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We provide a quantum protocol to perform topological data analysis (TDA) via the distillation of quantum thermal
states. Recent developments of quantum thermal state preparation algorithms reveal their characteristic scaling de-
fined by properties of dissipative Lindbladians. This contrasts with protocols based on unitary evolution which have
a scaling depending on the properties of the combinatorial Laplacian. To leverage quantum thermal state preparation
algorithms, we translate quantum TDA from a real–time to an imaginary–time picture, shifting the paradigm from a
unitary approach to a dissipative one. Starting from an initial state overlapping with the ground state of the system,
one can dissipate its energy via channels unique to the dataset, naturally distilling its information. Therefore calcu-
lating Betti numbers translates into a purity estimation. Alternatively, this can be interpreted as the evaluation of the
Rényi 2–entropy, Uhlmann fidelity or Hilbert–Schmidt distance relative to thermal states with the embedded topology
of simplicial complexes. Our work opens the field of TDA toward a more physical interpretation of the topology of
data.

Extracting useful information from very large datasets1 is
challenging given the tools available today, both from an al-
gorithmic and a computational point of view. For this reason,
approaches to analyze the crucial features of datasets have
emerged. One of these approaches consists of extracting in-
formation from the “shape” of data, i.e. from its topological
features, via the tools of topological data analysis (TDA)2–5.
TDA finds applications in several areas spanning physics6–11,
medicine12,13, and machine learning14,15. Further applications
can be found in Refs.16,17. However, even TDA suffers from
an unfavorable scaling with the system dimension. To bypass
this problem, a natural extension comes in the form of quan-
tum topological data analysis (QTDA). Since the first stages
of QTDA18, these quantum algorithms have exploited the uni-
tary evolution generated by the combinatorial Laplacian to
extract its kernel information, key to access the topological
properties. This requires state preparation based on Grover’s
search19 and quantum phase estimation (QPE)20,21. Succes-
sive protocols proposed improved scaling by finding efficient
representations of the combinatorial Laplacian while replac-
ing Grover’s search and QPE22–24. Others found smart en-
coding strategies to provide, under certain conditions, an al-
most quintic advantage in space saving25. Alternative proto-
cols based on cohomology approaches26 or hybrid quantum–
classical pipelines focused on near–term devices27 have been
proposed. While the existence of real instances of quantum
advantage in QTDA is still debated24,28, the estimation of
(normalized) Betti numbers on general chain complexes was
shown to be DQC1–hard, i.e. classically intractable29,30. Safe
from known protocols of dequantization31–33, problems in-
volving clique complexes have been shown to be QMA1–hard
and contained in QMA34,35.

In this manuscript, we reinterpret topological data analysis
from a quantum thermal state perspective. We propose a dis-
tinct paradigm to perform quantum topological data analysis,
dubbed thermal–QTDA, that relies on the dissipative process
defined by the combinatorial Laplacian associated with the
dataset. The thermal state built from this process reveals, at
low temperature, the topological features of the dataset. In this
way, the evaluation of Betti numbers reduces to a purity test
on the low–temperature quantum thermal state of the combi-

natorial Laplacian. We further interpret this result as the Rényi
2–entropy of the thermal state and as the Uhlmann fidelity or
the Hilbert–Schmidt distance between the maximally mixed
state of the system and its imaginary time evolved version.
Thermal–QTDA inherits the performance guarantees of the
thermal state preparation protocol adopted and the efficiency
of the purity test. This makes it a viable choice for early fault-
tolerant quantum computers, with application in data analysis
and machine learning.

I. BETTI NUMBERS IN QUANTUM THERMAL STATES

Let us briefly recall the theory behind QTDA and the eval-
uation of Betti numbers. Consider a simplicial complex Γ

obtained from a dataset of dimension N, filtration distance,
and a metric. Let Sk be the set of k–simplices of the com-
plex Γ = {Sk}N−1

k=0 . Let Hk be the
( N

k+1

)
–dimensional Hilbert

space spanned by all possible k–simplices. We refer to the
single simplices sk ∈ Hk with sk = j0 · · · jk where ji is the
ith vertex in sk. Consider the boundary operator (map) ∂k :
Hk 7→ Hk−1 defined by its action on the single simplices as
∂k|sk⟩ = ∑

k−1
l=0 (−1)l |sk−1(l)⟩, where |sk−1(l)⟩ = j0 · · · ĵl · · · jk

is the (k − 1)–simplex obtained by removing the lth vertex
from sk. The action of the boundary operator on the k–
simplices and their linear combinations determines the chain
complex. Note that the operators and spaces just described can
be restricted to the domain of the simplicial complex Γ and it
is usually indicated by a “tilde” as •̃. From the k–homology
group of Γ defined as Hk = ker(∂̃k)/im(∂̃k+1), we obtain the
Betti number as bk = dim(Hk). As a result of Hodge theory36,
Betti numbers can also be evaluated as bk = dim(ker(∆k)) =
dim(H̃k)− rank(∆k), where the combinatorial Laplacian ∆k

relates to the boundary operators via ∆k = ∂̃
†
k ∂̃k + ∂̃k+1∂̃

†
k+1.

From this expression, it is natural to look at spectral methods
to estimate either the kernel or the rank of ∆k. In this direc-
tion, since the seminal work by Lloyd18, several techniques
relying on QPE or alternative spectrum evaluations have been
developed22–25,27. In this work, we propose an alternative ap-
proach built upon a dissipative process or, equivalently, imag-
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inary time evolution.
Given a dataset of dimension N, a filtration distance, and a

metric, we can construct the simplicial complex Γ = {Sk}N−1
k=0

defining the topological properties of the dataset at that scale.
Here, Sk is the set of the k–simplices in the complex. From
this simplicial complex, we can construct the kth combinato-
rial Laplacian ∆k which encodes information of Γ via its topo-
logical boundaries. We propose to estimate the kth Betti num-
ber bk of Γ via the preparation of the low-temperature thermal
state ρβ as

bk = lim
β→∞

Tr
{

ρ
2
β

}−1
, (1)

where β = 1/T is the inverse temperature and the thermal
state ρβ is the Gibbs state ρβ = e−β∆k/Tr

{
e−β∆k

}
(assum-

ing Planck natural units). For Eq. (1) to be valid, the ther-
malization process must start with an initial state overlapping
with the ground state of the system. A possible choice is the
maximally mixed state ρmix = ρβ=0 = Ik/|Sk| living in the
Hilbert space H̃k, spanned by the elements of Sk. Note that
the overlap of the initial state with the ground state (single or
multiple) of the system affects the thermal state preparation,
that is, the smaller the overlap, the slower the thermalization.
Once an adequate initial state is formed, the thermalization
process leads to the ground state of ∆k, with the inverse pu-
rity of such state being its degeneracy. In case of degenerate
ground state, the thermalization process will guide the system
towards a thermal state that is an equiprobable mixture of the
non–unique ground states. The overlap between this final state
and the initial fully mixed state leads to the Betti numbers.
This shows how the evaluation of Betti numbers via Eq. (1)
is related to the well–known expression bk = dim(ker(∆k))

18.
In the following, we refer to the interpretation of QTDA via
Eq. (1) as thermal–QTDA.

One may wonder what the physics behind Eq. (1) is. Eq. (1)
is equivalent to evaluating the degeneracy of the ground state,
relying on the fact that bk is defined as the kernel dimension
of the kth homology group, as previously seen. To obtain this
degeneracy, we start with an initial state with support on the
ground state of the combinatorial Laplacian ∆k, e.g. the max-
imally mixed state ρmix, and we cool it down to β → ∞ via
the channels of dissipation determined by ∆k. In this limit, the
state converges to the ground state of ∆k. We show a schematic
of the protocol in Fig. 1(a). In Fig. 1(b) we show an example
of Betti number numerical evaluation via Eq. (1) and the cor-
responding simplicial complex (inset). Notably, the thermal-
ization approach is particularly suited to study “the integer
problem” of Betti numbers. In fact, given the monotonic na-
ture of Eq. (1), we can approximate the Betti number as ⌊bk⌋
when the state is prepared at large but finite β . This suggests
the possibility of using an approximate thermal state prepara-
tion to reach a low–enough finite temperature.

II. INTERPRETATIONS

Eq. (1) can be interpreted as the Uhlmann fidelity be-
tween the maximally mixed state ρmix and its imaginary–time

FIG. 1. Schematic of the protocol and Betti number evaluation.
In (a), two copies of the state ρβ are prepared at high temperature
β = 0. The states are thermalized to low temperature β = ∞ along
the trajectories of dissipation dictated by the combinatorial Lapla-
cian ∆k. The resulting states are then swapped to perform a purity
test and the Betti number evaluated through Eq. (1). In (b), we show
an example numerical evaluation of the Betti number b2 for the sim-
plicial complex shown in the inset. We qualitatively identify regions
of thermalization where specific decaying channels dominate. The
hatched area represents the dimensionality of the kernel that remains
inaccessible to the protocol.

evolved version ρmix(τ). This becomes possible if one trans-
lates the unitary evolution problem from Minkowski space to
Euclidean space by allowing time to take imaginary values
and replacing t =−iτ . Thus, the Uhlmann fidelity can be ex-
pressed as

F (ρmix,ρmix(τ)) = Tr
{
(ρ

1/2
mixρmix(τ)ρ

1/2
mix)

1/2}2

= Tr
{

e−∆kτ
}2

/(Tr
{

e−2∆kτ
}
|Sk|)

= Tr
{

ρ
2
β

}−1
/|Sk|, (2)

with ρmix(τ) = e−∆kτ ρmixe−∆kτ/
(

Tr
{

ρmixe−2∆kτ
})

, where
the factor at the denominator makes sure the density matrix is
normalized throughout the evolution. While the components
populating the kernel contribute to the fidelity at all imaginary
times, the remaining components decay to zero exponentially.
We obtain the final line in Eq. (2) by means of Wick rota-
tion, i.e. replacing τ = β , thus reinterpreting the imaginary
time as a temperature. These two pictures, imaginary time in
quantum mechanics and temperature in statistical physics, are
indeed formally related through analytic continuation37 by the
Osterwalder–Schrader theorem38,39.

As a natural extension, Eq. (1) can also be interpreted as the
quantum version40,41 of the Rényi 2–entropy42 of the thermal
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state ρβ ,

H2(ρβ ) = log
(

Tr
{

ρ
2
β

}−1)
. (3)

Here, the base of the logarithm determines the unit of informa-
tion. The Rényi 2–entropy is often referred to as the collision
entropy. Rényi entropies are of crucial interest for the estima-
tion of the statistical properties of quantum states, finding ap-
plications as entanglement measures43–46, in the estimation of
Gaussianity of quantum states47,48, and as a measure of non–
stabilizerness (also known as magic)49. Given their ubiquity,
several quantum algorithms have been developed to estimate
Rényi entropies50–53.

Finally, Eq. (1) can be interpreted in terms of the Hilbert–
Schmidt distance (Schatten 2–norm),

DHS(ρmix,ρβ ) = ||ρmix −ρβ ||22
= Tr

{
ρ

2
β

}
− (2|Sk|−1)/|Sk|2. (4)

This distance is often employed as the cost function in varia-
tional quantum algorithms (VQAs)54–58.

III. ROUTINES

Assuming that we are given two copies of the thermal state
ρβ at low temperature, we only need to perform a purity test to
implement Eq. (1) on a quantum computer. While this can be
done in the form of a traditional SWAP test or its destructive
variant59, we note that some generalizations with short–depth
circuit have been proposed60–62. Alternatively, purity can be
evaluated via single distinct classical shadows of the thermal
state44–46,63. This approach trades two identical copies of the
thermal state and a simple measurement routine for a single
copy of the thermal state and a larger number of (random-
ized) measurements. In the following, we consider a simple
SWAP test. To perform it, we need an additional ancilla qubit.
We place a Hadamard gate on the ancilla, a Fredkin (CSWAP)
gate controlled on the ancilla between the two copies of qubits
in the state registers, and then again a Hadamard gate on the
ancilla. By measuring the ancilla qubit multiple times, we
construct the probabilities P0 and P1 relative to the outcome 0
and 1 respectively. We obtain the purity of the thermal state
from Tr

{
ρ2

β

}
= P0 −P1

64. Once the SWAP test has been per-
formed, the result is obtained by truncating (flooring) the Betti
number in Eq. (1), ⌊bk⌋, as previously mentioned.

The thermal state can be prepared in several ways. A
nature–inspired thermal state preparation can be found in
Ref.65 where the authors propose a protocol to simulate the
Lindbladian (or the relative discriminant proxy) whose fixed
point is approximately a quantum Gibbs state. By means of
this construction and the introduction of an operator Fourier
transform (FT) for the Lindblad operators, the authors give
the recipes for incoherent and coherent implementations. See
later for an example implementation using such coherent ap-
proach. Several variational quantum algorithms have been de-
veloped to prepare thermal states using imaginary time evo-
lution66, open system dynamics67, and hybrid quantum cir-
cuits using classical neural networks68. Thermal–QTDA also

opens the door to possible quantum–inspired implementations
based on thermal tensor network (TTN) states. Examples of
these are the realization of thermal states using minimally en-
tangled typical thermal states (METTS) and imaginary time
evolution69 or the exponential tensor renormalization group
(XTRG)70 producing accurate low–temperature thermal states
by exponentially evolving the matrix product operator (MPO)
along a path of imaginary time evolution. In Ref.71, an in-
teresting approach to the estimation of linear functions of ρβ

avoids the direct construction of the mixed state ρβ . The au-
thors combine pure thermal quantum states72,73 and classical
shadow tomography74–76 to estimate several Gibbs state ex-
pectation values. However, thermal–QTDA requires the es-
timation of nonlinear functions of ρβ . In this direction, the
authors envision improvements to their algorithm in the form
of derandomization77–79.

IV. RUNTIME

The cost of thermal–QTDA is inherited from the scaling
of the two subroutines, the quantum thermal state preparation
and the purity test. For the latter, the SWAP test requires two
copies of the quantum thermal state and an ancilla qubit, with
a final measurement on the ancilla qubit. The destructive al-
ternative requires two copies of the quantum thermal state but
trades the additional ancilla with a final measurement onto the
full set of qubits. A test result with additive error ε requires
O(ε−2) runs.

Now, the quantum thermal state preparation. When esti-
mating Betti numbers, quantum phase estimation explicitly
introduces an inverse linear dependence on the spectral gap
of the combinatorial Laplacian, O(N3δ−1

gap)
18. In contrast, the

cost of estimating Betti numbers via quantum thermal state
preparation varies depending on the chosen algorithm. For
example, simulating an incoherent version of the Lindbladian
via the operator FT costs Õ(β t2

mix/ε) while the coherent ver-
sion via the discriminant proxy and an adiabatic path to low
temperature costs Õ

(
(εβ 2∥H∥+β )/ελ

3/2
gap

)
65. Here, we use

the soft-O notation Õ , which corresponds to scaling that ig-
nores constant and logarithmic factors. The mixing time of
the Lindbladian, tmix, and the minimum spectral gap of the
discriminant proxies along the adiabatic path, λgap, are related
by the approximate detailed balance introduced in Ref.65. In
the perspective of open systems and Gibbs samplers, the spec-
tral gap of the Lindbladian is also related to the spectral gap of
the combinatorial Laplacian. However, this relation strongly
depends on the characteristics of the simplicial complex (sys-
tem Hamiltonian) considered80–85. As a general guideline, a
faster convergence to the thermal state can be obtained in the
presence of stronger dissipative coupling, ad–hoc transitions
boosting convenient channels of dissipation, or higher finite
temperatures of thermalization. Note that, producing thermal
states for long mixing times or closing spectral gaps can be
challenging. Hard instances of thermal state preparation are
expected regardless of the algorithm chosen, since the ground
state preparation problem is QMA–hard86–88.
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FIG. 2. Spectral gap scaling. We sample the imaginary time/inverse
temperature needed to obtain d

dτ
Tr

{
ρmixe−∆kτ

}
≤ 10−3 for random

instances of simplicial complexes with N = 10 and k = 1,2,3,4. We
find a corresponding inverse temperature dependence on the spectral
gap of the combinatorial Laplacian of βthreshold = O(δ

−(0.4÷0.9)
gap ).

Here, the notation a÷b indicates a range of values between a and b.

In Fig. 2 we show the spectral gap scaling of thermal–
QTDA numerically evaluated for random simplicial com-
plexes chosen with N = 10 and k = 1,2,3,4. The initial state
ρmix is thermalized until the stopping criterion is met, that is,
d

dτ
Tr

{
ρmixe−∆kτ

}
≤ 10−3. We refer to the smallest inverse

temperature that satisfies such criterion as the threshold in-
verse temperature βthreshold. We find this to be βthreshold =

O(δ
−(0.4÷0.9)
gap ), where the notation a÷ b indicates a range of

values between a and b, suggesting an inverse–sub–linear de-
pendence of thermal–QTDA on the spectral gap of the combi-
natorial Laplacian.

V. EXAMPLE IMPLEMENTATION

In Fig. 3, we show an example circuit to prepare the thermal
state ρβ . Following the coherent approach in Ref.65, we im-
plement the discriminant proxy Dβ governing the dissipation
dictated by the combinatorial Laplacian,

Dβ :=
1

|A | ∑j,ω̄

√
γ(ω̄)γ(−ω̄)A j(ω̄)⊗A∗

j(ω̄)

− γ(ω̄)

2

(
A†

j(ω̄)A j(ω̄)⊗ I+ I⊗A∗†
j (ω̄)A∗

j(ω̄)
)
. (5)

The top eigenvector of the discriminant proxy Dβ is the
canonical purification of the thermal state at inverse tempera-
ture β/2, that is |√ρβ ⟩ ∝ ∑i e−βEi/2|ψi⟩⊗ |ψi⟩, where the Ei
are the eigenvalues of the Hamiltonian operator H = ∆k. By
using two copies of this purified version of the thermal state,
we can perform the SWAP test and evaluate Tr

{
ρ2

β

}
, getting

Betti numbers via Eq. (1).
In Eq. (5), A j(ω̄) are the Fourier–transformed versions of

the Heisenberg time–evolved jump operators A j(t̄) (see later),
γ(ω̄) are the jump weights, and A is the set of jump operators
A j. For convenience, we choose the A j to be the self–adjoint

single–site Pauli operators. We also choose the transition
weights γ(ω̄) to be the Metropolis weights. This choice en-
sures that the transition weights satisfy γ(ω̄)/γ(−ω̄) = eβω̄ ,
consequently the detailed balance condition. The “bar” in-
dicates discretized frequencies in the set of frequencies Sω0 .
These are multiples of a base frequency ω0, which is defined
by the relation ω0t0 = 2π/M, where t0 is the base discretized
time and M is the number of discretized points. To cover
the full set of transition (Bohr) frequencies defined by H, the
number of points and the base frequency are chosen such that
Mω0/2 ≥ ∥H∥.

To build the circuit implementing Eq. (5), we rewrite the
discriminant in terms of the reflection R and the isometry T ′

as I+Dβ = T ′†RT ′65,89,90. The isometry T ′ is a coherent sum
of the two sub–isometries T0 and T1, T ′ = |0⟩⊗T0 +T1 ⊗|1⟩.
Each of these sub–isometries returns a superposition of jump
operators applied on the system register |sys⟩ of interest. This
is done via the operator FT F [A] controlled on the ancillary
register | j⟩ that carries the weight distribution of the jump op-
erators. In T0 and T1, we also find the encoder for the transi-
tion rates, Yγ(ω̄). R is a reflection (R2 = I) that implements a
bit flip X on the ancilla qubit |+⟩ dedicated to the control of
the sub–isometries T0 and T1 and a sign change to the Bohr
frequency register. These operations are all controlled by the
ancillary qubit register (|0⟩) storing the transition rates. If the
reflection is triggered, it generates a cross term between the
two |sys⟩ copies.

The operator FT F [A], introduced in Ref.65, implements
the following weighted transform on the jump operators,
A(ω̄) := ∑t̄ e−iω̄ t̄ f (t̄)A(t̄), where A(t̄) = eiHt̄Ae−iHt̄ are the
time evolved versions of the jump operators. Here, the unique
channels of dissipation defined by the combinatorial Lapla-
cian ∆k enter into the picture. By equating H with ∆k as pre-
viously stated, we build jumps that encode information of the
combinatorial Laplacian and that dissipate the energy of the
thermal state accordingly. We show the circuit implement-
ing F [A] in Fig. 3(b). Given the weighted nature of the FT
implemented, the time evolution of the jump operators is con-
trolled by the weighting function f (t̄). After the control, the
weights are quantum Fourier transformed into the Bohr fre-
quencies |ω̄⟩ to then control the transition rates γ(ω̄) (Boltz-
mann weights). Notably, when the weighting function follows
a Gaussian distribution, the sub–routine achieves the perfor-
mance scaling of boosted phase estimation65,91. Then, the uni-
tary Yγ(ω̄) encodes the transition rates γ(ω̄) in the amplitudes
of the ancillary qubit |0⟩. The unitary is controlled by the
output of the operator FT F [A], namely the Bohr frequency
read–out |ω̄⟩. Finally, F is the negation of the Bohr frequency
register. This makes sure that the ensuing isometries T †

0 and
T †

1 produce the correct jump operator, that is A(ω̄) = A†(−ω̄)

(see details in Ref.65).
To finally find the top eigenvector of the discriminant proxy,

i.e. the quantum thermal state, we need to perform quan-
tum simulated annealing. Having access to the block encod-
ing of Dβ , we can build a unitary UDβ

with O(λ
−1/2
gap (Dβ ))

calls of Dβ . Starting from the maximally mixed state at
very high temperature β0 ≈ 0, we proceed with adiabatic
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FIG. 3. Discriminant proxy and operator Fourier transform circuits. In (a) we show a circuit for preparing quantum thermal states ρβ as
a sub–routine of thermal–QTDA. These are prepared as the top eigenvector of the discriminant proxy Dβ via quantum simulated annealing65.
These copies are then used to estimate Betti numbers via a SWAP test and Eq. (1). The operator Fourier transform F [A] from the discriminant
proxy implementation is shown in (b). This routine encodes the information of the simplicial complex Γ (and the relative combinatorial
Laplacian ∆k) into the jump operators A.

steps of unitaries through a path of decreasing temperatures,
UDβ0

→·· ·→UDβtarget
, finally reaching a very low temperature

βtarget. At the end of this path, we obtain the top eigenvector
of the discriminant, thus the thermal state. Once we have pre-
pared two copies of the state, we can perform the SWAP test
and extract the Betti numbers.

VI. CONCLUSIONS AND OUTLOOK

In this manuscript, we reinterpreted a pillar of quantum
topological data analysis, that is, the estimation of Betti num-
bers, under the lens of quantum thermal states. We dubbed
this interpretation thermal–QTDA. The protocol relies upon
the preparation of two copies of quantum thermal states at low
temperature and a purity test. The thermalization of the states
happens through the unique channels of dissipation of the
combinatorial Laplacian. The purity test is naturally related
to other quantities of interest such as the Rényi 2–entropy,
Uhlmann fidelity or Hilbert–Schmidt distance. The scaling of
thermal–QTDA routines directly depends on the scaling of its
two sub–routines, the thermal state preparation and the purity
test. We presented a possible coherent Lindbladian approach
for the former, while a simple SWAP test is sufficient for the
latter.

Thermal–QTDA has theoretical and practical importance.
On the theoretical side, it hints to possible quantum thermo-
dynamic quantities as the tools of interest to perform QTDA
tasks. Here, one may wonder if thermal states prepared from
simplicial complexes can reveal additional topological fea-
tures of the data. On the practical side, it opens the field of
QTDA to an entire new set of possible implementations via
quantum thermal state preparation protocols. Here, the crucial
step is breaking away from the traditional scaling of quan-
tum phase estimation, which may lead to an advantageous
dependence on the spectral gap of the combinatorial Lapla-
cian. From a perspective of applications, extensions of our
approach to the evaluation of persistent Betti numbers are de-

sirable. In fact, these enclose additional information on the
persistence of features and can yield enhanced explainable AI
protocols92. We expect advances in QTDA will facilitate the
use of topological properties as features of datasets, aiding the
building of models with high predictive power and excellent
generalization.
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