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Thermodynamically optimal protocols for dual-purpose qubit operations
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Information processing, quantum or classical, relies on channels transforming multiple input states to different
corresponding outputs. Previous research has established bounds on the thermodynamic resources required for
such operations, but no protocols have been specified for their optimal implementation. For the insightful case
of qubits, we here develop explicit protocols to transform two states in an energetically optimal manner. We first
prove conditions on the feasibility of carrying out such transformations at all, and then quantify the achievable
work extraction. Our results uncover a fundamental incompatibility between the thermodynamic ideal of slow,
quasistatic processes and the information-theoretic requirement to preserve distinguishability between different
possible output states.
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I. INTRODUCTION

In introducing entropy as an information measure, Shan-
non stressed an essential property of communication chan-
nels: that the message to be transmitted must belong to a set
of possible messages, and that “the system must be designed
to operate for each possible selection, not just the one which
will actually be chosen since this is unknown at the time of
design” [1]. In general, information processing involves mul-
tipurpose operations mapping each of a collection of possible
input signals to their corresponding outputs via some standard
protocol (Fig. 1) [2]. Signals must be encoded in the states
of a physical system, with stored information manifested as
entropy of the medium, and all operations on them must obey
thermodynamic laws—in particular the Clausius inequality,
applied by Landauer to lower bound the energetic cost of
erasure in the presence of a thermal environment [3–6].

Quantum information theory and the development of quan-
tum technologies [7] have driven a surge of interest in basic
limits on thermodynamic performance [8–10], and the role
of novel quantum resources such as coherence [11–17] and
entanglement [18–24]. Beyond foundational interest, energy
consumption and heat generation may be important factors in
the viability of future generations of hardware [25,26].

The energetic requirements for transforming a given quan-
tum state to another have been studied in some detail. If
the entropy of the output state differs from the input, the
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transformation must involve interaction with a heat bath.
Nonetheless, in the absence of additional constraints (e.g.,
imperfect control or finite duration [27–29]), there is no
fundamental barrier to these processes being carried out re-
versibly, provided the protocol is optimized for the particular
input state present. Indeed, concrete protocols have been de-
veloped which in theory saturate the reversible limit, where
the work extraction is equal to the reduction of the system’s
free energy [11,30,31].

On the other hand, relatively little attention has been given
to the thermodynamics of multipurpose quantum operations,
which map each of a collection of possible input states ρn

to respective outputs ηn, the prototypical example being a
single-qubit operation with two input states (Fig. 1). While
the set of inputs is fixed, it is not known which of the inputs
is present in a given instance [2]. The task is now to find
a multipurpose operation M that maps every possible input
state to its target output state. Constructing a one-size-fits-all
protocol presents a more constrained problem: the optimal
strategy for transforming ρ1 to η1 might fail to transform
ρ2 to η2.

It has been shown by Bedingham and Maroney that in
general, multipurpose operations necessarily incur an ir-
reversible energy cost which is dissipated to the thermal
environment [32], in addition to the reversible work implied
by the Landauer bound. Chiribella et al. have explored the
nonequilibrium cost of carrying out multipurpose operations
approximately, using a resource-theoretic approach to lower
bound the number of pure qubit states consumed for a given
accuracy of outputs [33].

However, key questions remain open: there is no prescrip-
tion for how an operation with two or more inputs might be
carried out in a thermodynamically optimal way. Moreover,
no upper bound has been placed on the energy cost.
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FIG. 1. A dual-purpose qubit operation transforms an input state,
either ρ1 or ρ2 (occurring with probabilities p1, p2), into the respec-
tive output η1 or η2. This is implemented via some cyclic variation of
the Hamiltonian, in a procedure which does not require knowledge
of which of the states is present. During the process, the system
exchanges heat with a fixed-temperature environment, and work with
the driving field. Such operations are essential for information pro-
cessing, and we would like to determine the energetic requirements.

The present paper undertakes a detailed thermodynamic
analysis of single-qubit operations with two possible input
states and corresponding outputs: dual-purpose qubit op-
erations. We introduce a family of explicit protocols for
carrying out such operations, as well as means to optimize
for thermodynamic performance. These results are applied in
a numerical case study of work extraction from coherence,
highlighting the scale of the work penalty, as well as qualita-
tive differences from the single-input case. Finally, we derive
an analytic bound on work extraction, which is complemen-
tary to Bedingham and Maroney’s result [32], despite arising
from an entirely different theoretical treatment.

Our bound on work extraction is related to an effective
speed limit: in order to preserve the output states’ mutual
distinguishability, any thermal contact with the environment
must be limited in duration, avoiding complete thermaliza-
tion. This is fundamentally at odds with the requirements for
thermodynamic reversibility, where state transformations in-
volving contact with the environment must happen extremely
slowly, with the state remaining in thermal equilibrium. Our
results call attention to the scale of the resulting energetic
toll, and clearly illustrate the general principles preventing
reversibility for multipurpose operations acting on systems of
any size, with any number of inputs.

II. SETUP

We will primarily consider the following scenario. We are
given a qubit which has been prepared in either state ρ1 or ρ2,
and tasked with transforming it to a corresponding output state
η1 or η2, depending on the input. We know what the possible
states are, and the respective probabilities of their occurrence,
p1 and p2, but not which of the states is present in a given
instance. The objective is to carry out the mapping exactly for
both inputs via some shared protocol, while maximizing the
work extracted (or minimizing work expended) in the process.
If our method extracts W1 of work in transforming ρ1 to η1,

and W2 in transforming ρ2 to η2, then we aim to maximize the
mean work W = p1W1 + p2W2.

Crucially, from an information perspective it is not suf-
ficient to map the average input to the average output. For
example, consider a scenario where the input states are ρ1 =
|0〉〈0|, ρ2 = |1〉〈1| and each occurs with probability 1

2 , so that
the average input is ρ = I

2 . If we consider only their action on
the average state, then the qubit gates I, X,Y , and Z have an
identical effect, all producing the output η = I

2 . But clearly it
would not do to replace X with I in a circuit: the action on
individual input states is important.

It will be assumed that we can vary the qubit Hamiltonian
freely, and thereby control the system’s unitary dynamics—
subject to the condition that the Hamiltonian is reset to its
initial value H0 at the end of the protocol, so that the operation
might be performed in a cycle (for example, to process a string
of inputs). It is also assumed that if the Hamiltonian is held
fixed at H , the qubit will thermalize over some finite timescale
to the Gibbs state τ = 1

Z exp(− H
kBT ), where the temperature T

of the thermal environment is taken to be fixed throughout,
and where Z = tr[exp(− H

kBT )] denotes the partition function.
As is standard practice in quantum thermodynamics

[8,31,34], we define the work done by the system as equal
to the reduction of its internal energy as a direct result of
changing the Hamiltonian, and heat absorbed by the system
as an increase in its internal energy due to a changing state:

Ẇ = −tr[ρḢ ],

Q̇ = tr[H ρ̇]. (1)

We adopt the convention that positive work is done by the
system against the driving field, and positive heat is absorbed
by the system from the thermal environment. Storing or oth-
erwise utilizing the extracted work is a separate issue [24,35]
not treated here.

The Clausius inequality dictates that the work yield of a
thermodynamic process is no greater than the reduction of free
energy F (ρ) = tr[Hρ] − kBT S(ρ) between the initial and fi-
nal state—here S(ρ) = −tr[ρ ln ρ] denotes the von Neumann
entropy [36]. Applying this to our dual-purpose qubit opera-
tion, the mean work extraction is bounded by the free energy
difference between the average input state ρ = p1ρ1 + p2ρ2

and the average output η = p1η1 + p2η2:

W � F (ρ) − F (η)

= tr[H0(ρ − η)] − kBT [S(ρ ) − S(η)]. (2)

We will refer to protocols which saturate (2) as thermo-
dynamically reversible—in that the average output could be
transformed back to the average input at zero net work cost.
Note that the process might still be logically irreversible: it
might be impossible to deterministically recover ρ1 from η1

or ρ2 from η2 [37]. For example, Landauer erasure is logically
irreversible but may saturate (2).

The above already implies a thermodynamic compro-
mise. If we were able to choose our protocol based on
prior knowledge of which of the states ρ1,2 was present,
we could extract work equal to F (ρ1,2) − F (η1,2). However,
due to the concavity of the von Neumann entropy, the ideal
dual-purpose work extraction given by (2) is generally
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less than the weighted average: F (ρ) − F (η) � p1[F (ρ1) −
F (η1)] + p2[F (ρ2) − F (η2)].

This is not the compromise we will be exploring in detail
here. Instead we will be investigating ways that a dual-purpose
protocol might approach the bound given by (2), and analyz-
ing the reasons why even that bound cannot in general be
saturated. We base our approach on a well-studied type of
reversible protocol, which maps a single, known initial state
to some other final state [11]. Taking this as a starting point,
we identify necessary extensions for a dual-purpose operation,
and see where those extensions violate the conditions for
thermodynamic reversibility.

A. How single-input operations are carried out reversibly

It is instructive to consider how an operation with a sin-
gle input ρ and output η can be implemented reversibly.
A protocol which appears in various forms in the literature
[11,13,30,32] proceeds along the following lines.

(1) Begin with a system in the state ρ, with initial
Hamiltonian H0. Abruptly quench the Hamiltonian to Hρ =
−kBT (ln ρ + ln Z I). The system, still in state ρ, is in ther-
mal equilibrium1 at temperature T with respect to Hρ , since
ρ = 1

Z exp(− Hρ

kBT ).
(2) Slowly and smoothly adjust the Hamiltonian from

Hρ to Hη = −kBT (ln η + ln Z I), over a period much longer
than the thermalization timescale. The system undergoes
quasistatic, isothermal evolution, tracking the instantaneous
thermal state from ρ to η.

(3) Quench the Hamiltonian back to H0, quickly enough
that the system undergoes negligible evolution and remains in
the intended output state η.

When the thermodynamic analysis is performed using
Eq. (1), this method is found to saturate the Clausius in-
equality (2) for both classical and quantum states [11,30].
Key to its reversibility is the fact that the processes are either
adiabatic, involving no exchange of heat with the environment
(steps 1 and 3), or quasistatic, with the state at all times
in thermal equilibrium with the environment (step 2). The
system never undergoes irreversible thermalization from an
initial state which is appreciably out of equilibrium [28].

Why can the same approach not be used for a multipurpose
operation? Notice that the Hamiltonians Hρ and Hη are fine
tuned to the input and output state. This cannot be done simul-
taneously for more than one possible input, since if ρ1 �= ρ2,
then Hρ1 �= Hρ2 .

Suppose that we optimize this method for the average
input and output, replacing Hρ and Hη with Hρ and Hη in the
above. The system, regardless of whether it began in state ρ1

or ρ2, thermalizes to ρ at the start of step 2, before slowly
evolving from there to η, finally remaining in that state as the
Hamiltonian is reset in step 3.

This is unacceptable: we obtain the same output state η

irrespective of the input. It does not suffice to produce the right

1This approach fails to work exactly if ρ or η are pure states, since
Hρ/η would require an infinite energy gap. However, the operation
can still be carried out approximately, mapping between mixed states
ε close to ρ and η, for a finite energy cost.

output state only on average.2 A similar problem arises no
matter what state we optimize for. In fact, any initial-state de-
pendence is lost as soon as the system is allowed to completely
thermalize, since the Gibbs state is uniquely determined by
the Hamiltonian for a given temperature. This rules out any
protocol involving quasistatic isothermal evolution, wherever
we require two or more distinct outputs. For multipurpose
operations, we need a framework to treat nonequilibrium
processes.

B. Discrete quantum processes

Our approach is to decompose the operation as a sequence
of discrete steps which are either unitary (and involve only
work) or thermalizing (involving only heat transfer). This
framework, introduced in [31], provides a means to quantify
heat and work for processes which start or end in nonequilib-
rium configurations, and recovers continuous trajectories in
the limit of many steps, including reversible quasistatic ones.
However, it is necessary to extend that framework to account
for incomplete thermalization, for the reason outlined above.
We take the primitive operations to be the following.

1. Unitaries combined with quenches

These encompass operations which involve zero heat trans-
fer, which can be further decomposed into unitary evolution
generated by a fixed Hamiltonian, U = e− i

h̄ Ht ; and instan-
taneous quenches, which alter the Hamiltonian H �→ H ′
without any immediate change in the qubit state. The action
of the combined unitary and quench U is to map the state
ρ �→ UρU †, while extracting work equal to W = tr[Hρ] −
tr[H ′UρU †].

2. Partial thermalizations

Conversely, these represent processes where zero work is
done. A partial thermalization T : ρ �→ λρ + (1−λ)τ mixes
the qubit state with the Gibbs thermal state, τ = 1

Z exp(− H
kBT )

for a given Hamiltonian H , with mixing parameter 0 � λ � 1.
This represents a linear interpolation of the dynamics taking ρ

to τ , and we need not consider any details of the environment
other than its temperature.3 The heat absorbed by the system
is given by Q = tr{H[λρ + (1 − λ)τ ]} − tr[Hρ].

We call S the set of all transformations that can be achieved
as an arbitrary sequence of unitaries and partial thermaliza-
tions, where the Hamiltonian may be changed between one
partial thermalization step and another. The objective, then, is
to compose the dual-purpose qubit operation M ∈ S which
maps ρ1 �→ η1 and ρ2 �→ η2 and, assuming this can be done,
to optimize its thermodynamic performance.

2Unless the objective is to reset the system to a standard state, for
example η1 = η2 = |0〉〈0|, as in Landauer erasure. In that case the
above indeed represents an optimal, thermodynamically reversible
strategy.

3This is clearly a simplification of open-system dynamics, but it
is a useful model and commonly used in quantum thermodynamics
[38–42]. Similar dynamics can be recovered from collisional models
of thermalization [43].
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FIG. 2. (a) A work-from-coherence protocol represented in the Bloch sphere. The operation removes coherences in the energy eigenbasis
for two possible input states ρ1 and ρ2 while preserving energy level populations, leaving the system in the final state η1 or η2. (1) The qubit
Hamiltonian is quickly adjusted, changing the Gibbs state from τ0 to τ . (2) The qubit is allowed to partially thermalize: the initial state—say,
ρ1—is transformed to a mixture with the Gibbs state: η′

1 = λρ1 + (1 − λ)τ . (3) The Hamiltonian is quickly reset to its original value, and
a unitary rotation U is applied, taking the qubit from η′

1 to the final state η1. The values of λ, τ , and U are uniquely chosen such that the
same steps would also transform ρ2 to η2. (b) Extractable work plotted as a function of ρ2, in the plane containing ρ1, |e0〉, and |e1〉. In the
gray region, it is not possible to construct a protocol out of unitaries and partial thermalizations that works for both inputs: in the geometric
construction of panel (a), the thermal state τ would have to lie outside the Bloch sphere. This is in contrast with work-from-coherence protocols
optimized for a single input: in that case, positive work extraction is possible for any state with coherences [11]. W̃ is obtained by numerically
optimizing Eq. (15) with p1 = p2 = 1

2 and N = 20.

III. FEASIBILITY

Before turning to thermodynamic considerations, we ex-
amine whether it is actually possible to carry out a two-input
qubit operation within the framework set out above. As we
will find, the answer depends nontrivially on the input and
output states. To see this, we first establish that the set S
of possible transformations is identical to the set S1 ⊂ S of
transformations that can be carried out with a single partial
thermalization followed by a unitary. Given inputs and out-
puts for which the transformation is feasible, we are able to
explicitly construct a protocol belonging to S1 [see Fig. 2(a)].

As a starting point, consider a generic qubit map M ∈
S composed as a finite sequence of unitaries U and
partial thermalizations T , something of the form M =
T T UUUT U . . . T U . By combining consecutive unitaries and
separating consecutive thermalizations with trivial unitaries
U = I, such an operation can always be rewritten in the form
TNUN . . . T2U2T1U1. Next we observe that any composite op-
eration of the form U−1T U carries out a mapping identical to
a partial thermalization T ′ towards τ ′ = U †τU . To see this,
consider any state ρ, where we obtain

U−1T U (ρ) = U †[λ[UρU †] + (1 − λ)τ ]U

= λρ + (1 − λ)U †τU

= T ′(ρ). (3)

If τ is the Gibbs state for a Hamiltonian H , then τ ′ is the Gibbs
state for H ′ = U †HU . In addition, the heat absorbed from
the environment is the same for both processes, and equal to
the change in internal energy during the partial thermalization

step:

Q = tr{H (λ[UρU †] + (1 − λ)τ )} − tr[H[UρU †]]

= tr{H ′ [λρ + (1 − λ)τ ′]} − tr[H ′ρ]

= Q′. (4)

For any state, U−1T U and T ′ carry out the same transfor-
mation at the same energy cost, and so they are for our
purposes equivalent. This can be employed to further simplify
our ansatz operation. Writing U ′

i = Ui . . .U2U1, and T ′
i =

U ′
i
−1TiU ′

i , and using the fact that U ′
i (U ′

i−1)−1 = Ui,

TNUNTN−1UN−1 . . . T2U2T1U1

= U ′
N

(
U ′

N
−1TNU ′

N

)(
U ′

N−1
−1TN−1U ′

N−1

)
. . .

. . .
(
U ′

2
−1T2U ′

2

)(
U ′

1
−1T1U ′

1

)
= U ′

N T ′
NT ′

N−1 . . . T ′
2T ′

1 . (5)

So, our original operation M could be implemented at equal
energy cost by a sequence of consecutive partial thermaliza-
tions T ′

i followed by a single unitary U ′. While the latter might
pose greater practical challenges, the fundamental limitations
are unchanged. Hence we can drop the primes and consider
protocols of the form UTN . . . T2T1 for the rest of the paper,
without loss of generality.4 The next step is to recognize that
TN . . . T2T1 can be replaced by a single partial thermalization.

4Strictly speaking, a quench still occurs between successive partial
thermalizations, but its immediate effect on the qubit state is the
identity map, which is omitted here for conciseness.
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Starting with N = 2, let T1 be characterized by (λ1, τ1) and T2

by (λ2, τ2). Then for any state ρ,

T2T1(ρ) = λ2[λ1ρ + (1 − λ1)τ1] + (1 − λ2)τ2

= λ2λ1ρ + (1 − λ2λ1)

[
λ2(1 − λ1)

1 − λ2λ1
τ1

+ 1 − λ2

1 − λ2λ1
τ2

]
≡ λeff

2 ρ + (
1 − λeff

2

)
τ eff

2 , (6)

where we have defined λeff
2 = λ2λ1 and τ eff

2 = λ2(1−λ1 )
1−λ2λ1

τ1 +
1−λ2

1−λ2λ1
τ2. It is straightforward to check that λeff

2 ∈ [0, 1], and
that τ eff

2 is a convex combination of density operators and is
therefore itself a density operator. Hence τ eff

2 can be under-
stood to be the thermal state corresponding to a Hamiltonian
−kBT (ln τ eff

2 + ln Z I). So, a single partial thermalization T eff
2

characterized by (λeff
2 , τ eff

2 ) carries out the same mapping as
T2T1.

The result extends inductively: if TN . . . T1 reduces to T eff
N ,

then TN+1TN . . . T1 can be written as TN+1T eff
N , which can be

reduced to T eff
N+1, by the above. The mixing parameter and

thermal state are given by

λeff
N =

N∏
i=1

λi

τ eff
N = λN

(
1 − λeff

N−1

)
1 − λeff

N

τ eff
N−1 + 1 − λN

1 − λeff
N

τN (7)

where λeff
0 = 1 and τ eff

0 = I. The upshot of this is that a two-step
protocol UT eff

N carries out the same mapping as the N+1 step
protocol UTN . . . T1.

What we have shown is that for every operation M ∈ S ,
we also have M ∈ S1. There is an important caveat: while
UT eff

N executes the same mapping as UTN . . . T1, the total heat
absorbed during the process will typically differ. As we will
see in Sec. IV, it is generally thermodynamically favorable to
use N�1 thermalizing steps.

We are now ready to decide on the existence of a suitable
qubit transformation acting on two generic input states, and
give details on how to construct it. Consider an operation M ∈
S , with input states ρ1, ρ2 and outputs η1, η2.5 By the above,
M can be written as UT where U is characterized by some
unitary matrix U , and T by a mixing parameter λ ∈ [0, 1] and
density matrix τ . Then λ, τ , and U must satisfy the following:

U [λρ1 + (1 − λ)τ ]U † = η1

U [λρ2 + (1 − λ)τ ]U † = η2. (8)

Subtracting the second line from the first we obtain

λU (ρ1 − ρ2)U † = η1 − η2, (9)

5We assume a few things about the inputs and outputs. First,
(ρ1, ρ2) �= (η1, η2), so that the operation is not simply the identity.
Second, η1 �= η2: otherwise, we could simply adjust the Hamiltonian
such that the Gibbs state coincides with η1, and allow the qubit
to completely thermalize. This second assumption also implies that
ρ1 �= ρ2, because CPTP quantum operations are never one-to-many.

and taking the trace norm6 of both sides leads to an expression
for the mixing parameter:

λ = ‖η1 − η2‖1

‖ρ1 − ρ2‖1
. (10)

The requirement that λ� 1 necessitates that
‖η1 − η2‖1 � ‖ρ2 − ρ1‖1. Since ρ1−ρ2 is a traceless
Hermitian operator on a qubit, it can be diagonalized
as p|ψ+〉〈ψ+| − p|ψ−〉〈ψ−|, for some p> 0, and some
orthonormal states |ψ+〉 and |ψ−〉. Likewise, we can write
η1−η2 = q|φ+〉〈φ+| − q|φ−〉〈φ−|: note that ‖ρ1 − ρ2‖1 = 2p
and ‖η1 − η2‖1 = 2q. Substituting these expressions into
Eq. (9) leads to a formula for U :

U = |φ+〉〈ψ+| + |φ−〉〈ψ−|. (11)

Now that λ and U have been determined in terms of ρ1, ρ2, η1,
and η2, a rearrangement of the first line7 of Eq. (8) yields an
expression for τ :

τ = 1

1 − λ
[U †η1U − λρ1]. (12)

Equation (12) by itself guarantees that τ is a Hermitian
operator with unit trace. However, we also require τ � 0 in
order that τ is a well-defined density matrix.

So, given an operation specified by inputs ρ1, ρ2 and out-
puts η1, η2, it is straightforward to determine whether the
operation belongs in S1: we can evaluate λ,U , and τ using
Eqs. (10)–(12), and check that λ� 1 and τ � 0. If both these
conditions hold, then the above construction provides an ex-
plicit protocol UT to carry out the operation [see Fig. 2(a)].
Moreover, the operation can also be implemented using an
extended protocol UTN . . . T1 ∈ SN for which λeff

N and τ eff
N

as given in (7) are equal to λ and τ in Eqs. (10) and (12).
Conversely, if λ > 1 or if τ has a negative eigenvalue, then
the dual-purpose operation cannot be composed as a sequence
of unitaries and partial thermalizations, no matter how many
steps are used.8

IV. WORK EXTRACTION

The decomposition of a qubit operation into unitaries and
partial thermalizations is not unique—and the various ways
it can be done generally involve differing net transfers of
work and heat. This leads to the question of optimal imple-
mentation: for a given set of inputs and outputs, how can
the operation be carried out so as to yield as much work as
possible (or expend as little as possible)? And how does the
optimum compare against the fundamental bound set by the
second law?

6‖ρ‖1 = tr[
√

ρρ†].
7Doing the same for the second line (or any affine combination of

the two lines) would give an equivalent expression.
8Not all CPTP channels can be composed in this way: the set of

feasible operations can be expanded through the use of an ancilla
system. To operate in a cycle, the ancilla’s state must be reset, erasing
thermodynamically relevant system-ancilla correlations [18,32]. For
the simplicity of analysis, we here consider only those qubit opera-
tions which can be implemented without the use of ancillas.
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We approach this problem by first deriving an expression
for the average work extraction for a protocol involving N
partial thermalization steps. This is employed in Sec. IV A
to numerically solve for optimum work from coherence pro-
tocols for two inputs, allowing for comparison against the
reversible single-input protocol in [11]. In Sec. IV B we derive
a general upper bound on work extraction for two-input oper-
ations, opening up an interpretation of why thermodynamic
reversibility cannot be achieved.

We choose as a figure of merit the average work yield,
W = p1W1 + p2W2, where p1 is the probability that the input
is ρ1, and W1 is the work extracted in transforming ρ1 to η1

(and likewise for the second input). Since the overall change
in the qubit’s expected energy is path independent, then by
the first law (	U = Q − W ), maximizing work extraction
amounts to the same thing as maximizing the heat drawn from
the environment.

First, let us evaluate the heat for a single partial thermaliza-
tion, with mixing parameter λ and thermal state τ , acting on a
state ρ. The heat absorbed is equal to the resulting difference
in the qubit’s expected energy:

Q = tr[H (λρ + (1 − λ)τ )] − tr[Hρ]

= −kBT (1 − λ)tr[(τ − ρ) ln τ ]. (13)

In the second line, we used that H = −kBT [ln(τ ) + ln Z I].
Now, consider a protocol UTN . . . T1: The average heat drawn
from the environment is given by a sum over the N partial ther-
malization steps, averaged over the input states (the unitary
step involves no heat transfer). Letting ρ i

n = Ti−1 . . . T1(ρn)
denote the transformed state of ρn prior to the ith partial
thermalization, for n = 1, 2, we have

Q = −kBT
2∑

n=1

pn

N∑
i=1

(1−λi )tr
[(

τi − ρ i
n

)
ln τi

]
= −kBT

N∑
i=1

(1−λi )tr[(τi − ρ i ) ln τi]

= kBT
N∑

i=1

(1−λi )[S(τi ) − S(ρ i ) − S(ρ i||τi )] (14)

where ρ i = Ti−1 . . . T1(ρ) ≡ p1ρ
i
1 + p2ρ

i
2 is the average

state before the ith partial thermalization, and S(ρ||σ ) =
tr[ρ ln ρ − ρ ln σ ] is the quantum relative entropy. Invoking
the first law, the work yield is given by subtracting the overall
change of expected energy from (14), to give

W = kBT
N∑

i=1

(1−λi )[S(τi ) − S(ρ i ) − S(ρ i||τi )]

− tr[H0(η − ρ )]. (15)

The above is straightforward to evaluate given the parameters
λi, τi. However, we are ultimately interested in the maximum
possible work extraction, W̃ , over all suitable choices of
protocol:

W̃ = lim
N→∞

max
{λi},{τi}

W , (16)

where the maximization9 is subject to the constraints that
λeff

N = λ and τ eff
N = τ as given in Eqs. (7), (10), and (12), en-

suring that the protocol maps ρ1 �→ η1 and ρ2 �→ η2. Note that
the expression for W (15) only depends on the trajectory of the
average state ρ: the individual inputs and outputs ρ1, ρ2, η1,
and η2 enter Eq. (16) implicitly through the optimization
constraints.

Recall that some operations are unfeasible because any
suitable protocol would involve thermalization towards a state
τi with a negative eigenvalue. For operations at the bound-
ary of feasibility, τi must approach a pure state, with a zero
eigenvalue. But in this limit, the relative entropy term S(ρ i||τi)
appearing in (15)—and consequently the work cost of the
operation—diverge towards +∞.

While (16) does not admit a simple closed form, it does
provide a starting point for numerical investigations, and will
later provide the basis for an analytic upper bound on work
extraction, (23). We effectively already have a lower bound on
W̃ stemming from the protocol derived at the end of Sec. III:
the expressions for λ and τ in Eqs. (10) and (12) can be
directly substituted into (15).

A. Work from coherence

In the previous subsection we derived a formula for the
average work yield of a two-input qubit operation (15). In
order to better understand its properties, let us apply it to a
specific operation: work extraction from coherence.

By this we mean a process of work extraction which
leaves unchanged the state’s diagonal matrix elements
〈en|ρ|en〉 in the eigenbasis of the initial Hamiltonian H0,
and which involves a single heat bath at fixed temperature
T and a cyclic variation of the Hamiltonian, returning it
to H0 at the end of the process [11,13,28]. In this con-
text, coherences—that is, off-diagonal elements 〈em|ρ|en〉—
represent a thermodynamic resource. A state ρ with nonzero
coherences has lower von Neumann entropy than the corre-
sponding decohered state η = diag(ρ) := |e0〉〈e0|ρ|e0〉〈e0| +
|e1〉〈e1|ρ|e1〉〈e1|. Since the expected energy is unchanged, i.e.,
tr[H0(η − ρ)] = 0, transforming ρ to η results in a reduction
in free energy 	F = kBT [S(η) − S(ρ)] � 0. Consequently, if
carried out reversibly, the operation can extract positive work,
such as in the protocol developed in [11] for a single input
state.

Still, the question remains how closely a dual-purpose
work from coherence protocol can approach the reversible
work yield. We consider an operation with two inputs ρ1,2,
and completely decohered outputs:10

η1,2 = diag(ρ1,2). (17)

Figure 2(a) represents a protocol which carries out this map-
ping using a single partial thermalization step. If the process

9The optimum work extraction must increase monotonically with
the number of partial thermalization steps N : for any N-step protocol
we can construct an N+1 step protocol for the same operation with
identical work yield by decomposing one of its partial thermalization
steps Ti = (λi, τi ) into two consecutive steps T (1)

i =T (2)
i = (

√
λi, τi ).

10By linearity, η = diag(ρ).
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FIG. 3. (a) Coherence work extraction for protocols involving increasing numbers of partial thermalization steps N , obtained via numerical
optimization (purple scatter). Thermodynamic performance rapidly improves with N , converging towards an upper limit (dotted line) which is
still significantly lower than the work extraction for a thermodynamically reversible operation, given by the free energy reduction kBT [S(η) −
S(ρ )] (blue line). The improved analytic bound Eq. (23) (green line) provides a closer estimate of the dual-purpose work extraction, accounting
for the constraint of preserving distinguishability between the two input states. The scatter was obtained by numerically maximizing Eq. (15)
over τ1, . . . , τN , for input states with Bloch vectors ρ1 = (0.735, 0.273, −0.286) and ρ2 = (−0.496, −0.470, −0.294), and outputs η1 =
(0, 0, −0.286) and η2 = (0, 0, −0.294), with p1=p2= 1

2 . The initial Hamiltonian is taken as H0 = E0σz. (b) Work extraction for an operation
which partially removes coherences in the energy eigenbasis (purple curve). Off-diagonal elements 〈em|ρ|en〉 are scaled by a factor 1− γ ,
such that γ = 0 leaves the state unchanged and γ = 1 corresponds to complete dephasing. Surprisingly, for this pair of input states, maximum
work extraction is not achieved for complete dephasing, where the reduction of free energy (blue curve) is greatest: in fact the maximum is
at γ ≈ 0.96 (dotted line). The analytic bound (23) (green curve) better captures the dependence of work extraction on γ . On the other hand,
the single step work extraction (red curve) provides a lower bound on the optimum, and since λ (10) and τ (12) are uniquely determined
in this case we can constrain W̃ to the shaded window in the figure without performing any numerical optimization. For this plot, the input
Bloch vectors were ρ1 = (0.249, 0.183, 0.494) and ρ2 = (−0.044, −0.640, 0.508), and the outputs η1 = (0.249(1− γ ), 0.183(1− γ ), 0.494)
and η2 = (−0.044(1− γ ), −0.640(1− γ ), 0.508), with p1=p2= 1

2 . The optimum two-input work output was computed by maximizing (15)
using N=20 steps: as can be seen in panel (a), this is sufficient for the work extraction to converge with reasonable precision. For both panels,
the input states were generated randomly and postselected to illustrate the sign change for work extraction with 2+ thermalization steps in
panel (a), and to show the thermodynamic advantage of incomplete dephasing in panel (b).

could be carried out in a thermodynamically reversible way, it
would extract work equal to the free energy reduction −	F =
kBT [S(η) − S(ρ )] � 0, on average over the inputs.

On the other hand, the actual maximum work extraction
can be estimated numerically using Eq. (15). Fixing the states
ρ1, ρ2 and the number of partial thermalization steps N , the
work output W can be maximized as a function of the thermal
states τ1, . . . , τN−1 and mixing parameters λ1, . . . , λN−1.11 If
N is chosen sufficiently large, the resulting value of W will be
a close approximation to the overall optimum W̃ . Figure 3(a)
shows convergent behavior of W with increasing N . Typically,
20 thermalization steps are sufficient for the work yield to
converge within a 1% margin of its limiting value. As an initial
guess for optimization, we took that for all i, τi = τ as given in
Eq. (12). It was assumed12 throughout that λi = ( ‖η1−η2‖1

‖ρ1−ρ2‖1
)

1
N .

The resulting numerical approximation to W̃ is conspic-
uously lower than the change in free energy. In fact, for
many pairs of input states, work extraction is not possible
at all. Uniform sampling of the Bloch sphere reveals that the

11For the final partial thermalization, λN and τN are fixed by the
constraint that λeff

N = λ and τ eff
N = τ .

12While this is a nontrivial assumption for finite N , it should make
no difference in the limit as N → ∞. Any partial thermalization step
(λ, τ ) can be approximated by n consecutive steps (( ‖η1−η2‖1

‖ρ1−ρ2‖1
)

1
N , τ ),

where n is chosen such that ( ‖η1−η2‖1
‖ρ1−ρ2‖1

)
n
N ≈ λ.

operation (17) is only feasible for 62% of pairs of input states:
the remainder violate the conditions established at the end
of Sec. III, and there is no way to carry out the intended
mapping for both inputs using unitaries and partial thermal-
izations. Positive work extraction is only possible for 10%
of the feasible input pairs with p1 = p2 = 1

2 . The heatmap
in Fig. 2(b) gives an indication of the relative scale of these
regimes: unfeasible pairs are marked in gray, and ones where
work can be extracted are marked in blue. For the majority
of states, it is possible to remove coherences while preserving
the energy distribution, but it costs work to do so—these pairs
lie in the red regions.

This is a stark departure from single input work from
coherence, which can be performed reversibly for any state,
and can always be used to extract work. Evidently, the com-
promises necessary for a dual-purpose operation impose a
severe energetic penalty. In Sec. IV B we will investigate the
thermodynamic explanation for this penalty, and derive an
improved bound on work extraction, Eq. (23) (plotted as the
green lines in Fig. 3).

In the meantime there is an interesting caveat to explore.
Up to this point we have considered an operation which
completely removes energy-basis coherences. However, in a
broader sense, work from coherence can include any operation
which leaves the energy level populations unchanged—that is,
one for which diag(η1,2) = diag(ρ1,2). This could mean sim-
ply scaling the coherences by some factor 1 − γ ∈ [0, 1], such
that γ = 0 leaves the state unchanged and γ = 1 corresponds
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to complete removal of coherences:

η1,2 = (1 − γ )ρ1,2 + γ diag(ρ1,2). (18)

The work yield for an operation of this type is plotted as
a function of γ in Fig. 3(b). Surprisingly, maximum work
extraction is not necessarily achieved by completely removing
coherences—even though that would result in a greater reduc-
tion in free energy. For some pairs of inputs, such as those in
Fig. 3(b), a partial decoherence operation may extract positive
work where the full removal of coherences would cost work
to perform, or even where full removal of coherences is not
feasible.

B. Bound on extractable work

For operations with a single input and output state, ther-
modynamic reversibility can be recovered in the limit of large
N : crucially, the system’s state must remain infinitesimally
close to thermal equilibrium whenever it is in contact with
the environment [31]. This is the familiar quasistatic limit.
Why can we not do the same for a multipurpose operation
by ensuring that the average state undergoes a quasistatic
evolution?

Consider the term
∑N

i=1(1 − λi )[S(τi ) − S(ρ i )] appearing
in the equation for W (15). Due to the concavity of the von
Neumann entropy, for all i,

(1−λi )[S(τi ) − S(ρ i )] = [λiS(ρ i ) + (1−λi )S(τi )] − S(ρi )

� S(λiρ i + (1−λi )τi ) − S(ρi )

= S(ρ i+1) − S(ρ i ). (19)

So, the sum over i is bounded by the following:

N∑
i=1

(1 − λi )[S(τi ) − S(ρ i )] �
N∑

i=1

[S(ρ i+1) − S(ρ i )]

= S(η) − S(ρ ), (20)

where we have used that the average state prior to the first
partial thermalization step is equal to the average input state,
ρ1 = ρ, and that following the final partial thermalization the
state is related by a unitary to the average output, ρN+1 =
U †ηU , where U is given in Eq. (11). So, the overall work
extraction is bounded by

W̃ � kBT [S(η) − S(ρ )] − tr[H0(η − ρ )]

− kBT
N∑

i=1

(1 − λi )S(ρ i||τi ). (21)

The first two terms in (21) represent the free energy re-
duction −	F . The final term is a contribution to irreversible
entropy production (wasted free energy) kBT � = −	F −
W̃ , resulting from lag of the average state behind the thermal
state during partial thermalizations. Similar lag terms appear
in other works but are usually associated with suboptimal
protocols, for example due to inaccurate knowledge of the
initial state, limited control, or finite speed precluding ideal
quasistatic processes [28,44–46]. Here we will show that the
lag is necessary to preserve dependence on the initial state
(see Fig. 4), and the resulting energy penalty is unavoidable
for dual-purpose operations. To do so we employ Pinsker’s

FIG. 4. State trajectories during a sequence of many partial ther-
malization steps, approximating a smooth curve. In the ith step,
the qubit state (ρ i

1 or ρ i
2) evolves a small fraction of the distance

towards the thermal state τi, which varies throughout the protocol:
the tangents to the states’ trajectories point towards τi. The lag
δi = ‖ρ i − τi‖ of the average state ρ i behind the thermal state τi leads
to irreversible entropy production: the process can only approach
thermodynamic reversibility if δi can be made arbitrarily small for
every partial thermalization step (21). However, if δi is made too
small, the distance between the two input states ‖ρ i

1 − ρ i
2‖ will

decay much faster than the remaining distance ‖ρ i − η′‖ between
the present average state ρ i and the target average state η′ at the
end of the process. If δi is too small during one thermalizing step,
it must be compensated for with a larger δ j in another step, in order
to reach the target output states while preserving the distinction
between ρ1 and ρ2. The average lag δ throughout the process is
lower bounded, meaning that entropy production and the resulting
irreversible dissipation of free energy cannot be eliminated (23).

inequality S(ρ||σ ) � 1
2‖σ − ρ‖1

2 [47] to relate the quantum
relative entropy to the trace distance, and thereby bound the
entropy production in (21) by

� � 1

2

N∑
i=1

(1 − λi )‖τi − ρ i‖1
2

= 1

2

N∑
i=1

1

1 − λi
‖ρ i+1 − ρ i‖1

2, (22)

where the second line was obtained by substituting ρ i+1 =
λiρ i + (1 − λi )τi. At a glance it might appear that the
above can be made arbitrarily small. For the average step,
‖ρ i+1 − ρ i‖1 need not exceed 1

N ‖U †ηU − ρ‖1: so the sum
of squares in (22) might vanish in the limit of large N ,
provided that 1

1−λi
remains bounded. However, each partial

thermalization step reduces the distance ‖ρ i
1 − ρ i

2‖ between
the input states by a factor λi—so the geometric mean of λi

must equal ( ‖η1−η2‖1

‖ρ1−ρ2‖1
)

1
N [see Eq. (10)]. As a result, 1

1−λi
does

indeed diverge for large N . Put differently, while ‖ρ i+1 − ρ i‖1

can vanish for all steps, the distance between the average state
and the thermal state ‖τi − ρ i‖1 = 1

1−λi
‖ρ i+1 − ρ i‖1 cannot,

and this is ultimately the thermodynamically relevant one.
Figure 4 illustrates the dilemma of minimizing irreversible
dissipation while preserving distinguishability between the
individual output states.

Applying standard geometric inequalities to Eq. (22) (see
the Appendix), the extractable work (21) can be upper
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bounded in terms of the input and output states:

W̃ � −	F − kBT

2

‖U †ηU − ρ ‖1
2

ln
( ‖ρ1−ρ2‖1

‖η1−η2‖1

) , (23)

where the unitary U is given by Eq. (11). The final term,
representing unavoidable dissipation, fits well with the intu-
itive picture presented in Fig. 4. Looking at the numerator, the
dissipation is greater for operations which require the average
state ρ to be moved a greater distance through the Hilbert
space to U †ηU during the thermalizing portion of the proto-
col. From the denominator, we see that it is costly to preserve
a relatively large trace distance between the individual outputs
η1 and η2.

On the other hand, an operation can be made thermody-
namically reversible only if the dissipation term (23) vanishes.
Setting the numerator to zero implies that the average out-
put is related to the average input by a unitary.13 Looking
at the denominator, dissipation asymptotically vanishes as
‖η1 − η2‖1 → 0, with reversibility recovered in the limiting
case where both inputs are mapped to the same output. Most
prominently, Landauer erasure falls into this latter category,
resetting the system from any initial state to a standard |0〉〈0|
state. The exceptional cases where the wasted free energy
may vanish are in line with those identified by Bedingham
and Maroney [32]. However, we are able to go further by
specifying a procedure to carry out the operation, as well as
methods to optimize for maximum work extraction.

The irreversible work cost implied by (23) does not dis-
appear as the probabilities p1 or p2 approach zero. In fact
we see a discontinuous jump in W̃ between the single-input
operation where input state ρ1 occurs with certainty, and
the dual-purpose operation where ρ1 occurs with probability
1 − ε and ρ2 with probability ε.

While (23) is not a tight bound, it gives a significantly
closer estimate to the optimum work extraction W̃ than the
free energy reduction alone. This is evident in both panels
of Fig. 3, where the improved bound is plotted alongside
the reversible work −	F , as well as numerically optimized
protocols.

In practice, the need to avoid complete thermalization
means that thermal contact with the environment must be
limited in duration. In a simple model, we might treat the qubit
as approaching the Gibbs state at an exponential rate with a
fixed timescale tth, such that for each partial thermalization
step, the mixing parameter λi can be expressed in terms of the
duration of the step ti, as λi = exp(− ti

tth
).

In that case, the total duration ttot = ∑N
i=1 ti of thermal con-

tact is determined by the reduction in trace distance between

13Moreover, it must be the same unitary U (11) that maps the eigen-
basis of ρ1 − ρ2 to that of η1 − η2. However, this does not imply that
the overall operation is purely unitary, in that η1,2 = Uρ1,2U †. For
example, the operation could remain thermodynamically reversible
if the qubit underwent partial thermalization towards a thermal state
τ identical to the average state ρ.

the inputs:

ttot

tth
= − ln

N∏
i=1

λi = ln

(‖ρ1 − ρ2‖1

‖η1 − η2‖1

)
. (24)

This in turn means that the irreversible dissipation of free
energy is inversely proportional to ttot. From (23), we have

−	F − W̃ � kBT

2

tth
ttot

‖U †ηU − ρ‖1
2
. (25)

Dissipation could vanish in the limit of large ttot, but the trace
distance between the outputs ‖η1 − η2‖1 would vanish too, as
can be seen from Eq. (24). This means that operations with
more than one output cannot be carried out arbitrarily slowly,
even though it would be thermodynamically favorable to do
so.

V. CONCLUSION AND OUTLOOK

In the context of information processing, it is necessary
to consider physical processes which produce different final
states depending on how the system is initialized. We have
examined the thermodynamics of a simple case: qubit trans-
formations with two possible input states. For what might
appear a straightforward extension beyond single-input pro-
cesses, the additional constraints have drastic consequences.

In Sec. III we characterized the class of two-input qubit
operations which can be implemented through a combination
of unitary and partial thermalization steps, and determined a
three step procedure for carrying them out. In Sec. IV, we
found that even for thermodynamically optimal protocols, a
considerable fraction of the free energy change must be irre-
versibly dissipated. This is attributed to the requirement that
the system is significantly out of equilibrium during thermal
contact with the environment. By quantifying the resultant
entropy production, we derived an improved upper bound on
the extractable work [Eq. (23)], and related it to an effective
minimum speed limit.

Naturally, there arises the question of extending the present
quantitative results to general n-input multipurpose opera-
tions. We expect this extension to be nontrivial, not least
because for any three states ρ1, ρ2, ρ3 of a d-dimensional sys-
tem, the generalized angle tr[(ρ1−ρ2 )(ρ1−ρ3 )]

tr[ρ1−ρ2]tr[ρ1−ρ3] is preserved under
both unitaries and partial thermalizations. If this angle were to
differ between a triplet of input states and the corresponding
outputs, the transformation would be impossible without ex-
panding the set of primitive operations. For 3+ dimensional
systems, this could be approached by incorporating partial
level thermalizations, whereby partial thermalization occurs
within energy subspaces [41]. There is also the prospect of
addressing the same problem using a more sophisticated treat-
ment of thermalization dynamics, for example by accounting
for non-Markovian effects.

On the other hand, the arguments in Sec. II A which rule
out reversible quasistatic processes extend readily, and we
expect that qualitatively similar results may hold for quantum
operations of higher complexity. At a basic level, more input
states will always mean a more constrained thermodynamic
optimization, and can only mean greater energy penalties: in
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this sense, much of the insight can already be gained from the
two input case analyzed here.

Sometimes, quantum investigations uncover analogous
classical effects [13]. Arguably the only truly quantum princi-
ple in play here is the inability to freely copy or measure the
state14 and choose the protocol accordingly. We might imag-
ine an analogous classical scenario where practical constraints
prevent us from incorporating measurement feedback in our
process: in that case we anticipate that a similar thermody-
namic handicap might apply.

As we have seen, optimizing a quantum thermodynamic
process for more than one input is more costly than the free
energy difference would suggest. Conversely, holding prior
knowledge of the system’s state confers a greater advantage,
emphasizing the fuel value of information [18,49]. This adds
to a growing recognition that the Clausius inequality and
Landauer bound do not tell the whole story with respect to
irreversibility [29,32,46,50,51].

The code used to produce the data in Figs. 2 and 3 is avail-
able upon reasonable request to JD, j.dunlop@exeter.ac.uk.
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APPENDIX: DERIVING THE BOUND
ON ENTROPY PRODUCTION

Applying the Cauchy-Schwarz inequality to (22), the en-
tropy production � can be bounded by

� � 1

2

√√√√ N∑
i=1

1

(1 − λi )2

√√√√ N∑
i=1

‖ρ i+1 − ρ i‖1
4. (A1)

The first square-root term in the above can be bounded using
the power mean inequality and the fact that ln x � x − 1 for
all x > 0:(

1

N

N∑
i=1

(1 − λi )
−2

)− 1
2

� 1

N

N∑
i=1

(1 − λi )

= 1 − 1

N

N∑
i=1

λi

14These are necessary ingredients of Bennett’s reversible computa-
tion [48] and of unitary quantum computation, if the result is to be
read out.

� 1 −
N∏

i=1

λ
1
N
i

� − 1

N
ln

( N∏
i=1

λi

)

⇒
√√√√ N∑

i=1

1

(1 − λi )2
� N

√
N

− ln
(∏N

i=1 λi
) .

(A2)

Turning to the second square-root term in (A1), we employ
the fact that for any collection of positive real ai,

∑N
i=1 a2

i �
1
N (

∑N
i=1 ai )2:

√√√√ N∑
i=1

‖ρ i+1 − ρ i‖1
4 � 1√

N

N∑
i=1

‖ρ i+1 − ρ i‖1
2

� 1

N
√

N

(
N∑

i=1

‖ρ i+1 − ρ i‖1

)2

� 1

N
√

N
‖ρN+1 − ρ1‖1

2, (A3)

where the last line expresses the triangle inequality. Substitut-
ing (A2) and (A3) into (A1),

� � ‖ρN+1 − ρ1‖1
2

−2 ln
(∏N

i=1 λi
) . (A4)

Finally, we note that ρ1 = ρ and that U ρN+1 U † = η, where
U is given by Eq. (11), and that

∏N
i=1 λi = ‖η1−η2‖1

‖ρ1−ρ2‖1
(10). This

allows us to express (A4) in a way that depends only on the
input and output states,

� � 1

2

‖U †ηU − ρ‖1
2

ln
( ‖ρ1−ρ2‖1

‖η1−η2‖1

) , (A5)

finally leading to an upper bound on extractable work:

W̃ � −	F − kBT

2

‖U †ηU − ρ‖1
2

ln
( ‖ρ1−ρ2‖1

‖η1−η2‖1

) . (A6)
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