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ABSTRACT
Combinational creativity, a form of creativity involving the blending
of familiar ideas, is pivotal in design innovation. While most research
focuses on how combinational creativity in design is achieved
through blending elements, this study focuses on the computational
interpretation, specifically identifying the ‘base’ and ‘additive’ com-
ponents that constitute a creative design. To achieve this goal, the
authors propose a heuristic algorithm integrating computer vision
and natural language processing technologies, and implement mul-
tiple approaches based on both discriminative and generative artifi-
cial intelligence architectures. A comprehensive evaluation was con-
ducted on a dataset created for studying combinational creativity.
Among the implementations of the proposed algorithm, the most
effective approach demonstrated a high accuracy in interpretation,
achieving 87.5% for identifying ‘base’ and 80% for ‘additive’. We con-
duct a modular analysis and an ablation experiment to assess the
performance of each part in our implementations. Additionally, the
study includes an analysis of error cases and bottleneck issues, pro-
viding critical insights into the limitations and challenges inherent in
the computational interpretation of creative designs.
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1. Introduction

Combinational creativity is the easiest form of creativity for human beings among the three
types of creativity (exploratory, transformational, and combinational) proposed by Boden
(1996). It involves blending novel combinations of familiar ideas, which is achieved by
connecting ideas that were previously unrelated. Several researchers have explained cre-
ativity by using the term ‘combinational creativity’. For example, Frigotto and Riccaboni
(2011) described that the nature of creativity is to combine; Henriksen and Mishra (2014)
suggested that creativity is the process of creating something newbygenerating new com-
binations and alterations with existing ideas; Childs (2013) indicated that combinations of
essentialmental capabilities lead to creativity; and Sawyer andHenriksen (2024) emphasise
that combination is one of the most important ways to explain creativity. Combinational
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creativity has been employed widely in design through various forms, such as bisociation
which connects unrelated and often conflicting ideas in new ways (Koestler 1967), and
analogy exploring shared conceptual space (Boden 2009).

In practice, combinational ideas can be developed by associating diverse elements,
includingwords, ideas, concepts, images, and evenmusical styles and artistic genres (Ward
and Kolomyts 2010). In the context of this study, we specifically focus on the conventional
form of combinational creativity known as noun-noun combination. Here, noun refers to
both single noun words like ‘pencil’ or phrases like ‘mechanical pencil’. The first noun is
also known as the ‘base’, signifying it as the foundational element in the formation of the
creativity design, while the second is termed the ‘additive’, representing the supplemen-
tary part that enhances the design (Han et al. 2018). Researchers in the field, such as Nagai,
Taura, and Mukai (2009) and Ward, Finke, and Smith (1995), have delved into the realm of
noun-noun combinations, examining their intricacies and associated interpretations. For
instance,Nagai, Taura, andMukai (2009) illustrated theuseof three compoundphrase inter-
pretation methods for generating fresh concepts, including property mapping, concept
blending, and integration.

In recent years, there is an increasing interest in employing combinational creativity
(Wang, Zhu, et al. 2023; Chen, Zhang, et al. 2024b; Wang, Tan, andMa 2024). Most literature
focuseson the integrativeprocessof ‘combination’, aimedat aidingdesigners ingenerating
new ideas during the early stages of the design process. For instance, Bacciotti, Borgianni,
and Rotini (2016) introduced a computational method that combines concepts from dif-
ferent dimensions to identify scenarios that stimulate creative idea generation. Georgiev,
Sumitani, and Taura (2017) synthesised scenes from various contexts, thereby encourag-
ing the creation of new design ideas. In addition to textual representations of ideas, Han
et al. (2018) developed ‘the Combinator’, which provided a visual expression of creativity
through the blending of the original concept images. Utilising generative adversarial net-
works (GANs), Chen et al. (2019) achieved more harmonious outputs of creative images
through artificial intelligence (AI).

As an emerging branch of computational creativity, data-driven creative methods are
being increasingly utilised (Kelly and Gero 2015). In the field of combinational creativity,
although a wealth of creative cases in graphic and textual forms can be found on the inter-
net, structuring these resources for data-driven design proves challenging, as it requires
expertise and specific physical environments (Han et al. 2019). Moreover, the attempt to
automate the deconstruction process of combinational creativity, particularly in terms of
interpreting ‘base’ and ‘additive’ elements, is still absent. It could be elusive for machines
to understand the rationale and mechanism behind such combinations (Boden 2009).
Addressing this aspect is crucial as it offers valuable insights into the data-driven design
cycles for design creativity (Chen 2020). It benefits knowledge management in conceptual
design by extracting structured design concepts from existing design information, facili-
tating the reuse of design knowledge to accelerate future designs. Besides, it enables the
assessment of creative products from an original concept perspective.

In this study, our motivation is to fill the gap in the interpretative process of com-
binational creativity. We aim to guide this process through a semi-automated approach
that does not require extensive knowledge in the field of design. Inspired by the three
driving forces identified by Han et al. (2019), we propose a computational algorithm
that employs advanced AI techniques for interpreting creative combinational designs. AI
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technologies have been widely utilised in design practices (Han, Childs, and Luo 2024).
Generally, they do not address complex issues from a holistic system perspective as
human designers do, but instead manage complexity through the continuous iteration
of simple tasks (Verganti, Vendraminelli, and Iansiti 2020). In our context, ‘interpreting’
refers to the process of acquiring meta-knowledge about design. This involves identify-
ing the combination pairs – namely, the ‘base’ and ‘additive’ elements – that constitute
the essence of combinational creativity. Specifically, we proposed a heuristic algorithm
that breaks down the interpretative process into multiple simple tasks, integrating both
computer vision and natural language processing technologies. We implemented this
algorithmbasedonmultiple approaches, includingbothdiscriminative andgenerative arti-
ficial intelligence. Our approaches were rigorously tested on a dataset (Han et al. 2019)
specifically curated for combinational creativity. Impressively, the most effective method
demonstrated a high recognition accuracy, achieving 87.5% for identifying ‘base’ elements
and 80% for ‘additive’ elements. Furthermore, we established baselines using generative
large language models (LLMs) for comparison. The results indicate that our algorithm
significantly enhances the identification of combination pairs. We present the following
contributions:

(1) This is the first study that proposed a computationalmethod for interpreting combi-
national creativity. It fills a crucial gap in data-driven design cycles by transforming
design creativity into meta-data, thus enhancing the understanding of creativity
processes in design.

(2) We developed a heuristic-based interpretation algorithm, grounded in an under-
standing of how designs are formed through combinational creativity. This
algorithm, integrating computer vision and natural language processing tech-
nologies, was implemented across various discriminative and generative AI
architectures.

(3) Our approaches were validated on a dataset of combinational creativity, showing
promising predictive performance.We conducted amodular analysis of the discrim-
inativeAI-based approaches,with adiscussion about theperformance andpotential
issues of each component. Furthermore, by contrasting with baselines, we demon-
strated the effectiveness of our approach, underlining its viability and robustness in
interpreting creative designs.

2. Related works

2.1. Artificial intelligence in combinational creativity

In recent years, data-drivenAI technologieshavebeen recognisedas capableof engaging in
creative tasks like humans (Wang et al. 2024; Zhou and Lee 2023). In this section, we review
the applications of AI in the field of combinational creativity and explain how they inspire
this study. Generally, most previous work has focused on the generative and subsequent
evaluative phases of creativity, using existing structured creative data as input to produce
creative works and perspectives. This study, however, concentrates on the interpretation
side, aiming to achieve a reverse transformation back to data. Typically, a complete data-
driven learning process includes these two opposing branches (Chen 2020).
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Figure 1. Examples of the three combinational creativity driven approach (Han et al. 2017).

In this study, based on the methodology of using AI to handle complex design tasks
through the iteration of simple steps (Verganti, Vendraminelli, and Iansiti 2020), a straight-
forward step in our algorithm involves extracting all nouns from textual descriptions as
potential candidates, particularly considering the characteristics of ‘base’ and ‘additive’ as
nouns. However, the combinations of ‘base’ and ‘additive’ are typically complex and var-
ied, involving harmonious interactions between concepts and the specialised insights of
designers. Previous research by Han et al. (2017; 2019) provided a critical foundation for
understanding the relationships. Specifically, in collaboration with experienced designers,
they identified three representative ways of combining ‘base’ and ‘additive’, termed as the
problem-driven, similarity-driven, and inspiration-driven approaches, shown in Figure 1.
Our work can be seen as an extension of Han et al.’s findings, as they primarily decon-
structed the logic behind combinational creativity, whereas we further explore its practical
applications by identifying the fundamental elements of combinational creativity.

Other works, such as ‘the Combinator’ (Han et al. 2018) and the design GANproposed by
Chen et al. (2019), represent another branch of application for the three driven approaches,
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specifically in generating new creative ideas. Through the use of cross-modal computa-
tional methods and the application to textual and visual data, they offer new perspectives
for understanding the creative process. However, the combinational products generated
are not always intuitive and fail to meet the specific needs of designers to produce visu-
ally appealing and functionally practical designs, such as the leaf-inspired spoon by Chen
et al. (2019). This issue is largely attributable to the datasets they use – images and labels
from real design products are often difficult to obtain, which hampers the models’ ability
to be adequately trained to generate practical design solutions. From this perspective, our
work contributes by automatically generating base and additive labels for existing product
images, which can then be utilised for future combinational creativity generation.

Recently, the emergence of generative artificial intelligence (GAI) has also sparked
widespread discussion in the fields of design and creativity (Hu et al. 2023; Chen, Cai, et
al. 2024a; Wu et al. 2024). With the extensive integration of design corpora from the nat-
ural world, GAI has shown unique advantages in understanding complex design concepts
(Franceschelli andMusolesi 2023). Furthermore, prompting allows designers to input addi-
tional insights and ways of thinking, aiding the creative process in a manner more aligned
with humanhabits (Frigotto andRiccaboni 2011). This has beenwidely utilised in areas such
as conceptual design (Wang, Zuo, et al. 2023;Ma et al. 2024) and product interaction design
(Friedl et al. 2023).

2.2. From design creativity to data

Benefiting from the active community of computational creativity (Colton et al. 2015), the
research on creative systems has achieved much in different aspects, such as framework
(Carnovalini and Rodà 2020), computational creativity models (Colton and Wiggins 2012;
Marrone, Taddeo, and Hill 2022), and related applications (Colton et al. 2021; Cook and
Colton2018;Oppenlaender 2022). Unlikemost studies focusedon the integrativeprocesses
of creativity, this study concentrates on the interpretation side, aiming to achieve a reverse
transformation from creativity to data (Chen 2020). Technically, this work relies on data
mining to delve into creativity. In this section, we provide a brief review of data mining
in the field of creativity, outlining the key techniques and their applications in enhancing
our understanding of creative processes.

Design creativity exists in a variety of formats, of which textual and image are the two
widely used digital formats. In design engineering, textual data are analysed for various
purposes. For example, Chaklader and Parkinson (2017) analyse consumer reviews to pro-
vide information quickly and economically for the establishment of design specifications
related to human-artifact interaction. Song, Luo, and Wood (2019) applied patent mining
techniques to search for precedents of a product design in patent databases in order to
learn about relevant prior arts, seek design inspiration, or for benchmark purposes. The
capabilities of natural language processing methods in handling unstructured text make
them a crucial tool in design research (Siddharth, Blessing, and Luo 2022), such as knowl-
edge reuse (Li et al. 2021), needs elicitation (Lin, Chi, andHsieh2012) andbiomimicry (Arslan
Selçuk and Mutlu Avinç 2022).

Image data, including sketches, drawings, product sample images, and CADdesigns, are
also widely used in design engineering. From the perspective of engineering, image data
mainly expresses product’s functionality and behaviour, andmanufacturing procedure. On
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the other hand, they tend to illustrate product shape, appearance, and visual feelings from
the design perspective. In this case, a significant amount of research in data-driven design
leverages image data to facilitate and enhance the design process, as well as to foster inno-
vation indesign. For example,DeringandTucker (2017) introducedadeep learningmethod
using 3D convolutions. This approach efficiently predicts functional aspects, like seating,
liquid storage, and sound emission, in digital designs. While Wang and Qian (2017) devel-
oped an imagemining algorithm that yields insights into shape variability and enables the
creation of accurate 3D models.

3. Approach overview

3.1. Problem statement

In this study, we consider a noun-noun combinational creative designs as comprising a pri-
mary base idea and an additive idea. While complex designs may have multiple bases or
additives, our focus is on single pairs to simplify the modelling of combinational creativity.
Notably, no existing literature, to the authors’ knowledge, delves into the computational
interpretation of these designs. It thereby raises a research challenge that how the base and
additive could be computationally extracted respectively, when a combinational design is
provided.

Combinational designs could be expressed or presented in various digital formats,
involving images, texts, and even three-dimensional models. Image and text formats are
the ones used most often, as they are commonly used in nowadays digital systems. There-
fore, our objective is to automatically determine the base and additive components of
combinational design products, from provided images and textual descriptions, with a
computational approach. Using Figure 1(d) as an instance, from the image of the product
and its textual description below:

The design of the Eggboard pendant luminaire picks up this principle, translating it into
a high-quality lighting option. Surfaces of simple egg cartons possess outstanding sound
absorption qualities thanks to the specific surface structure. (Red Dot Design Award: Eggboard
2016)

It is expected that ‘pendant luminaire’ can be extracted as the base, and the phrase ‘egg
cartons’ can be extracted as the additive of the combinational design ‘Eggboard’, along
with the image interpretation from Figure 1(d). In this example, our initial challenge is to
identify key elements like ‘pendant luminaire’ and ‘egg cartons’ among multitude of noun
entities present in the design description and imagery. The linguistic expression of cre-
ativity and metaphors (Han et al. 2019), which is widely employed in these descriptions,
complicates the task of accurately extracting the specific nouns we need from the text.
Regarding design image interpretation, the ‘base’ and ‘additive’ elements of a product are
typically merged into a singular physical form. This integration is often accompanied by
transformations and distortions of explicit traits such as shape, texture, size, and materi-
als, further complicating the task of visually distinguishing these components within the
design. The second challenge involves distinguishing the roles of the two extracted nouns
as either ‘base’ or ‘additive’. This demands not only an efficient text parsing capability from
anAImodel but also aprofoundunderstandingof the intrinsic connectionsbetweendesign
concepts.
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Algorithm 1: The Algorithm for interpreting combinational creative designs

Input: the product image I, the product description T
Output: Base element, Additive element

BEGIN
// Step 1: Identify Base Element
Base = ImageInterpretation (I)
// Step 2: Extract all Nouns or Noun Phrases as Potential Additives
PotentialAdditives = NounEntityExtraction (T)
// Step 3: Access Potential Additives with Relation
FOR each AdditiveCandidate in PotentialAdditives DO
Relation = CheckRelation (T , Base, AdditiveCandidate)
IF RelationMatch (Relation, PredefinedRelation) Then

Additive = AdditiveCandidate
END IF
END FOR
RETURN Base, Additive

END

Figure 2. Flowchart of the proposed framework.

3.2. The Algorithm for interpreting combinational creative designs

In order to interpret a combinational creative design, alternatively, to extract the ‘base’ and
‘additive’ pair from the corresponding image and textual description of the design, an inte-
grated interpretation algorithm is proposed in this study. We present the overall flowchart
in Figure 2 and a pseudo code shown as Algorithm 1. Given the product image I and textual
description T , we start with the image interpretation. By understanding the main subject
in the image, we can narrow down the numerous nouns to focus on the potential ‘base’
and ‘additive’ elements, as they can be explicitly manifested through factors such as shape
and appearance. It is intuitive to observe from the examples in Figure 1, the ‘base’ (founda-
tional part) is usuallymore discernible. This is attributed to the fact that the base constitutes
the product’s principal structure or core functionality, thereby delineating its essential fea-
tures and intended uses. Regarding the ‘additive’ aspect, based on the three combination
strategies mentioned, it often serves as a functional expansion or a creative supplement.
Typically, it is more challenging to discern due to its nuanced and integrative nature within
the product. In this case, we use the image interpretation results as a reliable prediction
of the ‘base’ and serve as additional information that aids in determining the ‘additive’
elements.

To identify the ‘additive’ elements, we first leverage the characteristic of noun-noun
combinations, extracting all nouns or noun phrases from product descriptions (textual) as
potential candidates for the additive component as step 2 in Algorithm 1. For the ‘base’
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Table 1. An overview of relationship between base and additive.

Combinational
creativity approach Relation Description

Problem-Driven Solution The additive provides a specific solution to the base.
Integration The additive combines with the base to solve a more

complex problem.
Similarity-Driven Complementarity The additive complements the base, enhancing its original

characteristics or functionalities.
Harmonisation The additive and base harmoniously combine in function

or design, improving overall consistency and
effectiveness.

Inspiration-Driven Innovation The additive brings novel and unique features or
functionalities to the base.

Transformation The additive completely changes the traditional use or
appearance of the base.

and each potential additive, we assess whether the latter is indeed an additive by under-
standing their relationship in the context of the description. Based on the characteristics
of combinational creativity, the ‘base’ and ‘additive’ components are always combined
together based on specific principles, such as the three classical forms discussed in Section
2.1. Therefore, we can identify them through their specific relationships. Through scrutinis-
ing the three common types of combinatorial creativity, we summarised several predefined
relations, as shown in Table 1, to assist in determining additives. For the problem-driven
approach, common relational terms include ‘solution’, indicating that the additive provides
a specific solution to the base; and ‘integration’, suggesting a combination of the additive
with the base to solve amore complex problem. In the similarity-driven approach, the term
‘complementarity’ reflects how the additive complements the base, enhancing its original
characteristics or functionalities, while ‘harmonization’ denotes a harmonious combina-
tion of the two in function or design, improving overall consistency and effectiveness. For
the inspiration-driven approach, ‘innovation’ indicates that the additive brings novel and
unique features or functionalities to the base, and ‘transformation’ implies that the addi-
tive completely changes the traditional use or appearance of the base. For each relation
term, their semantically similar substitutes are equally valid. For instance, ‘integration’ and
‘part of’ are interchangeable in context. These summarised relations serve as predefined
relations in the algorithm to help identify the relation between base and additive.

4. Implementation

In this section, we begin by introducing the dataset used in our study. To operationalise
our algorithm, we employ a trio of modules: an image recognition module for image inter-
pretation, an entity recognition module for extracting nouns, and a relation extraction
module for checking relationships. Since eachmodule exclusively processes either imageor
text data, this approach is termed a unimodal method. Additionally, we have made efforts
to integrate both images and textual data in each module, thus achieving a multimodal
approach. We refer to both implementations as discriminative methods, primarily because
they rely on discriminative AI models designed for classification tasks. On the other hand,
wehave also developed an approachbasedongenerativeAI, attempting to guide the infer-
ence of LLMs through our algorithm. Given the inherent proficiency of LLMs in image-text
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Table 2. An overview of computational design creativity dataset.

No. Name Image Description Base Additive

1 Baby Bottle
Drying Rack

The form is inspired by a natural tree
shape and eliminates water pooling
and prevents minerals and bacteria
from building up.

Drying Rack Tree

2 Sharp 1 This knife block set and its integrated
knife sharpener are a space-saving
combination of different functions.
It saves users from having to search
for a knife sharpener when needed.

Knife Block Knife
Sharpener

3 Origami Inspired by the origami paper folding
technique, the surface of this
teaware features an inventive
structure. It lends the two-piece tea
set a unique feel while also adopting
the round shape of classic tea ware.

Tea set Origami Paper
Folding

reasoning tasks, we aim to ascertainwhether our algorithm can enhance their intrinsic abil-
ity to interpret combinational creativity. For this purpose, we have also implemented a
vanilla version as a baseline for comparison, allowing us to evaluate the effectiveness of
our algorithmic intervention.

4.1. Dataset

This study employs the dataset1 developed by Han et al. (2019), which is specifically
curated for investigating the driven approaches of combinational creativity in design. The
dataset encompasses data on two hundred products originating from combinational cre-
ativity, including their names, images, and descriptions. These products were meticulously
selected from the award winners of prestigious design competitions, such as the iF and
Red Dot design awards, with their detailed information sourced directly from the competi-
tions’ official websites. As detailed in Table 2, for eachproduct sample, the dataset limits the
representation to one image and a maximum of five sentences in the textual description.
A team of design experts analysed the 200 samples, identifying the ‘base’ and ‘additive’
elements of each product, which were then incorporated into the dataset. This extraction
process was performed manually and subsequently validated by the experts. For instance,
in the case of sample 2 ‘Sharp 1’, the ‘base’ is identified as a ‘knife block’, and the ‘additive’
as a ‘knife sharpener’, deduced from its textual and visual description. It is important to note
that the terms used to describe the ‘base’ and ‘additive’ in the dataset directly correspond
to the language found in theproduct descriptions and/or names. For example, the ‘base’ for
sample 1, a ‘drying rack’, was not explicitly mentioned in the product’s description but was
inferred from its name. This careful approach ensures the dataset’s integrity in accurately
representing the elements of combinational design.
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4.2. The discriminative approaches

4.2.1. A unimodalmethod
In the field of deep learning, computer vision and natural language processing are the two
distinct disciplines characterised by different types of input modalities. In this section, we
utilise advanced computer vision and natural language processing technologies to achieve
interpreting of combinational pairs. Here, unimodal refers to the concept that each com-
ponent we propose processes only a single type of input, namely images or text. Given
an input image, image classification identifies the subject present in the image. Generally,
the types of objects that an image model can ‘recognize’ are limited and depend on the
characteristics of the dataset used to train the model. For instance, ImageNet (Deng et al.
2009) contains over 14 million images labelled with over 20,000 categories, ranging from
everyday objects to animals and landscapes. Another dataset, COCO (Lin et al. 2014), fea-
tures over 330,000 images with 80 object categories, including people, vehicles, and street
scenes. Typically, combinational design products are centred around everyday items, like
the drying racks, knife sharpeners, and teaware shown in Table 2. These product categories
can generally be found within the 1000 classes of ImageNet. Considering the potential
limitations in class varietywithin the ImageNet-1000 dataset, especially concerning the cat-
egories relevant to combinational design creativity, this study opts for a commercial image
prediction API by Clarifai.2 Specifically, we utilised its Vision Transformer (ViT) version of the
general image recognitionmodel and parameters, which supports the recognition of up to
9098 different object categories. This model offers a broader range of categories as a sub-
stitute for models trained on ImageNet. Additionally, it is straightforward to use through
platform API and it performs well in terms of performance (Korot et al. 2021).

In order to extract entities and relations from textual descriptions, which also include
the names of the products, two differentmodels were proposed to perform the two extrac-
tions, respectively. To extract all possible noun entities at sentence-level, we utilised the
named entity recognition (NER)module of spaCy (Honnibal andMontani 2017) in this study
due to its excellent performance and popularity. While there are many other advanced
entity extraction models available, we decided to use spaCy’s NER because of its conve-
nience in implementation by supporting direct API calls and its full capability to meet
our needs, as evidenced in Table 4. To determine which noun aligns with the base result
from image recognition, we employed spaCy’s similarity check, assessing semantic sim-
ilarity. Our approach to discerning relationships between two entities involves the use
of Relation Extraction (RE) techniques. Typically, RE processes involve inputting textual
descriptions and two target entities, from which the system deduces a contextually based
relational interpretation. Often, texts contain additional entities and their interrelations,
known as contextual relations. Although these are not the primary focus, they can signifi-
cantly influence the interpretation of the target relation. Thereby, this study has adopted a
context-aware architecture to extract the target relation (Sorokin and Gurevych 2017). Par-
ticularly, it utilises an attention mechanism to include potential candidate pairings when
determining relationships between specific entity pairs. This approach enables accurate
predictions from the complex noun pairing relationships present in creative combinational
design descriptions.

As depicted in Figure 3, the REmodel comprises fourmain components: input vectorisa-
tion, LSTM for sequential relation capturing, attention mechanism, and output prediction.
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For the input layers, the RE model initiates by segmenting the description into a series of
tokens, x = x1, x2, . . . , xn, using whitespace as the delimiter. When considering nouns as
possible additive candidates, we individually examined their relationships with the base.
Here, the interaction between the base and a specific noun is considered the target rela-
tion, while those between the base and other nouns are treated as contextual relations.
Entities markers are implemented to classify each token as belonging to an entity or not.
Subsequently, the model maps the token sentence to a k-dimensional embedding vec-
tor employing a matrix W ∈ R

|V|×k . In the matrix, |V| refers to the size of the vocabulary.
Here, a pre-trained Word2Vec model from Google by Mikolov et al. (2013), in which three
million 300-dimensional embeddings of words or phrases are trained, is employed. Simi-
larly, by randomly initialising each entity, the entity markers are converted into a marker
embedding matrix P ∈ R

3×d . In the matrix, d refers to the dimension of the embedding,
of which there are three marker types. Each marker embedding is concatenated with word
embedding (Wn, Pn) and fed into the LSTM layer. The output is depicted as Oi ∈ R

O for con-
textual relation and Ot ∈ R

O for target relation. An attention mechanism is implemented
in the mode, of which a score is computed for a contextual relation regarding to the target
relation: g(oi, os) = oiAos. Each index in the weight matrix can then be calculated by the
following equation (1):

ai = exp(g(oi, ot))∑m
j=0 exp(g(oj, ot))

(1)

Finally, the contextual relation representations are summed up as equation (2):

oc =
m∑
i=0

aioi (2)

The context representation Oc is concatenated with the target relation: O = [Ot , Oc]. The
concatenated vector is then fed into the softmax layer for predicting the type of target
relation.

The context-aware REmodelwas trained on theWikidata dataset (Sorokin andGurevych
2017), which involves 284,295 relation triples and 578,99 relation instances for training, as
well as supports 353 different relation types. Finally, we utilised spaCy’s similarity check to
assess the similarity between the relation identified and the key termspredefined in Table 2.
The noun source with the highest similarity was then reported as our additive. During the
training process, we set the maximum epoch, the learning rate, and the batch size to 200,
0.002, and 32, respectively. We fixed the number of LSTM units o = 256, and the dimension
of the marker embedding d = 3. The ratio of the training-validation-test sets is set to 60%,
20% and 20%. We conducted experiments using TensorFlow 1.6 on four NVIDIA GeForce
RTX 3090 GPUs, and the entire training process took approximately 2 hours.

4.2.2. Amultimodal method
Building on the unimodal implementation, a natural progression is to consider extending
each module to a multimodal approach, to see if it yields better results. In this section, we
demonstrate how to incorporate both images and textual descriptions into the identifica-
tion process of the base and the additive. To identify the base from the textual description,
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Figure 3. The architecture of the context-aware RE model.

our approach involves transforming both the text and the image into a joint represen-
tational space. We then used similarity as the criterion to find the target base element.
There are various foundations that can assist us in achieving this objective. For instance,
CLIP (Radford et al. 2021), ALIGN (Jia et al. 2021), and Imagebert (Qi et al. 2020) all effec-
tively perform joint representation of text and images. In this study, we selected CLIP as our
joint representationmodel, as it is readily accessible and continuously undergoes updates.3

CLIP is a neural network trained on more than 1.28 million (image, text) pairs and is com-
monly used for aligning and transforming text and images (Saharia et al. 2022; Zhang, Rao,
and Agrawala 2023). We first utilised the NER module of spaCy to find all noun entities as
described in 4.2.1. Given each noun Ni as base candidate and product image I, CLIP con-
vertsboth intohigh-dimensional vectors,V(Ni)andV(I) ∈ R

D, respectively, through its dual
encoding mechanism. We then calculated the compatibility score S(Ni, I) between each
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noun Ni and image Iwith cosine similarity by the following equation (3):

S(Ni.I) = V(Ni) · V(I)

V(Ni) V(I)
(3)

The noun Nbase that yields the highest compatibility score with the image I is considered
the base element. Mathematically, it can be expressed as:

Nbase = argmaxNi(S(Ni, I)) (4)

For interpreting the additive, we employed a multimodal relation extraction model, which
enhances the understanding of potential semantic gaps in the sentence by incorporating
the visual modality. In this study, we used MEGA (Zheng et al. 2021) as our relation extrac-
tionmodel. It utilises object detection technology to extract potential objects from images
and form a scene graph, serving as a complement to the textual semantics. We adapted
the MEGA framework for our specific application. Recognising that in scenarios involving
the prediction of creative combinational pairs, the base and the additive often correspond
to different aspects of the same object within an image. In this case, we opted to exclude
the original multimodal graph structural alignment module from MEGA. This decision was
informed by the understanding that such structured alignment may not be conducive to
extracting meaningful information in cases where the base and additive are intrinsically
linked within a single object’s representation.

Figure 4 illustrates the framework of the model after adjustment. Essentially, it includes
twoparallel branches thatperform feature extraction from images and text, respectively. An
attention mechanism is then applied, allowing for the reweighting of textual features with
additional image information. We start with the image branch. For a given input image, we
extract the feature vectors yi ∈ R

dy of them objects with the highest confidence from the
object detectionmodel, transforming these intomatrix Y = [y1, y2, . . . , ym] ∈ R

m×dy . If the
number of detected objects in an image is less than m, we applied zero-padding to com-
pensate. To process the input text representation, we augmented it with special positional
markers at the beginning and end, designated as [cls] and [sep], respectively. Additionally,
we placed [start] andmarkers before and after the two target entities to indicate their posi-
tions. Subsequently, we standardised the length of all descriptions by extending them to
the maximum length using the [pad] token. Alongside this, we introduced a token mask
composed of zeros and ones, where a ‘1’ represents an actual token, and a ‘0’ signifies the
presenceof a [pad] token. Thismask serves as a record for differentiatingbetweenmeaning-
ful tokens and padding. To obtain the textual semantic representation, the two sequence
are fed into a BERT encoder, and transformed into a matrix X ∈ R

l×dx . Then, we performed
an attentionmechanism to obtain the semantic alignment weight β by equations (5) to (8):

K = WkX + bk (5)

Q = WqY + bq (6)

V = WvX + bv (7)

β = softmax

(
QKT√

d

)
(8)
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Figure 4. The architecture of the MEGAmodel.

Here Wk , Wq,Wv , bk , bq, bv are learnable features, and d is a constant. The overall
visual representation, denoted as ŷ, is derived by summing the elements of βV row-
wise. Subsequently, the vector corresponding to the two target entities v̂, is extracted as
[ v[E1start] , v[E2start]] frommatrixV , utilising the [start] andmarkers. Finally, the output relation
distribution is computed as softmax(MLP(concat(v̂, ŷ))).

Similar to MEGA (Zheng et al. 2021), we utilised a pre-trained Faster R-CNN (Girshick
2015) as the backbone for extracting visual features, setting the number of selected objects
m = 10, and the output image vector dimension dy = 4096. We employed a pre-trained
BERT as the text feature extractor with dx = 768 and l = 128. Themodel was trained on the
MNRE Dataset, which comprises 9201 sentence-image pairs, and we divided it into train-
ing, validation, and test sets with a ratio of 8:1:1. The initial learning rate, batch size, and
dropoutwere set to3e-5, 16, and0.5, respectively. Anearly stoppingcriterionwasapplied to
the validation set to determine the number of training epochs. We conducted experiments
using PyTorch 1.6 on a single NVIDIA GeForce RTX 3090 GPU, and the training process took
approximately 4 hours.

4.3. The generative approaches

Large Language Models (LLMs) have exhibited exceptional zero-shot reasoning capabil-
ities, which is showcased by their ability to generate detailed rationales as part of the
problem-solving process. This proficiency has led to the extensive use of these substan-
tial models in performing natural language inference tasks (Ma et al. 2024; Xie et al. 2023).
On the other hand, due to their accumulation of extensive design knowledge and their
advanced capacity for pattern recognition and generation, LLMs are becoming pivotal in
design-related applications (Ding et al. 2023; Wang, Zuo, et al. 2023). Their ability to inter-
pret and apply intricate design principles enables them to assist in the creative process,
offering innovative solutions and enhancing the efficiency and quality of design outcomes.
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Figure 5. The prompt of proposed LLM-method.

Building on these considerations, we integrated the algorithm described in 3.2 with LLMs,
aiming to facilitate the interpretation of combinational pairs.

As depicted in Figure 5, we elicit the chain-of-thought (CoT) from LLM and decompose
the task into 3 simple steps. The initial step focuses on the LLM’s determination of the base
element, from an input image and its corresponding description. This stage concentrates
the LLM’s attention on identifying a keyword or phrase pivotal to the product’s conceptu-
alisation, thus eliciting a response that is both precise and confined to the base element.
The subsequent phase involves the extraction of all nouns from the product description. In
the final phase, the LLM is tasked with analysing the relations between the identified base
and the prospective additives. Here, we also provided the category of combinational cre-
ativity as an additional hint, adding it to gaining an understanding of the potential relations
between the base and the additive.

Wemainly implemented this method on OpenAI’s GPT-4 and LLaVA (Liu et al. 2023). For
GPT-4, we utilised ‘GPT-4 Turbo with vision’ for image understanding and ‘GPT-4 Turbo’ for
question reasoning. We chose them because they were the best-performing models dur-
ing our experiments. We also included the 7B and 13B versions of LLaVA, which represent
open-source branches utilising the Llama framework. These versions have been reported
to perform comparably to GPT-4 on major benchmark datasets.
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Figure 6. The prompt of vanilla LLM-method.

4.4. The baselines for benchmark

To investigate the effectiveness of our algorithmand to provide a basis for comparisonwith
discriminative methods and generative methods, we implemented a baseline approach
based on LLMs and relied solely on its logical reasoning capabilities. The prompting details
are shown in Figure 6, we introduced only the basic concept of combinational creativity
and the task requirements for extracting combination pairs. To ensure the model’s com-
prehension of the objective, we included two in-context examples. For implementation, we
utilised both ‘GPT-4 Turbo’ and ‘GPT-3.5 Turbo’ for GPT-series and the 7B and 13B versions
for LLaVA.

5. Experiment and results

5.1. Experiment

To assess the performance of these interpretations, we applied two criteria to verify the
correctness of the predicted bases and additives. Firstly, it should be identical if the base
or additive contains only one word. Secondly, at least one keyword must be identical if the
base or additive contains a phrase. Using product sample 1 in Table 2 as an example, the
predicted additive must include the word ‘tree’. The predicted basemust contain the word
‘rack’ at least, as ‘rack’ is involved in the keyword ‘drying rack’. In the computational design
creativity dataset, each sample contains a pair of ‘base’ and ‘additive’ objects, and ourmod-
els never output a null object. Therefore, we use accuracy as the metric to evaluate the
models’ interpretive performance, defined as the ratio of the number of correct predictions
to the total number of samples.

In the unimodal method approach, Clarifai generates the top-10 predictions. Each of
these predictions is then paired with noun entities identified by spaCy. We calculate the
similarity for each pair, and the noun entity yielding the highest similarity value is desig-
nated as the predicted ‘base’. In contrast, themultimodal approach utilises CLIP for creating
mappings between text and images. This method directly yields a noun that is predicted as
the ‘base’, thereby obviating the necessity for further similarity computations and retrieval
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Table 3. Results of combinational creativity interpretation.

Overall measure Single measure

Type Method Both↑ None↓ Base↑ Additive↑
Discriminative The unimodal approach 48% 27% 69% 52%

The multimodal approach 72% 4.5% 87.5% 80%
Generative GPT-4 70% 3% 94.5% 72.5%

LLaVA-7B 45.5% 26% 60% 59.5%
LLaVA-13B 62% 15% 83% 64%

Baseline Vanilla GPT-3.5 54.5% 23% 73.5% 58%
Vanilla GPT-4 64% 10.5% 84.5% 69%
Vanilla LLaVA-7B 34% 43.5% 43.5% 47%
Vanilla LLaVA-13B 41% 35% 55% 51%

processes. In the process of relation extraction, both methods provide a specific predicted
relation, for example, ‘part of’. We conducted a similarity analysis by comparing these pre-
dicted relationships against our predefined set of relations. The noun that aligns most
closely, as indicated by the highest similarity score, is chosen as the predicted ‘additive’.
Unlike the discriminative approach, in the generativemethods, the inference processes are
internally handled by the LLMs. Their output consists of two noun entities from the textual
description, which are then designated as the ‘base’ and ‘additive’ respectively.

5.2. The overall result for combinational creativity interpretation

As illustrated in Table 3, we reported on four metrics. The metric ‘Both’ indicates cases
where both the base and additive were correctly predicted. Conversely, ‘None’ refers to
instances where both predictions were incorrect. For ‘Base’ and ‘Additive’, they offer the
performance of individual predictions, respectively. To encapsulate the overall impression:
our multimodal method demonstrated superior overall accuracy, achieving a 72% success
rate, which outperformed the GPT-4 method by a margin of 2%. In terms of minimising
completely incorrect predictions, however, GPT-4 led thewaywith only 3%of samples cate-
gorised as entirelywrong, narrowly besting themultimodalmethod, which registered 4.5%
in this metric.

Our first insight was derived from comparing generative methods against baselines,
such as GPT-4 versus vanilla GPT-4. Here, ‘vanilla’ refers to the utilisation of LLMs inher-
ent reasoning capabilities without any external algorithm aid, as described in Section 4.4.
Our method improved accuracy in interpreting combinational creativity by 6% for GPT-4,
11.5% for LLaVA-7B, and 21% for LLaVA-13B, while reducing completely incorrect rates by
7.5%, 17.5%, and 20% for each model respectively. We also endeavoured to comprehend
the source of these improvements. To achieve this, we interacted with the LLMs, inquiring
how they understand the task of interpreting combinational creativity and the methods
they employ to tackle it. As a result, we discovered that LLMs primarily rely on functional-
ity as a clue to understand combinational creativity. They determine the base by analysing
the main function of the product, while the additive is identified as the concept that pro-
vides the most additional functionality to the product. This notion aligns fundamentally
with the problem-driven approach to combinational creativity; however, when it comes to
similarity-driven (Figure 7 (a)) and inspiration-driven (Figure 7 (b)) approaches, it falls short
because combinations based on similarity or inspiration do not always require a narrative
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Figure 7. Examples of error case. (a). bowls – puzzle combination. (b). tab – swan combination. (c). fork
– spoon combination. (d). scooter – bicycle combination.

driven by functionality. Our approach resolves this limitation by integrating supplementary
contextual cues andheuristic analysis, aswell as employing relational back-inference.When
compared to the performance of the baseline and generativemethods on identifying addi-
tives, our method achieved an enhancement of 3.5% for GPT-4, 12.5% for LLaVA-7B, and
13% for LLaVA-13B.

Our second insight emerged from analysing single measures, revealing that in the
context of combinational creativity interpretations, detecting the additive is consistently
more challenging than identifying the base, across both our method and the baseline
approaches. Statistically, the largest discrepancy was observed in GPT-4, where the accu-
racy for the base exceeded that of the additive by a significant margin of 22%. The primary
reason for this lies in the fact that the base forms the main part of the product, making it
generally more identifiable in both images and text. In contrast, the additive tends to be
less conspicuous andmore subtly integrated. By employing relation extraction techniques,
weuncovermore hidden additives. The last insight arises froman analysis of the error cases.
Taking results from the multimodal method as an example, out of 56 erroneous cases, 29
exhibited a reversal in the identification of the base and additive. A primary reason for this is
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Table 4. Results of modular analysis.

Method Modular Correct number Accuracy

Clarifai 138 / 200 69%
The unimodal spaCy 200 / 200 100%

context-aware RE 152 / 200 76%
CLIP 175 / 200 87.5%

The multimodal spaCy 200 / 200 100%
MEGA 163 / 200 81.5%

the high prominence of the additive in some products. Typically, additives are minor com-
ponents, like the knife block in Table 2, where the Sharpener only takes a small portion.
While sometimes they may even constitute up to 50% of the product, such as the fork –
spoon combination and the scooter – bicycle combination shown in Figure 7 (c) & (d). In
this scenario, a mere qualitative estimation is utilised for interpreting the product image,
which may lead to classification errors by Clarifai, misalignments in text-image pairing by
CLIP, and misunderstandings in image comprehension by LLMs.

5.3. Modular analysis

In this section, we present a modular analysis of the discriminative method, as shown in
Table 4. For the interpretation of the base in unimodal methods, we utilised the general
image recognition model of Clarifai. We analysed the top 10 categories with the highest
probabilities from the model’s output. If one of these categories matches the base, we
consider it as identified. We employed spaCy’s similarity module to assess the similarity
between the two concepts. For example, the similarity between ‘bulb’ and ‘lamp’ is 0.781,
while between ‘bulb’ and ‘fire’ it is 0.243. If the similarity score between themodel’s output
and the base exceeds 0.75, we consider them to be a match. As a result, the Clarifai suc-
cessfully detected 138 bases. In contrast, the multimodal method leveraged CLIP for base
interpretation by integrating textual analysis. Here, we used the top-1 result as the base,
successfully identifying 175 bases.

In the second step, both methods employed spaCy’s NER module to extract all noun
entities from the textual description. Since the aim of this step is to identify all potential
additive candidates, if the additive appears among the extracted entities, we consider it
correctly identified. As a result, spaCy performed the noun extraction task flawlessly with
100% accuracy. Although this approach could bring noises, such as the entities extracted
other than the additives, it is guaranteed that all additive candidates are captured with-
out missing extractions for the following processes. Further research is required to explore
potential methods for filtering the noises to increase the accuracy of the downstream pro-
cesses. A potential method could be topic extraction which extracts topics from contextual
data by employing TF∗PDF or TF-IDF (Gomes, da Silva Torres, and Côrtes 2023; Qaiser and
Ali 2018).

The RE modules has reached a 76% accuracy for context-aware RE in the unimodal
method and 81.5% accuracy for MEGA for the multimodal method with regards to the
extractions of combination pairs. In this test, due to the absence of base identification in
the first step, we opted to randomly select candidates from the recognised entities to serve
as both base and additive candidates. For instance, if there are n entities, we would test
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C2n different combinations. We determined the final base-additive combinations through
predefined relations shown in Table 1. Since some relations lack directionality, we treated
reversed results of the base and additive also as correct predictions. As an example, we
present the image and relation recognition results of ‘Bionic’ in Figure 8, with its product
description as follows:

Bionic: the design idea for this vase series was inspired by tree trunks and their branches, and
aims to increase awareness of the great importance of preserving the environment.

From the relation extraction, it can be observed that a total of 7 entities have been identi-
fied in the description of Bionic. A notable observation is that most of these entities do not
have relationships with each other. This is a common scenario, which can help simplify the
decision-making process. In this test, two relations are extracted: vase series – tree trunks
and tree trunks – design idea. In the complete method, once vase series is determined as
the base by image interpreting, we can easily arrive at the correct answer, even without
the need to assess the similarity of relations. However, there also exist several challenging
scenarios and failure cases:

• The target base or additive of a combination design does not exist in the textual descrip-
tion but only in the name of the product. For example, part of the name of the product
sample 1 in Table 1 is the base, while the base does not exist in the textual descriptions.
Even though the product name and corresponding textual descriptions are delivered
into the RE module together, it is challenging to detect the relation between the base
and additive because of the low connection and appearance frequency.

• The target base and additive of a combination design exist in different sentences.
Although there is a limitation regarding the number of sentences for describing the
design, it is possible that the base and additive could appear in different sentences. This
could result in missing extractions, and a scenario where the base and additive are indi-
rectly connected via an intermediary entity. Further studies are required to solve the
second situation, while the first one is fatal for the final identification.

• The target base or additive of a combinational design is extracted in a relation while the
other is not. For somedesigns, their names andbases aremixed for describing them. This
might confuse the RE module in relation extraction. In some other designs, the addi-
tives appear together with other entities, which might disturb the relation extraction.
Although this case is tackled in the verification stage, the ranking of entities may not
guarantee the accuracy of the extraction.

5.4. Ablation study on the role of image

In this section, we explored the role of product images in interpreting combinational cre-
ativity. Themotivation behind this inquiry stems from the fact that, in the real world, textual
descriptions of products are relatively abundant and easily accessible, whereas images that
accurately convey design concepts are more valuable. If our method can still achieve sat-
isfactory interpretive results in the absence of images, it would have greater applicability
and utility. We conducted tests on generative methods and the baselines. For the genera-
tive approach, in the absence of images, we prompted the LLMs to use the identified noun
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Figure 8. An example of relation extraction. (a). Image of ‘Bionic’. (b). Visualisation of relation extraction
results.

Table 5. Results of ablation study on the role of image.

Overall measure Single measure

Method Both↑ None↓ Base↑ Additive↑
GPT-4 w/o image 65% 5% 88.5% 71.5%
LLaVA-7B w/o image 40.5% 35.5% 54.5% 50.5%
LLaVA-13B w/o image 58% 23% 69% 66%
Vanilla GPT-4 w/o image 62% 14% 76.5% 71.5%
Vanilla LLaVA-7B w/o image 31.5% 47% 43% 41.5%
Vanilla LLaVA-13B w/o image 40% 37% 51.5% 51.5%

entities as candidates for both base and additive as we did when testing the RE module in
Section 5.2. As for the baselines, we maintained the prompt presented in Section 4.4 but
did not provide any image input.

We presented all results in Table 5. Overall, images contribute positively to the interpre-
tive performance of our methods. For our generative approach, we observed a decrease of
5% for GPT-4 and LLaVA-7B, and 4% for LLaVA-13B in both correct situations when images
were not included. The baseline group also experienced a similar trend, but with a smaller
loss in accuracy: 2%, 2.5%, and 1% respectively. We hypothesise that our strategy of having
the LLMs actively examine images to determine the base might have contributed to this
effect. Whenwe focus on singlemeasures, the disparity in predicting the base and additive
still exists, but the gap has been narrowed. Interestingly, in the absence of images, LLaVA-
13B (66%) and vanilla GPT-4 (71.5%) actually performed better in identifying additives than
before (64% and 69%, respectively). A possible reason for this improvement could be that
by treating base and additive equally in relation extraction, we eliminated instances where
base and additive were previously predicted in reverse. In the earlier process, where the
base was determined through images, the close proportion of base and additive (such as
the fork – spoon combination in Figure 7 (c)) often led to a complete loss of interpretation
for that sample Figure 9.
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Figure 9. Different images for one combinational creativity product.

6. Discussion

6.1. Bottleneck of the integrated interpretation algorithm

The main bottleneck of the approach, in terms of the module performance, is the image
interpretation module. Clarifai and CLIP, employed in this study, are trained on datasets
primarily consistingof conventional images, capturing typical and standardpatterns of spe-
cific object categories. However, creativity usually involvesdeviation from thesenorms. This
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deviation can challenge the models, potentially leading to difficulties in accurately inter-
preting the unique and unconventional aspects that are characteristic of creative products.
A potential solution to this could be that train them by using an intensive product image
dataset on top of the pre-trained model by transfer learning (Shin et al. 2016). Besides,
according to the analysis of the factors influencing the accuracy rates discussed in the pre-
ceding section, solutions that can alleviate their negative impact could be provided. For
instance, increasing the number of images of a combinational design from various views
(Liu, He, and Salzmann 2018); delivering the invisible feature issue to the RE module with
extra attention (Feng et al. 2023); employing finer-grained methods to interpret images
which are capable of distinguishing specific differences between similar categories (Wei
et al. 2022).

In terms of the extraction of combination pairs, additive extraction is considered to be
another bottleneck. As discussed in the preceding sections, features from the additive tend
to be employed less in a combinational design in comparison with features from the base.
This is the main reason that leads to a low combination pair extraction accuracy. Several
potential improvements could be considered:

• The name of a combinational design needs more attention. The entities involved in the
name of the design have a high possibility to contain the base or/and the additive, if the
name is not too fancy to reflect the essence.

• Choose a RE model architecture capable of multi-sentence inference. An intermediary
which connects the base and additive, while they appear in different sentences, of a
combinational design could thereby be analysed.

6.2. Implications of the study

In this study, we discussed the basic interpretation of combination elements (base and
additive) from conceptual designs, and analysed the difficulty of this task from a compu-
tational perspective. Compared to most works in the field of conceptual design, such as
bisociative knowledge discovery (Ahmed and Fuge 2018; Zuo et al. 2022) and visual con-
ceptual blending (Hanet al. 2018;Wang, Zuo, etal.2023),which focuson the transformation
from design data to design creativity, our work proposes a preliminary approach to inter-
pret the process from design creativity back to data. Such a bi-directional transformation
between data and creativity can form a closed creative knowledge reuse loop so that cre-
ativity is not only produced from existingmechanisms in creative systems but also benefits
fromproduced creative knowledgewith creativity interpretationmechanisms. Froma long-
term perspective, this bi-directional transformation enables a creative system to evolve
from such a data-driven cycle, thus achieving continuous creativity. In this sense, our work
represents an important complement to data-driven design and leads to continuous cre-
ativity in conceptual design. It also contributes to the foundational understanding of how
design elements can be computationally extracted and analysed, by organically integrat-
ing computer science techniques such as image recognition and relation extraction with
the inherent relationships for ‘base’ and ‘additive’ in combinational creative design. Fur-
thermore, from a practical design standpoint, understanding the underlying structure and
relationships in combinational creativity empowers designers to refine their methods of
integrating diverse elements into a product. By grasping the structure and relationships in
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combinational creativity, designers can better evaluate the effectiveness of their designs.
For novice designers, this approach has educational benefits as well. It can serve as a foun-
dational tool for teaching design principles, allowing them to recognise and apply creative
combinations effectively.

7. Conclusion

This study explores how to interpret a combinational creative design by extracting the base
andadditive as a combinationpair fromcorresponding imageand textual descriptions in an
AI-based approach. A heuristic interpretation algorithm is proposed in this study to extract
the combination pairs jointly. Based on this algorithm, we have explored approaches utilis-
ing both discriminative and generative AI models. By conducting experiments on a combi-
national design creativity dataset, it is shown that our proposed interpretation approaches
could successfully extract combination pairs, especially the bases, from real-world combi-
national creative designs. However, it is also found that additives are more challenging to
be extracted comparing with the bases. Factors which might have caused the issue are
discussed in the study. Observations and potential improvements for the interpretation
approach are also discussed in the study.

Notes

1. https://zenodo.org/records/11044248
2. Clarifai official website: https://www.clarifai.com/
3. https://openai.com/research/clip
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