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Abstract: The assessment of scour depth downstream of weirs holds paramount importance in en-
suring the structural stability of these hydraulic structures. This study presents groundbreaking ex-
perimental investigations highlighting the innovative use of baffles to enhance energy dissipation 
and mitigate scour in the downstream beds of rectangular piano key weirs (RPKWs) and trapezoidal 
piano key weirs (TPKWs). By leveraging three state-of-the-art supervised machine learning algo-
rithms—multi-layer perceptron (MLP), extreme gradient boosting (XGBoost), and support vector 
regression (SVR)—to estimate scour hole parameters, this research showcases significant advance-
ments in predictive modeling for scour analysis. Experimental results reveal that the incorporation 
of baffles leads to a remarkable 18–22% increase in energy dissipation and an 11–14% reduction in 
scour depth for both RPKWs and TPKWs. Specifically, introducing baffles in RPKWs resulted in a 
noteworthy 26.7% reduction in scour hole area and a 30.3% decrease in scour volume compared to 
RPKWs without baffles. Moreover, novel empirical equations were developed to estimate scour pa-
rameters, achieving impressive performance metrics with an average R2 = 0.951, RMSE = 0.145, and 
MRPE = 4.429%. The MLP models demonstrate superior performance in predicting maximum scour 
depth across all scenarios with an average R2 = 0.988, RMSE = 0.035, and MRPE = 1.036%. However, 
the predictive capabilities varied when estimating weir toe scour depth under diverse circum-
stances, with the XGBoost model proving more accurate in scenarios involving baffled TPKWs with 
R2 = 0.965, RMSE = 0.048, and MRPE = 2.798% than the MLP and SVR models. This research under-
scores the significant role of baffles in minimizing scouring effects in TPKWs compared to RPKWs, 
showcasing the potential for improved design and efficiency in water-management systems. 
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1. Introduction 
Weirs are vital components of water transfer systems, frequently utilized in dams to 

control floods and regulate the water levels of reservoirs. They serve a critical function in 
managing flows within irrigation and drainage channels and accurately measuring dis-
charges. Despite their significant utility, hydraulic structures like weirs are susceptible to 
a primary concern—local scouring, which threatens their stability and operational effi-
ciency. Numerous studies have investigated the performance of piano key weirs (PKWs) 
in low-hydraulic-head conditions, where the complete aeration of flow can mitigate ero-
sion and cavitation risks. However, as hydraulic heads increase, the advantages of PKWs 
diminish, impacting their overall effectiveness. Accurately estimating maximum scour 
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depth is essential for the safe and cost-efficient design of hydraulic structures to mitigate 
potential damage or failure [1]. Several scholars have contributed to understanding and 
predicting scour parameters downstream of PKWs under varying conditions, encompass-
ing the geometric characteristics of scour holes and sediment ridges, energy dissipation 
rates, and the influence of different geometries on weir performance. In their comprehen-
sive study, Jüstrich et al. [2] explored the impact of various parameters on the geometric 
features of scour holes and sediment ridges downstream of a RPKW, offering valuable 
insights and establishing predictive relationships for these parameters. Palermo et al. [3] 
observed that the equilibrium scour downstream of an RPKW is influenced by flow dis-
charge, structure height, and tailwater depth. However, further analysis is required to 
fully comprehend the underlying physics and establish quantitative criteria for evaluating 
scour parameters. In their experiments, Kumar and Ahmad [4] investigated the scour pat-
terns downstream of a three-cycle RPKW, with and without a solid apron. Their results 
indicated that scour was predominantly driven by jets originating from the keys. Deeper 
and longer scouring was observed for higher discharges and lower tailwater depths. Ku-
mar et al. [5] examined the movement of sediment particles upstream of a RPKW and 
observed deceleration near the inlet keys followed by acceleration at the key ends. Ghod-
sian et al. [6] found that the maximum scour depth in a triangular PKW exceeded that of 
a trapezoidal PKW. Lantz et al. [7] experimentally explored the impact of apron configu-
rations on downstream scour geometry under various hydraulic conditions, demonstrat-
ing the effectiveness of horizontal aprons in deflecting outflow plunging jets from an 
RPKW and significantly reducing scour depth. Further enhancing our understanding of 
scour mitigation strategies, Kumar and Ahmad [8] explored the impact of apron installa-
tions on scour downstream of RPKWs under free and submerged flow conditions, report-
ing significant scour depth reductions with the incorporation of an apron. Abdi Chooplou 
et al. [9] studied the temporal evolution of scour downstream of a TPKW and observed a 
significant increase in the dimensions of the scour hole during the initial stages of scour-
ing. Lantz et al. [10] investigated the local scour process downstream of a type A RPKW 
in non-cohesive sediments, emphasizing the impact of hydraulic conditions on scour 
mechanisms. Abdi Chooplou et al. [11] found that the scour volume decreased with in-
creasing relative tailwater depth downstream of a TPKW. Additionally, their study indi-
cated that altering the shape of lateral walls crest downstream of a rectangular PKW could 
reduce scour depth and the extension of the scour hole [12]. Bodaghi et al. [13] explored 
the effect of submergence of a TPKW on downstream scouring, noting a decrease in max-
imum scour depth with higher submergence ratios. Abdi Chooplou et al. [14] compared 
scour parameters downstream of PKWs with different shapes, highlighting differences in 
scour depth, length, area, volume, and asymmetry index among rectangular, trapezoidal, 
and triangular PKWs. Fathi et al. [15] analyzed the impact of varying step configurations 
at the outlet keys of RPKWs on scour depth, finding that additional steps and smaller bed 
materials reduced sediment ridge height. Optimizing weir designs based on these insights 
can aid in mitigating downstream scouring. Kumar et al. [16] conducted a numerical study 
on the flow field and sediment passing capacity of type A RPKWs, revealing increased 
velocity components due to the vertical contraction in front of the sloped keys. This flow 
pattern has significant implications for sediment passing capacity and the overall perfor-
mance of such hydraulic structures. 

In a comparative analysis, Erpicum and Machiels [17] evaluated the energy dissipa-
tion rates between a RPKW and an Ogee spillway, revealing nearly equivalent levels of 
energy dissipation for both hydraulic structures. Additionally, Eslinger and Crookston 
[18] studied energy dissipation in RPKWs with varying geometries, highlighting the role 
of flow dynamics through the structure’s front faces and upstream overhangs in facilitat-
ing energy dissipation. Naghibzadeh et al. [19] conducted experimental and numerical 
investigations on energy dissipation in RPKWs with stepped and baffled downstream 
slopes, uncovering a decrease in energy dissipation with increasing discharge. Notably, 
their study revealed that baffled PKWs exhibited more energy dissipation compared to 
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stepped and un-baffled PKWs. Delving into the performance aspects of PKWs, Souri et al. 
[20] conducted numerical simulations to evaluate the influence of aeration on both RPKW 
and TPKWs. Iqbal and Ghani [21] conducted a study on the energy dissipation character-
istics of a PKW, analyzing the effects of varying key slope and key width ratios. Their 
findings revealed that an increase in key slope led to enhanced energy dissipation, 
whereas an increase in key width ratio resulted in reduced energy dissipation. Compared 
to traditional weirs, the PKW demonstrated superior energy dissipation, particularly evi-
dent at low flow rates. 

The adoption of artificial neural networks (ANNs) and machine learning (ML) algo-
rithms has emerged as a promising alternative to traditional regression models in predict-
ing scour depth at hydraulic structures. These techniques exhibit strong generalization 
capabilities to unseen data and offer accurate predictions. Recent progress in hydraulic 
engineering has seen a notable increase in the use of ANNs and ML methods for precisely 
estimating scour depth at a range of hydraulic structures. Researchers have been dedi-
cated to thoroughly assessing the effectiveness of different ML models in this crucial field. 
Muzzammil [22] showcased the remarkable capabilities of adaptive neuro-fuzzy inference 
systems (ANFIS) in modeling scour depth at bridge abutments, underscoring its superior 
predictive accuracy. Conversely, Najafzadeh et al. [23] demonstrated that the group 
method of data handling (GMDH) surpassed support vector machines (SVMs) in estimat-
ing scour depth around bridge abutments, highlighting the discerning nature of model 
selection in optimizing accuracy. Etemad-Shahidi et al. [24] reported the high fidelity of 
the M5 model tree in simulating scour depth around bridge piers, indicative of its robust 
predictive power. Similarly, Sharafi et al. [25] delineated the supremacy of SVM with di-
verse kernel functions over traditional methods like ANNs and ANFIS in forecasting 
scour depth around bridge piers, emphasizing the versatility of ML frameworks. Azimi 
et al. [26] innovatively integrated ANFIS-DE/SVD, a fusion of ANFIS and Differential Evo-
lutionary algorithms, to outperform genetic algorithms (GAs) in simulating scouring 
around bridge pile groups, showcasing the promise of hybrid techniques. Additionally, 
Ebtehaj et al. [27] ascertained that extreme learning machines (ELM) outperformed SVM 
and ANN in providing precise forecasts of local scour depth around pile groups, herald-
ing a new era of accuracy in scour depth estimation. 

The advent of novel methodologies such as the self-adaptive extreme learning ma-
chine (SAELM) model, as demonstrated by Rashki-GhalehNou et al. [28], has pushed the 
boundaries of predictive accuracy beyond conventional models like ANN and SVM, par-
ticularly in predicting scour parameters downstream of sloping submerged weirs. Fur-
thermore, Sharafati et al. [29] leveraged the optimization capabilities of ANFIS with inno-
vative methods to predict scour depth downstream of sharp-crested weirs, revealing that 
ANFIS-IWO emerged as the most effective predictive model in this context. In an era char-
acterized by the fusion of diverse computational techniques, Salih et al. [30] introduced 
the tBPSO-SVR model, a fusion of enhanced binary particle swarm optimization and sup-
port vector regression, as a potent tool for forecasting scour depth at submerged weirs, 
surpassing traditional methods like linear regression and decision trees. Moreover, the 
integration of ground penetrating radar (GPR), random forest (RF), and M5 tree models 
by Ahmadianfar et al. [31] through the least squares boosting ensemble showcased a syn-
ergistic approach to enhancing scour depth around pile groups estimation accuracy. Pan-
dey et al. [32] further advanced the domain by employing ensemble-based techniques like 
categorical boosting (CatBoost), extra tree regression (ETR), and K-nearest neighbor 
(KNN) algorithms to predict scour depth around bridge abutments, with gradient boost-
ing decision trees (GBDT) identifying crucial features for accurate modeling. Salmasi et al. 
[33] underscored the precision of gene expression programming (GEP) in predicting 
scouring induced by free fall jets, exemplifying the potential of innovative methodologies 
in scour parameter estimation. Iqbal and Ghani [34] demonstrated that artificial neural 
network (ANN) models can effectively forecast the discharge capacity of PKWs, surpas-
sing the performance of conventional empirical equations. Their research involved the 
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creation of robust ANN models that exhibited strong correlations with experimental data, 
pinpointing the significant parameters that impact PKW discharge. 

While advancements have been made in predicting scour parameters, a significant 
research gap exists in the exploration of energy dissipation and scour mitigation strategies 
specific to PKWs. This study aims to fill this crucial knowledge void by investigating the 
energy dissipation characteristics of type A RPKWs and TPKWs, assessing the effective-
ness of baffle installations on outlet keys for mitigating downstream scour, and develop-
ing reliable machine learning models for accurately predicting local scour features down-
stream of baffled PKWs. By achieving these goals, this study will offer valuable insights 
into optimizing the performance and stability of PKWs through tailored scour prediction 
and mitigation strategies. This research directly addresses a critical need in hydraulic en-
gineering and contributes to advancing more resilient and sustainable hydraulic struc-
tures through the innovative application of machine learning techniques. 

2. Materials and Methods 
2.1. Dimensional Analysis 

The downstream scour phenomena of a PKW and the associated key parameters are 
illustrated in Figure 1. In this representation, key variables include the upstream total 
head H (=hu +V02/2g, hu is upstream depth of flow relative to the weir crest, V0 is approach 
flow velocity, g is gravitational acceleration), hd signifies the depth of the tailwater, Hd 
characterizes the downstream head, ΔH indicates the difference between the upstream 
and downstream heads, ZSF depicts the scour depth at the weir toe, dSM represents the 
maximum scour depth, XSM designates the distance from the weir toe to the location of 
maximum scour depth, and LS represents the length of the scour hole. 

 

Figure 1. Flow and scour parameters at PKW. 

The components of a type A PKW outlined in Figure 2 encompass the following pa-
rameters: the length of the weir crest (L), the height of the weir (P), the width of the weir 
(W), the width of the inlet key (Wi), the width of the outlet key (Wo), the streamwise length 
of the weir (B), the base length of the weir (Bb), the lengths of the inlet and outlet keys 
overhang (Bi and Bo, respectively), the width of the weir cycle (Wu), and the thickness of 
the weir wall (Ts).  

Sediment bed 

PKW toe 

P 
Initial bed 

𝐻 

𝑍  𝑑  

ℎ  

Energy line 

𝐻  

Δ𝐻 

5.50m 3 m 

𝐿  

Deposited mound 

X 

Z 

𝑋  

W
ei

r f
ou

nd
at

io
n 

Control gate 

ℎ

0.
52

5 
m

 

0 1 

y0 
y1 

Flow 



Water 2024, 16, 2133 5 of 29 
 

 

 

Figure 2. Geometric parameters of a PKW. 

Various factors affecting the scoring downstream of a PKW include the flow charac-
teristic (fFlow), the properties of the bed materials and water (fBed, Water), the geometric pa-
rameters of the PKW (fGeometry), and the presence of baffles (fbaffles): 

, 50( , , , , ), ( , , , ), ( , , , , , ,
, , , , ), ( )
Flow u d Bed Water w s Geometry i o i o

b S Baffl B

j

es

f h H H h fV d g f P W W W B B
f
B B T N f H

Ψ
Δ ρ ρ  =  ζ  

 (1)

here ψ denotes the dimensions of the scour hole and sedimentary ridge, f is the function 
symbol, Vj (= 2𝑔∆ℎ) signifies the velocity of the jet at the tailwater level, d50 denotes the 
mean sediment size, ρw denotes the density of water, ρs represents the density of sediment, 
N signifies the number of weir cycles, ζ denotes the effect of the weir’s shape, and HB 
indicates the height of the baffles. By utilizing the Buckingham П theorem, and subse-
quently combining dimensionless parameters while excluding constant factors, the fol-
lowing equation is derived for a baffled PKW: 

Fr, , , u

d B

hHf
H h H
Ψ ζ

 Δ=  
 

 (2)

where Fr (= 𝑉 / 𝑔ℎ ) is the Froude number. 

2.2. Experiments 
2.2.1. Experimental Setup 

The tests were carried out in a rectangular channel with 10 m length, 0.75 m width, 
0.80 m height, and a longitudinal bed slope of 0.001, in the hydraulic laboratory of the 
water engineering and hydraulic structures group at Tarbiat Modares University in Teh-
ran. The channel’s walls were constructed from glass, while the bottom was made of 
metal. A pump capable of supplying water at a maximum rate of 0.085 m3/s transported 
water from a sump to the channel. 

Tailwater depth adjustments were facilitated by a gate situated at the channel’s end-
point. All experiments were conducted under free-flow conditions. The viscosity effects 
are negligible in turbulent flow with Reynolds numbers greater than 30,000 [35,36]. As 
recommended by Pfister et al. [37] and Erpicum et al. [38], a minimum upstream depth of 
H ≥ 0.03 m was ensured. Additionally, to mitigate the influence of surface tension, the 
ratio of H/P was kept above 0.1 [39]. The initial level of the sediment bed in all experiments 
was equal to the weir toe level. A thin metal sheet was placed over the sediments to pre-
vent the start-up effect. 

2.2.2. Experimental Layout and Parameters 
Based on established guidelines by Lempérière and Ouamane [40]; Lempérière and 

Jun [41], and Mehboudi et al. [42], two distinct geometrical configurations of PKWs were 
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used in the experiments: rectangular and trapezoidal shapes (Figure 3). The PKWs fea-
tured three cycles (N = 3) and were manufactured using thermoplastic material through a 
three-dimensional printing process. They were positioned approximately 3 m from the 
entrance of the channel. Detailed specifications of the PKWs, including the sidewall angle 
denoted as α, are provided in Table 1. 

  
(a) (b)  

Figure 3. Downstream view of: (a) RPKW and (b) TPKW. 

Table 1. Dimensions of used PKWs. 

P (m) 0.20  𝐵  (m) 0.25 

L (m) 
RPKW 3.75 𝐵  (m) 0.125 
TPKW 3.30 𝐵  (m) 0.125 𝑊  (m) 
RPKW 0.125 

W (m) 0.75 
TPKW 0.175 𝑊  (m) 
RPKW 0.125 𝑇  (m) 0.012 
TPKW 0.051 

α (degree) 
RPKW 0 

N (-) 3 
TPKW 5 

The study employed a non-cohesive quartz gravel bed with a median size (d50) of 7.1 
mm to induce scouring, ensuring uniformity with a standard deviation (σg) of less than 
1.5, adhering to recommendations from previous studies [43,44]. The tested range of d50/P 
values in this investigation was aligned with typical prototype conditions, with weir 
heights (P) varying from 3.0 m to 5.0 m, consistent with studies by Ho Ta Khanh et al. [45] 
and Laugier et al. [46]. This alignment indicates the generalizability of the results to coarse 
river beds, as supported by the work of Jüstrich et al. [3]. Additionally, the negligible scale 
effect on scouring was validated by the d10 value (5.2 mm) exceeding the recommended 
threshold of 1.0 mm, as advised by Pagliara et al. [47]. 

A 3 m long and 0.75 m wide area downstream of the PKW was covered with sedi-
ments and leveled using a bed leveler (Figure 4). To prevent sediment intrusion into the 
sump, a metal mesh was strategically installed at the channel’s end. 

Wi Wo 

W 

Wi Wo 
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Figure 4. PKW and downstream sediment bed. 

The baffles, constructed from coated wood in a cubic shape, were designed as per the 
recommendations of the United States Bureau of Reclamation [48]. The baffles’ height was 
fixed at 0.032 m, with a longitudinal spacing of 0.064 m (equal to 2 times the baffle height). 
The longitudinal base width of the baffles matched the outlet keys, set at 0.026 m. Figure 
5 shows the details and layout of the baffles implemented on the outlet keys. 

   
(a) (c) 

  
(b) (d)  

Figure 5. Baffles in PKW outlet keys: (a,b) photo from downstream of RPKW and TPKW; (c,d) di-
mensions and layout of RPKW and TPKW. 

2.2.3. Test Details and Summary 
Table 2 contains a comprehensive summary of the tests, consisting of 80 experiments. 

The symbol B(Q)-(hd) denotes the tested model, with “B” denoting the series of tests in-
volving baffled weirs. The first numeric element represents the discharge in liters per sec-
ond, accompanied by the tailwater depth indicated in centimeters. The experiments cov-
ered discharges ranging from 0.03 to 0.06 m3/s, relative drop heights (ΔH/hd) spanning 
from 0.26 to 1.74, and Froude numbers (Fr) between 0.74 and 2.12. 
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Table 2. Details of the experiments. 

Sl. No Tests Q hd PKW Fr ΔH/hd hu/HB Sl. No PKW Fr ΔH/hd hu/HB 

# # m3/s m # - - - # # - - - 
1 30-8 

0.30 

0.08 

RP
K

W
 

1.93 1.70 
- 41 

TP
K

W
 

1.95 1.74 
- 

2 B30-8 1.00 42 0.91 
3 30-10 

0.10 1.61 1.21 
- 43 

1.62 1.24 
- 

4 B30-10 1.00 44 0.91 
5 30-13 

0.13 1.23 0.72 
- 45 

1.25 0.75 
- 

6 B30-13 1.00 46 0.91 
7 30-15 

0.15 1.03 0.50 
- 47 

1.05 0.52 
- 

8 B30-15 1.00 48 0.91 
9 30-18 

0.18 0.74 0.26 
- 49 

0.76 0.27 
- 

10 B30-18 1.00 50 0.91 
11 40-8 

0.04 

0.08 1.98 1.68 
- 51 

2.00 1.72 
- 

12 B40-8 1.25 52 1.16 
13 40-10 

0.10 1.66 1.23 
- 53 

1.67 1.26 
- 

14 B40-10 1.25 54 1.16 
15 40-13 

0.13 1.28 0.76 
- 55 

1.30 0.78 
- 

16 B40-13 1.25 56 1.16 
17 40-15 

0.15 1.08 0.54 
- 57 

1.10 0.56 
- 

18 B40-15 1.25 58 1.16 
19 40-18 

0.18 0.80 0.29 
- 59 

0.82 0.31 
- 

20 B40-18 1.25 60 1.16 
21 50-8 

0.05 

0.08 2.05 1.66 
- 61 

2.06 1.68 
- 

22 B50-8 1.56 62 1.50 
23 50-10 

0.10 1.72 1.22 
- 63 

1.73 1.27 
- 

24 B50-10 1.56 64 1.50 
25 50-13 

0.13 1.35 0.80 
- 65 

1.36 0.82 
- 

26 B50-13 1.56 66 1.50 
27 50-15 

0.15 1.14 0.59 
- 67 

1.15 0.60 
- 

28 B50-15 1.56 68 1.50 
29 50-18 

0.18 0.87 0.34 
- 69 

0.88 0.35 
- 

30 B50-18 1.56 70 1.50 
31 60-8 

0.06 

0.08 2.11 1.59 
- 71 

2.12 1.61 
- 

32 B60-8 1.88 72 1.81 
33 60-10 

0.10 1.78 1.25 
- 73 

1.79 1.27 
- 

34 B60-10 1.88 74 1.81 
35 60-13 

0.13 1.40 0.84 
- 75 

1.41 0.85 
- 

36 B60-13 1.88 76 1.81 
37 60-15 

0.15 1.20 0.62 
- 77 

1.21 0.64 
- 

38 B60-15 1.88 78 1.81 
39 60-18 

0.18 0.93 0.38 
- 79 

0.94 0.39 
- 

40 B60-18 1.88 80 1.81 

The largest tested unit discharge (q = 0.08 m2/s) in the study corresponds to approxi-
mately 23 m2/s in the prototype condition. This value was obtained using a scale factor of 
40, as reported by Dugué et al. [49]. 
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2.2.4. Experimental Measurements 
The measurement procedures encompassed the use of several sophisticated instru-

ments. The upstream flow depth and tailwater depth were ascertained using a digital 
point gauge, boasting an accuracy of ±1 mm. The discharge was measured using a cali-
brated ultrasonic flow meter (Model TFM3100-F1) with ±1% accuracy, attached to the in-
flow pipe. To accommodate the formation of a hydraulic jump downstream of the weirs, 
downstream velocity was computed utilizing the flow depths measured before the jump. 
As the flow was notably three-dimensional, multiple depth measurements were con-
ducted and subsequently averaged to determine the downstream velocity. The experi-
ment commenced by gradually removing the metal sheet to minimize its influence on the 
sediment bed. Each test recorded the discharge, as well as the upstream and downstream 
flow depths around the PKWs. After reducing the discharge and draining the channel 
bed, the bed topography was meticulously documented using a laser bed profiler. 

To ascertain the equilibrium time, a 15 h test was conducted to observe scour depths, 
as illustrated in Figure 6, which captured the most critical state characterized by the high-
est discharge (Q = 0.06 m3/s) and lowest tailwater depth (hd = 0.08 m). Clear from the graph, 
after roughly 180 min into the experiment, the increase in scour depth became negligible, 
aligning with the criteria outlined by Chiew [50] and Kumar et al. [51] for the equilibrium 
state. As such, the duration of 180 min was adopted as the equilibrium state for subse-
quent experiments. Additionally, the tests revealed a progressive increase in the local 
scour depth downstream of the weir in the absence of baffles in the outlet keys, peaking 
after 180 min as the system attained an equilibrium state—a trend in line with prior stud-
ies on abutment scour [52]. 

 

Figure 6. Temporal evolution of the scour depth for TPKW. 

2.3. Machine Learning Algorithms 
2.3.1. Extreme Gradient Boosting—Skopt 

Extreme gradient boosting—skopt (XGBoost) is a powerful machine learning method 
that combines predictions from multiple weak models to enhance overall prediction ac-
curacy. It employs gradient boosting, an iterative process that fits weak models to the 
negative gradient or residual of the previous iteration. By utilizing first- and second-order 
gradients, XGBoost captures the curvature of the loss function. Regularization techniques 
(such as L1 and L2) penalize complex models to improve generalization. Additionally, 
XGBoost incorporates optimizations like parallel processing and cache awareness for ef-
ficient computation [53]. 

This study employs the XGBoost algorithm using the XGBRegressor from the xgboost 
library, combined with a grid search (GridSearchCV) for optimizing hyperparameters such 
as n_estimators, learning_rate, max_depth, subsample, and colsample_bytree. The algorithm’s 
steps are shown in Figure 7. 
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Figure 7. Flowchart of the XGBoost technique. 

2.3.2. Multi-Layer Perceptron (MLP)—Hyperopt Optimizer 
The MLP is a feed-forward algorithm that was developed to address the limitation 

of the perceptron, as highlighted by Minsky and Papert [54], which cannot handle non-
linear data with just one neuron. The MLP includes input and output layers, as well as 
one or more hidden layers containing multiple neurons. Neurons in the MLP require an 
activation function, such as the ReLU function, to set a threshold, which is calculated us-
ing a specific equation: 

ReLU( ) max(0, )=x x  (3)

where x is the input variable. 
The MLP integrates inputs with initial weights, applies an activation function, and 

passes the outcomes to the following layer. This process repeats through the hidden layers 
until it reaches the output layer [55]. 

Figure 8 depicts a hypothetical structure of an MLP model. The MLP model used in 
this paper has more nodes than displayed in Figure 8. Here, w11 to w33 and v11 to v31 display 
weights, and the output variable (y) illustrates different relative scour parameters such as 
dSM/H and ZSF/H. 

 
Figure 8. The structure of an MLP model. 
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To create MLP models for this study, the MLPRegressor class from the sklearn library 
was utilized with its default parameters, including a batch size of 4. The Sgd and Ilfgs 
solver were employed, and MSE was used as the loss function. Only two hyperparame-
ters, namely the number of neurons in the hidden layer (hidden_layer_sizes) and the maxi-
mum number of iterations (max_iter), were tuned to find the optimal model. The regular-
ization parameters C, ε, and γ in the model play crucial roles in balancing complexity and 
accuracy. Increasing C emphasizes minimizing training errors, potentially leading to over-
fitting. Reducing C prevents overfitting and enhances generalization. ε determines the ac-
ceptable error level, with higher values promoting flexibility and lower values prioritizing 
precision [56]. γ influences the support vectors’ radius, with higher values capturing in-
tricate patterns and lower values focusing on broader trends [57]. 

2.3.3. The Support Vector Regression (SVR) 
The SVR is a precise machine learning algorithm commonly used for regression pur-

poses. The specifics of this algorithm can be referenced in the works of Ceperic et al. [58]. 
When developing SVR models to predict scour hole characteristics downstream of a 
TPKW, the SVR class from the sklearn library is typically used with its default settings. 
The only parameter that needs to be adjusted is the kernel, which should be set to the 
radial basis function (RBF) type, and three key hyperparameters of the fine-tuned SVR. 

The regularization parameter C plays a crucial role in balancing the complexity of 
the model with the desired accuracy of the training data. By increasing C, the emphasis 
shifts towards minimizing training errors, which could lead to a more complex and po-
tentially overfitting model. Conversely, reducing C can help prevent overfitting and en-
hance the model’s ability to generalize to unseen data [56]. The ε parameter establishes 
the acceptable error level for the model and can be assigned decimal values. A higher ε 
value promotes a more flexible model that can accommodate outliers or noisy data, pos-
sibly sacrificing precision. Conversely, a lower ε value results in a more precise model that 
focuses on error minimization, potentially neglecting outliers or noisy data [56]. The γ 
parameter determines the support vectors’ influence radius. Increasing γ enables the 
model to capture intricate patterns in the training data, potentially at the expense of gen-
eralization to unseen data. Conversely, decreasing γ encourages a more generalized rep-
resentation of the data, allowing the model to focus on capturing broader patterns and 
trends [57]. 

2.4. Model Development 
This section details the development of machine learning models to predict scour 

hole characteristics downstream of a trapezoidal and rectangular PKW. Three primary 
models are constructed, XGBoost, MLP, and SVR models, which will be elaborated on in 
the subsequent sections. 

2.4.1. Data Processing 
Data preprocessing involves preparing data for algorithms. Initially, the data were 

divided into training and testing datasets using the hold-out strategy, where 80% of the 
data were allocated for training, and the remaining 20% were reserved for testing [59]. 
This split was accomplished using the train_test_split function from the Python sklearn 
library, with a test_size of 0.2. For modeling the relative toe scour depth (ZSF/H) and the 
relative maximum scour diameter (dSM/H), the training set consisted of 64 samples, and 
the testing set had 16 samples. 

The MLP model benefits from normalizing input features. Failure to do so can result 
in longer convergence times or even failure to converge. To address this, the MinMaxScaler 
class from sklearn was used to normalize both training and testing datasets, ensuring all 
features were on a similar scale. 
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2.4.2. Hyperparameter Optimization 
XGBoost: The hyperparameter optimization for the XGBoost model utilizes the Bayes-

ian optimization algorithm provided by the ‘skopt’ library, specifically the gp_minimize 
function. This optimizer uses Gaussian processes to model the function we aim to mini-
mize, which is the root mean squared error (RMSE) in this case. The optimization process 
involves defining a search space for hyperparameters such as n_estimators (ranging from 
100 to 1000), learning_rate (0.01 to 0.3), max_depth (3 to 10), subsample (0.6 to 1.0), colsam-
ple_bytree (0.6 to 1.0), gamma (0.0 to 1.0), and min_child_weight (1 to 10). 

The objective function trains the XGBoost model with the given hyperparameters, 
evaluates its performance on a test set, and returns the RMSE. The optimizer iteratively 
explores the hyperparameter space to identify the combination that minimizes the RMSE, 
improving predictive performance and ensuring efficient convergence. The Check-
pointSaver callback is used to save the optimizer’s progress and state, ensuring that results 
are not lost in case of interruptions. After 100 iterations, the best hyperparameters are 
identified and used to train the final XGBoost model, which is then evaluated using met-
rics such as R2, RMSE, and MRPE on both training and testing datasets. The detailed hy-
perparameter values are presented in Table 3. 

Table 3. The structure of the developed XGBoost model. 

Model Hyperparameter 
Optimizer Dataset n_Estimators Learn-

ing_Rate 
Max_De

pth 
Sub-

sample 
Colsam-

ple_Bytree Gamma Min_Child_
Weight 

XGBoost 
Scikit-Optimize 

(skopt) 

dSM/H_RPKW, (un-baffled) 100.000 0.300 9.000 0.987 0.770 1.000 1.000 
dSM/H_RPKW, (baffled) 328.000 0.010 9.000 0.600 0.600 0.108 1.000 

dSM/H_TPKW, (un-baffled) 1000.000 0.010 3.000 1.000 0.637 0.360 1.000 
dSM/H_TPKW, (baffled) 100.000 0.044 6.000 1.000 0.655 0.000 1.000 

ZSF/H_RPKW, (un-baffled) 1000 0.300 3.000 0.914 1.000 0.4231 2.000 
ZSF/H_RPKW, (baffled) 358 0.300 6.000 0.6 0.789 0.000 3.000 

ZSF/H_TPKW, (un-baffled) 888 0.1942 6.000 0.814 0.990 0.1548 8.000 
ZSF/H_TPKW, (baffled) 527 0.300 3.000 0.980 1.000 0.079 3.000 

The MLP model uses the Tree-structured Parzen Estimator (TPE) algorithm from Hy-
peropt to optimize hyperparameters. The goal is to minimize the root mean squared error 
(RMSE) by adjusting parameters such as hidden layer sizes, activation functions, solvers, 
and regularization parameters. The process involves defining a search space, performing 
100 evaluations, and tracking performance metrics to select the best hyperparameters. The 
selected hyperparameters are used to train the final MLP model, which is then evaluated 
on both training and testing datasets using relevant metrics. The detailed hyperparameter 
values are presented in Table 4. 

Table 4. The structure of the developed MLP model. 

Model Hyperparameter Op-
timizer Dataset Hidden Layer 

Sizes Alpha Momentum Beta 1 Beta 2 

MLP 
Hyperopt TPE 

(Tree-structured Par-
zen Estimators) 

dSM/H_RPKW, (un-baffled) (100, 100) 0.000750926 0.9561 0.9987 0.9423 
dSM/H_RPKW, (baffled) (100, 100) 0.003859803 0.9127 0.9606 0.9546 

dSM/H_TPKW, (un-baffled) (100, 50) 0.000247312 0.9556 0.9914 0.9875 
dSM/H_TPKW, (baffled) (50, 50) 0.002464564 0.9457 0.9711 0.9673 

ZSF/H_RPKW, (un-baffled) (100, 100) 0.005015594 0.9179 0.9686 0.9595 
ZSF/H_RPKW, (baffled) (100,) 0.000176462 0.9123 0.9042 0.9673 

ZSF/H_TPKW, (un-baffled) (150,) 0.001310837 0.9498 0.9223 0.9525 
ZSF/H_TPKW, (baffled) (150, 100) 0.000111521 0.9183 0.9147 0.9774 

The SVR model uses GridSearchCV to optimize hyperparameters. It evaluates a 
range of values for C (1–10,000), gamma (0.005–100), and epsilon (0.01–0.25) using a 5-fold 
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cross-validation. The goal is to minimize the mean squared error (MSE) of predictions. 
The best model, determined by the lowest RMSE, is used to predict outcomes on both 
training and testing datasets. The structure of the SVR model in different cases is shown 
in Table 5. 

Table 5. The structure of the developed SVR model. 

Model Hyperparameter Optimizer Dataset C Gamma Epsilon Degree 

SRV GridSearchCV 

dSM/H_RPKW, (un-baffled) 9899 0.005 0.19 3 
dSM/H_RPKW, (baffled) 3031 0.005 0.25 3 

dSM/H_TPKW, (un-baffled) 102 50.00 0.01 3 
dSM/H_TPKW, (baffled) 9899 0.005 0.07 3 

ZSF/H_RPKW, (un-baffled) 203 0.005 0.07 3 
ZSF/H_RPKW, (baffled) 102 0.005 0.01 3 

ZSF/H_TPKW, (un-baffled) 9293 0.005 0.07 3 
ZSF/H_TPKW, (baffled) 102 0.005 0.01 3 

3. Results and Discussion 
3.1. Experimental Data Evaluation 

In this research, the characteristics of scour holes downstream of PKWs were evalu-
ated to investigate the effects of baffles in the weir outlet keys under different hydraulic 
conditions. Figure 9 illustrates the flow patterns for PKWs with and without baffles. Dur-
ing the tests, two types of flows were observed in the inlet and outlet keys. The inlet keys 
drew the approaching flow towards themselves, which then discharged over the down-
stream crest as a falling jet. In contrast, the flows over the outlet keys were discharged as 
an inclined jet over the downstream sloped part of the weir. The water level rose in the 
outlet keys due to flow interference caused by the falling jet from the weir lateral walls 
with the upstream flow, resulting in severe flow turbulence. 

 
(a) 

 
(b) 

Figure 9. Flow over TPKW: (a) without baffles and (b) with baffles. 

The flow surface downstream of the baffled weir was observed to rise with enhanced 
turbulence, which exhibited a highly three-dimensional nature. This is because the baffles 

 

Outlet key 

 

Outlet key 
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throw the water upwards, downstream of the outlet keys. Figure 10 compares the sche-
matic flow patterns over baffled and un-baffled weirs. The impinging jet in the un-baffled 
weir (Figure 10a) transformed into a surface jet in the baffled weir (Figure 10b). Addition-
ally, the interference between flow layers increased, and air entrainment was enhanced in 
the baffled weir. Furthermore, the friction and drag forces acting on the baffles, coupled 
with the low-pressure zone formed behind them, resulted in increased energy dissipation. 

 
(a) (b)  

Figure 10. Schematic of flow pattern along outlet keys in the weir: (a) without baffles and (b) with 
baffles. 

The amounts of upstream specific energy E0, downstream specific energy E1, and rel-
ative energy loss ΔE are calculated by Equations (4)–(6). The percentage difference of en-
ergy loss for the baffled and un-baffled weirs ΔEd was calculated using Equation (7). 

2
0

0 0 2
= +VE y

g
 (4)

2
1

1 1 2
= +VE y

g
 (5)

0 1

0

−Δ = E EE
E

 (6)

100−

−

Δ − ΔΔ = ×
Δ

baffled un baffled

un baffled
d

E EE
E

 (7)

where y0 and y1 are the flow depths upstream (=hu + P) and downstream (=hd + P) of the 
weir concerning initial bed level, respectively (Figure 1), V1 represents the flow velocity 
downstream of the weir, and ΔEbaffled and ΔEun-baffled are relative energy loss for baffled and 
un-baffled weirs, respectively. 

Figure 11 shows a comparison of the difference in relative energy loss for the RPKW 
and TPKE with and without the baffles. As can be seen in Figure 11, the presence of baffles 
in the weir outlet key has increased the energy losses for all the models. The average en-
ergy loss in the RPKW and TPKW with baffles is significantly higher than that of the weir 
without baffles, with increases of approximately 18 and 22%, respectively. Furthermore, 
it is observable in both weir geometries that at a constant relative tailwater depth (hd/P), 
the percentage differences in energy loss (ΔEd) are more pronounced at lower Froude 
numbers, and these differences diminish as the Froude number increases. The influence 
of baffles on flow characteristics is more pronounced at lower Froude numbers, which 
correspond to lower flow depths (and lower hu/HB ratios). In this scenario, more layers of 
flow are affected by the baffles, as illustrated in Figure 12a, resulting in higher energy 
dissipation. Conversely, as the Froude number increases and the hu/HB ratio enhances, the 
vortex flows created in the separation region, based on the theory of falling flow (non-
slip), prevent the full contact of flow with the baffles. Consequently, the effects of baffles 
on flow resistance decrease, and they only influence the lower layers of the flow (Figure 
12b), thereby reducing the overall energy loss. 

PKW toe 

Sediment bed 

Impinging jet 

PKW toe 

Sediment bed 

Surface jet 
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(a) (b)  

Figure 11. The difference of relative energy loss for weirs with and without baffles for: (a) RPKW 
and (b) TPKW. 

 
(a)                   (b) 

Figure 12. Schematic of the baffles effects on the flow layers with: (a) hu/HB = 1.00 and (b) hu/HB = 
1.88. 

Figure 13 compares the temporal variations of scour depth for weirs with and with-
out baffles. In this figure, t represents the time of scouring, and te denotes the equilibrium 
time. The scour rate is high initially but decreases to an insignificant level by the end of 
the tests. The presence of baffles reduces the scour depth and its temporal variations. In-
creasing ΔH/hd and Fr leads to an increase in scour depth. The results show that 80% of 
scouring occurs within the first hour. For the range of 0.75 ≤ ΔH/hd ≤ 0.85, 73–87% of scour 
depth development occurs in the initial 30% of the test duration. The reducing effect of 
baffles on scour depth becomes more pronounced as the relative drop height decreases. 
At the equilibrium state, baffled weirs exhibit average scour depths that are 6.5, 15 and 
15.5% less than those without baffles for the respective drop height ranges of 1.61  
ΔH/ℎ   1.74, 0.75  ΔH/ℎ   0.85 and 0.27  ΔH/ℎ   0.39 [Figure 13a–c]. 
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(a) 1.61  ΔH/ℎ   1.74 (b) 0.75  ΔH/ℎ   0.85 

 

 
(c) 0.27  ΔH/ℎ   0.39 

Figure 13. Temporal variations of the scour depth in the tests with and without baffles. 

This study examined the changes in bed topography downstream of a weir, with and 
without the presence of baffles, under various Froude numbers and relative tailwater 
depths (Figure 14). The results indicate that increasing the Froude number and relative 
drop height increases the erosive power and sediment transfer downstream, while the 
presence of baffles reduces the topographical changes and limits the scour hole extension, 
with the smallest scour hole observed at Fr = 1.25 and ΔH/hd = 0.75, resulting in a 21% 
reduction in scour. However, the difference in bed topography changes between baffled 
and un-baffled weirs decreased at the higher Froude numbers due to increased baffle re-
sistance, and at the minimum Froude number, the baffled weir exhibited more flow inter-
ference and air entrainment, leading to less pronounced bed topography variations com-
pared to the un-baffled configuration. The findings provide valuable insights into the role 
of baffles in modulating bed topography changes under varying hydraulic conditions, 
which can inform the design and optimization of weir structures for improved sediment 
management and environmental sustainability. 
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(a) (b) 

Figure 14. Typical downstream bed topography in the TPKW: (a) without baffles and (b) with 
baffles. 

The effects of Froude number and relative drop height on the longitudinal bed pro-
files for the weirs with and without baffles are compared in Figure 15. This figure corre-
sponds to the section with the deepest scour depth, which is downstream of outlet keys. 
According to this figure, the maximum scour depth at the baffled TPKW is, on average, 
14% less than that of the un-baffled weir. The greatest effect of baffles on the mentioned 
distance occurred for Fr = 2.00, 1.30, and 0.82. Compared to the un-baffled weir, these 
distances were 8.8, 15, and 19% farther at the relative drop heights of 1.72, 0.78, and 0.31, 
respectively. This suggests that the presence of baffles can significantly reduce the maxi-
mum scour depth and extend the distance of the scour hole, particularly under moderate 
to high Froude number conditions and varying relative drop heights. The baffles appear 
to effectively dissipate the flow energy and disrupt the sediment transport processes, lead-
ing to a less pronounced scour profile. Interestingly, it was also observed that the length 
of the scour hole for the baffled and un-baffled weirs, with Fr = 0.76 and ΔH/ℎ  = 0.27, 
which is lower than the weir height. However, for other flow conditions, the scour hole 
length is greater than the weir height. This highlights the complex interplay between the 
hydraulic parameters and the resulting bed morphology, which should be carefully con-
sidered in the design and operation of such structures. 
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(a) 1.61  ΔH/ℎ   1.74 (b) 0.75  ΔH/ℎ   0.85 (c) 0.27  ΔH/ℎ   0.39 

Figure 15. Comparison of the longitudinal bed profiles downstream of the weirs with and without 
baffles. 

Equation (2) describes the relationship between the relative maximum scour depth 
and the relative weir toe scour as a function of the Froude number and the relative drop 
height, as shown in Figure 16. The results indicate that the relative maximum scour depth 
and weir toe scour increase with higher Froude numbers for both baffled and un-baffled 
weirs. Importantly, the presence of baffles significantly reduces weir toe scour by altering 
the downstream flow. At constant Froude numbers, baffled weirs exhibit lower relative 
maximum scour depth and weir toe scour compared to un-baffled weirs. Specifically, the 
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TPKW shows 9.7 and 14% reductions in maximum scour depth and weir toe scour, re-
spectively, compared to the RPKW. The effectiveness of baffles in reducing scour is more 
pronounced when the tailwater depth is lower, as the baffles can influence a greater por-
tion of the flow layers in this scenario. However, baffles still significantly mitigate weir 
toe scour, even when the tailwater depth is high, by transforming the impinging jets into 
surface jets. This change in flow pattern improves the overall stability of the weir struc-
ture. 

(a) (b) 

Figure 16. Changes of: (a) relative maximum scour depth, and (b) relative weir toe scour depth 
with Froude number. 

The percentage scour reduction for the maximum scour depth, weir toe scour depth, 
maximum scour depth location, and scour hole length, for different tests, are presented in 
Figure 17. 
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Figure 17. Percentage reduction in (a) dSM, (b) ZSF, (c) XSM and (d) LS with and without baffles. 
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According to Figure 17, baffled weirs show significant reductions in maximum scour 
depth (11–14%) in RPKW and TPKW [Figure 17a] and weir toe scour (25–41%) in RPKW 
and TPKW compared to un-baffled weirs [Figure 17b]. The effect is more pronounced at 
lower Froude numbers when more flow layers are affected by the baffles. Furthermore, 
baffled weirs experience a 9–11.7% downstream shift in the location of maximum scour 
depth [Figure 17c] and a 7–13% reduction in scour hole length [Figure 17d]. The greatest 
reduction (25%) in scour hole length was observed in the TPKW with test B30-18. 

The scour hole areas and volumes were calculated using Tecplot 360 EX software and 
presented in Table 6. The presence of baffles had a significant impact on reducing scour. 
The greatest effects were observed in test B30-18, where baffles reduced the scour hole 
area and volume by 58.2 and 61.8%, respectively, compared to un-baffled TPKWs. In gen-
eral, baffles are more effective at reducing scour downstream of TPKWs compared to 
RPKWs. This is due to the influence of the weir keys in TPKWs, which allows the baffles 
to achieve greater reductions in scour hole size. In contrast, baffles have a less dramatic 
impact on mitigating downstream scour around RPKWs. On average, baffles reduced the 
scour hole area and volume by 31.6 and 32.2% in TPKWs, respectively, compared to 26.7 
and 30.3% in RPKWs. This suggests that the presence of baffles is more effective in miti-
gating scour in TPKWs under the tested hydraulic conditions. 

Table 6. Comparison of area and volume of scour hole downstream of weirs with and without baf-
fles. 

Symbol of Test 
Difference (%) Difference (%) 

AS VS 
# RPKW TPKW RPKW TPKW 

30-8 35.5 38 36.5 39 
30-10 31 35 44.4 45.7 
30-13 25.8 31.8 51.2 52.3 
30-15 42.3 45.3 56.8 57.2 
30-18 56.2 58.2 60.9 61.8 
40-8 27.3 37.3 19.3 21 

40-10 26.5 35 31.5 34 
40-13 29 31 44.1 46.8 
40-15 21.2 24.2 40 41 
40-18 16.6 17.1 33.3 34.2 
50-8 34.8 39.8 25.3 26.9 

50-10 27 34.5 32.5 34 
50-13 23 29 20 20.5 
50-15 15.5 18 24 25 
50-18 5.6 6.1 29.4 31.4 
60-8 14.3 19.3 20.6 26.2 

60-10 27 34 15.5 19 
60-13 36.8 47.8 8.5 11.8 
60-15 25 32.5 7.25 9.65 
60-18 13.3 18.3 4.9 6.9 

Average (%) 26.7 31.6 30.3 32.2 

This research developed empirical equations to accurately predict the relative scour 
depths (dSM/H and ZSF/H) downstream of a weir, applicable for scenarios both without 
baffles (Equation (8)) and with baffles (Equation (9)). These equations can effectively cal-
culate the scour parameters for both RPKWs and TPKWs. The equations accommodate a 
wide range of hydraulic conditions, including 0.74 ≤ Fr ≤ 2.12, 0.26 ≤ ∆H/hd ≤ 1.74, and 0.99 
≤ hu/HB ≤ 1.88. 
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The coefficient Kζ accounts for the influence of weir shape, and Table 7 outlines the 
empirical constants ‘a’, ‘b’, and ‘c’. This table also includes the coefficient of determination 
R2, RMSE, and MRPE to comprehensively assess the precision and accuracy of the devel-
oped equations. According to Table 7, these equations estimate scour parameters, achiev-
ing impressive results with an average R2 = 0.951, RMSE = 0.145, and MRPE = 4.429%. 
Figure 18 compares calculated and observed scour depths for weirs with and without baf-
fles. This visual comparison demonstrates the high accuracy and predictive capability of 
the proposed equations, which can reliably estimate the scour depths under a wide range 
of hydraulic conditions. 

Table 7. Coefficients, exponents, and statistical indices of Equations (8) and (9). 

Ψ Eq. N Weir Kζ a b # c R2 RMSE MRPE (%) 

dSM 
8 

RPKW 3.327 
0.488 0.048 un-baffled - 

0.954 0.175 3.857 
TPKW 2.845 0.961 0.119 2.856 

9 
RPKW 2.737 

0.734 0.013 baffled 0.408 
0.925 0.227 6.081 

TPKW 1.945 0.951 0.167 4.141 

ZSF 
8 

RPKW 2.755 
0.063 0.355 un-baffled - 

0.945 0.140 3.641 
TPKW 2.234 0.955 0.101 3.472 

9 
RPKW 2.215 

0.014 0.565 baffled 0.248 
0.945 0.154 6.263 

TPKW 1.340 0.971 0.076 5.120 
 

(a)

(b)
un-baffled baffled 

Figure 18. Comparison of the observed and calculated values of: (a) maximum scour depth and (b) 
weir toe scour depth. 
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3.2. Modeling Outputs 
This study evaluated the performance of optimized MLP, SVR, and XGBoost models 

in predicting maximum scour depth and weir toe scour depth, both with and without 
baffles, for training and testing datasets. Table 8 demonstrates that the MLP model out-
performs both XGBoost and SVR in predicting dSM/H across all scenarios, with superior 
performance in both the training and testing phases. The MLP model achieves an aver-
aged R2 of 0.988, RMSE of 0.035, and MRPE of 1.036% across all scenarios. The adoption 
of the MLP model over XGBoost and SVR yields substantial improvements, with notable 
increases in R2 (4.50% and 0.2%), decreases in RMSE indices (5.8% and 0.5%), and signifi-
cant reductions in MRPE indices (135.8% and 13.3%). 

Specifically, the MLP model achieves superior results for maximum scour depth pre-
diction. It outperforms both un-baffled and baffled RPKW scenarios by 3.7% and 6.7% in 
terms of R2 and surpasses un-baffled and baffled TPKW scenarios by 2% and 4%. The MLP 
model yields RMSE values of 0.046 for un-baffled RPKW and 0.035 for baffled RPKW, 
which are better than the results in Table 7 (0.175 and 0.227, respectively). In un-baffled 
and baffled TPKW scenarios, the MLP model’s RMSE values are 0.036 and 0.024, outper-
forming the corresponding values from Equations (8) and (9) (0.119 and 0.167). Regarding 
MRPE, the MLP model significantly outperforms Equations (8) and (9) for both RPKW 
and TPKW scenarios. 

Table 8. The results of dSM/H and statistical indices. 

Weir Type Model R2 Train R2 Test RMSE Train RMSE Test MRPE Train MRPE Test 

RPKW, 
(un-baffled) 

XGBoost 0.828 0.944 0.334 0.104 7.753 2.602 
SVR 0.948 0.987 0.183 0.051 4.290 1.377 
MLP 0.944 0.989 0.190 0.046 4.713 1.244 

RPKW,  
(Baffled) 

XGBoost 0.924 0.967 0.248 0.055 6.331 1.578 
SVR 0.969 0.883 0.159 0.103 4.027 2.565 
MLP 0.966 0.987 0.167 0.035 3.973 0.992 

TPKW, 
(un-baffled) 

XGBoost 0.855 0.959 0.242 0.066 5.328 1.527 
SVR 0.999 0.924 0.010 0.090 0.315 2.700 
MLP 0.942 0.988 0.153 0.036 4.283 1.138 

TPKW, 
(Baffled) 

XGBoost 0.988 0.938 0.083 0.057 2.380 1.879 
SVR 0.982 0.846 0.103 0.090 2.947 3.183 
MLP 0.981 0.989 0.006 0.024 0.184 0.769 

The performance of the different ML models in predicting ZSF/H for various scenarios 
is summarized in Table 9. For un-baffled RPKW, the MLP model outperformed XGBoost 
and SVR, achieving the highest R2 (0.998), lowest RMSE (0.004), and lowest MRPE (0.167). 
For baffled RPKW, the MLP model again demonstrated superior performance. For un-
baffled TPKW, the MLP model had the highest R2 (0.992), lowest RMSE (0.024), and lowest 
MRPE (0.904). However, for baffled TPKW, XGBoost performed best, with the highest R2 
(0.965), lowest RMSE (0.048), and lowest MRPE (2.798). 

The MLP consistently outperformed XGBoost and SVR models across most configu-
rations, except for baffled TPKW, where XGBoost performed better. The significant im-
provements in statistical indices demonstrate the MLP model’s robustness and accuracy 
in predicting ZSF/H, outperforming traditional models. Specifically, the MLP model sur-
passes both un-baffled and baffled RPKW scenarios by 97% and 87% in terms of RMSE 
and outperforms un-baffled and baffled TPKW scenarios by 76% and 33%. 
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Table 9. The results of ZSF/H and statistical characteristics. 

Weir Type Model R2 Train R2 Test RMSE Train RMSE Test MRPE Train MRPE Test 

RPKW, 
(un-baffled) 

XGBoost 0.881 0.918 0.215 0.102 7.146 4.325 
SVR 0.925 0.995 0.170 0.024 4.443 0.900 
MLP 0.933 0.998 0.161 0.004 4.222 0.167 

RPKW,  
(Baffled) 

XGBoost 0.999 0.962 0.009 0.054 0.439 2.330 
SVR 0.976 0.907 0.106 0.085 3.475 4.517 
MLP 0.998 0.994 0.011 0.020 0.422 1.084 

TPKW, 
(un-baffled) 

XGBoost 0.68 0.868 0.277 0.103 11.216 4.557 
SVR 0.959 0.937 0.100 0.071 3.729 3.516 
MLP 0.937 0.992 0.123 0.024 4.572 0.904 

TPKW, 
(Baffled) 

XGBoost 0.949 0.965 0.103 0.048 7.023 2.798 
SVR 0.976 0.849 0.069 0.100 4.405 9.680 
MLP 0.997 0.960 0.003 0.051 0.230 4.794 

Table 10 illustrates the feature importance analysis conducted by the MLP model. 
This analysis sheds light on the relative significance of each input variable in determining 
the model’s predictive accuracy. According to the results depicted in Table 10, it is evident 
that in the scenario without baffles, the impact of ΔH/hd on dSM/H and ZSF/H outweighs 
that on Fr, except in the case of ZSF/H for the un-baffled RPKW, where the influence of Fr 
exceeds ΔH/hd by 46%. On the other hand, for the baffled PKW, hu/HB emerges as the most 
crucial parameter in predicting dSM/H and ZSF/H. The importance scores reflect this, with 
values of 0.493 and 0.672 for predicting dSM/H in RPKW and TPKW, and 0.403 and 0.355 
for predicting ZSF/H in RPKW and TPKW, respectively. 

Table 10. Feature importance analysis by the MLP model. 
 

Features Weir Model 
Importance Score 

Fr ΔH/hd hu/HB 

dSM/H 

RPKW (un-baffled) 0.418 0.582 - 
RPKW (baffled) 0.240 0.267 0.493 

TPKW (un-baffled) 0.431 0.569 - 
TPKW (baffled) 0.164 0.164 0.672 

ZSF/H 

RPKW (un-baffled) 0.593 0.407 - 
RPKW (baffled) 0.260 0.340 0.403 

TPKW (un-baffled) 0.484 0.516 - 
TPKW (baffled) 0.327 0.318 0.355 

Figure 19 presents a comparison of the estimated values of dSM/H and ZSF/H using 
XGBoost, MLP, and SVR models against their measured values. The majority of the fore-
casted test data fall within ±10% error lines, confirming that the proposed machine learn-
ing models accurately predict scour parameters for PKWs. The results show that the MLP 
model consistently outperforms the other models. 
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Figure 19. Comparison of machine learning models for predicting of: (a) maximum scour depth and 
(b) weir toe scour depth. 

The Taylor plots (Figure 20) compare the performance of ML models in predicting 
dSM/H and ZSF/H for baffled and un-baffled RPKW and TPKW. The MLP model consist-
ently demonstrates superior performance, with the highest correlation and closest align-
ment with measured data, indicating superior predictive performance and alignment with 
actual measurements. XGBoost and SVR models also perform well but with slightly lower 
correlation and higher deviation compared to the MLP model. 

Additionally, the Taylor plots provide a visual representation of the models’ stand-
ard deviation and correlation coefficient relative to the observed data. The closer a model’s 
point is to the reference point, the better its performance in terms of matching the observed 
variability and correlation. The MLP model’s points are closest to the reference point for 
both dSM/H and ZSF/H predictions, further confirming its superior performance compared 
to the other models. 
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Figure 20. Taylor diagrams for predictions of: (a) maximum scour depth and (b) weir toe scour 
depth. 

4. Conclusions 
This comprehensive study has investigated the effects of baffled outlet keys on en-

ergy dissipation and bed topographical changes downstream of rectangular piano key 
weirs (RPKWs) and trapezoidal piano key weirs (TPKWs) under various hydraulic con-
ditions. Advanced machine learning models, including MLP, SVR, and XGBoost, have 
also been implemented to predict scour depths accurately. The key findings and applica-
tions of this work are as follows: 
1. The presence of baffles in weir outlet keys significantly alters the flow patterns, 

changing from impinging jets in un-baffled weirs to surface jets in baffled weirs. This 
effect leads to increased energy losses, with the average energy loss in RPKW and 
TPKW with baffles being 22% and 18% higher, respectively, compared to the weir 
without baffles. This effect is more pronounced at lower Froude numbers, when the 
baffles affect more flow layers. Baffles have a more significant reducing effect at 
lower relative drop heights. Conversely, increasing the Froude number and relative 
drop height increases scour depth. 

2. The baffles significantly reduce scour depths and their temporal variations, with baf-
fled RPKW and TPKW weirs showing, on average, an 11% and 14% reduction in 
scour depth at equilibrium compared to un-baffled weirs. 

3. The baffles significantly reduce topographical changes and scour hole extension, re-
sulting in a downstream shift of 9% and 11.7% in the maximum scour depth location 
for RPKW and TPKW, respectively, and reductions of 7% and 13% in scour hole 
length for RPKW and TPKW, respectively. Additionally, the relative maximum scour 
depth and weir toe scour increase with higher Froude numbers for both baffled and 
un-baffled weirs. 

4. Baffles reduced the scour hole area and volume by 26.7% and 30.3% in RPKWs and 
31.6% and 32.2% in TPKWs. The effects of baffles on reducing scouring were more 
significant in TPKWs than RPKWs and more pronounced at lower Froude numbers. 
This information can be utilized to design more stable and resilient hydraulic struc-
tures, mitigating the risk of foundation erosion and ensuring the long-term integrity 
of critical infrastructure. 

5. Novel empirical equations were introduced to accurately predict the relative scour 
depths downstream of a PKW, applicable for scenarios both without baffles (Equa-
tion (8)) and with baffles (Equation (9)), achieving impressive results with an average 
R2 = 0.951, RMSE = 0.145, and MRPE = 4.429%. 

6. The study has demonstrated the superior performance of the MLP machine learning 
model in estimating local scour characteristics downstream of PKWs. It outper-
formed traditional regression models (Equations (8) and (9)) and other machine 
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learning algorithms in most scenarios with an average R2 = 0.988, RMSE = 0.035, and 
MRPE = 1.036%, except in predicting weir toe scour depth for baffled TPKW, where 
XGBoost performed better with R2 = 0.965, RMSE = 0.048, and MRPE = 2.798%. This 
predictive tool can be integrated into the design process, enabling engineers to accu-
rately assess scour risks and optimize the structural design of weirs and similar hy-
draulic structures. 

7. Taylor plots confirmed the MLP model’s robustness, with high correlation and low 
prediction error. In conclusion, the optimized MLP model offers a robust and reliable 
predictive tool for assessing scour characteristics in PKW designs within the specified 
range of 0.74 ≤ Fr ≤ 2.12, 0.26 ≤ ∆H/hd ≤ 1.74, and 0.99 ≤ hu/HB ≤ 1.88, outperforming 
traditional empirical approaches and other ML models in most evaluated scenarios. 

8. The feature importance analysis by the MLP model provides insights into the relative 
contribution of each input variable. For un-baffled PKW, ∆H/hd effect on scour is 
greater than Fr, except for RPKW weir toe scour where Fr effect is 46% more. For 
baffled PKW, hu/HB is most important in forecasting scour. 

9. The findings from this study contribute to a deeper understanding of the intricate 
relationships between flow patterns, energy dissipation, and bed topography in the 
context of PKWs. These insights can be leveraged to enhance the design and perfor-
mance of PKWs, resulting in more efficient, sustainable, and resilient structures. 
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