4: If u1 < x1 < u1 + ε1 and u2 < x2 < u2 + ε2,

f1
ε (x1, x2) =

x1 − u1

ε1

(

x2 − u2

ε2
f(l1, l2) +

u2 + ε2 − x2

ε2
f(l1, u2)

)

+
u1 + ε1 − x1

ε1

(

x2 − u2

ε2
f(u1, l2) +

u2 + ε2 − x2

ε2
f(u1, u2)

)

. (12)

f2
ε (x1, x2) =

x2 − u2

ε2

(

x1 − u1

ε1
f(l1, l2) +

u1 + ε1 − x1

ε1
f(u1, l2)

)

+
u2 + ε2 − x2

ε2

(

x1 − u1

ε1
f(l1, u2) +

u1 + ε1 − x1

ε1
f(u1, u2)

)

. (13)

⇒ f1
ε (x1, x2) = f2

ε (x1, x2).

For a general n-dimensional space, we proceed in a similar way. We define fk by induction as
follows.

• k = 0: We set f0 to f .

• 1 ≤ k ≤ n: If li ≤ xi < ui + εi for 1 ≤ i ≤ k and li ≤ xi ≤ ui for k + 1 ≤ i ≤ n,

fk(x1, x2, . . . , xn) :=

fk−1(x1, x2, . . . , xn) if lk ≤ xk ≤ uk

xk − uk

εk
fk−1(x1, . . . , xk−1, lk, xk+1, . . . , xn)

+
uk + εk − xk

εk
fk−1(x1, . . . , xk−1, uk, xk+1, . . . , xn)

if uk < xk < uk + εk.

Then, every fk is well-defined, and we choose fn as the final continuous extension, i.e., fε := fn. Thus,
for any function and any dimension of its domain, we can always get a well-defined extended function
that maintains its continuity on the boundary-extended quotient space.

12

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

(a) n = 5

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

(b) n = 10

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

(c) n = 20

Figure 8: Probability density function f(t) of d(X, ∂D) according to dimension

5 Distribution of Positions of Randomly-Located Optima

Before presenting experiments, we present in this section a rather counter-intuitive theoretical result
that may motivate further the use of bias-free search operators in high-dimensional spaces. In partic-
ular, we investigate the distribution of the positions of the optima of a class of functions with respect
to its distance from the boundary. In these functions, we assume the optima to be located uniformly
at random in each uni-dimensional projection of the domain of the function. This result holds for all
Minkowski distances.

Let n be the dimension of the domain space D = [−1, 1]n. We assume that X = (X1, X2, . . . , Xn)
is a random variable to indicate the position of the optimum, and Xis are independent and identically-
distributed random variables such that Xi ∼ U([−1, 1]). Then, the cumulative distribution function
for d(X, ∂D), any Minkowski distance from the boundary, is in the following.

Pr(d(X, ∂D) ≤ t) = Pr(max
1≤i≤n

|Xi| ≥ 1− t) (14)

= 1− Pr(max
1≤i≤n

|Xi| < 1− t) (15)

= 1−

n
∏

i=1

Pr(|Xi| < 1− t) (16)

= 1− (1− t)n, 0 ≤ t ≤ 1. (17)

The probability density function f(t) of d(X, ∂D) becomes

f(t) =
d

dt
Pr(d(X, ∂D) ≤ t) (18)

= n(1− t)n−1. (19)

Figure 8 shows the probability density functions f(t)s of d(X, ∂D) for the dimensions 5, 10, and
20. We can approximate the probability that the optimum is in the neighborhood of the center or
the boundary of the domain, as follows. We know that Bd1(x; r) ⊆ Bd2(x; r) ⊆ Bd∞(x; r), where
Bd(x; r) = {z ∈ D : d(x, z) ≤ r}. Then, the probabilities of the optimum being in Bd(0; ε) are always
less than or equal to that being in Bd∞(0; ε). The latter becomes exactly Pr(d(X, ∂D) ≥ 1 − ε) =
1− Pr(d(X, ∂D) < 1− ε) = εn. We can also easily obtain that the probability of the optimum being

13

in the ε-neighborhood of the boundary is Pr(d(X, ∂D) ≤ ε) = 1− (1− ε)n. For some dimensions and
a small ε = 0.002, we can get the probabilities as follows:

where the probability of the optimum being n = 5 n = 10 n = 20 n = 2500
the neighborhood of the center ≤ 10−13 ≤ 10−26 ≤ 10−53 ≤ 10−6749

the neighborhood of the boundary 0.01 0.02 0.04 0.99

We can see that the probabilities of the optimum being in the neighborhood of the center are nearly
0, but the probabilities being in the neighborhood of the boundary increase as the dimension, and
surprisingly, it becomes very close to 1 for sufficiently large dimensions.

6 Simulation

We conducted experiments on well-known problems of function optimization [25, 31] and a nonlinear
regression problem on a real-world dataset. The genetic framework in our experiments is based on
Tsutsui and Goldberg [78], a recent study on real-coded GAs. We used the same test functions for
our experiments.5

6.1 Test Functions and Experimental Methodology

Table 1 shows the test functions we used for the experiments. FSphere and FRastrigin have the optima
at the center of the domain. FM-Sphere and FM-Rastrigin were modified so that their optima are located
just at the boundary of the domain. F3 has the optimum at the boundary of the domain and FSchwefel

has it near the boundary. We used the resolution value ∆ to determine whether the optimal solution
was found as in [78]. We defined the successful detection of the solution as being within ∆ range
of the actual optimum point. If the actual optimum point is (x∗

1, x
∗
2, . . . , x

∗
n), any solution in the set

{(x1, x2, . . . , xn) : xi ∈ [x∗
i −∆/2, x∗

i + ∆/2]} is considered as the optimum.
We mainly followed the genetic framework by Tsutsui and Goldberg [78]. Its basic evolutionary

model is quite similar to that of CHC [21] and (µ + λ)-ES [7]. Figure 9 depicts its flowchart. Let the
population size be N . A collection of N/2 pairs is randomly composed, and crossover and mutation
are applied to each pair, generating N/2 offspring. Parents and newly generated offspring are ranked
and the best N individuals among them are selected for the population in the next generation. The
population size was 400 for all experiments, as in [78]. If the population has no change during
n× r × (1.0 − r) generations, it is reinitialized except for the best individual. Here, r is a divergence
rate and we set it to 0.25 as in [21]. The proposed GA terminates when it finds the global optimum.

For crossover, we used various crossover operators: extended-box crossover, box crossover, quotient
box crossover, and boundary-extended quotient box crossover. We used BLX-α (α = 1/2) of [21] as
extended-box crossover. We used the same extension rate for boundary extension. We set εi to
0.1× (ui − li).

6

After crossover, we either mutate the offspring, as in [78], or do not. Mutation was applied only
to show the potential of the proposed methodology comparing it with the work of [78]. We used two

5A number of studies have been based on real-coded representation. We adopted the work of Tsutsui and Goldberg
[78], who presented an idea called boundary extension, the most similar to ours. We used the same experimental setting
as theirs, to fairly compare with the proposed methodology.

6In our preliminary test, the size of the boundary extension seldom affected the performance.

14

Table 1: Test Functions

Function n Range of xi: [li, ui] Optimum ∆

F3 =

n
∑

i=1

bxic 5 [−5.12, 5.11] xi ∈ [−5.12,−5.0) for each i 0.01

FSchwefel =

n
∑

i=1

−xi sin(
√

|xi|) 10 [−512, 511] (420.968746, . . . , 420.968746) 1.0

FM-Sphere =

n
∑

i=1

xi
2 20 [0.0, 5.11] (0, 0, . . . , 0) 0.01

FSphere =

n
∑

i=1

xi
2 20 [−5.12, 5.11] (0, 0, . . . , 0) 0.01

FM-Rastrigin =

n
∑

i=1

(

xi
2 − 10 cos(2πxi) + 10

)

20 [0.0, 5.11] (0, 0, . . . , 0) 0.01

FRastrigin =

n
∑

i=1

(

xi
2 − 10 cos(2πxi) + 10

)

20 [−5.12, 5.11] (0, 0, . . . , 0) 0.01

[Function graphs for 2-dimensional cases, i.e., n = 2]

-5
-2.5

0
2.5

5 -5

-2.5

0

2.5

5

-10
-5
0
5

10

-5
-2.5

0
2.5

5

-500
-250

0
250

500-500

-250

0

250

500

-500
0

500

-500
-250

0
250

500

0

2

4
0

2

4

0

20

40

0

2

4

-5
-2.5

0
2.5

5 -5

-2.5

0

2.5

5

0

20

40

-5
-2.5

0
2.5

5

0

2

4
0

2

4

0
20
40
60
80

0

2

4

-5
-2.5

0
2.5

5 -5

-2.5

0

2.5

5

0
20
40
60

-5
-2.5

0
2.5

5

[Relative position of the optimum for each function]

F3 F F FSchwefel M−Sphere Sphere M−RastriginF RastriginF

different operators when we applied mutation; Type I and Type II mutation. They are all quite simple
mutation operators, originating from [6] and [78]. Both mutations are consecutively applied all the
time; Type II mutation after Type I mutation. Figure 10 reports these mutations. Type I mutation
is a simple dynamic Gaussian mutation inspired from [6]. It is designed to provide traditional box
crossover with a similar effect to extended-box crossover. It depends on the distance between parents
and, as population converges, the strength of Type I mutation approaches zero. Type II mutation is
a simple static Gaussian mutation, the same as in [78]. Different mutation rates were applied for each
crossover type.7 From our preliminary test for tuning mutation rates, we chose the best performed one
for each type of crossover. Table 2 shows the best mutation rates for two crossover types. Mutation

7In our preliminary test, the performance of crossovers largely depended on the used mutation rates. We tried to use
the best performed mutation rates according to crossover type to make a fair comparison.

15

Start

Selection

Mutation

Replacement

Initialize population

Reinitialize population?

End

Yes

Yes

No

No

Crossover

Global optimum is found?

(We will change only crossover and mutation for comparison.)

Figure 9: Flowchart of CHC

Table 2: Mutation Rates for Each Type of Crossover

Crossover type Type I mutation Type II mutation
Extended-box crossover 0 0.05/k

Box crossovers 0.50/k 0.10/k

k = 1 + bnumberOfGenerations/100c.

rates decrease as the number of generations increases.

6.2 Results

We present results for the number of function evaluations employed to find the optimum. Table 3
shows the results from 30 runs. As a measure of performance, we used the percentage gap 100 ×
(output − best)/best,8 where best means the best value obtained in our experiments and previous
literature [78] for the instance. The smaller the value is, the smaller the difference from the optimum
is, i.e., the smaller, the better.

On the test functions whose optima are located at the boundary of the domain (F3, FM-Sphere, and
FM-Rastrigin), boundary-extended quotient box crossover was overall better than any other crossover
- the results of [78], extended-box crossover, and traditional box crossover. Overall, quotient box

8The percentage gap is a well-known measure of performance in the field of operations research, e.g., [11, 67].

16

// x and y are parents.
TypeI-Mutation(x, y, z, p)
{

for i← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, |xi − yi|);
return z;

}

TypeII-Mutation(z, p)
{

for i← 1 to n
if a random number from [0, 1] is less than mutation rate p

zi ← zi + N(0, (ui − li)/2);
return z;

}

Figure 10: Used mutation operators

Table 3: Number of Function Evaluations to Find the Optimum

Function F3 FSchwefel FM-Sphere FSphere FM-Rastrigin FRastrigin Total
Crossover Ave(σ√

n
) Ave(σ√

n
) Ave(σ√

n
) Ave(σ√

n
) Ave(σ√

n
) Ave(σ√

n
) ave

Best results from [78] 6520.6 32243.0 32094.9 37113.6 129488.9 101852.2
(150.5) (1347.1) (113.1) (189.4) (2306.0) (3027.8)

%-gap 423.0% 7.6% 0.0% 0.0% 345.4% 37.1% 135.5%

Extended-box crossover 8320.0 45980.0 57073.3 40166.7 303866.7 107513.3
(BLX-1/2) (176.8) (1141.4) (167.2) (151.2) (2138.9) (4662.3)

%-gap 567.4% 53.5% 77.8% 8.2% 945.2% 44.8% 282.8%

Box crossover 2986.7 74213.3 40833.3 43693.3 50486.7 74266.7
(117.0) (1766.5) (129.3) (378.6) (417.1) (1483.8)

%-gap 139.6% 147.8% 27.2% 17.7% 73.7% 0.0 67.7%
Quotient box crossover 2866.7 29953.3 40306.7 44333.3 39906.7 81413.3

(120.9) (263.3) (154.3) (347.6) (208.0) (2510.4)
%-gap 129.9% 0.0% 25.6% 19.5% 37.3% 9.6% 37.0%

Boundary-extended 1246.7 32886.7 34326.7 45513.3 29073.3 88426.7
quotient box crossover (57.9) (514.0) (143.4) (426.2) (213.8) (8181.7)

%-gap 0.0% 9.8% 7.0% 22.6% 0.0% 19.1% 9.8%

p-value in ANOVA test† 8.31e−75 3.75e−44 2.00e−116 4.39e−20 7.00e−142 2.12e−8

Results from n = 30 runs. The smaller, the better. (Ave: average, σ: standard deviation.)
%-gap means the percentage difference-ratio 100 × (output − best result)/best result.
† From one-way ANOVA test among the results of four types of box crossovers.
Small p-values (e.g., less than 0.01) indicate the results of tested crossovers have different averages.

crossover performed better than traditional crossovers, and boundary-extended quotient box crossover
performed better than quotient box crossover for those functions. To make sure our experimental
results are statistically significant, we performed one-way ANOVA test among the results of four
types of box crossovers on each function. All the p-values from ANOVA tests are very small (much
less than 0.01). That is, the results of tested crossovers have different averages (see the last row of

17

Table 4: Qualities of Boundary-extended Quotient Box Xover on FSchwefel w/ Different Extension Rates

Extension rate εi 0.025 ×(ui − li) 0.05 ×(ui − li) 0.1 ×(ui − li) 0.2 ×(ui − li) 0.4 ×(ui − li)
of evaluations: Ave(σ/

√
n) 30333.3 31320.0 32886.7 38460.0 117186.6

(316.4) (369.7) (514.0) (898.8) (8845.8)
Extended volume / original volume 1.02510 ≈ 1.3 1.0510 ≈ 1.6 1.110 ≈ 2.6 1.210 ≈ 6.2 1.410 ≈ 28.9

Results from n = 30 runs. The smaller, the better. (Ave: average, σ: standard deviation.)

Table 3).
Quotient box crossover performed the best on the test function FSchwefel whose optimum is located

near the boundary of the domain. Quotient box crossover and boundary-extended quotient box
crossover were better than traditional crossovers for that function. However, boundary-extended box
crossover was worse than quotient box crossover. This seems to be caused by the boundary extension
having little influence since the optimum is not at the boundary of the domain. This phenomenon
arises from the boundary extension increasing the size of the search domain. Table 4 shows how the
solution quality of boundary-extended quotient box crossover on the function FSchwefel changes for
different extension rates. As mentioned above, extension rate hardly affected performance in most
cases. However, in the case of FSchwefel, as the extension rate is smaller, we could obtain better
performance.

We also present the results of reference tests without crossover or mutation. We conducted ad-
ditional experiments to examine the impact of crossover bias on performance and the interaction
between crossover and mutation. They include GAs without crossover and those without mutation.
In the GAs only with mutation, we used Type II mutation of Figure 10 and five different mutation
rates that decrease according to generations. Table 5 shows the results from 30 runs. As a measure of
performance for these tests, we used the function values of the best solutions after the fixed number of
function evaluations, because they rarely found the optimum. To test function F3 fairly, we terminated
the genetic search after exactly 2,000 function evaluations. For the tests of the other functions, we
used exactly 50,000 function evaluations.

On the tests without crossover, we could obtain quite good qualities, but in most cases, improved
results were obtained when we combine crossover together with mutation, though the results on
FRastrigin always became worse. On the tests without mutation, we could check that the crossover bias
of traditional crossovers largely affects their performance. When the optimum is located at the center
of the domain, traditional box crossover could find better solutions than quotient box crossover and
its boundary-extended version. However, when the optimum is located at or near the boundary of the
domain, these operators performed quite poorly. In the latter case, since quotient box crossover has
no crossover bias toward the center, it performed better than traditional box crossover. Boundary-
extended quotient box crossover further improved on it. In summary, only when the optimum is
located at the center of the domain, traditional box crossover performed best as we expected from its
crossover bias.

We conducted additional experiments on eight additional test functions chosen from [74]. The
additional functions are shown in the top of Table 6. The first four functions (Shifted Sphere, Shifted
Schwefel, Shifted Rotated Elliptic, and Shifted Schwefel2) are unimodal. The others (Shifted Rosen-
brock, Shifted Rotated Griewank, Shifted Rastrigin, and Shifted Rotated Weierstrass) are multimodal.
All the functions have the optima near the middle of the center and the boundary of the domain. These

18

Table 5: Results of Reference Tests without Crossover or Mutation

Function F3 FSchwefel FM-Sphere FSphere FM-Rastrigin FRastrigin

Crossover Type Ave(σ√
n

) Ave(σ√
n

) Ave(σ√
n

) Ave(σ√
n

) Ave(σ√
n

) Ave(σ√
n

)

Function value of the optimum −30.00 −4189.83 0.00 0.00 0.00 0.00

Mutation only rate 0.05/k −22.72 −4164.74 0.69 0.74 19.46 19.17
(0.21) (2.63) (0.04) (0.04) (0.55) (0.53)

rate 0.10/k −23.32 −4174.86 0.50 0.73 17.75 18.61
(0.20) (1.66) (0.03) (0.04) (0.48) (0.51)

rate 0.20/k −24.70 −4175.23 0.64 1.24 20.56 25.44
(0.20) (1.25) (0.03) (0.05) (0.59) (0.56)

rate 0.50/k −25.37 −4148.51 2.04 4.57 39.75 51.46
(0.15) (2.59) (0.06) (0.15) (0.84) (1.00)

rate 1.00/k −24.64 −3999.54 6.34 12.43 73.35 90.36
(0.17) (11.06) (0.21) (0.36) (1.19) (1.11)

Extended-box crossover w/o mutation −23.00 −4166.14 0.00 0.00 22.93 26.43
(BLX-1/2) (0.18) (7.92) (0.00) (0.00) (0.52) (2.27)

w/ mutation −24.63 −4186.00 0.00 0.00 19.75 54.83
(0.14) (0.98) (0.00) (0.00) (0.35) (2.10)

Box crossover w/o mutation −21.08 −2537.27 46.28 0.01 83.36 5.13
(0.18) (39.46) (0.81) (0.00) (0.36) (0.43)

w/ mutation −28.37 −4024.81 0.00 0.00 0.08 11.60
(0.14) (33.23) (0.00) (0.00) (0.00) (1.77)

Quotient box crossover w/o mutation −25.50 −4125.13 19.17 0.12 57.11 15.61
(0.06) (15.66) (0.27) (0.01) (1.30) (0.82)

w/ mutation −28.77 −4189.83 0.00 0.00 0.00 16.89
(0.15) (0.00) (0.00) (0.00) (0.00) (1.89)

Boundary-extended w/o mutation −26.00 −4149.70 16.49 0.19 33.14 20.04
quotient box crossover (0.05) (13.80) (0.30) (0.02) (1.10) (0.83)

w/ mutation −30.00 −4189.83 0.00 0.00 0.00 16.07
(0.00) (0.00) (0.00) (0.00) (0.00) (2.00)

of function evaluations 2000 50000 50000 50000 50000 50000

Results from n = 30 runs. The smaller, the better. (Ave: average, σ: standard deviation.)
k = 1 + bnumberOfGenerations/100c.

functions are suitable for examining the impacts of crossover bias on performance. Table 6 shows the
results of GAs only with crossovers. As a measure of performance for these tests, we used the function
values of the best solutions after a fixed number of function evaluations. The values are from 30 runs
using exactly 100,000 function evaluations. Quotient crossovers performed better than original ones
in all the cases except the function of Shifted Rotated Weierstrass. In many cases, the boundary
extension improved the performance further. In particular, this is clear in the case of the function of
Shifted Rotated Griewank. It may be due to the Shifted Rotated Weierstrass having the optimum
much closer to the center than other functions and the Shifted Rotated Griewank having the optimum
farthest from the center (see the second-to-rightmost column of Table 6). To support our experimental
results, we also conducted one-way ANOVA test among the results of three types of box crossovers
on each function. All the p-values from ANOVA tests are very small (much less than 0.01), indicating
that the results of the tested crossovers have different averages (see the rightmost column of Table 6).

From the results of Table 3, Table 5, and Table 6, we can state that boundary-extended quotient
box crossover and quotient box crossover are suitable for the functions whose optima are located
at or near the boundary of the domain. Boundary-extended quotient box crossover and quotient
box crossover did not perform well for the functions whose optima are located at the center of the

19

Table 6: Additional Test Functions and Results without Mutation

Function n Range of xi: [li, ui]

Shifted Sphere =
n

X

i=1

(xi − oi)
2 − 450 30 [−100, 100]

Shifted Schwefel =
n

X

i=1

(
i

X

j=1

(xj − oj))
2 − 450 30 [−100, 100]

Shifted Rotated Elliptic =
n

X

i=1

(106)
i−1

n−1 z2
i − 450 30 [−100, 100]

Shifted Schwefel2 = (1 + 0.4|N(0, 1)|)
n

X

i=1

(
i

X

j=1

(xj − oj))
2 − 450 30 [−100, 100]

Shifted Rosenbrock =

n−1
X

i=1

`

100((xi − oi + 1)2 − (xi+1 − oi+1 + 1))2 + (xi − oi)
2

´

+ 390 30 [−100, 100]

Shifted Rotated Griewank =
n

X

i=1

z2
i /4000 −

n
Y

i=1

cos(zi/
√

i) + 1 − 180 30 [−600, 600]

Shifted Rastrigin =
n

X

i=1

`

(xi − oi)
2 − 10 cos(2π(xi − oi)) + 10

´

− 330 30 [−5, 5]

Shifted Rotated Weierstrass =
n

X

i=1

20
X

k=0

1

2k
cos(2π3k(zi +

1

2
)) − n

20
X

k=0

1

2k
cos(π3k) + 90 30 [−0.5, 0.5]

z = (x − o)M , where M is an orthogonal matrix.
o = (o1, o2, . . . , on) is the optimal solution.

Quotient Boundary-extended Position of p-value in
Box crossover box crossover quotient box crossover optimum† ANOVA test‡

Function Ave (σ/
√

n) Ave (σ/
√

n) Ave (σ/
√

n) d(center,optimum)
EX (d(center,X))

Shifted Sphere 2.13e+4 (2.20e+2) 5.67e+3 (1.65e+2) 4.35e+3 (1.64e+2) 0.95 2.94e−82
Shifted Schwefel 2.27e+4 (2.05e+2) 1.52e+4 (3.58e+2) 1.77e+4 (3.75e+2) 0.94 1.69e−27

Shifted Rotated Elliptic 1.72e+8 (4.94e+6) 4.89e+7 (1.63e+6) 5.16e+7 (1.71e+6) 0.86 1.13e−42
Shifted Schwefel2 2.44e+4 (1.76e+2) 1.55e+4 (3.56e+2) 1.82e+4 (3.45e+2) 0.94 2.81e−33

Shifted Rosenbrock 4.52e+9 (9.59e+7) 1.19e+9 (4.17e+7) 1.02e+9 (3.40e+7) 0.96 6.12e−59
Shifted Rotated Griewank 9.32e+2 (1.41e+1) 2.22e+2 (8.71e+0) 1.73e+2 (5.93e+0) 1.15 5.60e−73

Shifted Rastrigin −1.88e+2 (1.06e+0) −2.53e+2 (1.60e+0) −2.57e+2 (1.53e+0) 0.96 4.00e−55
Shifted Rotated Weierstrass 1.15e+2 (2.22e−1) 1.29e+2 (2.59e−1) 1.17e+2 (7.71e−1) 0.76 7.32e−40

Results from n = 30 runs. The smaller, the better. (Ave: average, σ: standard deviation.)
The number of function evaluations was 100,000 for all tests.
† The smaller the value is, the closer to the center the optimum is. (d is the Euclidean distance.)
‡ From one-way ANOVA test among the results of three types of box crossovers.
Small p-values (e.g., less than 0.01) indicate the results of tested crossovers have different averages.

domain. However, they were not too bad and the averages over %-gaps for all test functions (see the
right-most column of Table 3) were better than other traditional crossovers. In general, it is unlikely
that the optima are at the center of the domain for real-world applications.9 Moreover, when we
assume that the optimum is randomly located in the domain, the probability of the optimum being
in the neighborhood of the boundary is much larger than the probability being near the center, and
surprisingly it becomes quite close to 1 when the domain dimension is sufficiently large (see Section 5).
So we can conclude that the proposed crossover is a good choice.

9Most of the real-world problems are constrained [47, 64], and most of the constrained problems have optima on the
boundaries.

20

Table 7: Results on Nonlinear Regression on Real-world Dataset

Extended-box Box Quotient box Boundary-extended p value in

crossover crossover crossover quotient box crossover ANOVA test†

Sum of Ave σ/
√

n Ave σ/
√

n Ave σ/
√

n Ave σ/
√

n
squared errors 36.51 1.38 1.18 0.036 0.15 0.0052 0.041 0.0012 1.15e−72

Results from n = 30 runs. The smaller, the better. (Ave: average, σ: standard deviation.)
† From one-way ANOVA test among the results of four types of box crossovers.
Small p-value (e.g., less than 0.01) indicates that the results of tested crossovers have different averages.

To demonstrate how the proposed methodologies work on real-world applications, we conducted
a nonlinear regression [32] on a real-world dataset. We used the forest fires dataset first introduced
in [59] and provided by the UCI repository of machine learning databases [12], which is widely used
in data-mining research [9, 52, 63, 85]. The number m of real-valued input attributes is 8 and every
sample has its real-valued burn area. The number s of samples is 517. The tested nonlinear regression
model is as follows:

ŷ = c0 +

m
∑

i=1

cixi +
∑

i<j

cijxixj .

Therefore, the number of coefficients to predict becomes 37 (= 1+m+m(m−1)/2). We set the range
of each coefficient to [0,100]. As a measure of performance for these tests, we used the sum of squared
errors (

∑s
j=1(y(j) − ŷ(j))2) of the best function obtained after the fixed number of evaluations. The

values are from 30 runs where each run uses exactly 100,000 evaluations. Table 7 shows the results
of GAs with the same genetic parameters only varying crossover and mutation. We can see that
quotient box crossover outperformed extended-box and box crossovers. Boundary-extended quotient
box crossover improved more than the quotient one. We can guess that the optimum of this real-
world problem is located at or near the boundary of the domain. The results show the potential of
the proposed methodologies on real-world problems.

7 Conclusions

We emphasize the following aspects of our research contribution. First, we have shown that traditional
crossovers specified for the Minkowski metrics are biased operators: they produce offspring toward
the center of the space with higher probability from uniformly distributed parents. We have explained
that the origin of this bias is due to these spaces being non-isotropic: not all points are fully-symmetric
in relation to the distance.

Second, we have shown how to completely remove the crossover bias by transforming Minkowski
spaces. They can be made isotropic by gluing their opposite sides together and considering the
distances associated with these glued spaces. We have then studied formally and in full generality the
unbiased crossovers associated with these new spaces.

Third, the fitness functions on glued spaces may present discontinuity at the boundaries of the
original spaces. Using a recursive method, we extended the boundary of the original space so that the
continuity of the fitness function on the corresponding boundary-extended glued space is preserved.

21

0 1

1

I I

I

1 2

3 4I

z

z

X

Y

Figure 11: Sub-domains of parents when offspring z is given

Finally, we performed extensive experimentation including a real-world problem, and we could
show that crossovers defined on glued space perform well on the functions whose optima are not
near the center of the domain. We could also show that, on the functions whose optima are at
the boundary of the domain, boundary extension preserving continuity improves the performance of
crossovers defined on glued space. We would like to clarify that in this paper, we intended to show
the potentiality of well-designed unbiased crossovers rather than to design a method outperforming
state-of-the-art methods such as [2]. Since the genetic framework we used, the same as that of [78],
is old-fashioned and uses simple genetic operators except for the new crossover, we expect that if
the proposed crossover is combined with good operators such as self-adaptive mutation of CMA-ES
[26, 34], it will be much more improved. Moreover, since the proposed idea is to remove the inherent
bias of crossover operators in a given bounded domain, we expect that it can also be applied to other
complicated crossover operators in the state-of-the-art real-coded GAs, such as G3 with PCX [16],
StGA (Stochastic GA) [82], Cellular GA [20], GA with orthogonal crossover [51], and so on. However,
we leave such hybridization to future work, since such improvement is beyond the scope of this paper.

A Distribution of Offspring: Box Crossover

In this appendix, we will compute the distribution function of offspring produced by the box crossover
to formally show that the crossover is biased toward the center of the domain. First, consider one-
dimensional case, i.e., n = 1. We assume that parent random variables X,Y ∼ U([0, 1]). Given
offspring z, we can divide parent domain [0, 1] × [0, 1] into four sub-domains as in Figure 11. Then,

22

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 12: Probability density function f(z) of offspring

the cumulative distribution function for offspring random variable Z is computed in the following.

Pr(Z ≤ z) = Pr(Z ≤ z|X,Y ∈ I1) + Pr(Z ≤ z|X,Y ∈ I2)

+Pr(Z ≤ z|X,Y ∈ I3) + Pr(Z ≤ z|X,Y ∈ I4)

=

∫

I1

1 +

∫

I2

z − Y

X − Y
+

∫

I3

z −X

Y −X
+

∫

I4

0

=

∫ z

0

∫ z

0
1dxdy +

∫ z

0

∫ 1

z

z − y

x− y
dxdy +

∫ 1

z

∫ z

0

z − x

y − x
dxdy +

∫ 1

z

∫ 1

z
0dxdy

= z2 + 2

∫ z

0

∫ 1

z

z − y

x− y
dxdy

= z2 + (1− z)2 ln(1− z)− z(z ln z + z − 1).

Then, the probability density function f(z) of Z becomes

f(z) =
d

dz
Pr(Z ≤ z)

= −2(z ln z + (1− z) ln(1− z)).

Figure 12 shows the probability density function f(z) of Z. This is the same as empirically observed
in Figure 1(b). It is obvious that box crossover is biased toward the center of the domain. For the
general n-dimensional case, we obtain the probability density function f(z) as follows:

f(z) = (−2)n
n

∏

i=1

(zi ln zi + (1− zi) ln(1− zi)).

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions
that improved the quality of this paper. The ICT at Seoul National University provides research
facilities for this study. This work was supported by the Brain Korea 21 Project in 2010 and the
Engineering Research Center of Excellence Program (Grant 2011-0000966), Basic Science Research
Program (Grant 2011-0004215), and Mid-career Researcher Program (Grant 2010-0014218) of Korea
Ministry of Education, Science and Technology (MEST)/National Research Foundation of Korea
(NRF).

23

References

[1] B. Akay and D. Karaboga. A modified artificial bee colony algorithm for real-parameter optimization.
Information Sciences, 2010. (in press).

[2] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size. In Proceedings
of the Congress on Evolutionary Computation, volume 2, pages 1769–1776, 2005.

[3] T. Bäck, D. B. Fogel, and T. Michalewicz, editors. Evolutionary Computation 1: Basic Algorithms and
Operators. Institute of Physics Publishing, 2000.

[4] P. J. Ballester and J. N. Carter. Real-parameter genetic algorithms for finding multiple optimal solutions
in multi-modal optimization. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 706–717, 2003.

[5] P. J. Ballester and J. N. Carter. An effective real-parameter genetic algorithm with parent centric nor-
mal crossover for multimodal optimisation. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 901–913, 2004.

[6] P. J. Ballester and J. N. Carter. An effective real-parameter genetic algorithms for multimodal optimization.
In Proceedings of the Adaptive Computing in Design and Manufacture VI, pages 359–364, 2004.

[7] H.-G. Beyer. Theory of Evolution Strategies. Springer, 2001.

[8] H.-G. Beyer and K. Deb. On self-adaptive features in real-parameter evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 5(3):250–270, 2001.

[9] B. Chandra and P. P. Varghese. Moving towards efficient decision tree construction. Information Sciences,
179(8):1059–1069, 2009.

[10] Y.-P. Chen, W.-C. Peng, and M.-C. Jian. Particle swarm optimization with recombination and dynamic
linkage discovery. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37(6):1460–1470, 2007.

[11] P. C. Chu and J. E. Beasley. A genetic algorithm for the multidimensional knapsack problem. Journal of
Heuristics, 4:63–86, 1998.

[12] P. Cortez and A. Morais. A data mining approach to predict forest fires using meteorological data. In
Proceedings of the 13th EPIA 2007 - Portuguese Conference on Artificial Intelligence, pages 512–523, 2007.

[13] S. Das and P. N. Suganthan. Differential evolution - a survey of the state-of-the-art. IEEE Transactions
on Evolutionary Computation, 15(1):4–31, 2011.

[14] S. Dasgupta, S. Das, A. Biswas, and A. Abraham. On stability and convergence of the population-dynamics
in differential evolution. AI Commun., 22(1):1–20, 2009.

[15] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex Systems,
9(2):115–148, 1995.

[16] K. Deb, A. Anand, and D. Joshi. A computationally efficient evolutionary algorithm for real-parameter
optimization. Evolutionary Computation, 10(4):371–395, 2002.

[17] K. Deb and H.-G. Beyer. Self-adaptation in real-parameter genetic algorithms with simulated binary
crossover. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 172–179, 1999.

[18] K. Deb and A. Kumar. Real-coded genetic algorithms with simulated binary crossover: Studies on multi-
modal and multi-objective problems. Complex Systems, 9:431–454, 1995.

[19] K. Deb, K. Sindhya, and T. Okabe. Self-adaptive simulated binary crossover for real-parameter optimiza-
tion. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1187–1194, 2007.

24

[20] B. Dorronsoro and E. Alba. A simple cellular genetic algorithm for continuous optimization. In Proceedings
of the IEEE Congress on Evolutionary Computation, pages 2838–2844, 2006.

[21] L. J. Eshelman. The CHC adaptive search algorithm: How to have safe search when engaging in non-
traditional genetic recombination. In Proceedings of the Workshop on Foundations of Genetic Algorithms,
pages 265–283, 1991.

[22] L. J. Eshelman, K. E. Mathias, and J. D. Schaffer. Crossover operator biases: Exploiting the population
distribution. In Proceedings of the International Conference on Genetic Algorithms, pages 354–361, 1997.

[23] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-schemata. In Proceedings
of the Workshop on Foundations of Genetic Algorithms, pages 187–202, 1993.

[24] D. E. Goldberg. Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Systems, 5:139–
167, 1991.

[25] G. Guanqi and Y. Shouyi. Evolutionary parallel local search for function optimization. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 33(6):864–876, 2003.

[26] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolu-
tionary Computation, 9:159–195, 2001.

[27] F. Herrera, M. Lozano, and A. M. Sánchez. A taxonomy for the crossover operator for real-coded genetic
algorithms: An experimental study. International Journal of Intelligent Systems, 18(3):309–338, 2003.

[28] F. Herrera, M. Lozano, and A. M. Sánchez. Hybrid crossover operators for real-coded genetic algorithms:
an experimental study. Soft Computing, 9(4):280–298, 2005.

[29] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algorithms: Operators and tools
for behavioural analysis. Artificial Intelligence Review, 12(4):265–319, 1998.

[30] T. Higuchi, S. Tsutsui, and M. Yamamura. Theoretical analysis of simplex crossover for real-coded genetic
algorithms. In Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature,
pages 365–374, 2000.

[31] M. N. Howell, T. J. Gordon, and F. V. Brandao. Genetic learning automata for function optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 32(6):804–815, 2002.

[32] B.-G. Hu, H.-B. Qu, Y. Wang, and S.-H. Yang. A generalized-constraint neural network model: Associating
partially known relationships for nonlinear regressions. Information Sciences, 179(12):1929–1943, 2009.

[33] H. Huang, H. Qin, Z. Hao, and A. Lim. Example-based learning particle swarm optimization for continuous
optimization. Information Sciences, 2010. (in press).

[34] O. Ibáñez, L. Ballerini, O. Cordón, S. Damas, and J. Santamaŕıa. An experimental study on the appli-
cability of evolutionary algorithms to craniofacial superimposition in forensic identification. Information
Sciences, 179(23):3998–4028, 2009.

[35] C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi-objective optimization. Evolu-
tionary Computation, 15(1):1–28, 2007.

[36] C. Igel, T. Suttorp, and N. Hansen. A computational efficient covariance matrix update and a (1+1)-CMA
for evolution strategies. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
453–460, 2006.

[37] J. Jägersküpper. Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. The-
oretical Computer Science, 379(3):329–347, 2007.

25

[38] C. Z. Janikow and Z. Michalewicz. An experimental comparison of binary and floating point representations
in genetic algorithms. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
31–36, 1991.

[39] Y.-T. Juang, S.-L. Tung, and H.-C. Chiu. Adaptive fuzzy particle swarm optimization for global optimiza-
tion of multimodal functions. Information Sciences, 2010.

[40] F. Kang, J. Li, and Z. Ma. Rosenbrock artificial bee colony algorithm for accurate global optimization of
numerical functions. Information Sciences, 2010. (in press).

[41] H. Kita. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms.
Evolutionary Computation, 9(2):223–241, 2001.

[42] H. Kita, I. Ono, and S. Kobayashi. Theoretical analysis of the unimodal normal distribution crossover for
real-coded genetic algorithms. In Proceedings of the International Conference on Evolutionary Computa-
tion, pages 529–534, 1998.

[43] H. Kita, I. Ono, and S. Kobayashi. Multi-parental extension of the unimodal normal distribution crossover
for real-coded genetic algorithms. In Proceedings of the Congress on Evolutionary Computation, pages
1581–1587, 1999.

[44] O. Kramer. Premature convergence in constrained continuous search spaces. In Proceedings of the Parallel
Problem Solving from Nature, pages 62–71, 2008.

[45] O. Kramer. Self-Adaptive Heuristics for Evolutionary Computation. Springer, 2008.

[46] O. Kramer, B. Gloger, and A. Goebels. An experimental analysis of evolution strategies and particle
swarm optimisers using design of experiments. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 674–681, 2007.

[47] R. A. Krohling and L. S. Coelho. Coevolutionary particle swarm optimization using gaussian distribution
for solving constrained optimization problems. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 36(6):1407–1416, 2006.

[48] S. Kukkonen and J. Lampinen. An extension of generalized differential evolution for multi-objective op-
timization with constraints. In Proceedings of the Parallel Problem Solving from Nature, pages 752–761,
2004.

[49] S. Kukkonen and J. Lampinen. GDE3: the third evolution step of generalized differential evolution. In
Proceedings of the Congress on Evolutionary Computation, pages 443–450, 2005.

[50] C. l. Sun, J. Zeng, and J. Pan. An improved vector particle swarm optimization for constrained optimization
problems. Information Sciences, 181(6):1153–1163, 2011.

[51] Y.-W. Leung and Y. Wang. An orthogonal genetic algorithm with quantization for global numerical
optimization. IEEE Transactions on Evolutionary Computation, 5(1):41–53, 2001.

[52] M. Li and Z. Wang. A hybrid coevolutionary algorithm for designing fuzzy classifiers. Information Sciences,
179(12):1970–1983, 2009.

[53] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina. Real-coded memetic algorithms with crossover
hill-climbing. Evolutionary Computation, 12(3):273–302, 2004.

[54] S. Meyer-Nieberg and H.-G. Beyer. Self-adaptation in evolutionary algorithms. In Proceedings of the
Parameter Setting in Evolutionary Algorithms, pages 47–75, 2007.

[55] E. Mezura-Montes, M. E. Miranda-Varela, and R. d. C. Gómez-Ramón. Differential evolution in constrained
numerical optimization: An empirical study. Information Sciences, 180(22):4223–4262, 2010.

26

[56] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1996.

[57] H. Mühlenbein. The breeder genetic algorithm - a provable optimal search algorithm and its application.
In IEE Colloquium on Applications of Genetic Algorithms, pages 5/1–5/3, 1994.

[58] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm I: Contin-
uous parameter optimization. Evolutionary Computation, 1(1):25–49, 1993.

[59] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning databases,
1998. http://archive.ics.uci.edu/ml/.

[60] N. Noman and H. Iba. Enhancing differential evolution performance with local search for high dimensional
function optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
25–29, 2005.

[61] I. Ono, H. Kita, and S. Kobayashi. A robust real-coded genetic algorithm using unimodal normal distri-
bution crossover augmented by uniform crossover: Effects of self-adaptation of crossover probabilities. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 496–503, 1999.

[62] I. Ono and S. Kobayashi. A real-coded genetic algorithm for function optimization using unimodal normal
distribution crossover. In Proceedings of the Seventh International Conference on Genetic Algorithms,
pages 246–253, 1997.

[63] L. Peng, B. Yang, Y. Chen, and A. Abraham. Data gravitation based classification. Information Sciences,
179(6):809–819, 2009.

[64] V. Petridis, S. Kazarlis, and A. Bakirtzis. Varying fitness functions in genetic algorithm constrained
optimization: the cutting stock and unit commitment problems. IEEE Transactions on Systems, Man,
and Cybernetics, Part B, 28(5):629–640, 1998.

[65] A. Qi and F. Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size
in continuous space, Part I: Basic properties of selection and mutation. IEEE Transactions on Neural
Networks, 5(1):102–119, 1994.

[66] A. Qi and F. Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size in
continuous space, Part II: Analysis of the diversification role of crossover. IEEE Transactions on Neural
Networks, 5(1):120–129, 1994.

[67] G. R. Raidl. Weight-codings in a genetic algorithm for the multiconstraint knapsack problem. In Proceedings
of the Congress on Evolutionary Computation, volume 1, pages 596–603, 1999.

[68] J. Reed, R. Toombs, and N. A. Barricelli. Simulation of biological evolution and machine learning. Journal
of Theoretical Biology, 17:319–342, 1967.

[69] K. S. N. Ripon, S. Kwong, and K. F. Man. A real-coding jumping gene genetic algorithm (RJGGA) for
multiobjective optimization. Information Sciences, 177(2):632–654, 2007.

[70] J. Rönkkönen, S. Kukkonen, and K. Price. Real-parameter optimization with differential evolution. In
Proceedings of the Congress on Evolutionary Computation, pages 506–513, 2005.

[71] K. Socha and M. Dorigo. Ant colony optimization for continuous domains. European Journal of Operational
Research, 185(3):1155–1173, 2008.

[72] H. Someya and M. Yamamura. A robust real-coded evolutionary algorithm with toroidal search space
conversion. Soft Computing, 9(4):254–269, 2005.

[73] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization, 11(4):341–359, 1997.

27

[74] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-p. Chen, A. Auger, and S. Tiwari. Problem definitions
and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report
NCL-TR-2005001, Natural Computing Laboratory (NCLab), Department of Computer Science, National
Chiao Tung University, May 2005.

[75] P. D. Surry and N. Radcliffe. Real representations. In Proceedings of the Workshop on Foundations of
Genetic Algorithms, pages 343–363, 1996.

[76] M. Takahashi and H. Kita. A crossover operator using independent component analysis for real-coded
genetic algorithm. In Proceedings of the Congress on Evolutionary Computation, pages 643–649, 2001.

[77] S. Tsutsui. Multi-parent recombination in genetic algorithms with search space boundary extension by
mirroring. In Proceedings of the Fifth International Conference on Parallel Problem Solving from Nature,
pages 428–437, 1998.

[78] S. Tsutsui and D. E. Goldberg. Search space boundary extension method in real-coded genetic algorithms.
Information Sciences, 133(3-4):229–247, 2001.

[79] S. Tsutsui and D. E. Goldberg. Simplex crossover and linkage identification: Single-stage evolution vs.
multi-stage evolution. In Proceedings of the IEEE International Conference on Evolutionary Computation,
pages 974–979, 2002.

[80] S. Tsutsui, D. E. Goldberg, and K. Sastry. Linkage learning in real-coded GAs with simplex crossover. In
Proceedings of the Fifth International Conference on Artificial Evolution, pages 51–58, 2001.

[81] S. Tsutsui, M. Yamamura, and T. Higuchi. Multi-parent recombination with simplex crossover in real
coded genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
657–664, 1999.

[82] Z. Tu and Y. Lu. A robust stochastic genetic algorithm (StGA) for global numerical optimization. IEEE
Transactions on Evolutionary Computation, 8(5):456–470, 2004.

[83] Liwei Wei, Zhenyu Chen, and Jianping Li. Evolution strategies based adaptive Lp LS-SVM. Information
Sciences, 181(14):3000–3016, 2011.

[84] A. H. Wright. Genetic algorithms for real parameter optimization. In Proceedings of the Workshop on
Foundations of Genetic Algorithms, pages 205–218, 1991.

[85] S. Yue, J.-S. Wang, T. Wu, and H. Wang. A new separation measure for improving the effectiveness of
validity indices. Information Sciences, 180(5):748–764, 2010.

[86] M. Zhang, W. Luo, and X. Wang. Differential evolution with dynamic stochastic selection for constrained
optimization. Information Sciences, 178(15):3043–3074, 2008.

28

