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SUMMARY 

A significant increase in the incidence of Candida mediated infections has been observed 57 

in the last decades, mainly due to rising numbers of susceptible individuals. Recently, the 58 

World Health Organization (WHO) published its first fungal pathogens priority list, with 59 

Candida species listed in medium, high, and critical priority categories. This review is a 60 

synthesis of information and recent advances in our understanding of two of these 61 

species – C. albicans and C. glabrata. Of these, C. albicans is the most common cause of 62 

candidemia around the world and is categorized as a critical priority pathogen. C. glabrata 63 
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is considered a high priority pathogen and has become an increasingly important cause of 64 

candidemia in recent years. It is now the second most common causative agent of 65 

candidemia in many geographical regions. Despite their differences and phylogenetic 66 

divergence, they are successful as pathogens and commensals of humans. Both species can 67 

cause a broad variety of infections, ranging from superficial to potentially lethal systemic 68 

infections. While they share similarities in certain infection strategies, including tissue 69 

adhesion and invasion, they differ significantly in key aspects of their biology, interaction 70 

with immune cells, host damage strategies, and metabolic adaptations. Here we provide 71 

insights on key aspects of their biology, epidemiology, commensal and pathogenic 72 

lifestyle, interactions with the immune system, and antifungal resistance.  73 

 74 

INTRODUCTION  

 75 

The World Health Organization (WHO) recently announced its first ranking of priority 76 

groups for fungal pathogens based primarily on “concerns over drug resistance and/or 77 

treatment management” (https://www.who.int/publications/i/item/9789240060241). This 78 

WHO report stresses the threat fungal pathogens pose to public health, especially to 79 

immunocompromised patients, with a growing resistance to treatment and a limited 80 

number of classes of available antifungal drugs. Of the nineteen fungal species in the 81 

report, C. albicans was listed along with C. auris amongst the four “critical priority 82 

pathogens”, and C. glabrata was categorised amongst seven “high priority pathogens” 83 

(along with C. tropicalis and C. parapsilosis). C. glabrata is a very distant phylogenetic 84 

relative of C. albicans and has been reclassified and renamed within the new 85 

Nakaseomyces genus, along with three sister species, and is now called Nakaseomyces 86 
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glabratus. C. glabrata is a very distant phylogenetic relative of C. albicans and has been 87 

reclassified and renamed within the new Nakaseomyces genus, along with three sister 88 

species, and is now called Nakaseomyces glabratus (1). There has been some opposition 89 

to reclassifying C.  glabrata to N. glabratus on the basis that it may “dilute the importance 90 

of Candida as a major human group of pathogens” and that “it engenders uncertainty, 91 

difficulties in messaging and hampers advocacy” (Denning, in press). On the other hand, 92 

it has been pointed out that the phylogenetic distance between N. glabratus and C. albicans 93 

is double that of humans to snakes. This distance is reflected in divergences in multiple 94 

phenotypes including susceptibility to fluconazole and other aspects of pathobiology 95 

(summarized in detail in this review). Therefore, it may be better to clearly differentiate 96 

these two organisms than confuse them as broadly similar species of yeast within the same 97 

genus (2, 3). For the purpose of this review we will retain the use of C. glabrata to be 98 

consistent with the relevant cited literature, whilst recognizing that we are in a period of 99 

phylogenetic revision that will see C. glabrata transitioning to a new name that reflects its 100 

true phylogeny.Despite the evolutionary distance between C. albicans and C. glabrata, 101 

there are some shared characteristics and pathologies, and this review focuses on a 102 

comparison of the biology and pathogenesis of these two pathogens. 103 

 104 

About thirty species that have previously assigned within the Candida genus can cause 105 

human disease. Of these, C. albicans and C. glabrata, together with C. parapsilosis and 106 

C. tropicalis, represent the most common causes of invasive disease. The WHO 107 

emphasizes the need for a better understanding of the disease burden and antifungal 108 

resistances, and for an improvement of diagnostics and treatments (4).  109 



6 

 

 110 

Both C. albicans and C. glabrata cause a range of disease manifestations. Mucosal 111 

candidiasis including vaginitis is most commonly caused by C. albicans, followed by 112 

C. glabrata, and the global burden of recurrent Candida vaginitis (defined as more than 113 

four episodes per year) is estimated to be between 103–172 million annually (5). The 114 

incidence of systemic candidiasis is typically around 2–21 per 100,000 people, with 115 

numbers varying considerably depending on geography and various patient factors 116 

(Figure 1). Candida species normally rank in the top four causes of bloodstream infections 117 

along with Staphylococcus aureus, coagulase-negative staphylococci, and Enterococcus 118 

spp. (6, 7). Associated mortality due to invasive candidiasis can be 40–75% in different 119 

health care settings, accounting for a total of around 250–700,000 systemic infections and 120 

50–100,000 deaths / year (6-9). Typically, C. albicans accounts for around 40–80% of 121 

Candida isolates recovered from patients in hospitals, whilst C. glabrata represents only 122 

about 5-30% of such isolates although these figures vary geographically. (10-12) . 123 

However, more recently C. glabrata isolation rates have increased in a number of settings 124 

in different countries to 2–28% of Candida species isolates — perhaps due to the high 125 

number of azole and echinocandin resistant strains (13).  126 

 127 

Candida species have long co-existed with humans as commensals and infectious agents. 128 

Hippocrates described oral candidiasis (thrush) as early as 200 BC, but the first scientific 129 

studies dealing with C. albicans and C. glabrata took place in the late twentieth century 130 

(14). A mycotic association for vaginal infection was first shown for C. albicans in 1849, 131 

and in 1917 for C. glabrata (15). More recently climate change has been suggested as a 132 
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factor in the sudden worldwide appearance of C. auris as a pathogen (16). Vaginal 133 

infections with C. albicans are extremely common in otherwise healthy women (11), and 134 

C. albicans is responsible for the vast majority of these infections. The incidence of 135 

invasive infections with Candida species is higher in individuals with impaired immunity, 136 

be it due to treatments required for organ transplants, malignancies, or other 137 

immunosuppressive regimens. Indeed, there has been an increase in susceptible individuals 138 

in modern times due to the development and widespread use of treatments that lead to 139 

immunosuppression (17). Other common predisposing risk factors for systemic candidiasis 140 

are the use of antibiotics, chronic kidney disease, presence of central venous catheters, 141 

blood transfusions, and extended stays in the intensive care unit (ICU) (18, 19). In 142 

summary, C. albicans and C. glabrata represent two major agents of superficial and 143 

systemic human disease of global health care concern. 144 

Distant cousins with distinct characteristics 145 

The genus Candida comprises approximately 200 taxonomically diverse species with 146 

many different lifestyles and morphologies (14). Most species associated with humans are 147 

harmless commensals, but at least 30 can cause human infections (20). Five species are 148 

responsible for over 90% of infections: C. albicans, C. glabrata, C. parapsilosis, 149 

C. tropicalis, and C. krusei, ranked from the most common to the least, although regional 150 

differences exist (17, 21). The most common, C. albicans and C. glabrata, are frequently 151 

isolated as commensals from skin surfaces and mucosal surfaces, in particular the GI tract 152 

(22).  153 

 154 
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Even though they share a similar commensal lifestyle, C. albicans and C. glabrata are 155 

distinct in many other aspects — summarized here and described in detail below. They are 156 

widely divergent phylogenetically. C. glabrata is taxonomically closer to Saccharomyces 157 

cerevisiae (baker’s yeast) than to C. albicans. C. albicans, together with other important 158 

Candida species such as C. parapsilosis and C. tropicalis, is part of the so-called “CTG 159 

clade” in which the CTG codon codes for leucine instead of serine. (1). Genetically, 160 

C. albicans is a diploid fungus (23), although haploid forms have been generated that are 161 

stable enough to create haploid mutant libraries (24). C. glabrata is a haploid organism for 162 

which no sexual cycle has been described so far (25) (see below). Phenotypically, 163 

C. albicans is polymorphic, being able to transition reversibly between yeast, hyphae, and 164 

pseudohyphae, which is a key aspect of its pathogenesis (26, 27). In addition, C. albicans 165 

can grow as other distinct phenotypic forms including white, grey, opaque, and GUT cells 166 

(see below) (Figure 2). In contrast, C. glabrata grows almost exclusively in the yeast form 167 

and does not depend on morphological changes to promote infection (28, 29). Both 168 

Candida species are able to form biofilms, although the mechanisms they use for this differ 169 

(30, 31). The two fungi share common adhesion strategies reliant on large families of 170 

adhesins — for example the Als proteins in C. albicans (32) and Epa proteins in 171 

C. glabrata (33).  172 

 173 

During infections, fungi need to acquire nutrients to survive and grow. C. albicans has no 174 

known auxotrophies [except biotin (34)] and it is equipped with a broad range of secreted 175 

hydrolases and a cytolytic peptide toxin, that are able to break down host tissue for nutrients 176 

(35-37) (Sprague et al., submitted for revision). In contrast, C. glabrata is auxotrophic for 177 
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biotin, pyridoxine, nicotinic acid, and thiamine and only has a limited array of secreted 178 

proteases (28, 34), but has a range of GPI-anchored cell surface-associated yapsin proteases 179 

with a broad range of functions (38-40). Within macrophages, both species can cause a 180 

delay in phagosome maturation (41, 42), but only C. albicans forms hyphae that contribute 181 

to phagocyte escape (43). C. glabrata appears to multiply inside the phagosome until the 182 

high fungal load leads to rupture of the phagocyte (42). In conclusion, within Candida 183 

species, and especially for C. albicans and C. glabrata, the strategies to survive, grow, and 184 

cause damage in the host differ significantly. This is discussed in more detail below. 185 

CLINICAL ASPECTS 

Epidemiology 186 

Long-term surveillance programs, such as the ARTEMIS DISK epidemiological study, 187 

which compiled data from 41 countries over more than 10 years (20), and the SENTRY 188 

antimicrobial surveillance program (44), have documented changes in the demographic 189 

and geographical incidence and impact of Candida spp. Across these studies, the five major 190 

species responsible for most Candida infections are generally found in all geographical 191 

regions, but with different relative distributions (Figure 1). In most regions and studies, 192 

C. albicans is the most prevalent species (20). However, the two past decades have seen a 193 

shift in prevalence from C. albicans to “non-Candida albicans” Candida (NCAC) species, 194 

which may in part be due to improved identification methods. For example, in a study about 195 

bloodstream infections caused by Candida species in Shanghai, NCAC species 196 

outnumbered C. albicans (45). In the SENTRY antimicrobial surveillance 2008–2009, 197 

C. albicans was the most frequently detected Candida pathogen, but again the frequency 198 
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of NCAC species differed according to geographical region. C. parapsilosis was found to 199 

be the second most common Candida species in the Asia-Pacific area, and C. glabrata in 200 

other regions (44). Additionally, in another study C. tropicalis was the main cause of 201 

candidemia in Western India, followed by C. parapsilosis (46). In Greece, C. parapsilosis 202 

was responsible for most infections in patients with haematological malignancies (47). 203 

Thus, distribution of NCAC species can vary greatly between different continents, but also 204 

within regions of the same continent and depending on the patient cohort (13).  205 

 206 

C. albicans and C. glabrata can both be found, albeit infrequently, in the environment: 207 

C. glabrata has been detected on plants, feces from yellow-legged gulls, and in soil (48, 208 

49). C. albicans is rarely found in the environment, but recently has been isolated from 209 

soil, the barks of trees, and pigeon droppings (49-52). Zoonotic transmission of Candida 210 

spp. is rare, but its potential cannot be ignored. Candida species can be detected and cause 211 

disease in domesticated animals including dogs and cats, but also in a very wide range of 212 

wild animals and birds (53). Animal risk factors are similar to those in humans — e.g. 213 

immunosuppressive disorders — and isolates from humans and animals seem to have no 214 

host-specific genotypes or host species-specific lineages (54). This suggests that animals 215 

may serve as reservoirs for human infection. In conclusion, Candida spp. are widely 216 

distributed and are able to infect both humans and a wide range of other species, and they 217 

can occur in natural environments without obligatory associations with animals.  218 

Diagnosis 219 

In general, for clinical treatment and management of Candida and other fungal infections, 220 

a late diagnosis equates to a poor prognosis (55). Therefore, accurate and sensitive 221 
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diagnostics are critical for effective clinical management of invasive disease. C. albicans, 222 

C. glabrata, and other Candida yeasts can, however, cause a variety of infections: ranging 223 

from skin, vaginal or oral candidiasis to severe chronic forms of granuloma or life-224 

threatening blood stream infections and invasive candidiasis, and the optimal diagnostic 225 

tool reflects the severity and urgency of the infection that is to be treated. The type of 226 

disease is linked to a wide number of predisposing factors: pregnancy, diabetes, infancy or 227 

old age, hospitalization, catheterization, trauma, transitory, and chronic or genetic immune 228 

deficiency. In addition, diet, denture wearing, certain surgical interventions and other 229 

stresses are also implicated in affecting Candida spp. disease prevalence and severity (7, 230 

56). Some of these predisposing factors increase susceptibility to specific Candida spp. 231 

infections. For example, denture wearing increases the likelihood of oral candidiasis and 232 

pregnancy that of vaginal candidiasis.   233 

 234 

A broad range of options are available to diagnose C. albicans and/or C. glabrata and other 235 

yeast infections that differ in their accuracy, speed, specificity and sensitivity (57). Some 236 

of these diagnostic tests have been developed to be performed by non-specialists and are 237 

available at “point of care” whilst others require the back up of sophisticated high‐238 

technology analytical methods, such as polymerase chain reaction (PCR), DNA‐239 

sequencing‐based approaches, or protein fingerprinting by (MALDI‐TOF) mass 240 

spectrometry. Currently, microscopy and culture from normally sterile or non‐sterile body 241 

sites represent the gold standard for diagnostic tools in the detection of yeast infections. 242 

Fungal selective or indicator growth media such as Sabouraud agar, CHROMagar, 243 

chocolate or blood agar are used to narrow down the identification of the yeast species. For 244 

https://my.clevelandclinic.org/health/diseases/5019-yeast-infections
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example, the chromogenic CHROMagar™ Candida test generates green colored colonies 245 

for C. albicans and mauve colonies for C. glabrata (58). Culturing Candida spp. from the 246 

bloodstream or other sites will routinely take 24 h or more but will yield an organism that 247 

can then be identified and subjected to specific susceptibility testing. However, more rapid 248 

tests are also required for urgent diagnoses. Blood samples can be tested directly via the 249 

T2Candida Panel and the T2Dx Instrument (T2Candida) (57). Other tests, such as 250 

Platelia™ Candida Ag Plus EIA (Bio‐Rad, Marnes‐la‐Coquette, Paris, France) and the 251 

CandTec latex agglutination test (Ramco Laboratories, Stafford, TX, USA), can quickly 252 

detect components (yeast wall and/or metabolites) of fungal cells as biomarkers of 253 

infection. However, biomarker tests are normally not able to discriminate between different 254 

Candida species, which may be important in determining the most appropriate treatment. 255 

Biomarker tests can be complemented by use of serological assays to detect the host 256 

antibody response including immunodiffusion, counter‐immunoelectrophoresis, enzyme‐257 

linked immunosorbent assays (ELISA), complement fixation (CF), lateral flow assays, 258 

radioimmunosorbent assays (RIA) or agglutination assays, which again will not be species-259 

specific. Such tests are, however, normally only available in specialized fungal diagnostic 260 

laboratories and serological tests often lack sensitivity, especially when used for 261 

immunocompromised patients.  General fungal diagnostics such as those detecting fungal 262 

(1,3)-β-D-glucan (BDG) are useful, rapid, and highly sensitive, but they lack specificity 263 

for species or even genus differentiation, essential information for the selection of an 264 

appropriate antifungal treatment. In the future, this array of diagnostic formats may be 265 

complemented by ultrasensitive laser‐based biophysical biosensors with high fidelity and 266 

sensitive detection of novel biomarkers (59). 267 
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Types of Infection 268 

Candida spp. infections are divided into two broad categories: superficial and systemic 269 

(Figure 1). Superficial infections are those of the skin or mucosal surfaces of the body e.g., 270 

oropharyngeal, esophageal, vulvovaginal, and cutaneous candidiasis. Superficial infections 271 

are usually non-life threatening and can mostly be treated with topical antifungals with a 272 

high success rate (60). However, even though esophageal candidiasis is a superficial 273 

infection, it requires a systemic therapy (61).Vulvovaginal candidiasis affects 80% of 274 

women once in their life (62) and cutaneous candidiasis accounts for 7% of all inpatient 275 

visits to dermatologists (63). Additionally, recurrent vulvovaginal candidiasis (RVVC) 276 

affects 9% of women with severe impact on life quality (64). Chronic mucocutaneous 277 

candidiasis (CMC) is a recurrent superficial infection of mucous membranes, skin and nails 278 

and usually affects immunodeficient patients with a range of defined genetic 279 

polymorphisms (63).  280 

 281 

Systemic infections are disseminated and can affect nearly all internal organs. Under 282 

immunosuppression, systemic Candida spp. infections can originate from the commensals 283 

that reside in the gastrointestinal (GI) tract (65) or from external sources, e.g., central 284 

venous catheters (66). Systemic Candida spp. infections can affect the heart, brain, 285 

kidneys, and many other organs via the bloodstream (candidemia). The mortality rate of 286 

such Candida spp. bloodstream infections ranges between 30-60% (67, 68). A serious 287 

manifestation of systemic infection caused by Candida species is sepsis. Candida spp. are 288 

responsible for about 5% of all reported sepsis cases, and when septic shock develops, it is 289 

fatal in more than half of the cases (69). This is exacerbated by late diagnosis and delayed 290 
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antifungal treatment (70). In rare cases, a superficial infection can lead to a secondary 291 

systemic infection. Such secondary Candida spp. infections can also occur following 292 

bacterial infections or sepsis, and they result in prolonged ICU stays, increased mortality, 293 

and considerable healthcare costs (71). In summary, Candida spp. infections can be seen 294 

as a broad spectrum of conditions that ranges from non-life threatening superficial to 295 

systemic infection often associated with high mortality.  296 

 297 

Candida species also can exacerbate or become exacerbated by other existing diseases. The 298 

COVID-19 pandemic has led to an increased incidence of candidemia (72), and COVID-299 

19 patients tend to have a reduced cytokine response to C. albicans (73) and have longer 300 

stays in the ICU (74). Human immunodeficiency virus (HIV)-positive patients suffer more 301 

commonly from oral candidiasis and/or esophageal candidiasis (in case of low CD4+ 302 

counts), but HAART therapy has significantly reduced oral and esophageal candidiasis 303 

rates and Candida spp. colonization in HIV-positive individuals (75, 76). Recently it was 304 

shown that patients with severe Covid-19 have a proliferation of C. albicans in the gut. 305 

That leads in turn to significantly increased recruitment and NETosis of neutrophils in the 306 

lung, thereby exacerbating lung damage (77). This damage was mitigated by antifungal 307 

treatment or IL-6 receptor blockade. Patients with diabetes mellitus (DM) are more 308 

susceptible to oral (78) or vulvovaginal (79) candidiasis. This can be attributed to altered 309 

physiological factors in diabetic patients, such as higher concentrations of blood glucose, 310 

a weakened immune system, and increased Candida spp. adherence to epithelial cells in 311 

this setting (80). In addition, Candida species can promote other diseases. For example, 312 

multiple types of gastrointestinal cancers (e.g., stomach and colon cancer) have been linked 313 
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to the presence of Candida spp. cells in the GI tract, which has also been associated with 314 

an increased risk of metastasis (81). C. albicans strains with different capacity to cause 315 

damage were also found in the gut of IBD patients, and the high-damaging strains induced 316 

proinflammatory immunity through the peptide toxin candidalysin, which may contribute 317 

to the disease (82). In conclusion, the pathogenic potential of Candida species increases in 318 

patients with impaired immune responses and can also contribute to the severity of a range 319 

of diseases.  320 

Antifungal Treatment 321 

Oral fluconazole, miconazole or nystatin are commonly used as first line antifungal agents 322 

for oral thrush caused by Candida species. However, many C. glabrata strains have a low 323 

susceptibility or genetic resistance to fluconazole and will fail to clear a mucosal infection 324 

on a low dose fluconazole. Serious oral or oropharyngeal infections may be treated with a 325 

2-week course of an echinocandin (caspofungin, micafungin or anidulafungin) but as intra 326 

venous (i.v.) agents these are not appropriate for managing less invasive disease. Vaginal 327 

infections with this yeast are often managed with longer courses of topical antifungals such 328 

as miconazole or nystatin or occasionally a 2-week course of oral voriconazole for 329 

recalcitrant infections depending on susceptibility (83, 84). In the future ibrexafungerp, a 330 

triterpene with a similar action to the echinocandins, but active after oral administration, 331 

may prove helpful in these cases (84). For systemic invasive Candida spp. disease an i.v. 332 

administration of an echinocandin is normally recommended (85) as initial therapy, 333 

although fluconazole may be an appropriate continuation therapy for susceptible patients. 334 

For C. glabrata isolates identified as susceptible-dose-dependent to fluconazole, a high 335 

dose (800 mg/d) is normally recommended although IDSA guidelines recommend the use 336 
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of an echinocandin as a first line therapy, with fluconazole used only after the patient has 337 

responded to an echinocandin. Rezafungin, a new echinocandin that persists longer in the 338 

bloodstream and may only require i.v. administration on a weekly basis, could prove to be 339 

beneficial in the future (86). Systemic infections due to C. glabrata that are resistant to 340 

both azoles and echinocandins can be particularly problematic to treat. These infections 341 

may require administration of amphotericin B with or without flucytosine as alternative 342 

agents (85).  343 

Antifungal Resistance — Biological and Clinical Principles 344 

Both C. albicans and C. glabrata pose clinical challenges due to a range of drug resistant 345 

phenotypes that challenge the efficacy of existing and future generations of antifungal 346 

drugs, in particular for treatment of systemic infections (6, 87-90). Increasing resistance to 347 

antifungals is normally the consequence of the rise in prevalence of Candida species and 348 

strains with intrinsic resistance — such as with fluconazole-resistant C. glabrata 349 

strains — but can also be due to de novo induction of resistance in isolates from species 350 

that are normally drug susceptible, which is common for C. albicans. Typical surveillance 351 

data show that fluconazole resistance exists in approximately 8% of C. albicans strains, 352 

but as many as 26% of strains of C. glabrata (91). 353 

 354 

C. albicans is the most commonly implicated Candida species in candidaemia, although 355 

C. glabrata exceeds C. albicans in prevalence in fluconazole-resistant candidaemia 356 

cohorts (92). In the clinic, C. glabrata is also increasingly commonly displaying 357 

echinocandin resistance, where resistance can vary between 2 and 12% of isolates in 358 

different hospitals. Some of these strains may be regarded as multiple drug resistant (MDR) 359 
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due to co-resistance to fluconazole (87, 93). Approximately 14% of fluconazole-resistant 360 

C. glabrata isolates are also resistant to one or more echinocandins. These 361 

azole/echinocandin cross-resistant strains are often ERG3 mutants that harbor additional 362 

FKS gene mutations (see below). Patients infected with these strains fail to respond to both 363 

echinocandin and azole treatments (85, 91, 94). 364 

 365 

Newer drugs flowing into the yeast-active antifungal pipeline include rezafungin, 366 

isavuconazole, ibrexafungerp, opelconazole, and fosmanogepix. All these novel 367 

antifungals have activity against both C. albicans and C. glabrata (95, 96). Rezafungin is 368 

a stable echinocandin that only requires once weekly i.v. administration; ibrexafungerp is 369 

a new triterpenoid pharmacophore, and fosmanogepix is an inhibitor of the Gwt1 enzyme 370 

that is required for GPI-anchoring of proteins into the cell wall (95). Olorofim, another new 371 

class of antifungal drug that inhibits the enzyme dihydroorotate dehydrogenase, has no 372 

activity against either of these two species of Candida. 373 

 374 

In recent years it has become clear that emergent resistance can be distinguished from 375 

“heteroresistance” and “tolerance” of a fungus to an antifungal drug (88). Heteroresistance 376 

refers to fungal strains where a small number of cells have a much higher minimal 377 

inhibitory concentration (MIC) to a specific drug than the significant majority of cells in a 378 

given population. Heteroresistance is distinguishable from tolerance (also called “trailing 379 

growth” in the clinical literature), which is the ability of a sub-population of a generally 380 

susceptible and isogenic strain to grow slowly in drug concentrations that are well above 381 

the MIC (85, 88). Tolerance seems to involve the chaperone Hsp90, the calcineurin 382 
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pathway, and protein kinase C (Pkc) (88). Both heteroresistance and tolerance are relevant 383 

to drug susceptibility of both C. albicans and C. glabrata. 384 

 385 

Clinical strategies to mitigate the challenges imposed by drug resistant and tolerant 386 

Candida spp. strains and species in general have to consider existing and new-in-the-387 

pipeline antifungals that have different spectra of activity. Clinical trial data and a range of 388 

possible classical mechanisms of resistance as well as heteroresistance and tolerance 389 

mechanisms also need to be considered for optimal clinical decision making (85, 90). This 390 

may require standardized tests to be devised that will allow to take heteroresistance and 391 

drug tolerance into account when making clinical decisions about the choice of an 392 

antifungal. 393 

 394 

Genetic and Molecular Basis for Resistance 395 

Antifungal resistance in C. albicans and C. glabrata can involve a wide range of 396 

mechanisms. These include reduced drug uptake, overexpression of drug efflux 397 

transporters or the targets of azole or echinocandin antifungals, target site mutations, 398 

chromosomal aneuploidies, isochromosome formation, loss of heterozygosity, and other 399 

changes that collectively affect the drug resistance profile (88, 93, 97-106). Some of these 400 

mechanisms are also important to the resistance profile of C. nivariensis, and 401 

C. bracarensis — two sibling species in the C. glabrata complex (107, 108). Some 402 

antifungal mechanisms also affect or intersect with those affecting virulence attributes such 403 

as adhesion, biofilm production, thermotolerance, resistance to immune cells, and the cell 404 

wall proteome (102, 103, 109). For example, fluconazole and exposure to macrophages 405 
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can confer a cross-resistance between antifungals and immune cells via the emergence of 406 

petite strains of C. glabrata (110-112).  407 

 408 

Currently the key drugs used in the clinic are azoles, which interfere with ergosterol 409 

biosynthesis in the cell membrane, and echinocandins, that inhibit cell wall β-1,3 glucan 410 

biosynthesis. Resistance to azoles can occur through mutations in the primary azole target, 411 

Erg11/Cyp51, which encodes lanosterol 14α-demethylase. This leads in turn to changes in 412 

the flux through the ergosterol biosynthetic pathway and the accumulation of the toxic 413 

sterol intermediate, 14α-methyl-3,6-diol, that is produced by Erg3 — a C-5 sterol 414 

desaturase. In C. albicans and C. glabrata loss-of-function mutations in ERG3 can also 415 

confer MDR properties (93). Gain-of-function mutations in the ergosterol pathway 416 

transcription factor gene UPC2 lead to overexpression of ERG11, and isochromosome 417 

formation [i(5L) in C. albicans which leads to amplification of ERG11 and TAC1 (113) ] 418 

and other aneuploidies can also increase ERG11 expression by altering the copy number 419 

of the ERG11 gene (114). In C. albicans, trisomies in chromosomes 3 and 4 are associated 420 

with fluconazole resistance, and an increased expression of CgCDR1 can be associated 421 

with aneuploidy in C. glabrata (115, 116). Also, mutations in C. albicans ERG11 422 

commonly confer increased azole resistance, whilst target site ERG11 mutations are rare 423 

in C. glabrata.  424 

 425 

Azole resistance can also be due to upregulation of genes encoding azole efflux pumps 426 

(CaCDR1, CaCDR2 and CaMDR1) and their transcriptional regulator genes (CaTAC1 for 427 

CaCDR1 and CaCDR2, and CaMRR1 for regulation of CaMDR1). In C. glabrata CgPdr1 428 
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regulates the efflux systems encoded by CgCDR1, CgCDR2, and CgSNQ2, and 429 

upregulation of CgPDR1 confers azole resistance (88, 93, 98, 100, 103, 105, 106, 117). In 430 

C. glabrata mutations in CgCNE1 and CgEPA13 have also been implicated in drug 431 

resistance (118) . Gain-of-function mutations in the ergosterol pathway transcription factor 432 

gene UPC2 (C. albicans)/ UPC2A (C. glabrata) leads to overexpression of ERG11 in both 433 

species (119, 120).  434 

 435 

The target of echinocandins is the catalytic subunit for β-1,3-glucan biosynthesis, (1,3)-β-436 

D-glucan synthase (FKS/GLS), in the cell membrane. Echinocandin-resistant mutants 437 

usually involve mutations in the FKS genes that encode this protein. In C. albicans these 438 

mutations occur in two “Hot Spots” (HS) in the CaFKS1 gene rather than in CaFKS2 and 439 

CaFKS3, whilst in C. glabrata HS mutations that effect echinocandin MICs occur in both, 440 

CgFKS1 and (more commonly) CgFKS2 (94, 121, 122).   441 

 442 

In the cell wall of Candida species both chitin and β-1,3-glucan contribute to structural 443 

strength. Candida species can also upregulate chitin synthesis as a response to damage of 444 

β-1,3-glucan, which leads to strengthening of the wall and reduced sensitivity to 445 

echinocandins (123-125).  This is a reversible process that occurs in vitro and likely in vivo. 446 

Because this is a reversible phenotypic adaptation and not a mutation, it may not change 447 

the in vitro MIC when the strain is isolated from the patient and grown on non-drug 448 

selective conditions on agar (126). The higher levels of chitin in these echinocandin-449 

adapted strains may affect the immune response to the surviving cell population, potentially 450 

rendering them less inflammatory (122, 127). High levels of chitin can explain the 451 
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“paradoxical growth effect” in some strains, where higher levels of drugs like caspofungin 452 

result in higher MIC values (124, 126). 453 

 454 

Mutations in the mismatch repair gene MSH2 can generate hypermutator strains with 455 

increased frequency of drug resistance to triazole and echinocandin compounds (87, 121). 456 

Most of the C. albicans and C. glabrata genes conferring resistance to azoles and 457 

echinocandins – for example CaERG11, CaERG3, CaTAC1, and CaFKS1/GSC1 in 458 

C. albicans, as well as CgERG11, CgPDR1, CgFKS1, and CgFKS2 in C. glabrata – can 459 

be rapidly screened for by next generation sequencing and may increasingly inform clinical 460 

decisions (128). However, phenotypic analysis of drug susceptibility will remain key to 461 

identifying those isolates with previously unrecognized resistance mutations, those 462 

acquiring multiple resistance mechanisms in a stepwise manner, and in those strains where 463 

up-regulation of normal house-keeping genes causes elevated MICs. It is noted also that 464 

the relevance of MICs measured in vitro to the in vivo performance of an antifungal is not 465 

always clear. 466 

 467 

Continued exposure to a range of antifungals can lead to the stepwise evolution of drug 468 

resistance leading to an MDR phenotype that can also involve acquisition of resistance to 469 

amphotericin B and flucytosine (129). For example, in C. glabrata, prolonged antifungal 470 

treatment of a patient was observed to lead to the selection of mutations in CgFUR1 and 471 

CgFKS2 along with the overexpression of CgCDR1 and CgCDR2 (130).  472 

 473 
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MOLECULAR AND CELLULAR BIOLOGY 

Genome Biology 474 

The considerable evolutionary distance between C. glabrata and C. albicans is reflected in 475 

a number of important differences in the evolution and structural organization of their 476 

genomes. C. albicans (but not C. glabrata) is one of at least eight Candida species that 477 

have a non-canonical CTG codon (the CTG clade). This results in the decoding of the CTG 478 

codon as serine instead of leucine. This is a fundamental difference in genome biology, 479 

reflecting the considerable evolutionary divergence between C. glabrata and C. albicans. 480 

This codon reassignment also provides practical constraints in C. albicans molecular 481 

genetics — for example, the expression of heterologous proteins in C. albicans usually 482 

requires codon correction and optimization. C. glabrata is a nearer phylogenetic relative 483 

to S. cerevisiae than to C. albicans and is part of a group of yeast-like species that have 484 

undergone an ancestral whole genome duplication event (WGD). The C. glabrata 485 

karyotype has 13 chromosomes while C. albicans has 8 chromosomes with a relatively 486 

compact genome that displays relatively short intergenic spacing distances compared to 487 

C. glabrata. As a result, the two pathogens display significant differences in gene 488 

regulation, expression, clustering and in genome stability. The ancestral WGD event has 489 

also shaped the contemporary genome architecture — for example, the 12.3 Mb haploid 490 

genome size of C. glabrata is only slightly smaller than the 14.3 Mb diploid C. albicans 491 

genome. However, the GC content, average number of genes, and average gene size is 492 

comparable in both species (33.5% vs. 38.8%, 6107 genes vs. 5283 genes, and 1468 bp vs. 493 

1479 bp in C. albicans and C. glabrata, respectively) (1, 131, 132).  494 



23 

 

 495 

C. albicans and C. glabrata have remarkably plastic genomes (132). A major aspect of 496 

their extensive genomic diversity is the capacity for aneuploidy — a condition 497 

characterized by variability in chromosome number that is relevant, for example, to the 498 

evolution of drug resistance properties (see above). This phenomenon results from 499 

chromosomal mis-segregation during processes such as mating, mitosis, and the response 500 

to DNA damage due to environmental stressors. In diploid C. albicans, loss (monosomy) 501 

or gain of chromosomes (trisomy or tetrasomy) can occur. Quasi-stable haploid strains of 502 

C. albicans have been generated that have promoted new forward genetics strategies for 503 

mutant analysis (133, 134). On the other hand, haploid C. glabrata strains can become 504 

disomic. While loss of chromosomes in haploid and diploid cells of C. glabrata or 505 

C. albicans can potentially be lethal due to the loss of essential genes and potential fitness 506 

reduction due to mis-segregation, aneuploidy can also confer advantages under adverse and 507 

stressful conditions and may enhance in vivo survival (135, 136). For example, exposure 508 

to antifungals can select for aneuploidy variants that have an increased copy number of 509 

drug resistance genes (see above). Aneuploidy's roles extend beyond resistance, 510 

influencing commensal growth. Recent studies revealed that C. albicans can acquire an 511 

extra copy of chromosome 7, which alters the dosage of the hyphal repressor gene NRG1, 512 

thereby reducing filamentation and the expression of virulence genes associated with 513 

invasive growth in vivo (137). Aneuploidy associated with reduced virulence was reported 514 

at a high frequency during exposure of C. albicans to the mouse oral cavity (138). 515 

Collectively, these findings suggest that while aneuploidy might pose challenges, it can be 516 

well-tolerated and even be advantageous.  517 
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 518 

In addition to aneuploidy, the genomic landscape of C. albicans is also shaped by 519 

chromosomal rearrangements, insertions, deletions, point mutations, copy number 520 

variations (CNV), short tandem repeats (STRs), and loss of heterozygosity (LOH) — all 521 

of which can foster adaptability to harsh conditions (135). While STRs are prevalent in 522 

C. albicans and confer high mutation rates, large tandem repeats (LTRs, 65-6499 bp) 523 

contribute to CNV, LOH, and chromosomal inversions, further affecting genome structure 524 

(139). For example, oropharyngeal infections were found to be associated with an LTR 525 

event, causing trisomy of chromosome 6 and a non-virulent phenotype in C. albicans 526 

(138). Such tandem repeats in open reading frames are also reported to orchestrate allelic 527 

homologous recombination, notably in multigene families encoding enzymes and 528 

transporters, thereby influencing pathogenicity (140). In contrast, LOH is not relevant in 529 

the haploid C. glabrata genome, which also has fewer STRs, yet this organism displays 530 

greater genetic diversity within clades than C. albicans. Extensive CNVs and aneuploidies 531 

in C. albicans drive this diversity, resulting in adaptation to antifungals and changes in 532 

virulence (141, 142). 533 

Pleomorphism and Morphogenesis  534 

Reversible morphological transitions have been identified as important determinants of 535 

commensal and pathogenic growth of a range of fungi. Both C. albicans and C. glabrata 536 

exhibit a range of cellular and colonial morphologies (Figure 2). C. albicans can transit 537 

from yeasts to parallel sided, branching hyphae and conjoined elongated synchronously 538 

dividing buds called pseudohyphae. Each morphotype displays unique cell properties and 539 
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interactions with its environment. Additionally, C. albicans can also form enlarged yeasts 540 

called Goliath cells upon zinc starvation (143, 144) and a range of cell types associated 541 

with mating (145). A more limited number of cellular morphotypes exist for C. glabrata, 542 

however, emerging evidence suggests that phenotypic switching and mating could 543 

influence virulence (141, 146). Recently, some C. glabrata isolates have been found in 544 

stable diploid or hyperdiploid (>2N) states exhibiting different colony morphologies and 545 

variations in virulence capacity (147). Similarly, petite phenotypes of C. glabrata influence 546 

virulence and antifungal resistance (110, 112). Furthermore, an aggregating phenotype has 547 

also been recorded among C. glabrata clinical isolates (148). However, the mechanisms 548 

that regulate the transition between these phenotypes are yet to be elucidated. 549 

Hyphal Growth and Tropisms 550 

Hyphal morphogenesis is critical in C. albicans for invasive infiltration into human tissue 551 

and translocation from the gut into the bloodstream (149, 150). Hyphal-associated proteins 552 

mediate adhesion and invasion via induced endocytosis (151-153). In addition to induced 553 

endocytosis, C. albicans hyphae invade epithelial cells by active penetration (26). Recent 554 

microfluidic studies demonstrated that hyphal protrusive forces in the 100 MPa range allow 555 

physical penetration of host tissues. However, encounters with stiffer substrates result in 556 

Cdc42-independent alteration of cell morphology, suggesting that host cell surface 557 

stiffness influences hyphal active penetration (154, 155) and invasion of host membranes 558 

by breaching or trans-cellular tunnelling (156). One major difference in the physiology of 559 

C. albicans and C. glabrata is that C. glabrata does not make filamentous parallel sided 560 

branching hyphae, but it is able to form elongated, conjoined, pseudohyphae under certain 561 

conditions (29, 157). C. albicans hyphae display a number of behaviors and growth 562 
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responses, such as the ability to form helical shaped cells on hard surfaces and to turn and 563 

bend in relation to surface contours on the sub-stratum (thigmotropism) (158-161). These 564 

tropisms are calcium-dependent responses (160) and involve regulation of the polarisome 565 

complex of proteins in the hyphal apex that marks the site at which cell expansion takes 566 

place (159, 161). Furthermore, the Spitzenkӧrper, a vesicle cluster at the tip of a growing 567 

hyphae, has gained attention in recent years in relation to its role in thigmotropism (161-568 

163). It functions synchronously with the polarisome complex to sustain hyphal elongation 569 

and directional growth (164). A recent review (165) provides valuable and most current 570 

information on effectors and influencers of hyphal growth. It is not yet known to what 571 

extent these tropisms confer an advantage to C. albicans in navigating through human 572 

tissues. 573 

Phenotypic Switching  574 

Phenotypic switching is manifest as a high frequency reversible transition between 575 

different colony types. It is not the result of mutations, but rather the consequence of 576 

regulation of silent chromatin states in key locations in the genome (166-168). Phenotypic 577 

switch variants have changes in physiology that affect virulence and a number of important 578 

physiological properties.   579 

 580 

Phenotypic switching was first discovered in the C. albicans strain 3153 (166). The White-581 

Opaque switching in the C. albicans WO-1 strain was subsequently found to be critical for 582 

efficient mating of strains (see below) (169, 170). The more bean-shaped opaque phase 583 

yeast cells were found to be the mating-competent switch variant (171). Switch variants 584 
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also confer other properties relevant to the organism’s pathology. For example, opaque 585 

cells are dominant colonizers of the skin, mediated by the secreted aspartic protease Sap1 586 

(172), and to a lesser extent of the heart and the spleen (173, 174). However, in the 587 

mammalian gastro-intestinal (GI) tract, C. albicans white cells can also switch to a Wor1-588 

regulated commensal cell type known as the GUT (Gastrointestinally-indUced Transition) 589 

phenotype. GUT cells are distinct from opaque cells and express a transcriptome optimized 590 

for the GI tract (175). To add to its phenotypic versatility, C. albicans also displays a “gray” 591 

phenotype in a tristable white-gray-opaque switching system. Gray cells differ from white 592 

and opaque cells in appearance, mating competency, expression of secreted aspartic 593 

proteases, and virulence (176). In addition, white cells are preferentially phagocytosed over 594 

opaque phase cells suggesting opaque phase cells may be better able to escape immune 595 

clearance (177). Efg1 and Wor1 are established key regulators of phenotypic switching in 596 

C. albicans. More recently, the Cph1 transcription factor was also implicated in phenotypic 597 

transition and white cell pheromone response (178). Besides gene expression, gene dosage 598 

is also crucial for white-opaque switching, as EFG1 hemizygosity is important for 599 

transition to opaque cells and, subsequently, mating. It is therefore not surprising that 600 

clinical isolates are often found to have undergone a loss of one functional EFG1 allele via 601 

de novo mutation or gene conversion events, particularly in the GI tract (179). However, a 602 

recent study reported a Wor1-independent opaque phenotype, suggesting the presence of 603 

alternate as-yet unidentified opaque cell regulatory pathways (180). Although some 604 

C. albicans phenotypes are extensively studied, limited information is available on the 605 

nature of the variability exhibited by other colony phenotypes of C. albicans. For example, 606 

the regulatory pathways and cellular features of the originally described smooth, star, 607 
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irregular-wrinkled, ring, stipple, fuzzy, and revertant and smooth colonies of strain 3513A 608 

(181) remain largely unknown. C. glabrata can also exhibit colonial phenotypic switching 609 

forming white, light brown, dark brown, and very dark brown colonies that can be 610 

distinguished by graded colony coloration on CuSO4-containing agar. These four 611 

phenotypes form the core switching system and differ in their expression of MT-II, a 612 

metallothionein gene. C. glabrata can also form irregular-wrinkled colonies (182). 613 

Although some regulatory mechanisms may remain elusive, various studies have 614 

demonstrated that spontaneous phenotypic transitions are crucial for mating, virulence, 615 

immune evasion, and adaptation to a range of host environments. 616 

Mating 617 

The recognition of a parasexual cycle as a part of both C. albicans and C. glabrata life 618 

cycle has expanded our understanding of Candida spp. phenotypes (146, 183). Mating in 619 

C. albicans results in formation of irregular tubular mating projections called “shmoos” 620 

(184, 185). Opaque phase cells of C. albicans that carry both MTLa and MTLα alleles are 621 

greatly increased in mating competence. A few clinical isolates have been identified that 622 

are MTL-homozygous (a/a or α/α) and facilitate WOR1-mediated white-to-opaque 623 

switching to allow mating between a/a and α/α cells (135, 186, 187). Same-sex mating 624 

between MTLa cells regulated by the Hsf1-Hsp90 pathway has also been identified (188). 625 

Both homothallic (same-sex) and heterothallic (between opposite mating types) mating 626 

have been described, with unisexual mating occurring in mutants lacking the Bar1 protease 627 

that enables autocrine pheromone signaling (187). Additionally, C. albicans can also 628 

undergo switching-independent sexual mating under certain environmental conditions 629 

including glucose starvation (169, 189). Although the pathways and functions of the sex 630 
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genes involved are yet to be elucidated, glucose depletion can result in overexpression of 631 

pheromone-sensing and mating-associated genes, and a decreased expression of mating 632 

repressor genes. A full sexual cycle for C. albicans has yet to be described, even though 633 

most of the genes required for meiosis are known to be present in the genome. 634 

 635 

In contrast to C. albicans, C. glabrata is a haploid fungus and contains three mating-type 636 

loci – MTL1 (containing a or α information), MTL2 (containing information for a) and 637 

MTL3 (containing information for α). MTL 1 and 2 are transcriptionally active while MTL3 638 

is subject to subtelomeric silencing (190). In this regard, C. glabrata has adopted a ‘fluid’ 639 

MTL identity and can switch its mating type to allow (para)sexual mating (146). At this 640 

stage it is not clear whether C. glabrata can execute all the steps required to complete a 641 

full sexual cycle.  Phenotypic switching does not seem to be relevant to the mating cycle.  642 

Morphogenesis and Biofilms 643 

Regulation of the yeast-to-hypha transition in C. albicans has been studied extensively and 644 

is not covered here in detail because it has been frequently reviewed (143, 191-195) and is 645 

not relevant to C. glabrata physiology (131). However, the transcriptional machinery that 646 

orchestrates morphological transitions involve multiple positive and negative regulatory 647 

factors (e.g., Cek1-MAPK, Ras-cAMP, Hog1-MAPK, Tor1 pathways), some of which also 648 

affect other aspects of physiology – such as biofilm formation. Biofilms of C. albicans 649 

commonly constitute a profusion of hyphae emanating from a basal layer of yeast cells that 650 

colonize a surface. BCR1, EFG1, NDT80, ROB1, TEC1, BRG1, FLO8, GAL4, and RFX2 651 

(196) all play a role in C. albicans biofilms, and TEC1 and STE12 are important for biofilm 652 
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formation of C. glabrata (197). For successful morphological transitions these 653 

transcriptional circuits rely on co-ordination with chromatin and histone modifier and 654 

remodeling complexes (198). For example, the C. albicans SWI/SNF and RSC (Remodels 655 

the Structure of Chromatin) complexes and histone deacetylase Sir2 are known to regulate 656 

filamentation (199, 200), and by extension influence biofilm formation. 657 

 658 

C. albicans and C. glabrata both are capable of forming single or mixed-species biofilm 659 

communities in which the fungal cells are encased in an extracellular matrix (ECM). This 660 

can result in poor penetration of antifungal drugs, encourage antifungal resistance, and also 661 

provide protection from immune phagocytes (201). Biofilm formation hinges on the 662 

adhesion capacity of the component cells. In C. albicans, the Als family of proteins, 663 

especially the hyphal associated proteins Als3, and Hwp1 aid adhesion (32, 153, 202), 664 

while Epa proteins serve this role in C. glabrata (203). Many secreted biofilm components 665 

of C. albicans, including almost half of all biofilm proteins, are delivered via extracellular 666 

vesicles (EVs), and inhibition of EV secretion increases the sensitivity of biofilm cells to 667 

fluconazole (204). It is not yet known whether EVs contribute to biofilm formation in 668 

C. glabrata. Hyphal associated Sap proteases are required for proper C. albicans biofilm 669 

development in vitro and in vivo (205). While both species form biofilms in vivo, they 670 

exhibit stark differences in biofilm structure and composition. C. albicans biofilms 671 

typically include a proliferation of filamentous hyphae, whereas C. glabrata biofilms 672 

consist of yeast cells with occasional pseudohyphae-like structures reported in vitro (29, 673 

182). Other studies suggest that both species can also form biofilms in which mating takes 674 

place (146, 206, 207). In C. albicans, white cells were found to secrete pheromones and 675 
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create a favorable environment for a small population of opaque cells to mate (208). 676 

Furthermore, they can also form mixed-species biofilms with bacteria like Staphylococcus 677 

and Streptococcus (209-211). On medical devices, teeth, and other host surfaces, specific 678 

biofilms can be formed of unique composition and function, which can alter the host 679 

microbiome. These studies collectively demonstrate the phenotypic diversity of Candida 680 

spp. biofilms, highlighting their complex nature and the challenges they pose. 681 

Cell Wall 682 

The Candida spp. cell wall is a multifunctional organelle and plays a crucial role in 683 

physiological processes such as morphogenesis, adherence, biofilm formation, immune 684 

recognition and evasion, and antifungal drug targeting (212). It is a complex multi-layered 685 

structure with a chitin- and β-(1,3)- and β-(1,6)-glucans-rich inner layer, and an outer layer 686 

composed mainly of highly mannosylated glycoproteins. The cell wall proteins are mostly 687 

GlycosylPhosphatidylInositol (GPI)-anchored via a C-terminal ω-site to β-(1,6)-glucan 688 

and thereby to the β-(1,3)-glucan inner skeleton. Whilst the general arrangement of the 689 

major polysaccharides in the cell walls of C. albicans and C. glabrata is similar, significant 690 

differences exist in the cell wall proteome. Approximately 100 cell wall proteins like 691 

adhesins, Saps (C. albicans), yapsins (C. glabrata) and other hydrolases, 692 

transglycosidases, deacetylases, and amyloid forming proteins are encoded in the genomes 693 

of C. albicans and C. glabrata, of which 10-15 are dominant under any set of 694 

environmental conditions (213, 214). A novel class of cell wall proteins with β-helix folds 695 

were recently identified in C. glabrata that mediate adhesion in clinical isolates (215). The 696 

cell wall can undergo dynamic modifications during morphogenesis and in response to 697 

environmental changes. For example, exposure to an echinocandin compromises β-(1,3)-698 
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glucan structure, resulting in overproduction of chitin and anchoring of many GPI-proteins 699 

to chitin (123, 212, 213). These cell wall compensatory reactions are controlled by multiple 700 

signaling pathways including the MKC, HOG, and calcineurin pathways and a subset of 701 

bespoke transcription factors including Rlm1, Sko1, Crz1, and Cas5 (206). The calcineurin 702 

pathway was recently found to regulate the cell wall integrity signaling pathway in 703 

C. albicans. It modifies chitin synthesis under echinocandin stress and ensures that chitin 704 

levels are maintained within fixed boundaries to prevent the wall from becoming too rigid 705 

(123). Additionally, transcription factors such as Sfp1 and Czf1 have also been implicated 706 

in maintaining cell wall integrity under different environmental conditions (216, 217). 707 

Recent reviews (218, 219) provide a comprehensive overview of the cell wall proteome of 708 

C. albicans and the diversity of GPI-anchored proteins in fungi, respectively. The role of 709 

specific cell wall proteins in commensalism and diseases is discussed below. 710 

 711 

INTERACTION BIOLOGY 

Immune Recognition 712 

The first step in mounting a protective immune response to Candida species is the sensing 713 

of the fungus via receptors on host immune cells via recognition of components of 714 

pathogens with conserved molecular patterns – termed pathogen-associated molecular 715 

patterns (PAMPs). These PAMPs are predominantly fungal cell wall and intracellular 716 

components, such as nucleic acids. Cells of the innate immune system recognize these 717 

PAMPs directly through membrane-bound and cytoplasmic pattern recognition receptors 718 

(PRRs), or indirectly through pre-opsonisation via complement or antibodies. PRRs can be 719 
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subdivided in several families, including C‑type lectin receptors (CLRs), Toll-like 720 

receptors (TLRs), NOD-like receptors (NLRs), and RIG -like receptors (RLRs), which 721 

differential expression on various (non-) immune cells leads to tailored activation of 722 

protective immune responses (220-222) (Figure 3). It should be noted that most studies to 723 

date of the role of specific PRRs have been carried out only with C. albicans. In addition, 724 

limitations in the utility of the mouse model for C. glabrata virulence studies has 725 

compromised the ability to assess the consequences of knock-out mutations in the host or 726 

fungus on pathogenicity. 727 

 728 

CLRs, alone (e.g., Dectin-1) or via association with Fc receptor γ chain (e.g., Dectin-2, 729 

Mincle, Dectin-3), signal through the Syk/PKCδ/CARD9/Bcl-10/MALT1 or RAF1 730 

pathways. Caspase recruitment domain-containing protein 9 (CARD9) is crucial, as 731 

humans and mice with defective CARD9 signaling are more susceptible to invasive 732 

Candida spp. infections (223-227). Candida spp. mannans and mannoproteins are 733 

recognized by several CLRs including: Dectin-2, Dectin-3, Mincle, Mannose receptor, and 734 

DC-SIGN. Dectin-2 recognizes high mannose structures (228, 229), and absence of the 735 

receptor reduces innate immune cell recruitment and activation, phagocytosis, NETosis, 736 

and induction of Th17 cell responses, rendering mice more susceptible to systemic 737 

C. albicans and C. glabrata infection (230-235). In heterodimeric combination with 738 

Dectin-2, Dectin-3 recognizes α-mannans, and mice deficient for Dectin-3 are also 739 

susceptible to C. albicans infection (236). Recognition of N-linked mannans (229, 237) by 740 

Mannose receptor induces phagocytosis of C. albicans (238) and production of various 741 

pro-inflammatory cytokines (239-241), but is not required for survival in a systemic 742 
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C. albicans murine infection model (242). DC-SIGN (and murine homolog SIGNR1) also 743 

interacts with N-linked mannan (229, 243, 244), and recognition leads to phagocytosis, 744 

cytokine and ROS production, and modulation of TLR signaling via a Raf-1 dependent 745 

pathway (245-249). Mincle binds C. albicans steryl mannosides (250, 251) and is involved 746 

in modulation of phagocytosis and killing, cytokine responses, and control of kidney fungal 747 

burdens (233, 234, 252-254). Candida spp. β-1,3-glucan is recognized by Dectin-1 (255) 748 

and mediates phagocytosis, generation of inflammatory cytokines, chemokines and ROS, 749 

and Th17 cell differentiation (227, 256). Absence of Dectin-1 in mice was found to be 750 

associated with increased mortality, higher fungal burden, and reduced inflammatory cell 751 

recruitment after C. albicans or C. glabrata systemic infection (234, 256-258). However, 752 

it was noted that the susceptibility of Dectin-1 deficient mice to C. albicans was dependent 753 

on the levels of chitin content of the fungal cell wall (127). In humans, a single nucleotide 754 

polymorphism (SNPs) in CLEC7A (Dectin-1), which affects inflammatory cytokines in 755 

response to C. albicans, results in the absence of Dectin-1 from host myeloid cells and 756 

increases susceptibility to chronic mucocutaneous candidiasis (259), Candida spp. 757 

colonization (260), and recurrent vulvovaginal candidiasis (261). 758 

 759 

TLRs recognize Candida spp. via extracellular leucine-rich repeat regions, and signal via 760 

an intracellular TIR homology domain leading to the activation of MyD88 or TRIF-761 

dependent pathways. The importance of TLR interaction in Candida spp. recognition is 762 

evident from studies using mice that lack MyD88. These animals show increased mortality, 763 

fungal burden, and decreased pro-inflammatory cytokine production in systemic 764 

C. albicans infections (262). However, humans with MyD88 or IRAK mutations do not 765 
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present with increased or exaggerated fungal infections (263, 264). TLR2 can form 766 

heterodimers in combination with TLR1 and TLR6, and the heterodimeric complex 767 

recognizes phospholipomannan (265) and chitin (266, 267), inducing pro- and anti-768 

inflammatory cytokine responses and differentiation of haematopoietic stem cells and 769 

T-cells (265, 267-271). Mice deficient for TLR2 exhibit increased C. albicans colonization 770 

of the gastrointestinal (272) and vaginal tracts (273), whereas in systemic infection both 771 

increased and decreased susceptibility have been reported in a TLR2-deficient background 772 

(268, 271). Absence of either TLR1 or TLR6 results in a normal susceptibility in systemic 773 

models of C. albicans infection (274). In humans, SNPs in TLR1 and TLR2 have been 774 

associated with increased susceptibility to candidemia (275) and recurrent vulvovaginal 775 

candidiasis (261), respectively. Candida spp. O-linked mannan (237, 276) recognition by 776 

TLR4 induces pro-inflammatory cytokine responses, phagocytosis, and recruitment of 777 

immune cells (277-279). Opposing consequences have been described in models for 778 

systemic models of C. albicans infection, with TLR4-deficient mice being more 779 

susceptible than (277), or not different to (280) wildtype mice. Recognition of Candida 780 

spp. DNA by TLR9 induces pro-inflammatory cytokine responses, and absence of the 781 

receptor in systemic models of C. albicans infections increased mortality in one study 782 

(281) – but showed no effect in another (282). TLR3 and TLR7 both recognize RNA, and 783 

while a SNP in TLR3 showed decreased IFNγ responses to C. albicans and increased 784 

susceptibility to cutaneous candidiasis (283), mice lacking TLR7 were more susceptible to 785 

systemic C. albicans infection (281). 786 

 787 
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NLRs are intracellular receptors containing leucine-rich repeats, NACHT, CARD or 788 

PYRIN domains. NOD2 and the inflammasome-activating receptors NLPR3, NLRP10, 789 

and NLRC4 are involved in recognition of Candida species. C. albicans chitin induces 790 

IL-10 cytokine responses via NOD2 (266), whereas a SNP in NOD2 had no effect on 791 

C. albicans-stimulated PBMCs cytokine responses,  nor was an association with disease in 792 

patients with Candida spp. infections observed (284). The NLRP3 inflammasome is 793 

activated more strongly by C. albicans hyphae than yeast cells (285). NLRP3 recognition 794 

of C. albicans β-glucans, secreted aspartic proteases (Saps) or candidalysin activates 795 

caspase-1, or caspase-11, for processing of pro-IL-1β and pro-IL-18 into their biologically 796 

active forms (286-289), induces Th17 responses (Cheng 2011), but can also trigger a 797 

programmed cell death pathway (pyroptosis) facilitating fungal escape from inside 798 

macrophages (290, 291). Mice defective for components of the NLRP3 inflammasome are 799 

more susceptible to disseminated C. albicans infection (292-294). In humans, a 800 

polymorphism and variable number tandem repeat in the NLRP3 gene are associated with 801 

recurrent vulvovaginal candidiasis and decreased IL-1β production in response to 802 

C. albicans (295, 296). NLRP3-independent caspase-8 activation by C. albicans β-glucans 803 

has also been shown to induce processing of pro-IL-1β and pyroptosis (297, 298). Other 804 

inflammasomes, NLRP10 and NLRC4, play a protective role in systemic (299) and 805 

mucosal candidiasis (300), respectively, and NLCR4 also regulates NLRP3 inflammasome 806 

activity during Candida spp. infection (301). 807 

 808 

Other PRRs involved in Candida spp. recognition include Galectin-3 (302, 303), Langerin 809 

(247, 304), collectins (MBL, SP-A, SP-D) (305-307), EphA2 (308, 309), EphB2 (310), 810 
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CR3 (CD18/CD11b) (311), CD14 (276), CD23 (312), CDw17 (313), LYSMD3 (314), 811 

SCARF1 and CD36 (315), NKp46 (316), and MDA5 (317). 812 

 813 

Recognition of PAMPs by PRRs leads to activation of innate and adaptive immune 814 

responses and effector mechanisms to clear the invading fungus (Figure 4). Epithelial cells 815 

form a physical barrier with the environment and respond to the presence of C. albicans 816 

with activation of NF-κB and a biphasic MAPK response (318, 319). Initially, NF-κB and 817 

the MAPK c-Jun are activated, independent of cell morphology. Subsequently, a second 818 

MAPK phase consists of MKP1 and c-Fos activation via EGFR signalling (36, 320) in 819 

presence of hyphae and the secreted cytolytic pore forming peptide, candidalysin. 820 

Activation induces secretion of antimicrobial peptides such as cathelicidin (LL-37) and 𝛽-821 

defensins, with direct antifungal activity (321-325), and of cytokines, chemokines, and 822 

alarmins, resulting in recruitment and activation of innate immune cells, e.g. neutrophils, 823 

monocytes, macrophages, and dendritic cells (318, 319). These professional phagocytes 824 

are crucial for uptake and killing of C. albicans and C. glabrata, and absence of these cells 825 

has been associated with increased susceptibility to infection in animal models and in 826 

human disease (326-329). Uptake of non-opsonized Candida spp. is initiated by phagocytic 827 

PRRs (e.g., Dectin-1, Mannose Receptor, DC-SIGN, Dectin-2, and Mincle), whereas 828 

recognition by CR3 and Fc receptors is important for pre-opsonized Candida spp. (233, 829 

240, 245, 311, 330). C. albicans hyphae are potentially problematic for phagocytic cells to 830 

take up (331), however, longer hypha can be folded in order to be engulfed into the 831 

phagosome (332). After engulfment, the phagosome undergoes multiple fusion events with 832 

endo- and lysosomes to generate an increasingly hostile environment with high acidity, and 833 
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oxidative and non-oxidative mechanisms to kill Candida species. Phagocytes produce 834 

reactive oxygen species (ROS) through the NADPH oxidase complex and 835 

myeloperoxidase, while reactive nitrogen species are formed by inducible nitric oxide 836 

synthase (iNOS). Absence of these enzymes has been associated with increased 837 

susceptibility to systemic candidiasis in animal models (333, 334), yet in vitro ROS- and 838 

NOS-deficient macrophages were not affected in their capacity to kill C. albicans, 839 

indicating compensatory roles for other mechanisms (334). These non-oxidative 840 

mechanisms include the induction of hydrolases (e.g. lysozyme and chitinases (335, 336) 841 

and antimicrobial peptide formation [defensins, cathelicidins, and histatins] (321-325)) 842 

with direct anti-Candida spp. activity. Indirect mechanisms such as the restriction of 843 

essential nutrients such as metals by calprotectin also contribute to protection (337). In 844 

addition to phagocytosis, neutrophils can undergo NETosis, a process of programmed cell 845 

death resulting in neutrophil extracellular trap (NET) formation, which consist of a web of 846 

DNA and histones, loaded with proteins with antifungal activity (337-339). Other innate-847 

like cells implicated in the anti-Candida spp. immune response include natural killer cells 848 

(NK cells) (340, 341), innate-like lymphocytes (ILCs) (342-344), invariant NK T-cells 849 

(345), γδT cells, and natural Th17 cells (346).  850 

 851 

Dendritic cells (DCs) not only phagocytose and kill Candida spp., but also link innate to 852 

adaptive immunity. Activation of DCs induces upregulation of major histocompatibility 853 

complex I & II molecules for the presentation of fungal antigens, and it enhances 854 

expression of co-stimulatory molecules and release of cytokines and chemokines which 855 

drive CD4 + T-cell responses. Th17 cells, characterized by the production of IL-17 and IL-856 



39 

 

22, play a pivotal role in anti-Candida spp. immunity. IL-17 promotes neutrophil 857 

trafficking and fungicidal activity (347, 348), whereas IL-22 is important for barrier 858 

integrity of the epithelium and induction of antimicrobial peptides (349). In mice, 859 

deficiency in the IL-17/IL-17R axis and its signaling components is associated with 860 

increased susceptibility to mucosal (350, 351), skin (352), and systemic candidiasis (348). 861 

Similarly, humans with impairments in Th17 development and IL-17-dependent signaling 862 

via mutations in RORC, IL-17RA, IL-17F, ACT1, CARD9, STAT1 or STAT3 show 863 

increased development of chronic mucocutaneous candidiasis (223, 353-357). Th1 cells, 864 

characterized by the production of IFNγ, are important for phagocyte maturation and 865 

killing of Candida spp. Mice deficient for IL-18, which drives Th1 responses, are more 866 

susceptible to disseminated C. albicans infection (358), whereas its supplementation 867 

enhances host resistance (359). Similarly, IFNγ immunotherapy has shown to improve 868 

outcome in humans and mice with systemic candidiasis (360, 361). In contrast, Th2 and T 869 

regulatory cell subsets are considered detrimental in Candida spp. infections. Augmented 870 

Th2 differentiation in GATA-3-overexpressing mice was associated with increased 871 

susceptibility to C. albicans infection (362), whereas blocking IL-4 resulted in increased 872 

resistance (363). Tregs were shown to enhance Th17 cell induction, driving pathology 873 

(351), and mice deficient for IL-10 were more resistant to systemic candidiasis (363, 364). 874 

B-cells are characterized by their production of antibodies, but they also phagocytose and 875 

present antigens and produce cytokines and chemokines. Their role in the protection 876 

against Candida spp. infections is suggested to be modest, as mice lacking B-cells were 877 

largely unaltered in their susceptibility to C. albicans infection (365-367). However, 878 

antibody-independent B-cell responses (368, 369) and exogenous supplementation of 879 
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antibodies directed against Candida spp. have been shown to be beneficial in the immune 880 

response (see below).  881 

Commensal Interactions with the Host 882 

While the pathogenicity of Candida spp., in particular C. albicans, has been well 883 

investigated (370), the commensal lifestyle of these species has only recently come into 884 

focus (371-375). Both C. albicans and C. glabrata normally exist as commensals on 885 

mucosal surfaces of the human body, and they can frequently be found in the gut, oral or 886 

vaginal cavities (376). However, the commensal lifestyle of C. glabrata is not well 887 

investigated so far, and further research is needed to better understand the mechanisms and 888 

traits that promote the commensal stage of C. glabrata. Most humans in westernized 889 

countries are temporarily or stably colonized by C. albicans (376-378). The ability of 890 

C. albicans to grow in different morphologies does not only play a central role in 891 

pathogenicity, but also seems to be crucial for the commensal colonization of mucosal 892 

niches. Until recently, the general consensus was that yeast cells are the predominant form 893 

in experimental commensalism in mice (379). However, hypha-associated genes are highly 894 

expressed during gut colonization (380, 381) and more recent studies have shown that 895 

hyphae are also present during gut colonization in mice (382). The presence of yeast or 896 

hyphal cells during commensalism likely depends on the microbiome or the localization in 897 

the gut (382). However, the intact murine bacterial microbiota of many mouse strains 898 

resists the ability of C. albicans to colonize the gut (383, 384), which has led to 899 

colonization models based on antibiotic treatments. Therefore, data obtained from 900 

traditional commensal models with antibiotic-treated mice lack the influence of an intact 901 

microbiome that may be important for the maintenance of commensalism.  902 
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 903 

Microevolution experiments in a murine model based on antibiotic treatment led to the 904 

selection of C. albicans mutants that had lost their ability to form hyphae (385). Targeted 905 

mutants that lack transcriptional regulators of hyphae formation are generally defective in 906 

virulence but are often better colonizers of the murine gut than the wild type in mouse 907 

models based on antibiotic treatment, but also in gnotobiotic mice (175, 382, 386). The 908 

ability to colonize is, however, not necessarily linked to the morphology per se, but seems 909 

to be determined by morphology-specific transcriptional programs. A deletion mutant of 910 

UME6, coding for a regulator of filamentation under in vitro conditions, colonized better 911 

than the wild type, but surprisingly still formed hyphae, similar to the wild type, in the 912 

murine gut. Its increased ability to colonize mainly stemmed from its lack of expression of 913 

the immunogenic secreted aspartic proteinase Sap6 (382). Additionally, overexpressing 914 

CRZ2, a filamentation regulator gene (387), enhanced early colonization in a mouse 915 

colonization model (388). Another regulator of hyphal morphogenesis, EFG1, has also 916 

been found to be crucial for commensalism, and its expression relies on the host’s immune 917 

status (389). Efficient colonization therefore seems to require the downregulation of 918 

virulence-associated transcription programs in C. albicans. 919 

 920 

The gut is generally an iron-rich environment, but its changing abundance can affect the 921 

composition of the gut microbiota (390). In order for C. albicans to survive and proliferate 922 

under these conditions, it has to regulate its iron acquisition mechanisms. During 923 

commensal growth, C. albicans downregulates iron uptake genes through the expression 924 

of SFU1, a gene encoding a GATA family transcription factor. Sfu1 inhibits SEF1 925 
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expression, which codes for a global regulator of iron uptake (391). C. albicans also has 926 

different ferroxidases of different affinities, which were found to have distinct roles in 927 

different murine GI niches with different iron availability (392). Moreover, other 928 

metabolites such as bile acids can also contribute to the commensal status of the fungus 929 

(393, 394). Other factors that affect commensalism of C. albicans include the host’s diet 930 

(372, 395) and the physiological conditions of the gut, such as hypoxia (396). Additionally, 931 

through the expression of WOR1, C. albicans cells can be transformed to the commensal-932 

specific GUT cell type (175). GUT cells downregulate iron uptake-related genes to prevent 933 

iron-mediated toxicity (175), and they have a distinct metabolic profile that promotes 934 

commensalism in the lower GI tract. In this short-fatty acids-enriched environment, they 935 

benefit from the upregulation of fatty acid catabolism, and they also upregulate catabolism 936 

of N-acetylglucosamine, which is beneficial for commensalism (397). Paralleling the 937 

findings of the transcription factor mutants, they also downregulate several other genes 938 

with functions in virulence (175). No colonization-specific cell types have so far been 939 

reported for C. glabrata. However, a remodeling of C. glabrata’s cell wall, specifically the 940 

increase of chitin and β-mannans, has been described during colonization in a murine 941 

model of induced acute colitis (398). 942 

 943 

A possible explanation for the two different lifestyles of C. albicans as a commensal and 944 

pathogen, could be that these lifestyles are associated with different strains (382, 399). 945 

However, a recent study found that commensal isolates from humans retained their ability 946 

to cause infection in an invertebrate model, and that these isolates are competent to cause 947 

infection of humans (400). In fact, phenotypic differences among major C. albicans strain 948 

https://pubmed.ncbi.nlm.nih.gov/19151328/
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clades are minor (401). It seems clear that host factors (402, 403) and antagonistic bacteria 949 

of the microbiome (404, 405) (see below) are involved in maintaining C. albicans in the 950 

commensal phase. However, future research may help to understand the molecular and 951 

environmental factors that promote commensal or virulent attributes, and this may open 952 

new avenues for suppressing virulence. Because C. albicans cells are predominantly 953 

commensal in nature, it is likely that strains are positively adapted for this lifestyle. 954 

However, almost all commensal strains have the potential to cause diseases. Thus, the 955 

fungus must be exposed to conditions which can “train” the fungus for both commensalism 956 

and pathogenicity, a concept that has been proposed as the “commensal virulence school” 957 

(406). Antivirulence/avirulence traits in pathogenic fungi and their potential as therapeutic 958 

targets have been reviewed extensively in (407) and (408). 959 

Interactions with Bacteria 960 

During their commensal state, Candida spp. constantly interact with many species of 961 

bacteria and fungi of the microbiome. These interactions contribute to maintaining 962 

Candida spp. commensalism and inhibiting the transition to an infectious state (409, 410). 963 

Staphylococcus aureus is a facultative anaerobic bacterium that colonizes the skin and 964 

mucosae. In biofilms S. aureus synergizes with C. albicans, and both microbes increase 965 

each other's infectious potential and drug resistance (411). Recent reports suggest that 966 

S. aureus can inhibit C. albicans’ transition to the hyphal form and limits its pathogenicity 967 

via its toxin, alpha-hemolysin (412). In contrast, S. aureus culture supernatants can induce 968 

C. glabrata cell death (413). Cruz and colleagues found that the Gram-positive bacterium, 969 

Enterococcus faecalis, and C. albicans impair each other’s virulence in a C. elegans 970 

model. E. faecalis excretes a peptide, EntV, that reduces fungal filamentation and virulence 971 

https://pubmed.ncbi.nlm.nih.gov/19151328/
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(414). Medium conditioned by the growth of the Gram-positive Clostridioides difficile can 972 

inhibit hyphal growth, and p-Cresol, a product of the bacterium's tyrosine metabolism, even 973 

promotes the hypha-to-yeast transition in C. albicans. Interestingly, in the presence of 974 

C. albicans, C. difficile is able to grow in aerobic conditions, which are normally toxic for 975 

the bacterium (415). The interactions of Candida species with Pseudomonas aeruginosa 976 

are similarly complex: C. albicans inhibits the bacterial virulence during mice colonization 977 

via inhibition of pyochelin and pyoverdine expression (416), and conversely P. aeruginosa 978 

inhibits in vitro formation of C. albicans and C. glabrata biofilms (417). Interestingly, 979 

P. aeruginosa specifically kills hyphae through contact-mediated and soluble factors, but 980 

it does not affect yeast cells (418). Indirect interactions via the host can also play a role: 981 

Clostridial Firmicutes and Bacteroidetes decrease C. albicans colonization by inducing the 982 

expression of hypoxia-inducible factor-1α (HIF-1α) in mice, which then leads to the 983 

production of the antimicrobial peptide LL-37 (383). 984 

 985 

A well-investigated interaction is that between Lactobacillus and Candida species. 986 

Lactobacilli protect against vaginal infections by Candida spp. mainly through the 987 

production of lactic acid, which acidifies the vaginal mucosa (419), resulting in enhanced 988 

recruitment of neutrophils and cytokine production (420). In an in vitro model, 989 

Lactobacillus rhamnosus not only reduced hyphal elongation, but also triggered shedding 990 

of epithelial cells that helped to remove hyphae from the epithelial surface and reduced 991 

damage (405). C. glabrata’s stress-induced MAP kinase, Hog1, is phosphorylated at lactic 992 

acid concentrations that are produced by lactobacilli. By upregulating stress-responsive 993 
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genes, it allows growth under these conditions and thereby contributes to C. glabrata's co-994 

colonization with different Lactobacillus spp. (421).  995 

 996 

Candida spp., the gut microbiota, and the host also interact metabolically with each other. 997 

L. rhamnosus has been found to remove carbon, nitrogen, and phosphorus sources, forcing 998 

C. albicans metabolic adaptations that compromise pathogenicity (404). Dietary 999 

tryptophan is metabolized by Lactobacillus spp. in the gut to indole-3-aldehyde, which, via 1000 

the host aryl hydrocarbon receptor, leads to IL-22 expression. This IL-22 response 1001 

promotes resistance against C. albicans colonization and protects the mucosal surface from 1002 

inflammation (422). In an example for direct metabolic interaction, another study has 1003 

shown that exposing C. albicans cells to gut metabolome components, specifically 1004 

metabolites from Bacteroides ovatus, Roseburia faecis, and Roseburia intestinalis, leads 1005 

to reduced expression of hypha-associated genes such as ECE1, ALS3, and HWP1 and a 1006 

reduction in epithelial damage (423). The microbiota can also affect C. albicans 1007 

colonization and growth through the production of short chain fatty acids (SCFAs). 1008 

Acetate, butyrate, and propionate have been found to inhibit germ tube and hypha 1009 

formation and inhibit colonization in mice (383, 424, 425). Butyrate has the most potent 1010 

effect and is produced by bacteria belonging to Firmicutes (incl. Clostridium spp.) and 1011 

Bacteroides (426). One study showed that SCFAs lead to increased exposure of fungal β-1012 

glucan in the large intestine, which enhances immune recognition of the fungi, leading to 1013 

decreased colonization in the gut of antibiotic-treated mice (427). While C. albicans’ 1014 

interactions with other microbes and the effects of them have been well studied in both in 1015 
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vitro and in vivo models, the investigations into these relationships are much less developed 1016 

for C. glabrata.   1017 

 1018 

A recent discovery demonstrated that Serratia marcescens can predate on Candida spp. 1019 

cells by injecting novel antifungal effectors into the cytoplasm via the bacterial syringe-1020 

like Type VI Secretion System (T6SS) (428). This discovery has expanded the 1021 

understanding of polymicrobial competitions and is likely to have a broad relevance in 1022 

Candida spp. biology (429). The T6SS is a complex bacterial contractile system found in 1023 

numerous Gram-negative bacteria that delivers toxic effector proteins into adjacent cells 1024 

or its extracellular environment (430).  S. marcescens delivers at least two fungal-specific 1025 

T6SS effector proteins, Tfe1 and Tfe2. Tfe1 triggers plasma membrane depolarization, and 1026 

Tfe2 disrupts nutrient uptake and induces autophagy resulting in fungal cell death (428). 1027 

Subsequently, Acinetobacter baumannii has also been found to possess a T6SS, with the 1028 

TafE antifungal effector protein possessing DNase activity (431). 1029 

 1030 

Early studies on T6SS identified an intriguing anomaly. Certain bacteria such as 1031 

actinobacteria, cyanobacteria, and some species of proteobacteria were found to possess 1032 

T6SS that housed a Het-C domain, which in filamentous fungi is important for regulating 1033 

self/non-self-recognition. The presence of this domain in bacterial T6SS may suggest a role 1034 

in fungal recognition (432, 433). Because bacteria and fungi coexist in polymicrobial 1035 

communities, it is possible that antifungal T6SSs are of widespread importance in shaping 1036 

the mycobiome. Recent reviews provide a more comprehensive and detailed overview of 1037 
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the interactions between Candida spp. and bacteria in health and disease in the GI tract and 1038 

on other mucosal surfaces (409, 410, 434). 1039 

Interactions Leading to Pathogenicity 1040 

Under normal physiological conditions, Candida spp. remain commensals with little 1041 

evidence of local pathogenesis. Environmental changes such as a shift in the microbial 1042 

community, disruption of the host’s mucosal surface or weakening of the immune system 1043 

can result in superficial or systemic infections. Candida spp. have multiple tools at their 1044 

disposal to effectively infect the host, including adhesion and invasion, damage of the host 1045 

tissue, immune invasion, and metabolic and nutritional interactions with the host cells (13, 1046 

370, 435-437).  1047 

Adhesion, Invasion, and Damage  1048 

The first step in a successful infection is the adherence to host cells. Both C. albicans and 1049 

C. glabrata are equipped with adhesins that allow them to attach to host cells and form 1050 

biofilms. The best-known family of C. albicans’ adhesins is the Agglutinin-Like 1051 

Sequences (Als) family, which includes Als1-Als7 and Als9. Especially Als3 is one of the 1052 

most important and well-studied adhesins. Als3 is expressed during filamentation (438), 1053 

and its deletion significantly reduces adhesion to epithelial cells (43). Recently, a study 1054 

found that Als3 and an enolase interact with each other and allow binding to host plasma 1055 

proteins (439). Another important hypha-associated adhesin is the hyphal wall protein 1, 1056 

Hwp1 (202). A null mutant had reduced adherence to epithelial cells in vitro (202) and 1057 

reduced virulence in an in vivo model (440). C. glabrata is similarly equipped with a large 1058 

repertoire of adhesins, and they are considered to be among its most important 1059 
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pathogenicity traits (441). Its main family of adhesins is the Epa family, which contains at 1060 

least 17-23 genes depending on the strain (442). Epa1 seems to be mainly responsible for 1061 

adherence to epithelial cells (442), while other proteins of the family are required for 1062 

adherence to other cell types, like macrophages and endothelial cells. The C. glabrata-1063 

specific GPI-anchored proteins Pwp7 and Aed1 have been described as adhesins required 1064 

for attachment to umbilical vein endothelial cells in vitro (443). The adhesins of both fungi 1065 

are also associated with biofilm formation (see above). A C. albicans knockout of Hwp1 1066 

results in thin biofilms, and in an in vitro catheter model the mutant was not able to form 1067 

biofilms (444). Similarly, strains with a higher expression level of ALS3 show a higher 1068 

biofilm formation rate (445), and an ALS3 deletion mutant is deficient in producing 1069 

biofilms in vitro (446). The C. glabrata Awp adhesin family is also involved in biofilm 1070 

formation, together with Epa6 (30, 441). 1071 

 1072 

After adhesion to their surface, the Candida spp. cells need to invade the cells to establish 1073 

an infection. C. albicans invades host cells via two different routes: a) induced endocytosis 1074 

or b) active penetration via the formation of hyphae. In addition to its function as an 1075 

adhesin, Als3 can act also as an invasin and induce endocytosis of the fungus by normally 1076 

non-phagocytic cells. Als3 as well as Ssa1, another invasin, interact with E- and 1077 

N-cadherins of epithelial and endothelial cells, respectively, to induce endocytosis (447). 1078 

Als3 can also interact with the heat shock protein gp96 to invade brain endothelial cells 1079 

(448) and with EphA2 and EGFR to invade oral epithelial cells (449). In a recent paper, it 1080 

was further shown that E-cadherin is necessary for C. albicans to activate c-Met and EGFR 1081 

to and lead to endocytosis in oral epithelial cells (450). However, active penetration seems 1082 



49 

 

to be the most common and important mechanism of cellular invasion of C. albicans. 1083 

C. albicans forms hyphae, which can penetrate the host cell membrane. During this 1084 

process, the fungus excretes a number of hydrolases (proteinases, phospholipases, and 1085 

lipases) and other factors that may aid in tissue invasion (43). The secreted aspartic 1086 

proteinase family (Saps) comprises ten members (Sap1-Sap10) and is probably the best 1087 

studied among these hydrolases (451, 452). In addition, C. albicans possesses a hypha-1088 

associated toxin called candidalysin, the first (ribosomal) peptide toxin identified in any 1089 

human fungal pathogen (36, 37, 453). Candidalysin forms pore-like structures in the 1090 

membrane of host cells resulting in membrane damage (36, 454). Moderate membrane 1091 

damage levels can be repaired by epithelial cells (455, 456), but sustained levels of damage 1092 

lead to a series of event that are critical for C. albicans mucosal and systemic infections 1093 

(457, 458). For example, candidalysin-induced damage activates danger-response and 1094 

damage protection pathways in host cells (36, 318) (see above) and leads to activation of 1095 

the epidermal growth factor receptor in epithelial cells and the NLRP3 inflammasome in 1096 

macrophages (287, 320). It also drives neutrophil recruitment and immunopathology 1097 

during vaginal infections (459), triggers Type 17 immunity during oral infections (460), 1098 

and is essential for successful translocation of the fungus through the epithelial barrier 1099 

(461). In contrast, C. glabrata is not known to produce any toxins. 1100 

C. albicans translocates through the epithelial barrier to reach the bloodstream for a 1101 

disseminated infection. There is proof that translocation occurs through a transcellular 1102 

route which involves the formation of hyphae (26). Other translocation strategies such as 1103 

paracellular translocation through the epithelia barrier, and translocation through microfold 1104 

cells and Peyer’s patches have also been suggested to take place, but have not yet been 1105 
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conclusively shown (150). In contrast C. glabrata invasion of the epithelial barrier does 1106 

not involve hyphae formation. It may reach the bloodstream through breaches created via 1107 

trauma, surgery or catheters (19), however, alternative invasion mechanisms have also 1108 

been suggested. It was shown, for example, that C. glabrata can bind to C. albicans hyphae 1109 

in order to establish colonization or infection in an OPC mice model (462) and may 1110 

therefore hijack the C. albicans translocation machinery. In another recent study, it was 1111 

shown that a single human protein, albumin, can dramatically enhance the pathogenic 1112 

potential of C. glabrata on vaginal epithelial cell by a combination of beneficial effects for 1113 

the fungus, which includes an increased access to iron, accelerated growth, and increased 1114 

adhesion  (463). Furthermore, it was shown that C. glabrata and other non-hyphae forming 1115 

Candida spp. bind to bridging molecules present in human serum to invade the epithelial 1116 

barrier via bridging molecule-mediated endocytosis (464). In general, C. glabrata’s 1117 

invasion tactics are not well studied, and more research is needed to better understand how 1118 

the fungus can take advantage of other microbes or the host itself to achieve invasion. 1119 

Further details about the adhesion, invasion, and damage potential of Candida species have 1120 

been extensively discussed in past reviews (370, 465-467). 1121 

Interaction with Host Cells 1122 

Once invasion occurs, the host’s immune response will be activated (see above). Both 1123 

C. albicans and C. glabrata can be recognized via PRRs and are phagocytosed by 1124 

macrophages and other myeloid cells. They are both able to delay phagosome maturation 1125 

to avoid killing, although the main mechanism of C. albicans to escape detrimental 1126 

intracellular effect is the formation of hyphae and a fast escape from the macrophages (26, 1127 

468, 469). However, escape from macrophages via hyphae formation has only been seen 1128 
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in vitro and as of yet, there is no validation in a mammalian model. In contrast, C. glabrata, 1129 

similar to certain bacteria such as Mycobacterium tuberculosis (470), can persist and 1130 

replicate in the phagosome until the phagocyte bursts (42, 471). Interestingly, a rare non-1131 

lytic escape mechanism called vomocytosis from macrophages has also been reported for 1132 

C. albicans, in which a yeast cell is ejected from the phagocyte without disrupting the 1133 

phagocyte membrane (472). In a zebrafish infection model, yeast-locked C. albicans have 1134 

been shown to persist in macrophages up to 40 hours and are able to spread in different 1135 

tissues using the host cells as a Trojan horse (473). Multiple studies have recently shown 1136 

that C. albicans hijacks the inflammasome and pyroptotic pathway to escape from 1137 

macrophages using candidalysin to facilitate its exit (474, 475). Other types of cell death, 1138 

such as the induction of apoptosis (476) and necroptosis (477), have been associated with 1139 

C. albicans. Additionally, the induction of anti-apoptotic signals during C. albicans 1140 

infection in macrophages has been described (478). However, it is not yet clear whether 1141 

regulation of these signals serves the host as a mechanism against the pathogen or the 1142 

fungus as a virulence factor. In contrast, during C. glabrata infection macrophages show 1143 

little to no cytokine release (42) and the fungus is not able to trigger pyroptosis (290).  1144 

 1145 

C. glabrata depends on its autophagy to persist inside the phagosome (479), probably to 1146 

compensate for the lack of nutrients inside this organelle. Damage due to oxidative stress 1147 

in the phagosome is mitigated by the superoxide dismutase, Sod1 (480), and to a lesser 1148 

extent the catalase, Cta1, which is not essential for survival (481). Interestingly, a recently 1149 

described transcription factor (Tog1) has been described that links oxidative stress 1150 

responses with metabolic adaptations to macrophage persistence (482). In an ex vivo blood 1151 
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infection model, C. glabrata did not show a significant upregulation of oxidative stress 1152 

response genes, and while C. albicans upregulated the glyoxylate cycle and fermentative 1153 

energy production, C. glabrata even downregulated transporters for different nutrients 1154 

such as amino acids (483). Petite phenotypes of C. glabrata show, in addition to their azole 1155 

resistance, increased endoplasmatic reticulum (ER) stress resistance and survival in 1156 

phagocytes (110, 112). Similar to C. glabrata, C. albicans uses superoxide dismutases 1157 

(Sods) to protect against oxidative stress by detoxification of reactive oxidative species 1158 

(ROS) (484-486). Mutants of Sod4 and Sod5 showed increased accumulation of ROS and 1159 

decreased viability inside macrophages and blood cells (484), suggesting killing in a ROS-1160 

dependent manner (484, 485). 1161 

 1162 

The Candida cell wall consists of an intricate network of polysaccharides and proteins and 1163 

its composition and structural organization is highly dynamic depending on environment 1164 

cues and its morphological state (see above). Recognition by immune cells is dependent on 1165 

PAMP expression, and alterations in the cell wall architecture affect phagocytosis and the 1166 

release of pro-inflammatory cytokines (487-490). C. albicans modulates the exposure of 1167 

β-1.3 glucan by actively masking this pro-inflammatory PAMP in response to host signals, 1168 

such as carbon source, lactate and other short chain fatty acids (427, 491), pH (420, 492), 1169 

hypoxia (493), and iron limitation (494). Avoidance of immune β-1,3 glucan recognition 1170 

is also achieved by the shaving of cell surface β-1,3 glucan via the secreted glucanases, 1171 

Xog1 (495) and Eng1 (496). Neutrophils counteract masking by NET-mediated attacks, 1172 

which trigger active remodeling of the fungal cell wall and enhances immune recognition 1173 

via β-1,3 glucan in macrophages (497). However, other immune cells, such as monocytes, 1174 
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are trained more on mannans in the outer cell wall than β-1,3 glucan (490), and so 1175 

expression of the PRR repertoire is immune cell-dependent and tailors immune 1176 

recognition. 1177 

Metabolic Interactions 1178 

In general, C. albicans’ preferred energy source is glucose. However, in specific host 1179 

niches or inside phagocytes the fungus can adapt and use alternative energy sources via 1180 

activating gluconeogenesis and starvation responses. Both C. albicans and C. glabrata are 1181 

able to use two-carbon compounds, such as acetate derived from fatty acids, for 1182 

gluconeogenesis (498, 499). This glyoxylate shunt is important for the survival and 1183 

virulence of both fungi inside the phagosome. In the glucose-poor environment of the 1184 

phagosome, C. albicans’ proline and arginine catabolism are an important mechanism for 1185 

filamentation induction (500). During infection by C. albicans, glycolysis, 1186 

gluconeogenesis and the glycosylate pathway are required at different times and in 1187 

different niches. Normal concentrations of glucose repress the glyoxylate and 1188 

gluconeogenesis pathways in the blood but are activated in phagocytes (501, 502). It is, 1189 

however, clear that many infected tissues do not behave as a homogenous 1190 

microenvironment and that microsites may exist where cells of quite different metabolic 1191 

profile exist side by side (501).  It is also known that physiological concentrations of 1192 

glucose activate an oxidative stress response that promotes fitness downstream, when 1193 

Candida spp. cells are engulfed by neutrophils (503). This anticipatory behavior enables 1194 

the yeast cell to activate and prime its defenses to immune attack before it encounters the 1195 

toxic environment of the neutrophil phagolysosome. 1196 
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C. albicans can acquire iron via multiple host sources including hemoglobin, hemin, 1197 

ferritin, and transferrin (504). When in blood, candidalysin acts as a hemolytic factor for 1198 

C. albicans (505) and allows to utilize hemoglobin via the Rbt5/Hmx1 system to acquire 1199 

iron (506), while C. albicans hyphae can also acquire iron via the host iron storage 1200 

molecule, ferritin, through binding to Als3 (507). C. albicans regulates its iron uptake 1201 

tightly depending on environmental iron availability. During iron starvation in the host, for 1202 

example within the blood during bloodstream infections, the fungus upregulates the 1203 

expression of SEF1 (391). Sef1 activates a large set of genes, including HAP43, to acquire 1204 

iron from the environment (508). Hap43, a part of the CCAAT-binding complex, 1205 

upregulates iron uptake genes and downregulates iron-consuming processes. Additionally, 1206 

Hap43 represses Sfu1, a GATA family transcription factor (509). This contrasts with the 1207 

regulation to the iron-rich environments that is described above, where Sfu1 represses iron 1208 

upregulating genes to avoid iron toxicity (391). C. glabrata has a more limited ability to 1209 

use host iron sources, and lacks a high affinity iron uptake system (510). In iron-poor 1210 

environments, the Aft1 transcription regulator is activated to upregulate iron uptake and 1211 

recycling processes (511). At the same time, Cth2 binds to and degrades mRNA involved 1212 

in iron-consuming processes (511). Interestingly, neither of the two Candida species 1213 

produce their own siderophores and both rely on xenosiderophores e.g., from bacteria or 1214 

other fungi (510). Nevitt and Thiele identified Sit1, a xenosidephore transporter, which 1215 

C. glabrata uses to survive in the phagosome (512). However, zinc, another essential metal 1216 

can be sequestered by a sophisticated zincophore system by C. albicans (513) . 1217 

 1218 
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Zinc and copper are transported into the phagosome by macrophages and both are 1219 

considered to contribute to ROS production as well as inactivation of many enzymes by 1220 

mismetallation. C. glabrata counteracts this by upregulation of Cu-binding 1221 

metallothioneins in the presence of high copper levels (514), while C. albicans pumps 1222 

copper out using a P-type ATPase (515). When zinc ions are in excess, C. glabrata 1223 

sequesters zinc to vacuoles via the transporter Zrc1 (516). Both species are auxotrophic for 1224 

biotin and possess a high-affinity biotin transporter, Vht1, which is required for efficient 1225 

proliferation inside the phagosome in vitro and for full virulence of C. albicans in a murine 1226 

systemic infection model (34).  1227 

 1228 

To summarize, both fungi have developed mechanisms to efficiently infect the host and to 1229 

enable metabolism in a variety of host niches. Both species rely on two-carbon sources and 1230 

the glyoxylate shunt for survival in the host. They can acquire nutrients such as iron via 1231 

different mechanisms, and can inactivate up-take of non-beneficial nutrients, such as 1232 

excess copper and zinc, to ensure their survival. The in vivo metabolic adaptations show 1233 

some similarities but also differ in key elements. Further research is needed to better 1234 

understand these mechanisms especially for C. glabrata infections, which are understudied 1235 

compared to C. albicans.  1236 

 

 

FUTURE STRATEGIES  

 1237 
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A major health goal for the future will be to reduce the number of superficial and life-1238 

threatening Candida spp. infections. To this end, it is necessary to establish better, faster, 1239 

specific and easily accessible diagnostic tools to detect fungal infections and their drug 1240 

resistances at an early stage. Techniques such as MALDI-TOF, DNA microarray, and PCR 1241 

detection have been increasingly used the past years, and these assays are sensitive, but not 1242 

widely available. They also have potential to provide useful additional clinical information 1243 

such as an understanding of the resistance genes that a Candida spp. strain may harbor. 1244 

 1245 

As yet there are no traditional or next generation RNA vaccines against C. albicans or 1246 

C. glabrata, although a fragment of the C. albicans GPI-anchored cell wall protein Als3 1247 

has shown promise in a phase 2 clinical trial as a monovalent vaccine against recurrent 1248 

vaginitis (517). β-glucan particles have also been explored as vaccine carriers of fungal 1249 

antigens (518). It is feasible that polyvalent vaccines will prove to be effective against 1250 

superficial or systemic disease caused by these two Candida species and investment is 1251 

needed to explore the utility of these unexploited therapeutic strategies. 1252 

 1253 

In medical mycology the use of combinations of antifungal drugs is rare – and most drugs 1254 

against C. albicans and C. glabrata are used as monotherapies or in sequential 1255 

monotherapy. This contrasts with the combinatorial approaches taken in other areas of 1256 

infectious disease therapy (519) and in agriculture, to broaden the spectrum of coverage 1257 

and/or suppress the emergence of resistant strains. Future strategies should therefore 1258 

include exploring how optimized drug combinations might be used that are safe, effective 1259 

and preserve the durability of antifungals by suppressing antifungal drug resistance. For 1260 
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example, chitin synthase and β-1,3 glucan synthase inhibitors would be expected to exhibit 1261 

synergy as a drug combination, and agents that block cell wall salvage pathways, such as 1262 

the calcineurin pathway, potentiate the action of inhibitors of cell wall biosynthesis at least 1263 

in vivo (520). Membrane acting peptides, applied alone and in combination with azoles, 1264 

have been shown to be effective in disrupting biofilms (521). Another potential way to 1265 

successfully control Candida spp. infections in the future may be the use of antivirulence 1266 

drugs. Antivirulence drugs show potential especially against C. albicans infections by 1267 

inhibiting filamentation and biofilm formation (408). 1268 

 1269 

Also, adjuvants or cell wall components that activate or suppress inflammation may be 1270 

helpful in treating fungal disease. Purified immunomodulatory components of the cell wall 1271 

have the potential to promote immune recognition and activate B cell and T cell responses 1272 

that are required for disease suppression. Hyper-inflammatory diseases such as Candida 1273 

spp. vaginitis may be mitigated by blocking the signal cascade that leads to inflammation. 1274 

Recently a promising advance has been made showing that the C. albicans zinc-binding 1275 

protein Pra1 is a natural attractant for neutrophils and thus promotes inflammatory vaginitis 1276 

(513, 522). A Pra1 homologue does not exists in C. glabrata. Women with recurrent 1277 

vaginitis often have low zinc levels (523, 524)   and exogenous addition of zinc prevented 1278 

Pra1 production and neutrophil infiltration into the vaginal canal, thus preventing localized 1279 

inflammatory disease (522). Furthermore, the peptide toxin candidalysin, found in C. 1280 

albicans but not C. glabrata, has been shown to be a key hypha-associated virulence 1281 

determinant responsible for the immunopathogenesis of C. albicans vaginitis (459). It was 1282 

demonstrated that nanobody-mediated neutralization of candidalysin prevents epithelial 1283 
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damage and inflammatory responses that drive the pathogenesis of vulvovaginal 1284 

candidiasis (Valentine et al., accepted for publication). Future antifungal stewardship 1285 

strategies may also consider the benefits of combining antifungal drug treatment with 1286 

immunotherapies. 1287 

 1288 

Empirical, preemptive and prophylactic therapy is widely used for critically ill patients 1289 

with high susceptibilities to fungal infections and the full use of new generation 1290 

diagnostics, biomarkers and colonization indices may lead to further improvements in 1291 

patient care and survival (525). One possible avenue could be the use of probiotics (Live 1292 

Biotherapeutic Products) to suppress the transition from commensal to the infectious stage 1293 

(377). This approach may be especially useful in patients with GI tract-related diseases, 1294 

such as IBD or colitis. Another way to manipulate the microbiome to prevent possible 1295 

infections or treat overgrowth is through dietary interventions or the use of fecal microbiota 1296 

transplantation (FMT) that has been used successfully for the treatment of C. difficile 1297 

infections. Promising data has shown that FMT can be effective against Candida spp. 1298 

colonization in the gut (384, 526). Phage therapies have also been suggested as a tool to 1299 

shape the microbiota and prevent fungal infections. To date phages have not been found 1300 

that directly target Candida spp., their effects on co-habitating bacteria could eliminate 1301 

fungal pathogens through metabolic interactions either by enhancing bacteria that suppress 1302 

Candida spp. invasion or by eliminating bacteria that enhance Candida spp. virulence. As 1303 

an interesting example for direct fungal-phage interactions, Pseudomonas phages can 1304 

affect in vitro growth of C. albicans, perhaps by sequestering iron and by direct binding to 1305 

the fungal surface (527). Such microbiota manipulation techniques have only recently been 1306 
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developed, and therefore many potential side effects and limitations exist that we may not 1307 

be aware of. Additional research into these therapies may soon elucidate their true potential 1308 

against Candida spp. infections. 1309 

 1310 
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FIGURE LEGENDS 

 3100 

FIG 1 Epidemiology and types of Candida spp. infections. A. Candida species causing 3101 

superficial (purple text) and systemic (red text) infections. Superficial infections affect the 3102 

skin or mucosal surfaces of the body and are usually not life-threatening. The most 3103 

common superficial infections include vulvovaginal candidiasis and cutaneous candidiasis. 3104 

Systemic infections can affect multiple organs including the heart, brain, kidneys and can 3105 

potentially lead to septic shock. B. Epidemiology of Candida species based on SENTRY 3106 

antimicrobial surveillance program from 2008-2009. C. albicans is the most prevalent 3107 

global species but variability in the prevalence of non-Candida albicans Candida (NCAC) 3108 

species exists between different geographical regions. Additionally, the distribution of 3109 

Candida species can differ in specific patient cohorts between countries. 3110 

 3111 

FIG 2 Morphological plasticity in C. albicans and C. glabrata. A. Morphological plasticity 3112 

in C. albicans. Yeast and hyphae are probably the most well-investigated growth forms of 3113 

C. albicans, with specific roles in commensalism and infection as described in the main 3114 
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text. Pseudohyphae are similarly regularly found in vitro and in vivo, but their role in 3115 

C. albicans-host interaction remains largely unclear. Opaque and shmoo cells are both 3116 

involved in mating, while both gray and hyphal cells are associated with different types of 3117 

infections. Chlamydospores are formed on certain carbohydrate rich media and their role 3118 

in vivo remain unclear. Wor1 and Efg1 are transcriptional regulators of C. albicans 3119 

morphology, controlling the switch between white (yeast), GUT and opaque cells. B. 3120 

Morphotypes of C. albicans. Cell types shown include: budding yeast cells; hyphae 3121 

(Sudbery, 2011); elongated yeasts forming pseudohyphae (Veses and Gow, 2009); 3122 

chlamydospores formed from suspensor cells (Staib and Morschhӓuser, 2006); enlarged 3123 

Goliath cells (Malavia et al., 2017); mating-competent opaque and gray phenotypes (Liang 3124 

et al., 2020); elongated chemotactic shmoo-mating projections leading to tetraploid zygote 3125 

(Lockhart et al., 2003) and GUT cells suspected to form in the intestine (Pande et al., 2013). 3126 

Scale bars represent 5 µm. Colony morphologies of C. albicans namely, a) o-smooth, b) 3127 

Star, c) Ring, d) Irregular wrinkly, e) Stipple, f) Hat, g) Fuzzy, h) R-smooth (Slutsky et al., 3128 

1985). C. Morphotypes of C. glabrata. Cell types include budding yeasts and elongated 3129 

pseudohyphae-like structures. Different colony phenotypes in presence of CuSO4 include 3130 

white and very dark brown. Intermediate variations of brown colonies and wrinkled also 3131 

exist but are not shown in above image (Lachke et al., 2002). 3132 

 3133 

FIG 3 Overview of selected pattern recognition receptors (PRRs) and their signalling 3134 

pathways involved in immune recognition of Candida spp. C-type lectin receptors 3135 

(Mannose Receptor, DC-SIGN, Dectin-1, Dectin-2, Dectin-3 and Mincle), Toll-like 3136 

receptors (TLR1, TLR2, TLR3, TLR4, TLR6, TLR7 and TLR9) and NOD-like receptors 3137 
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(NOD-2 and NLRP3) recognize conserved molecular patterns, termed pathogen-associated 3138 

molecular patterns (PAMPs) of Candida spp. (including; mannan(s), β-1,3-glucan, chitin, 3139 

candidalysin, secreted aspartic proteases, RNA and DNA). Recognition induces 3140 

downstream signaling, via different pathways and transcription factors, such as NF-κB, 3141 

AP1, IRFs and NFAT, and activation of the immune response. MR, mannose receptor; DC-3142 

SIGN, Dendritic-cell-specific ICAM3-grabbing non-integrin; Mincle, Macrophage 3143 

inducible Ca2+-dependent lectin receptor; TLR, Toll-like receptor; FcRγ, Fc receptor γ 3144 

chain; NOD-2, nucleotide binding oligomerization domain containing 2; NLRP3, NLR 3145 

family pyrin domain containing 3; PLM, phopholipomannan, Saps, secreted aspartic 3146 

proteases; SYK, spleen tyrosine kinase; PKCδ, protein kinase Cδ; PLCγ, phospholipase C 3147 

γ; CARD9, caspase activation and recruitment domain-containing 9; MALT1, mucosa-3148 

associated lymphoid tissue lymphoma translocation protein 1; Bcl10, B-cell 3149 

lymphoma/leukemia 10; MyD88, myeloid differentiation primary response 88; IRAK, 3150 

interleukin-1 receptor (IL-1R) associated kinase; TRAF, TNF receptor associated factor; 3151 

TRIF, TIR-domain-containing adapter-inducing interferon-β; MAPK, mitogen-activated 3152 

protein kinase; IL, interleukin; NFAT, Nuclear factor of activated T-cells; NF-κB, Nuclear 3153 

factor kappa-light-chain-enhancer of activated B cells; AP1, activating protein-1; IRF, 3154 

Interferon regulatory factor. 3155 

 3156 

FIG 4 From commensal to pathogen. C. albicans and C. glabrata can reside in the human 3157 

body as commensals in balance with the microbiome. C. albicans can be found as both 3158 

yeast and hyphae on the gut mucosal surfaces and hyphal-associated genes e.g., UME6 3159 

have been shown to play an important role during commensalism. The iron-rich 3160 
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environment of the gut leads to downregulation of iron acquisition processes to avoid 3161 

toxicity. During commensalism, the host cells activate the NF-κB pathway independent of 3162 

the fungal morphology. Immunosuppression, the use of antibiotics or physical damage of 3163 

the epithelial barrier are among the predisposing factors for Candida spp. infections. 3164 

C. albicans adheres to epithelial cells using adhesins such as Als3, followed by invasion 3165 

via induced endocytosis (triggered by Als3) or active penetration (by physical forces), 3166 

leading to either transcellular or paracellular invasion. The transcellular route can cause 3167 

severe candidalysin-mediated cellular damage, however, moderate damage can be repaired 3168 

by epithelial cells. In addition to candidalysin, the fungus can secrete an arsenal of 3169 

hydrolases (e.g., proteases and lipases). C. glabrata invades the epithelial barrier either via 3170 

damaged barriers or by exploiting invading C. albicans hyphae in co-infections. Epithelial 3171 

cells invaded by hyphal cells and damaged by candidalysin activate the MKP1/c-FOS 3172 

pathway, which leads to the production of cytokines and attraction of phagocytes. Once 3173 

inside the lamina propria both fungi can get phagocytosed by resident macrophages via 3174 

recognition of PAMPs (β-1,3- glucan, mannan). Inside the phagosome, fungal cells use 3175 

superoxide dismutases to detoxify reactive oxygen species. Phagocytosis of C. albicans 3176 

cells by macrophages triggers the production of high levels of several cytokines, while 3177 

phagocytosis of C. glabrata causes the secretion of only low levels of GM-CSF. 3178 

Internalised C. albicans cells produce hyphae, induce pyroptosis, secrete candidalysin, 3179 

which leads to the activation of the NLRP3 inflammasome, and escape from the phagocyte. 3180 

Cytokine production from both epithelial cells and macrophages, recruits further 3181 

phagocytes (neutrophils, macrophages, dendritic cells) from the bloodstream. Phagocytosis 3182 

by dendritic cells activates Th17 immunity and the production of IL-17 and IL-22. IL-17 3183 
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promotes neutrophil trafficking and IL-22 contributes to integrity of the epithelial barrier 3184 

and production of antimicrobial peptides. C. albicans can further adhere to the endothelium 3185 

and invade and translocate from there to cause bloodstream infections (BSI). 3186 
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