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Figure 1: Strategic pathways towards realizing a practical quantum advantage using NISQ devices

ABSTRACT
There is much debate on whether quantum computing on current
NISQ devices, consisting of noisy hundred qubits and requiring
a non-negligible usage of classical computing as part of the algo-
rithms, has utility and will ever offer advantages for scientific and
industrial applications with respect to traditional computing. In this
position paper, we argue that while real-world NISQ quantum ap-
plications have yet to surpass their classical counterparts, strategic
approaches can be used to facilitate advancements in both industrial
and scientific applications. We have identified three key strategies
to guide NISQ computing towards practical and useful implemen-
tations. Firstly, prioritizing the identification of a "killer app" is a
key point. An application demonstrating the distinctive capabilities
of NISQ devices can catalyze broader development. We suggest
focusing on applications that are inherently quantum, e.g., point-
ing towards quantum chemistry and material science as promising
domains. These fields hold the potential to exhibit benefits, setting
benchmarks for other applications to follow. Secondly, integrating
AI and deep-learning methods into NISQ computing is a promising
approach. Examples such as quantum Physics-Informed Neural Net-
works and Differentiable Quantum Circuits (DQC) demonstrate the
synergy between quantum computing and AI. Lastly, recognizing
the interdisciplinary nature of NISQ computing, we advocate for
a co-design approach. Achieving synergy between classical and
quantum computing necessitates an effort in co-designing quantum
applications, algorithms, and programming environments, and the

integration of HPC with quantum hardware. The interoperability
of these components is crucial for enabling the full potential of
NISQ computing. In conclusion, through the usage of these three
approaches, we argue that NISQ computing can surpass current lim-
itations and evolve into a valuable tool for scientific and industrial
applications. This requires an approach that integrates domain-
specific killer apps, harnesses the power of quantum-enhanced AI,
and embraces a collaborative co-design methodology.

CCS CONCEPTS
• Hardware → Quantum computation; • Theory of computa-
tion → Quantum computation theory.
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1 INTRODUCTION
On the path to fault-tolerant quantum computers that will be built
with thousands/million of logical qubits, intermediate-scale quan-
tum systems with up to hundreds of qubits serve as valuable exper-
imental settings. For instance, they help to improve the quantum
computing technologies and devise software and algorithms in
preparation for full-fledged error-corrected quantum computing
systems. Examples of such systems are Google’s Sycamore and
IBM’s Osprey processors. The practical implementation of such
systems has proved to be a challenging task as quantum systems
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are highly prone to decoherence and a quantum circuit has to be ex-
ecuted within the coherence time of qubits. Furthermore, the gates
are imperfect leading to inevitable errors, and we need effective
error correction protocols to counteract. These quantum computers
belong to the Noisy Intermediate Scale Quantum (NISQ) era, a term
which was coined by J. Preskill [28].

NISQ systems are and have been very valuable experiments to
further understanding and improving the fundamental technologies
and the building blocks of quantum computing systems. One of the
major and most important consequences of making NISQ systems
open and available to the enthusiastic research community is the
evolution of an ecosystem of software tools that allow us to develop
and deploy the first quantum codes to tackle problems with scien-
tific and industrial relevance. Differently from established quantum
algorithms, such as Shor’s and Grover’s algorithms, NISQ algo-
rithms [4] and applications need to cope with noisy qubits as well
as to include a non-negligible and critical part running on classical
computing. Because of these constraints and limitations, an intense
debate on the usefulness of NISQ applications and algorithms arose,
and whether or not there will be any advantage in using NISQ
applications when compared to classical computing [20, 23].

Our position is that NISQ usefulness and advantage can be only
achieved via a strategic approach towards the development of NISQ
applications. In this position paper, we discuss the important needs
of the NISQ era quantum computing which can drive them towards
practical applications:

(1) The quest for a killer application of NISQ devices which
would further motivate the exclusive adoption of NISQ
computing in different fields of science and industry.

(2) The combination of artificial intelligence with quantum
algorithms for useful applications.

(3) The need for co-design of quantum hardware and software,
a task that requires a highly interdisciplinary team of re-
searchers.

2 ON THE QUEST FOR THE KILLER APP
The identification of a NISQ scientific or industrial application that
demonstrates quantum usefulness and advantage, what we call a
killer app, can drive a widespread adoption of the technique and
cross-fertilize different fields. We can argue that cryptography and
Shor’s-type algorithms constitute the main application area for
large-scale fault-tolerant quantum computing. However, it is chal-
lenging to use NISQ devices to implement theoretically successful
algorithms for useful applications, since they typically require deep
circuits with many qubits to solve difficult problems and hence to
demonstrate the power of quantum computing [14].

This leaves us with the necessity to find the killer application
of NISQ devices that is compelling and groundbreaking enough to
drive widespread adoption of a particular technology or platform.
Variational quantum algorithms (VQAs) constitute a promising av-
enue to utilize NISQ devices for useful applications. They are hybrid
(classical-quantum) approaches which typically use a shallow depth
parametrized quantum circuit ansatz where parameter optimiza-
tion is done on classical computers by minimizing a cost function.
In addition, this approach can yield valuable results even in the
presence of noise. Given these features, the killer application for

NISQ systems could be one which can be solved using VQAs. Here
we briefly elucidate some of the NISQ applications.
Quantum simulations. As famously suggested by Richard Feyn-
man at the dawn of quantum computing, quantum computers are a
natural fit for simulating quantum systems [9]. Variational Quan-
tum Eigensolver (VQE) is a variational technique to find the ground
state of a molecule by minimizing the energy with respect to varia-
tional parameters [27]. This algorithm is particularly useful in quan-
tum chemistry applications such as the calculation of molecular
spectral properties [7], the determination of the optimal geometry
of molecules [10], and the simulation of chemical reactions [26].
An example is the problem of finding an energy-efficient catalyst
which accelerates nitrogen fixation. An approach to simulate this
computationally expensive problem on the NISQ computer was
shown in [30]. Another example is that of carbon dioxide conver-
sion into value added safely storable chemicals that could even
nullify such anthropogenic greenhouse gas emissions [17].
Quantum optimization. Combinatorial optimization problems
have many real-world applications such as financial portfolio op-
timization, drug discovery, traffic flow optimization, and logistics.
Quantum Approximate Optimization Algorithm (QAOA) is a valu-
able tool in the NISQ era to obtain approximate solutions to such
problems [12]. This is a variational quantum algorithm that imple-
ments a sequence of quantum circuits with parameterized unitary
evolution corresponding to the adiabatic state preparation. Quan-
tum annealing (QA) is another quantum adiabatic algorithm that
exploits quantum fluctuations to drive the system from an easy to
prepare ground state of a simple Hamiltonian to the ground state
of a more complicated problem Hamiltonian [21]. Both QAOA and
QA have so far been able to exhibit only polynomial speedup which
is an impressive feat for small scale problems. However, it will be
truly revolutionary if a killer application is found in the field of
optimization, where industrial impact is tremendous.

On the quest of the NISQ killer application, we argue that appli-
cation simulations with an inherent quantum nature will unlock
the full power of quantum computing. These are algorithms and
applications that directly and natively rely on superposition and
entanglement to formulate a problem to solve, e.g., quantum sim-
ulations. Examples of such applications are quantum chemistry,
material science, protein folding problems [31] and fully or partially
degenerate plasma applications as those arising in High Energy
Density Physics (HEDP) [19] and Warm Dense Matter (WDM) [11].
Another set of algorithms that might benefit are the ones that have
governing equations that match or have strong similarities with
quantum mechanics simulations or methods for solving quantum
equations. An example concerns equations for the modeling of
fluid turbulence that rely on quantifying correlations between dif-
ferent length scales using methods inspired by quantummany-body
physics.

3 AI & QUANTUM
Artificial intelligence (AI) has taken almost every field of industry
by storm and rigorous adoption in science is taking place as well in
the recent years. Combining quantum computing techniques with
AI is beyond the mere combination of two popular technologies,
since it lays a path towards quantum advantage. With the property
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of quantum superposition, parallelism is native to quantum sys-
tems. Further, the presence of quantum entanglement among qubits,
which is stronger than classical correlation, should be able to recog-
nize complex patterns in data that are beyond the reach of classical
machine learning algorithms [29]. This intuition has driven the
emergence of quantum machine learning (QML), where models are
built with the help of quantum computers [3, 5, 18, 24, 33]. QML
techniques can already be developed and tested on NISQ devices
as variational quantum circuits are operationally similar to deep
neural networks. They can be trained by minimizing a cost function
and therefore QML approaches suit NISQ devices. Together with
the enhanced "expressivity" of quantum systems, QML techniques
indeed have the potential to surpass classical machine learning. The
representation of classical data as a quantum mechanical problem
is one of the major challenges of QML techniques creating specula-
tions about their applicability for real world problems. However, we
believe that QML is certain to show speedup in processing quantum
data. Such quantum data could be the outcome of quantum sensing
experiments, which are making promising developments towards
precise measurements. QML will be a subroutine which further
enhances the efficiency of such quantum metrology techniques.

Combination of AI and quantum computing on NISQ devices
can be adopted for scientific machine learning applications such as
solving differential equations [25]. A recently developed NISQ algo-
rithm for solving differential equations is Differentiable Quantum
Circuits (DQC) [22] as Universal Function Aprroximators (UFAs).
This algorithm is inspired by Physics Informed Neural Networks
(PINNs) which are beneficial when there is availability of some
data of the physical system and the underlying equation of motion
is known. With high expressive power of quantum circuits, this
approach can be advantageous in various fields of science such as
plasma physics and fluid dynamics where differential equations are
ubiquitous.

4 IMPORTANCE OF CO-DESIGN
Different quantum computing platforms have different strengths,
weaknesses and peculiarities. Therefore, it is highly beneficial to
customize quantum algorithms for a specific application that is suit-
able for the given architecture to obtain the maximum performance.
In addition, co-design in quantum computing also pushes for hard-
ware tailor made for some specific application [32]. For example,
variational algorithms, which rely on the continuous loops of quan-
tum and classical computation, benefit from having the quantum
and classical hardware be as close as possible in order to reduce
the latency in information flow. Further, they require continuously
tunable rotation gates which constitute the integral part of the vari-
ational ansatz. Hardware which naturally allow such continuously
tunable and high fidelity gates are clearly more favorable for VQA
applications. In addition, co-design has motivated researchers to
use hardware-efficient variational ansatze which require little to
no additional SWAP gates for the hardware implementation. This
is a clear example of how NISQ devices can be exploited maximally
for practical use with the help of co-design. Another promising
direction towards quantum advantage in the near-term is to utilize
them as accelerators in computation working alongside the CPUs
using suitable classical-quantum hybrid algorithms. This would

be analogous to the accelerating role of GPUs in the present clus-
ter computing. An example of the power of co-design is observed
in [1]. Here the authors have resorted to the co-design of a quantum
processor to implement the application specific task of simulating
nanoscale NMR resonances. By coupling transmon qubits centrally
to a co-planar waveguide resonator with a quantum circuit refrig-
erator, they have been able to achieve a 90% reduction of SWAP
operations for an all-to-all simulation of spins. As a consequence,
the computation on the star topology was shown to reach the same
accuracy of the computation with a 99% two-qubit-gate fidelity
that would require a 99.99% two-qubit-gate fidelity on a square
topology device. To reap the benefits of co-design, a highly cross-
disciplinary collaborative effort among the researchers of hardware
and software domains is necessary and constitutes an essential
factor towards practical quantum advantage using NISQ devices.

5 CHALLENGES & OPPORTUNITIES
The biggest challenges of NISQ computing are that the available
qubits (tens or hundreds) are imperfect and their operation is im-
pacted by noisy processes, and the need for new and improved
algorithmic ideas that can tolerate these limitations. The coher-
ence times of qubits are low and therefore the success of quantum
algorithms requires short depth circuits in such quantum comput-
ers, while making sure that non-classical correlations are present
and operation is not classically simulable. Additionally, the limited
qubit connectivity in the current NISQ device architectures impose
overhead cost of qubit encoding and gate implementations. These
contribute to the depth of the circuit. VQAs which are feasible on
NISQ systems also face several challenges. During the parameter
optimization, the derivative of the cost function can become van-
ishingly small because of “barren plateaus” in the parameter search
space which can arise due to the random choice of ansatz, ran-
dom initialization of ansatz [16] and the choice of cost function [6].
Furthermore, quantum machine learning for classical problems re-
quires efficient data encoding and initial state preparation and the
measurement readout scales exponentially. These constitute the
“input/output problem” of quantum machine learning which makes
it difficult to compete with the existing classical algorithms. All
these challenges put together point to the need for new ideas and
more functional paradigms of NISQ algorithms. The hardware qual-
ity is steadily moving towards a regime where classical simulations
of the best existing quantum computers is becoming extremely
hard, if not impossible. Now we need to harness this capability with
algorithms that use this capability for solving research or business
problems.

There is rigorous research being undertaken towards fault-tolerant
quantum computers as well as to utilize the current NISQ devices
for useful applications. Quantum Error Mitigation (QEM) is a tech-
nique designed for NISQ era quantum computing to reduce the
noise effects as the existing quantum error correction (QEC) codes
are not implementable on such devices. QEM techniques essentially
implement several noisy circuits and the data obtained from these
implementations is used to extrapolate the results in absence of
noise. There have also been many variants of the VQAs which over-
come some of the drawbacks of their vanilla versions. An example
is that of the Variational Fast-Forwarding (VFF) algorithm which



allows the dynamic simulation of quantum systems for arbitrary
time with fixed circuit length [8] for a certain class of Hamiltonians
that violate the time-energy uncertainty relation.

6 CONCLUSIONS
In this position paper, we have outlined the state-of-the art of
NISQ devices, challenges, and their future prospects. Although it
looks like a herculean task to build a full-fledged and fault tolerant
quantum computer, we should not overlook the advancement that
has been done so far. From the initial idea formulated by Feynman
in the 80’s, Shor’s algorithm for factoring prime numbers with the
superpolynomial speedup in the 90’s, at present we have working
quantum computers which have shown quantum supremacy and
are available to be remotely accessed by researchers for various
experiments and further development [2].

While the race towards fault tolerant quantum computing con-
tinues, we strongly advocate for parallel research towards practical
quantum advantages using NISQ devices. In this regard, particular
effort needs to be dedicated to singling out a killer application; such
is likely to be present within the field of quantum chemistry. These
applications, which are seriously limited by the computational re-
sources required to simulate them, can be the class of problems that
might benefit from NISQ era computers. Merging AI with quantum
computing techniques is another viable path towards achieving
practical quantum advantage. While classical machine learning has
already a plethora of applications, quantum machine learning tech-
niques have the potential to yield substantial optimization given
their enhanced expressivity.

Another aspect concerns the necessity of software-hardware
co-design for the NISQ era quantum computing. This promotes the
fact that algorithm and hardware design need to be application spe-
cific and tailor-made, which is an essential component to utilize the
NISQ devices to their maximum limit. Hence, the crucial element
in pushing the state-of-the-art would be to nurture collaborative
efforts among physicists, computer scientists, material scientists
and engineers. Given that there are plenty of computationally hard
problems across various disciplines, a primary awareness of quan-
tum computing capabilities among the experts of these fields is
advantageous to identify potential problems that can benefit from
quantum computing. The recent drives such as the $5M global com-
petition “Quantum for real-world impact" by Google Quantum AI
and XPRIZE [15], and IBMQuantum’s “the 100×100 challenge" [13]
are promising to accelerate the progress in employing current quan-
tum computers for useful applications. It is equally important to
educate the public and investors with the state of the art and the
realistic goals of near-term quantum devices without glamorizing
or over-selling.
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