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Abstract
The concept of computational intelligence (CI)-based optimization algorithms emerged in the early 1960s as a more

practical approach to the contemporary derivate-based approaches. This paved the way for many modern algorithms to

arise with an unprecedented growth rate in recent years, each claiming to have a novel and present a profound breakthrough

in the field. That said, many have raised concerns about the performance of these algorithms and even identified funda-

mental flaws that could potentially undermine the integrity of their results. On that note, the premise of this study was to

replicate some of the more prevalent, fundamental components of these algorithms in an abstract format as a measure to

observe their behavior in an isolated environment. Six pseudo algorithms were designed to create a spectrum of intelli-

gence behavior ranging from absolute randomness to local search-oriented computational architecture. These were then

used to solve a set of centered and non-centered benchmark suites to see if statistically different patterns would emerge.

The obtained result clearly highlighted that the algorithm’s performance would suffer significantly as these benchmarks got

more intricate. This is not just in terms of the number of dimensions in the search space but also the mathematical structure

of the benchmark. The implication is that, in some cases, sheer processing resources can mask the algorithm’s lack of

sufficient intelligence. But as importantly, this study attempted to identify some mechanics and concepts that could

potentially cause or amplify this problem. For instance, the excessive use of greedy strategy, a prevalent measure

embedded in many modern CI-based algorithms, has been identified as potentially one of these reasons. The result,

however, highlights a more fundamental problem in the CI-based optimization field. That is, these algorithms are often

treated as a black box. This perception cultivated the culture of not exploring the underlying structure of these algorithms

as long as they were deemed capable of generating acceptable results, which permits similar biases to go undetected.

Keywords Computation intelligence-based optimization � Metaheuristic optimization � Evolutionary algorithms �
Swarm intelligence � Computational intelligence � Optimization

1 Introduction

In the early 1960s, the concept of computational intelli-

gence (CI)-based methodologies arose as a more practical

alternative to more traditional derivate-based approaches to

mathematical programming, also known as optimization

(Zolghadr-Asli 2023a). These were, in essence, providing

an algorithmic guided sampling-based computational

architecture that was, at least in theory, not restricted by

problems rooted in high dimensionality, multimodality,

epistasis, non-differentiability, and discontinuous search

space imposed by constraints (Yang 2010; Du and Swamy

2016; Bozorg-Haddad et al. 2017). Though known by

different names, such as metaheuristic optimization algo-

rithms, a term coined in the 1980s (Glover 1986), the main

idea behind these algorithms is direct intelligence-like

sampling. In general, these algorithms would attempt to

take samples from the search space, whether via one or
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multiple search agents, evaluate the said sample against the

objective function, and use this information within an

intelligent-like computational structure to update the

positions of the said agents. This process would be repeated

until the algorithm reached a termination criterion, at

which point the algorithm is expected to converge to the

solution. The caveat is that the emerging result is often a

near-optimum solution rather than a global one. In fact,

there is even no guarantee that the algorithm has converged

or that it has instead got trapped in a local optimum. These

issues, however, can often be addressed by fine-tuning the

parameters of the algorithms.

This concept has gained traction in recent years,

inspiring many ‘‘novel’’ algorithms. Over 260 algorithms

were introduced between 1990 and 2021, according to the

Evolutionary Computation Bestiary dataset, a known

repository that documents novel CI-based optimization

algorithms (Campelo and Aranha 2021). What justifies this

sheer number of supposedly novel algorithms is the widely

known principle of the no-free-lunch theorem (NFLT)

(Wolpert and Macready 1997). The NFLT is an impossi-

bility theorem stating that a general-purpose, universal

strategy can never exist in perpetuity (Gómez and Rojas

2016; Zolghadr-Asli 2023b).

Although the aim of this research is not to undermine

the widely accepted nature of this field or its contemporary

interpretations, and the abundance of seemingly novel

algorithms is not inherently problematic, it prompts the

inquiry into whether these purportedly ‘‘novel’’ and ‘‘in-

spired’’ algorithms yield tangible and meaningful break-

throughs. On that note, there is a school of thought that

takes a solid dissenting stand against some of the modern

algorithms by questioning the integrity of these new

algorithms and their reliability in the face of actual prob-

lems (Tzanetos and Dounias 2021; Aranha et al. 2022;

Camacho-Villalón et al. 2022; Velasco et al. 2024). As

pointed out by such studies, a recognized documented

recurring computational issue with some of these modern

algorithms, for instance, is their tendency to gravitate

toward the center of the search space, a problem often

referred to as ‘‘central bias’’ (Kudela 2022). In certain

cases, the skeptics even call into question the novelty of

these ideas, going as far as to say that in some of these

algorithms, the claimed ‘‘novelty’’ is primarily limited to

the naming conventions rather than offering a genuinely

new computational architecture (Sörensen 2015; Fong et al.

2016). However, evidence suggests this seems to be a more

recent trending problem, as demonstrated by Kudela

(2023), where 47 out of the 90 examined ‘‘novel’’ algo-

rithms introduced between 1987 and 2022 have, to some

degree, showcased this shortcoming. According to the

findings of similar studies (i.e., Kudela 2022), some of the

most extensively cited classical benchmark problems are

built so that they are fundamentally incapable of flagging

such issues.

A fundamental issue with the use of such algorithms is

that, like many other data-driven models, it has become an

unspoken standard to consider these as a black box. The

implication of this black box label is that it permeates the

user not to have an explicit understanding of how these

algorithms work so long as the generated results fall within

the conventional range of what is expected from such

models. In turn, not only errors like central bias would go

undiscovered, but no changes can be made toward a more

robust algorithm because there is no reliable feedback on

how the algorithm operates.

On that note, this paper tends to take a closer and more

critical look at the underlying computational structure of

these algorithms to identify the reason behind the docu-

mented bias. Ultimately this could equip us with a more in-

depth understanding of why and, as importantly, how some

of these algorithms perform virtually perfectly under cer-

tain conditions and yet fail to handle other computationally

complex problems. In that spirit, five pseudo algorithms

were developed to represent a continuum, ranging from

absolute randomness to some variation of computational

intelligence. The inspiration behind these is the compo-

nents prevalent in some modern computational intelli-

gence-based optimization algorithms that have displayed

this bias. These were then used to solve two sets of opti-

mization problems, one with an optimum solution set at the

center of the search space and another set in which the

optimum solutions have been relocated from the center.

Each pseudo algorithm was then executed on numerous

independent runs under different setups to see if a statis-

tically significant pattern would emerge to signal a problem

with any of the said mechanisms often incorporated in

some modern computational intelligence-based optimiza-

tion algorithms.

2 Materials and methods

To unveil how CI-based algorithms gravitate toward what

they perceive to be the optimum solution, these algorithms

were first stripped down to their core mechanisms, and, in

turn, some of the more prevalent modules that can be found

in these algorithms were selected for further evaluation.

Each isolated module was then represented via a pseudo

algorithm, where some were governed by pure randomness

while the rest were geared toward a degree of intelligence

that can be found in the computational architecture of the

said algorithms. As such, this would create a spectrum of

relative intelligence in the sense of how much information

will be incorporated into how these algorithms navigate the

search agents within the search space.
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But the other critical factor suggested to have a heavy

influence on the performance of these algorithms is the

mathematical structure of the benchmark problems. On that

note, two sets of benchmark problems were to be consid-

ered in this study, one having the solutions in the center of

the search space, while the other tried to use rotation and

shifting operators to separate the optimum solution from

the central point of the search space. The following sub-

section will describe the architecture of these pseudo

algorithms, the selected benchmark problems, and finally,

the setup for this study.

2.1 Pseudo optimization algorithms

In this study, six pseudo optimization algorithms were

designed to objectively measure how some of the modern

CI-based algorithms converge to what they perceive to be

the optimum solution. However, the architecture of these

pseudo algorithms was designed to test the effect of two

critical ideas that often manifest themselves in some

modern CI-based optimization algorithms: (1) the greedy

strategy and (2) the idea of a local search-derived module.

The greedy strategy is a scheme under which the algo-

rithm permits the repositioning of a search agent if, and

only if, the new position yields a better result in terms of

the objective function. This strategy, frequently used to

enhance the performance of established CI-based opti-

mization (Yaghoubzadeh-Bavandpour et al. 2022), ensures

that the performance of agents equipped with this strategy

remains consistent or improves during the searching pro-

cess. The caveat of leaning heavily on this strategy is that it

would also increase the risk of being trapped in local

optima (Zolghadr-Asli 2023a). That said, many modern CI-

based optimization algorithms are initially embedded with

this strategy. Notable examples would be the shuffled frog-

leaping algorithm (Eusuff et al. 2006), the invasive weed

optimization algorithm (Mehrabian and Lucas 2006), the

plant propagation algorithm (Salhi and Fraga 2011), the

teaching–learning-based optimization algorithm (Rao et al.

2011), the bat algorithm (Yang and Gandomi 2012), the

flower pollination algorithm (Yang 2012), the water cycle

algorithm (Eskandar et al. 2012), the symbiotic organisms

search algorithm (Cheng and Prayogo 2014), to name a

few.

The other idea that would be put to the test here is the

effectiveness of local search-oriented modules. At its core,

these types of modules use what has been identified as the

best-encountered position until that point in time within the

search process to realign all or a portion of the search

agents. On paper, these should expedite the convergence

rate of an algorithm, while leaning heavily on this mech-

anism would potentially exacerbate the risk of being

trapped in local optima. Mathematically, the implementa-

tion of this idea can be expressed as follows:

Rj ¼ rand� vec 8j; ð1Þ

diffj ¼ xbestj � xj 8j; ð2Þ

x0j ¼ xj þ diffj � Rj

� �
8j; ð3Þ

where rand is a randomly generated number between 0 and

1 under a uniform distribution, vec denotes the length of a

vector that would be multiplied by the random number, Rj

is the elongated random vector in the jth dimension of the

search space, xj represents the position of the search agent

in the jth dimension, xbestj denotes the corresponding value

of the best-encountered part during the search in the jth

dimension, diffj represent the component of the vector

connecting the current position of the search space to the

best-encountered point in the jth dimension, and finally, x0j
is the updated location of the search agent in the jth

dimensions of the search space. It should be noted that here

vec, from a computational standpoint, is performing as a

parameter through which one can modify and control the

behavior of the said module. Again, many modern CI-

based optimization algorithms are equipped with similar

mechanisms. The cat swarm optimization (Chu et al. 2006),

the krill herd algorithm (Gandomi and Alavi 2012), the

grey wolf optimizer (Mirjalili et al. 2014), and the moth-

flame optimization algorithm (Mirjalili 2015) are just

merely few examples in this category.

As for the pseudo algorithms, this study deliberately

uses the idea of multi-search agent structures in appose to

single search agent ones, as the former is considered far

more effective from a computational standpoint (Zolghadr-

Asli 2023a, b). And on that note, two general architectures

are used here to construct these pseudo optimization

algorithms. The first architecture is geared toward pure

random search (Fig. 1), while the second one is designed

with the idea of local search in mind (Fig. 2). In both cases,

however, a set of search agents, the number of which is

denoted by a parameter called pop size, would be placed

Begin
Position all the search agents

While the termination criterion is not met

Generate a new set of agents

Evaluate all the agents

If the greedy strategy is considered:

Compare both sets and select the best counterpart in the paired set

Else: 

Create a pool based on previous and current agents

Select the new set out of the best agents in the current pool

End While
Report the best solution

End

Fig. 1 Pseudo code for the computational structure of the random-

oriented architecture
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randomly within the feasible boundaries of the search

space. Then the position of these agents would be upgraded

repeatedly via the instructions dictated by each given

pseudo algorithm. This iterative process would be termi-

nated until the process has been repeated a certain number

of times, another parameter here denoted by max iteration.

Based on the described architectures, six pseudo opti-

mization algorithms were defined, a description of which is

summarized in Table 1.

2.2 Benchmark problems

As stated, one of the central premises of this study was to

test the effect of the relative position of the optimum

solution within the search space on some of the more

prevalent and fundamental components of CI-based opti-

mization algorithms. This subject is implicitly correlated to

the number of decision variables denoted by n. From a

mathematical standpoint, this represents the number of

dimensions considered for the search space. To cover this

matter, all the potential benchmark problems will be

evaluated under two conditions, one with a more abstract

search space (n = 2) and a more intricate one (n = 10). The

sub-question that can be tested through this setup is to see

whether the intricacy of the search space has a meaningful

contribution to the performance of these pseudo

algorithms.

As for the benchmarks, two sets of objective functions

are to be considered in this study, one serving as the non-

centered (NC) set and the other as the centered (C) one.

The idea is to compare the obtained results to see if there

are any statically significant changes in the performance of

these pseudo algorithms as they try to tackle each set

separately. For the NC benchmarks, a subset of the 2017

version of the IEEE Congress on Evolutionary Computa-

tion (CEC2017) suite has been selected (Wu et al. 2017).

This is a well-regarded pre-defined packet of benchmarks

designed deliberately to relocate the optimum solution

from the center of the search space as a measure to put the

CI-based optimization algorithm to the test. The selected

subset includes 17 objective functions [f1, f2, f3, f4, f5, f6, f7,

f8, f9, f10, f21, f23, f24, f25, f26, f27, and f28]. The value of the

optimum solution is directly correlated with the code

number of the objective function in the suite (i.e., the

number multiplied by 100 is the value of the optimum

objective in the CEC2017 suite). As to why these specific

functions were selected, it is simply because the rest were

incompatible with the premise of this research, as they

could not handle certain dimensions that were to be con-

sidered in this study. Readers are encouraged to visit Wu

et al. (2017) for more information on this benchmark suite.

For illustrative purposes, Fig. 3 depicts the shape of the NC

benchmark suite’s objective functions in a two-dimen-

sional search space (n = 2). As for the C benchmark suite,

five well-known objective functions have been selected, in

which the optimums solutions are in the center of the

search space. The definition of these functions is summa-

rized in Table 2. For illustrative purposes, Fig. 4 depicts

the shape of the C benchmark suite’s objective functions in

a two-dimensional search space (n = 2).

2.3 The premise of the research setup

Generally, it is well-understood that the performance of the

CI-based optimization algorithm is strongly correlated to

Begin
Position all the search agents

While the termination criterion is not met

Identify the best position encountered thus far

Generate a new set of agents using the local optimum mechanism 

Evaluate all the agent

If the greedy strategy is considered:

Compare both sets and select the best counterpart in the paired set

Else: 

Create a pool based on previous and current agents

Select the new set out of the best agents in the current pool

End While
Report the best solution

End

Fig. 2 Pseudo code for the computational structure of the local

search-oriented architecture

Table 1 Description of devised pseudo optimization algorithms

Pseudo optimization algorithms Acronym Greedy strategy Underlying architecture Parameter of architecture

1 Pure Random PR 7 random-oriented [N/A]

2 Pure Random Greedy PRG 4 random-oriented [N/A]

3 Local search 0.5 LS.5 7 local search-oriented vec = 0.5

4 Local search 1.0 LS1 7 local search-oriented vec = 1.0

5 Local search greedy 0.5 LSG.5 4 local search-oriented vec = 0.5

6 Local search greedy 1.0 LSG1 4 local search-oriented vec = 1.0

B. Zolghadr-Asli

123



Fig. 3 Depiction of the NC benchmark suite search space in a two-dimensional space (n = 2)
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Fig. 3 continued
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the number of function evaluations (NFE), which is par-

tially reflected by the number of search agents and maxi-

mum permitted iteration. As the premise of this study is

based upon multi-agent CI-based optimization algorithms,

it was essential to ensure that the effect of NFE on the

performance of these algorithms is monitored as well. On

that note, as the NFE in all the designed pseudo algorithms

is directly linked to the pop size and max iteration, a set of

values was considered for each parameter in this study. It is

worth noting a concept explored in recent studies, which

highlights that certain parameters, such as the number of

search agents, may possess greater potential to influence

overall performance in comparison to other crucial factors,

such as the number of iterations, in the implementation of

CI-based algorithms (Velasco et al. 2022). On that note, for

pop size, these values were selected from {50; 100; 200;

500; 750; 1000}, while for the max iteration parameter, the

set of considered values was {500; 750; 1000; 2000; 2500}.

As all the potential permutations of these two sets were

considered, this would create 30 combinations with dif-

ferent NFE values, depicted in Fig. 5. This graph illustrates

the spectrum of NFEs under examination in this study,

along with the corresponding parameters for each setting.

This analysis aims to elucidate the potential significance of

each parameter in the subsequent discussion.

It should be noted that the devised pseudo algorithms

were tested for each benchmark problem (i.e., both NC and

C suites, each under n = 2 and n = 10 setups) under all

these possible NFE combinations. Conventionally, as these

are stochastic-based methods, each setup would be exe-

cuted multiple times to get a better sense of the most likely

behavior of the algorithm rather than potentially extreme

cases. On that note, each setup is needed to be executed

independently 100 times. All in all, this would result in

792,000 independent runs. The results would then be

evaluated via statistical analysis and non-parametric sta-

tistical tests (e.g., Wilcoxon and Friedman). The Wilcoxon

signed-rank test and Friedman test are both non-parametric

statistical methods. The former is employed to compare the

locations of two populations using two matched samples,

while the latter is designed to establish a ranking for a set

of matched samples. In this context, the Wilcoxon signed-

rank test has traditionally been applied to assess the per-

formance of two specific algorithms in relation to each

other. On the other hand, the Friedman test is utilized to

generate an overall ranking for the algorithms subjected to

testing. The p value used in all tested in this study is 0.05.

For more information on these standard procedures, the

readers are referred to Derrac et al. (2011).

As a final note on the premise of this study and its

objectives, it is essential to remember that the idea here is

not to test whether the pseudo optimization algorithms can

converge to the final solution on their own but rather to

compare their relative performance, not just against one

another, but as importantly under different setups. The

point is that the aforementioned setups are designed

deliberately to challenge the underlying core principles of

these pseudo algorithms and, in turn, potentially unveil

additional information about how, in effect, the CI-based

optimization algorithms operate.

3 Result and discussion

As the first step to analyzing the results, it is worth

exploring how these pseudo algorithms perform under

different NFE values. For instance, Fig. 6 plots the pro-

gression of converged solution (NC—f4) for LSG.5

(n = 10) against different NFE values. This graph shows

NFE, as one would suspect, substantially impacts the

algorithm’s performance. But interestingly, the pattern

observed in this graph also suggests that the pop size

parameter may have a more decisive influence than the max

iteration parameter in the algorithm’s performance, most

notably in lower NFE values. This implies that gaining

access to certain information by the pseudo algorithm

Table 2 A detailed

mathematical description of the

C benchmark suite

Function code Function definition Feasible domain Global optima

f1 PN

i¼1

x2i
[- 100, 100] 0.00

f2 PN

i¼1

xij j þ
QN

i¼1

xij j
[- 10, 10] 0.00

f3 max
i

xij jj8if g [- 100, 100] 0.00

f4 PN

i¼1

xi þ 0:5b c2
[- 100, 100] 0.00

f5 PN

i¼1

i� x4i
� � [- 1.28, 1.28] 0.00
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Fig. 4 Depiction of the C benchmark suite search space in a two-dimensional space (n = 2)
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earlier in the searching process could be more beneficial,

which is why weighing toward increasing the number of

search agents than increasing the number of iterations is

seemingly more advantageous for obtaining relatively

better results. This is in line with what has been explored

by Velasco et al. (2022). That said, it should be noted that

generalizing the observed patterns beyond the tested

abstract pseudo optimization algorithms would require

further in-depth investigation to shed light on the

Fig. 5 The relationship between pop size and max iteration parameters and NFE

Fig. 6 The converged solution (NC—f4) for LSG.5 (n = 10) under different NFE values
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importance and effect of these parameters on the overall

performance of CI-based optimization algorithms.

As stated, the main research question here was to

compare the performance of these pseudo algorithms as

they handle C and NC benchmark problems. If this leads to

statistically different patterns, this could potentially

showcase how some modern CI-based algorithms may

have some central bias tendencies. On that note, the per-

formance of each pseudo algorithm was considered and

compared under the highest NFE value (i.e., pop size: 1000

and max iteration: 2500 resulting in an NFE value of

7.5 9 106).

Table 3 summarizes the result of different pseudo

algorithms against the C benchmark suite. If the search

space consists of only two variables (i.e., n = 2), all pseudo

algorithms, including the PR and PRG, which are random

sampling, were able to converge to the optimum solution

under the highest NFE value. That said, for the absolute

best average performance under 100 independent runs,

LSG1 showed a slight edge over the other alternatives

(Table 3). These results can also undergo verification

through a non-parametric Friedman test, the summary of

which is available in Table 4. This table represents an

overall ranking for the tested algorithms based on their

paired samples. Interestingly, for f4 of the C suite, the

obtained result bears no statistically significant difference

between the pseudo algorithms. A non-parametric Wil-

coxon test can further validate this, the result of which are

Table 3 Performance of different pseudo algorithms against C benchmark suite

Best pseudo algorithms Best obtained result The mean of different pseudo algorithms Standard deviation of different

pseudo algorithms

n = 2 f1 LSG1 0.00E?00 1.73E-03 2.68E-03

f2 LSG1 0.00E?00 2.70E-03 4.19E-03

f3 LSG1 0.00E?00 1.92E-02 2.97E-02

f4 all 0.00E?00 0.00E?00 0.00E?00

f5 LSG.5, LSG1 0.00E?00 6.02E-13 9.55E-13

n = 10 f1 LSG.5 1.06E?00 5.66E?02 8.24E?02

f2 LSG.5 5.59E-01 4.35E?00 4.34E?00

f3 LSG.5 8.97E-01 9.33E?00 9.81E?00

f4 LSG.5 2.28E?00 5.57E?02 8.16E?02

f5 LSG.5 1.15E-06 2.41E-02 3.72E-02

Table 4 The results for the non-parametric Friedman test against the

C benchmark suite

f1 f2 f3 f4 f5 Overall

Rank

n = 2 PR 6 5 5 1 6 5

PRG 5 6 6 1 5 5

LS.5 4 4 4 1 4 4

LS1 3 3 3 1 3 3

LSG.5 2 2 2 1 1 2

LSG1 1 1 1 1 1 1

n = 10 PR 5 6 5 6 6 6

PRG 6 5 6 5 5 5

LS.5 2 2 2 2 2 2

LS1 4 4 4 4 4 4

LSG.5 1 1 1 1 1 1

LSG1 3 3 3 3 3 3

Table 5 The results for the non-parametric Wilcoxon test against the

C benchmark suite

Target Function PR PRG LS.5 LS1 LSG.5

n = 2 LSG1 f1 – – – – –

f2 – – – – –

f3 – – – – –

f4 0 0 0 0 0

f5 – – – – 0

PR PRG LS.5 LS1 LSG1

n = 10 LSG.5 f1 – – – – –

f2 – – – – –

f3 – – – – –

f4 – – – – –

f5 – – – – –

‘‘-’’ signifies an inferior performance to the target; ‘‘?’’ means a

superior performance to the target; and ‘‘0’’ identifies no statistically

different performance to the target
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summarized in Table 5. This would compare the relative

performance of any two given algorithms based on their

matched samples. These results highlight how insufficient

intricacies of benchmark problems can easily mask the

fallacies in the architecture of CI-based optimization

algorithms by simply cranking up their processing power.

In the ten-dimensional search space (i.e., n = 10), for the

same benchmark suite, LSG.5 outperformed all other

pseudo algorithms and, in some cases (e.g., f5), nearly

converged to the global optimum solution (Table 3). This

finding can also be validated using a non-parametric

Friedman test summarized in Table 4. Here LSG.5, fol-

lowed by LS.5 showed the best relative performance,

which considering the type of these pseudo algorithms and

the value for the vec parameter, signifies that having a more

prominent local search component may have played a role

in favor of these selected algorithms. This is also supported

by the results obtained from a non-parametric Wilcoxon

test, with LSG.5 as the target performance reported in

Table 5.

Fig. 7 Comparison of the average convergence rate of different pseudo algorithms for the f3 function of the C benchmark suite (n = 2): a PR,

b PRG, c LS.5, d LS1, e LSG.5, and f LSG1
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Another approach to evaluate the performance of these

pseudo algorithms is to compare their average convergence

rate with different NFE values. Figure 7, for instance,

depicts the average convergence rate of pseudo algorithms

for the f3 function of the C benchmark suite in a two-

dimensional search space. Here at certain NFE values

onward, all variations of LS and LSG pseudo algorithms

seemed to be able to converge to the optimum solutions.

Figure 8, on the other hand, shows the average conver-

gence rate of pseudo algorithms for the f4 function of the C

benchmark suite in a ten-dimensional search space, which,

as stated, seems to pose more computational challenges for

the algorithms. Again, in addition to previously identified

patterns for LS- and LSG-based pseudo algorithms, a

prominent downward trend can be seen in PR and PRG

graphs. This suggests that, on paper, by increasing NFE

values, which in this particular setup means taking more

samples, even these purely random-based pseudo algo-

rithms could potentially converge to the optimum solution.

However, as shown in these graphs, incorporating a slight

Fig. 8 Comparison of the average convergence rate of different pseudo algorithms for the f4 function of the C benchmark suite (n = 10): a PR,

b PRG, c LS.5, d LS1, e LSG.5, and f LSG1

A critical take on the role of random and local search-oriented components of modern…

123



hint of intelligent behavior in the algorithm’s structure

would substantially reduce the function evaluation needed

to obtain a similar result. This is to the point that all con-

sidered variations of LS and LSG were able to converge to

a closer approximation of the optimum solution with much

lower NFE values. This may, however, be the result of two

general yet opposing concepts. One is that these intelli-

gence components have a notable effect on the perfor-

mance of these pseudo algorithms. The alternative

explanation would be that the C benchmark problems are

innately incapable of truly testing the performance of CI-

based optimization algorithms. On that note, the NC

benchmark suite was tested and analyzed under a similar

premise.

Table 6 summarizes the result of different pseudo

algorithms against the NC benchmark suite. When the

search space consists of only two variables (i.e., n = 2),

different variations of LS and LSG seem to predominantly

have the best average performance. PR and PRG pseudo

algorithms also have appeared here as the outperforming

Table 6 Performance of different pseudo algorithms against the NC benchmark suite

Best pseudo algorithms Best obtained result The mean of different pseudo algorithms Standard deviation of different

pseudo algorithms

n = 2 f1 PR 1.15E?02 8.36E?02 5.76E?02

f2 LSG.5 2.00E?02 2.00E?02 1.57E-02

f3 LS1, LSG.5, LSG1 3.00E?02 3.00E?02 3.96E-03

f4 LS.5 4.00E?02 4.00E?02 1.19E-05

f5 LS.5 5.00E?02 5.00E?02 1.18E-02

f6 LSG.5 6.00E?02 6.00E?02 5.16E-02

f7 PRG 7.00E?02 7.01E?02 5.08E-01

f8 LS.5 8.00E?02 8.00E?02 2.37E-02

f9 LS1, LSG.5, LSG1 9.00E?02 9.00E?02 7.21E-04

f10 PR 1.00E?03 1.00E?03 7.17E-01

f21 LSG.5 2.10E?03 2.10E?03 5.32E-02

f23 LSG.5 2.30E?03 2.30E?03 3.82E-01

f24 LSG.5 2.40E?03 2.40E?03 6.63E-01

f25 PRG 2.50E?03 2.53E?03 3.11E?01

f26 LSG.5 2.60E?03 2.60E?03 4.83E-01

f27 LS1 2.70E?03 2.70E?03 9.72E-01

f28 PRG 2.81E?03 2.83E?03 2.29E?01

n = 10 f1 LS.5 7.87E?09 1.21E?10 2.88E?09

f2 PR 2.75E?07 1.20E?08 1.38E?08

f3 LS.5 3.17E?03 4.62E?03 1.02E?03

f4 LS.5 4.73E?02 4.93E?02 1.47E?01

f5 LS.5 5.28E?02 5.40E?02 9.10E?00

f6 LS.5 6.14E?02 6.25E?02 6.44E?00

f7 LSG.5 7.31E?02 7.70E?02 4.43E?01

f8 LSG.5 8.18E?02 8.33E?02 1.33E?01

f9 LS.5 9.23E?02 1.10E?03 1.81E?02

f10 PR 2.08E?03 2.17E?03 7.85E?01

f21 PRG 2.21E?03 2.24E?03 1.84E?01

f23 PRG 2.58E?03 2.64E?03 4.48E?01

f24 PR 2.55E?03 2.66E?03 8.29E?01

f25 LSG.5 2.95E?03 2.98E?03 2.44E?01

f26 LS.5 3.12E?03 3.16E?03 4.68E?01

f27 PR 3.12E?03 3.16E?03 2.72E?01

f28 PRG 3.28E?03 3.34E?03 5.68E?01
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pseudo algorithms in some cases (e.g., f1, f7, f10, f25, and

f28). Again, the results obtained from the non-parametric

Friedman test confirm these ideas, as LSG.5 followed by

LS.5 have been selected as the best overall average per-

formance for the NC benchmark suite (Table 7). A vital

notion to note here is that LSG1 was outranked by the PRG

pseudo algorithm, which contradicts what has been

observed in the C benchmark suite, as, in that case, that

was objectively the best option from a statistical stand-

point. This can be further supported by the results of a non-

parametric Wilcoxon test reported in Table 8. It is inter-

esting to note that, based on the obtained results, the

seemingly intelligent algorithm is being outperformed on

occasion by PR (e.g., f1, f10) and PRG (e.g., f1, f7, f10)

pseudo algorithms, or in the case of f28 generate results that

are statically at the same level as these random-based

pseudo algorithms. In a ten-dimensional search space,

which denotes the most complex search space considered

in this study, the gap between the results of different

pseudo algorithms in most cases gets close. For instance,

under this setup, PR and PRG have, respectively, shown

better average performance in 4 (i.e., f2, f10, f24, f27) and 3

(i.e., f21, f23, f28) tested functions (Table 6). Based on these

results, on average, LS.5 and LSG.5 still seem to produce

better results than their considered counterparts. Again,

these conclusions can be confirmed by the non-parametric

Friedman test results, as these pseudo algorithms occupy

the 1st and 2nd ranks as they get compared to other con-

sidered alternatives (Table 7). Interestingly, PRG and PR

have been ranked 3rd and 4th under this setup, which

opposes the results obtained from the C benchmark suite.

All these conclusions are aligned with the results obtained

from the non-parametric Wilcoxon test (Table 8).

Two additional sidenotes can be deduced from the

obtained results thus far. First, it can be seen that while the

greedy strategy often relatively helped the performance of

the pseudo algorithms in the C benchmark suite, it had a

less critical role while handling the NC benchmark suite. In

fact, LSG1, a greedy embedded pseudo algorithm that was

one of the top-tier options in the C benchmark suite,

objectively had the worst performance under the NC

benchmark suite. This shows that the greedy strategy, a

prevalent mechanic in many modern CI-based optimiza-

tions, may have a role in creating the identified central bias

tendencies. The other notable subject worth further inves-

tigation is the result of LS.5 and LSG.5 pseudo algorithms

being selected as the best alternatives in the NC benchmark

suite. The idea here is that these two, out of all tested

setups, are primarily geared toward the local search pro-

cess, as they are designed to permit more limited explo-

rations than their alternative counterparts. While this could

indicate that the idea of local search is an effective practice

for a CI-based optimization algorithm, it could also indi-

cate that the NC benchmark problems tested here (i.e.,

CEC2017) may unfairly reward mechanics that converge

local optima. This also could be a potentially promising

research idea.

Again, another method for assessing the performance of

these pseudo algorithms is to compare their average con-

vergence rate with various NFE values. Figures 9 and 10,

for instance, depict the average convergence rate of pseudo

algorithms for the f28 function of the NC benchmark suite

in a two- and ten-dimensional search space, respectively.

While there is a notable downward trend in both graphs,

the range and the interquartile range (IQR) are more pro-

nounced than the observed patterns in the C benchmark

Table 7 The results for the non-parametric Friedman test against the NC benchmark suite

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f21 f23 f24 f25 f26 f27 f28 Overall

Rank

n = 2 PR 1 6 6 4 4 6 2 4 6 1 6 5 5 2 6 6 2 6

PRG 2 5 5 5 3 5 1 3 5 2 5 6 6 1 5 5 1 4

LS.5 3 4 4 1 1 3 4 1 4 3 3 4 4 4 4 3 4 2

LS1 4 3 1 3 5 2 6 5 1 5 2 3 2 6 3 1 5 3

LSG.5 6 1 1 2 2 1 3 2 1 4 1 1 1 3 1 2 3 1

LSG1 5 2 1 6 6 4 5 6 1 6 4 2 3 5 2 4 6 5

n = 10 PR 5 1 5 4 6 6 5 6 6 1 2 2 1 5 2 1 2 4

PRG 4 2 4 3 5 5 6 5 5 2 1 1 2 6 3 2 1 3

LS.5 1 3 1 1 1 1 2 2 1 4 3 3 3 2 1 3 3 1

LS1 3 5 3 5 4 3 4 4 3 5 5 5 5 3 5 6 6 5

LSG.5 2 4 2 2 2 2 1 1 2 3 4 4 4 1 4 4 4 2

LSG1 6 6 6 6 3 4 3 3 4 6 6 6 6 4 6 5 5 6

A critical take on the role of random and local search-oriented components of modern…

123



suite results. This gap even tends to amplify with the

increase in the number of dimensions. It is also worth

noting that the graphs representing pseudo algorithms

embedded with greedy strategy seem to have a smoother

degression. However, in none of the cases, that, in and of

itself, was not enough to converge the pseudo algorithm to

the optimum solution.

4 Concluding remarks

As the number of CI-based optimization algorithms is

increasing at an unprecedented rate, it is essential to

examine the reliability of their underlying computational

architecture. This becomes exceptionally more crucial in

light of recent concerns raised about certain biases

observed in the performance of some of these algorithms.

As such, the premise of this study was to replicate some of

the more prevalent, fundamental components of these

algorithms in an abstract format as a measure to observe

their behavior in an isolated environment. These were then

used to solve a C and NC benchmark suite to showcase

potential varying behavior.

First, the result hinted that while, in general, increasing

the NFE would, as one would expect, improve the per-

formance of the pseudo algorithms, it was also crucial to

what these NFE values pertained. For instance, in this case,

the results suggested that, in a relatively similar NFE value,

pop size helped obtain better performance than the max

iteration parameter. From a purely theoretical standpoint,

this behavior stands to reason, as an increasing number of

search agents would ultimately result in obtaining more

information earlier in the search, which means that the

course of the search may be adjusted via the information

gathered from an earlier stage of the searching process.

That said, this is merely a preliminary result as these are

abstract and simplified pseudo algorithms, and further

investigation is needed to generalize this beyond the scope

of this research.

The second finding of this research was to showcase

how the benchmark setup can have significant implications

on how the algorithm works. For example, it was demon-

strated here that insufficient intricacies of benchmark

problems could easily disguise flaws in CI-based opti-

mization algorithms’ architecture if one increases the

processing power of the algorithms. As for the underlying

structure of these algorithms, certain features commonly

utilized in many modern CI-based optimization algorithms

can potentially generate central bias tendencies. The

greedy strategy is an example of this. While this helped the

pseudo algorithms obtain better results in the case of the C

benchmark suite, the effect softened with the NC bench-

mark suite. That said, this helped smooth out the algo-

rithm’s performance in all cases, but it is crucial to create a

balance in resorting to this strategy. This, in and of itself,

could be a potentially promising research idea to under-

stand the effect of this strategy.

Table 8 The results for the non-parametric Wilcoxon test against the

NC benchmark suite

Target Function PR PRG LS.5 LS1 LSG1

n = 2 LSG.5 f1 ? ? ? 0 0

f2 - - - 0 0

f3 - - 0 0 0

f4 - - ? 0 0

f5 - - ? ? ?

f6 - - ? ? 0

f7 0 ? 0 - -

f8 - - ? ? ?

f9 - - 0 0 0

f10 ? ? 0 - -

f21 - - - - -

f23 - - - - -

f24 - - - - -

f25 - - - - -

f26 - - - - -

f27 - - ? ? 0

f28 0 0 0 - -

PR PRG LS1 LSG.5 LSG1

n = 10 LS.5 f1 - - - - -

f2 0 - - 0 -

f3 - - - - -

f4 - - - - -

f5 - - - - -

f6 - - - - -

f7 - - - 0 -

f8 - - - ? -

f9 - - - - -

f10 ? ? 0 0 0

f21 ? ? - 0 -

f23 ? ? - - -

f24 ? ? - 0 -

f25 - - - 0 -

f26 0 0 - 0 -

f27 ? ? - 0 -

f28 0 0 - 0 -

‘‘-’’ signifies an inferior performance to the target; ‘‘?’’ means a

superior performance to the target; and ‘‘0’’ identifies no statistically

different performance to the target
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But, perhaps the most fundamental issue when it comes

to the practice of using CI-based optimization algorithms is

that, often, like many other data-driven models, it became

an unspoken standard to treat them as a black box. This

black box perception implies that it is acceptable for the

practitioner not to have explicitly understated how these

algorithms work so long as the generated results fall within

the conventional range of what is expected from such

models. And the problem with such viewpoints is that not

only does it permit oversights like central bias to go

undetected, but one cannot make any amendment toward a

more robust algorithm, as there would be no meaningful

Fig. 9 Comparison of the average convergence rate of different pseudo algorithms for the f28 function of the NC benchmark suite (n = 2): a PR,

b PRG, c LS.5, d LS1, e LSG.5, and f LSG1
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feedback on how the algorithm works. That is why studies

like this should aim to shed light on the underlying

mechanics of CI-based optimization algorithms.
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