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Abstract: Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic mor-
bidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant
activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical
absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha
and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy par-
ticipants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha
(n =10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by time-
point and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15%
v/v) for treatment. A Tagman panel of 56 genes was used to quantify these. In AT, treatment with
ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflamma-
tory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for
fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC,
ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and
SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects
of ashwagandha in AT to guide future clinical trials.

Keywords: ashwagandha; Withania somnifera; Andrographis; Andrographis paniculata; anti-inflammatory;
antioxidant; obesity; adipose tissue; skeletal muscle; ex vivo

1. Introduction

Obesity has risen to epidemic levels worldwide generating a significant global health
burden. Increased adiposity is associated with chronic diseases including diabetes, hy-
pertension, hyperlipidaemia, and other cardiovascular diseases [1]. Adipose tissue (AT)
milieu is complex and dynamic and changes with energy balance. AT expansion through
adipocyte hypertrophy and hyperplasia results in immune cell infiltration of AT and a
switch from ‘classically activated” (M2)- to ‘alternatively activated” (M1)-type macrophages,
triggering the release of pro-inflammatory cytokines. This process leads to adipocyte hy-
poxic necrosis and adipose tissue dysfunction [2-5]. Ultimately, this results in an impaired
ability to store excess triglycerides, and lipids accumulate in the systemic circulation [6].
Ectopic fat deposition occurs in skeletal muscle (SKM), liver, and pancreas [7]. In SKM, this
leads to impaired fatty acid metabolism, reduced insulin-mediated glucose uptake, and
the formation of toxic lipid intermediates [8]. Tissue-level energy metabolism dysfunctions
further promote the systemic and tissue-level inflammation and the insulin resistance that
accompany the consequences of obesity (e.g., type 2 diabetes mellitus; T2D) [9,10].

Finding new strategies to prevent the consequences of obesity is a major public
health challenge. Additional approaches are needed to complement traditional lifestyle
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advice. Invivo and pre-clinical evidence suggests that supplementation with certain
herbal supplements could improve metabolic health and dampen inflammation at the
systemic and tissue level [11]. A limited number of studies have investigated the effects of
ashwagandha and Andrographis on inflammation and metabolic dysfunction in AT and
peripheral tissues (e.g., SKM).

Ashwagandha (Withania somnifera) root and its bioactive compound Withaferin A have
been suggested to have anti-obesity effects [12,13]. Withaferin A treatment (1-25 uM) has
been shown to exert anti-adipogenic and pro-apoptotic activity in 3T3-L1 adipocytes [14]. In
pre-clinical studies, ashwagandha supplementation leads to significant weight loss [15,16].
In mice, supplementation with Withaferin A or ashwagandha extract reduced lipid accu-
mulation in AT and promoted the browning of subcutaneous AT via increasing the expres-
sion of mitochondrial uncoupling protein 1 (UCP-1) [17,18]. Additionally, ashwagandha
supplementation improved mitochondrial function (upregulated UCP2 and peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGClx) mRNA expression) in
mice and increased the oxygen consumption rate in C2C12 mouse myoblasts [17].

Andrographis (Andrographis paniculate, Burm. F) leaf and its main bioactive ingre-
dient andrographolide have also been found to promote cardiometabolic health [19,20].
Andrographolide treatment dose-dependently (0-15 pM) inhibited the differentiation of
3T3-L1 preadipocytes via the inhibition of CCAAT-enhancer-binding proteins (C/EBP)o
and C/EBPP mRNA and protein expression [21]. Andrographolide also inhibited adipo-
genesis via the inhibition of peroxisome proliferator-activated receptor gamma (PPARy)
and blocked the gene expression of PPARy-targeted genes [21,22]. Adipogenesis and the
differentiation of preadipocytes into mature adipocytes are also promoted by increased en-
dogenous reactive oxygen species (ROS) [23]. Andrographolide inhibited ROS production
in preadipocytes, further inhibiting preadipocyte differentiation [24]. In mice with muscular
dystrophy, 3 months of intraperitoneal injection andrographolide 1.0 mg/kg/day signif-
icantly reduced nuclear factor kappa B (NF-«B) activity in SKM. Investigations in other
tissues support the anti-inflammatory effect of Andrographis/andrographolide [25-29].
However, the concentrations used exceed those found in vivo, and in vivo studies used in-
traperitoneal injections rather than oral administration, thus bypassing the gastrointestinal
(GI) tract and ignoring any challenges with bioavailability.

The existing literature investigating the effects of ashwagandha and Andrographis
on metabolism and inflammation consists of non-human (murine and in vitro) investi-
gations and focuses on the main bioactive compound alone. Often, plant extracts (or a
selection of their compounds) are applied to cells, and a response is measured. This strategy
negates their metabolism in the GI tract, bioavailability, phase 2 metabolism, and interac-
tions between metabolites. Many of these plant compounds have low bioavailability and
undergo extensive metabolism before reaching peripheral tissues (e.g., AT, SKM) [30,31].
Applying parent plant compounds at supraphysiological concentrations to tissues is an
inadequate predictor of in vivo response. The effects of ashwagandha and Andrographis
metabolites on human AT and SKM inflammation, oxidative stress, and metabolism are
currently unknown.

Here, we explored the physiological effects of Andrographis and ashwagandha
in physiologically relevant ex vivo human models of SKM and AT. We measured the
mRINA expression of 56 genes related to inflammation, pro-oxidant/anti-oxidant bal-
ance, and metabolism. We hypothesised that treatment of AT and SKM with the sera
of people who supplemented with Andrographis or ashwagandha would inhibit pro-
inflammatory genes (AT and SKM), promote the expression of genes involved in the anti-
inflammatory/antioxidant defence (AT and SKM), and have anti-adipogenic effects (AT).

2. Materials and Methods
2.1. Participants

Twenty healthy, lean (body mass index [BMI] < 25 kg-m~2), young (age < 40 years old)
participants were recruited from the University of Exeter and surrounding areas (Table 1).
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All participants provided their written informed consent. The study was conducted in
accordance with the Declaration of Helsinki, and approved by the Ethics Committee
of The University of Exeter (ref: 22-02-02-A-06 [supplementation and blood collection],
approval date: 24 February 2022 and the reference 516627 [adipose tissue explant collection],
approval date: 16 October 2023). Participants were excluded from the study if they were
taking other herbal supplements or had completed a course of antibiotics, corticosteroids,
or immunosuppressive treatment in the last 6 months. Participants were instructed to
maintain their usual diet and lifestyle over the course of the experiment. Study visits
occurred after an overnight fast (>12 h).

Table 1. Characteristics of participants recruited for sera collection. Participants supplemented with
ashwagandha (N = 10, 1100 mg/day) or Andrographis (N = 10, 2000 mg/day) for 28 days.

Ashwagandha (N = 10) Andrographis (N = 10)

M/F 4/6 4/6
Age (years) (SD) 24.6 (4.0) 24.3 (3.9)
BMI (kg-m?) (SD) 23.0 (2.3) 21.6 (2.5)

Baseline venous blood samples were collected by venepuncture of an antecubital vein.
Participants underwent 28 days (+/— 2 days) of supplementation with either powdered
ashwagandha root (n = 10, 1100 mg/day) (Pukka Herbs, Keynsham, UK) or powdered An-
drographis leaf (n = 10, 2000 mg/day) (Pukka Herbs, Keynsham, UK) capsules. Empirical
evidence regarding ashwagandha doses in humans is limited; this dose was chosen as (1) a
similar dose (500 mg twice daily) has been shown to improve endothelial function in those
with diabetes mellitus [32] and (2) this dose was in line with the manufacturer’s recommen-
dations. Similarly, few human Andrographis trials exist, with leaf extracts, rather than pure
powdered leaf, typically being used [33-35]. Therefore, the manufacturer’s recommended
dose was used. This is an ecologically valid approach, as it is presumably the dose that is
being consumed by existing Andrographis users. Participants’ blood was taken at baseline
(BL) and after they returned at day 28. A blood sample was taken immediately upon their
arrival at the laboratory (chronic supplementation only (CH)) and 1 h after their final dose
of supplement (chronic supplementation + acute supplementation (CA)) (Figure 1). To
obtain serum, blood was rested at room temperature for up to 1 h, centrifuged for 15 min
at 4500 rpm at 4 °C, and immediately stored at —70 °C until use. Serum was thawed and
pooled (1:1) per condition and timepoint. The pooled sera were then stored at —70 °C
and thawed at 4 °C for cell culture experiments. The pooled sera were filtered through a
0.22 pm polyethersulfone membrane prior to cell culture applications.

||
@ -
:
—> —>
supplementation with

+ 28 days
\ 4 either Andrographis or 1 -
Ashwagandha
Baseline sera Sera collection Sera-supplemented
N=10 collection Chronic (CH) cell culture medias
Healthy Chronic + Acute (CA)

Figure 1. Outline of sera collection procedure. Healthy participants supplemented for 28 days with
ashwagandha (N = 10, 1100 mg/day) and Andrographis (N = 10, 2000 mg/day). Sera were collected
at baseline, 28 days post supplementation (chronic, CH), and +1 h after 28 days of supplementation
and an acute dose of the supplement. The sera were pooled for all participants and used to obtain
6 sera-supplemented cell culture media: (1) ashwagandha baseline (ASH-BL), (2) chronic ashwa-
gandha supplementation (ASH-CH), (3) chronic ashwagandha supplementation followed by acute
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dose of ashwagandha (ASH-CA), (4) Andrographis baseline (AND-BL), (5) chronic Andrographis
supplementation (AND-CH), and (6) chronic Andrographis supplementation followed by an acute
dose (AND-CA).

Adipose Tissue

Following ethical approval (ref: 516627), AT was obtained from 7 healthy volunteers
(Table 2) between March 2023 and April 2024. Volunteers were recruited from the Uni-
versity of Exeter Sports and Health Science department and provided written informed
consent. Participants were excluded if they met any of the following criteria: >40 years old;
BMI > 27 kg-m~2; currently taking dietary supplements (except vitamin D); frequent use
of medication or recreational drugs likely to affect our results; have a bleeding disorder
or taking medication that impairs blood clotting; Hepatitis B, Hepatitis C, or Human Im-
munodeficiency Virus positive; have had an adverse reaction to a local anaesthetic in the
past; have a skin condition that is likely to increase the risk of infection at the biopsy site;
pregnant; recent (<2 weeks) infection or vaccination.

Table 2. Characteristics of adipose tissue donors (N = 7) recruited to investigate the effect of Andro-
graphis and ashwagandha metabolites on adipose tissue metabolism and inflammation.

Adipose Tissue Donors (N =7)

M/F 4/3
Age (years) (SD) 25.3 (4.3)
BMI (kg-m?) (SD) 24.0 (2.8)

Subcutaneous AT was obtained from ~5 cm lateral to the umbilicus with a 14 G needle
using the needle aspiration method [36] under local anaesthesia (B Braun, Sheffield, UK).
The AT was then washed with phosphate-buffered saline (PBS), strained in a 50 pm mesh
cell strainer, and visible clots were removed using a forceps and scalpel. The tissue was
transported in basal endothelial cell media (Promocell, Heidelberg, Germany). The AT
was weighed and immediately plated in triplicates in a 24-well plate with ~50 mg of tissue
per well. The AT was incubated for 24 h in 300 uL/well basal endothelial cell media
before treatment.

2.2. Primary Human Myogenic Cell Culture

Primary human myogenic cells (SKMC) were isolated from the vastus lateralis muscle
biopsy of a healthy (BMI: 22.2 kg-m~2) 19-year-old male from a previous study [37]. This
biopsy was collected at baseline (pre-intervention) using the suction-modified percutaneous
Bergstrom needle technique [38].

SKMC were cultured as described previously [39]. Briefly, the SKM biopsy was minced
and digested on an orbital rotator for 15 min at 37 °C. An amount of 5 mL growth medium
(Ham’s F10 with 1 mM L-glutamine, 1% penicillin-streptomycin, 20% FBS) was added
and the digest centrifuged at 460x g for 5 min. The resulting pellets were resuspended
in growth medium in a T25 cell culture flask in a humidified 37 °C incubator with an
atmosphere of 5% CO,. Myoblasts were subcultured (1:3) at 75% confluence by trypsin-
induced dissociation from their vessel and were used experimentally at passages 4-7. Cells
were seeded in 24-well plates at 75% confluence in triplicates for each condition.

2.3. Treatment

After 24 h in culture in 24-well plates, AT and SKMC were treated with basal endothe-
lial cell culture media supplemented with 15% pooled sera of BL, CH, and CA for 24 h
(Figure 2). Treatments were plated in triplicate (3 wells per condition) and in biological
quadruplicates (4 independent experiments). After 24 h of treatment, cell culture media
were discarded and cells/tissues were immediately lysed with TRizol reagent (Thermo
Fisher, Foster City, CA, USA) and stored at —20 °C until RNA extraction. AT lysis was
carried out using a bead homogeniser (Speedmill Plus; Analytik Jena AG, Jena, Germany))
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in 120 s cycles until no visible tissue remained. SKMC lysis was carried out according to
the TRizol manufacturer’s instructions.

IL-6, ILTB, IL-10, IL-18 MCP1, CD14, LER
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Figure 2. Procedure for the treatment of SKM cells and adipose tissue explants with the pooled sera
of people who supplemented with ashwagandha or Andrographis (sera-supplemented media, SSM).
Cells/tissues were treated with one of six SSM: (1) ashwagandha baseline (ASH-BL), (2) chronic ash-
wagandha supplementation (ASH-CH), (3) chronic ashwagandha supplementation followed by acute
dose of ashwagandha (ASH-CA), (4) Andrographis baseline (AND-BL), (5) chronic Andrographis
supplementation (AND-CH), and (6) chronic Andrographis supplementation followed by an acute
dose (AND-CA). Experiments were performed in quadruplicate, with triplicate wells stimulated in
each experiment. Polymerase chain reaction reactions were performed in triplicate.

2.4. OpenArray

TRI reagent (Thermo Fisher, Foster City, CA, USA) was used to isolate RNA according
to the manufacturer’s instructions. QuBit Broad range RNA kit (Thermo Fisher, Foster
City, CA, USA) with the Qubit 4 Fluorometer (Invitrogen, Waltham, MA, USA) was used to
quantify RNA according to the manufacturer’s instructions.

Total RNA (500 ng) was reverse transcribed in 10 pL reactions using the Superscript
III VILO kit (Thermo Fisher, Foster City, CA, USA). An amplification test-plate was run
to confirm amplification. Polymerase chain reaction (PCR) reactions for the amplification
test plate were run in duplicate and contained 2.5 uL. SYBR Green mastermix (Bio-Rad
Laboratories, Hercules, CA, USA), 0.25 uL IL-6 primer (GPX1, assay ID qHsaCED0037003)
(Bio-Rad Laboratories, Hercules, CA, USA), and 2.25 uL (5 ng) cDNA. PCR conditions were
a single hold stage of 95 °C for 30 s, followed by 40 cycles of 95 °C for 10 s and 60 °C for
30s.

Expression of the 56 selected genes was measured by OpenArray qRT PCR relative
to 4 endogenous control genes (GAPDH, TBP, ACTB, RPLP0) on the QuantStudio 12K
Flex platform (Thermo Fisher, Foster City, CA, USA). PCR reactions were run in triplicates
and contained 3.8 pL TagMan OpenArray Real-Time PCR Master Mix (Thermo Fisher,
Foster City, CA, USA), and 1.2 pL. cDNA in a total volume of 5 uL. PCR conditions were
a single cycle of 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s and 60 °C for
1 min. Expression levels were quantified by the Comparative Ct approach and normalised
to expression levels in cells treated with baseline sera.

2.5. Data Analysis

The relative expression of each gene was calculated using the 2-deltadeltaCT method
in Microsoft Excel (Version 2403). The RNNA expression in the control cells/tissue was
designated as 1, and the relative levels of the gene transcripts in the samples were ex-
pressed as relative expression. Results are presented as geometric means (Gmean) and 95%
confidence intervals. Confidence intervals that did not include the value of zero effect (i.e.,
the reference value of 1) can be assumed to be statistically significant [40]. Because the
aim of this study was explorative, the geometric mean and 95% confidence interval were
judged more informative than statistical tests to characterise the true response to treatment
(rather than a binary yes/no response to the treatment) [41].
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3. Results
3.1. Andrographis

Treatment of adipose explants and SKMC with the sera of participants who supple-
mented with Andrographis for 28 days (chronic supplementation and chronic + acute
supplementation) had no effect on the mRNA expression of LEP, ADIPOQ, NAMPT, RETN,
CPT1B, SLC2A4, GSK3A, GSK3B, PDK4, PPARGC1A, PPARA, PPARD, PPARG, AKT1, CPT2,
FOXO1, PPARG, FASN, FABP4, LPL, UCP1, UCP2, SERPINE1, SREBF1, CD36, IL-6, IL18,
IL-10, CD14, NFkB1, CCL2, MMP9, MMP14, APOE, CCL5, IFNG, SOD1, SOD2, GPX1, GPX3,
GPX4, CAT, NFE2L2, COL1A1, iNOS, UCP2.

AT treated with AND-CH had significantly lower IL18 mRNA expression (Gmean:
0.338, 95% CI: 0.132, 0.767) (Figure 3). There was no effect of treatment on IL18 mRNA
expression in SKMC.

IL-18 SERPINEA3
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> >
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2107 Z107
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S 0.5 2 0.5
s s
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Figure 3. Adipose tissue explant mRNA expression is altered by treatment with sera of people
who supplemented with Andrographis (AND). Sera were obtained following 28 days supplemen-
tation (chronic, (CH)) and following 28 days supplementation and an acute dose (+1 h) of AND
(chronic + acute (CA)). Values are expressed relative to mRNA expression in samples treated with
pre-supplementation baseline (BL) sera. Sera were obtained from 10 participants and pooled for
adipose tissue treatment.

AT treated with the sera of participants who underwent chronic Andrographis supple-
mentation had significantly lower relative mRNA expression of SERPINA3 (Gmean: 0.224,
95% CI: 0.040, 0.867). There was no effect of treatment on SERPINA3 mRNA expression
in SKMC.

3.2. Ashwagandha

AT treated with ashwagandha metabolites had significantly lower expression of genes
involved in fatty acid uptake, fat metabolism, and carbohydrate/glucose metabolism
(Figure 4). ASH-CH- and ASH-CA-treated AT had lower expression of CD36 (ASH-CH: 0.272,
95% CI: 0.00, 0.853; ASH-CA: 0.207, 95% CI: 0.072, 0.542), CPT1B (ASH-CH: 0.254, 95%
CI: 0.072, 0.817), CPT2 (ASH-CH: 0.194, 95% CI: 0.00, 0.512; ASH-CA: 0.247, 95% CI: 0.037,
1.317), FABP4 (ASH-CH: 0.384, 95% CI: 0.133, 1.060; ASH-CA: 0.271, 95% CI: 0.063, 1.148),
ADIPOQ (ASH-CH: 0.327, 95% CI: 0.00, 1.019; ASH-CA: 0.247, 95% CI: 0.140, 0.458), FASN
(ASH-CH: 0.40, 95% CI: 0.149, 0.340; ASH-CA: 0.619, 95% CI: 0.258, 1.438), NAMPT (ASH-
CH: 0.240, 95% CI: 0.058, 0.925; ASH-CA: 0.203, 95% CI: 0.081, 0.488), GSK3A (ASH-CH:
0.307, 95% CI: 0.104, 0.839; ASH-CA: 0.264, 95%ClI: 0.128, 0.527), CCL5 (ASH-CH: 0.188,
95% CI: 0.062, 0.505; ASH-CA: 0.309, 95% CI: 0.137, 0.673), IL6 (ASH-CH: 0.274, 95%
CI: 0.073, 0.838; ASH-CA: 0.232, 95% CI: 0.004, 1.097), IL10 (ASH-CH: 0.193, 95% ClI:
0.014, 0.381; ASH-CA: 0.215; 95% CI: 0.111, 1.406), UCP2 (ASH-CH: 0.058, 95% CI: 0.113,
1.175; ASH-CA: 0.269, 95% CI: 0.208, 0.342), GPX3 (ASH-CH: 0.241, 95% CI: 0.0634,
0.797; ASH-CA: 0.296, 95%CI: 0.102, 0.814), GPX4 (ASH-CH: 0.207, 95% CI: 0.053, 0.816;
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ASH-CA: 0.144, 95% CI: 0.052, 0.243).
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Figure 4. Adipose tissue explant mRNA expression is altered by treatment with sera of people who
supplemented with ashwagandha (ASH). Sera were obtained following 28 days supplementation
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(chronic, (CH)) and following 28 days supplementation and an acute dose (+1 h) of ASH
(chronic + acute (CA)). Values are expressed relative to mRNA expression in samples treated with
pre-supplementation baseline (BL) sera. Sera were obtained from 10 participants and pooled for
adipose tissue treatment.

Treatment of AT with the sera of participants who supplemented with ASH-CH or
ASH-CA had no effect on the mRNA expression of IL18, IL-10, CD14, NFkB1, CCL2, MMP9,
MMP14, APOE, IFNG, SOD1, SOD2, GPX1, CAT, iNOS.

SKM cells treated with ASH-CH and ASH-CA had a higher expression of SREBF1
(ASH-CH: 1.67, 95% CI: 0.385, 2.970; ASH-CA: 1.721, 95% CI: 1.110, 2.645) and a lower
expression of FOXO1 (ASH-CH: 0.564, 95% CI: 0.305, 0.855; ASH-CA: 0.924, 95% CI: 0.319,
2.585) (Figure 5). There was no effect of ASH-CH or ASH-CA on genes involved in
inflammation/oxidative stress in SKM cells.

SREBF1 FOXO1

w
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-
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X el XY Nl s X
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Relative mRNA Expression
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Figure 5. Skeletal muscle cells nRNA expression is altered by treatment with sera of people who sup-
plemented with ashwagandha (ASH). Sera were obtained following 28 days supplementation (chronic,
(CH)) and following 28 days supplementation and an acute dose (+1 h) of ASH (chronic + acute (CA)).
Values are expressed relative to mRNA expression in samples treated with pre-supplementation
baseline (BL) sera. Sera were obtained from 10 participants and pooled for skeletal muscle cell
treatment.

4. Discussion

We investigated for the first time the anti-inflammatory, antioxidant, and metabolic
effects of Andrographis and ashwagandha in a physiologically relevant ex vivo model
of human adipose tissue and skeletal muscle. ASH sera treatment altered the expression
of fifteen metabolic, antioxidant defence, and inflammation genes in AT. AND treatment
altered the expression of two AT inflammation/metabolism genes. ASH treatment also
altered the expression of two genes in SKM.

4.1. Effect of Andrographis in AT

SERPINA3 expression was significantly lower in AT explants treated with AND-
CH. Serpina3 is part of the superfamily of the serine protease inhibitor (serpin). The
plasma SERPINAS3 level increases during inflammation [42]. Seprina3 is highly expressed
in AT, where it regulates preadipocyte differentiation, AT inflammation, and tumour
necrosis factor alpha (TNF-o)-induced insulin resistance [43-45]. Knockdown of Serpina3c
is associated with the inhibition of adipogenesis and adipocyte differentiation via an AKT-
mediated decrease in the nuclear translocation of glycogen synthase kinase 33 (GSK33) [43].
This is consistent with findings in humans, where increased SERPINA3 expression is
found in AT from obese individuals and individuals with cardiovascular disease [43,46,47].
Previous studies have reported an anti-adipogenic effect of Andrographis treatment [21,22].
However, we found no change in the expression of other regulators of AT differentiation
(e.g., PPARG) or changes in AKT1 or SERPINE1 gene expression. It is therefore unclear
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whether the observed changes in SERPINA3 mRNA would lead to reduced Serpina3c
protein expression and whether this would be necessary or sufficient to induce an anti-
adipogenic effect in humans in vivo. This warrants further exploration.

In our study, AT explants treated with AND-CH had lower expression of IL18 com-
pared to non-AND supplemented sera. IL-18 is a pro-inflammatory cytokine that is asso-
ciated with obesity, insulin resistance, hypertension, dyslipidaemia, and cardiovascular
disease [48]. AT levels of IL-18 have been found to be correlated with BMI, and serum
IL-18 is significantly higher in people with T2D and metabolic syndrome [49-51]. Hy-
perglycaemia has been shown to increase IL-18 expression in adipocytes [52]. No other
studies have reported an effect of Andrographis on IL-18 levels or expression. One study
investigated the effect of andrographolide derivatives on the NF-kB pathway in LPS-
stimulated THP-1 cells and found no effect of andrographolide derivatives on IL-18 mRNA
expression [53]. The effects of Andrographis on IL-18 mRNA expression could be tissue-
specific [54]. Crucially, our model is unlike previous in vitro research due to the use of
human serum and human tissue, which better mimics in vivo physiology. Considering that
IL-18 is a pleiotropic cytokine that is both a cause and a consequence of chronic metabolic in-
flammation, the clinical implications of the observed reduction in IL-18 expression warrant
further investigation in human clinical trials.

Andrographis treatment has previously been shown to inhibit inflammation in other
tissues via inhibition of a variety of signalling pathways and mediators (e.g., TNF-o, NF-«B,
interleukin 6 [IL-6], monocyte chemoattractant protein-1 [MCP-1], interleukin 1 beta [IL1[3])
in pre-clinical models of other inflammatory conditions [55]. In our study, treatment with
Andrographis metabolites did not have an effect on other inflammatory markers. The
discrepancy between previous research findings and the current study may be explained
by (1) differences in phytochemical metabolism and immune function in rodents and
humans, (2) in vitro models utilising the application of parent compounds rather than
the circulating metabolites in the current study, (3) lack of the physiological relevance of
animal-derived cell-based models, and (4) more pronounced effects in a high-inflammatory
milieu compared to the model of subclinical inflammation in the current study [56-59].

4.2. Effect of Ashwagandha on AT and SKM

In this study, AT explants treated with ashwagandha metabolites had decreased
mRNA expression of pro-inflammatory /pro-oxidant genes (CCL5, IL6) accompanied by a
reduction in the expression of the anti-inflammatory /antioxidant gene mRNA (IL10, UCP2,
GPX3, GPX4, ADIPOQ, NFEL?2).

CCL5 encodes the C-C chemokine motif ligand 5, which is implicated in the devel-
opment of obesity-associated AT inflammation and metabolic disturbances. In fact, CCL5
(along with CCL2) is a major recruiter of pro-inflammatory immune cells to AT [60]. CCL5
expression is increased in obese AT and directly correlated with macrophage inflammation.
In fact, CCL5 mRNA expression has been shown to be correlated with M1 macrophage
markers TNF-o and IL-6 [61]. Indeed, in our study, we found concomitant reductions in
IL-6 mRNA expression. The effects of ashwagandha treatment on AT inflammation have
never previously been investigated. However, in microglial cells, ashwagandha extract
(0.2% v/v) pre-treatment attenuated the LPS-stimulated production of IL-1f3, IL-6, and TNF
via downregulation of the NF-«kB pathway [62]. In a double-blind RCT, 66 participants with
type 2 diabetes supplemented with twice daily 250 mg or 500 mg ashwagandha extract for
12 weeks [32]. Ashwagandha supplementation produced a dose-dependent decrease in
serum malondialdehyde levels (250 mg: —6.36%, 500 mg: —21.39%) and hs-CRP (250 mg:
—41.22%, 500 mg: —57.71%), and a dose-dependent increase in serum glutathione (GSH)
levels (250 mg: 14.72%, 500 mg: 31.48%) [32].

We found that AT explants treated with ASH-CH and ASH-CA displayed decreased
mRNA expression of UCP2, GPX3, GPX4, and NFEL2. Our results contradict those re-
ported in previous studies. First, in animal models of diet-induced obesity, Withaferin A
supplementation reduced hepatic fat, restored hepatic insulin sensitivity, and increased
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superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and GSH con-
tent in the liver [63,64]. Similarly, in obese mice, ashwagandha supplementation increased
UCP2 mRNA expression in SKM and promoted the browning of (subcutaneous) AT via
increasing the expression of mitochondrial uncoupling protein 1 (UCP-1) [17,18]. UCP2
upregulation protects cellular damage by decreasing intracellular ROS, while UCP1 up-
regulation provokes energy dissipation in the form of heat. It is notable that the mRNA
expression of NFEL2, a transcription factor that regulates the defence against oxidative
stress, was also reduced in the presence of ashwagandha metabolites. This suggests a
decrease in the requirement for endogenous antioxidant defence in the presence of sera
containing ASH metabolites. We hypothesise that a decrease in inflammation (as indicated
by reduced CCL5, IL6 expression) may contribute to this reduced requirement to transcribe
antioxidant genes. This is speculative and requires extensive further exploration in human
clinical trials.

Treatment with ASH-supplemented sera also decreased the mRNA expression of the
‘anti-inflammatory” adipokine adiponectin (ADIPOQ). Adiponectin is also a positive regu-
lator of glucose homeostasis, lipid metabolism, and insulin sensitivity [65]. Ashwagandha
metabolites have been shown to alter adipokine secretion in other studies. For example,
in mice with diet-induced obesity, Withaferin A treatment significantly decreased plasma
leptin concentrations but significantly restored leptin sensitivity, which in turn improved
energy homeostasis and reduced bodyweight [16]. In the present study, we found no
effect of ASH-supplemented sera on leptin mRNA expression in AT, and instead found a
decrease in adiponectin expression. It is unclear how these changes would be reflected in
plasma proteins as changes in mRNA expression do not necessarily translate into changes
in circulating levels. Future investigations in clinical trials could help elucidate these effects.

Treatment with ashwagandha metabolites altered the expression of genes involved
in AT energy metabolism, particularly fatty acid uptake and metabolism, and glucose
metabolism. ASH-CH- and ASH-CA-treated AT explants had lower expression of CD36,
FABP4, CPT1B, CPT2, FASN, GSK3A, and NAMPT. CD36 and FABP4 are involved in long
chain fatty acid (LCFA) uptake, whereas CPT1B and CPT2 are involved in the transport of
LCFA and Acyl-CoA transport into the mitochondria for 3-oxidation. It has been shown
that the lower uptake and oxidation of fatty acids is associated with reduced diet-induced
inflammation and oxidative stress in AT but has no effect on adipogenesis [66]. These
changes in energy metabolism genes might therefore be associated with a reduced overall
inflammatory milieu, as suggested previously.

We propose that ashwagandha may—at least in part—exert its documented anti-
adipogenic effects via the inhibition of FASN, which is known to promote adipogenesis
and adipocyte differentiation [67]. Previous studies using 3T3-L1 preadipocytes sug-
gested that the anti-adipogenic effects of ashwagandha were mediated by an increase
in the mRNA expression of lipolytic genes (hormone-sensitive lipase (HSL) and adi-
pose triglyceride lipase (ATGL)) and a downregulation of lipogenic genes (SREBP1) [68].
Another study also found that ashwagandha decreased lipid accumulation in 3T3-L1
preadipocytes, which was associated with decreased PPARY protein expression [14]. We
did not find any effect of ashwagandha-metabolite-containing sera on PPARG expression
in AT (Supplementary Figure S1). This could be due to the limited human applicability of
3T3-L1 adipocytes [69]. For example, studies comparing a primary human Simpson—Golabi-
Behmel syndrome (SGBS) line and mouse 3T3-L1 lines found significant differences in the
expression of marker genes [70]. The mouse and human line shared 295 adipocyte marker
genes and displayed 445 and 860 unique marker genes in the human and mouse cell line, re-
spectively. Mouse and human adipose tissue expansion and metabolic dysfunction are also
significantly different [71]. For example, while human subcutaneous AT expands through
hypertrophy and hyperplasia, mouse AT seems to expand only via hypertrophy [72]. This
in turn leads to differences in the vascularisation of AT which results in different levels of
tissue hypoxia, hypoxia-inducible factors, and resulting tissue inflammation [73,74].



Nutrients 2024, 16, 2291

11 of 16

In the present study, NAMPT expression was lower in treated AT. In mice, fat-specific
NAMPT knockouts were resistant to high-fat-diet-induced obesity and had improved
glucose tolerance [75]. It is unclear how these results translate to humans. Further investi-
gations measuring lipid accumulation, adipocyte size, and protein expression are needed
to better understand the effects of ashwagandha on lipid metabolism in AT.

4.3. Limitations and Future Directions

We investigated the effects of Andrographis and ashwagandha on inflammation, pro-
oxidant/anti-oxidant balance, and metabolism in order to screen these supplements for
the potential to improve human cardiometabolic health. We recruited healthy volunteers
and conducted ex vivo investigations in the SKMC and AT of healthy volunteers. This
approach minimised inter-individual variability in background inflammation, essential for
this screening study. However, our findings may not be applicable to a population with
cardiometabolic disturbances [76-78]. It may be that a model employing sera and tissue
from people with metabolic dysfunction and substantial systemic background inflammation
may have revealed more substantial or different changes in mRNA expression. For adipose
explants, had we recruited a population with cardiometabolic disturbances, it might have
been questioned as to why we did not recruit a lean control group. This would then have
necessitated additional human participants experiencing an adipose biopsy procedure for
the purposes of an in vitro screening study—the ethical implications of this are evident. Our
use of human adipose tissue, human sera, and myogenic cells from human skeletal muscle,
while more physiologically relevant than many previous ex vivo approaches, carries its
own limitations. First, inter-individual differences in adipose tissue physiology could have
made it more difficult to detect the effects of the treatment [79]. The skeletal muscle cells
were isolated from a single muscle biopsy from a healthy young male. This is preferable to
a murine cell line, e.g., C2C12, but could none the less limit the applicability of our findings
to our target population.

We pooled the sera per supplement and timepoint; this resulted in measuring the
‘average’ response to supplementation. As such, this study exposed AT and SKM to
(1) an ‘average’ concentration of ASH/AND metabolites that would be found in vivo and
(2) accounted for the “average’ unexplored metabolite-serum interactions and any resulting
effects on the overall inflammatory milieu. This maximises physiological relevance and is a
major strength of this study.

While the supplementation period and dose were chosen based on the available lit-
erature, the lack of available pharmacokinetic data prevents the quantification of sera
metabolites present in the sera at the time of collection. This remains a considerable
challenge in the literature. A single study of ashwagandha pharmacokinetics has been
described in humans. Plasma Withaferin A (n = 13) was measured after an acute ashwa-
gandha dose (4800 mg containing 216 mg Withaferin A) and researchers could not detect
one of ashwagandha’s known metabolites, Withaferin A, in any biological samples [80]. We
hypothesise this could be due to the low sensitivity of the measurement technique and to
the population (patients with advanced stage high-grade osteosarcoma). Our 1 h timepoint
for acute supplementation was based on the best available information [81], but may not
have captured peak metabolite concentrations. In fact, there is generally only a minor dif-
ference in effects between CH and CA conditions. Certain genes (e.g., the effect of ASH on
FABP4 in AT) were more markedly altered by the CA sera than by the CH alone, suggesting
that the 1 h timepoint did capture, at least in part, the acute response to the supplement.
There is a critical need for high-quality investigations of the pharmacokinetic profiles of
ashwagandha and Andrographis to understand their metabolism and bioavailability. This
is currently significantly constrained by a lack of exploratory work identifying circulating
ashwagandha and Andrographis metabolites.

Our study exposed the SKMC and AT explant to a single ‘timepoint” of metabolite
concentration, whereas, in vivo, serum is a complex milieu that is constantly changing. No
in vitro study design can accurately capture these dynamic changes in the proportion of
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each metabolite, the evolving concentration of each metabolite, and its time-dependent
effects on other constituents in the circulation. Similarly, cells/tissues were treated for
24 h and mRNA expression was measured at a single timepoint. In humans, tissue-level
changes in mRNA expression in response to an intervention depend on the timing of the
biopsy. For example, following an exercise intervention, mRNA expression of PPAR« is
significantly altered 3, 24, 48, and 72 h, but not 9 h, after the intervention [82]. The use of a
single timepoint may lead to an incomplete understanding of the molecular response to
treatment. Our model nonetheless mimics the complexity of human physiology to a greater
extent than past investigations and contributes strong evidence to justify comprehensive
in vivo human trials.

We have used confidence intervals, not p-values to describe our data. There are
compelling reasons for this, which we would invite researchers to consider in handling
similar data. A p-value characterises the evidence for or against the null hypothesis. It
does not address the uncertainly in the size of effect or the issue of whether all plausible
values are biologically important or are greater than a ‘zero effect” threshold. Confidence
intervals do this well, and values that do not cross the value of zero effect can be considered
meaningful [40,41]. Further, exploratory/screening in vitro studies of gene and protein
expression (including ours) typically employ limited numbers of experimental replicates.
This is reasonable, given these studies are typically conducted to signpost future in vivo
studies. In such scenarios, confidence intervals are superior to a binary p-value judgement
regarding a response to treatment. The confidence interval approach allows the likely
range of values to be ascertained, thus responsibly allowing researchers to pursue research
avenues that show promise.

5. Conclusions

Our in vitro findings suggest that ashwagandha supplementation could alter an-
tioxidant defence and inflammatory responses in vivo. Our work also suggests that fuel
metabolism may be altered by ashwagandha in vivo. Andrographis supplementation could
alter the expression of pro-inflammatory genes. Many of the circulating ashwagandha and
Andrographis metabolites responsible for these effects have yet to be identified. How such
metabolites act in concert in vivo is poorly understood. We suggest that an investigation of
the in vivo effects of ashwagandha should be prioritised. Our data represent reasonable
justification for a comprehensive randomised placebo-controlled trial of ashwagandha in a
population with deteriorating cardiometabolic health. Such a trial should measure both
circulating and tissue-level (adipose, skeletal muscle) markers of inflammation and energy
metabolism. This would represent an important incremental step in determining the effect
of ashwagandha on markers of human cardiometabolic health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16142291/s1, Figure S1: Adipose tissue explant PPARG mRNA
expression is unaltered by treatment with sera of people who supplemented with ashwagandha
(ASH). Sera were obtained following 28 days supplementation (chronic, (CH)) and following 28 days
supplementation and an acute dose (+1 h) of ASH (chronic + acute (CA)). Values are expressed
relative to mRNA expression in samples treated with pre-supplementation baseline (BL) sera. Sera
were obtained from 10 participants and pooled for adipose tissue treatment.
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