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A B S T R A C T

There have been impressive advances in the physical and mathematical modelling of complex
physiological systems in the last few decades, with the potential to revolutionise personalised
healthcare with patient-specific evidence-based diagnosis, risk assessment and treatment de-
cision support using digital twins. However, practical progress and genuine clinical impact
hinge on successful model calibration, parameter estimation and uncertainty quantification,
which calls for novel innovative adaptions and methodological extensions of contemporary
state-of-the-art inference techniques from Statistics and Machine Learning. In the present
study, we focus on two computational fluid-dynamics (CFD) models of the blood systemic and
pulmonary circulation. We discuss state-of-the-art emulation techniques based on deep learning
and Gaussian processes, which are coupled with established inference techniques based on
greedy optimisation, simulated annealing, Markov Chain Monte Carlo, History Matching and
rejection sampling for computationally fast inference of unknown parameters of the CFD models
from blood flow and pressure data. The inference task was set as a competitive challenge
which the participants had to conduct within a limited time frame representative of clinical
requirements. The performance of the methods was assessed independently and objectively by
the challenge organisers, based on a ground truth that was unknown to the method developers.
Our results indicate that for the systemic challenge, in which an idealised case of noise-free
data was considered, the relative deviation from the ground-truth in parameter space ranges
from 10−5% (highest-performing method) to 3% (lowest-performing method). For the pulmonary
challenge, for which noisy data was generated, the performance ranges from 0.9% to 7%
deviation for the parameter posterior mean, and from 35% to 570% deviation for the parameter
posterior variance.
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Fig. 1. Panel (a): Illustration of the concept of emulation. See main text for details. Panel (b): Overview of the two competition challenges: systemic model –
parameter estimation, pulmonary model – parameter estimation and uncertainty quantification (UQ), with the associated time window within which submissions
had to be made.

1. Introduction

There have been impressive advances in the physical and mathematical modelling of complex systems in the last few decades,
which may for example be based on coupled partial differential equations (PDEs), and increasingly cover areas that until recently
have been regarded as elusive for the quantitative sciences [1,2]. This includes complex ecosystems, e.g. modelling mitigation
strategies for credible net zero implementations [3]; epidemiology, e.g. modelling the spread of pathogens and their infection
patterns [4]; human physiology, e.g. assessing treatment effects for cardiovascular diseases [5]; urban studies, e.g. predicting traffic
flow to ultimately prevent congestion [6]; and energy, e.g. developing forecasting and decision-support tools that support the
energy sector to plan energy use and generation, and manage energy networks [7]. Common to all these examples is that the
underlying mathematical equations describing the processes are intractable, that is, they have no closed-form solution. However,
recent advancements in numerical methods and computer technology enable accurate and efficient numerical simulations, allowing
the creation of a ‘‘digital twin’’, i.e., the virtual version of a complex real-world object or process that serves as a digital counterpart.
Our particular focus is on cardiovascular modelling, which has the potential to revolutionise personalised healthcare with accurate
patient-specific risk prediction and evidence-based treatment through digital replicas [8,9]. More specifically, our work focuses on
cardiovascular modelling based on coupled nonlinear PDEs [10].

A PDE model of a complex physical system depends on various physical parameters, as well as initial and boundary conditions.
Model parameters that cannot be measured or derived from first principles have to be estimated indirectly from available data. For
instance, soft-tissue mechanical parameters of the heart muscle in vivo, related to the flexibility of the muscle fibres, have to be
estimated from non-invasive magnetic resonance image scans of the heart [11]. This process, which is called model calibration or
inference, is critical. If the model parameters are not estimated correctly, the digital twin provides a distorted virtual representation
of the real-world object or process, and predictions made with it can be dangerously misleading [12]. Moreover, if the intrinsic
uncertainty of the parameter estimation is not quantified accurately, any risk assessment may be flawed, leading to wrong decisions
with potentially serious consequences, particularly in safety-critical applications.

A fundamental challenge for research and application is the fact that established parameter inference and uncertainty quantifi-
cation (UQ) techniques assume that the inverse modelling (estimating the model parameters that generated a given data set) is
intractable, whereas the forward modelling (getting data from a model with known parameters) is tractable. To elaborate on this,
a linear model is double tractable, in that both the forward problem (which is just a linear weighted sum) and the inverse problem
(the maximum likelihood solution, which is a product of three matrices and a data vector) have a closed-form solution. For more
complex models, like neural networks (NNs), the inverse problem is intractable, in that there is no closed-form solution for the
maximum likelihood solution and the likelihood surface is typically multimodal with many local optima, calling for the application
of iterative numerical optimisation or sampling routines. The forward problem, however, has a closed-from solution, given by the
definition of the NN itself, which is a nested structure of weighted summations subjected to nonlinear transformations. The practical
solution usually requires numerical computation, but on a state-of-the-art computer that only takes the fraction of a second.

On the contrary, a complex physical model based on a nonlinear PDE system subject to various boundary conditions is not
tractable: not only do we lack a closed-form solution of the equations themselves, we may not even be able to prove that such a
solution exists. State-of-the-art approaches are based on the application of numerical routines using finite element discretisation.
However, as opposed to the numerical computation required for getting an output from a NN, this typically leads to substantial
computational costs in the order of several minutes or even hours, even when using advanced high-performance computing. We are
thus facing a double intractable problem for which established iterative inference routines, which are based on repeatedly getting
outputs from the model for different parameter configurations typically thousands of times, are practically infeasible.

We address this problem with emulation [13], a concept which is illustrated in Fig. 1(a). The objective is to develop a
computationally tractable statistical surrogate model of the original intractable mathematical or physical model (the ‘‘digital twin’’).
This can be regarded as developing a digital conjoined twin that combines the domains of (i) the mathematical or physical model
and (ii) statistics, machine learning, and data science providing a novel physical and mathematical sciences powerhouse. Data in
the real world are produced by processes (e.g. physical, physiological, ecological, or socio-economic) that are unknown. The aim
2
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of complex mathematical models is to build a digital twin of these processes that can give insight into the mechanisms driving
them, predict outcomes and simulate data. The mathematical model can in principle be calibrated to minimise the discrepancy
between simulated and real data. However, due to the high computational costs of repeated simulations, this approach is not viable
in practice. We therefore build a statistical surrogate model to emulate the intractable mathematical model. This approach can be
regarded as the creation of a pair of digital conjoined twins, whereby the statistical surrogate model is informed by the intractable
mathematical model (the digital twin) for emulation, which in turn depends on the statistical surrogate model for calibration.

The current study considers two computational fluid-dynamics (CFD) models, for which statistical surrogate models are
onstructed. The surrogates are needed to enable fast statistical inference, which is essential for clinical translation. The first CFD
odel simulates haemodynamics in the large arteries of the systemic circulation within a patient with a single ventricle (Fontan)

irculation. This specialised circuit is obtained after completion of three surgeries redirecting the vessels generating an effective
ingle ventricle pump. Data used in this study are from a double outlet right ventricle (DORV) patient, a patient for which by birth
he aorta is branching from the right ventricle [14]. The systemic model was developed to study how remodelling of the aorta impacts
erfusion, comparing haemodynamics from DORV patients (the control group) with patients with hypoplastic left heart syndrome
HLHS) [15]. The focus was on predicting flow to the liver, which was an organ outside the imaged region. The latter is important
s single ventricle Fontan patients experience liver disease [16,17]. The second application uses a similar mathematical model to
imulate haemodynamics in the pulmonary arteries and veins developed for the analysis of pulmonary hypertension [10]. The aim
s to determine how changes in the pulmonary arterial, venous, and microcirculatory tree affect the development of pulmonary
ypertension [10]. For both models, understanding under what conditions disease type can be alleviated is of importance for
mproving treatment. Both models integrate imaging and haemodynamic (blood pressure and flow) data and provide insight into
aemodynamics waveforms over a single cardiac cycle.

Before being used for prediction, these models need to be calibrated to data. The calibration process consists of inferring the
nknown model parameters, which describe the material properties of the blood vessels (e.g., stiffness) and the geometric features
f the distal vasculature, which is quantified through the ‘‘structured tree’’ model [18] from limited, noisy blood pressure and flow
ata.

The current study is focused on employing computational tools based on emulation for accurate, robust and computationally
fficient inference of unknown model parameters from blood flow and pressure data. We discuss three state-of-the-art emulation
pproaches based on Gaussian Processes (GPs) [19,20] and deep residual NNs [21], which we couple with established statistical
nference techniques based on greedy optimisation [22], simulated annealing [23] and UQ using Markov Chain Monte Carlo
MCMC) [24], and History Matching [25] with rejection sampling [26]. The performance of the proposed methods is comparatively
valuated with respect to estimation accuracy and UQ on the systemic and pulmonary models. An essential part of the assessment
rocess is that the parameter estimation and UQ analysis must be accurate and conducted within a limited time interval. This
imitation is with clinical translation in mind, to mimic clinical practice and decision support.

This study was run as part of a competition evaluating emulation methods, and the evaluation was conducted objectively in a
lind process by the competition organisers. That is, participants were free to choose the methods of their choice, and we describe in
ection 6 how we assessed their performance. Our article describes the three best-performing methods in Section 5 (with an overview
hown in Table 3). We believe that our study is highly topical in that these methods are indicative of the current state-of-the-art,
over three principled methodological paradigms and, most importantly, describe innovative ways of how these methods have to
e adapted and tuned in practice to meet clinical time constraints.

. Physical models

The computational models consist of three parts: (1) a network forming the domain in which haemodynamics are predicted, (2)
system of PDEs that simulate haemodynamics in the large, proximal vessels and (3) boundary conditions specifying the inflow

nd form a representation of the microvasculature. The two models are distinct in their physiological representation and vascular
omponents, but are derived from the same theoretical foundations.

.1. Computational domain

For both applications the computational domain (a labelled tree) representing the vascular geometry is generated from medical
mages. Further details about the computational domain can be found in Section 1.1 of the Supplement.

.1.1. Systemic model
The systemic model, shown in Fig. 2(a), predicts haemodynamics (blood flow and pressure) in the systemic arterial tree.

he patient studied here has a double outlet right ventricle. To gain insight into the patient’s physiology, this study models
aemodynamics in a network including seven vessels from the aortic trunk and the proximal head and neck vessels (shown in
ig. 2(a)).

.1.2. Pulmonary model
The pulmonary model, shown in Fig. 2(b) predicts haemodynamics (blood flow and pressure) in the pulmonary arteries and

eins under normotensive conditions (denoting normal blood pressure). The model domain (shown in Fig. 2(b)) includes fifteen
3

roximal, large arteries that are connected to twelve proximal, large veins.
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Fig. 2. Segmented and rendered 3D surfaces for (a) the systemic and (b) the pulmonary model. For both models data are measured at locations marked with
continuous (flow data) and dashed (pressure data) lines. For both models the small vessels are represented by structured trees. The systemic model uses a
one-sided tree (c), while the pulmonary model uses a two-sided tree (d). For both models, the structured tree is parameterised by radii scaling factors 𝛼 and 𝛽,
a length-to-radius ratio, 𝑙𝑟𝑟 (two length-to-radius ratios in the pulmonary model), and a minimum radius, 𝑟min, describing the radius where the structured tree
terminates.

2.2. Large vessel fluid dynamics

In the large vessels, blood flow 𝑞(𝑥, 𝑡) (cm3/s), pressure 𝑝(𝑥, 𝑡) mmHg, and vessel area 𝐴(𝑥, 𝑡) (cm2) are computed by solving
a 1D fluid dynamics model. The blood is assumed to be incompressible, Newtonian, and viscous with constant density, 𝜌 = 1.057
(g/cm3), and viscosity, 𝜈 = 0.032 (g/cm/s). The vessels are assumed to be cylindrical, axisymmetric, and impermeable with a circular
cross-section. Pressure, flow, and area satisfy conservation of mass and momentum balance equations of the form [18]

𝜕𝐴
𝜕𝑡

+
𝜕𝑞
𝜕𝑥

= 0,
𝜕𝑞
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝑞2

𝐴

)

+ 𝐴
𝜌
𝜕𝑝
𝜕𝑥

= −2𝜋𝜈𝑅
𝛿

𝑞
𝐴
, (1)

where 0 ≤ 𝑥 ≤ 𝐿 are the axial coordinates and 0 ≤ 𝑡 ≤ 𝑇 are the temporal coordinates, and 𝜈 = 𝜇
𝜌 (cm2/s) is the kinematic viscosity.

𝑅(𝑥, 𝑡) is the radius of the vessel, 𝛿 =
√

𝜈𝑇 ∕2𝜋 (cm) is the boundary layer thickness, 𝑇 (𝑠) is the cardiac cycle duration. To model
the stress–strain behaviour of the arterial wall, two common, linear stress–strain relationships are considered

𝑝(𝑥, 𝑡) − 𝑝0 =
4
3
𝐸ℎ
𝑟0

(√

𝐴
𝐴0

− 1
)

, 𝑝(𝑥, 𝑡) − 𝑝0 =
4
3
𝐸ℎ
𝑟0

(

1 −
√

𝐴0
𝐴

)

, (2)

where 𝐸 (g/cm/s2) is Young’s modulus, ℎ (cm) is the vessel wall thickness, 𝑝0 (g/cm/s2) is the reference pressure, 𝑟0 (cm) is
the reference radius, and 𝐴0 (cm2) is the reference area. The first pressure–area relationship is used in the systemic model,
while the second formulation is used in the pulmonary model. Both wall models have been analysed extensively in the systemic
circulation [27], and each have their own benefits and limitations in describing in-vivo haemodynamics. We consider both
stress–strain relationships for diversification purposes in the competition.

Boundary conditions are specified at the inlet and outlet of each vessel. For both models, a flow waveform is imposed from
magnetic resonance imaging (MRI)-measured data at the network inlet. The pulmonary model requires an additional distal boundary
condition, for which we use a dynamic, left-atrial pressure waveform. At the vessel junctions mass conservation and pressure
continuity are enforced via

𝑞𝑝(𝐿, 𝑡) = 𝑞𝑑1 (0, 𝑡) + 𝑞𝑑2 (0, 𝑡), 𝑝𝑝(𝐿, 𝑡) = 𝑝𝑑1 (0, 𝑡) = 𝑝𝑑2 (0, 𝑡), (3)

where subscript 𝑝 denotes the parent vessel and subscripts 𝑑1 and 𝑑2 denote the daughter vessels. As outflow boundary conditions
at the terminal vessels, we use structured tree boundary conditions as they represent small blood vessels down to the capillary
level, which cannot be obtained from micro-computed tomography (CT) due to insufficient image resolution. Section 1.2 of the
Supplement contains additional details about the fluid dynamics in the large vessels.
4
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Table 1
Range of values for the biophysical parameters of the systemic model and the ‘‘ground-truth’’ parameter values that generated
the competition noise-free data.
Parameter 𝑓 LA

2 𝑓 LA
3 𝑓MV

2 𝑓MV
3 𝛼

Range [−45,−25] [2 ⋅ 105 , 9 ⋅ 105] [−45,−25] [2 ⋅ 105 , 9 ⋅ 105] [0.85, 0.94]
‘‘Ground-truth’’ value −32.9 4.26 ⋅ 105 −40.6 6.43 ⋅ 105 0.88

2.3. Small vessel fluid dynamics

The core of the small vessel model is the structured tree shown in Fig. 2(c) and described in detail in [18]. This self-similar
ifurcating network is composed of straight vessels in which all properties relate to the vessel radii. The radius of the daughter
essels scale with factors 𝛼 and 𝛽 from the parent vessel, and the length of each vessel is related to its radius by a constant factor
𝑟𝑟. A minimum radius, 𝑟min is imposed, which describes the radius where the structured tree terminates.

The structured tree differs for the two models. For the systemic model, we only include arterial vessels that branch until small
rterioles (shown in Fig. 2(c)). In the pulmonary model, we use a two-sided structured tree (shown in Fig. 2(d)) allowing blood to
e transmitted between the arterial and venous networks. Further details about the one-sided and two-sided structured trees can be
ound in Section 1.3 of the Supplement.

.4. Numerical methods

The model equations are non-dimensionalised and solved using the two-step Lax–Wendroff method [28]. One simulation takes
pproximately one minute for the systemic model and two minutes for the pulmonary model on our hardware (RedHat Enterprise
inux 6 machine with Intel(R) Xeon(R) CPU E5-2680 v2 2.80 GHz and 32 GB RAM).

.5. Model parameters

The fluid properties (𝜌, 𝜈, 𝛿) are assumed known and constant, see Section 2.2 and Table 1 in the Supplement for details.

essel stiffness: Vessel stiffness in the large arteries, micro-vasculature (small vessels) and large veins (the latter for the pulmonary
odel only) is modelled using the following expression

𝐸ℎ
𝑟0

= 𝑓1 exp(𝑓2𝑟0) + 𝑓3, (4)

where we define 𝑓 LA
1 (g/cm/s2), 𝑓 LA

2 (cm−1), 𝑓 LA
3 (g/cm/s2) as the stiffness parameters of the large arteries, 𝑓MV

1 , 𝑓MV
2 , 𝑓MV

3 are the
stiffness parameters of the micro-vasculature, and 𝑓 LV

1 , 𝑓 LV
2 , 𝑓 LV

3 are the stiffness parameters of the large veins.

Structured tree parameters: The model also has structured tree parameters: 𝛼 and 𝛽, which are constants that define the asymmetry
of the structured tree, the length to radius ratio, 𝑙𝑟𝑟 (one arterial 𝑙𝑟𝑟 for the one-sided structured tree of the systemic model, and
one arterial and one venous 𝑙𝑟𝑟 for the 2-sided structured tree of the pulmonary model), and the minimum radius (𝑟min).

Thus, the full set of parameters that was initially considered for inference is as follows:

• Systemic model: 𝜽full = {𝑓 LA
1 , 𝑓 LA

2 , 𝑓 LA
3 , 𝑓MV

1 , 𝑓MV
2 , 𝑓MV

3 , 𝛼, 𝛽, 𝑙𝑟𝑟A, 𝑟min}.
• Pulmonary model: 𝜽full = {𝑓 LA

1 , 𝑓 LA
2 , 𝑓 LA

3 , 𝑓MV
1 , 𝑓MV

2 , 𝑓MV
3 , 𝑓 LV

1 , 𝑓 LV
2 , 𝑓 LV

3 , 𝛼, 𝛽, 𝑙𝑟𝑟A, 𝑙𝑟𝑟V, 𝑟min}.

Local sensitivity and identifiability analyses performed around the competition parameter values revealed a lack of identifiability
between the parameters. For the sake of the competition, that is, to allow the method assessment in both functional and parameter
space, we only consider for inference a subset of the parameters that are identifiable and most influential on the model outputs.
In a clinical application we would address identifiability problems by the integration of physiological prior knowledge; see [11],
in particular the discussion around Fig. 6. However, this is beyond the remit of the present article, whose focus is on evaluating
emulation and inference performance. In Section 1.5 of the Supplement we provide brief details of the methodology employed for
the local sensitivity and identifiability analyses performed, and present the results obtained on the two CFD models. The final subset
of inferable parameters, which are uniquely identifiable and most influential on the model outputs, are as follows:

• Systemic model: 𝜽subset = {𝑓 LA
2 , 𝑓 LA

3 , 𝑓MV
2 , 𝑓MV

3 , 𝛼}, with associated physiological ranges presented in Table 1.
• Pulmonary model: 𝜽subset = {𝑓MV

3 , 𝛼, 𝑙𝑟𝑟A, 𝑙𝑟𝑟V}, with associated physiological ranges given in Table 2. Details about the parameter
ranges are given in Section 1.5 of the Supplement.

3. Competition data

To assess the performance of the competing methods presented, the competition organisers use synthetic data, that is data
simulated from the aforementioned CFD models with preset parameter values.
5
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Table 2
Range of values for the biophysical and error model parameters of the pulmonary model and the ‘‘ground-truth’’ parameter
values that generated the competition noisy data.
Parameter 𝑓MV

3 𝛼 𝑙𝑟𝑟A 𝑙𝑟𝑟V 𝑙 𝜎2
𝑚

Range [9 ⋅ 104 , 3 ⋅ 105] [0.83,0.89] [20,50] [20,50] [0, 0.85] [0, 22.5]
‘‘Ground-truth’’ value 2.5 ⋅ 105 0.885 35 25 0.1 5.8

Fig. 3. Competition data for both systemic and pulmonary models.

3.1. Systemic model

For the systemic circulation model, the organisers have generated synthetic, noise-free flow time series from 7 blood vessels,
indicated with continuous lines in Fig. 2(a) at one spatial point (the vessel midpoint) and the systolic and diastolic points in a
pressure time series from one blood vessel, marked with a dashed line in Fig. 2(a). Competition data are reflective of actual patient
data from [15]. The competition data have been generated using the parameter values for 𝑓 LA

2 , 𝑓 LA
3 , 𝑓MV

2 , 𝑓MV
3 , 𝛼 shown in Table 1

and are illustrated in Fig. 3(a).

3.2. Pulmonary model

For the pulmonary circulation model, the organisers have generated synthetic, noisy pressure time series data in the main
pulmonary artery, marked with a dashed line in Fig. 2(b), and flow time series in two veins, marked with continuous lines in Fig. 2(b)
at one spatial point (the vessel midpoint). The competition data, shown in Fig. 3(b), mimic typical real, noisy data [29–31]. The
data were generated using the parameter values for 𝑓MV

3 , 𝛼, 𝑙𝑟𝑟A, 𝑙𝑟𝑟V shown in Table 2.
The noise added to the data is Gaussian, additive and correlated in time. To generate the noise, a GP [32] with a Matérn 3/2

kernel has been used. More specifically, a GP has been fitted to the residuals in time, as follows:

𝑓 (𝑡)|𝝃 ∼ (𝟎,𝐊|𝝃) ≈ (𝟎,𝐂)|𝝃), (5)

where 𝐊 = [𝑘(𝑡𝑖, 𝑡𝑗 )]𝑚𝑖,𝑗=1 (indexed by time, 𝑡) is the 𝑚 × 𝑚 variance–covariance matrix of 𝑓 , and 𝐂 = 𝐊 + 𝜎2𝐈 is used solely for
numerical stabilisation purposes during the inversion of the covariance matrix, with 𝜎2 = 10−6. Also, 𝝃 contains the covariance
function (kernel) hyperparameters, called error model parameters, which are assumed common to all vessels. It should be noted
that the measurement devices for pressure and flow are distinct: pressure is measured invasively by a right heart catheter, while
flow is typically obtained non-invasively using MRI. However, pressure catheters are more susceptible to the dynamic wall motion of
the pulmonary arteries, introducing measurement noise. Similarly, MRI is a non-invasive imaging technique that requires averaging
over multiple measurements at different heartbeats. In the absence of detailed insight into the relative uncertainties attributed to
these data modalities, we reasonably assume that the noise variance is similar for both data sources.

The Matérn 3/2 kernel is defined as

𝑘(𝑟|𝝃) = 𝜎2𝑚(1 +
√

3𝑟) exp(−
√

3𝑟), 𝑟 =

√

(𝑡𝑖 − 𝑡𝑗 )2

𝑙2
, (6)

where 𝝃 = (𝜎2𝑚, 𝑙), with 𝜎2𝑚 being the marginal variance of the function (amplitude), and 𝑙 being the lengthscale of the input (time)
variable.

For the competition, the error model parameter values shown in Table 2 were used for noise generation to ensure a signal-to-noise
ratio between 10 and 100 for all 3 vessels.
6
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4. Competition challenges

The organisers released the code for the two CFD models several months in advance of data release, to allow participants to
amiliarise themselves with running the code, and build emulators for the model outputs. At the time, the organisers gave preliminary
ndications of what the inference tasks would be, but the exact, model-specific competition challenges were released together with
he data. In Sections 4.1 and 4.2 we present the competition challenges for each of the two CFD models and the time window within
hich submissions had to be made, see Fig. 1(b) for an overview.

.1. Systemic model

The competition challenge for the systemic model was to estimate the set of five biophysical parameters that generated the
ompetition data. The time limit allowed for the parameter estimation was three hours, which reflects a typical time window within

which a diagnosis or treatment decision has to be made in a clinical A&E setting.

4.2. Pulmonary model

For the pulmonary model, the competition challenge was to provide parameter estimates for the four biophysical parameters
and quantify the uncertainty of the estimation in one week. The time limit reflects a typical time frame within which a medical
laboratory has to operate. This is not as stringent as for a clinical A&E setting, but still requires any quantitative analysis to be
conducted in a timely manner.

Competition organisers invited participants to submit estimates of the biophysical parameters and a measure of estimation
uncertainty, that is 500 samples from the posterior distribution of the biophysical parameters. The error parameters are nuisance
parameters, meaning their estimation was not assessed directly in the competition, but may be relevant for the accurate inference
of the biophysical parameters.

The participants were instructed to use a uniform prior with support within ranges given in Table 2. While the range for the
biophysical parameters was chosen to be biologically meaningful, the organisers chose the range for the error parameters as follows.
The kernel lengthscale takes the range of the time input, i.e. [0, 0.85] seconds. To find the range for the kernel amplitude, residuals
were generated repeatedly (100 times) with preset values (found in Table 2), and the variance of each residual instantiation was
computed. The upper bound of the range is given by the maximum variance value recorded to which 50% was added (obtaining
22.5), to avoid being overly-conservative. The lower bound of 0 imposes positivity in the amplitude prior.

5. Methodology

In this study, the participants have employed state-of-the-art, data-driven emulation approaches [33] based on Bayesian non-
parametric models, more specifically GPs [19,20], as well as deep learning models, more specifically, residual NNs [21]. These
emulation paradigms represent recent methodology widely adopted in the machine learning community, and have been used in
our study to approximate features of the complex CFD models (‘‘simulator’’), with the aim to perform fast statistical inference of
unknown simulator parameters. Thus, emulation has been coupled with established statistical inference approaches based on greedy
optimisation [22], simulated annealing [23] and UQ using History Matching [25] coupled with rejection sampling [26], as well as
MCMC [24].

In Table 3 we present an overview of the 3 methods employed in this study, where we define the method as the marriage
between the emulation approach and the inference scheme utilised. The output from the simulators is multiple time series. To
emulate this multivariate output, the developer of method I has first used Principal Component Analysis (PCA) for dimensionality
reduction of every time series, and has subsequently emulated each principal component with independent GPs. The developer of
method II has used PCA and has employed a deep residual NN to emulate the multivariate set of principal components. PCA has
only been performed for the systemic model, which has a large output; for the pulmonary model, for which there is less output,
every multivariate time series has been emulated. The developer of method III has emulated every time series using a multivariate
output GP with a Kronecker product approximation for the covariance matrix [19].

The contestants have used the emulators thus created to perform parameter estimation and quantify the parameter uncertainty
using History Matching coupled with rejection sampling (method I), simulated annealing and MCMC (method II), and local (greedy)
optimisation with multiple restarts and MCMC (method III). A description of the emulation and inference approaches employed
follows below.

5.1. Method I

5.1.1. GP emulation
Let 𝑝 denote the number of inputs, and 𝑚 the number of outputs. Given 𝑛 design points 𝜣 = (𝜽1,… ,𝜽𝑛), sampled from a 𝑝-

dimensional parameter space  ⊂ R𝑝, we simulate the true model 𝐟 (⋅) at these inputs for fixed time points, generating blood flow
nd pressure. We combine the model outputs at a single input into an 𝑚-dimensional vector 𝐟 (𝜽, 𝐭) = (𝑓 (𝜽, 𝑡1),… , 𝑓 (𝜽, 𝑡𝑚))𝖳, where
he superscript 𝖳 indicates transposition, giving an 𝑚 × 𝑛 matrix of model outputs, 𝐅(𝜣, 𝐭) = (𝐟 (𝜽1, 𝐭);… ; 𝐟 (𝜽𝑛, 𝐭)). As the size of the
7

utput, 𝑚, increases, for computational convenience, and to capture common patterns across the model output, GP emulation can
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Table 3
Methods employed in this study for emulation of simulator outputs and inference of unknown simulator parameters.

Emulation Inference

Method I Bayesian non-parametric (univariate GPs) History Matching1,2 & rejection sampling2

Method II Deep learning (residual NN) simulated annealing1/MCMC2

Method III Bayesian non-parametric (multivariate GPs) greedy optimisation1/MCMC2

Note: superscripts 1 and 2 refer to the systemic and pulmonary model, respectively.

e combined with dimension reduction, such as PCA [34–38], and is the approach used here. The model output is decomposed into
linear combination of basis vectors 𝜸𝑖, 𝐟 (𝜽, 𝐭) = 𝝁(𝐭) +

∑𝑞
𝑖=1 𝑐𝑖(𝜽, 𝐭)𝜸𝑖 + 𝝐(𝜽, 𝐭), where 𝝁(𝐭) is the mean of the simulator runs 𝐅(𝜣, 𝐭);

𝑖(𝜽, 𝐭) are coefficients; basis 𝜞 𝑞 = (𝜸1,… , 𝜸𝑞) is often taken from the singular value decomposition of (𝐅(𝜣, 𝐭) − 𝝁(𝐭))𝖳; and 𝝐(𝜽, 𝐭)
epresents the part of 𝐟 (𝜽, 𝐭) not explained by the basis. Given 𝜞 𝑞 and 𝐅(𝜣, 𝐭), the output at 𝜽 is now described by 𝑞 coefficients
nstead of the 𝑚 original outputs, with 𝑞 ≪ 𝑚. Independent GP emulators [39] are then fitted for each set of coefficients. Further
ethod details can be found in Section 2.1.1 of the Supplement.

.1.2. Inference with History Matching
For parameter inference, the ‘‘best input approach’’ model [33] was adopted:

𝐲(𝒕) = 𝐟 (𝜽∗, 𝒕) + 𝐞(𝒕) + 𝜼(𝒕), (7)

here 𝐲(𝒕) are observations (synthetic data) indexed by time, 𝒕 = (𝑡1,… , 𝑡𝑚), 𝐟 (𝜽∗, 𝒕) is the computer model output (blood flow and
ressure) at the ‘‘best input’’ 𝜽∗, 𝜼(𝒕) is the model discrepancy term, and 𝐞(𝒕) is the observational error. History Matching can then
e used to rule out regions of parameter space that are not consistent with observations using a distance metric (implausibility
unction) (𝜽) [40]. For 𝑚-dimensional observations 𝐲, using the model from Eq. (7), we can write [25,37]:

(𝜽) = (𝐲(𝐭) − E[𝐟 (𝜽, 𝐭)])𝖳(Var[𝐟 (𝜽, 𝐭)] +𝜮𝐞 +𝜮𝜼)−1(𝐲(𝐭) − E[𝐟 (𝜽, 𝐭)]), (8)
𝐞(𝐭) ∼  (𝟎,𝜮𝐞), 𝜼(𝒕) ∼  (𝟎,𝜮𝜼),

here 𝐲 ∈ R𝑚, 𝜮𝐞,𝜮𝜼 ∈ R𝑚×𝑚. ‘‘Not Ruled Out Yet’’ (NROY) space, the space of not implausible (≠ plausible) points, is defined as:
𝑁𝑅𝑂𝑌 = {𝜽 ∈ |(𝜽) < 𝑇 }, with 𝜽 only ruled out if, given error tolerances, it is unlikely (implausible) that 𝐟 (𝜽) is ‘‘close-enough’’

o 𝐲, depending on the threshold value 𝑇 chosen. Hence the term Not Ruled Out ‘‘Yet’’ indicates that we cannot say that for all the
oints in this space we expect the model output to be close to the observation, but that there is not yet enough evidence to rule
hem out. For instance, a high emulator uncertainty reduces the value of the implausibility function. Further method details are
resented in Section 2.1.2 of the Supplement.
Systemic model: Prior to data being released, method I developer ran the model 1250 times using a Latin hypercube space-filling

esign to explore the use of different emulation and calibration techniques tested on proxy observations. As there was no noise in
he observation, an arbitrary variance was included to represent tolerance to error. At wave 1, basis emulators were trained using
= 200 simulations of the model, and the implausibility was calculated across the remaining available simulations. Wave 2 refined

his by sampling a new 𝑛 = 200 design from the original 1250, conditional on minimising the implausibility at wave 1 to ensure a
reater density of points closer to the data. Using these refined emulators, the contestant evaluated the expectation and variance at
Latin hypercube of 100,000 samples of 𝜽, calculated the implausibility (𝜽) for these points, and selected at wave 3 the 𝑛 = 10

oints that minimised (𝜽) across this sample. At wave 4, the participant obtained 𝑛 = 10 simulation runs by sampling around the
‘best’’ input from wave 3, which was the parameter estimate submitted for the competition. More details are offered in Section
.1.3 of the Supplement.
Pulmonary model: The participant used the same basis emulator structure and general iterative procedure as for the systemic

odel (see Algorithm 1 in the Supplement), with the change that the implausibility was instead calculated across combinations
f (𝜽, 𝑙) (due to the unknown, varying correlation structure) with 𝜎2𝑚 = 22.5 (providing an upper bound on (𝜽, 𝑙) across the prior
or 𝜎2). Training the emulator using a 100-member Latin hypercube design ruled out all 𝑙 ≥ 0.2, but with the large variance, no
ettings of 𝜽 could be ruled out across all 𝑙. Two new waves were performed by sampling inputs with relatively low implausibility
runs either expected to be close to 𝐲, or those with high emulator variance), resulting in a greater density of model simulations
ore consistent with the truth, and an emulator was trained on this set of 300 simulations. The contestant calculated the likelihood

or combinations of (𝜽, 𝑙, 𝜎2𝑚) (for combinations of (𝜽, 𝑙) in NROY, and for uniformly sampled 𝜎2𝑚) using the wave 3 emulator, and
erformed rejection sampling over these to obtain 500 samples of 𝜽, which were submitted for the competition. The posteriors
ontain the truth, with the larger uncertainty relative to the true model due to emulator uncertainty Var[𝑓 (𝜽)] being non-zero. After
he results were released, applying History Matching with the known, fixed error structure, gave similarly wide posteriors, with
dditional waves expected to reduce the uncertainty. More details are offered in Section 2.1.4 of the Supplement.

.2. Method II

Method II developer exploited parallel computation, and generated 105 simulations from the CFD models using 64 core machines
n less than a week; jobs were run using GNU Parallel [41]. The parameter samples were generated uniformly at random inside a
ox given by the lower and upper parameter bounds. The best training and validation performance was from deep residual NNs.
reliminary experiments with xgboost [42] and linear regression with random basis functions [43] were less successful.
8
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5.2.1. NN emulation
Architecture: A deep fully-connected feedforward NN was used, with ‘‘PReLU’’ activations [44] and 15 residual layers [21]. In

etail, the network first transforms the input parameters 𝜽 into a new ‘hidden layer’ representation, 𝐡(0) = 𝑔(𝐖(0)𝜽 + 𝐛(0)), where
n this section weight matrices 𝐖 and vectors of biases 𝐛 are free parameters, and 𝑔 is a piecewise-linear ‘‘PReLU’’ activation. The
et then repeatedly retransforms those values using 𝐿 residual layers, 𝐡(𝓁) = 𝐡(𝓁−1) + 𝑔(𝐖(𝓁)𝐡(𝓁−1)+𝐛(𝓁)),𝓁 = 1…𝐿. The residual

connection (𝐡(𝓁) = 𝐡(𝓁−1) +⋯) makes training many layers work in practice, but restricts all of the hidden vectors to be the same
length 𝐻 . The first weight matrix 𝐖(0) transforms the representation up to that dimensionality. The residual layer weight matrices
are then all 𝐻×𝐻 . Finally the simulator output is predicted from the final hidden layer, 𝐟 = 𝐖(out)𝐡(𝐿)+𝐛(out). The weight matrix 𝐖(out)

transforms the final hidden representation to the length of all of the simulator outputs that we are using, concatenated together.
In theory, we do not need a deep NN for a flexible function: we could use no residual layers (𝐿=0), and set 𝐻 large to have a

single wide hidden layer, similar to transforming the parameters with random basis functions and performing linear regression on
top, but with learned basis functions. However, empirically better fits were obtained for the same compute cost with deep narrower
networks. 𝐻 was set to 100 and 128 for the pulmonary and systemic challenge, respectively, and 𝐿= 15. These choices were not
carefully tuned, but gave predictions on held out parameters that, by eye, lay on top of the simulator’s output.

NN fitting: The network was implemented in Equinox [45], using its default settings to initialise the parameters. Not knowing
the tasks ahead of time, the participant simply minimised the sum of square errors between the true simulated output 𝐲(𝜽) and the
NN’s output 𝐟 (𝜽), averaged over training set examples. The tuning-free learned optimiser VeLO [46] was used, to avoid tuning the
learning rate in the Adam algorithm [47]. The contestant iterated over a training set of 8×104 examples for 1000 epochs, in batches
of size 100. Training and validation errors were usually quite similar, so no form of regularisation such as weight decay was used.
VeLO has substantial overhead for small networks with small batch sizes, and so training took a few hours on a GPU, which was
still far quicker than obtaining the simulations.

Reducing training cost with PCA: The participant used one trick to reduce the cost for the systemic challenge, with its larger
simulation output. Given a training set of simulation outputs, each simulation in the training set has a final hidden layer vector
𝐡(𝐿), which is linearly transformed into a prediction of the simulation output. If the linear layer parameters, and all of the hidden
layer vectors could be set arbitrarily, the best square error is obtained by a PCA [48] fit of the simulation outputs. The participant
therefore replaced the targets of the NN with 128-dimensional linear transformations of the simulation outputs, provided by PCA,
and later reconstructed any NN predictions into full simulation outputs using the same PCA representation fitted to the training set.

5.2.2. Inference with simulated annealing/MCMC
Systemic model: For the systemic challenge, the participant attempted to optimise the parameters by minimising the square error

between the simulation output and the competition data. To produce the results submitted for the competition, the NN surrogate
was used instead of the true simulator. The contestant adopted a simulated-annealing-like heuristic [23], by running MCMC [24]
using the emcee ensemble sampling package [49], which usually works well on low-dimensional posteriors without tuning, and is
able to exploit the ability to evaluate the NN for many different parameters in parallel. Emcee was run with 200 walkers for 1000
steps, with a spherical Gaussian observation model, starting at observation variance 500, which was annealed down by a factor of
0.99 at each step. The emcee walkers were reinitialised around the current best point every 20 steps. Details of alternative inference
approaches employed are presented in Section 2.2 of the Supplement.

Pulmonary model: For the pulmonary challenge the contestant attempted to sample plausible parameters given the noisy
observation using MCMC on the joint posterior distribution of the 4 unknown simulator parameters and the 2 hyperparameters of the
GP in the observation model. To evaluate the likelihood of the parameters, the GP model provided by the organisers was assumed,
with the mean observation set by the NN surrogate rather than the original simulator. Given the posterior is only 6 dimensions,
emcee was used. The Markov chain appeared to mix quickly, with emcee reporting mixing (measured by max auto-correlation time)
in around 50 steps. 128 walkers could be run for 500 steps in less than 10 min on a laptop from 2016. To reduce the chance of
MCMC error, the contestant ran 500 walkers for 5000 steps, discarding 500 as burn-in.

5.2.3. Post-competition method improvements
Large Network: After the competition the participant also fitted an even larger NN for the pulmonary challenge. The network

architecture and training data was exactly the same as before, except each residual layer had 1000 units instead of 100. In addition
the loss function combined square error, with the likelihood of the Matérn GP observation model used by the competition organisers.
This loss function was designed to make errors in the surrogate have a small effect on likelihood computations within MCMC.
Training with VeLO on a GPU took less than 6 h. The parameter inference scheme was the same as for the competition.

5.3. Method III

5.3.1. GP emulation
GPs [32] were utilised to emulate the time series output of both the pulmonary and systemic models. For either model, the

simulator output for input vector of physiological parameters 𝜽, given by 𝐟 (𝜽, 𝒕) = 𝐲(𝒕) = (𝑦(𝑡1), 𝑦(𝑡2),… 𝑦(𝑡𝑚)) is a multivariate
ime series composed of 𝑚 = 512 points. To avoid implementing an onerous multioutput GP for the multivariate output function,
ime may be introduced as an input variable alongside 𝜽 [19], in which case a new 1-to-1 simulator function may be defined,
(𝜽, 𝑡) = 𝑦(𝑡), which defines a univariate output. Therefore, using a GP as a surrogate model of 𝑓 (𝜽, 𝑡) allowed for emulating a single
9

utput function. Further, separability in the kernel can be imposed between inputs 𝜽 and 𝑡 [19], 𝑘((𝑡𝑖,𝜽𝑖), (𝑡𝑗 ,𝜽𝑗 )) = 𝑘𝑡(𝑡𝑖, 𝑡𝑗 )𝑘𝜽(𝜽𝑖,𝜽𝑗 ),
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which allows representing the joint (full) covariance matrix as the Kronecker product between two smaller matrices, 𝐊(𝜣𝜃,𝑡,𝜣𝜃,𝑡) =
𝐊𝑡(𝐭, 𝐭)⊗𝐊𝜽(𝜣,𝜣), with the aim to reduce computational complexity of the covariance matrix inversion. Further details are presented
in Section 2.3 of the Supplement.

Space-filling designs of 𝑛 = 10,000 and 15,000 points, obtained via Latin hypercube sampling, were used to build the GPs
for the pulmonary and systemic models, respectively. The kernel hyperparameters were optimised using an adaptive Nelder–Mead
algorithm [50], using a subset of 2000 training points. Instead of using the entire training dataset in the predictive equations for a
test point 𝜽∗, a local subset of 200 points nearest to 𝜽∗ in standardised Euclidean space was used. Further implementation details
can be found in Section 2.3 of the Supplement.

5.3.2. Inference with optimisation/MCMC
Systemic model: For the systemic model, the participant attempted to recover the parameters which produced the noise-free

data by minimising a root mean squared error loss function using a greedy optimisation method, i.e. the Powell method [22]. 10
searches were run in parallel and once a minimum was obtained, the minimising parameters and corresponding simulator output
were added to the emulator’s dataset before restarting the search. For the first two hours out of three, points were uniformly sampled
from the parameters’ viable ranges, before restricting the sampling bounds to the region the optimum was believed to lie in based
on the results of the first two hours.

Pulmonary model: For inference in the pulmonary model, the participant used an Adaptive Metropolis (AM) sampler [51]. The
simulator output was replaced by the GP predictive mean for both flow and pressure in the likelihood function. Before collecting a
final sample, an exploratory phase was carried out where the emulator was improved by allowing the MCMC algorithm to explore
the high density regions of the posterior and adding every 100th set of parameter values and corresponding simulator output to the
GP’s dataset, for a total of 100 additional simulator runs. 100,000 points were sampled from the posterior and thinned down to 500
to submit for the competition.

5.3.3. Post-competition method improvements
Improved GP hyperparameter search: After the competition, the GP models were refit using TensorFlow, which made

hyperparameter optimisation using the entire sets of training points for both models possible in a realistic timeframe. Using
TensorFlow’s GPU acceleration allowed for much faster likelihood evaluations and gradient-based optimisation via automatic
differentiation. The Adam optimiser [47] was used to fit all GP hyperparameters. Predictions also made use of the entire training
dataset, in contrast to the local GP approach used during the competition.

Improved inference scheme: For the systemic challenge, post-competition, the participant used the gradient-based optimiser
Adam using the improved GP fits for parameter inference. Post-competition inference for the pulmonary model used the improved
GP fits, and the inference process was similar to that for the competition, with the key difference of performing the exploratory
phase on a tempered likelihood. The aim was to smoothen local modes of the target posterior introduced by emulation inaccuracy
and hence allow the exploratory chain to explore the tail ends of the target posterior and include these points in the GPs’ datasets.
Further implementation details can be found in Section 2.3.1 of the Supplement.

6. Assessment criteria

In this section we proceed to describe the approaches used to evaluate the competition submissions.

6.1. Systemic model - accuracy

Given the competition data for the systemic model were noise-free, the assessment criteria evaluate accuracy of estimates only
(no UQ). This is accomplished by computing the relative root squared error in: (i) parameter space, by comparing the estimates
from all 3 methods to the ground-truth parameter values that generated the data (Eq. (9)), and (ii) output space, by comparing the
data predictions obtained with the different parameter estimates to the competition data (Eq. (10)).

RRSEpar =

√

√

√

√

𝑑
∑

𝑖=1

(

𝜃𝑖 − 𝜃̂𝑖
𝜃𝑖

)2
, (9)

where 𝜽 is the ground-truth parameter vector of dimension 𝑑 × 1 and 𝜽̂ is the estimated parameter vector.

RRSEoutput =

√

√

√

√

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦̂𝑖
max(𝐲)

)2
, (10)

where 𝐲 is the competition signal of dimension 𝑛 × 1 and 𝐲̂ is the estimated signal. RRSEoutput was computed for each of the three
individual signals (one pressure and two flow signals).

6.2. Pulmonary model - accuracy and UQ

For the pulmonary model, the competition data were noisy, and so the assessment was conducted with respect to both accuracy
and UQ in parameter and output space. The organisers obtained ‘‘ground-truth’’ MCMC samples by running a simulator-based AM
sampler [51] using custom MATLAB scripts. Further details are presented in Section 3 of the Supplement.
10
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Fig. 4. Overview of the assessment criteria. See text for details.

.2.1. Parameter space
Let 𝑝(𝜽|𝐲) denote the true posterior distribution of the parameter vector 𝜽 given data 𝐲, approximated using the organisers’ long

run simulator-based MCMC sampler, and 𝑞(𝜽|𝐲) the estimated posterior distribution obtained with the methods in Table 3.
Accuracy: Participants were asked to submit a parameter estimate based on 𝑞(𝜽|𝐲) (either the mean posterior or maximum

aposteriori point), which we denote by 𝜽̂. We define the accuracy metric as the conditional probability of the estimate given the set
of simulator-based MCMC samples, 𝑋, denoted by 𝑝(𝜽̂|𝑋). The best submission with respect to accuracy is the one with the lowest
negative log probability value, i.e. − log(𝑝(𝜽̂|𝑋)).

To compute 𝑝(𝜽̂|𝑋), the organisers needed to estimate the density from the MCMC samples, for which a standard approach based
n a kernel density estimator (KDE) [52] was adopted, with two ways of estimating the bandwidth, i.e. Silverman’s rule [53] and
eave-one-out cross validation (LOO CV) [54]. This is a classical textbook criterion; however, more advanced methods have been
roposed in the more recent literature, e.g. based on GPs [55,56]. The organisers thus decided to invite the participants to submit
heir own code for their preferred density estimation method.
UQ: To assess UQ, the organisers have used three criteria: (i) a divergence-based measure (Hellinger distance [57]) for which

posterior densities need estimating, and (ii) two criteria based on the submitted posterior samples: average linkage, based on a
Mahalanobis distance, and maximum mean discrepancy (MMD) [58], based on a linear (Mahalanobis) kernel. An overview of the
different assessment criteria is provided in Fig. 4, and we provide the methodological details below.

• Hellinger distance: The Hellinger distance (HD) [57] is a measure based on divergence between two distributions, i.e. between
𝑝(𝜽|𝐲) and 𝑞(𝜽|𝐲), that are estimated using methods described above. HD is defined as the L2 norm between

√

𝑝(⋅) and
√

𝑞(⋅):

HD2[𝑝, 𝑞] = 1
2 ∫

(

√

𝑝(𝜽|𝐲) −
√

𝑞(𝜽|𝐲)
)2

𝑑𝜽 = 1
2 ∫

⎛

⎜

⎜

⎝

1 −

√

𝑞(𝜽|𝐲)
𝑝(𝜽|𝐲)

⎞

⎟

⎟

⎠

2

𝑝(𝜽|𝐲)𝑑𝜽. (11)

The best submission is the one with the lowest Hellinger distance. The Hellinger distance was used instead of the more widely
known Kullback–Leibler divergence [59] because in practice the organisers found that the effective support of the true posterior
distribution may not include the samples generated with some of the methods, leading to a singularity. HD was thus used as a
numerically more robust alternative.
Mahalanobis distance: Consider two sets of posterior samples 𝑋 = {𝐱1,… , 𝐱𝑀} and 𝑍 = {𝐳1,… , 𝐳𝑁}, where 𝑋 is the set of posterior
samples from the true mathematical model (the simulator), and 𝑍 is the set of posterior samples from the surrogate model (the
emulator). A natural discrepancy measure is the normalised sum over all pairwise Mahalanobis distances between elements in set
𝑋 and those in set 𝑍:

MD = 1
𝑀𝑁

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
(𝐱𝑚 − 𝐳𝑛)𝖳𝐇(𝐱𝑚 − 𝐳𝑛) =

1
𝑀

𝑀
∑

𝑚=1
𝐱𝖳𝑚𝐇𝐱𝑚 + 1

𝑁

𝑁
∑

𝑛=1
𝐳𝖳𝑛𝐇𝐳𝑛 −

2
𝑀𝑁

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝐱𝖳𝑚𝐇𝐳𝑛, (12)

where 𝐇 is the inverse covariance matrix of the reference distribution. In our case, the reference distribution consists of the
posterior samples from the true mathematical model (the simulator). MD is a linkage method to quantify the difference between
two samples, and a submission with the lowest MD score is preferred.
MMD: Another discrepancy measure used is the MMD [58], defined as follows:

MMD = 1
𝑀(𝑀 − 1)

𝑀
∑

𝑀
∑

𝐱𝖳𝑚′𝐇𝐱𝑚 + 1
𝑁(𝑁 − 1)

𝑁
∑

𝑁
∑

𝐳𝖳𝑛′𝐇𝐳𝑛 −
2

𝑀𝑁

𝑀
∑

𝑁
∑

𝐱𝖳𝑚𝐇𝐳𝑛. (13)
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Table 4
Systemic model: root relative square error in
parameter space (Eq. (9)). The lowest value (in
bold) is best.
Method I Method II Method III

0.09 𝟗.𝟒 ⋅ 𝟏𝟎−𝟕 0.02

Table 5
Systemic model: root relative square error in output space (Eq. (10)) for every
signal (S) displayed in Fig. 3(a). The lowest value (in bold) is best.

Method I Method II Method III

S1 0.005 𝟗.𝟔 ⋅ 𝟏𝟎−𝟖 0.001
S2 0.013 𝟏.𝟖 ⋅ 𝟏𝟎−𝟕 0.003
S3 0.069 𝟏.𝟏 ⋅ 𝟏𝟎−𝟔 0.008
S4 0.017 𝟐.𝟕 ⋅ 𝟏𝟎−𝟕 0.002
S5 0.062 𝟏.𝟒 ⋅ 𝟏𝟎−𝟔 0.013
S6 0.014 𝟑.𝟗 ⋅ 𝟏𝟎−𝟕 0.002
S7 0.022 𝟓.𝟏 ⋅ 𝟏𝟎−𝟕 0.003
S8 0.002 𝟑.𝟖 ⋅ 𝟏𝟎−𝟖 0.0002

Although originally MMD was developed as a test statistic for rejecting the null hypothesis that two samples are from the same
distribution, in this work it is used as a method discriminating between the different competition submissions, i.e. the submission
with the lowest MMD score is preferred.
MMD is a more pessimistic measure than MD as it accounts for cross-correlations between terms in the same set, and hence more
terms are being added (note the double sum in the first two terms of the expression in Eq. (13)).

6.2.2. Output space
Uncertainty in parameter space propagates to output space. Hence, for every posterior parameter sample, we can run the

athematical model and obtain the corresponding (multivariate – 512D –) signal. Repeating this for the entire set of posterior
arameter samples leads to an ensemble of signals.

The procedure to evaluate accuracy and UQ in output space follows closely that in parameter space. While the parameter space
s 4D, the output space is 512D, which means that while estimating densities is tractable for a 4D space, this is not the case for 512D.
or this reason, the organisers applied some of the assessment evaluation in a univariate sense, i.e. for the maximum (systolic) and
inimum (diastolic) points of the time series, separately for every output signal. This applied to the measures that used density

stimation, namely the accuracy-based measure of conditional probability and UQ-based measure of HD. In contrast, MD and MMD
as been computed both univariately (for the maximum and minimum points of the time series) and multivariately (512D).

. Assessment results

Below we present evaluation results for all three competition methods on both CFD models.

.1. Systemic model

.1.1. Parameter space
Table 4 shows the value of the root relative square error in parameter space (Eq. (9)). We notice that method II records the

owest value, which is substantially lower than the values of the other two methods. Moreover, method III has the second best
erformance, followed by method I.

.1.2. Output space
Next, we present the root relative square error in output space for each of the 8 signals, computed using Eq. (10), displayed

n Table 5. Method II consistently records the lowest value for every signal. Additionally, method III is second best, followed by
ethod I.

.1.3. Systemic: summary of winning points
In conclusion, by collating the results from each individual assessment, we note that method II has won all the 9 points (see
12

eft-hand graph in Fig. 5(a)), and is therefore the winning method for the systemic model.
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Fig. 5. Panel (a): Summary of competition scored assessment points. Panel (b): Emulators: for method I, the emulator at the highest wave number is zoomed
in on the most promising region (200 training points), with no coverage outside this region, method II’s emulator covers the entire parameter space uniformly
using a very large number of training points (105), and method III’s emulator covers the entire parameter space (104 training points), with a denser coverage
on the most promising region.

Table 6
Pulmonary model: negative log probability of each method’s parameter estimate
𝜽̂ given the simulator parameter MCMC samples 𝑋, i.e. − log(𝑝(𝜽̂|𝑋)) for the cases
where the bandwidth for kernel density estimation based on the MCMC samples
is selected using Silverman’s rule (first entry) and leave-one-out cross-validation
(second entry). The lowest value (in bold) is best.

Method I Method II Method III

Silverman/CV 175/536 17/31 6/6

Table 7
Pulmonary model: agreement in uncertainty quantification in parameter space between the
competition methods and the ‘‘ground-truth’’ assessed using multivariate (4-dimensional) HD
(Helinger distance) – Eq. (11), MD (Mahalanobis distance) – Eq. (12), MMD (maximum mean
discrepancy) – Eq. (13). HD is calculated for the cases where the bandwidth for kernel density
estimation based on the posterior samples is selected using Silverman’s rule (first entry) and
leave-one-out cross-validation (second entry). The lowest value (in bold) is best.

Method I Method II Method III

HD 0.79/0.86 0.63/0.70 0.30/0.34
MD 7.49 3.23 2.09
MMD 1.78 0.62 0.06

7.2. Pulmonary model

7.2.1. Parameter space

Accuracy: Table 6 shows the negative log probability of each method’s parameter estimate 𝜽̂ given the simulator parameter MCMC
samples 𝑋, i.e. − log(𝑝(𝜽̂|𝑋)) for the cases where the bandwidth for KDE based on the MCMC samples is selected using Silverman’s
rule and CV. We notice that method III records the lowest negative log probability, followed by method II, and method I comes last.
These findings align for both cases when the bandwidth was found with Silverman’s rule and CV.

UQ: As previously mentioned, 3 criteria have been used to assess agreement in UQ between the competition methods and the
ground-truth, obtained by running MCMC with the simulator: HD (Eq. (11), computed with KDE with the bandwidth selected with
Silverman’s rule and CV), MD (Eq. (12)) and MMD (Eq. (13)), calculated in multivariate (4D) parameter space. Table 7 shows the
HD, MD and MMD scores for each of the 3 methods. We observe that method III performs systematically best according to all 3
criteria, as it records the lowest scores, followed by method II, and lastly, method I.

We also visualise the univariate parameter densities obtained with KDE based on posterior samples for all methods, and the
ground-truth densities are also superimposed in Fig. 6. While in a multivariate sense, it is clear that method III has the best
performance, in a univariate sense, the performance depends on the parameter. For example, for parameters 𝑓MV

3 and 𝛼, the
agreement in densities between the simulator and method II appears to be largest, while for parameters 𝑙𝑟𝑟A and 𝑙𝑟𝑟V, the largest
overlap of the simulator densities is with densities from method III. The densities from method I look overly wide, thus the
uncertainty is overestimated.
13
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Fig. 6. Pulmonary model: univariate densities obtained with kernel density estimation based on posterior samples for all 4 biophysical parameters. Densities
from all methods are shown and the ground-truth density obtained with the simulator is superimposed.

Table 8
Systemic model: negative log probability of each method’s systolic and diastolic estimates for every signal (S)
displayed in Fig. 3(b) given the simulator MCMC samples for the cases where the bandwidth for kernel density
estimation is selected using Silverman’s rule (first entry) and leave-one-out cross-validation (second entry). The
lowest value (in bold) is best.

Method I Method II Method III

Systolic
S1 7.05/6.91 0.65/0.65 0.75/0.75
S2 0.71/0.71 0.85/0.84 0.43/0.47
S3 1.60/1.62 2.12/2.12 1.63/1.66

Diastolic
S1 −0.54∕ − 0.55 −0.21∕ − 0.22 −0.79∕ − 0.81
S2 0.32/0.31 0.17/0.18 −0.22∕ − 0.19
S3 1.78/1.74 1.03/1.06 0.79/0.81

7.2.2. Output space

Accuracy: Table 8 shows the negative log probability of the methods’ systolic and diastolic estimate for every signal given the
simulator posterior samples for the cases where the KDE bandwidth is selected using both Silverman’s rule and CV. We observe that
while for the diastolic point, method III systematically records the lowest negative log probability values across all signals, for the
systolic point there is no clear winner, the performance depending on the signal, and these findings agree for both Silverman and
CV.

UQ: To assess agreement in UQ between the densities generated with the competition methods and the ground-truth densities,
obtained from a simulator-based MCMC simulation, the organisers have calculated HD (Eq. (11)) for the systolic and diastolic
points, MD (Eq. (12)) and MMD (Eq. (13)) for the systolic and diastolic points (and all the other time points univariately), as well
as for the whole time series of every signal (in a multivariate 512D output space).

Table 9 shows the HD, MD and MMD scores for the systolic and diastolic points of every signal for each of the 3 methods.
Method III tends to have the best performance according to all 3 criteria. The HD and MMD scores are in perfect agreement with
each other in terms of the method ranking. The MD score is in a slight disagreement for the systolic point of signal 1, S1, while
agreeing with HD and MMD for everything else. A possible explanation for this disagreement is that MMD is a more pessimistic
measure, as explained in more details under Eq. (13).

Furthermore, Fig. 7 shows the univariate densities of the systolic (panel (a)) and diastolic (panel (b)) points obtained with KDE
based on posterior samples for all methods, and the ground-truth densities are superimposed. The findings from the visual inspection
are on a par with the objective measures computed above. More specifically, it appears that method III’s densities are closest to the
simulator’s densities for all inspected quantities, except the systolic point of signal 1 (S1), where method II’s density is in nearly
perfect agreement with the simulator’s density.

Additionally, Fig. 8 illustrates the MD and MMD scores calculated univariately at each time point in the time series, and Table 10
shows the average univariate scores (average taken over all time points), as well as the multivariate scores. We observe that
method III systematically records the lowest average univariate and multivariate scores (Table 10), and tends to have the lowest
scores for most time points (Fig. 8). When comparing the performance of methods I and II, there is no clear better performance
as that is dependent on the signal and the time portion of the signal. For example for signal 1, the lower scores are recorded for
method II in the middle of the series (between time points 100 and 300), but method I has lower scores everywhere else (see Fig. 8(a)
and (d)). The average univariate and multivariate MD and MMD scores also agree in ranking between methods I and II, except for
signal 3 (Table 10), for which the multivariate score prefers method II over I, but the opposite holds for the univariate case. This
14

disagreement may be due to the extra correlations that are captured by the multivariate score compared to the univariate score.
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Table 9
Pulmonary model: agreement in uncertainty quantification in output space for the systolic and diastolic points of
all signals (S) displayed in Fig. 3(b), between the results from the three competition methods and the ‘‘ground-
truth’’ assessed using HD (Hellinger distance) – Eq. (11), MD (Mahalanobis distance) – Eq. (12), MMD (maximum
mean discrepancy) – Eq. (13). HD is calculated for the cases where the bandwidth for kernel density estimation
based on the posterior samples is selected using Silverman’s rule (first entry) and leave-one-out cross-validation
(second entry). The lowest value (in bold) is best.

Method I Method II Method III

HD

Systolic
S1 0.33/0.33 0.005/0.005 0.07/0.07
S2 0.04/0.04 0.08/0.08 0.009/0.01
S3 0.013/0.013 0.09/0.09 0.010/0.010

Diastolic
S1 0.03/0.03 0.09/0.09 0.01/0.01
S2 0.09/0.09 0.09/0.09 0.02/0.03
S3 0.14/0.14 0.07/0.07 0.03/0.04

MD

Systolic
S1 8.93 1.98 1.54
S2 2.21 2.97 1.69
S3 1.95 3.54 1.75

Diastolic
S1 2.19 4.19 1.58
S2 2.55 2.80 1.57
S3 3.04 2.65 1.55

MMD

Systolic
S1 5.18 −0.003 0.11
S2 0.29 0.75 −0.001
S3 0.04 0.93 0.006

Diastolic
S1 0.09 1.01 0.002
S2 0.67 0.72 0.007
S3 1.17 0.58 0.008

Fig. 7. Pulmonary model: univariate densities obtained with kernel density estimation based on posterior samples for the systolic (panel (a)) and diastolic
(panel (b)) points of every signal (S) displayed in Fig. 3(b). Densities from all methods are shown and the ground-truth density obtained with the simulator is
superimposed.

7.2.3. Pulmonary: summary of winning points
In conclusion, by combining the results from each individual assessment, method III has won the majority of the points, as seen

n the right-hand graph in Fig. 5(a), and is therefore the winning method for the pulmonary challenge.

.3. Intuitive method comparison metrics

Our evaluation metric based on the Hellinger distance quantifies how well the predicted posterior distribution agrees with the
old standard distribution, and it is used for model performance ranking. However, Hellinger distances do not give us a good intuition
or model performance in absolute or relative terms. For that reason we also include more intuitive evaluation metrics based on point
stimates (rather than entire distributions), such as the percent deviation from the ‘‘ground-truth’’ in parameter space, defined as

PD = 1
𝑑

𝑑
∑

𝑖=1

|

|

|

|

𝑝𝑖 − 𝑝̂𝑖
𝑝𝑖

|

|

|

|

, (14)

where 𝑝𝑖 defines the ‘‘ground-truth’’, and 𝑝̂𝑖 defines the estimate. The percent deviation is calculated for the parameter estimates in
the systemic model, and for the parameter posterior mean and variance in the pulmonary model. While the percent deviation has the
15

advantage of being intuitive, it does not provide an assessment of the complete distribution for the pulmonary challenge (i.e. only
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Table 10
Pulmonary model: average univariate Mahalanobis distance (MD) – Eq. (12) and maximum mean discrepancy
(MMD) – Eq. (13) scores (average taken over all time points in the time series) and multivariate (512D) scores
over the whole time series for every signal (S) displayed in Fig. 3(b) and method. The lowest value (in bold) is
best.

Method I Method II Method III

MD

Average univariate
S1 5.03 3.03 1.63
S2 4.41 3.68 1.71
S3 2.38 3.38 1.64

Multivariate
S1 46 858 731 49.9
S2 34 850 8830 77.5
S3 26 461 3414 61.5

MMD

Average univariate
S1 2.1 0.5 0.03
S2 1.54 0.86 0.05
S3 0.37 0.68 0.06

Multivariate
S1 7756 245 2.69
S2 15 477 4166 6.47
S3 12 906 1560 5.51

Fig. 8. Pulmonary model: Mahalanobis distance (MD) – Eq. (12) and maximum mean discrepancy (MMD) – Eq. (13) scores computed univariately for each time
oint in the time series of every signal (S) displayed in Fig. 3(b) for all methods. Lower values are better.

or the first two moments of the distribution, mean and variance), and hence it is not included as a formal competition assessment
riterion. In Table 11, we notice that for the systemic challenge, the relative deviation from the ‘‘ground-truth’’ in parameter
pace ranges from 10−5% (highest-performing method II) to 3% (lowest-performing method I). For the pulmonary challenge, the
erformance ranges from 0.9% (highest-performing method III) to 7% (lowest-performing method I) deviation for the parameter
osterior mean, and from 35% (method III) to 570% (method I) deviation for the variance.

.4. Post-competition assessment

After the competition, the contestants were given the opportunity to improve their methods upon inspection of their performance
cores. For the pulmonary challenge, method II was improved by fitting a larger NN, and using a modified loss function during
N fitting to include the correct noise model released by the organisers in order to form an idealised scenario (see Section 5.2.3

or details). Additionally, for both challenges, method III was improved by fitting a second emulator with an improved GP
yperparameter search based on a gradient-based optimiser while using the entire training dataset, and by using an inference scheme
16
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Table 11
Percent deviation from ‘‘ground-truth’’ of parameter estimates (systemic model), and of parameter posterior mean
and variance (pulmonary model), calculated using Eq. (14).

Method I Method II Method III

Systemic Estimates 3% 10−5% 0.6%

Pulmonary Posterior mean 7% 4% 0.9%
Posterior variance 570% 160% 35%

Fig. 9. Pulmonary model (post-competition): univariate posterior densities obtained with kernel density estimation based on posterior samples for all 4 biophysical
parameters for methods II and III. Post-competition densities were obtained after improvements were made to the methods, see Sections 5.2 and 5.3 for details.

based on gradient-based optimisation for the systemic model and a tempered likelihood in the MCMC exploratory phase for the
pulmonary model (see Section 5.3.3 for details). Fig. 9 shows the post-competition univariate densities for the pulmonary challenge
for both methods II and III. A clear improvement over the competition-submitted densities is observed for both methods, with
the post-competition densities following the simulator densities much more closely. For the systemic challenge, post-competition
method III also leads to more accurate parameter estimates than the competition entry, with a root relative square error in parameter
space of 9.3 ⋅ 10−4.

.5. Emulator accuracy

To understand how the emulator accuracy compares between methods1, post-competition, the organisers provided test simulator
outputs generated with parameter samples in the high-posterior area. For the pulmonary model, these were draws from the simulator-
based ground-truth distribution. For the systemic model, for which there was no uncertainty in the estimated parameter values due
to noise-free data, the competition data only were provided as a test output, to avoid creating a disadvantage for the History
Matching based emulator, which focuses on a subset of the parameter space containing likely data-generating parameter values.
Providing test outputs generated with parameter values drawn from a space-filling design across the entire parameter space would
be inappropriate for the History Matching emulator. Fig. 10(a) shows that for the systemic model, method I records the largest errors
(sum of squared errors, RSS = 0.7), followed by method III, (RSS = 0.06 and RSS post-competition = 0.006), and method II has the
lowest errors (RSS = 0.002). Hence, method II, which is the winning method in the inference portion of the systemic model, has
also produced the most accurate emulator. A similar finding is obtained for the pulmonary challenge, for which Fig. 10(b) shows
that method II records the lowest errors, followed by method III, and lastly, method I. We also notice that post-competition, the
improved methods II and III have generated more accurate predictions compared to the competition predictions.

8. Discussion

8.1. Method differences

We proceed to discuss conceptual differences between the three methods employed for emulation, estimation and UQ. All 3
emulation methods are based on a space-filling design constructed prior to the data being released. Post-data release, emulators
thus constructed are used differently depending on the inference method of choice. Method I uses History Matching as an inference
scheme, which given the data, refines the original emulator sequentially, in waves, i.e. emulator at wave 𝑖 + 1 is zoomed in on a
subset of the parameter space containing parameter values that are more likely to have generated the data; in this region the (𝑖+1)th

ave emulator is more accurate than 𝑖th wave emulator with respect to an implausibility criteria, see Section 5.1.2 for details. The

1 For details about the number of training points for individual emulators, see Sections 5 and 8.1.
17
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Fig. 10. Panel (a): Systemic model: vessel-specific errors, calculated as the difference between simulator output and emulator predictions for the competition
parameter values shown in Table 1 for all 3 methods (including a post-competition submission corresponding to an improved method III). Panel (b): Pulmonary
model: distribution of log mean square errors (MSE) between simulator output and emulator predictions for 500 simulator-based posterior parameter samples
for all 3 methods (including post-competition submissions from improved methods II and III); MSE is computed as the sum of squared errors divided by the
number of points in the output time series, and summed for all vessels.

training points of the emulator at wave 𝑖 + 1 may include a subset of the training points of emulator 𝑖 (those that have satisfied an
implausibility criteria), along with newly sampled training points that are non-implausible. The number of training points at every
wave is 100 or 200 (depending on the CFD model). Method II uses the original emulator built prior to seeing the data, i.e. the
emulator is not refined to be data-specific, and the inference scheme used does not change the emulator. The number of training
points is 105. Method III uses an emulation approach that builds on the original emulator after seeing the data, i.e. new training
points are added to the list of points for the original emulator. These are points that are likely to have generated the data, as given
by the inference scheme. For example, for the systemic model, optimised parameter values obtained from multiple optimisation
rounds were added as training points, see Section 5.3.2 for details. All the original training points are a subset of the final set of
training points, and the number of training points is 104 or 1.5 ⋅ 104 (depending on the CFD model).

To summarise, the difference between methods is that while for method I, the emulator at the highest wave number is zoomed
in on the most promising region, with no coverage outside this region, method II’s emulator covers the entire parameter space
uniformly using a very large number of training points, and method III’s emulator covers the entire parameter space, with a denser
coverage of the most promising region. These differences in emulators are illustrated in Fig. 5(b).

There are two main reasons for the different performance between methods: (i) emulator accuracy and (ii) inference and UQ
scheme.

Emulator effect: In principle, the very large number of training points used by method II suggests that the accuracy of the
corresponding emulator is highest. While this may be true when looking at the whole parameter space, it does not necessarily hold
for the region of interest that contains parameters likely to have generated the data, since methods used different inference schemes,
which may help refine the emulator, as explained above. Investigations into emulator accuracy have revealed that for both systemic
and pulmonary challenges, the deep residual NN used by method II is indeed most accurate in the region of interest, followed by
method III’s GP emulator, and lastly method I’s History Matching-based GP emulator. In addition, post-competition investigations
have revealed that the improved methods II and III have a higher predictive accuracy, i.e. the improved method II features a larger,
more complex NN emulator (details in Section 5.2.1), while the improved method III uses a different, gradient-based optimisation
scheme for the GP kernel hyperparameters (details in Section 5.3.1).

Inference and UQ scheme: All 3 methods use established inference techniques, widely adopted by the machine learning
community. For the systemic model, to infer the parameter values, method II uses simulated annealing (on the emulator), and
method III uses greedy optimisation with multiple restarts (on the emulator). In contrast, method I uses an approach based on
‘‘best input’’ out of a fixed number of samples, which is History Matching-based discrete optimisation (see Section 5.1.2). It appears
that this is sub-optimal compared to the continuous optimisation schemes of the other two methods. In principle, the History
Matching emulator could be improved by having further wave refinements, to allow continuously zooming in on the parameter
region of interest. However, the inference task had to be conducted within an allocated three-hours limit (which was unknown
to the contestants prior to releasing the exact, model-specific competition challenges and the data), which limited the number of
feasible wave refinements and appears to have rendered History Matching suboptimal for this task.

In addition, although in method I only the flow data was used for emulation and inference (i.e. the two pressure points were
excluded), post-competition exploration revealed that under the same competition method settings used in the competition, the
inclusion of pressure did not improve the accuracy of the results, a finding which is in line with that from method II (see Table 6
in the Supplement). This result is intuitive given that the flow data are much more abundant, hence in principle more informative
than pressure data.

For the pulmonary model, developers of methods II and III have used MCMC (on the emulator) to generate samples from the
posterior distribution in a Bayesian framework, while the developer of method I has obtained samples from History Matching in
18

combination with a rejection sampling mechanism (details in Section 5.1.2). The constructed History Matching emulator appears to
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Fig. 11. Panel (a): univariate posterior densities obtained with kernel density estimation based on posterior samples for the 2 noise model parameters, drawn
using the simulator or emulators from methods II and III (competition and post-competition). Panel (b): The corresponding log likelihood obtained with the
posterior samples of the biophysical and noise parameter values, see Eq. (15).

be inflicted by a large prediction uncertainty, which may help explain the generally overdispersed densities obtained. As future work,
a few more wave refinements may be performed, and after building the last wave emulator, an MCMC sampler may be run [60,61].
Additionally, unlike methods II and III, that utilise MCMC to allow for uncertainty in the error parameters (besides the biophysical
parameters), method I uses fixed error parameters, which may potentially bias the inferred biophysical parameters. In part, this
may be due to the organisers releasing the noise model at the same time as the data, and so, if the noise model had been known in
advance, a different, more suitable approach may have been taken.

Emulator versus inference discrepancy: A peculiar finding is that the method with the apparently highest emulation accuracy
is not guaranteed to be the method with the best inference performance. For the systemic model, for which inference was based on
noise-free data, emulator accuracy is positively correlated with inference accuracy, i.e. the method with the most accurate emulator
also records the highest inference accuracy. For the pulmonary model, for which inference was performed from noisy data, method II
showed the highest emulation accuracy, according to the criteria discussed in the previous subsection on ‘‘emulator effect’’, but that
was not reflected in the inference accuracy, for which method III was best. A potential explanation for this discrepancy is the
influence of the correlated noise model parameters (i.e. GP lengthscale and amplitude, see Section 3.2 for details). The noise model
parameters are nuisance parameters, whose inference was not directly assessed in the competition. Fig. 11(a) shows univariate
posterior densities (kernel density estimation plots) of the nuisance parameters constructed from MCMC samples drawn with the
simulator and with emulators from methods II and III (competition and post-competition). The plot reveals that there are clear
differences in the inferred nuisance parameters between methods II and III, which has repercussions on the inference accuracy of
the biophysical parameters. In Fig. 11(b) we also present the log likelihood obtained with MCMC samples of the biophysical and
noise model parameters,

(𝐲|𝜽,𝐂(𝝃)) = log(det(2𝜋𝐂)−
1
2 ) − 0.5(𝐲 − 𝑓 (𝜽))𝖳𝐂−1(𝝃)(𝐲 − 𝑓 (𝜽)), (15)

where 𝐲 is the competition data, 𝜽 are emulator or simulator-drawn biophysical parameter samples, which are passed through the
simulator to produce the corresponding simulator output, 𝑓 (𝜽), and 𝐂(𝝃) is the noise covariance matrix obtained using the emulator
or simulator-inferred noise parameters, 𝝃, see Section 3.2 for details on how to obtain 𝐂 from 𝝃.

From Fig. 11(b), it is apparent that method III has a larger (better) log likelihood than method II, that the log likelihood obtained
ith method III is more similar to that of the simulator, i.e. the ground truth, and that post-competition log likelihoods are larger

han competition log likelihoods for both methods II and III.

.2. Exact inference

Although some methods returned emulator-based posteriors that resembled the reference posterior quite closely (see univariate
ensities in Fig. 6), some discrepancies were present. For instance, Fig. 6 shows that method III’s posterior for the parameter 𝛼 was
ver-confident, and hence using these emulator samples may lead to ruling out a true parameter setting, while the other methods
ended to be less confident than the reference posterior. Given the high-dimensional output and the GP observation model used, the
ikelihood function has been found to be very sensitive to small discrepancies between the emulator and simulator, implying that
he emulator-based MCMC sampler has returned densities having some form of discrepancy to the simulator densities. In Fig. 9 we
ave shown that it is possible to build emulators based on which MCMC samplers can produce univariate densities resembling the
eference densities much more closely, although some minor discrepancies remain. This clearly illustrates the difficulty in obtaining
mulator densities that are in perfect agreement with the simulator densities.

This problem can be overcome by running an emulation-based MCMC with a correction step based on the simulator, for example
sing a delayed acceptance scheme [61,62], which is a two-stage acceptance procedure, with two separate acceptance/rejection
19

ecisions. The first decision is a computationally fast pre-filter step based on the surrogate model, which upon rejection of a proposed
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new parameter avoids carrying out the computationally expensive second step based on the simulator. Such an approach ensures
that samples are drawn from a distribution that asymptotically converges to the true posterior distribution, and can significantly
lower the number of simulator evaluations when compared to a simulator-based only MCMC (i.e. only a couple thousand simulator
evaluations may be needed [61]), making the procedure viable to be run within the allocated one week.

8.3. Model discrepancy

The organisers have designed the simulated data such that they are representative of real clinical data. The correlated noise in
he pulmonary model reflects typical noise found in real data and captures in principle any model discrepancy between the simulator

and the real system for the cases when real data are used [63]. This is based on the fact that any discrepancy between the true
signal and the model prediction can be modelled with a Gaussian process due to its universal approximation capability [64]. Model
discrepancy may be due to numerical errors (e.g., numerical integration of the PDEs) or simplifying model assumptions (e.g., purely
elastic vessel walls, or the 1D model simplification) [12]. However, in a real application, the adequate kernel for modelling the
model discrepancy would not be known and would have to be learned by a combination of inference from data and systematic
integration of physical constraints into the kernel design [65]. For the sake of keeping the assessment of method performance as
part of the competition sufficiently simple, we have chosen a kernel of a standard form and assumed it to be known. Consequently,
the posterior uncertainties presented in this paper may be lower than what would be expected in a real clinical application.

8.4. Clinical translation & future work

A long-term goal of this work is to develop a real-time clinical decision support system relying on the combination of
physical, mathematical and statistical modelling of (patho)physiological systems, to enable personalised healthcare. To this end,
the competition has provided a platform to explore state-of-the-art emulation and inference techniques from Statistics and Machine
Learning, and has aimed to identify the best-performing methods. While this study is a stepping stone towards clinical translation,
it naturally comes with shortcomings, which may be addressed in future studies. For real-data studies, some limitations include:
(i) Model simplifications, e.g. 1D simplification instead of more physiologically realistic, 3D CFD models, which are associated
with much higher computing costs. To circumvent this issue, a multifidelity emulation approach based on the mapping of 1D and
3D models may be adopted [66]; (ii) Parameter fixing based on sensitivity analysis: although fixing some non-identifiable model
parameters to empirical or nominal values reduces the parameter dimensionality, and simplifies the emulation and inference task,
it may bias the inference parameters. Hence, future work could address the identifiability issues by the integration of physiological
prior knowledge [11]; (iii) Uncertainty in vessel network geometry, which may be captured by specifically including the geometry
parameters in the emulation and inference scheme. This will increase the parameter complexity, potentially leading to a much larger
number of training points required to train the emulator to ensure a dense enough coverage of the parameter space. To deal with the
numerical problems that arise when using emulators for large data sets, other methods could be employed, such as local GPs [67],
sparse GPs [68] or Vecchia-approximated GPs [69], or by employing a parameter dimension reduction technique (e.g. PCA) prior
to performing emulation and inference [11].

9. Conclusions

In this study, several state-of-the-art emulation methods based on Gaussian Processes and deep residual neural networks were
employed and assessed to emulate blood flow and pressure in the pulmonary and systemic blood circulation using simulations from
two computational fluid-dynamics models of the pulmonary and systemic system. Emulation has been used as a computationally
efficient tool to perform inference of unknown model parameters using optimisation techniques, and MCMC, History Matching
and rejection sampling approaches, which are established inference techniques, widely used in the machine learning community.
Moreover, robust assessment criteria have been developed to compare the performance of the proposed methods with respect
to accuracy and UQ. An essential part of the assessment process is that the parameter estimation and UQ analysis needed to be
conducted within a limited time interval to provide real-time model calibration. The aim is to develop inference techniques that
can be employed for decision support in a clinical setting to enable personalised medicine. We find that for the systemic challenge,
which featured an idealised case of noise-free data, the relative deviation from the ground-truth in parameter space ranges from
10−5% (highest-performing method) to 3% (lowest-performing method). For the pulmonary challenge, for which noisy data were
generated, the relative deviation ranges from 0.9% to 7% for the parameter posterior mean, and from 35% to 570% for the parameter
posterior variance.
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