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Design and Experimental Validation of an
Embedded Sliding Mode Controller for Voltage

Regulation with SEPIC Converters

Gianmario Rinaldi,1 Prathyush P Menon,1 and Antonella Ferrara2

Abstract—This paper addresses the challenge of regulating
the output voltage in single-end primary inductor converters
(SEPICs) and introduces a practical solution based on the
generation of second-order suboptimal sliding modes (2-SOSM).
In contrast to the common assumption of a lossless SEPIC, in
this paper, a lossy SEPIC is explored. A concise mathematical
representation of its model is presented, and the equilibrium
point is explicitly defined. Using only the output voltage as a
measurement, it is proven that the proposed 2-SOSM strategy
achieves finite-time convergence of the output voltage with its
reference. The proposed method effectively handles saturation
constraints on the control variable, ensuring that the SEPIC duty
ratio remains between 0 and 1. Furthermore, the approach proves
to be robust to variations in the load resistor. The experimental
analysis validates the effectiveness of our proposal and highlights
its practical benefits. A comparison with a standard proportional
integral control (PI) on an embedded platform underscores the
superiority of the adopted approach.

Index Terms—DC-DC Converter; Robust control; Control
systems; Voltage control; Nonlinear dynamics.

I. INTRODUCTION

A. Research Background

DC-DC converters are becoming popular devices in a wide
range of applications, such as smart grids [1], [2], photovoltaic
arrays for electric power generation [3], lithium-ion batteries
charging for electric vehicles [4], and also in fully electric
zero-emission powertrains [5]. DC-DC converters generate
an output DC voltage that can differ from the input DC
voltage they receive [6]. The presence of electrical energy
storage elements, such as capacitors and inductors, which
are interconnected in a suitable way with switches, makes
the voltage regulation process possible [7]. Amongst various
typologies for DC-DC converters, the Single-End Primary
Inductor Converter (SEPIC) has recently captured the attention
of researchers and practitioners [8]–[10]. The SEPIC is capable
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of generating a wide range of output voltages that can be
lower, equal, or higher than the input voltage, and therefore
exhibits the so-called Buck-Boost behaviour [6]. Additionally,
the SEPIC has the capability to reduce the current ripple
during the switching phases, thus ensuring better performance
compared to other types of converters [11].

B. Literature Review

A number of solutions have been proposed to regulate the
current and the output voltage for SEPICs. To design a control
law, it is conventionally assumed that the SEPIC operates
in Continuous Conduction Mode (CCM) (which means that
the currents never nullify) [12]. In [13], a Model Predictive
Control (MPC) technique has been proposed to control the
SEPIC current of inductors. The method relied on several
sensors for the implementation of the control algorithm. In
[14], conventional PID and PI-like fuzzy control architectures
were compared considering as a show case the control of a
SEPIC output voltage to power a solar-fed pump for irrigation.
Other solutions were inspired by passivity-based techniques
such as in [15], where a control law expression is derived
depending on the voltages and currents of the SEPIC, and more
recently in [16], where a Linear Matrix Inequality problem
has been solved and a cascade control architecture has been
exploited to ensure faster asymptotic output voltage tracking.
More recently, in [8], it has been proven that a direct voltage
regulation requiring only the output voltage measurement
is possible for SEPICs, and rules to design higher order
controllers were outlined and tested.

Sliding mode (SM) control techniques have been success-
fully applied to control electrical devices in microgrids and
energy networks [17], [18]. SM control schemes are well
known to be robust to input disturbances and to be able to
enforce a finite time stabilisation of the controlled systems
[19]. Several SM-based control strategies have been proposed
for DC-DC converters, including SEPICs [20]–[22]. First-
order sliding mode (1-SM) controllers are discontinous algo-
rithms designed to drive system states to a predefined sliding
surface and maintain them there, achieving robust performance
against disturbances [19]. Once the state of the system reaches
the sliding surface, the 1-SM law ensures that the states
remain on this surface, achieving the desired behaviour of the
system with a discontinuous control action. This results in a
chattering phenomenon due to high-frequency switching of the
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control input [23]. Second-order sliding mode controllers (2-
SM) extend this principle, aiming to reduce chattering through
smoother control actions and enhanced precision, by acting
on higher derivatives of the sliding variable, thus offering
improved robustness and dynamic response [18], [19], [24].
In order to design a SM controller, the relative degree should
be known. The relative degree is defined as the number of
times you need to differentiate the output to get an expression
that explicitly includes the control input [19].

Conventionally, the control variable for DC-DC converters
regulated using SM techniques has been selected as the binary
signal of the switch that can assume only two values {0, 1}
[18], [21]. (The value 1 imposes that the switch is on,
whilst the value 0 imposes that it is off). This approach is
named Conventional Hysteresis-Modulation (HM)-Based SM
Controller, and is based on the switched dynamics of the
converters. HM-based controllers are easy to implement, but
require a fixed (and high) sampling frequency to be practically
implemented [25]. To overcome this issue, a Pulse-width-
Modulation (PWM)-Based SM Controller has been suggested
[25], [26]. The PWM-based SM approach is designed based
on an averaged dynamical model per cycle of the SEPIC [27].
This approach aims to determine a smooth control variable
that can assume any value between [0, 1] (see, for example,
[22], [28]). Therefore, the control variable represents the well-
known duty ratio, which is the fraction of the duty cycle during
which the switch is maintained ON [27]. The authors of [29]
have investigated severalHM-based SM control solutions to
achieve maximum power point tracking of photovoltaic power
sources coupled with SEPICs. A novel HM-based SM control
law was explored in [30], where an optimisation method was
used to synthesise the controller parameters ensuring better
tracking performances. In [12], an indirect HM-based SM
voltage regulation was achieved by coupling a standard PI
controller with a 1-SM controller. In [31], a linear combination
of the four state variables of the SEPIC was chosen as the
sliding surface and the performance of the controller was
experimentally validated via Hardware in the Loop (HIL). The
approach required the implementation of a significant number
of sensors.

Relatively little attention has been paid so far in the lit-
erature to designing PWM-based SM control algorithms. For
example, in [11], a discrete time implementation of a PWM-
based SM control scheme were undertaken in [11], along with
a small signal linearisation approach to analyse the stability
properties of the controlled device. An interesting PWM-based
SM control approach was conceived by [26], where the SEPIC
feeds a constant power load, and the sliding variable was
chosen as the power setting point. Differently, in [32], a PWM-
based SM controller was designed to regulate both the output
voltage and the inductor current, requiring two sensors to be
implemented.

C. Main Contribution

This paper proposes and experimentally validates a novel
PMW-based SM technique to regulate in finite time the output
voltage for SEPICs operating in CCM. Most of the work in

the literature assumed that SEPICs were lossless [12], [21].
To be more consistent with the real data sheets of the SEPICs
[33], [34], in the present work, this first assumption is relaxed,
considering the presence of lossy inductors in the circuit. An
original compact mathematical representation of the SEPICs
dynamic is derived along with the explicit representation of
its equilibrium point. To the best of our knowledge, the only
PWM-based strategy addressing direct voltage regulation for
SEPIC has recently been proposed in [8]. This methodology
was characterised by an asymptotic converge of the output
voltage to its set point. Similarly to [8], the hardware cost
and complexity of the sensor network can be shown to be
reduced by only acquiring the output voltage of the SEPIC.
But distinctively from the existing solution mentioned above,
in this paper the suboptimal sliding mode (2-SOSM) principle
is exploited to ensure a finite time voltage regulation. More
precisely, inspired by a recent 2-SOSM technique proposed by
one of the authors in [35], a control law determining the duty
ratio for the PWM modulation of the MOSFET of SEPICs is
designed. The present proposal is able to solve in finite time
the voltage regulation problem, while simultaneously ensuring
that the control variable always remains within the interval
value (0, 1). This guarantees that the proposed methodology is
characterised by interesting and faster performances compared
to existing solutions characterised by asymptotic convergence,
such as [8], [13], [15]. Additionally, by virtue of the use of 2-
SOSM, applied to a system that exhibits a relative degree one
property [19], the generation of a continuous control signal
for PWM modulation can be ensured. The hypothesis of the
paper is tested through a real-time experiment conducted on
an embedded system with the SEPIC kit TMDCDCLEDKIT
[34]. The chosen experimental set-up included a PI control
strategy already developed by device makers to achieve voltage
regulation for the SEPIC. The performance of our 2-SOSM
controller is compared with the existing PI controller of
the manufacturer to show that our proposal can provide a
remarkable performance improvement for voltage regulation
and tracking.

To further justify the advantages of the proposal of this
article, Table I provides a comparative analysis of different
control algorithms applied to the regulation of the SEPIC out-
put voltage. It assesses six distinct algorithms: Proportional-
Integral-Derivative (PID), First Order Sliding Mode (1-SM),
Sliding Mode Super-Twisting Algorith (STA), Other Second
Order Sliding Mode (2-SM), the conventional Second Or-
der Sub Optimal Sliding Mode (2-SOSM), and the proposal
adopted in this article, which is called (2-SOSM+SAT). The
analysis is based on four criteria, which are: the relative degree
between the output and input, the ability of the algorithm
to manage the input saturation constraints, its effectiveness
in mitigating chattering effects, and whether the algorithm
requires knowledge of the time derivative σ̇ of the output σ.
The PID control displays a relative degree of one, fails to
handle saturation, mitigates chattering, and requires knowledge
of both the output and its rate of change, scoring the lowest
at 1. The 1-SM and STA have similar characteristics but do
not require knowledge of the rate of change, scoring 2. The
Other 2-SM can handle systems of relative degree 1 and 2,

This article has been accepted for publication in IEEE Transactions on Power Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2024.3415164

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Exeter. Downloaded on June 21,2024 at 08:20:38 UTC from IEEE Xplore.  Restrictions apply. 



3

Table I
COMPARISON OF DIFFERENT CONTROL ALGORITHMS FOR SEPIC

VOLTAGE REGULATION

Algorithm: Rel. Degree Sat. Chattering Deriv. Score
PID 1 ✗ mitigated σ, σ̇ 1
1-SM 1 ✓ present σ 2
STA 1 ✗ mitigated σ 2
Other 2-SM 1, 2 ✗ mitigated σ, σ̇ 2
2-SOSM 1, 2 ✗ mitigated σ 3
2-SOSM+SAT 1, 2 ✓ mitigated σ 4

mitigates chattering, but needs knowledge of the output rate of
change, also scoring 2. The SOSM method, like ”Other 2-SM”,
manages chattering and requires only the output knowledge,
scoring 3. The highest score of 4 is awarded to algorithm
adopted in this paper, which successfully handles saturation,
mitigates chattering, and only needs the output σ, not its
derivative σ̇.

Notation: The notation used in the paper is standard. For
a scalar signal x, sign(x) denotes its sign function, while
|x| denotes its absolute value. For a vector or matrix X ,
X⊤ denotes its transpose, while ||X|| denotes its Euclidean
norm. The symbol Diag(x1, x2, . . . , xn) represents a diagonal
matrix with its diagonal entries. For a variable or time-varying
parameter x, the symbol x denotes a specific constant value
of x.

Structure of the Paper: The rest of our manuscript is
structured as follows. In Section II, the SEPIC dynamical
model is introduced. Section III presents the design of the
proposed control scheme and the stability analysis. Section IV
discusses the experiments undertaken to validate our proposal,
while Section V concludes the paper.

II. SYSTEM DESCRIPTION

The circuit diagram of the SEPIC is shown in Figure 1.
SEPIC is a switched DC-DC power converter, which can have
an output voltage greater than, less than or equal to the input
voltage, which means that it exhibits the so-called buck-boost
behaviour [6]. The SEPIC circuit is composed of two lossy
inductors modelled by pairs (L1, R1) and (L2, R2), two
capacitors C1 and C2, the diode D, the MOSFET S and the
load equivalent resistance RL [7]. The state variables, denoted
as x ∈ R4, comprise the inductor currents (x1 and x2) and
the capacitor voltages (x3 and x4), as indicated in Figure
1. The SEPIC is powered by a constant DC input voltage
power source vg , and the state x4, i.e. the voltage of C2 and
the load RL, denotes the only available measured output. Let
ν : R → {0, 1} be a switching function indicating the state
of the MOSFET switch S at any instant t. Furthermore, let
the operating switching frequency be assumed to be fixed at
fν := 1/Tν . The SEPIC can operate in two distinct modes,
which are: Mode 1 (MOSFET is ‘ON’, i.e., ν = 1) and Mode
2 (MOSFET is ‘OFF’, i.e., ν = 0).

Mode 1

During Mode 1, the MOSFET S is switched ON. In such a
situation, the diode D is reverse biased, open, and conducting
no current. The current in the first inductor x1 increases

exponentially. The capacitor C1 provides the energy to the
inductor (L2, R2), while the capacitor C2 discharges its
energy on the load RL. The state-space representation for
Mode 1 yields:

Eẋ = (A1 −R)x+Bvg

}
Mode 1

S-ON, ν = 1
(1)

where: E = Diag(L1, L2, C1, C2), R =
Diag(R1, R2, 0, 1/RL), B = [1/L1, 0, 0, 0]⊤.
Matrix

A1 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,

is skew-symmetric and independent of the model parameters
of the SEPIC. It represents the power exchanges throughout
the circuit. Note that the matrix E is invertible and that matrix
(A1 −R) can be shown to be Hurwitz by direct calculation.

Mode 2

During Mode 2, the MOSFET is switched OFF. In this
situation, diode D can conduct the current. The energy stored
in the two inductors discharges through the capacitors C1 and
C2 and the load RL. The state-space representation for Mode
2 yields:

Eẋ = (A2 −R)x+Bvg

}
Mode 2

S-OFF, ν = 0
(2)

where matrix A2

A2 =


0 0 −1 −1
0 0 0 −1
1 0 0 0
1 1 0 0


is again skew-symmetric and independent of the model pa-
rameters of the SEPIC but it represents the power exchanges
throughout the circuit. Note that the matrix (A2 −R) can be
shown to be Hurwitz by direct calculation.

State Space Averaging Model

Suppose that the duration of the duty cycle of the SEPIC is
set equal to Tν seconds, and assume that for Td < Tν seconds,
the MOSFET S is on (ν = 1), while for the remaining
T

′

d = Tν − Td seconds the MOSFET S is off (ν = 0).
Define the duty ratio u := Td/Tν . The variable u practically
represents the percentage of the duty cycle (expressed in
units value between 0 and 1) during which the MOSFET
remains in Mode 1, and coincides with the averaged switching
control input u for MOSFET PWM modulation [36]. The
state-space averaging technique aims to replace the state-space
representations (1) and (2) of the two successive phases of the
switching cycle Tν with a single state-space description that
represents approximately the behaviour of the SEPIC during
the whole period of duration Tν . The approach consists in
summing up the right-hand side of (1) multiplied by u and
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State Variables and Input Signals

𝑥1 (A) Current through the inductor (𝑅1, 𝐿1)

𝑥2 (A) Current through the inductor (𝑅2, 𝐿2)

𝑥3 (V) Voltage of 𝐶1

𝑥4 (V) Voltage of 𝐶2

𝑣𝑔 (V) Input voltage source 

𝜈 (-) Switch S status, 𝜈 = 1, 𝑂𝑁, 𝜈 = 0, 𝑂𝐹𝐹

𝑢 (-) PWM modulation control signal (duty ratio)

Voltage difference (V)

Current  (A)

Model Parameters and Symbols

𝐿1 = 470 (𝜇𝐻) First inductor value

𝐿2 = 330 (𝜇𝐻) Second inductor value

𝑅1 = 280 (𝑚Ω) First inductor resistance

𝑅2 = 230 (𝑚Ω) Second inductor resistance

𝐶1 = 470 (𝜇𝐹) Second capacitor value

𝐶2 = 470 (𝜇𝐹) Second capacitor value

𝑅𝐿 = 1 (kΩ) Load resistor

𝑆 (-) MOSFET switch 

𝐷 (-) Diode

𝑥1

𝑥2

𝑣𝑔 𝑆, 𝜈

𝑥3

𝑅1 𝐿1

𝑅2

𝐿2

𝐷

𝑥4

𝐶1

𝐶2 𝑅𝐿

𝑥4

Voltage Sensor 𝑥4

2-SOSM 

Controller

𝑢
PWM

PWM-based 2-SOSM 

Control Strategy

+

−

Figure 1. The SEPIC topology along with the definition of the state variables, the input signals, the model parameters, and symbols. Arrowheads indicate
the positive currents and voltages sign convention. The values of the model parameters are taken directly from the real data sheet in [33], [34].

the right-hand side of (2) multiplied by (1− u), which yields
[6]:

Eẋ = [uA1 + (1− u)A2 −R]x+Bvg , (3)
y = Cx . (4)

In (4), the output equation is introduced, where C =
[0, 0, 0, 1], as it is assumed to only measure the value of the
voltage at the capacitor C2, which coincides with the voltage
at the load terminals.

III. CONTROLLER DESIGN

The control objective to address is:

Objective 1 (Voltage Regulation) Given a constant voltage
reference y := x4, it is necessary to ensure

y = y (5)

in finite time, where x4 is a positive known constant expressed
in Volts.

Remark 1 (Voltage Reference) The reference output voltage
x4 is considered to be constant to theoretically analyse the
equilibrium point and the stability property of the SEPIC
system. However, in the embedded experiments presented in
Section IV, the performances of the proposed controller under
time-varying voltage reference will be investigated. In the
literature, it is also conventional to relax certain assumptions
(instrumental exclusively for mathematical stability analysis),
in simulations or real experiments, to test the performance of
the controllers [22]. The observed efficacy under time-varying
voltage reference is attributed to the inherent robustness of the
adopted 2-SOSM control algorithm, which will be shown to
be totally insensitive to such variations.

To solve Objective 1, three assumptions are introduced:

Assumption 1 It is assumed that
(A1) The system parameters L1, L2, R1, R2, C1, C2, and

RL are unknown but constant with known bounds.
(A2) The SEPIC always operates in CCM [6], which im-

plies that the currents always satisfy x1 > 0 and
x2 > 0, and they remain bounded along with their
first time derivatives, i.e. x1 < ∆1x1

, x2 < ∆1x2
,

ẋ1 < ∆2x1
, ẋ2 < ∆2x2

where ∆1x1
, ∆1x2

, ∆2x1
, ∆2x2

are known positive constants.
(A3) The voltage source vg and the voltage level at the load

terminals x4 always remain positive.

Remark 2 (Assumption 1 Rationals)
Assumption 1-(A1) requires that only the bounds of the SEPIC
parameters L1, L2, R1, R2, C1, C2 and RL are known, not
their exact numerical values. This allows the proposed solution
to be easily adaptable to SEPICs of different sizes and power.
Assumption 1-(A2) has been commonly adopted in many
relevant solutions (see, e.g., [8], [12]). Due to the presence of
lossy inductors in the circuit, it is also reasonable to assume
that their associated currents and their first time derivatives
remain bounded with known upper limits. These bounds can
be tuned from an engineering understanding of the circuit.
Assumption 1-(A3) prescribes no change of polarities in the
input vg and output x4 voltages, and is generally satisfied in
many practical cases [6].

A. Steady-State Behaviour

The steady state representations of the state variables can be
calculated for a constant control input u, satisfying 0 < u < 1.
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An explicit solution exists for the equilibrium values of the
state variables and is unique. By imposing

[uA1 + (1− u)A2 −R]x+Bvg = 0 (6)

from (3), after straightforward algebraic manipulations,
the explicit solution of the constant state vector x :=
[x1, x2, x3, x4]

T is obtained as:

x1 =
1

RL

(
u

1− u

)
x4 (7)

x2 =
x4
RL

(8)

x3 =

(
R2

uRL
+

1− u

u

)
x4 (9)

x4 =

(
u

1− u
+

1

RL

(
1− u

u
R2 +

u

1− u
R1

))
vg (10)

Remark 3 (Lossless SEPIC) If the two inductors of the
SEPIC are assumed lossless, it follows that R1 = 0 and
R2 = 0. In such a situation, the equilibrium solution (7)-(10)
can be simplified as:

x1 =
1

RL

(
u

1− u

)
x4 (11)

x2 =
x4
RL

(12)

x3 =

(
1− u

u

)
x4 = vg (13)

x4 =

(
u

1− u

)
vg (14)

The solution reported in (11)-(14) is the typical representation
of the equilibrium solution for lossless SEPICs determined in
the existing literature [12].

B. Closed Loop Control and Stability Analysis

In Section III-A,it has been shown that for a given constant
value of the control input u (the duty ratio), there is a unique
equilibrium point for SEPIC according to the system (7)-(10).
In this section the problem defined in Objective 1 is solved
in two steps: i) First, a 2-SOSM is proven to be enforced
in finite time, ensuring x4 = x4; ii) A stability analysis is
undertaken once the sliding mode is attained, formally proving
that also the other three states x1, x2, x3 in (7)-(9) reach
their equilibrium values asymptotically. To attain the control
Objective 1, the error variable σ is defined as σ := y − y
which has to be nullified in finite time. The following control
scheme is proposed:

PWM-based SM Controlled system:

Eẋ = [uA1 + (1− u)A2 −R]x+Bvg , (15)
y = Cx . (16)

Control Scheme:

σ := y − y (17)

u :=
1

2
(1− usm) (18)

u̇sm = wsm (19)

wsm =

{
−αµsign(σ − βσM ) if |usm| < 1

−µsign(usm) else
(20)

where the auxiliary signals usm, wsm govern the evolution of
the duty ration u, and µ is a positive constant to be designed.
The variable σM represents the last extremal value of σ. The
variables α, β are time-varying parameters that will be defined
in the sequel. The control scheme proposed here is inspired by
the 2-SOM methodology developed in [35]. The desaturation
principles provided by (20) are introduced to ensure that the
control signal u always remains between 0 and 1 [35].

Lemma 1 Consider the controlled SEPIC dynamical model
(15)-(20). Under Assumption 1, the condition

|usm| < 1 (21)

holds if the sliding mode is attained, e.g. when σ = σ̇ = 0.

Proof: The first time derivative of the sliding variable σ
is:

σ̇ = ẋ4

σ̇ = (1− u)
x1 + x2
C2

− 1

RLC2
x4 (22)

By imposing σ̇ = 0, an explicit expressions for u yields

u = 1− x4
RL(x1 + x2)

(23)

Note that from (23), as 0 < u < 1, during the sliding mode the
current absorbed by the load (x4/RL) (which is a constant)
is strictly smaller than the sum of the currents in the two
inductors (x1 + x2), i.e.

x4
RL

< x1 + x2

}
as 0 < u < 1 (24)

As the signal u is defined by (18), the identity

1− u =
1

2
+

1

2
usm (25)

holds. By using (25), the expression for σ̇ in (22) can be
rewritten by making usm explicitly appear as

σ̇ = f(x) + g(x)usm (26)

where the auxiliary functions f(x) and g(x) are:

f(x) :=
x1 + x2
2C2

− 1

RLC2
x4 (27)

g(x) :=
x1 + x2
2C2

(28)

When the condition σ̇ = 0 is enforced, it is possible to
determine the expression of the so-called equivalent control
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ueqsm [18], [19], which is defined as:

ueqsm = −f(x)
g(x)

= −
x1 + x2 −

2x4
RL

x1 + x2
(29)

Under Assumption 1, the function f(x) in (27) is always
bounded which means

|f(x)| ≤
∆1x1

+∆1x2

2C2
=: F (30)

where F is a known positive constant. As x1 > 0, x2 > 0, it
follows from the definition of g(x) in (28) that

G1 ≤ g(x) ≤ G2 (31)

where G1 is an arbitrarily small positive constant, and G2

satisfies:

G2 :=
∆1x1

+∆1x2

2C2
(32)

From (27)-(28), and exploiting (30)-(31), and (24) it is guar-
anteed that:

|f(x)| < g(x) (33)

From (18) and (33), it follows that

|ueqsm| = |f(x)|
|g(x)|

< 1. (34)

which proves the lemma.

Inspired by [19], [35], two variables are introduced: σ1 := σ
and σ2 = σ̇, which evolves as

σ̇1 = f(x) + g(x)usm (35)
σ̇2 = h(x, usm) + g(x)wsm (36)

where the function h(x, usm) is defined as:

h(x, usm) = ḟ(x) + ġ(x)usm (37)

Under Assumption 1, the function results in being a sum of
bounded terms, hence h(x, usm) is bounded:

|h(x, usm)| < H (38)

where H is a known positive constant that can be shown to
be governed by:

H :=
∆2x1

+∆2x2

C2
(39)

The time-varying parameters of the controller are governed
by:

β ∈
[
1

2
, βM

]
, (40)

βM =

{
σ1

σM
if |usm| > 1

1
2 if σM changes or t = 0

(41)

φ := (σ1 − βσM )(σM − σ1) (42)

α =

{
α⋆ ∈ (0, 1] ∩ (0, 3G1/G2), if φ > 0

1 else
(43)

µ > max

(
H

α⋆G1
;

4H

3G1 − α⋆G2

)
(44)

Proposition 1 Under Assumption 1 and given Lemma 1,
(A) Given the control scheme (18)-(20), with the associate

parameters and variables (40)-(44), then the states of
system (35)-(36) converge to the origin in a finite time
Tv , satisfying Objective 1.

(B) Once the sliding mode is attained, the control signal
usm and therefore the duty ratio u remain constant.

(C) The remaining states x1, x2, x3 asymptotically reach
their equilibrium values x1, x2, x3 (7)-(9).

Proof: The three parts of the proposition are proven in
the order:

Proof of Part (A): Following the methodology in [35], it
is possible to prove by means of the contraction properties that
system (35)-(36) subject to the control action (18)-(20) con-
verges to the origin in a finite time. This is achieved throughout
the generation of a sequence of states (σ1 = σMi

, σ2 = 0),
where

|σMi+1 | < |σMi | (45)

The finite time Tv after which the condition σ1 = σ2 = 0 is
attained is upper-bounded as follows [19], [35]:

Tv <
(G1 + α⋆G2µ)

(G1µ−H)
√
α⋆G2µ+H

h(σ1(0))θ (46)

where h(σ1(0)) is a function of the initial condition of the
sliding variable σ1, and θ is a positive constant. Only by

varying the design constant µ, it is apparent that Tv ∝ 1
√
µ

,

hence Tv can be reduced by increasing µ. Further details can
be found in [35].

Proof of Part (B): To prove that the control signal usm
remains constant during sliding mode, it is sufficient to expand
the expression of σ̇2 and impose that it equal to 0:

σ̇2 = (1− u)

(
ẋ1 + ẋ2
C2

)
− 1

2
wsm

(
x1 + x2
C2

)
= 0 (47)

By defining x12 := x1 + x2, expanding (47) and multiplying
the left and the right sides by the positive constant C2, it
yields:

(1− u)ẋ12 −
1

2
wsmx12 = 0 (48)

As wsm = 0 during the sliding mode and (1 − u) > 0, it is
possible to conclude from (48) that ẋ12 = 0, which guarantees
that x12 = x1 + x2 is constant. From (23) it is immediate to
see that u remains constant.

Proof of Part (C): Let us impose x4 = x4 and consider
u governed by (23) and being constant as per Part (B) of this
proposition. The zero dynamics is derived:

Edẋd = [uA1d + (1− u)A2d −Rd]xd +Bdpd, (49)
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where the reduced-order vectors and matrices are xd =
[x1, x2, x3]

⊤, Ed = Diag(L1, L2, C1), R =
Diag(R1, R2, 0), pd = [vg, x4]

⊤. Moreover, the matrices

Bd =

1 −(1− u)
0 −(1− u)
0 0

A1d =

0 0 0
0 0 1
0 −1 0


A2d =

0 0 −1
0 0 0
1 0 0


At the equilibrium (7)-(10), the algebraic condition

0 = [uA1d + (1− u)A2d −Rd]xd +Bdpd (50)

holds. If the error variable is defined as ∆xd := xd − xd, and
subtract (50) from (49) the error dynamics result in being:

Ed∆ẋd = [uA1d + (1− u)A2d −Rd]∆xd (51)

Matrix

Md(u) := E−1
d [uA1d + (1− u)A2d −Rd] (52)

is adopted to compactly rewrite the error dynamics as

∆ẋd =Md(u)∆xd (53)

Md(u) for a fixed u is a constant matrix that can be shown to
be Hurwitz. Consider the three eigenvalues λ1(u), λ2,3(u) of
Md(u), where λ2,3(u) represents a complex conjugate pair. It
is possible to show that

λ1(u = 0) = −R2

L2
(54)

λ2,3(u = 0) = − R1

2L1
±

(√
4L1 − C1R2

1

2L1

√
C1

)
j (55)

hence Md(u = 0) is Hurwitz. If the analysis is repeated

λ1(u = 1) = −R1

L1
(56)

λ2,3(u = 1) = − R2

2L2
±

(√
4L2 − C1R2

2

2L2

√
C1

)
j (57)

It is possible to conclude that also Md(u = 1) is Hurwitz. The
eigevanlues λ1(u), λ2,3(u) smoothly evolve from the set of
values (54)-(55) to the values given in (56)-(57), as indicated
in Figure 2. It is possible to conclude that the constant matrix
Md(u) is Hurwitz ∀ u : 0 < u < 1, and xd asymptotically
converges to xd.

Remark 4 (Reaching Phase) In the stability analysis, in
Part (B)-(C) of Proposition 1 it is proven that during the
sliding phase (i.e. when σ1 = σ2 = 0 from (35)-(36)), the
control variable u is constant, and the error system in (51)
is asymptotically driven to the origin. The reaching phase is
a finite-time transient that takes place only once. During this
phase, the norm of the sliding variable |σ1| = |x4 − x4| is
monotonically decreasing [35], whilst the control signal u is
time-varying but always satisfying 0 < u < 1. Therefore,
during the reaching phase, whilst the state x4 converges in
finite time to its reference x4 as proven above, the error

variable ∆xd is treated as unknown but bounded. This is a
conventional assumption in SM stability analysis [19].

Remark 5 (Equivalent Control) It is essential to note that
in equation (29), the notion of equivalent control in SM control
theory [19], [24] is used. The equivalent control ueqsm does
not correspond directly to the control signal usm applied to
the SEPIC system. Instead, it can be seen as an average
representation of the effect of discontinuous SM control on
maintaining the system on the sliding surface (17). Therefore,
our control scheme, as expressed in (17)-(20), only requires
knowledge of the output voltage x4.

Remark 6 (Analytical Expression of λ1, λ23) Note that an
explicit representation of the eigenvalues of Md(u) can be
determined. If R1 = R2 = R, L1 = L2 = L, C1 = C2 = C
are set, the three eigenvalues are

λ1(u) = −R
L

(58)

λ2,3(u) = − R

2L
±

(√
8Lu2 − 8Lu+ 4L− CR2

2L
√
C

)
j(59)

Remark 7 (Lossless Inductors Analysis) In extending the
methodology presented in [8], our findings offer a broader per-
spective on the stability characteristics of the matrix Md(u).
Specifically, when resistances R1 and R2 are eliminated
(R1 = R2 = 0), yet with inductors and capacitors remaining
unequal (L1 ̸= L2, C1 ̸= C2), the analysis yields the
following eigenvalues:

λ1(u) = 0, (60)

λ2,3(u) = ±

√ (L1 + L2)u
2 − 2L2u+ L2

L1L2C1

 j. (61)

These results corroborate the findings of [8], demonstrating
that the system exhibits marginal stability with eigenvalues
located on the imaginary axis. The derived eigenvalues, re-
flecting the zero dynamics of the system, are characterised by
real parts equal to zero and distinct algebraic and geometric
multiplicities, each being equal to 1. Applying linear control
theory, as [8] have done, confirms that the system remains
stable under the condition of zero resistances. It is crucial to
note that the conclusions drawn in Proposition 1 (A) and (B)
continue to apply even with the assumption of R1 = R2 = 0.
This underscores the robustness of the stability characteristics
of the system in the absence of resistive elements.

Remark 8 (Time-Varying Resistor RL) The conducted sta-
bility analysis considered the load resistor RL as an unspeci-
fied yet constant parameter, following a conventional approach
[12], [22]. This was essential to guarantee the existence of the
equilibrium (7)-(10). It is crucial to emphasise that the SOSM
control scheme employed remains robust to variations in RL.
Specifically, when considering the time-dependent change of
RL, the term −ṘL/RL will be incorporated into equation
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Figure 2. The position of the eigenvalues λ1(u), λ23(u) on the complex
plane. The arrow indicate the direction of movement of the eigenvalues when
u increases from 0 to 1.

(37). The influence of load fluctuations on the performance of
output voltage regulation will be explored in the experimental
tests of our study. The positive constant H defined in (38),
which is required for the selection of controller parameters,
can be chosen conservatively to account for the possible
variations in RL.

Remark 9 (Time-Varying SEPIC Parameters) The obser-
vation made in Remark 8 extends to situations where the
parameters of the SEPIC converter vary over time. Impor-
tantly, variations in C2 are the only factor that influences the
2-SOSM control strategy. A time-varying C2 introduces the
term −Ċ2/C2 into equation (37). Analogously, if the voltage
reference x4 is time-varying, it will introduce the additional
term ẍ4 in (37). To maintain the integrity of the sliding mode, it
is crucial to select the constant H in (38) with a conservative
approach.

Frequency Analysis of the Zero Dynamics

It is important to analyse the frequency response of zero
dynamics in equation (49). Given the model parameters re-
ported in Figure 1, the Magnitude and Phase Bode Diagrams
are evaluated in the MATLAB environment, considering as
input pd = [vg, x4]

⊤, and as output the state vector xd =
[x1, x2, x3]

⊤. The results are depicted in Figure 3. The
plots are also parameterised with respect to the constant duty
cycle u. The identified bandwidth of closed-loop systems is
on the order of 104 (rad/s). Furthermore, a damped resonance
frequency is determined for the value 2000 (rad/s).

IV. EXPERIMENTAL TESTS ON AN EMBEDDED SYSTEM
ARCHITECTURE

In this section, a series of conducted experiments are
presented to confirm the theoretical main result of this paper
using an embedded system architecture.

Setup Description and Controller Design:
The experimental setup and is shown in Figure 4. The equip-
ment is composed of: a DC/DC LED lighting power board
developed by Texas Instruments ( TMDDSDCDCLEDKIT)
[33], a Piccolo F28069 ControlCard [34], a load composed
of an array of LEDs and resistors. The device is powered by
a constant 12 Volt DC power adapter, plugged in the main
grid (220 Volt AC, 50 Hz). Figure 4 describes the underlying
procedure that has been followed to carry out the experiments.
The control algorithm was first developed in a MATLAB-
Simulink R2021b environment. The design constant for the
proposed PWM-based 2-SOSM controller as in (18)-(20) is
µ = 1. This fixed value has been obtained by selecting
α⋆ = 0.5, G1 = 1, 000, G2 = 2.5

500×10−6 = 5, 000, H =
0.05

500×10−6 = 100 and solving the inequality (44), which yields
µ = 1 > max(0.04, 0.8). Once the 2-SOSM control scheme
was proven successful and reliable in MATLAB simulation,
the control algorithm was deployed on the Piccolo Control-
card and real-time experiments were executed. The hardware
PWM modulation of the SEPIC has a sampling time of
Td = 0.01 milliseconds (a PWM frequency of 100 kHz).
Similar experimental sampling times have been chosen for the
specific application of SEPIC in existing relevant works, such
as [8] and [12] The approach is also supported by relevant
theoretical results regarding the discretisation of SM control
schemes using Euler’s method [37]. The embedded system of
the SEPIC includes a preexisting PI control already designed
for the PWM modulation of the SEPIC [33]. The PI control
variable is given by:

uPI = kI

∫
σdτ + kPσ (62)

where kI = 0.0273 and kP = 0.0018. The output signal of
the PI controller is saturated to ensure 0 < uPI < 1. The
appropriate procedure adopted here provides a comparison
of the existing PWM-based PI control strategy for SEPIC,
which is already available for this device, with the 2-SOSM
strategy proposed in this paper. The aim is to demonstrate the
performance enhancement that our methodology can guarantee
when compared with the existing one.

Performance Metrics:
The following three metrics are proposed to comprehensively
evaluate the performances of the voltage regulation strategies:

Mav =
1

T

∫ T

0

|σ|, (63)

Mmax = max(σ), if ∃ t : σ(t) > 0 (64)
Mmin = min(σ), if ∃ t : σ(t) < 0 (65)

where Mav accounts for the average tracking accuracy, Mmax

captures the maximum overshoots of the sliding variable, if
present, and Mmin captures the minimum overshoot of the
sliding variable, if present. For each of the three introduced
metrics, the reduction percentage is defined as

∆M1−SM :=
M1−SM

• −MPI
•

MPI
•

(%), (66)

∆M2−SOSM :=
M2−SOSM

• −MPI
•

MPI
•

(%) (67)
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Figure 3. Frequency Response of the zero dynamics in equation (49), in the form of Bode Diagrams of Magnitude and Phase. The three states x1, x2, x3

are analysed. (Left): vg is the considered input. (Right): x4 is the considered input. The zero dynamic is parameterised with respect to the duty cycle u.
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Performance 
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Figure 4. A schematic of the embedded experiment methodology. The DC/DC
LED lighting power board developed by Texas Instruments (TMDSDCD-
CLEDKIT) is interfaced with a MATLAB/Simulink R2021b environment
where the control scheme is developed (step 1). The control scheme is then
deployed on the Piccolo Control Card (step 2). After the execution of the
experiments in the embedded architecture (step 3), the collected measurements
are sent to a laptop to perform post-process analysis (step 4).

where MPI
• denotes one of the three metrics calculated using

the PI control, M1−SM
• denotes one of the three metrics

calculated using the 1-SM control, and M2−SOSM
• denotes

one of the three metrics calculated using the proposed 2-
SOSM control. The higher (in absolute value) ∆M, the better
the considered control scheme performs compared to the PI
control scheme.

Experimental Results:
The following time-varying voltage reference profile:

x4(t) :=


17 t ≤ 10

18 10 < t ≤ 40

17.5 t = 40

17.5 + 0.075(t− 40) 40 < t ≤ 60

(68)

measured in Volts, is selected, as shown in Figure 5. In
the experimental analysis, the assumption that the voltage
reference for the variable x4 is always constant is relaxed,
and, as per equation (68), periods of time where the reference
is linearly time-varying are considered. Three scenarios are
considered:

• Scenario PI: the SEPIC is controlled via the PI controller.
(62)

• Scenario 1-SM: the SEPIC is controlled via a 1-SM
controller, which is governed by the control law:

u1SM = −0.5sign(σ) (69)

• Scenario 2-SOSM: the SEPIC is controlled via our 2-
SOSM control scheme.

In all the three scenarios, the dynamic nature of a voltage
reference is addressed, as defined by equation (68). Controlled
variations in the load resistor RL are introduced through an
experimental setup involving automated switches governing
an array of LEDs and resistors. The exercise is divided into
three distinct time intervals, each contributing uniquely to the
assessment of the sensitivity and robustness analysis of our
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Figure 5. (Left): Scenario PI; (Centre): Scenario 1-SM; (Right): Scenario 2-SOSM. From the top to the bottom: time histories of the SEPIC output voltage
x4 along with its reference value x

(
4t), with an enlarged view during the time period [10, 11] seconds, the control signals uPI , u1−SM uSM , and the

currents IL1
, IL2

absorbed by the resistor arrays and LEDs.

scheme:
• In the initial interval (0 to 10 seconds), both the output

voltage reference x4 and the load resistor RL are held
constant.

• In the subsequent interval (10 to 40 seconds), the output
voltage reference x4(t) varies over time, while the load
resistor RL remains constant.

• Finally, in the final interval (40 to 60 seconds), both the
output voltage reference x4(t) and the load resistor RL(t)
undergo simultaneous time-varying changes.

The results of the experiments carried out are shown in
Figure 5 and Table II. In all the three scenarios maintaining
the constancy of x4 and RL yields highly accurate tracking of
the reference. When x4(t) is subject to variations while RL re-
mains constant, Scenario PI encounters challenges in reference
tracking. In Scenario 1-SM the time-varying voltage reference
is acceptably tracked, but the system is subject to a substantial

chattering effect. Our proposed scheme in Scenario 2-SOSM
ensures reliable tracking accuracy. Similar observations apply
when both x4 and RL undergo concurrent variations. The
proposed 2-SOSM control strategy is praised for its improved
precision throughout the experiment. As indicated in Table II,
our method shows an impressive improvement 97% in average
tracking accuracy, a 59% reduction in overshoot, and a 86%
decrease in undershoot. Collectively, these results highlight
the effectiveness of the 2-SOSM strategy in significantly im-
proving system performance. The data underscore not only the
2-SOSM capability to improve tracking precision, but also its
potential to reduce unwanted transient behaviours. Although
the 1-SM control strategy offers substantial performance en-
hancement compared to the PI control strategy, it is affected
by a significant chattering effect. This effect causes the out-
put voltage, denoted x4(t), to oscillate at high frequency.
In conclusion, this study introduces significant advances in
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Table II
THE VALUE OF THE PERFORMANCE METRICS ALONG WITH THE INDEX

OF REDUCTION ∆M.

PI 1-SM 2-SOSM ∆M1−SM ∆M2−SOSM

Mav 0.005 0.00020 0.00016 -96% -97%
Mmax 0.0473 0.0235 0.0194 -50% -59%
Mmin -0.9945 -0.5458 -0.1356 -45% -86%

control methodology, particularly through the implementation
of the 2-SOSM approach. This method provides promising
opportunities for performance improvements in the SEPIC
system

Sensitivity Analysis of Scenario 2-SOSM

To evaluate the performance of the proposed control law
(Scenario 2-SOSM) under more challenging conditions, we
run a high-fidelity simulation in the MATLAB Simscape
Electrical Environment and impose perturbations to the model
parameters, namely inductors L1, L2, and capacitors C1, C2,
and to the input voltage vg . In these two analyses, the
reference voltage profile is still governed by (68), and the
load resistor RL varies over time as above. Furthermore, the
auxiliary variable σ̃ is introduced, which is defined according
to equation (17), but in the situation when perturbations are
present.

Model Parameters: The model parameters can vary over
time for a number of factors that affect SEPIC, such as the
ageing of the components, the temperature, and other external
disturbances. Although such disturbances are present but un-
known in the experimental cases discussed above, it is possible
to arbitrarily alter the parameters in the Simscape Electrical
environment. In particular, the considered perturbations are in
the form of an exponential transient, which is:

pi(t) = pi1+(pi2−pi1)
(
1− e

−
t−Tpi
τpi

)
step(t−Tpi) (70)

where pi(t) is a generic time-varying model parameter, pi1 is
its starting (nominal) value, pi2 is its new steady-state value
after the transient, τpi is the exponential constant, step(·)
represents the step function, and Tpi is the time instant at
which the parameter pi(t) starts to vary. For the Scenario 2-
SOSM, variations to the inductors L1, L2 starting at time
instant TPl

= 25 (s), and variations to the capacitors C1, C2,
starting at time instant TPc

= 50 (s) are considered. The
initial values of the model parameters are given in Figure
1, while the new steady-state values of the parameters are:
L12 = 780, L22 = 620 (µH), C12 = 1650, C22 = 1650 (µH)
The exponential constant is chosen as τpc = τpl = 0.1 (s)
Figure 6-(a),(b) shows on the left-hand side the time histories
of the model parameters, while on the right-hand side the
difference σ̃ − σ is evaluated and it remains equal to zero,
signifying that the proposed controller is totally insensitive to
model parameter variations.

Input Voltage: The input voltage vg(t) is perturbed
according to

vg(t) = 12 + 0.1 sin(2000t) + ψ(t)

+ramp(ts = 20, tf = 22, mr = 1), (71)

where ψ(t) is a band-limited noise contains harmonic frequen-
cies of 2000 (rad/s), the signal ramp(ts = 20, tf = 22, mr =
1 ) denotes a ramp function, starting at time instant ts (s),
ending at time instant tf (s), with a slope of mr (V/s). It is very
important to note that the frequency 2000 (rad/s) corresponds
to the value of the resonant frequency identified in the analysis
in Figure 3. Figure 6-(c),(d) shows on the left the time histories
of the input voltage vg(t) governed by (71), while on the right
there is a comparison between the value of σ in the presence
and absence of perturbations to vg(t). It is interesting to note in
Figure 6-(c),(d) the difference σ̃−σ that maps the impact of the
voltage perturbation to the output voltage accuracy. The impact
of the perturbation 0.1 sin(2000t) + ψ(t) on the regulation of
the output voltage is rejected by the proposed controller. A
small deviation can be observed at σ̃ when the ramp variation
to vg(t) is enforced, but it remains within acceptable limits,
in the order of 0.1 (V).

V. CONCLUSION

In this paper, a PWM-based control scheme capable of regu-
lating in finite time the output voltage of SEPICs has been pre-
sented. Inspired by the 2-SOSM control approach, the control
scheme has been designed and its stability property theoreti-
cally analysed. The proposed algorithm has been implemented
in an embedded framework and numerically demonstrated the
superiority of the voltage regulation performance obtained
compared to the results ensured by a standard PI control
scheme. A sensitivity analysis has also confirmed the excellent
performances of of the proposed techniques under parameters
variations and input voltage perturbations. The key findings of
the present research can be viewed as starting points for further
developments. Possible future fundamental research can focus
on the so-called optimal reach of the sliding manifold so that
the finite-time voltage regulation can be made faster. Desirable
future applied research directions of the present proposal will
focus on the experimental testing of our control scheme for
SEPICs applied to EV lithium-ion charging infrastructures or
in zero-emission powertrains.
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