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Abstract

This thesis investigates the relationship between patterns of physical
activity (PA) accumulation and physical function, focusing on midlife populations.
It begins with a systematic review of current evidence linking PA with physical
function. The review finds that higher levels of PA, regardless of intensity, are
generally associated with better physical function. However, significant gaps are
identified, including a predominant focus on older adults and reliance on
aggregate measures of PA that overlook how PA is accumulated. To address
these gaps, novel metrics are employed to describe patterns of how upright and
stepping events are accumulated. These include measures of the fragmentation,
temporal distribution, and composition of upright, stepping, and sedentary events.
These metrics aim to build on traditional aggregate measures of PA time or
volume by adding new information about how a given level of activity is

accumulated.

The thesis then examines how patterns of PA accumulation vary by a
range of sociodemographic factors in two population cohorts: the early midlife
population of the 1970 British Cohort Study and the older population of The
Maastricht Study. Significant variations in activity accumulation are observed
based on age, sex, Body Mass Index, self-rated health, disability, occupational
activity, and smoking status—variations that are ignored if only aggregate
measures are reported. Next, the thesis examines cross-sectional relationships
between patterns of PA accumulation and self-reported and objective measures
of physical function. Associations between patterns of accumulation and physical
function outcomes are observed in both early and later midlife populations,

independent of the volume of physical activity.



This thesis adds new knowledge by demonstrating that different people
may accumulate the same volume of PA in very different patterns, and that these
patterns are associated with physical function, independently of aggregate
measures of PA volume. This suggests that future research investigating the
relationship between PA and health should assess patterns of PA accumulation
in addition to the amount of PA people undertake. Such measures are important
not only in older adults but also in midlife, when declines in physical function start
to occur. If these findings are confirmed in future longitudinal studies, the next
revisions of public health guidelines, population surveillance, and intervention

studies should reflect this new evidence to optimise health outcomes.
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Glossary

6MWT: refers to the 6-minute walk test.

ASTP: The Active to Sedentary Transition Probability is a measure of fragmentation of physical
behaviours, defined as the probability of transitioning from an active to a sedentary state and
calculated as the reciprocal of the average active bout duration.

BCS70: The 1970 British Cohort Study.

Burstiness: The inter-event time distribution (burstiness) refers to the variability and irregularity
in the time between events, characterised by a non-uniform distribution of inter-event times
(clustering of events followed by long intervals before the next event), versus a uniform distribution
(inter-event times are equal). This concept is used to describe and analyse non-uniform
distributions of inter-event times in various systems, used in this thesis to help to understand
patterns of postural and activity data, with assumed mechanistic explanations discussed.

DMS: The Maastricht Study.
MVPA: refers to moderate-to-vigorous physical activity.

Patterns of physical activity: For the purpose of this thesis, pattern refers to the ways in which
physical activity is accumulated and distributed through a day, including the frequency, duration,
intensity, and temporal distribution of activity and inactivity events, as measured through event-
based metrics.

Phenotype: refers to the observable characteristics or traits of physical activity patterns that
reflect an individual's functional capacity.

SF-36: refers to the Short Form-36 survey. SF-36pf refers to the physical functioning sub-scale
of the SF-36.

TCST: refers to timed chair stand test.

TUG: refers to the timed up-and-go test.
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Chapter 1
Physical Activity and Physical Function: An
Introduction

1.1 Physical function and health

1.1.1 An ageing population

The global population is undergoing a profound demographic shift
characterised by the increasing prevalence of older individuals." This
demographic transformation is reshaping the landscape of healthcare and public
health policy.?2 While the extension of life expectancy is celebrated as a testament
to advancements in healthcare and living conditions, it is essential to
acknowledge the substantial gap between life expectancy and healthy life

expectancy.®

The concept of healthy life expectancy encapsulates the number of years
an individual can expect to live in good health, free from debilitating illnesses and
functional impairments.* This metric is a stark reminder of the challenges posed
by an ageing population, as it reveals the discrepancy between the length of life
and the quality of life. The consequence of this discrepancy is highlighted in the
latest UK figures, which suggest 16 and 19 years of life will be lived in poor health

for males and females, respectively.®

The years lived in poor health are influenced by a complex interplay of
factors. Among the primary contributors to this phenomenon are disability and
frailty, two closely related conditions that often overlap but are distinct.® Disability,
defined as impairment, activity limitation, and participation restriction,” is

considered both a social phenomenon and medical entity,® which can be either a
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physical or mental impairment that substantially limits one or more of the major
life activities.® Frailty is a multidimensional concept that overlaps with, but is
distinct from, disability, defined as “a clinically recognised state of increased
vulnerability”, resulting from age related declines in the body’s physical and

psychological reserves.®

The cycle of frailty is depicted in Error! Reference source not found..
Evidence suggests that various exposures, chronic diseases, and ageing-related
processes can trigger this cycle at any stage. However, the initial signs typically
include reductions in muscle strength, walking speed, and/or physical activity.'?
These early declines are predictive of the development of exhaustion and, in

advanced stages, significant unintentional weight loss.

Frailty independently predicts progression of disability in older adults, in
addition to falls, hospitalisation, and mortality.8 All-cause mortality rates are higher
among adults with disabilities.’® Therefore, these conditions, individually and in
concert, contribute significantly to the overall burden of years lived in poor health
among the ageing population.’®15 However, disability and frailty are preceded by

impairments in physical function, and/or declines in physical activity.'®

1.1.2 The role of physical function

A fundamental determinant of an individual's capacity to lead a healthy and
independent life is their physical function. According to the World Health
Organisation (WHO) International Classification of Functioning, Disability, and
Health (ICF), physical function is a core component of an individual's overall
functioning, encompassing both physical and psychological aspects of health.’

The ICF framework provides a comprehensive view of health and health-related
13
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Figure 1.1. Cycle of frailty. (From Fried 2001, reprinted with permission.)

domains, considering how people with a health condition function in their daily
lives rather than focusing solely on their diagnosis. This framework is particularly
relevant when examining the precursors to disability and frailty, as it
acknowledges the interaction between an individual's health condition,

environmental factors, and personal factors.

This multidimensional concept is influenced by various factors including
physical fithess components such as cardiorespiratory fitness, muscle strength,
endurance, and flexibility, as well as clinical, behavioural, socioeconomic, and
environmental factors.”'” Given its complexity, physical function is assessed
through a range of measures, including physiologic impairment tests, field-based
performance measures, and self-report surveys.'®1° These assessments capture

different aspects of physical function, from physiological limitations to limitations
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in specific tasks and daily activities within one’s social and environmental

context.20:21

Despite the complexities involved in assessing physical function,
performance-based measures emerge as a common, simple, and effective
means of screening for and classifying low function.??2® While the multifaceted
nature of physical function may present challenges, performance-based
assessments offer a straightforward approach to evaluating functional capacity.
By objectively assessing an individual’s ability to perform specific physical tasks,
these measures provide clinicians and researchers with valuable insights into
functional limitations.?*

In this thesis, physical function is primarily defined and measured using
performance-based assessments, which offer objective indicators of an
individual's lower extremity functional capacity and overall strength. These
assessments, such as gait speed, grip strength, and chair rise tests, are
employed to quantify the physical capabilities that are critical to maintaining
independence and preventing the onset of frailty and disability.""?° In addition,
these measures are associated with future health outcomes and mortality.?6-28
While the ICF provides a broad conceptual framework, this thesis focuses on
these performance-based measures of function and seeks to determine if they

are associated with variations in patterns of physical activity accumulation.

1.1.3 The prevalence and burden of low physical function

The prevalence of low physical function is high in general populations with

20-50% of people recording slow gait speed, and 20% with weak grip

15



strength.?®30 Prevalence increases with age, co-morbid health conditions,

smoking, and is higher in women.31-33

The burden imposed by low physical function extends beyond individual
well-being. Declines in physical function precede frailty and disability;®3* which
lead to significant economic, social, and healthcare-related consequences due to
increased productivity loss and healthcare demand.'*'5 In addition to financial
costs, the burden encompasses reduced quality of life, increased caregiver

burden, and greater dependency on social and healthcare systems.

It is essential to recognize the role of low physical function as a precursor
to frailty and disability and the associated adverse health outcomes. The ICF
framework reinforces the importance of understanding physical function within
the broader context of an individual's environment and personal factors. This
holistic approach is critical in identifying early signs of functional decline, which
can be addressed before people progress to frailty or more severe disability.
Maintaining physical function as we age, particularly through proactive measures
like regular physical activity, can delay or even prevent the onset of frailty and
disability.3>3” The focus of this thesis aligns with the preventive aspect
emphasised by the ICF, highlighting the potential for early detection and

intervention.

1.1.4 Changes in physical function across the life course
Physical function encompasses a broad range of abilities, including

strength, balance, mobility, and coordination, all of which are subject to change

across the life course. These changes are influenced by various factors, including

ageing, physical activity levels, genetics, and the presence of chronic
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conditions.3”38 Understanding these changes is essential for surveillance of
physical function and developing strategies to maintain or prevent functional
decline.

As individuals age, there is a general decline in physical function,
characterised by reductions in muscle mass and strength, decreased flexibility,
and impaired cardiovascular and respiratory function.3®4% These changes can
lead to a decrease in overall physical performance, making everyday activities
more challenging and increasing the risk of disability and dependence. The rate
of decline can vary widely among individuals, depending on their lifestyle,
particularly their levels of physical activity.3®

Balance and gait are particularly susceptible to age-related decline.
Balance deteriorates due to diminished sensory input, such as impaired vision,
reduced proprioception, and a less responsive vestibular system.*! Similarly, gait
becomes slower and more variable, with shorter strides and increased time spent
in the double-support phase.*? This in turn leads to an increased risk of falls,
which creates a cyclical effect where a fear of falling can reduce activity and
further reduce function.*® Falls are a major cause of injury and loss of
independence in older adults.*44°

Neurological changes, including decreased motor neuron function and
reduced cognitive processing speed, further exacerbate declines in physical
function.*® The ageing brain shows diminished capacity for neuroplasticity,
affecting motor control and coordination. These changes can lead to slower
reaction times, reduced agility, and difficulties in performing complex motor tasks,
all of which contribute to the overall decline in physical function.4”

The relationship between physical activity and physical function is
bidirectional. While engaging in regular physical activity can help slow or even
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reverse some aspects of functional decline, individuals with higher physical
function are more likely to remain active and vice versa. This creates a positive
feedback loop, where maintaining physical function through activity further
promotes continued activity. However, as previously discussed, taking the
approach of physical activity as the explanatory variable allows us to focus on
identifying and promoting modifiable behaviours that can prevent or delay the

onset of functional decline.

1.1.5 Physical function in midlife

Due to the prevalence of poor physical function, frailty, and disability in
older adults, physical function is traditionally screened for in later-life;*® therefore,
the majority of research has also focussed on physical function in older
adults.?849.50 However, impairment in physical function can arise earlier in the life
course,’®? and evidence suggests reductions in physical function are becoming
more common among those aged 55-64 years, whilst staying relatively constant
among those aged 65-84 years.%3 Reports on the prevalence of physical function
impairment in midlife populations range from 19% among those aged 40-55 years

to 50% among those 56-66 years.>+6

The trajectory of age-related decline in physical function means that
decrements in function occur, and are detectable, in midlife particularly in those
with morbidity.5” Moreover, transitions and reversal between states is possible;®58
therefore identification of physical function impairment at the earliest feasible
stage is desirable, to optimise the potential benefits of intervention.5” Rather than
treating older adults reactively, it has been suggested that a proactive policy for

successful ageing be promoted from midlife onward.>*¢° To identify impaired
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physical function in midlife and potentially intervene, improved methods of
screening are required. This first requires a sound understanding of the

determinants of low function.

1.1.6 Determinates of low physical function

The onset and progression of low physical function result from a complex
interplay of various determinants. Factors such as age, chronic health conditions,
genetics, and lifestyle choices play crucial roles in shaping an individual's
physical function.336" A model of the wide range of determinants of physical
functioning is presented in Figure 1.2. Some of these factors are immutable, while
others offer opportunities for intervention, albeit with varying degrees of difficulty.
However, one determinant emerges as particularly pivotal in shaping physical

function: physical activity, or conversely, physical inactivity.

Clinical Factors
symptoms
fatigue
shortness of breath
weakness
pain
depression
* cognitive function
» neuromuscular dysfunction
* orthopedic problems
» other clinical problems

+ physical self-confidence
+ satisfaction with activity
* nutritional practices

* smoking

. Sensorj’ Factors ]ndependent
* vision Living Activities
* hearing = ADLs
. . Basic Physical « JIADLs
Environmental Factors Physical Fitness Movements « role/obligatory
* social support * cardiorespiratory + walk / activities
« education level f1tnesIs trength + climb stairs
* access to facilities ® muscle stren, + stand up from chair : .
+ professional support/ - muscle endurance; * bend, stoop, kneel \ El::ic;;?ttilgsnary
encouragement « flexibility + reach overhead - travel
+ information/advice + push, pull objects + work
X ﬁ?:péahr?'ld' st * social activities
Behavioral Factors R wr{t'ingy * ya{d/ tlouse\;'o_rtl;
- regular exercise + holding utensils : volun t_iieer alc v:i e::
« preference of activity recreationa’ acuvites
* perception of abili - sports/fitness

Figure 1.2. Model of the determinants of physical functioning. (From Painter et al., 1999;
reproduced with permission.)
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1.2 Physical activity and health

1.2.1 Benefits of physical activity for health

Physical activity is broadly defined as any bodily movement produced by
skeletal muscles that results in increased energy expenditure, encompassing
various domains such as occupational, domestic, travel, or leisure activities.®?
The well-documented benefits of physical activity in preventing and managing a
range of health conditions underscore its importance in public health.®3 Regular

physical activity offers a multitude of health benefits across the lifespan.

Engaging in physical activity is associated with a reduced risk of developing
various chronic diseases, including heart disease,?* stroke,®® type 2 diabetes,®®
and certain cancers.%” Moreover, physical activity plays a crucial role in managing
existing health conditions and improving overall quality of life.68 Studies have
consistently shown that regular physical activity is associated with a reduced risk
of premature mortality, underscoring its significance in extending lifespan and
promoting longevity.5® However, the benefits of physical activity extend beyond
physical health and encompass mental well-being, cognitive function, and social
connectedness.’® Encouraging individuals to adopt and maintain active lifestyles

is essential for promoting optimal health and well-being across populations.

1.2.2 Prevalence and burden of physical inactivity

Physical inactivity is defined as failing to attain the physical activity
guidelines,”! which are discussed in the following sub-section. The prevalence of
physical inactivity is a significant public health concern globally. According to the
WHO, worldwide around 27% of adults are considered physically inactive.” This

trend is particularly pronounced in high-income countries, with approximately
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36% of adults in the European Union,”® and around 34% of men and 42% of
women in the UK, physically inactive. These numbers highlight the need for
targeted interventions to address, to promote, and to enable physically activity

lifestyles.

The WHO estimate that between 2020 and 2030 almost 500 million people
will develop non-communicable disease attributable to physical inactivity, at an
annual cost of $27 billion.”? However, the burden associated with physical
inactivity extends beyond treating noncommunicable diseases and encompasses
significant economic and societal costs. In addition to the direct healthcare costs,
there are also indirect costs related to productivity loss.”* The economic burden
of physical inactivity underscores the importance of implementing effective
strategies to promote regular physical activity and mitigate its adverse effects on

health and society.

1.2.3 Physical activity and public health

1.2.3.1 Guidelines

The history of physical activity guidelines can be traced back to the late
20th century when national and international health organizations began
recognising the importance of regular physical activity in preventing chronic
diseases and promoting overall health. Early guidelines recommended =30 min
of moderate-intensity physical activity on five days per week.” This was followed
by an update that included the option for overall shorter durations at a higher
intensity (=20 min of vigorous-intensity physical activity on three days per
week).”® A minimum suggested bout-duration to accumulate this activity (10

minutes) was introduced, before being removed in the latest iterations.”” This was
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a result of evidence suggesting that accumulating activity in bouts of any duration

confer health benefits.”®

Current national and international guidelines recommend at least 150
minutes of moderate-intensity aerobic activity or 75 minutes of vigorous-intensity
aerobic activity per week.”®8 Further to the aerobic activity, guidelines now
recommend minimising and breaking up sedentary time. Evidence suggests high
levels of sedentary time are associated with greater risk of all-cause and
cardiovascular mortality, independent of moderate-to-vigorous physical activity
(MVPA) levels.8' However, evidence on the dose-response relationship is lacking
and therefore guidelines remain general, with insufficient evidence to support
recommendations on interrupting sedentary time with standing.”” In addition,
muscle strengthening activities, on at least two days per week, have been added
to the guidelines. These activities are associated with lower risk and mortality in

major non-communicable diseases,?® as well as falls prevention.8

Population specific guidelines have been introduced, with UK variations
for early years (under 5 years), children and adolescents, adults (18 to 64 years),
older adults (65+ years), pregnant and postpartum women, and disabled adults.”®
The difference between recommendations are minimal, particularly for adults and
older adults. However, the WHO guidelines do differ with the conditional element
that older adults should perform balance and strength training on three or more

days a week, to improve functional capacity and reduce risk of falls.”

These guidelines were introduced, and are updated, as adherence to them
is associated with significant health benefits. However, adherence to these
guidelines is consistently low and has been since their introduction,®*8% with

adherence even lower in older adults, and those with multimorbidity.8%86 Notably,
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the proportion of adults meeting the muscle strengthening element of the
guidelines is considerably lower than the proportion meeting the aerobic
element.8” All of which highlights the importance of continued pursuit of not only
developing optimal physical activity guidelines, but improving promotion of

physical activity, and intervention both at the individual and population levels.

1.2.3.2 Intervention

Interventions to promote physical activity encompass a range of strategies
aimed at increasing participation in regular physical activity.® These interventions
may include educational programs, community-based initiatives, environmental
modifications, and policy changes designed to create supportive environments
for physical activity.®8 There is evidence for the effectiveness of physical activity
interventions for increasing levels of physical activity across a range of
populations.&:8889 However, the lack of studies with longer follow-ups is regularly
highlighted as an important limitation when evaluating the effectiveness of these

interventions.88:90

A reliance on self-reported outcomes of physical activity limits the
evaluation of many intervention studies. For example, a systematic review of
inactive, but otherwise healthy, populations found interventions to be effective,
even at 6-month follow-up.®’ However, sub-group analysis showed that the
pooled effect was only significant for studies employing self-report measures of
physical activity, and not for those utilising objective measures. Self-report
measures are associated with substantial measurement error and bias, which are
discussed in detail in Chapter 3. In this instance, social desirability bias may have

led to an over-reporting of activity levels,®? whereas the objective measures were
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not susceptible to this bias. Further limitations to intervention evaluation, relevant
to the focus of this thesis, include the reliance on only considering duration or

volume of physical activity as an outcome.

This evidence, and its limitations, extend to physical activity interventions
aimed at improving physical function. Review evidence suggests structured
exercise interventions can improve or delay the loss of physical function in older
adults.®3-% The potential benefit of physical activity across multiple physiological
systems means physical activity-based intervention may be more useful than
interventions targeting a single system, e.g. pharmacological interventions.%
However, despite showing initial increases in physical activity aimed at
maintaining function, some studies showed these increases were not maintained
at follow-up.%” Effective implementation and assessment of these interventions
necessitates a comprehensive understanding of physical activity behaviours. It
also demands robust measures capable of detecting nuanced changes in

physical activity behaviour.

1.3 Physical activity and physical function

Understanding the association between habitual physical activity and
physical function is crucial for promoting healthy ageing and maintaining
independence in older adults. Longitudinal evidence has shown older women
who engaged in regular physical activity had higher levels of physical function
(measured by the Timed Up-and-Go) at follow up, though physical activity was
self-reported.?® Systematic reviews and meta-analyses have shown positive
associations between supervised physical activity interventions and indices of
healthy ageing.%*-%° However, the evidence remains limited due to a reliance on
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self-report measures of physical activity, that may over- or under-estimate activity
levels, impacting associations, and heterogeneity in physical activity

categorisation and physical function assessment methods across studies.

Emerging evidence suggests that the pattern of physical activity may play
a significant role in determining health outcomes.®® Studies have shown that
patterns characterised by frequent transient or fragmented bouts of physical
activity are associated with a range of health outcomes, independent of total
physical activity volume.’-103 |n well-functioning older adults (65+ years),
fragmented physical activity was associated with all-cause mortality, while volume
of physical activity was not.'%? In addition, fragmentation metrics are associated
with physical function outcomes, including gait speed, walking endurance, and

the Short Physical Performance Battery (SPPB).104.105

The interest and evidence base in these types of pattern metrics are
beginning to gain momentum, with a potential proposal for a phenotype of
accelerated ageing.'® However, there is a paucity of research on the temporal
pattern of physical activity accumulation on health and physical function
outcomes. Metrics that quantify the temporal distribution of clustering of activity
together in short bursts followed by long periods of sedentary behaviour, may be
indicative of decreased capacity and confidence in undertaking sustained periods
of activity. Further research is needed to fully characterise and understand the
implications of different patterns of physical activity accumulation on health

outcomes.
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1.3.1 Physical activity and physical function in midlife

The trajectory of age-related decline in physical function means that
decrements in function occur, and are detectable, in midlife particularly in those
with morbidity.5” Moreover, transitions and reversal between states of robust, pre-
frailty (low function), frailty, and disability is acheivable;%%8 therefore, identification
of physical function impairment at the earliest possible stage is desirable, to
optimise the potential benefits of intervention.%” Rather than treating older adults
reactively, it has been suggested that a proactive policy for successful ageing be

promoted from midlife onward.%®

Engaging in regular physical activity has been shown to preserve physical
function in midlife adults.’”1% According to the ICF framework, maintaining
physical function involves not just the prevention of disease but also the
promotion of health and well-being within the context of one's environment and
personal circumstances.” This holistic view supports the idea that interventions
aimed at enhancing physical function should focus on prevention rather than
reversal, with midlife representing a critical period for such proactive measures.

The performance-based measures of physical function used in this thesis
are particularly relevant for early detection of functional decline. Although midlife
is less likely to be targeted for intervention, as previously discussed, midlife is a
key period for preserving physical function and retarding the rate of decline.®®
This approach aligns with the ICF’s emphasis on early intervention to maintain
and improve function, ultimately reducing the burden of frailty and disability in
later life.

Acknowledging the adage “Prevention is better than cure”, prioritising
efforts to prevent decline or reverse early signs, would be more effective than

addressing impairment once it has become a clinical issue. However, the limited
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evidence available in midlife populations suffers from similar limitations as those
discussed earlier; self-reported physical activity and/or physical function, and a
focus on aggregate measures of duration or volume of activity. To improve our
understanding of these associations, a move to objective measures which are
free from the error and bias associated with self-reports, and exploration of

metrics which describe day-to-day patterns of physical activity is required.

1.4 Summary

This thesis provides a comprehensive exploration of the connections
between physical activity and physical function, focusing on the challenges posed
by relying on self-report measures of physical activity and aggregate measures
of duration or volume, while neglecting important differences in patterns of daily
activity. Within the context of an ageing population, it highlights the pressing need
to bridge the gap between life expectancy and healthy life expectancy. This
disparity underscores the prevalence and impact of disability, frailty, and low
physical function, which collectively contribute significantly to the burden of poor
health among older adults. Understanding the determinants and consequences
of low physical function emerges as a pivotal aspect of promoting healthy ageing,

with midlife presented as a preventative window-of-opportunity for intervention.

Despite the well-documented benefits of physical activity for health, the
persistent challenge of physical inactivity remains a public health imperative. The
aim of this thesis is to improve our understanding of patterns of physical activity

accumulation and their association with physical function.
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1.5 Thesis objectives

1)

2)

3)

4)

5)

Understand the most recent evidence for the association between

physical activity and physical function.

Derive a suite of physical activity pattern metrics from thigh worn

accelerometer postural and stepping data.

Examine the variation in pattern metrics across sociodemographic

factors in a midlife population.

Explore the associations between derived pattern metrics and a

range of performance based physical function measures.

Explore these associations in an early midlife population.
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Chapter 2
Review of Current Literature

2.1 Overview

Chapter 2 aims to address the first thesis objective by providing a
comprehensive review of the current literature on associations between physical
activity and physical function. We identified a reliance on summary and aggregate
estimates of physical activity, and a lack of research in midlife populations. The
systematic review and meta-analysis within this chapter was published as a peer
reviewed paper in 2023: Associations between device-measured physical activity
and performance-based physical function outcomes in adults: a systematic
review and meta-analysis.'®® The published version is available digitally using the

following DOI: http://dx.doi.org/10.1136/bmjph-2023-100000.

2.2 Introduction

As described in Chapter 1, disablement models support the causal pathway
from limitations in physical function to disability, and loss of independence once
these limitations interfere with activities of daily living."%""" Relatively simple
performance-based measures of physical function such as grip strength, gait
speed, chair rise tests, walk tests, and balance can be strong predictors of
adverse future health outcomes in older adults®%112-114 and late midlife.’'® Weak
grip strength and slow gait speed are also characteristics of Fried’s frailty
phenotype.' Chair rise tests and grip strength have been recommended as

screening and diagnostic tools for sarcopenia.3® However, physical function
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assessments largely take place in clinical settings and only tend to occur when a

person is attending a medical setting due to an adverse health event.

Declining physical function is a common factor of ageing and, despite
impairments typically being considered in older age, they can occur much earlier
in midlife (45-64 years).®° Depending on the point of intervention, declines in
physical function can potentially be prevented, retarded, or reversed.'® However,
identifying opportunities to intervene in midlife relies on the ability to detect
impairments in function, prior to the point that reduced function results in
presentation in medical settings. Remote health monitoring, through wearable
devices, is one possible solution to early detection of pre-symptomatic and pre-
clinical changes in physical function.’” Wearable devices for monitoring health
outcomes are already being employed by both individuals, to track their own

health through activity levels, and by clinicians as a method of early detection.'®

Wearable devices, such as accelerometers, have become increasingly
popular for measuring physical activity in health research.’® There is strong
evidence that structured physical activity and exercise interventions can improve
or delay the loss of physical function in older adults.®®% Therefore, it is
reasonable to consider that physical activity measures may be a potential proxy
for physical function. Prior to this it is necessary to know what measures of
physical activity are most strongly associated with, or even predictive of, physical
function. However, there is a paucity of evidence on the association between
physical activity and physical function in midlife when function is likely to be high

but declining.

Systematic review level evidence of the associations between free-living

physical activity and physical function is limited, with reviews often focussing on
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interventions in people with reduced function.®39 A meta-analysis has shown
light intensity physical activity (LPA) and MVPA are be associated with grip
strength and chair rise tests;'?% however, the focus of the meta-analysis was on
the association between physical activity and strength rather than physical
function. In addition, included studies were limited to older adults, preventing
insight into important associations of physical activity and physical function in
midlife. It also included a mix of studies of healthy populations as well as studies
of specific clinical populations (e.g. chronic obstructive pulmonary disease,
diabetes, osteoarthritis), where the association between physical activity and
physical function might be confounded by these long-standing health conditions.
No analysis of the differences in associations between studies of healthy and

clinical populations was performed.

To our knowledge, there are no systematic reviews of the association
between physical activity and physical function indicators such as gait speed,
walk tests, balance, or the timed up-and-go test (TUG); and no reviews that
examine the associations of physical activity and physical function in both midlife
and older adulthood. This systematic review and meta-analysis examines
associations between wearable, device-measured physical activity and a range
of performance-based physical function outcomes in non-clinical adults. The
findings will inform the potential of remote monitoring of early declines in physical
function, that could inform the development of future screening programmes and

interventions.
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2.3 Methods

The review was conducted according to the COSMOS-E guidance on
conducting systematic reviews and meta-analyses of observational studies'?’
and the Cochrane handbook;'??* and reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines.'?® The
protocol was registered in the International Prospective Register of Systematic

Reviews — PROSPERO (CRD42021282861).

2.3.1 Search strategy

Systematic literature searches were conducted in PubMed (including Ovid
MEDLINE, HMIC and Embase), EBSCOhost (including CINAHL and
SPORTDiscus) and Web of Science for studies published between database
inception to 151" June 2021; a top-up search was performed on 11" November
2022. The search strategy included key words related to physical activity, device-
based measures of physical activity, physical function outcomes, and
observational study designs (Appendix 8.1). In addition, supplementary searches
were performed through bibliography screening of included papers to identify any

other potentially relevant publications.

2.3.2 Study Selection

Inclusion was determined by two independent reviewers (JC + GM or RL).
Disagreements were resolved by discussion with the third author (GM or RL), if
required. Study selection was completed in two phases: title and abstract
screening was performed to exclude clearly irrelevant studies, after which full

texts were screened. If two or more studies reported similar associations for the
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same cohort, we included the study with highest quality score or largest sample

size, respectively.

2.3.3 Eligibility criteria

2.3.3.1 Population

Participants were adults (=218 years old) recruited from non-clinical,
community dwelling populations. Studies of adults recruited specifically due to
the presence of, or expected progression to, a disease or other clinical condition
were excluded. These inclusion criteria allow for generalisation to the general
population, including those in midlife; these assertions cannot be made from

studies of clinical populations of solely older adults.

2.3.3.2 Exposure

Studies reporting continuous wear data from remote wearable, device-
based measures of physical activity were included. Depending on device, this
included studies that advised participants to wear the device for 24-hours
continuously, or to only remove the device during sleep and water-based activity.
Studies which collapsed continuous physical activity data were contacted to try
to obtain the continuous association. We excluded studies that exclusively

reported estimates of sedentary behaviour.

2.3.3.3 Outcome

Studies reporting performance-based physical function instruments,
adopted by clinicians and researchers, were included. These include; grip
strength, gait speed, chair rise tests, walk tests, balance tests or composite

assessments of these measures.22:39.124

33



The selection of functional measures for this study was guided by the need
to capture objective, performance-based assessments of physical function that
are both reliable and sensitive to change. First, these measures provide a direct
evaluation of an individual's physical capabilities, offering an objective alternative
to self-report measures of perceptions of unction that are susceptible to recall
bias and subjectivity. By assessing actual performance, these tests allow for a
more standardised evaluation of physical function, which is importantcrucial for
accurately detecting subtle changes over time, changes resulting from

intervention and for harmonising measures across studies.'?°

Performance-based measures are particularly valuable in the context of
ageing and midlife populations because they can detect early signs of functional
decline that may not yet be perceived by the individual. Self-report measures,
while useful for capturing perceived function and quality of life, often lack the
sensitivity needed to identify small, early impairments declines in physical
function that indicate an accelerated pathway to loss of function and pre-frailty. In
addition, performance-based assessments such as gait speed and grip strength
have been shown to be strong predictors of future health outcomes, including

disability, morbidity, and mortality (see Chapter 4.6).

The choice of these specific functional measures was also informed by their
relevance to the study's target population, individuals in midlife, and the specific
health outcomes of interest, including the prevention of disability and
maintenance of independence. The research chapters of the thesis include both
performance-based measures and a self-report measure of function (SF-36).
However, within the scope of a systemic review and meta-analysis, including both

performance-based and self-report measures was not feasible or appropriate for
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evidence synthesis. The evidence for physical activity and the SF-36 is reviewed
in Chapter 4.6. The measures chosen for this systematic review cover a wide
range of measures of function and appear in a sufficient number of studies to

permit evidence synthesis and meta-analysis, the aims of this section.

2.3.3.4 Study design

The review included observational studies (both cross-sectional and
prospective designs), which reported associations between the exposures and
outcomes. Experimental studies and randomised controlled trials were excluded.
No restrictions were placed on country or date. Only full texts, in English, were

included.

2.3.4 Data extraction

Two authors (JC + RL) independently extracted the following data from
included studies: (1) author, study year and country of origin; (2) cohort and study
design; (3) sample size and sex distribution; (4) age of study participants; (5)
device used for physical activity measurement and metrics reported; (6) test used
for assessing physical function and metrics reported; (7) statistical analyses
undertaken including and covariates included; (8) key results for the association
between physical activity and physical function. Discrepancies in extracted data

were resolved by discussion with a third author (GB), if required.

2.3.5 Assessment of study and evidence quality

Two authors (JC + RL) independently assessed the quality of included
studies using an adapted version of the National Institutes of Health Quality

Assessment Tool for Observational Cohort and Cross-Sectional Studies
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(Appendix 8.2). Scores were given ranging from 0 to 12, with higher scores
indicating higher quality. Discrepancies in quality assessment were resolved by
discussion with a third author (GB), if required. The continuous quality rating

scores were used in sensitivity analyses.
2.3.6 Statistical analysis

The required association statistic was the standardised regression
coefficient (8) and standard error (SE), see detailed explanation of 3 coefficient
below. Using the B coefficient allowed for synthesis across different metrics and
units for both physical activity and physical function variables. If only a partial
correlation coefficient was obtainable, this was used as an approximation of the
B coefficient, with sensitivity analysis performed to ensure these coefficients

would not bias the pooled effect.’?6

Some physical function outcomes have slightly different measurement
protocols, and these are grouped together in this review as follows; the chair-rise
test outcome includes the 30-second and the 5-repitition variants; gait speed
includes any protocol measuring normal/usual or maximal gait speed over a
distance <10 meters; grip strength includes any protocol using a hand
dynamometer to obtain maximal grip strength; walk tests included the 6-minute
walk test (6MWT) and 400-meter walk test (400mWT), or any variant covering a
similar time or distance in different units; the timed up-and-go test (TUG) includes
both the 8-foot and 3-meter variations; and balance includes any continuous
measure of tandem, semi-tandem or single-leg stance, with eyes closed or open.
Where composite scores of the above measures were reported for an overall
physical function score, we sought to obtain the associations for the individual

components.
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The adjusted B coefficients were extracted from included papers, or
obtained from converting the unstandardised regression coefficient (b) where

possible using the following equations:
— SDx _ SDx
B = 5, b and SE(B) = 5, SE(b)

where SDx is the standard deviation of the physical activity exposure and SDy is
the standard deviation of the physical function outcome.'?’ If the SDx or SDy was
reported in two sub-groups and needed to be combined the following equation

was used to obtain the full sample SD:

nm
(n; — DSD% + (ny — DSD% + ™ 1_|_ ?flz (M; — M;)?
SDfull sample —

ny+n,—1

where n1 and n2 are the sample sizes of the two sub-groups, SD1 and SD2 are
the sub-group SDs, and M1 and Mz are the subgroup means.(28) If SE was not

reported, it was calculated from the 95% Cls using the following equation:
SE = (upper limit — lower limit)/3.92

where the upper limit and lower limit refer to the 95% CI of the effect size.'?8 In
cases where the partial correlation is used, the following equation was used to
calculate the SE of the partial correlation:

1—r?

n—1

SE =

where r is the partial correlation coefficient and n is the sample size.'? If a study
reported associations separately for two sub-groups (e.g. males and females)
these were combined using the following equations to provide a composite effect

size:
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Bp = (WiBy + W;B2)/(W; + W,)

1
@) = [,

where 31 and (B2 are the B coefficients for the two sub-groups, and SE(1) and
SE(B2) are the respective SEs. The weightings for the two sub-groups are W1 =

1/ SE(B1))? and W2 = 1/ SE(B2))2.128

Where required, we contacted authors to request the 3
coefficient adjusted for age + sex, or additional unpublished data to allow us to
estimate the B coefficient from the effect size published in the paper. If authors
had measured additional physical activity or physical function outcomes but not
reported these associations, these were also requested. B coefficients were
inversed for physical function outcomes where a lower score indicated better
function, so that all positive effects in this review indicate better/higher physical

function.

Meta-analyses were performed to obtain a pooled estimate of individual 3
coefficients for associations between the reported physical activity measures and
physical function outcomes, visualised as forest plots. Ideally, included effect-
sizes would be adjusted for the same covariates;'?8.12° however, due to varying
adjustment models across papers, the included estimates were extracted from
the following order of models: 1) age + sex; 2) age, sex + additional factors. We
used random-effects models to account for both between and within study
variance, with inverse variance as the weighting method. Statistical heterogeneity
was estimated using the I-squared analysis (12). An I? (the variation across studies
due to heterogeneity rather than chance) of <40% was considered low

heterogeneity and an 1?2 of >75% was considered high heterogeneity.'??
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Heterogeneity, along with the number of studies within each meta-analysis should
be considered when interpreting the pooled effects. Where possible (=10 studies
in the meta-analysis)'?> meta-regressions were run to examine the individual
effects of sex (percentage female), age, quality assessment, and study sample

size (n) on the associations.

2.3.6.1 Sensitivity analyses

Leave-one-out sensitivity, the process of rerunning analyses leaving one
study out at a time, was performed on each meta-analysis to explore the influence
of individual studies on the overall pooled effect. In addition, for meta-analyses
with 210 studies, a visual and statistical evaluation of publication bias was
performed using funnel plots and Egger’s regression tests (p<0.05 indicated
publication bias)."° For the purpose of quantifying the magnitude of the pooled
effect size, the following values were used: 0.10-0.19 = small, 0.20-0.29 =
medium, and 20.30 = large."?® So as not to entirely exclude them from the review,
studies for which a B coefficient was not obtained were included in a vote count
summary and the directions of associations compared with those studies
included in the meta-analysis via chi-square test. All analyses were performed in
Stata v.17 (StataCorp. 2021. Stata Statistical Software: Release 17. College

Station, TX: StataCorp LLC).

2.4 Results

2.4.1 Search and study selection results

The original and top-up database searches identified 2741 articles after

duplicates were removed, of which 2533 were excluded based on title and
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abstract screening.'?® Two hundred and eight full-text articles were reviewed, 43
of which fulfilled the inclusion criteria. Two studies, by the same author, used data
from the same pool of participants,’3'-132 the study with the larger sample size
and greater number of reported associations was chosen for inclusion.3’

Resulting in a total of 42 included publications (Figure 2.1).

Identification of studies via databases and registers
)
c
2 Reports identified from™: Reports removed before
3 EBSCOhost (n = 818) screening:
".E'. PubMed (n =2667) Duplicate reports removed (n
2 Web of Science (n = 2047) =2791)
. \ 4
Reports screened Reports excluded
(n=2741) (n=2533)
\ 4
R i i
eports SOUght for retrieval Reports not retrieved
2 (n=208) (n=1)
I=
[
5
I \4
Full texts assessed for eligibility Reports excluded:
N :
(n=207) Population (n = 60)
Study design (n = 17)
Exposure / outcome (n = 85)
Language (n = 2)
Same data (n=1)
—/
)
Reports included in review
(n=42)
°
(%]
E
Té, A 4
= Reports included in meta-
analysis
(n=34)

Figure 2.1. PRISMA flow diagram showing the screening process and the search results.
PRISMA, Preferred Reporting Items for Systematic Reviews and Meta- Analyses.
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2.4.2 Study characteristics

The 42 included studies represented N=27276 participants (range: n=64
to 4702), with an average mean sample age of 70.3 years (range: 46 to 90 years)
(Appendix 8.3). Study samples were on average 63.6% female. Three studies
were prospective'33-135 and the other 39 were cross-sectional.25104.131,136-170 \Most
studies used accelerometers to measure physical activity (k=39), with one study
using a pedometer,'®® and two using the Actiheart combined accelerometer and
heart rate sensor.’#".167 Device locations across studies were as follows; hip/waist
(k=27), thigh (k=3), wrist (k=3), other (k=9). Studies reported the following
physical activity outcomes; MVPA (k=31), LPA (k=17), TPA (k=15), and average
or total step count (k=14). A range of accelerometer cut-points were used for
classifying LPA and MVPA across studies, the most common non-proprietary

classifications were Troiano'”! (k=6) and Freedson'’? (k=5) (Appendix 8.3).

Studies also reported the following physical function outcomes; gait speed
(k=27), handgrip strength (k=24), chair rise tests (k=17), TUG (k=15), balance
(k=12), endurance walk tests (k=10), and composite physical function tests (k=6)
(Appendix 8.3). There were an insufficient number of studies employing
composite measures of physical function for these to be pooled; only one of the
four studies that did report composite measures was excluded from meta-
analyses, where the associations of individual measures within the composite

score were not reported or obtainable.4®

Of the 42 studies identified for inclusion in this review, a standardised
regression coefficient (B), adjusted for at least age + sex, was obtained for 34
studies and thus were included in pooled analyses. Authors of 14 of these studies

provided either additional data to allow the estimation of the 3 coefficient, or effect
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Table 2.1. Characteristics of articles assessing the association between device-measured physical activity metrics with performance-based physical function
outcomes in adults.

Author (Year), Country Cohort Design Sample Age Sex (F%) PA measures PF measures Adjustments
(n) r =2 o 4 W o 6 T 4 = o » ».>»
Adachi (2018), JP N/R CS 308 79.9 (3.6) 100 v v v v na VvV
Aggio (2016)*, GB BRHS CS 1286 78.2 (4.5) 0 v v v v v nla Vv
Aoyagi (2009), JP Nakanojo CS 170 72.6 (4.6) 55.3 v v v v v v v
Cooper (2015), GB NSHD CS 1727 63.3(1.1) 51.5 v v v v v v v
Cooper (2020), GB BCS70 CS 4702 46 (0) 52.4 v v v na v v
Davis (2014), GB Project OPAL CS 217 78.1(5.8) 50.2 v v v v v v v
Duck (2019), US N/A CS 99 74 (6.5) 78.2 v v v v v v v
Gobbo (2020), BR N/A PR 68 69.4 (6.5) 70.9 v v v v v v
Hall (2017), US MURDOCK CS 775 62.1 (NIR) 53.2 v v v v v v v
Hsueh (2020), TW N/A CS 127 70.8 (5.3) 1.7 v v v v vV v v Y v v
Izawa (2017), JP N/A CS 290 74.5 (NIR) 37.6 v v v v v v
Jantunen (2017), FI HBCS CS 695 70.7 (2.7) 54.5 v v v v v v 4
Johansson (2021), NO Tromsg CS 3653 68.5 (5.9) 51 v v v v v
Kim (2015), JP N/R CS 207 83.5(2.6) 55.6 v v v v v
Kruger (2016), SA PURE CS 247 57.0(10.2) 100 v v v v na VvV
Lai (2020), TW N/A CS 118 70.0 (5.0) 70.3 v v v v v v v v
Lerma (2018), US N/A CS 91 70.7 (10.2) 60.4 v v v v v v v v v
Lohne-Seiler (2016), NO N/A CS 161 72.8(5.1) 52.8 v v 4 v v v
Manas (2019)*, ES TSHA CS 771 76.8 (4.9) 54.0 v v v v 4 v
Meier (2020), US N/A CS 304 72.8 (5.8) 58.2 v v v v 4 v
Mendham (2021), SA N/A CS 11 67 [64, 71] 100.0 v v v v v v v v n/a
Mizumoto (2015)*, JP PIPAQI PR 201 79.7 (3.8) 58.7 v v v v v v v
Nagai (2018)*, JP N/A CS 886 73.6 (7.0) 70 v v v v



Author (Year), Country Cohort Design Sample Age Sex (F%) PA measures PF measures Adjustments

(n) r = o 4 w o & T 4 = o » ». >
Oguma (2017), JP TOOTH CS 155 90.2 (1.4) 52.6 v v v v v v
Osuka (2015), JP N/A CS 802 72.5(5.9) 76.7 v v v v 4 v v v
Pina (2021), SA + GB N/A CS 288 68.5 (N/R) 79.9 v v v v v v v v
Reid (2016)*, AU AusDiab CS 602 58.1(10.0) 58.5 v v v 4 v v v
Ribeiro (2020), BR N/A CS 230 66 [63, 71] 70.4 v v v v
Rojer (2018), NL N/A CS 236 66.9 (N/R) 64.8 v v v v v v
Sanchez-Sanchez (2019), ES TSHA CS 497 78.1(5.7) 54.3 v v v v v v v 4
Santos (2012), PT N/A CS 312 74.3 (6.6) 62.5 v v v v v v v
Savikangas (2020), FI PASSWORD CS 293 744 (3.8) 58.4 v v v v v v v
Schrack (2019), US BLSA CS 680 67.9 (13.2) 49.9 v v v v v v v
Spartano (2019), US FHS CS 1352 68.6 (7.5) 54 v v v v v v v v
Thiebaud (2020)*, JP N/A CS 86 67 (7) 100 v v v v na Vv
van der Velde (2017), NL Maastricht CS 1962 59.7 (8.2) 48.6 v v v v v v v v
Ward-Ritacco (2014), US N/A CS 64 58.6 (3.6) 100 v v v v v v nla Vv
Ward-Ritacco (2020), US N/A CS 80 52.6 (6.1) 100 v v v o v v na VvV
Westbury (2018), GB HSS CS 131 78.8 (2.4) 75.6 v v v v v
Yamada (2011)*, JP N/A CS 515 77.0(7.2) 67.5 v v v v v
Yasunaga (2017), JP N/A CS 287 744 (5.2) 37.3 v v v v v v v v v
Yerrakalva (2022), UK EPIC-Norfolk PR 1488 69.9 (6.0) 54.4 v v v v v v v v v

Age in years is presented as mean (standard deviation) or median [interquartile range]. Sex distribution is presented as the percentage of females within the study sample. *Asterisk denotes not included in
meta-analyses. CS = cross-sectional, PR = prospective, N/R = not reported, N/A = not applicable, PA = physical activity, LPA = light intensity physical activity, MVPA = moderate-to-vigorous physical activity,
Steps = average or total step count, TPA = total physical activity, PF = physical function, Bal. = balance test, Chair = chair rise test, Gait = gait speed, HGS = handgrip strength, TUG = timed up-and-go, Walk
= walk tests, Comp. = composite measure, Add. = additional, SPPB = short physical performance battery. AU = Australia, BR = Brazil, ES = Spain, GB = Great Britain, FI = Finland, JP = Japan, NL =
Netherlands, NO = Norway PT = Portugal, SA = South Africa, TW = Taiwan, US = United States.
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sizes for additional associations that were not reported in the original
paper. The variations in physical activity exposures and physical function
outcomes reported across included studies prevented the computation of a single
overall effect size. Instead, multiple pooled analyses (n=24) were performed for
each combination of physical activity and physical function measure, as

described above.

Overall, the 34 studies included in meta-analyses represent 22’774
participants (range: 64 to 4702), with a mean sample age of 69.3 (range: 46 to
83.5) and comprising 63.4% females. Two studies reported prospective
associations'33134 and 32 reported cross-sectional associations.2%104.131,136-
139,141-144,146,150,152-157,159,161,162,164,167-170,173 The limited number of studies
reporting some of the associations meant that only six of the meta-analyses
contained 210 studies, and therefore meta-regressions and Egger’s test were
only performed on these six. Due to an unbalanced number of studies across the
device locations (27 studies adopted waist/hip), we refrained from conducting
sub-group analysis on this factor. All extracted data are provided in the

supplementary tables (Appendix 8.3).

2.4.3 Methodological quality

For all 42 included studies, the mean quality assessment rating was
8.1+£1.2 (range: 3 to 13). For the 34 studies included in meta-analyses, the mean
rating was 8.2+1.2 (range: 6 to 13). Study design (only four studies were
prospective), sample size justification, and participation rate of eligible persons

were the most problematic domains of study quality (Appendix 8.4).
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2.4.4 Results of meta-analyses

2.4.4.1 Gait speed

There were positive associations for each of the physical activity measures
with gait speed (Figure 2.2). The magnitudes of association varied between
physical activity measures, with medium size associations seen in MVPA (3=0.26,
p<0.001) and step count (=0.26, p<0.001), and small associations seen with
TPA (B=0.17, p<0.001) and LPA (=0.11, p<0.001). Statistical heterogeneity was
high step count, and moderate for TPA, LPA and MVPA. Meta-regressions for
age, sex, sample size and quality assessment score for TPA and MVPA were
non-significant (Appendix 8.5). Egger’s test for TPA and MVPA were non-

significant (Appendix 8.6).

2.4.4.2 Chair rise tests

All physical activity measures were positively associated with chair rise
tests (Figure 2.3). The magnitudes of association varied between physical activity
measures; step count was the largest but with wide confidence intervals (3=0.26
[0.09 to 0.41], p=0.003), followed by MVPA (=0.18, p<0.001), TPA (3=0.14,
p<0.001), and LPA (3=0.10, p<0.001). Heterogeneity was high for MVPA and step
count, moderate for TPA, and low for LPA. Meta-regressions for MVPA were non-
significant (Appendix 8.5). Egger’s test for MVPA was non-significant (Appendix

8.6).

2.4.4.3 Balance
There were a limited number of studies reporting associations with

balance. All measures of physical activity were positively associated with balance
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(Figure 2.4). The largest associations were seen with step count (=0.24,
p=0.003), followed by MVPA (=0.15, p<0.001) and TPA (=0.12, p<0.001); the
smallest association was with LPA (B=0.07, p=0.036). Heterogeneity was

moderate for MVPA and low TPA, LPA and step count.

2.4.4.4 Walk tests

Similar to balance there were a limited number of studies reporting
associations with walk tests. All measures of physical activity were positively
associated with walk tests (Figure 2.5). The magnitudes were largest with step
count (3=0.41, p=0.001) and MVPA (p=0.35, p<0.001); followed by LPA ($=0.19,
p<0.001) and TPA ($=0.18, p<0.001). Heterogeneity was high for TPA and step

count, moderate for MVPA, and low for LPA.

2.4.4.5 Timed Up-and-Go

All measures of physical activity were positively associated with the timed
up-and-go test (Figure 2.6). The magnitudes were largest with MVPA (=0.24,
p<0.001) and step count (=0.24, p<0.001); followed by TPA ($=0.19, p<0.001)
and LPA (=0.10, p<0.001). Heterogeneity was high for MVPA, and low for TPA,

LPA and step count.

2.4.4.6 Handgrip strength

Handgrip strength showed small, positive associations with TPA (=0.07,
p<0.001), LPA (B=0.05, p=0.002) and MVPA (B=0.07, p<0.001), but had no
association with step count (3=0.02, p=0.406) (Figure 2.7). Heterogeneity was
moderate for TPA, LPA and MVPA, and low for step count. Egger’s test for TPA,

LPA and MVPA were non-significant (Appendix 8.6). As detailed in the methods,
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effect sizes from studies reporting sub-groups were pooled, except in two
instances for grip strength,’68174 where the effects were in the opposite direction

in each sub-group (Figure 2.7).

2.4.4.7 Sensitivity analyses

The results of the ’leave-one-out' sensitivity analyses suggests that, in
general, our estimates of associations were robust to sensitivity analyses. The 3
coefficients did not change more than; -0.04 to +0.03 for balance, -0.04 to +0.08
for chair rise tests, -0.02 to +0.04 for gait speed, -0.03 to +0.03 for grip, -0.03 to
+0.05 for TUG, and -0.07 to +0.12 for walk tests. Importantly, 8 coefficients from
the ‘leave-one-out' analyses were always within the 95% confidence intervals of
the original estimates derived from ‘all studies’ (Appendix 8.7). Even for the three
associations that became non-significant, the magnitude of the change in the 3
coefficient was very small (e.g. B coefficients of 0.12, 0.07 and 0.41 fell no more
than 0.04). The sample study sizes for these associations were three, three, and
four, respectively, and were impacted when the studies with large sample sizes
were removed; therefore, we suggest caution when interpreting the pooled

associations with smaller numbers of studies.

All meta-regressions were non-significant. Bubble plots suggested that
some meta-regressions might have studies with high leverage. According to
Borenstein et al.’”® there are no current methods in which meta-regression deals
with ‘high leverage’. Leverage was calculated for each study within each meta-
regression, and the formula reported in Borenstein et al. was used to identify

studies with ‘high’ leverage. In the absence of an optimal process to deal with
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high leverage, analysis was re-run excluding any studies with high leverage. All

meta-regressions remained non-significant.

2.4.4.8 Vote count summary

Of the 42 studies that met the inclusion criteria, B coefficients were not
obtainable for eight studies; and therefore, these were not included in the meta-
analysis. To avoid completely omitting these studies from the review and to
acknowledge any potential bias, a vote count summary is provided with all studies
and sub-group vote count comparing those studies included in the meta-analysis

and those excluded (Table 2).

Table 2.2. Vote counting across all reported associations of included studies.

) v YRS Total
n (%) n (%) n (%) n
All studies (n=42) 155 (65.4) 1 (0.0) 79 (329 237

Sub-group vote count

Included in MA (n=34) 131 (642) 1 (0.1) 70 (33.8) 204
Excluded from MA (n=8) 24 (727) 0 (0.0) 9 (27.3) 33

A = Significant positive association; ¥ = significant negative association; <> = no association;
MA = meta-analysis.

Overall, 237 associations across 24 potential associations were reported
from the 42 included studies. A higher proportion of positive (higher physical
function) associations were observed in the studies not included in the meta-
analyses (72.7%) compared with those included (64.2%). A chi-square test
showed direction of association did not differ by included versus excluded

associations, X?=1.68, p = 0.195.
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Total PA and gait speed (k =11) MVPA and gait speed (k = 16)

Std. Beta Std. Beta
195% CI) 195% CI]
—e—  0.31[0.20,040]
——e——  0.34[0.20,047]
— i — 0.22 [0.09,0.34]
- 0.12 [0.05,0.27)
—o— 0.13 [0.05,0.22] —a— 0.23[0.14,0.31]
0.16 [-0.02,0.32] ——e——  0.24[0.07,0.40]

—e—  035[0.25,0.45]
—o— 023 [0.10,0.36]
0.13 [0.00,0.25]

E

—— e 0.34[0.15,0.51]

——e—— 035[0.18,0.51] ——e— 0.38[0.20,0.53]

—— 0.21[0.10,0.32] _— 0.16 [0.04,0.27]
—e— 0.01 [-0.12,0.14]
—— 0.16 [0.07,0.24] —a— 0.21[0.12,0.29]
— 0.29 [0.18,0.39]
—@- 0.11 [0.04,0.18] 0.00 [0.00,0.00]
_..
————  0.29[0.13,0.44] _ 0.19[0.02,0.35]
—e—  0.32[0.21,0.42]
." 0.21 [0.16,0.26] - 0.17[0.12,0.22]
’ 0.17 [0.13,0.21] ¢ 0.26 [0.22,0.30]
; p<0.001 p<0.001
: I2=45% ; 2= 59%
-0.25 0.00 0.25 0.50 0.00 0.25 0.50

-> Favours more PA -> Favours more PA

n = sample size; k = number of studies per meta-analysis; Std. Beta = standardised linear regression coefficients with 95% confidence intervals; PA = physical activity; MVPA = moderate-to-vigorous physical activity

Figure 2.2. Forest plots showing the associations between physical activity measures and gait speed. k, number of studies per meta-analysis; MVPA,
moderate-to-vigorous physical activity; N, sample size; PA, physical activity.
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Total PA and chair rise (k =8) MVPA and chair rise (k =13)

Std. Beta Std. Beta

195% CI] [95% CI]
Y 0.13 [0.08,0.18] . 0.09 [0.04,0.14]
—_— 0.17[0.04,0.30]
ie— 0.20[0.11,0.28] ile— 0.25[0.16,0.33]
——-— 0.14 [-0.04,0.30] - 0.16 [-0.02,0.33]

—e— 0.06 [-0.01,0.13]

® 0.17[0.13.0.20] ® 0.27[0.24,0.30]
— e 037[021,0.52)

————— 032[0.12,0.50]

0.00 [-0.13,0.13] —_— 0.01 [-0.12,0.14]
—e— 0.18 [0.07,0.29]
@ 0.03 [-0.02,0.08]
@ 0.15[0.10,0.19] @ 0.19[0.15,0.24]
e 038[0.15,057)
: & 0.17 [0.12,0.22] -@- 0.12 [0.07,0.17]
Q 0.14 [0.11,0.17) <> 0.18 [0.12,0.24]
: p<0.001 ; p<0.001
| B=47% 2= 88%
025 000 025 050 0.00 025 0.50

-> Favours more PA -> Favours more PA

n = sample size; k = number of studies per meta-analysis; Std. Beta = standardised linear regression cocfficients with 95% confidence intervals; PA = physical activity; MVPA = moderate-to-vigorous physical activity

Figure 2.3. Forest plots showing the associations between physical activity measures and chair rises. k, number of studies per meta-analysis; MVPA,
moderate-to-vigorous physical activity; N, sample size; PA, physical activity.
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Total PA and balance (k =3) MVPA and balance (k = 6)

Std. Beta Std. Beta
[95% CI] [95% CI]
.- 0.13 [0.09,0.18] & 0.07[0.02,0.11]
-——— 0.09 [-0.05,0.22]
—e— 0.12[0.03,0.21] —.— 0.19[0.10,0.27]
-0.02 [-0.19,0.16] —e— 020 [0.02,036]
+—o— 0.23[0.12,034]
—— 0.18 [0.07,0.29]
Q 0.12 [0.08,0.16] < 0.15 [0.09,0.21]
p<0.001 p<0.001
=0% 2=57%
025 000 025 050 025 000 035 050

-> Favours more PA -> Favours more PA

n = sample size; k = number of studies per meta-analysis; Std. Beta = standardised linear regression coefficients with 95% confidence intervals; PA = physical activity; MVPA = moderate-to-vigorous physical activity

Figure 2.4. Forest plots showing the associations between physical activity measures and balance. k, number of studies per meta-analysis; MVPA,
moderate-to-vigorous physical activity; N, sample size; PA, physical activity.
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Total PA and walk test (k = 6) MVPA and walk test (k=7)

Std. Beta Std. Beta
[95% CI] [95% CI]
o= 0.21[0.12,0.29] —e- 0.32[0.23,0.39]
-®- 0.09 [0.02,0.16]

-_— 0.47[0.30,0.62]

—— 0.37[0.20,0.52] —— 0.29 [0.11,0.45]
—.— -0.01 [-0.14,0.12]
—o- 0.29[0.18,0.39]
—®— 0.43 [0.33,0.52]
~le- 0.16 [0.09,0.23]
‘o 0.27[0.23,031] 5] 0.30 [0.26,0.34]

——e——  0.50[0.29,0.66]

‘ 0.18 [0.08,0.27] ‘ 0.35 [0.29,0.40]
p<0.001 ' p<0.001
I =88% =53%

-0.25  0.00 0.25 0.50 0.75
-> Favours more PA

025 0.00 025 050 0.75
-> Favours more PA

n = sample size; k = number of studies per meta-analysis; Std. Beta = standardised linear regression coefficients with 95% confidence intervals; PA = physical activity; MVPA = moderate-to-vigorous physical activity

Figure 2.5. Forest plots showing the associations between physical activity measures and walk tests. k, number of studies per meta-analysis; MVPA,
moderate-to-vigorous physical activity; N, sample size; PA, physical activity.
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Total PA and TUG (k = 3) MVPA and TUG (k =9)

Std. Beta Std. Beta

[95% CI] [95% CI]
‘ 0.19 [0.14,0.23] @ 0.15 [0.10,0.20]
: —_— 0.00 [-0.16,0.16]
o 0.13 [-0.05,0.30] —&——  0.24[0.06,0.40]

—®—  039[0.28,0.48]
——®——  0.25[0.08,042]
——e——  0.27[0.09.0.44]

———— 0.30[0.12,0.46]

—— 0.10 [-0.01,0.21]

———&—— 0.32[0.08,0.53]

—®— 043[0.33,0.52]

¢ 0.19 [0.14,0.23]

. 0.24 [0.14,0.33]
E p <0.001 p <0.001
§ 2=0% : 12=83%
-0.25 0.00 0.25 0.50 -0.25 0.00 0.25 0.50

-> Favours more PA -> Favours more PA

TUG = timed up-and-go test; k = number of studies per meta-analysis; n = sample size; Std. Beta = standardised linear regression coefficients with 95% confidence intervals; PA = physical activity; MVPA = moderate-to-vigorous physical activity

Figure 2.6. Forest plots showing the associations between physical activity measures and the timed up-and-go test. k, number of studies per meta-
analysis; MVPA, moderate-to-vigorous physical activity; N, sample size; PA, physical activity.
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Total PA and grip strength (k = 14) MVPA and grip strength (k = 18)

Std. Beta Std. Beta
[95% CI] [95% CI]
: <@ 0.08 [0.04,0.19]
‘ 4—o— 0.12 [0.03,0.27]
TS 0.05 [0.00,0.10] @ 0.05 [0.00,0.10]
. 0.06 [0.04,0.09] ;
; @ | -0.05 [-0.09,-0.01]
| . 0.06 [0.02,0.10]
: —e 1+ -0.06 [-0.22,0.10]
—_— 0.08 [-0.10,0.25] A — 0.17 [-0.01,0.33]
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Figure 2.7. Forest plots showing the associations between physical activity measures and handgrip strength. k, number of studies per meta-analysis;
MVPA, moderate-to-vigorous physical activity; N, sample size; PA, physical activity.
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2.5 Discussion

The aim of this systematic review was to examine associations between
wearable, device-measured physical activity, and a range of performance-based
physical function outcomes in community-dwelling adults. Forty-two studies met
the inclusion criteria and 34 studies provided suitable data for meta-analyses,
across 24 different associations between physical activity and physical function.
All measures of physical activity were positively associated with all measures of
physical function, except for step count with grip strength. In general, the more
physically active people were the better their physical function. Associations were
generally higher with lower-body physical function tests, particularly gait speed,

chair rises and walk tests.

Within each measure of physical function, the associations with either
MVPA or step count were generally larger than compared to LPA or TPA. The
associations of physical activity with chair-rise tests and grip strength were similar
to those reported in a previous meta-analysis.'?° Direct comparisons between this
review and that of Ramsey'2? are not possible due to this review excluding studies
that recruited participants based on the presence of a specific clinical condition.
This decision was taken to increase the external validity of the results, and
because the expected association between physical activity and physical function
would be condition specific. There were too few studies for each specific condition
to carry out analysis separately, comparing studies in healthy populations to each
clinical condition. Our inclusion of all adults (not just older adults) adds to the
previous review in this area. The number of studies within many of the meta-
analyses did not allow for meta-regression; though in the six which did, there was

no apparent effect of sample age on the observed associations.
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The differences observed in the magnitude of associations between
physical activity and specific measures of physical function may be explained, at
least in part, by the specificity of exercise. For example, grip strength, a general
measure of muscular strength, would be expected to improve as a result of
resistance type exercises rather than ambulatory activity. Therefore, measuring
physical activity with devices that largely capture ambulatory behaviour, not
resistance exercise, would likely underestimate the association between physical
activity and grip strength, especially in participants undertaking a higher level of
resistance exercise. Similarly, measures of physical function more related to
ambulation (e.g. gait speed and walk tests) would be expected to produce larger
associations with device-based measures of physical activity that mainly
represent ambulatory activity. Although device-based measures of physical
activity overcome recall and social desirability biases associated with self-report
measures, they do not adequately capture strength or resistance-based

activities.76.177

The reliance on single thresholds of acceleration to define activity intensity
categories, for all study participants, can lead to the misclassification of time
spent in different intensities of activity. The approach assumes that a given value
of acceleration represents the same intensity of physical activity for all individuals
regardless of their fitness.'”® For example, if two people (one low fit and one high
fit) were walking at the same speed on a treadmill the accelerometer would record
approximately the same level of acceleration assuming both people had similar
stride lengths. However, the less fit person would be exercising at a higher
relative intensity (% of maximum) than the fitter person. Consequently, in less fit
participants the single threshold method would lead to an underestimate of time

spent in MVPA — misclassified as LPA, and for fitter participants an overestimate
56



of time in MVPA. Further, the most common thresholds used by included studies
were derived in calibration studies of young adults (<30 years old) which is

unlikely to generalise to older populations with lower fitness levels.'”".172

Our findings show that more time at higher acceleration values is
associated with better function, but it is difficult to know what level of relative
intensity these thresholds represent in the populations being studied, even
though in general higher accelerations are correlated with higher VOZ? levels. In
addition, most of the effect sizes were not adjusted for TPA, meaning associations
between time spent in MVPA and physical function may be confounded by TPA if
MVPA and TPA are highly correlated. Although there was some variation in the
thresholds used to classify LPA an MVPA between the studies, this would not be
expected to affect the pooled estimates reported. As regardless of the thresholds
used, the participants who undertook more time at higher intensity physical
activity would still record more minutes of accelerometer estimated MVPA,
compared to participants who undertook less time at higher intensity physical

activity.

The reporting of physical activity volume alone ignores other dimensions
of activity and the temporal distribution, including event-based outcomes of free-
living behaviour.'”® This is despite evidence that two people with the same volume
of activity, accumulated in different patterns will vary in their risk of mortality, '8°
and that patterns (e.g. number and duration of activity bouts) may also be
associated with physical function.’® One study included in the review looked at
a measure of fragmentation, modelled as the probability of transitioning from an
active to sedentary state (ASTP).'% They found more fragmented activity is

associated with poorer performance in clinical measures of physical function.
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However, as this was the only study that employed a pattern metric, we were

unable to include it in a meta-analysis.

Developments in data processing allow for additional physical activity
metrics to be derived from accelerometers, that better reflect the frequency,
duration, intensity and volume of physical activity, as well as how the physical
activity was accumulated within and between days. It is also possible to estimate
specific movements and postures e.g. sit-to-stand posture transitions,'®! which
haven’t been widely reported in this literature, but which might be more relevant

to certain measures of physical function (e.g. chair rise tests and TUG).

Event-based analysis presents an avenue for investigating physical
activity from a posture classification perspective.'”® Upright events start with a
posture change from sitting/lying to standing, end with the reverse, and are
comprised of standing or stepping events. Event-based approaches offer the
opportunity to analyse distinct, contiguous postural and activity events, without
the reliance on aggregate measures, uniform intensity cut-points, and a wide
range of assumptions that can result in misclassification of activity behaviour and

intensity.

The ability to detect postural outcomes, such as postural transitions,
standing, and stepping behaviours, or even the ‘quality’ of these activities (e.g.
duration, velocity and power),'8 holds promise for better understanding of links
between specific device-measures of physical activity and physical function. This
in turn raises the potential for a range of applications in research. For example,
remote monitoring of physical function in free-living settings rather than being

reliant on clinic-based measures. It is already documented that clinic and
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laboratory measures of physical function do not capture the same broad dynamic

of free-living physical function.2%-21

Only two of the studies included in this meta-analysis reported prospective
associations, meaning the direction of causation cannot be determined. It is
logical that the relationship is somewhat bidirectional, given the likely cyclical
relationship between impaired function, disability and reduced physical activity.?
Prospective associations between physical activity in midlife and preserved
physical function at follow-up have been demonstrated, albeit with self-report
measures of the exposure and outcome.'’ Further examination of these
prospective associations should be performed with device-measured physical

activity, to avoid the biases associated with self-report.

The association between physical activity and physical function, or even
prevalence of impairment, in midlife is poorly understood, despite the potential
for early screening and intervention.®® The WHO specifically refers to reduced
gait speed and muscle strength as early markers for declines in intrinsic capacity,
and emphasises the need for early detection to prevent these declines in
capacity.'® Prospective studies with measures of both physical activity and
function collected in midlife are required to better understand whether device-
based measures of physical activity in midlife are associated with the risk of low

function later in life.

2.5.1.1 Strengths and limitations
To the our knowledge this is the first meta-analysis of the associations
between device measured free-living physical activity and physical function in

observational studies of adults from midlife to older adulthood. Specifically, this is
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the first review to examine pooled associations of physical activity with gait speed,
walk tests, balance, and TUG. We build on previous analyses of associations with
grip strength and chair rise tests by focussing on non-clinical populations where
associations are less likely to be confounded by the presence of health
conditions. The multiple dimensions of physical activity and broad range of
performance-based physical function outcomes provides a comprehensive
review of the relative magnitudes of physical activity associations between
physical function measures, and the associations of different physical activity

dimensions within those measures.

The inclusion of studies employing device-based measures removes the
impact of error and bias associated with self-report measures from pooled effects.
However, we note that the number of studies within certain analyses was low,
contributing to considerable heterogeneity, and an inability to explore potential
effect modifiers using meta-regression. As such we interpret the reported pooled
effects of these meta-analyses with a degree of caution. Adopting the
standardised regression coefficient as the effect size for the pooled analysis
allowed for the inclusion of studies employing different statistical inference
methods, measurement methods and descriptive statistics.?® However, only
evidence of an association should be interpreted from a significant meta-analysis,
as the strength of associations are not comparable across standardised

regression output.

The minimum adjustment model for inclusion was age + sex, which may
have meant some important confounding factors were overlooked; however, it
allowed inclusion of a greater number of studies than if the criteria had been

stricter. We could not include eight studies within meta-analyses, however the
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proportion of these studies reporting positive associations between physical

activity and physical function was similar to those included in meta-analysis.

2.6 Summary and future research

Chapter 2 has addressed the first objective of this thesis: Understand the
most recent evidence for the association between physical activity and physical
function. This chapter has provided an overview of the existing literature on
device-measured physical activity and its associations with health outcomes,
particularly focusing on physical function. In community dwelling adults, higher
levels of physical activity regardless of intensity were associated with higher
levels of a broad range of physical function measures. These findings provide
early support for the use of device-based measures of movement being used to
remotely monitor people for risk of low physical function without the need to
attend a clinic or laboratory. The cross-sectional nature of all but one study and
the focus on older age populations prevents generalisability of these associations

to younger populations and conclusions about the direction of causality.

We identified limitations in the current literature around physical activity and
physical function. In studies that have employed devices, aggregate summary
values are the physical activity measures reported and used for analysis,
potentially overlooking important aspects of activity accumulation and pattern.
Further, there is a paucity of evidence that has looked at these associations

outside of older adult populations.

Moving forward, future research should adopt a more nuanced approach to
examining physical activity patterns, considering a broader range of potentially

important physical activity measures, especially those that capture how physical
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activity is accumulated. Specifically, there is a need to explore different ways of
conceptualising and measuring patterns, such as considering the composition
and temporal distribution of physical activity events. By delving into these finer
details, we can gain a deeper understanding of how various activity patterns are

associated with, and potentially influence, physical function outcomes.

To address these gaps in the literature, the following chapters will focus on
examining upright and stepping events, their composition, and temporal
distribution across diverse populations. By leveraging advanced measurement
techniques and raw accelerometer data, we aim to capture the intricacies of daily
activity patterns more accurately. Subsequently, we will explore the associations
between these refined activity metrics and physical function outcomes, shedding

light on their potential impact on health and well-being.

62



Chapter 3
Methodological Challenges

3.1 Introduction

The previous chapter identified limitations in current research relating to
physical activity and physical function. By drawing on the limitations identified in
the review chapter, Chapter 3 discusses the methodological challenges regarding
the measurement of physical activity that are addressed by the original research
chapters in the thesis. Firstly, we discuss traditional measurement techniques of
physical activity, the dominant data processing methods, and choices of physical
activity metrics. We then describe event-based analysis, an alternative analysis
method that addresses limitations of traditional methods. We discuss patterns of
physical activity accumulation, how they have been conceptualised and captured
in previous research, and the additional measures that could provide further
insights into physical activity behaviour. Finally, we describe physical function and

different methods to assess this outcome.

3.1.1 Dimensions of physical activity to consider

Physical activity is a complex and multidimensional outcome. The following

are sub-components of physical activity behaviour:

¢ Frequency: The number of activity events occurring within a specific time
period.
e Intensity: The physiological or biomechanical effort per unit time

associated with participating in a specific type of activity.
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e Time (duration): The duration (measured in seconds, minutes, or hours)
spent participating in a single bout of activity, or the sum of these.

e Type: The specific mode of activity in which a person is engaged, such as
sleeping, sitting, standing, walking, cycling, or load-bearing activities.

e Volume: The product of frequency, duration, and intensity.

In addition to the main sub-components, physical activity can also be
characterised by its domain, physical setting, and social context. Domains can
include things such as occupation (job, school), transport, leisure (including
exercise and hobbies), and domestic (including chores, home maintenance, self-
care). Physical settings include indoors or outdoors, green/blue spaces, road
network etc. The social context of physical activity includes whether the person

is alone or with others, whether the activity is for pleasure etc.

The primary domains assessed using accelerometers are frequency,
intensity, duration (time), and type (FITT). In the context of measurement, 'type'
typically refers to postures, stepping, or a broad distinction between 'active'

behaviours and sedentary behaviours.

3.2 Measurement tools for physical activity

The precise measurement of physical activity plays a pivotal role in
understanding the relationship between habitual physical activity and health
outcomes, including relationships between physical activity and physical function.
There are a number of methods which can be used to estimate the energy
expenditure of physical activity within controlled environments, such as the use
of calorimetry or the doubly labelled water.'® However, these, and similar

laboratory-based methods, are not practical for assessing free-living habitual
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physical activity within large scale cohort or surveillance studies, or the evaluation
of interventions. In addition, physical activity behaviours are the focus of this
thesis not energy expenditure. Consequently, this chapter is on remote
measures, including self-report measurement methods and accelerometer

measurement methods.

3.2.1 Self-reports of physical activity

Until recently, research into the association between physical activity and
health outcomes has relied on self-report measures of physical activity.'8 Self-
report measures offer practicality and affordability, in addition to providing
contextual information such as type or domain of activity.'® Self-report measures
can be used to estimate the absolute intensity of physical activity as well as the
relative intensity. However, self-report measures are also susceptible to recall
error and social desirability bias along with challenges with the comprehension

and interpretation of survey questions.'®’

Recall is better for intentional, structured physical activity such as sport or
active commuting, compared to short duration incidental physical activity such as
housework or office work.'® The subsequent misclassification of physical activity
has the potential to attenuate observed associations between physical activity
and health outcomes. Consider a study examining the relationship between
physical activity and physical function in older adults. Participants may
underestimate their involvement in lower intensity or incidental activities such as

walking around the house, which might not be as salient in memory.

Consequently, individuals who engage more in lower intensity or incidental

activities might be misclassified as less active than they are. This could lead to
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an attenuation of the observed association between physical activity and physical
function. Similarly, if people over report their physical activity due to social
desirability, they will be misclassified as more active than they are - also

attenuating associations with health and physical function.9218°

Daily diaries and log books attempt to address recall error by recording
physical activity each day or after the completion of each bout of activity."®® With
diaries and logs, there is a trade-off between the burden on participants to
complete them each day versus the reduction in recall error.’' The potential for
social desirability bias remains. Further, self-report measured outcomes are
generally reported per day or as an aggregate of the measurement periods.

Therefore, examination of accumulation within and between days is not possible.

To address the limitations associated with self-report measures, objective
device-based measures of physical activity, such as wearable accelerometers,
have gained prominence.'%?19 These measures eliminate the need for recall and

can capture all movement regardless of intensity or duration.

3.2.2 Accelerometer measures of physical activity

As reported in Chapter 2, device-based measures have become
ubiquitous in physical activity research, particularly accelerometers. Researchers
began using accelerometers to measure gait metrics in the 1950s,'%* with their
potential for measuring physical activity identified in the 1970s.'% New research
devices, and widespread adoption in physical activity studies began around the
mid-1990s."% The proliferation of these measures is evident in the exponential
growth of studies employing accelerometers, from under 200 per year prior to

2007 to well over 1,300 in 2020.197
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Technological advancements have significantly improved accelerometer
capabilities, including increased storage, longer battery life, and smaller size.
However, despite their increasing popularity, there is inconsistency in the
reporting of key aspects of device data collection and processing.'%19 There
have been calls for improved reporting and standardised practices in order to
facilitate comparability across studies and enhance collaboration.'®%-201 Efforts to
address these challenges include the development of reporting guidelines and
tools to assess the completeness of accelerometer data reporting in
observational studies.'¥292 This ongoing work seeks to enhance the
transparency and standardisation of accelerometry methods, important for

comparisons across studies, and harmonisation of datasets.

Despite the benefits of objective measures, and how they address the
limitations of self-reports, described in the previous sub-section, there remains a
risk of social desirability bias, or reactivity bias. Participants may selectively
remove the device to record relatively more (or less) time in a particular activity.
Reactivity bias occurs when participants are more active than usual due to the
presence of the device.??3 However, when weighing the strengths and limitations
of self-report and device-based measures for examining patterns of physical

activity behaviour, accelerometers stand out as the most suitable method.

3.2.2.1 Step counting

The history of devices for counting steps goes back considerably further
than accelerometers, with Leonardo da Vinci credited with inventing the first
mechanical step counter.?’* More modern iterations have been refined since the

1990s.2% Types of step counting device can be classified into two broad

67



categories, the spring-suspended lever arm and the accelerometer.?2%* Whereas
the simpler mechanical mechanisms of the lever arm essentially counted ‘up and
down’ movement through the opening and closing of an electrical circuit,

accelerometers have used more sophisticated ways of classifying steps.

Accelerometers contain an internal piezoelectric or piezo-resistive
accelerometer. The sinusoidal (wave) pattern of stepping is detected by both
positive and negative acceleration during different phases of the stepping
cycle.?%* Alternatively, thigh mounted devices use inclinometers to measure the
angle and movement of the thigh, from which posture is estimated. Stepping
behaviour is further estimated based on dynamic accelerations and static
orientations. However, the technological advancements in hardware, and the
wide range of available devices, have outpaced the decisions and techniques
employed to process accelerometer. Therefore, careful consideration is needed

when making data processing decisions.

It is important to note that none of the different methods for deriving steps
from devices are direct measures, they are only estimating steps. Another
challenge in physical activity research, in addition to the different devices and
internal algorithms, is that studies build in their own rules across protocol and
data processing decisions, discussed in detail in the following sections. This
variability in methodologies may contribute to the general differences found
across the physical activity behaviour literature. These protocol and data

processing decisions, and their potential implications, are discussed below.
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3.3 Protocol and data processing decisions

Accelerometers are not a direct measure of physical activity but a proxy.
Consequently, the data requires processing to convert it into behaviourally
meaningful metrics. The various protocol and data processing decisions that
researchers make, and the choice of algorithms, can lead to misclassification and
therefore the over or underestimation of physical activity that in turn can affect

associations with health outcomes.

3.3.1 Device placement

The choice of device placement on the body, a key decision in research
methodology, has significant implications for data quality, accuracy, and
participant adherence. Where the device is situated impacts wear instructions,
data cleaning procedures, and the processing of features such as intensity and
activity type. Decisions regarding device placement are not only guided by
research objectives but also practical considerations including cost, device
availability, and participant burden. Reviews of observational studies report that
the most common placement locations have been waist (48.4 - 52.8%), followed
by wrist (20.3 - 22.3%), and thigh (4.9 - 5.4%).1992% |n early studies, waist
placement was dominant, but more recently the wrist and thigh have become

more common.'9°

Waist worn devices are generally attached via an elastic waistband, which
needs to be removed for bathing and usually sleeping. Wrist worn devices and
waterproofing enable 24-hour wear, and compliance is generally higher than the
waist due to the low participant burden, and not needing to remove the

device.196.199.207 Thigh worn accelerometers are commonly affixed to the front of
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the thigh using medical grade tape, and the 24-hour wear results have similar
compliance to waist worn devices.'%® However, the more invasive attachment
method could potentially result in a lower consent rate to wear the device
compared with the wrist, especially in repeat measures. In addition, the adhesive
tape could potentially cause skin irritation, resulting in removal and reduced
compliance. Non-adhesive options for thigh worn devices include elastic straps,

but this is less conducive to 24-hour wear.

The choice of accelerometer placement affects the assessment of physical
activity and sedentary behaviour.2%® Studies comparing hip and wrist placements
have shown varied results regarding accuracy. Direct comparisons of the
ActiGraph GT3X+ showed that hip placement provided more accurate
classification of MVPA behaviour than the wrist when performing set activities in
a controlled environment, using portable calorimetry (a measure of energy
expenditure) as the criterion measure.?’® However, there is evidence of better
performance for wrist-worn devices in physical activity intensity classification, and
for behaviours such as sitting, standing, and walking, in a similarly controlled
environment.?®® Step count also varies significantly depending on device
placement, with more steps counted when the accelerometer is worn on the wrist
compared to the hip in free-living conditions, though no criterion was used to say

which was more accurate.210

It is essential to recognise the absence of a universally accepted gold
standard criterion measure for assessing free-living physical activity behaviours.
Consequently, direct comparisons of device accuracy are inherently challenging.
Compounding this issue is the fact that each device employs unique algorithms

to process data, meaning comparisons are rarely like for like. Studies often
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assess accuracy against lab-based or controlled environment observations, such
as visually counting steps on a treadmill or using portable calorimetry to measure
energy expenditure and intensity. However, these settings do not reflect real-
world scenarios. Alternatively, some studies utilise uncontrolled protocols in free-
living behaviour, relying on self-reported activity as a criterion. The limitations of

self-report have been discussed previously.

Moreover, comparisons between devices are frequently made, with the
activPAL often considered a criterion in the absence of a gold standard measure.
All devices have limitations, and the absence of a gold standard criterion measure
prevents us knowing the true accuracy of estimates of physical activity in all

contexts.

Areview that focused on the validity of wrist-worn accelerometers compared
with indirect calorimetry or doubly labelled water as criterion measures, had
mixed findings.?'! The included studies reported varied validity in estimating total
physical activity, with correlations ranging from 0.17 to 0.93, attributable to
differences in metrics, prediction models, and activity ranges. Despite this
variability, wrist-worn accelerometers were found to be reliable for measuring total
physical activity and categorising activity intensities. In addition, the higher
compliance associated with wrist-worn devices, coupled with their capability for
remote delivery and return, has prompted their widespread adoption in various

cohort studies such as NHANES, UK Biobank, and the FIREA study.?"!

A systematic review encompassing studies employing lab-based, semi-
structured protocols, or uncontrolled free-living designs, examined the efficacy of

thigh placement for the activPAL.?'? It concluded that this placement accurately
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distinguishes between sedentary and standing postures, demonstrating high

validity with agreement rates exceeding 90%.

Another review, employing similar methodologies, highlighted the
activPAL's capability to accurately detect stepping activity, although its ability to
discern physical activity intensity was limited.?'® In laboratory protocols, the
activPAL exhibited minimal mean differences in step counts, with a mean
difference of fewer than 50 steps or less than 5%. Semi-structured protocols also
showed negligible biases, with mean absolute percentage errors of less than 3%.
However, uncontrolled free-living protocols reported no fixed biases but exhibited

a mean absolute percentage error of approximately 23%.

Notably, studies reporting lower validity primarily included populations
engaging in slower-paced walking or short walking distances, particularly in
unhealthy populations. The apparent superior accuracy of thigh-worn devices to
classify posture, and sedentary behaviour, has meant major international cohorts,
including The Maastricht Study,?’* HUNT4,2"® and The 1970 British Cohort

Study,?'® have recently adopted this placement location.

3.3.2 Sampling frequency

Sampling frequency refers to the rate at which acceleration data is
recorded or measured within a specific timeframe, typically expressed in Hertz
(Hz), indicating the number of measurements per second. The choice of sampling
frequency may be constrained by the specifications of the accelerometer device
itself, as some devices have fixed sampling frequencies. In other cases,
researchers may have to make a deliberate choice between sampling frequency

and measurement duration, as higher frequencies require more storage capacity
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and may limit the duration of data collection. A recent review of observational
physical activity studies in adults identified 30 Hz as the most common setting,
followed by 100 Hz, with a range from 5 Hz to 100 Hz.2°6 However, the review

also highlighted that most studies did not report sampling frequency.

The selected sampling frequency can significantly impact the estimation
of physical activity. Varied sampling frequencies introduce biases, with lower
frequencies increasing the likelihood of missing rapid changes or short-duration
activities. Consequently, higher sampling frequencies are more adept at capturing
rapid changes in acceleration data, potentially leading to elevated estimations of
physical activity levels compared with lower sampling frequencies. For instance,
a study comparing two identical devices, one set at 30 Hz and the other at 100
Hz, found that the lower frequency resulted in a lower estimate of MVPA (3.6
minutes/day versus 5.4 minutes/day).?'” A limitation of higher sampling

frequency, is the increased data storage required and the data processing time.

3.3.3 Measurement period

Measurement period, or days of wear, refers to the duration that participants
are asked to wear the accelerometer. Considerations for the measurement period
include the capacity of the device, the burden on the participant, and the reliability
of the data captured. For example, if the device's battery life and/or data storage
is limited, the measurement period will be restricted. Participant burden is a factor
when asking people to wear the device for extended periods of time and may
influence recruitment and adherence. Conversely, shorter wear periods may not
provide enough data to capture typical activity patterns, affecting reliability.

Therefore, a trade-off between these factors needs to be made.
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3.3.4 Non-wear

Identifying when a person is or isn’'t wearing a device is a significant
challenge in accelerometer-based physical activity measurement, as accurately
identifying and handling such intervals is crucial for data integrity. One critical
aspect involves the potential misclassification of sedentary behaviour as non-
wear, leading to an underestimation of sedentary time, or conversely,

misclassifying non-wear as sedentary behaviour, resulting in an overestimation.

Moreover, erroneously classifying sedentary behaviour as non-wear would
inadvertently exclude participants with more sedentary time from the analysis,
introducing bias toward less sedentary individuals in the sample. Conversely,
misclassifying non-wear as sedentary behaviour would have the opposite effect.
This not only compromises the sample's representativeness but would also
results in the loss of valuable data, wastage of resources, and unnecessary
participant burden. Additionally, the presence of proprietary algorithms and a
variety of other algorithms across different accelerometer devices complicates

comparability between studies.

Selective non-wear, where individuals may remove the accelerometer
during specific activities, can introduce systematic bias if not properly addressed.
For example, removing the device during exercise would lead to an under-
estimation of physical activity. The opposite would occur if the device was
intentionally removed for sedentary activities, a form of social desirability bias

intended to indicate the person was more active than they actually are.

The level of non-wear per day and per person necessitates decisions to

be made about how much wear time is sufficient to be included in analysis.
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Therefore, it is common to classify each day of data as valid or not for inclusion

in analysis.

3.3.5 Valid day classification

Valid day classification refers to the minimum duration (minutes or hours) of
wear time within a day for it to be considered valid and included in the total
number of wear days for analysis. The criteria for valid wear time depend on the
objectives of the study and the protocol. For example, some studies are only
interested in waking activity while others are concerned with the full 24-hour
period. Decisions about minimum duration of hours of wear to make a day valid
will alter estimates of total volume of activity and measures of the hour-by-hour

(within-day) variability.

Changing the minimum wear time from 15-hours to 10-hours has been
shown to underestimate time spent sedentary, and the time spent in different
levels of physical activity intensity.2'® Additionally, having a lower daily minimum
wear time reduces that ability to measure how physical activity is accumulated

during waking hours including how it varies hour by hour.

Minimum wear time recommendations vary across studies, and consensus
is lacking regarding the necessary duration of accelerometer wear to accurately
represent a typical day. In observational studies, 10-hours is the most prevalent,
with a range from 8-hours to 24-hours.2% However, suggested minimums vary by
population, with 28-hours per day for older care home residents,?'® to 210-hours

per day for children,??° and 213-hours per day in a study of adults.??’

Whilst a higher threshold for classifying a day as valid may result in more

precise estimates of physical activity and sedentary behaviour, the downside is
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that there will be greater data loss. The loss of data could reduce the statistical
power of the study which may alter the overall results. Once decisions have been
about whether a day of wear is valid or not, the next decision is to decide what

the minimum number of days of observation are for inclusion in analysis.

3.3.6 Minimum number of valid days

The minimum number of valid days required for inclusion in analysis is
typically lower than the measurement period, as some days will be excluded due
to valid day criteria. This often means that the first and last day of measurement

are excluded as they are usually only partial days.

Recommendations for the minimum number of measurement days
required to estimate habitual physical activity vary across studies. Reviews
suggest that a minimum of 4-days is necessary for reliable estimation of a
person’s habitual physical activity.20208 Additionally, it has been suggested that
at least one weekend day should be included to account for between-day
variation that is particularly present between weekdays and weekends.?22:223
Consequently, the most common measurement period for observational research
is 7-days, although studies employ periods ranging from 1 to 14-days.2%
Similarly, the most common minimum number of days required for inclusion in
observational studies was 4-days, although this varies, with 3 and 5-days also

being common choices. 199206

Setting the minimum number of valid days for inclusion high risks
introducing sampling bias by excluding individuals with fewer days of wear.2% |t
has been reported that participants who are younger, unhealthier, unemployed,

and smokers, tend to have poorer accelerometer compliance, biasing studies
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towards healthier and less diverse populations.??422% Excluding people from
analysis due to non-wear also risks reducing the statistical power of the study. On
the other hand, setting the minimum number of days too low, reduces the ability
to measure between-day variability and identify the so-called weekend warrior

who accumulates the majority of their physical activity on just 2-days of the week.

Too few days may also underestimate physical activity. Consider an
individual who engages in a single hour-long jog on a Tuesday but remains
relatively inactive on other days. The inclusion or exclusion of this specific day
significantly impacts the calculated physical activity estimate, especially if metrics
such as average minutes of MVPA per day are employed (discussed later in this
chapter). Decisions on the minimum number of valid days for inclusion in analysis

are a balance between precision and sampling bias.

3.3.7 Epochs

The segmentation of accelerometer data into discrete time intervals or
epochs is used to classify each interval by some aspect of physical activity or
posture. Choice of epoch duration has been shown to effect estimates of physical
activity, with both under- and over-estimations of physical activity, and

misclassification of intensity.?26-228

There are proprietary and open-source algorithms for processing
acceleration data into epochs. These different processing methods are complex,
but essentially data processing involves summing acceleration signals within
each epoch to classify activity intensity. However, this process introduces a
fundamental challenge: brief changes in activity can be obscured by averaging

within an epoch, leading to potential misclassification.
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Misclassification occurs in epoch-based processing when the epoch
duration exceeds the minimum duration of an activity state. High-frequency
sampling can detect brief changes in acceleration, but compressing this data into
longer epochs sacrifices granularity. Classifying epochs based on their average
composition introduces misclassification. For instance, if stepping time is the
behaviour of interest and data is processed into 60-second epochs, there's a risk

of over- or under-estimating the behaviour.

Consider Figure 3.1, which illustrates 15-minutes of data with standing and
stepping behaviour represented by two shades of blue. The grey bars indicate 1-
minute epochs. Using a simplified classification rule where an epoch is classified
as stepping if more than 50% of the time is spent stepping, and as standing if less

than 50% is spent stepping, we can see how misclassification can occur.

In this example, the first two epochs (a) would be classified as stepping,
totalling 2 minutes. However, there is only 1-minute and 20-seconds of stepping,
with periods of standing at either end. Conversely, the five epochs from minute
five to nine (b) would be classified as 5-minutes of standing, despite multiple
intermittent stepping periods totalling 1.5-minutes. Misclassification is
compounded by a ‘buffering effect’ when defining ‘bouts’ of behaviour, which sum
contiguous epochs of the same type. For instance, applying this rule to minute
five to nine would result in a standing bout of 5-minutes, despite the standing not
being continuous. Similarly, the epochs from minutes 10 to 15 (c) would be
classified as stepping, resulting in a 6-minute bout of stepping, even though the

stepping is intermittent and only totals 4.3-minutes.
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Figure 3.1. Schematic diagram of an upright event containing standing and stepping.
Numbered grey bars denote 1-minute epochs.

A study comparing the number of steps in a 60-second epoch with the
stepping-rate found that only 12% of minutes with stepping were walked
continuously, while 69% had interruptions of less than 30-seconds.??° Therefore,
the level of misclassification when applying 1-minute epochs would be high. In
addition to stepping time, researchers have used epoch-based approaches to
estimate cadence. This estimation may underestimate cadence, as epochs often
include periods of standing rather than continuous stepping. Calculating the true
rate of stepping requires both the number of steps and the duration of stepping

event.

Figure 3.2 provides an alternative representation of potential
misclassifications by displaying 30 minutes of acceleration data processed with
4-second, 20-second, and 60-second epochs. Metabolic equivalent of task
(METs) on the y-axis represents intensity of physical activity. In the initial 15-
minute segment, the 4-second epoch time-series clearly shows intermittent
acceleration (activity), with frequent transitions between high-intensity activity
and periods of low-intensity, potentially sedentary behaviour. However, as the
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epoch duration increases to 60-seconds, these peaks and troughs are smoothed
out, giving the misleading impression of continuous moderate-intensity activity.
This highlights how longer epochs can obscure the true variability in activity

levels.

This misclassification can lead to potential biases in estimating physical
activity. Regular intermittent behaviour can result in an underestimation of the
amount of stepping or active behaviour, as brief periods of activity may be lost
within longer epochs classified as inactive. Conversely, if epochs are regularly
classified as active despite not containing continuous active behaviour, this will

systematically overestimate physical activity levels.
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Figure 3.2. Schematic diagram of a 15-minute window of acceleration data processed
using different epoch durations. METs, metabolic equivalent of task. (From Ayabe et al.,
2013; reproduced under CC BY licence.)
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The ‘buffering effect’ of misclassified epochs and the compounding nature
of creating continuous bouts from these epochs can further obscure interruptions
in activity. This limitation of epochs has been highlighted in previous
research,??230 and is particularly significant when researchers aim to capture
shorter, transient activities or when studying populations prone to brief, incidental
behaviours, such as clinical populations or older adults. To mitigate this issue,
shorter epochs are preferred to limit the potential for concealing rapid transitions
between activity states. However, the risk is not eliminated until the epochs are

as short as the minimum duration of any behaviours of interest.

3.3.8 Events

An alternative to the epoch-based approach is the event-based approach,
which aims to capture discrete events.'”® An event is defined as a continuous
period of time during which a person is in a singular category of event (e.g.,
upright, stepping, lying). In the case of this thesis, categories include postural
events, sedentary or upright, with further subcategories including standing or
stepping. The advantage of the event-based approach over the epoch-based
approach lies in its ability to limit the misclassification of behaviours based on the
average content within epochs, as discussed in the previous section. An event ‘is
what it is’, either an active or inactive event or posture, without additional
misclassification beyond the initial classification of the event. No rule around the

average content needs to be applied.

Figure 3.3 demonstrates a 10-minute sample of (a) time-series of three-
dimensional acceleration data, (b) time series of a physical activity intensity

estimate converted from the acceleration data, with the dashed line indicating an
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acceleration threshold for categorising active versus inactive events, and (c) time
series of events where the black bars denote continuous active events, i.e.,
periods where the converted acceleration continuously exceeds the threshold.
This figure visualises how epochs might ignore changes between event states,
smoothing over short transient active events and misclassifying epochs as either

active or inactive when, in truth, they would all be mixed to different degrees.

While the event-based approach assumes the algorithm that classified the
behaviour for the event is accurate, there are potential misclassifications due to
measurement error, incorrect definitions of the start and end of an event, or event
durations being shorter than the minimum duration the device can capture or
process (see sampling frequency sub-section). However, we argue that it is a

more appropriate method for the outcomes of this thesis.
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Figure 3.3. A 10-minute sample of event series data obtained from the pre-processing.
(a) time-series of three-dimensional acceleration data, (b) time series of a physical
activity intensity estimate converted from the acceleration data, with the dashed line
indicating an acceleration threshold for categorising active versus inactive events, and
(c) time series of events where the black bars denote continuous active events. (From
Takeuchi et al., 2024; reproduced with permission.)
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The event-based approach has several strengths, including greater
precision in capturing discrete activities without averaging them, which provides
a clearer picture of short, transient behaviours. It significantly reduces the risk of
misclassification inherent in averaging data within epochs since events are
categorised based on continuous periods. This approach allows for better
detection of sporadic activities, making it particularly suitable for populations with
irregular activity patterns, such as older adults or clinical populations. The inter-
event times (time/events between events of interest) can also be utilised to

characterise patterns of accumulation (described later in this chapter).

The event-based approach is not without limitations. Its accuracy heavily
relies on the algorithm used for classifying events, and any error in determining
the start or end of events can lead to misclassification of event durations, resulting
in the underestimation or overestimation of these activities or postures.
Additionally, very short events may be inaccurately captured if the device's
resolution or processing capability is insufficient, leading to data gaps or
misclassified events. Misclassifying an event not only distorts the duration of that
specific behaviour but also affects adjacent events. For instance, a misclassified
short active event might be erroneously added to preceding and proceeding
inactive periods, artificially inflating the duration of inactivity, or vice versa.
Balancing these strengths and limitations is crucial for selecting the most

appropriate method for physical activity measurement in research contexts.

3.4 Accelerometer derived physical activity measures

The following sections will describe various the methods used to estimate
measures of physical activity and posture that can be extracted from
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accelerometer data, as well as the strengths and limitations associated with each
method. Where possible reported relationships between derived measures and

health outcomes will be summarised.

3.4.1 Summary outputs (frequency and duration)

The body of research employing objective physical activity assessment has
largely focused on summary measures of physical activity over observation
periods, such as mean step count per day or mean minutes of MVPA per day.®?
These summaries provide aggregate data but often ignore how physical activity
is accumulated within and between days. For instance, summary duration
measures include the average time per day people spend upright or the total
number of steps per day. This is despite accelerometers providing high-
resolution, time-stamped data. However, these summaries and averages cannot
differentiate between different patterns of activity accumulation, which may be
important for understanding health outcomes. For example, a given volume of
steps could be accumulated in one continuous stepping event or in numerous
shorter stepping events, which would be lost in summing or averaging steps. This

distinction could be significant for health but is lost in simple aggregate measures.

Figure 3.4 presents a visual representation of this concept. It shows two
upright events with the same duration, stepping duration, and step volume,
(assume consistent cadence across all stepping). You can clearly see that the
stepping duration was accumulated in different ways: upright event (a) contained
relatively continuous stepping in just two events, while the upright event (b) was

more intermittent. Simply reporting the stepping duration and/or step volume
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would ignore these differences in accumulation patterns that may be important

for health.
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Figure 3.4. Schematic diagram of two upright events, and their standing and stepping
composition.

Conversely, frequency measures count the number of events of interest.
This approach has been applied to sit-to-stand transitions and sedentary
interruptions (discussed later in this chapter). However, the limitation of merely
counting events is that it overlooks the composition and temporal distribution of
these activities. Identical event counts could represent very different patterns,
with events occurring in consistent or varying durations and distributed differently
throughout the measurement period. Traditional approaches are limited in
accounting for these sub-components of physical activity, but event-based
analysis offers a solution by allowing the nuanced patterns and distributions of

these events to be quantified.
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3.4.2 Intensity outputs

Estimating the intensity of physical activity from acceleration data has
traditionally relied on selecting acceleration thresholds, referred to as cut-points.
Laboratory based calibration studies are used to identify acceleration cut-points
that correlate with MET values corresponding to light, moderate, and vigorous
intensity physical activity.'”172 Calibration studies have been undertaken in
children,?3" youth,?%2 older adults,?®®* and clinical groups.?®* These studies

typically involve small sample sizes and a limited number of activities.

As a result, extrapolating a single threshold of acceleration from a small
scale calibration study to a larger population of people, likely to be more diverse
than the study sample, will result in misclassification of the time spent in different
intensities of activity.?3>23¢ For example, consider two individuals of similar stature
walking on a treadmill at the same speed, wearing accelerometers on their wrists.
One is a fit, 35-year-old, and the other an unfit, 60-year-old. The accelerometer
will record very similar values of acceleration, and using a suitable cut-point for
acceleration, both would be recorded as walking at a moderate intensity. Despite
this, their relative exertion levels likely differ significantly. The fitter individual may
actually be walking at an intensity that is light for them, while the less fit person
will be walking at a higher intensity, more like moderate intensity for them. Hence,
the accelerometer cut-point method would overestimate the time spent walking

at moderate intensity for the fitter person.

Similarly, fixed single thresholds of step-rates, such as 2100 steps/minute
to classify MVPA, have been applied to stepping cadence.?®” However,
associations with health outcomes do not always remain after adjusting for total

volume.?3823° |ntensity inferred from step-rate is susceptible to similar
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misclassification as accelerometer cut-points, as individuals with the same step-
rate may experience different relative intensity levels. In addition, discrepancies
may arise from the misclassification of step-rates that are calculated per epoch

rather than per stepping event, as described in the earlier section on epochs.

Advanced methods have been developed to assess physical activity
intensity using time-series data.?*® The intensity gradient and MX metrics are
utilised to assess the distribution of activity intensities.?*'242 Their primary
advantage is their independence from cut-points, addressing the issue of
comparability across studies that use different cut points. The intensity gradient,
when combined with average acceleration, offers a comprehensive 24-hour
activity profile, allowing for the exploration of how volume and intensity
distribution independently, complementarily, or interactively relate to health
outcomes. The MX metric, meanwhile, maintains the continuous nature of the
variable and allows post-hoc comparisons to any cut-point or standard activity
level, facilitating visual comparisons within and between groups to establish data-

driven norms.

However, the MX metric's effectiveness can vary depending on the wear
location and device brand, which may affect comparability between studies.
Additionally, there is no consensus on the key MX metrics for analysing health
conditions, necessitating decisions on specific time thresholds (i.e., the most
active X minutes). Both the MX metric and the intensity gradient do not account
for temporal activity accumulation, suggesting that they should be used alongside

physical activity accumulation indicators.

A significant issue with traditional intensity measures is the problem of co-

correlation when computing time spent in different intensities, making it
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challenging to adjust for total activity volume accurately. This issue arises
because time spent in one intensity category is inherently dependent on time
spent in others, complicating the analysis. Event-based approaches offer a
solution to this problem by summing each event by its mean intensity without

imposing arbitrary thresholds.

3.4.3 Accumulation and pattern measures

The Collins dictionary defines the word “pattern” as the “repeated or regular
way in which something happens or is done”. However, when applied to physical
activity, the term "pattern” has no consensus definition, as it can encompass a
multifaceted range of concepts, reflecting the diverse nature of human
movement. Pattern has been used to refer to different dimensions of physical
activity. Patterns related to between-day variations in physical activity have
included differences between weekdays and weekends,?*324 seasonal
variations,?*> and distinctions between term time and school holidays in

children.246

Measures of the between day variation in physical activity require a
minimum number of days of physical activity measurement for a reliable measure
of a the variation in a person’s daily routine.?*” One focus has been on how many
days of the week the majority of accumulated physical activity has been done on.
Evidence for the concept of the “weekend warrior”, a person who accumulates
the maijority (>50%) of their physical activity on 1-2 days per week, has shown
beneficial associations with risk for all-cause, cardiovascular disease, and cancer

mortality.?48
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Within-day patterns of physical activity can include the frequency of bouts
or events of physical activity, event durations, hour by hour variations and the
temporal distribution of events. In addition, studies have examined the time of
day when the maijority of physical activity is undertaken, e.g., performing the bulk
of your activity in the morning vs afternoon. A recent systematic review of such
studies reported no consistent evidence that the time of day when physical

activity is performed provides any impact on health.?4

Several methods have been developed to assess how physical activity is
accumulated throughout the day, often using the concept of ‘bouts.’ In this thesis,
it is important to distinguish between 'bouts' and 'events,' even though the terms
can sometimes be used interchangeably. An event refers to continuous periods
of activity, while bouts refer to blocks of epochs classified as a single type of
behaviour which, due to the previously described limitations, might not
necessarily be continuous. The following methods can be applied to both types
of data and provide alternative insights into patterns of activity accumulation that

go beyond simple summary measures of the level of physical activity.

The power-law exponent alpha describes the relationship between the
frequency and duration of activity bouts, indicating how activity is distributed
across different bout lengths.?°® This metric highlights whether an individual's
activity is dominated by short, frequent bouts or longer, less frequent bouts.
Evidence suggests a more uniform distribution of physical activity was associated
with a healthier BMI.2>' However, it is difficult to interpret alone, and is suggested
to be complimented by the median bout length represents the middle value of all

activity bout durations within a given period.?*®
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The Gini index measures inequality in the distribution of activity bouts,
similar to its use in economics to measure income inequality.?®® A higher Gini
index indicates greater disparity, meaning that physical activity is concentrated in
fewer bouts, while a lower Gini index suggests a more even distribution of activity
across many bouts. This captures the dispersion of activity, offering insights into
whether an individual's activity is evenly spread or dominated by a few intense
bouts. However, it can be challenging to interpret without a clear understanding

of what constitutes a healthy distribution of physical activity.

The proportion of total time accumulated in bouts longer than X calculates
the proportion of total active time that is accumulated in bouts longer than a
specified duration.?® It highlights how much of the total physical activity is made
up of sustained periods of activity, which can be particularly relevant for
understanding health benefits associated with prolonged exercise. However, it
may be influenced by the choice of threshold (X) and can miss the contributions

of shorter bouts that also contribute to overall physical activity levels.

3.4.3.1 Fragmentation

Fragmentation refers to the transient nature of physical activity and the
extent to which periods of physical activity are interspersed with periods of
inactivity throughout the day.' One widely examined measure of how
fragmented or transient a person’s physical activity is, is the active-to-sedentary
transition probability (ASTP).'%* ASTP represents a probability of a transition from
active to inactive, and is recorded on a scale of 0-1. Higher values represent more
fragmented or transient periods of being active. Higher fragmentation typically

indicates more frequent switching between activity and inactivity, which may
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suggest lower overall functional capacity or greater fatigability that prevents more
sustained periods of activity.

Recent studies have increasingly focused on fragmentation as a potential
marker of accelerated aging and declining physical function.’® For instance, the
concept of activity fragmentation as a novel phenotype of ageing has been
suggested, particularly in populations at risk for functional decline, such as older
adults and cancer survivors. The evidence indicates that higher levels of
fragmentation, characterised by more frequent breaks from activity, were
associated with diminished physical function, increased fatigability, and a higher
risk of disability. These findings underscore the potential of fragmentation metrics
to serve as early indicators of physiological impairment, especially as the findings
were independent of traditional summary measures of physical activity alone.

Fragmentation metrics add insights to how a given volume of physical
activity is accumulated through different patterns of rest-activity cycles.?%? This is
important because two individuals with the same total amount of physical activity
may exhibit very different patterns of accumulation, with one person engaging in
longer, sustained bouts of activity and the other in shorter, more frequent bouts
interspersed with inactivity.

High ASTP has been linked to increased fatigability, suggesting that
individuals who frequently switch between activity and inactivity may have lower
overall endurance and higher susceptibility to fatigue. In older adults, high ASTP
has been strongly associated with subjective and objective measures of
fatigability, indicating that individuals with high ASTP might experience greater
difficulty sustaining prolonged physical activities due to early onset of

fatigue.101.104
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The relationship between ASTP and cognitive function has also been
explored. Older adults with higher ASTP were more likely to experience cognitive
decline, particularly in executive function and processing speed.'® This finding
suggests that frequent transitions between activity and inactivity could reflect
underlying neurological deterioration, which may contribute to cognitive
impairments.

High ASTP has been associated with greater pain intensity in individuals
with chronic conditions. Individuals with higher ASTP, particularly those with
musculoskeletal disorders, tended to report higher levels of pain. This could be
due to increased sensitivity to pain or a lack of sustained physical activity, which
is often recommended for pain management in chronic conditions.253

High ASTP has been closely associated with frailty.'® Older adults with
higher ASTP were more likely to be classified as frail, suggesting that frequent
transitions between active and sedentary states could be a marker of declining
physical resilience and increased risk of adverse health outcomes.

Mortality risk has been associated with ASTP, with higher ASTP predicting
greater risk of all-cause mortality.'%? Older adults with high ASTP had significantly
higher mortality rates, independent of total physical activity levels. In addition,
there is evidence higher ASTP is associated with incident heart failure.?%* These
finding underscore the importance of activity patterns, not just the quantity of
activity, in determining health outcomes. Also, much of the evidence is from
prospective studies suggesting that patterns of physical activity accumulation
may be a precursor to changes in health status.

Relevant to this thesis, ASTP has been shown to be associated with
physical function,'%41% Higher ASTP has been associated with poorer
performance in both the 2-minute walk test, and the Short Physical Performance
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Battery in older adults.'%® It appears that high ASTP reflects a reduction in
endurance capacity or a pre-clinical stage of disease. However, despite the
valuable insights provided by ASTP, it is important to recognise its limitations.
Most studies utilising ASTP have relied on minute-epoch accelerometer data,
which classifies each minute as either active or inactive. This approach, while
useful, may misclassify the start and end of physical activity events, potentially
leading to an underestimation of fragmentation and an attenuation of associations
with health outcomes. This is because it is possible that there are postural
changes occurring in less than 1-minute intervals and because the exact start
time of active and inactive cycles will overlap 1-minute epochs.

The growing evidence for the associations between fragmentation/ASTP
and health outcomes, and the potential for an event-based approach to address
limitations in prior ASTP studies, led us to include fragmentation as a metric within

this thesis.

3.4.3.2 Temporal metrics

Advanced methods have been developed to assess the temporal structure
of physical activity patterns. These metrics provide insights into how activity
patterns are distributed and repeated over time, which can be linked to various

health outcomes.

Two measures examine the temporal correlations between activity values
to find repeating patterns. Fourier analysis decomposes activity data into
frequencies to identify periodic patterns, but may be limited by its assumption of
stationarity.?>®> This breaks down the activity data into different frequency

components to see if there are any regular cycles or patterns. However, this

93



method assumes that these patterns stay the same over time, which might not
always be true. The scaling exponent alpha measures the self-similarity of activity
fluctuations over different time scale, to determine how similar activity patterns
are across different time periods.?%® Higher alpha values are linked to a lower risk
of cognitive impairment and Alzheimer's disease,?®” while lower values at small
time scales (<1.5 hours) are associated with worse mood and social
withdrawal.?%8 As people age or develop conditions like Alzheimer's, their activity

patterns become less consistent across different time scales.

The autocorrelation coefficient at lag k assesses the similarity between
observations separated by a time lag. For example, it can check how similar your
activity levels are at the same time each day. A higher 24-hour autocorrelation
coefficient correlates with better sleep quality?® but, in older adults, is associated
with greater difficulty performing daily activities, suggesting higher variance in

activity patterns may indicate better functional status.?°

Other methods aim to quantify the regularity within timeseries data. Sample
entropy measures the complexity and regularity of activity patterns, with lower
values indicating more predictable activity.?%° Permutation Lempel-Ziv complexity
evaluates the randomness of activity patterns by counting distinct patterns, with
higher values indicating more varied activity.?6" Symbolic dynamics transforms
activity data into sequences of symbols, identifying regularity and complexity,

though some information may be lost.26?

These measures of physical activity ‘complexity’ have been employed
sporadically in physical activity research, and to a lesser degree when looking at
associations with physical function outcomes. Higher fear of falling in elderly

populations correlates with lower complexity in physical activity patterns, as was
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lower balance and mobility.?8" This suggests cautious behaviour and/or
decreased physical functioning may lead to less complex activity patterns.
However, there has not been wide adoption of these metrics, potentially due to

their technical nature and complexity in interpretation.

An additional pattern metric, that quantifies the inter-event time distribution
of events, is burstiness.?%3 In lay terms, burstiness corresponds to the degree to
which events occur in clusters with longer inter-event periods between clusters,
vs a more regular distribution. The burstiness parameter is measured on a scale
of -1 to +1 with values nearer to 1 representing burstier events whereas values
closer to -1 representing a more uniform distribution.?%3 Burstiness has been
employed across a range of topics, from social interactions?%* to earthquakes,?5°

but very little in studies of physical activity in humans.

A study of five children with muscular dystrophy showed an increase in four
out of five children in the burstiness of walking behaviour after one month of
pharmacological treatment.?%® Another study with a small sample size examined
the association between dynamic patterns of physical activity (including
burstiness) with chronic pain, finding burstier patterns in those without pain.2%”
Despite the limited research, as the first study notes, “these findings suggest that
it may be valuable to look at how physical activity is organised throughout the
day’”.266

As with fragmentation/ASTP, the interesting literature around burstiness and
it's very early employment in studies of human behaviours led us to include it as
a metric within this thesis. Further, the additional aspect of burstiness that looks
at the temporal distribution of active and postural events, which fragmentation

does not account for, further supports our interest in examining this metric.
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3.4.3.3 Sedentary patterns

Sedentary behaviour has been defined as any activity with an energy
expenditure of <1.5 METs, while sitting, reclining, or lying down.?%® Research
indicates that sedentary time accumulated in long duration events correlates with
adverse health effects, compared with the same total duration accumulated in
shorter events and irrespective of physical activity levels.?%® Physical activity
guidelines now reflect this, and recommend reducing time spent sitting or lying

down and to break up long periods of sedentary behaviour.””.79.270

Some of the previously described metrics have been applied to sedentary
behaviour, including the summary measures and some temporal metrics. The
majority of literature in this area focuses on the frequency of interruptions to
sedentary time, with interventions focusing on breaking up sedentary time to
improve health.?”! However, the definition of "sitting interruptions" remains vague,
encompassing various activities such as standing or stepping, with recent
evidence suggesting that the composition of these interruptions matters.2%273 For
instance, while both standing and light-intensity walking interruptions offer health
benefits, the latter appears more effective in attenuating postprandial glucose

levels.272

A recent cross-sectional study explored the relationship between sitting
interruptions, demographic factors, diabetes status, and BMI, revealing fewer
interruptions and fewer steps were associated with higher BMI and diabetes
prevalence.?’® However, the categorisation of interruptions as "active" or
"ambulatory" seems arbitrary, overlooking the variability in activity patterns.
Moreover, the study failed to consider factors like the temporal distribution of

events or the composition of stepping versus standing interruptions, which may
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be important for understanding their impact on health outcomes. There is scope
within this area to explore different temporal metrics of sedentary behaviour and

the composition of sitting interruptions.

In summary, physical activity is accumulated over continuous 24-hour
periods consisting of contiguous active and inactive events.?’# The variation in
how these active and inactive events are distributed throughout a day or week
means that people may accumulate the same volume of physical activity in
patterns that differ in their frequency, duration, intensity and temporality. Evidence
suggests that the patterns in which physical activity is accumulated may play a
significant role in determining health outcomes, independently of volume.®® A
range of metrics exist to quantify different aspects and domains of physical
activity behaviour, each with its own strengths and limitations, and some with
evidenced associations with health outcomes. There is a lack of application of
temporal metrics to physical function outcomes, particularly employing event-
based data. In addition, the composition of postural and activity events are
underexplored in the context of health outcomes generally, and physical function

outcomes.

3.5 Characterising physical function

Given its complexity, physical function is assessed through a range of
measures including physiologic impairment tests, field-based performance
measures, and self-report surveys.'®2’5> These assessments capture different
aspects of physical function, from physiological limitations to limitations in specific

tasks and daily activities within one’s social and environmental context.
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As discussed earlier, physical function undergoes significant changes
across the life course;® with declines in physical function occurring from mid-
life.276277 This includes declines in muscle strength, flexibility, cardiovascular
endurance, balance, and gait. These changes are influenced by both intrinsic
factors, such as ageing and genetics, and extrinsic factors, like physical activity
levels and environmental challenges.®*278 Accurately assessing physical function
requires an understanding of these age-related changes and the various factors

that can accelerate or mitigate them.

The mechanistic pathways through which physical activity influences
physical function include improvements in muscle strength, coordination,
cardiovascular fitness, and neurological adaptability.?’928° Regular physical
activity can help mitigate the decline in these areas, particularly when occurring
from midlife.'98281 This thesis focuses on these mechanistic relationships to
highlight the potential for physical activity to preserve physical function, thereby

reducing the risk of disability and dependence in older age.

While the bidirectional relationship between physical activity and physical
function is well-documented, this thesis primarily considers physical activity as
the explanatory variable. This focus is driven by the need to identify modifiable
behaviours that can prevent functional decline before it becomes irreversible, and
the strong prospective evidence of physical activity attenuating age-related
declines in physical function.3® Although better physical function can lead to more
physical activity, or adverse events impacting physical function (e.g. surgery)
reduce physical activity, the primary goal here is to explore how physical activity

can be leveraged as a tool to maintain or enhance physical function over time.
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This approach is crucial for designing public health interventions aimed at

preventing the early onset of functional impairments.

Loss of muscle strength and decline in physical performance are key
indicators of age-related conditions. Muscular strength and physical function are
commonly measured in the clinic or laboratory with a battery of performance
measures that usually include gait speed, muscular strength/power and
balance.?? Objective, performance-based physical function assessments

measure an individual’s capacity to perform set tasks.

Performance-based measures like handgrip strength and gait speed are
integrated into the formal diagnosis of physical frailty and sarcopenia.’3° They
also play a crucial role in screening for low physical function, sarcopenia, and
frailty, across a wide range of settings due to their practicality and simplicity.??
These measures not only serve as targets and markers of efficacy for preventive
interventions, but also demonstrate predictive capacity of future health outcomes

across diverse populations, discussed in the following sub-sections.??

Physical function is also assessed with self-report measures, including the
Activities of Daily Living (ADLs) or Instrumental ADL scales,?®? and the physical
function sub-scale of the Short-Form 36 survey.?83284 Self-report measures
assess an individual’s perception of their physical function limitation, taking into
account their own personal, social and environmental considerations.?%285
Therefore, the two methods of assessment capture distinct domains, and it is

important to consider both.2°

A range of physical function assessments and their associations with
health are detailed below. While performance-based measures are central to the

thesis, it is important to acknowledge the value of self-report measures.
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Therefore, we included a self-report measure to ensure a comprehensive
assessment of physical function, considering both objective performance and

subjective perspectives.

3.5.1 Grip strength

Grip strength is a widely accepted measure for assessing overall muscle
strength and is established as an indicator of both present and future health
status, particularly among older individuals.?®6-287 Grip strength generally peaks
in early adult life, remains relatively consistent through midlife, but begins to
decline from mid- to later life.3" Furthermore, grip strength has demonstrated
associations with future health-related outcomes, including mortality, hospital
length of stay, and physical functioning, underscoring its significance as a simple

but effective tool for researchers and clinicians.?’

3.5.2 Walk tests

Walk tests, including the six-minute walk test (6MWT),228 the 400-meter
walk test (400MWT),?8° or other variations, are sub-maximal tests of aerobic
capacity and endurance. The 400MWT is associated with total mortality,
cardiovascular disease, mobility limitation, and mobility disability in later life.28°
The 6MWT is employed for a range of clinical uses, across a range of clinical
populations.??9-2% |t is associated with a range of future health outcomes,
including survival after surgery,?®* decompensation in liver cirrhosis,?%® and
respiratory-related outcomes after lung transplant.??62°7 This test has been less
utilised than other tools for general populations, but reference values for general
healthy populations are available.?%®
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3.5.3 Timed Up-and-Go

The TUG is a test of dynamic balance and functional mobility (the capacity
of people to move from one place to another, to participate in ADLSs). It consists
of standing from a chair, walking a set distance (typically 3-meters), turning
around, walking back to the chair, and sitting down. It is considered a useful
clinical tool, even in healthy older adults.?*® The TUG has been employed across
a wide range of settings and populations,3°° and can discriminate between frail
and non-frail in general older adults,3®' and clinical populations such as
respiratory disease.3%? Additionally, it is associated with functional decline at 3-
and 6-months post presenting at accident and emergency departments in older

adults.303

3.5.4 Chair rise (sit-to-stand) tests

Chair rise tests are useful tools for assessing functional mobility, with test
performance influenced by lower limb power, strength, dynamic balance and
cardiorespiratory endurance.3* There are a number of variations, that either
count the number of repetitions over a fixed time,3% or count the time to complete
a fixed number of repetitions.3% The test has demonstrated high reliability in both
healthy adults and individuals with morbidities.3®” Poor performance has been

associated with future disability,3°® and falls in older adults.3%°

3.5.5 Balance

There are a range of balance tests,®'° with balance already a component
in some of the previously detailed assessment types (TUG, chair rise test).

However, simple single-leg stance tests have proved popular, and predictive of a
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range of outcomes, including risk of mortality in community-dwelling older
adults.3" In addition, ability to successfully complete the 10-second single leg
stance balance test, in both midlife and older adults, is associated with future

mortality.312

3.5.6 Short Form-36 (physical functioning sub-scale)

The Short-Form 36 survey (SF-36) is a self-reported health survey with 36
questions, which yields an eight-scale profile of scores as well as physical and
mental health summary measures.?83 Often the overall score is erroneously
employed as a general measure of health;3'3 however, summary scales and
subscales provide measures of different aspects of health. As well as cross-
sectional associations with health, seven of the eight subscales have
demonstrated associations with future health outcomes, including incident
coronary heart disease.?'* The physical functioning sub-scale (SF-36pf) was the
only subscale associated with future all-cause mortality.3'* In addition, the SF-
36pf has been recommended as a reliable measure of physical function3'® and

mobility disability.?®4

3.6 Study population

Physical function undergoes a gradual decline starting from midlife
onwards, with notable changes becoming more apparent as individuals progress
into older age.?9277 This decline is multifaceted, encompassing reductions in
muscle strength, aerobic capacity, balance, and agility, and may not be
immediately noticeable to the individual, or clinicians. However, the assessment
of physical function typically occurs in later life stages when functional limitations

become more pronounced.
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The WHO's Healthy Ageing Strategy underscores the importance of
adopting a life course approach to healthy ageing.? Despite the significance of
midlife in shaping long-term physical function trajectories, research and

interventions targeting this life stage remain relatively sparse.

Much of the existing literature and public health initiatives tend to focus on
older populations, overlooking the critical period of midlife where interventions
may have the potential to delay or mitigate the onset of functional decline.®°
Figure 3.5 illustrates the impact starting and maintaining physical activity can
have on attenuating the decline in physical function at different stages through

the life course, highlighting the greater benefits of intervening earlier. 27°

Managing the consequences of functional loss in later life poses significant
challenges, often requiring complex interventions aimed at rehabilitation and
support. However, there is increasing recognition of the importance of prevention
and early intervention strategies, particularly during midlife, to mitigate the
downstream effects of functional decline. Midlife preservation, or retardation of

early functional decline is, therefore, a public health priority.?

Cohort studies, which follow groups of individuals over time, provide
valuable insights into how physical activity and function change across different
life stages. While there are numerous cohort studies available, finding those that
intersect midlife populations, include physical activity measures with accessible
raw data, and incorporate performance-based physical function outcomes can be
challenging. This narrow intersection influences our research decisions and the

direction of the next chapters.
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Figure 3.5. Physical function as viewed with increasing age and onset of disease. Dotted
lines represent new trajectory with beginning and maintaining a physical activity
programme. (From Manini et al., 2013; reproduced with permission.)

Midlife is a critical period for early detection and intervention to prevent
functional decline, yet it is often underrepresented in longitudinal research.
Individuals in this stage may experience diverse and fluctuating physical activity
patterns due to various life circumstances, such as career demands, family
responsibilities, and emerging health issues. Capturing these dynamics requires
flexible and comprehensive methodological approaches. Additionally, ensuring
long-term follow-up and maintaining participant engagement can be difficult given

the competing priorities typical of midlife.
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3.7 Summary

Chapter 3 has outlined the challenges and limitations of current research
and the potential avenues to address the research aims of this thesis. Based on
this information, we have chosen to focus on physical activity using an event-
based approach, which allows for a more precise capture of discrete activities
and reduces the misclassification issues associated with epoch-based methods.
This decision was driven by the need to accurately assess the detailed patterns

of physical activity and their impact on health outcomes.

We also decided to examine the associations between these detailed
physical activity patterns and both performance-based and self-report measures
of physical function due to their association with future health outcomes. This
focus provides a more objective and comprehensive understanding of how
physical activity influences physical function, beyond self-reported measures

which can be prone to biases.

Additionally, we include an early midlife and older population, recognising
the critical importance of the trajectory of changes in physical activity and function
over the life course and the potential for early detection and intervention to
prevent functional decline. Midlife represents a period where interventions can
have a significant impact on maintaining or improving physical function, thus

helping to mitigate the onset of age-related declines.

These methodological choices, focusing on event-based physical activity
data, performance-based physical function measures, and midlife populations
are detailed in the subsequent Chapter 4. This approach ensures a robust
analysis of physical activity patterns and their implications for physical function,

contributing valuable insights to the field.
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Chapter 4
General Methods

4.1 Introduction

Chapter 3 highlighted the limitations in the current research regarding physical
activity and physical function and the rationale for examining patterns of physical
activity in addition to volume and in relation to physical function. This chapter
provides details on the fundamental methods used for the published papers that
comprise Chapters 5, 6, and 7. Each paper, and corresponding chapter has its
own detailed methods section; however, here we provide a detailed description
of the methods common to each study. The methodological challenges discussed
in Chapter 3 are used to justify our decisions here. We describe the cohort studies
utilised, and detail the device used to measure movement behaviour, the data
processing, and derivation of upright and stepping metrics. Finally, we describe

the physical function outcome measures.

4.2 Cohort Studies

Based on the methodological challenges and rationale outlined in the previous
chapters, we sought cohort studies that met the following requirements to enable
us to address our research aims. Firstly, we required the cohort to have baseline
activPAL measures (discussed in the following section), with at least a 7-day
measurement period. Access to the raw activPAL data was required, for us to
compute the desired postural and behavioural measures. Cohort studies also
needed a range of baseline performance-based physical function measures, and

a self-reported physical function measure (also discussed in the following
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sections). Finally, one of the cohorts need to be in an early midlife population for
us to examine whether any associations between posture and stepping occur
earlier in the life-course, or whether they are restricted to the later stages of the

life course. Based on these criteria, we identified the following two cohort studies.

4.2.1 The 1970 British Cohort Study

The 1970 British Cohort Study (BCS70) is a long-term, multidisciplinary
longitudinal cohort study of over 17°000 births in England, Scotland, and
Wales.2'® The initial sample included all births in England, Scotland and Wales
during a single week in 1970, with regular follow ups. During the 2016 face-to-
face survey, conducted when participants reached the age of 46, a total of 8581

study members participated, offering a large sample of individuals in midlife.

The 2016 measurement phase encompassed various components,
including interviews, bio-measurements administered by nurses such as physical
function assessments, a digital dietary diary, and a week-long activPAL
monitoring period. Physical function assessments at age 46 included grip
strength, a single leg stance balance test, and a self-report of physical function,
the SF-36pf. Access to BCS70 datasets is facilitated through the UK Data
Service, with the raw activPAL files provided upon request. Full ethical approval
for BCS70 was granted by the NRES Committee South East Coast-Brighton and

Sussex.

4.2.2 De Maastricht Studie

The Maastricht Study (DMS) is a comprehensive research initiative

focusing on investigating the underlying causes of type 2 diabetes (T2DM), its
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traditional complications, and emerging comorbidities.?'* The study employs an
extensive range of measures to assess the health status of a population-based
cohort consisting of approximately 10’000 individuals. The cohort was stratified
according to known T2DM status, with an oversampling of individuals with T2DM,

and spans an age range of 40 to 75 years at baseline.

Enrolment for the study commenced in November 2010, and it is currently
in a follow-up phase. During the baseline phase, participants underwent a week-
long activPAL monitoring period. Baseline physical function assessments were
conducted including, grip strength, a six-minute walk test, a timed chair-stand
test, and the self-reported SF-36 survey was completed. Ethical approval for DMS
was obtained from the institutional medical ethical committee (NL31329.068.10)
and the Minister of Health, Welfare and Sports of the Netherlands (Permit

131088-105234-PG). All participants provided written informed consent.

Accessing DMS datasets requires researchers to submit a proposal, which
undergoes a review process. External researchers seeking access must
collaborate with a member of The Maastricht Study Management Team to submit
a joint research proposal (Appendix 8.8). Additionally, access to the raw activPAL
data was granted, with the requirement that data reprocessing is conducted at
Maastricht University. To fulfil this requirement, a 10-week placement at
Maastricht University was arranged to develop the proposal, reprocess the data,

and generate the necessary metrics for inclusion in the dataset.

4.3 Device description: activPAL™

The activPAL™ (activPAL3 micro; PAL Technologies Ltd., Glasgow, UK) is an

accelerometer that estimates posture (sitting or lying, standing, and stepping)
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based on acceleration signals. It is worn on the anterior midline of the thigh,
distinguishing it from other accelerometry-based activity monitors that are

typically worn on the hip or wrist.

Physically, the activPAL device is compact (53 x 35 x 7 mm) and lightweight
(15 g), making it comfortable for participants to wear during daily activities. Its
attachment method typically involves securing the device to the thigh using
medical grade, waterproof adhesive tape, ensuring stability and reliable data

capture throughout the monitoring period.

The activPAL records movement data by capturing information about static
and dynamic acceleration. Proprietary algorithms aim to discriminate between
sitting/lying and the upright position by detecting the inclination of the thigh. It
estimates stepping from the acceleration versus time wave form.3'¢ It classifies

three different activities:
1. sitting/lying
2. standing
3. stepping

Numerous validation studies have been conducted to assess the validity and
reliability of the activPAL for measuring physical activity in various settings and
populations. Systematic reviews have highlighted that studies consistently
demonstrate the accuracy of the device in distinguishing between different
postures?'? and stepping, although at slower-paced stepping misclassification is
introduced.?'® Limitations of estimates of the intensity of physical activity (e.g.

MVPA) are highlighted in the latter systematic review,?'3 though stepping-based
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classifications of intensity are not employed in this thesis. A more relevant

limitation is the difficulty in detecting slower paced stepping.

The minimum step-rate reported by the activPAL is 20 steps/min; however,
the device’s accuracy is compromised at slower paced stepping, with increasing
underestimation of steps from 69 steps/min and slower.3'” As a result it is likely
that mean step-rates are overestimated and the total daily steps underestimated.
However, this limitation in detecting slower-paced stepping is a universal issue
across different devices.?'® Despite these limitations, and in the absence of an
alternative device better able to capture slower paced stepping, the activPAL

remains the most appropriate device to address our research aims.

4.4 Data processing

The raw activPAL files (.datx) files were processed using PALbatch
software v.8.11.1.63 to produce the stepping bouts output in .CSV format

(https://kb.palt.com/articles/stepping-bouts-csv/).  The  proprietary  VANE

(unabbreviated term unknown) v.0.1 classification algorithm was applied to all
data, using the software’s 24-hour non-wear protocol and default recommended
minimum durations of 10-seconds for upright and non-upright periods. Auto-

correct for inverted wear was selected.

The stepping bouts output provides a time series of contiguous sit/lying
(sedentary), standing, and stepping events, with a corresponding date and time
stamp, duration (in seconds), and data count for each event. Stepping events had
a corresponding step count (minimum 2 steps) and cadence value. Cadence was
calculated as the step count divided by the duration of the stepping event,

multiplied by 60, to give steps per minute. The output also provides the number
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and duration of containing upright events (for contiguous standing and stepping
events between to sedentary events). A screenshot of example stepping output

is presented in Figure 4.1, with the columns used to derive metrics highlighted in

yellow.
A B < D E F G H |
1 |Time Time(approx) Data Count Event Type Duration (s) Upright Bout Number Upright Bout Duration (s) Mum Steps Cadence
2 42851.6835 26/04/2017 16:24 ] 1 2.8 1 2.8 0 ]
3 | 42851.68353 26/04/2017 16:24 28 o 1072.4 ] o o ]
4 | 42851.69594 26/04/2017 16:42 10752 1 4.7 2 130.6 0 ]
5 | 42851.69599 26,/04/2017 16:42 10799 2 7.5 2 130.6 4 32
6 | 42851.69608 26/04/2017 16:42 10874 1 23.4 2 130.6 0 0
7 | 42851.69635 26,/04/2017 16:42 11108 2 11.8 2 130.6 10 51
8 | 42851.69649 26/04/2017 16:42 11226 1 9.6 2 130.6 0 ]
g 42851.6966 26/04/2017 16:43 11322 2 19.9 2 130.6 26 78
10 | 42851.69683 26/04/2017 16:43 11521 1 22.7 2 130.6 0 ]
11| 42851.69709 26/04/2017 16:43 11748 2 23.6 2 130.6 14 36
12 | 42851.69737 26/04/2017 16:44 11984 1 7.4 2 130.6 0 ]
13 | 42851.69745 26/04/2017 16:44 12058 0 31.8 ] ] 0 ]
14 | 42851.69782 26/04/2017 16:44 12376 1 7.9 3 84.7 o 0
15 | 42851.69791 26/04/2017 16:45 12455 2 s 3 84.7 6 69
16 | 42851.69797 26/04/2017 16:45 12507 1 9.8 3 84.7 0 ]
17 | 42851.69808 26/04/2017 16:45 12605 2 19.8 3 84.7 28 85
18 | 42851.69831 26/04/2017 16:45 12803 1 12.9 3 84.7 0 ]
19 | 42851.69846 26/04/2017 16:45 12932 2 4.9 3 84.7 4 49
20 | 42851.69852 26/04/2017 16:45 12981 1 6.7 3 84.7 0 0
21 42851.6986 26,/04/2017 16:45 13048 2 0.9 3 84.7 2 133
22 | 42851.69861 26,/04/2017 16:46 13057 1 3.1 3 84.7 0 ]
23 42851.6987 26/04/2017 16:46 13138 2 7.6 3 84.7 10 75
24 | 42851.69879 26/04/2017 16:46 13214 1 0.9 3 84.7 0 ]
25 42851.6988 26/04/2017 16:46 13223 0 413.7 ] ] 0 ]
26 | 42851.70359 26/04/2017 16:53 17360 1 0.8 4 79.5 0 ]
27 | 42851.7036 26/04/2017 16:53 17368 2 42.3 4 79.5 64 91
28 | 42851.70409 26/04/2017 16:53 17791 1 21.1 4 79.5 o 0
29 | 42851.70433 26/04/2017 16:54 18002 2 13.1 4 79.5 18 82
30 | 42851.70448 26/04/2017 16:54 18133 1 2.2 4 79.5 0 ]

Figure 4.1. Screenshot of activPAL stepping output .csv file open in Excel. Columns of
data utilised for deriving metrics are highlighted in yellow.

Although the stepping bout output includes upright bout number and
upright bout duration columns, these were ignored, and upright events were
calculated manually. We opted to do this as we were exploring different minimum
durations of upright event for inclusion in various analyses, discussed later.
Upright events were defined as the time between two consecutive sedentary
events. The cadence column was also ignored, and our step-weighted cadence
metric was calculated using step count and durations. This was because cadence
values in the stepping output were rounded to the nearest integer, and we opted

to calculate the most accurate cadence possible with the data available.
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Individual stepping outputs were appended in Stata (v17.0, StataCorp LLC: TX,

USA).

Data were cleaned, per participant, using the date to remove the first
partial day and any data after the 8" day (the 7t full day of data). Any periods of
non-wear (classified by the activPAL software) were removed. The total,
continuous, wear duration was calculated and checked, removing the final bout
that crossed midnight. The Stata syntax for processing the data and deriving

metrics is included in Appendix 8.9.

4.4.1 Minimum number of valid days

The minimum number of valid days was chosen to be six. This is higher
than typical in both physical function research and physical activity research more
broadly but was decided based on the following reasons. In both BCS70 and
DMS, the device was attached by a member of the cohort team (nurse or
research assistant). Instructions were to wear the device continuously and not
attempt to reapply if the device was removed or became detached. We allowed
for one day of data loss at the end of the measurement period, due to early
removal, but otherwise considered six or seven continuous days to be adherence

to the protocols.

4.4.2 Waking wear time

When selecting waking wear algorithms to employ, we considered the
available options, which included the activPAL’s proprietary CREA classification
and an open source sleep algorithm.3'® Differences between algorithms designed

to detect sleep and waking wear, have been shown not to be comparable,
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including previously validated ActiGraph, activPAL, and the CREA classification
methods.3?° We opted to employ our own simple method for classifying waking
wear for two reasons. 1) The current methods are available for
aggregate/summary outputs, i.e. they process the summary outputs using their
waking wear algorithms, whereas we required the stepping outputs. These
summary outputs provide the average step count, posture durations, etc. per
measurement period or per day of measurement period, respectively. 2) We
wanted a simple method that could be employed across any device. Or if we
wanted to derive these metrics in additional samples, we wanted to remain

consistent. Therefore, we chose not to use an activPAL specific algorithm.

Our simple method to isolate valid waking wear time from sleep worked as
follows. Waking wear time was estimated using the first upright event (=10
seconds) after 03:00h until the event preceding the one that crossed the following
midnight. This estimation method was based on the average midsleep point
reported in a large UK cohort study,3?' and assumed that the next upright event
210 seconds after this midsleep point represented the arise time. Sensitivity
analyses on this threshold is performed in Chapter 5. A minimum of 10 hours of
waking wear and >3 upright events (=10 seconds) was required for a day to be

valid.

Applying these rules did not remove many valid days, but it did remove days
that were classified as ‘wear’ (i.e. not non-wear) by the activPAL but may have
been from participants who were bed ridden on these days or were just extremely
sedentary. Removal of these days was justified due to our interest in a general

ambulatory population and stepping behaviour. The limitations of this method are
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discussed within each paper, and more generally in the limitations section of

Chapter 8, the general discussion.

4.5 Derivation of metrics

A suite of metrics was derived that intended to explore the composition of
upright and stepping events, and the temporal distribution of upright and
sedentary events. These metrics were derived for the waking wear time of each

24-hour period.

4.5.1 Frequency, duration, composition, and cadence metrics

All metrics are described in Table 4.1 and Table 4.2. The mean daily value
of all metrics were derived per person. The step count (steps/day), frequency of
upright events (n/day), and stepping events (n/day) were derived from counting
these events within waking wear periods. The mean duration of stepping event
(min) and number of steps per stepping event (steps/event) were derived for

individual stepping events.

The mean step-weighted cadence (steps/min) weighted the cadence of
every stepping event (=10 steps) to the step count within the event. A minimum
of ten steps was employed during cadence calculation, as it has been determined
that 6 to 10 consecutive steps are necessary to precisely capture stepping

cadence.3??

The characteristics of each individual upright event were defined by its
duration (mins), the percentage of time spent stepping (%), the count of stepping

events (n/event), and the step count (steps/event). The mean daily values of
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these four within event composition metrics, across the measurement period,

were calculated per person.

The distributions (by sex) of all derived metrics are visualised via histograms
in Figure 4.2. The correlations between metrics are displayed in a correlation
matrix in Figure 4.3. Most correlations are significantly correlated; however, the
only metric strongly correlated (r >0.5) with step count is the number of stepping

events.
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Table 4.1. Summary of composition and temporal duration metrics of upright and
stepping events.

Composition of

event

volume per upright event

upright and stepping Description Units
events
Average number of steps per day across
A. Dalily step count the measurement period. Indicator of steps/day
volume of physical activity
Average number of upright events per
. : day across the measurement period.
B. Dally upright events Equivalent to the number of sit-to-stand n/day
transitions
Average number of stepping events per
C. Daily stepping day across the measurement period. n/da
events Indicator of how fragmented stepping y
behaviour is across the day
D. Duration of stepping Average duration of all stepping events.  min/event
events
E. Steps per stepping  Average number of steps per stepping steps/event
event event.
Average step-weighted cadence per day
across the measurement period.
Calculated as the mean daily step-
F. Step-weighted weighted cadence (weighted by steps :
: steps/min
cadence per event) of all stepping events.
Indicator of step-rate (a proxy for
intensity) that takes into account all
steps
G. Uprlght event Average duration of upright event. min
duration
H. Pr(_)port|on of . Average proportion of time spent
stepping to standing . . %
. stepping when upright
time
Average number of stepping events per
|. Stepping events per  upright event. Indicator of how
. L . n/event
upright event fragmented stepping is within upright
events on average
: Average number of steps per upright
J. Steps per upright event. Indicator of the average stepping  steps/event
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4.5.2 Temporal distribution and fragmentation metrics

The fragmentation metric chosen for this study is based on ASTP, which
has been widely used in the literature to assess the breakdown of physical activity
into active and inactive periods throughout the day.'% ASTP is characterised as
the probability of transitioning from an active to a sedentary state and is computed
as the reciprocal of the average active bout duration. In the context of this study,
the reciprocal of the average upright event duration is applied, serving as an
indicator of the likelihood of transitioning from an upright posture to a sedentary
posture. To avoid confusion, we refer this to metric as the Upright-to-Sedentary
Transition Probability (USTP). USTP was calculated per day and averaged

across valid days per participant.

Fragmentation is particularly relevant for this study due to its mechanistic
link to physical function. For example, frequent transitions between activity and
rest may reflect reduced endurance capacity, which can lead to altered activity
behaviour, such as shorter or more frequent bouts of activity. These patterns not
only reflect physical capacity but may also be influenced by a person’s confidence
in sustaining activity without excessive fatigue or concerns about the risk of

falling.

ASTP has been employed across various studies examining outcomes
such as physical function, mortality, and chronic disease management, reviewed
in detail in Chapter 3. The widespread use and clinical validity make ASTP highly
translatable to different populations, including those at risk for functional decline.
However, it is important to acknowledge that previous use of ASTP, which
typically relies on minute-epoch analysis, has potential for misclassifying the start

and end of activity events. Employing an event-based approach, using the
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precise start and end times of postural transitions, overcomes this limitation and
may therefore improve the precision in associations between the measure and
measures of physical function. An additional limitation of the method used to
compute ASTP is the reliance on a single threshold of acceleration within each 1-
minute epoch to categorise the epoch as active or inactive. This is likely to lead
to misclassification of some epochs as the value of acceleration that discriminates
between activity and rest will value between individuals. In this thesis, the ASTP
is based on transitions between upright and sedentary postures using a validated
device designed to accurately capture postural changes, that avoids the problem
of selecting an acceleration threshold to segment the data. The combination of
an event based method and the use of a valid device for accurately capturing
posture changes will improve the precision of associations between behavioural

measures and physical function.

As previously discussed, ASTP does not capture the temporal distribution
of events, potentially overlooking important patterns. To address this, we
employed burstiness measures, which quantify the clustering of activity and rest
periods throughout the day. This measure complements the fragmentation metric
by providing insights into the distribution of activity, which may implications for
understanding physical function and health such as the timing between
sequences of upright events. This is potentially important as a cluster of sit to
stand transitions would lead to a level of fatigue that would be higher than the
same number of transitions more evenly spread over a period of time. The review
in Chapter 2 did not identify any suitable measures for capturing this aspect of
physical activity accumulation. Therefore, | sought advice from university
colleagues with expertise in the analysis of time series data (personal

communication). | was guided towards the ‘burstiness’ measure, a measure of
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the extent to which time series of events occur in bursts followed by long breaks

or are more uniformly across time.

Burstiness complements the fragmentation metric by providing insights
into the distribution of activity, whereas the fragmentation metric mainly describes
the frequency and duration of events. It is possible for two people to have a similar
fragmentation value but different values of burstiness. For example, they may
both have the same number of active events and the same total time being active,
but the extent to which the number of events are clustered together could vary.
As discussed in the previous chapter, burstiness has been employed in two
studies of human physical behaviour with interesting findings,3?3 suggesting

further investigation is warranted.

The ‘burstiness’ parameter was used to describe the temporal distribution
of upright events and sedentary events, based on variation of inter-event times.263
Burstiness quantifies the degree to which the events of interest (upright or
sedentary) occur in short, frequent clusters followed by longer gaps between
events. On a scale of -1 to +1, the burstiness coefficient expresses a uniform
time-series with -1, a Poissonian or random time-series with 0, and ‘extreme’
standard deviation of inter-event times with +1.324 Burstiness was computed per
day during waking hours, then averaged per person, utilising the following

equation to adjust for number of events:323

Here, n, o, and (1) represent the number of events, standard deviation of

inter-event time, and mean of inter-event time, respectively. This formula was
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similarly applied to assess the inter-event time distribution (burstiness) of
sedentary events (where inter-event time refers to the duration of upright events).
A lower Bn indicates a smaller standard deviation of inter-event times compared
to the mean, implying lower burstiness. Conversely, a higher Bn suggests a larger

standard deviation compared to the mean, indicating ‘burstier’ behaviour.3?*

Time of day > Time of day —
Time of day — Time of day —
[ *
'ﬁ UPRIGHT (STANDING OR STEPPING) EVENTS ll *==~ SEDENTARY (SITTING OR LYING) EVENTS

Figure 4.4. Schematic diagram depicting examples of burstiness for sedentary and
upright events. The examples are matched for daily event count, waking wear time, and
duration of upright events to ensure a fair comparison. Low burstiness is represented by
a coefficient of -1, while high burstiness is indicated by a coefficient of +0.5. (From
Culverhouse et al., 2024; reproduced under CC BY licence.)

The illustration in Figure 4.4 showcases both high and low burstiness for
sedentary and upright events. The low sedentary / low upright example displays
an even distribution of both event types throughout the day. The high sedentary /
low upright example exhibits consistent sedentary event durations but features
two longer upright events amid several shorter ones, achieving high burstiness in
sedentary events through a mix of durations. Conversely, high burstiness in
upright events (low sedentary / high burstiness) is characterised by clusters of

short gaps between upright events, followed by more extended sedentary
122



periods. The high sedentary / high upright example demonstrates a combination

of both scenarios. These examples visually elucidate burstiness, although real-

world movement data presents a more intricate and diverse picture.

Table 4.2. Summary of temporal duration metrics of upright events.

Temporal distribution
of upright and
stepping events

Description Units

K. Upright event
burstiness

L. Sedentary event
burstiness

M. Upright to sedentary
transition probability
(USTP)

Average daily upright event burstiness
(inter-event time distribution) across the
measurement period. Indicator of the
degree to which upright events are
clustered together with longer sedentary
events between clusters, versus a more
uniform distribution of upright events
through the day

Average daily sedentary event burstiness
(inter-event time distribution) across the
measurement period. Indicator of the
degree to which sedentary events are
clustered together with longer upright
events between clusters, versus a more
uniform distribution of sedentary events
through the day

Bn

Average daily USTP across the
measurement period. USTP was defined
as the probability of transitioning from an
upright state to a sedentary state, and
calculated as the reciprocal of the
average upright event duration.194 A
higher USTP is an indicator of more
fragmented pattern of upright behaviour.

USTP
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4.6 Physical function measures

The protocols for collecting physical function measures are detailed below for
each cohort study. We carefully selected BCS70 and DMS based on their
population characteristics, accelerometer measures, and available physical
function outcomes. While these cohorts met most of our criteria, we did not obtain
a measure of gait speed. Therefore, the physical function outcomes included in

this thesis are as follows:

4.6.1 Grip strength

In BCS70, grip strength was assessed using a Smedley spring-gauge
hand-held dynamometer.'%® Participants were instructed to hold the device in the
specified hand and exert maximum force by squeezing its handle for two
seconds. The research nurse recorded the achieved value in kilograms (kg)
before resetting the device. Participants were given the option to stand without
arm support during the test, although they were permitted to conduct the
assessment with arm support while seated if necessary. The assessment was
repeated up to six times, with three trials performed on each hand, alternating
between hands. The average of three attempts with the dominant hand was used

for analysis within this thesis.

In DMS, grip strength was measured using the Jamar handheld
dynamometer (SEHAN Corp., Korea-Biometrics Europe BV, Almere)."®®
Participants were instructed to stand straight against a wall, with the upper arm
positioned along the trunk and the elbow flexed at a 90° angle. They were then
directed to squeeze the dynamometer with maximal force for a duration of 3 to 5

seconds, while receiving standardised encouragement. The measurement was
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conducted three times on each hand, with participants alternating between

hands. The maximal strength achieved from each trial was recorded, in kg.

4.6.2 Timed chair rise test

In DMS, the timed chair rise stand test (TCST) was conducted using a 46
cm high chair with a straight back and no armrests.'° Participants began the test
in a sitting position with their arms crossed over the chest. They were instructed
to rise to a full upright position and return to a seated position as quickly as
possible without utilising their arms or hands for support. The time taken (in
seconds) to complete 10 repetitions was measured to the nearest decimal. (Note:
the TCST is the only physical function outcome included where a lower value

indicates better performance).

4.6.3 Six-minute walt test (6MWT)

In DMS, the six-minute walk test (6MWT) was conducted in a designated
hallway, with two cones positioned 20 meters apart around which participants
navigated turns.’®® They were instructed to walk as many laps as possible in 6
minutes at a brisk pace without running. Standardised encouragement was
provided every minute during the test. Upon completion of 6 minutes or when the
participant was unwilling or unable to continue, the distance covered was

measured, in meters.

4.6.4 Single leg stance test (balance)

In BCS70, balance was assessed using a single leg stance test.'68

Participants were allowed to support themselves on a chair, table, or wall while
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assuming the test position. They were permitted to use their arms, bend their
knee, or make body movements to maintain balance during the test but were
instructed not to move their standing foot. Timing commenced as soon as the
participant raised one leg off the ground and concluded when balance was lost,
indicated by the raised foot touching the floor or the foot on the floor shifting out
of position, or after 30 seconds had elapsed. Participants who achieved a balance
time of 30 seconds with eyes open were then asked to repeat the test with their
eyes closed. Any participant who felt unsafe or reported health-related reasons

for being unable to complete the tests had this recorded by the nurse.

4.6.5 SF-36 physical functioning

Self-reported physical functioning was evaluated using the physical function
score derived from the 36-ltem Short Form Health Survey (SF-36).283 This
questionnaire, widely used for assessing health-related quality of life, comprises
eight domain scores, including 'physical functioning' (SF-36pf).?8* The physical
functioning domain consists of 10 items assessing various activities such as
walking specified distances, carrying groceries, and bathing or dressing. Each
item is scored based on perceived limitations, with scores summed to obtain a
total score scaled relative to its range. The SF-36pf scale has demonstrated good

internal consistency and reliability among community-dwelling older adults.?84315

4.7 Summary

Chapter 4 (with the support of Chapter 3) has addressed the second
objective of this thesis: 2) Derive a suite of physical activity pattern metrics from

thigh worn accelerometer postural and stepping data. In Chapter 3, we outlined
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the limitations of current research and justified our focus on physical activity
patterns alongside volume in relation to physical function. Chapter 4 has provided
an overview of the general methods used across Chapters 5, 6, and 7, based on

the methodological challenges highlighted in Chapter 3.

We described the activPAL device, our data processing, and how we
derived the metrics employed in the following chapters. Two cohort studies and
their protocols for collecting the physical function outcomes are detailed. These
studies provide baseline activPAL measures and physical function assessments
essential for our analyses. This chapter has laid the groundwork for the
subsequent research chapters, outlining our approach to studying physical
activity patterns and their impact on physical function across different

populations.
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Chapter 5
Descriptive Epidemiology of Physical
Activity Accumulation

5.1 Overview

Chapter 5 aims to address the third thesis objective by exploring the
variation in the pattern metrics, derived in the previous chapter, across
sociodemographic factors. We identify variations in the accumulation, temporal
distribution, and composition of upright and stepping events. Potential
phenotypes of postural and stepping behaviour emerged, which could potentially
be differentially associated with health outcomes. This chapter was published as
a peer reviewed paper: Unravelling upright events: a descriptive epidemiology of
the behavioural composition and temporal distribution of upright events in
participants from the 1970 British Cohort Study.3?> The published version is

available digitally using the following DOI: https://doi.org/10.1186/s12889-024-

17976-2.

5.2 Introduction

As discussed in Chapter 1, and highlighted in Chapter 2, most physical
activity research using accelerometers is still restricted to a small number of
aggregate metrics, such as the number of minutes of at least moderate intensity
activity, or time spent sedentary. However, there is growing research interest in
utilising time stamped data to move beyond these simple metrics.3?% For example,
frequency of postural (sit-to-stand) transitions has been associated with

metabolic health;?”2327 the timing of physical activity is undertaken has been

128


https://doi.org/10.1186/s12889-024-17976-2
https://doi.org/10.1186/s12889-024-17976-2

associated with cardiovascular disease risk and mortality;32832° and how
fragmented (transient) or sustained physical activity events are has been

associated with a range of age related health outcomes.101.102,105,106

When in an upright posture people can be either standing or ambulating,
with evidence that stepping confers greater metabolic health benefits than
standing-only upright events.?’? Therefore, the next step beyond counting the
frequency of upright events is to characterise their durations, temporal
distribution, and their composition (the mix of standing and stepping). Standing
and stepping events within each upright event can further be characterised by

their frequency, duration, and stepping rate (cadence).33°

A recent cross-sectional study examined the associations between sitting
interruptions (upright events), demographic factors, diabetes status, and BMI.273
The frequency of all interruptions, active interruptions (=5-minutes duration
and/or 22-minutes stepping) and ambulatory interruptions (=2-minutes stepping)
were extracted from 7-days of thigh worn activPAL data. Fewer interruptions of
any type and fewer steps per day were associated with higher BMI and diabetes
status. However, the study did not take account of the stepping vs standing
composition of upright events, the temporal distribution of events, the number

and composition of stepping events, and did not control for all steps accumulated.

This is important as the proportions and total duration of standing and
stepping, the number and distribution of stepping and standing events, and the
stepping volume and cadence can all vary even when the total number and
duration of upright events is the same. Moreover, the temporal distribution of

upright events can vary while the frequency, duration and composition of events
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is the same. These features of activity accumulation all have the potential to be

associated with health outcomes and warrant further investigation.

Given emerging evidence regarding the importance of the patterns in which
physical activity is accumulated,®® a deeper understanding of the composition,
and temporal distribution, of upright events, may provide new insights into their
relationship with health outcomes and how they differ between people. Such,
insights may be masked when behaviours such as sitting, standing, and stepping
are confined to measures of frequency, average duration, average time between
events, or the volume of time in each event over different observation periods. To
our knowledge, no study to date has fully described the composition and temporal
distribution of upright events recorded in a free-living setting. Therefore, in this
chapter we address this need by providing a comprehensive description of the
composition and temporal distribution of free-living uprights events and how they

vary by demographic and health factors, in a cohort of midlife UK adults.

5.3 Methods

For detailed descriptions of the study design, physical activity
measurement, and data processing methods, derived metrics, and physical

function measures refer to the general methods in Chapter 4.

5.3.1 Demographic and health-related characteristics

Participants provided information on a range of socio-demographic,
lifestyle, and health factors. Body Mass Index (BMI in kg/m?) was calculated for
nurse measured height (portable Leicester stadiometer) and weight (Tanita BF -

522W scales), and categorised as under-weight (<18.5), normal-weight (18.5—
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24.9), overweight (25.0-25.9), obese (30.0-34.9), or morbidly obese (=35.0).
Educational qualification was reported and classified into the following: none,
GSCE, A-level, degree. Socio-economic status was reported using the five-class
National Statistics Socio-economic Classification (NS-SEC),33' which categorises
occupations hierarchically ranging from high-level managerial/professional roles
to routine jobs. The European Union Statistics on Income and Living Conditions
(EU-SILC)33? provided disability categorisation ranging from: none, some extent,
severely hampered. Occupational activity was classified into the following: sitting,
standing, physical work, and heavy manual work. Self-reported smoking status
was grouped into four categories: never, past smoker, occasional smoker, daily
smoker. Self-rated health was categorised as poor, fair, good, very good, or

excellent, and was used here as a simple measure of general health.

5.3.2 Statistical analyses

Participants with six or more valid days of activPAL wear (=10 waking wear
hours) and complete demographic and health-related data were included in the
analyses. Generalised linear regression models were employed to describe and
compare upright event metrics across sex, socio-economic status, education
level, disability status, BMI classification, smoking status, and self-rated health;
additionally adjusted for waking wear time and mean daily step count. Multi-

collinearity was checked using the variance inflation factor (VIF).

5.3.2.1 Sensitivity analyses
To assess the robustness of our results, analyses were repeated to assess

the impact of EU-SILC disability classification in the analytical sample. These
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included rerunning analyses excluding participants classified as severely
hampered, and again excluding the ‘some extent and severely hampered

classifications.

5.4 Results

5.4.1 Participant characteristics

A total of 4526 participants (78% of the 5795 activPAL files available) had
six or more valid days (=10 h-d-" waking wear and >3 upright events) of activPAL
data. This resulted in 30,992 valid days with an average waking wear time of
16.2+0.9 h-d-! (mean + SD), and a total of 1,638,009 upright events. Participants
had an average of 52.9+15.3 upright events per day, and 198.4+69.6 stepping
events per day. Upright duration averaged 6.4+1.9 h-d-!, with stepping duration
2.0+0.7 h-d-', and the mean daily step count for was 9389+3586 steps-d-'. A total
of 3965 participants had valid accelerometer wear and complete covariates data,
this sample was included in regression analyses. Table 5.1 provides a descriptive
summary of upright events by sex for this sample and presents the samples
demographics. For all regression models, VIF was <2 for each independent
variable.

5.4.2 Characterisation, composition, and temporal distribution

of upright events
All analyses were adjusted for average number of steps per day, therefore,

the reported variances across demographics for these metrics were present

when adjusting for a proxy measure of volume.
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Table 5.1. Descritpives of participant demographics (n (%)), and device-derived metrics

(mean(SD)).

Demographics Men (n=1897)

Women (n=2068)

Highest qualification
None
GCSE
FE
HE
Disability
None
Some extent
Severely hampered
Self-rated health
Excellent
Very good
Good
Fair
Poor
NS-SEC group
Professional
Intermediate
Routine
BMI
Normal (18.5<25)
Overweight (25<35)
Obese (30<35)
Morbidly obese (=35)
Underweight (<18.5)
Occupational activity
Sitting
Standing
Physical work
Heavy manual
Smoking habits
Never
Past smoker
Occasional smoker
Daily smoker

523 (56.3%)
571 (46.4%)
252 (40.1%)
551 (46.9%)

1701 (49.0%)
151 (38.9%)
44 (42.7%)

353 (43.4%)
743 (47.6%)
557 (50.6%)
211 (51.2%)
33 (41.8%)

1049 (52.6%)
564 (46.7%)
235 (43.5%)

428 (34.8%)
862 (56.8%)
540 (52.3%)
27 (25.2%)
40 (51.3%)

1029 (47.0%)
190 (30.3%)
510 (52.8%)
168 (90.8%)

954 (58.6%)
612 (47.6%)
93 (51.4%)
238 (51.4%)

406 (43.7%)
660 (53.6%)
377 (59.9%)
625 (53.1%)

1771 (51.0%)
237 (61.1%)
59 (57.3%)

461 (56.6%)
817 (52.4%)
543 (49.4%)
201 (48.8%)
46 (58.2%)

947 (47.4%)
643 (53.3%)
305 (56.5%)

801 (65.2%)
656 (43.2%)
493 (47.7%)
80 (74.8%)
38 (48.7%)

1159 (53.0%)

437 (69.7%)

455 (47.2%)
17 (9.2%)

1082 (41.4%)
673 (52.4%)
88 (48.6%)
225 (48.6%)

Device-derived metrics

Men (n=2077)

Women (n=2387)

Summary metrics
Upright events (n)
Stepping events (n)
Upright duration (h)
Standing duration (h)
Stepping duration (h)

Pattern metrics

Upright event burstiness (Bhn)
Sedentary event burstiness (Bn)

Stepping metrics
Step count (steps)

50.8 (15.5)
194.7 (72.6)
6.3(1.9)
4.3 (1.5)
2.0 (0.7)

0.28 (0.10)
0.28 (0.09)

9451 (3670)

54.7 (14.8)
201.7 (66.8)
6.6 (1.9)
4.6 (1.5)
2.0(0.7)

0.31 (0.08)
0.27 (0.08)

9334 (3483)

Step-weighted cadence (steps/min) 88.8 (9.2) 90.1 (8.4)
Stepping event duration (s) 32.5(9.2) 29.7 (7.5)
Step count per stepping event (steps) 46.1 (17.8) 42.4 (14.4)
Composition metrics
Upright event duration (min) 8.0 (3.7) 7.7 (3.8)
Stepping proportion (%) 35.8 (6.4) 35.5 (5.9)
Stepping events per upright event (n) 9.1 (4.1) 8.9 (3.6)
Step count per upright event (n) 198.8 (97.5) 179.6 (79.4)

n = number/count. h = hour. min = minute. s = seconds
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Females moved to an upright posture more frequently than males (4.39
[3.41,5.38] n), spent more time upright and standing, and the upright events were
more bursty than males (more clustered together with longer between event times
(0.05 [0.04,0.05] Bn)) (Table 5.2). Although there was no difference in the total
number of steps taken between the sexes, females recorded a higher daily
frequency of stepping events (13.39 [10.24,16.53] n), with shorter durations; with
fewer steps per stepping and upright event, but steps taken were at a higher

average cadence (0.89 [0.39,1.40] steps-min-') (Table 5.3, Table 5.4).

There was very little difference in upright events and total steps per day
according to educational attainment. However, participants with the highest
qualification recorded fewer stepping events per day (-8.07 [-12.56,-3.59] n), but
each event was longer (1.42 [0.75,2.10] s) and contained more steps (2.13
[0.83,3.43] steps) than people without educational qualifications (Table 5.3). The
main difference between people with different levels of disability was in the total
number of steps taken per day. The most disabled people took an average of
1271 steps less per day than more abled people (Table 5.3). Similarly, there were
only weak associations between characteristics of upright events and self-rated
health. By contrast, the worse a person’s self-rated health, the fewer total steps
they recorded each day; they recorded more stepping events overall, but they
tended to be shorter and at a lower cadence, compared to people reporting better
health (Table 5.3). In other words, people in poorer health undertook fewer

sustained periods of stepping.

People with a higher BMI stood up less often than people with a healthy
BMI, and their upright events were longer in duration on average, had more steps,

and were less bursty (overweight -0.02 [-0.02,-0.01] Bn; obese -0.03 [-0.04,-0.02]
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Bn) (Table 5.2, Table 5.4). When they were stood up, they had a higher stepping
proportion (overweight 0.62 [0.17,1.07] %; obese 0.81 [0.31,1.32] %) (Table 5.4).
However, a higher BMI was associated with considerably fewer total steps per
day compared with a healthy BMI (overweight -419.58 [-675.23,-163.93] steps;
obese -1232.63 [-1518.66,-946.59] steps), accumulated at a lower cadence for

those who were obese (-0.69 [-1.34,-0.03] steps-min').

There were no differences in the frequency of upright events by
occupational activity, but people in more active occupations were upright for
longer each day, because the duration of each of their upright events was longer
compared with sedentary occupations (Table 5.2, Table 5.4). Their pattern of
being upright was more bursty than sedentary workers (standing 0.04 [0.03,0.05]
Bn; physical work 0.05 [0.04,0.05] Bn; heavy manual 0.06 [0.04,0.07] Bn), as was
their patten of sedentary events (standing 0.02 [0.01,0.02] Bn; physical work 0.02
[0.01,0.03] Bn; heavy manual 0.03 [0.01,0.04] Bn). Active workers recorded more
stepping events per day and per upright event, leading to a higher daily step
count. Although each upright event contained more stepping events than
sedentary workers, the events were longer, and step-rate was lower compared to

the stepping rate of sedentary workers.

Daily smokers were upright more than non-smokers, and a greater
proportion of upright time was standing compared to stepping, resulting in a lower
daily step count. The individual upright and stepping event durations, step count,
step events, stepping proportion, and step-weighted cadence distributions are

shown in histograms (Appendix 8.1).
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Table 5.2. Daily summaries metrics by socioeconomic and health-related factors in adults aged-46 (BCS70).

Upright events (n) Upright duration (min) Standing duration (min)  Stepping duration (min)  Upright event burstiness (B.)  Sedentary event burstiness (Bx)
N B [95% Cl] B [95% Cl] B [95% Cl] B [95% Cl] B [95% CI] B [95% Cl]
?Ffé‘f: Vi) 1897 Ref. Ref. Ref. Ref. Ref. Ref,
Female 2068 439" [3.41,5.38] 22.68**  [17.20,28.16] 22.86"* [17.69,28.03] 0.18  [-0.91,0.54] 0.05***  [0.04,0.05] 0.00 [-0.01,0.00]
Highest qualification 929 Ref. Ref. Ref. Ref. Ref. Ref,
(Ref: None)
GCSE 1231 022 [-1.03,1.46] 0.85 [-6.11,7.81] 059 [5.97,7.15] 0.26 [-0.66,1.18] 0.00 [-0.00,0.01] -0.01 [-0.01,0.00]
FE 629 0.10 [-1.41,1.60] 0.97 [-7.45,9.38] 0.53  [-7.41,8.46] 044 [-0.67,1.55] 0.00 [-0.00,0.01] -0.01*  [-0.02,-0.00]
HE 1176 095 [-2.35,0.45] 6.87 [-14.62,0.87] 6.45 [-13.76,0.85] 042 [-1.45,0.60] 0.00 [-0.01,0.01] -0.02**  [-0.03,-0.01]
Disability 3U72 Ref. Ref. Ref. Ref, Ref. Ref,
(Ref: None)
Some extent 388 048 [2.12,1.15] 3.57 [5.43,12.56] 329 [5.19,11.78] 0.27  [-0.92,1.46] 0.00 [-0.01,0.01] 0.00 [-0.01,0.01]
Severely hampered 103 -2.72  [6.00,0.56] -17.26  [-34.89,0.37] -17.69¢  [-34.32,-1.07] 044 [-1.90,2.77] 0.01  [-0.01,0.03] -0.02 [-0.04,0.00]
Self-rated health 814 Ref Ref Ref Ref Ref Ref
(Ref: Excellent) ' ' ' ' ' '
Very good 1560 0.83 [-0.42,2.08] 9.76*  [2.83,16.69] 7.69*  [1.16,14.23] 2,07 [1.15,2.98] 0.01*  [0.00,0.01] 0.00 [-0.00,0.01]
Good 1100 0.94 [-0.45232] 8.50¢ [0.78,16.23] 6.61 [-0.67,13.89] 1.89**  [0.87,2.91] 0.01*  [0.00,0.02] 0.00 [-0.00,0.01]
Fair 412 053 [1.37,242] 11.46* [0.98,21.94] 8.83 [-1.05,18.72] 2,63 [1.24,4.01] 0.01  [-0.00,0.02] 0.00 [-0.01,0.01]
Poor 79 -1.29  [5.07,2.49) -4.75 [-25.53,16.04] 573 [-25.33,13.87] 098 [1.77,3.73] -0.01 [-0.04,0.01] -0.01  [-0.04,0.01]
NS-SEC group 1996 R
) . ef. Ref. Ref. Ref. Ref. Ref.
(Ref: Professional)
Intermediate 1207 1.81**  [0.68,2.94] 13.16™*  [6.75,19.57] 10.78"*  [4.73,16.82] 2.38"*  [1.54,3.23] 0.01 [-0.00,0.01] 0.01 [-0.00,0.01]
Routine 540 -0.54  [-2.09,1.02] 6.86 [-1.96,15.67] 457 [-3.74,12.87] 229" [1.12,3.46] 0.00 [-0.01,0.01] 0.01* [0.00,0.02]
?Ffe‘:y;g%sfz g’)‘de" 1229 Ref. Ref. Ref. Ref, Ref. Ref,
Overweight (25<35) 1518 -3.18**  [-4.30,-2.06] -6.84*  [-13.09,-0.60] 6.38* [12.27,-0.49] -047 [-1.29,0.36] -0.02*  [-0.02,-0.01] 0.00 [-0.01,0.01]
Obese (30<35) 1033 -6.38**  [-7.65,-5.12] -7.09¢  [-14.13,-0.06] 6.40 [-13.03,0.24] -0.69 [-1.63,0.24] -0.03**  [-0.04,-0.02] 0.00 [-0.01,0.01]
Morbidly obese (235) 107  -12.97*** [-15.87,-10.06] -3.88  [-20.22,12.47] 243 [-17.84,12.98] -144  [-3.61,0.72] -0.04**  [-0.06,-0.02] 0.01 [-0.01,0.03]
Underweight (<18.5) 78 -8.15"*  [11.52,-4.78] -8.04 [-26.67,10.58] -7.59 [-25.15,9.97] 045 [2.92,2.01] -0.01 [-0.03,0.01] 0.01 [-0.01,0.03]
%Z?’g;;‘;’g’;a' activity 2188 Ref. Ref. Ref. Ref. Ref. Ref.
Standing 627 -0.39  [-1.73,0.96] 69.24**  [61.84,76.65] 63.28**  [56.30,70.27] 5.96"* [4.98,6.94] 0.04**  [0.03,0.05] 0.02**  [0.01,0.02]
Physical work 965 0.2 [-1.45,1.05] 62.74***  [55.80,69.68] 54.16** [47.61,60.70] 8.58"**  [7.66,9.50] 0.05***  [0.04,0.05] 0.02*  [0.01,0.03]
Heavy manual 185 -0.27 [-2.60,2.06] 75.74**  [62.53,88.94] 61.31*** [48.85,73.76] 14.43"*  [12.69,16.18] 0.06** [0.04,0.07] 0.03** [0.01,0.04]
Smoking habits 2036 R
] ef. Ref. Ref. Ref. Ref. Ref.
(Ref: Never)
Past smoker 1285 1.52**  [0.50,2.54] -5.65 [-11.33,0.02] 6.27*  [-11.63,-0.92] 0.62 [-0.13,1.37] 0.00 [-0.01,0.00] 0.00 [-0.01,0.00]
Occasional smoker 181 2.64* [0.44,4.85] 15.42*  [3.12,27.73] 15.23*  [3.63,26.83] 019 [-1.43,1.82] 0.00 [-0.01,0.01] 0.00 [-0.02,0.01]
Daily smoker 463 279" [1.28,4.30] 11.82*  [3.37,20.27] 10.66*  [2.69,18.62] 1.16*  [0.04,2.28] -0.01*  [-0.02,-0.00] -0.01*  [-0.02,-0.00]

Multivariate linear regressions of upright event metrics. Presented as the unstandardised regression coefficient (B) and 95% confidence intervals [95% Cl]. Mutually adjusted for all socioeconomic, lifestyle and health factors, and daily
wear time. Additionally adjusted for daily step count. N = sub-group sample size. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 5.3. Stepping metrics by socioeconomic and health-related factors in adults aged-46 (BCS70).

Step-weighted cadence

Daily steps (steps) (steps-min-) Stepping events (n) Duration of stepping events (s) Steps per stepping event (n)
N B [95%CI] B [95%Cl] B [95% CI] B [95% Cl] B [95%CI]
Sex
(Ref: Male) 1897 Ref. Ref. Ref. Ref. Ref.
Female 2068 -26.89  [-251.00,197.21] 0.89*  [0.39,1.40] 13.39"*  [10.24,16.53] -3.16"*  [-3.63,-2.69] -4.46**  [-5.37,-3.54]
Highest qualification 929 Ref. Ref. Ref. Ref. Ref.
(Ref: None)
GCSE 1231 -216.65 [-501.06,67.77] -0.05 [-0.70,0.60] 0.78 [3.214.77] -0.05 [-0.65,0.55] 0.25 [-1.40,0.91]
FE 629 -137.28  [-480.97,206.41] -0.09 [-0.87,0.69] -1.58  [-6.40,3.24] 0.35 [0.37,1.07] 029 [1.11,1.68]
HE 1176 34372 [24.32,663.11] 041 [-0.31,1.14] -8.07**  [-12.56,-3.59] 142" [0.75,2.10] 213 [0.83,3.43]
Disability
(Ref: None) 3472 Ref. Ref. Ref. Ref. Ref.
Some extent 388 -170.99  [-543.27,201.29] -0.03 [-0.87,0.82] 295 [-8.17,2.27] 0.26 [-0.52,1.05] 042 [1.09,1.94]
Severely hampered 103 -1270.69**  [-2018.05,-523.33] -146  [-3.16,0.23] 247 [-12.97,8.02] 049 [-1.08,2.06] 043 [-2.62,3.48]
Self-rated health
(Ref: Excellent) 814 Ref. Ref. Ref. Ref. Ref.
Very good 1560 -713.36™*  [-996.76,-429.95] -1.26"  [-1.91,-0.62] 9.38"*  [5.39,13.37] -1.44*  [-2.04,-0.84] -2.85"*  [-4.00,-1.69)
Good 1100 -1077.61**  [-1391.10,-764.12] -1.58**  [-2.30,-0.86] 11.09"*  [6.67,15.52] -1.63"*  [-2.30,-0.97] -3.25"*  [-4.53,-1.96]
Fair 412 -1376.50**  [-1807.03,-945.96] 2,14 [-3.12,-1.15] 1420 [8.13,20.27] -1.79%*  [-2.70,-0.88] -3.61***  [-5.38,-1.85]
Poor 79 -1930.99**  [-2791.33,-1070.65] 277 [-4.72,-0.81] 1021  [-1.89,22.30] -1.66  [-3.47,0.16] -3.35  [6.86,0.16]
NS-SEC group
(Ref: Professional) 1996 Ref. Ref. Ref. Ref. Ref.
Intermediate 1207 86.3 [-171.06,343.67] -1.22**  [-1.80,-0.64] 6.48*  [2.87,10.09] -0.92%*  [-1.47,-0.38] -2.06**  [-3.11,-1.01]
Routine 540 522.07**  [168.06,876.09] -1.20"  [-2.00,-0.40] 324 [-1.73,8.21] 026 [-1.00,0.49] -1.02  [-2.46,0.42]
Body mass index
(Ref: 18.5<25) 1229 Ref. Ref. Ref. Ref. Ref.
Overweight (25<35) 1518 -419.58**  [-675.23,-163.93] -0.20 [-0.78,0.38] 070 [4.29,2.89] 0.18  [0.36,0.72] 022 [-0.82,1.27]
Obese (30<35) 1033 -1232.63**  [-1518.66,-946.59] -0.69*  [-1.34,-0.03] 246 [-6.51,1.59] 042 [-0.18,1.03] 049 [0.68,1.67]
Morbidly obese (=35) 107 -2546.18*  [-3203.49,-1888.87] -1.75*  [-3.25,-0.25] 828 [-17.57,1.01] 1.33  [-0.06,2.73] 154 [-1.154.24]
Underweight (<18.5) 78 -1533.72**  [-2300.48,-766.96] -1.28  [-3.03,0.46] 238 [-13.16,8.39] 0.62 [1.00,2.24] 061 [2523.73]
Occupational activity
(Ref: Sitting) 2188 Ref. Ref. Ref. Ref. Ref.
Standing 627 1315.56**  [1010.91,1620.20] -3.53"*  [-4.23,-2.84] 28.57**  [24.25,32.88] -3.92%*  [-4.57,-3.27] 7724 [-8.98,-6.47]
Physical work 965 1701.66**  [1421.66,1981.65] -5.83**  [-6.47,-5.18] 35.58***  [31.58,39.58] -4.69**  [-5.29,-4.09] -9.87**  [-11.03,-8.71]
Heavy manual 185 2146.26"*  [1618.79,2673.73] 841 [-9.61,-7.20] 52.40"*  [44.94,59.86] 6.34**  [-7.45,-5.22] -13.71%*  [-15.87,-11.54]
Smoking habits 2036 Ref. Ref. Ref. Ref, Ref.
(Ref: Never)
Past smoker 1285 123.34  [-109.80,356.48] 0.28 [-0.81,0.24] 0.00 [3.27,3.28] -0.05 [-0.54,0.44] 0.25 [1.20,0.70]
Occasional smoker 181 -384.68  [-888.11,118.74] 0.02 [1.16,1.12] 427  [-2.80,11.33] -0.78 [-1.84,0.28] 111 [-3.16,0.94]
Daily smoker 463 -908.34"*  [-1251.84,-564.84] -1.127 [-1.90,-0.34] 9.14**  [4.30,13.97] -1.15"  [-1.87,-0.42] -2.04*  [-3.44,-0.64]

Multivariate linear regressions of upright event metrics. Presented as the unstandardised regression coefficient (B) and 95% confidence intervals [95% Cl]. Mutually adjusted for all socioeconomic, lifestyle and health factors, and daily wear time. Additionally
adjusted for daily step count (except daily steps). N = sub-group sample size. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 5.4. Upright event composition metrics by socioeconomic and health-related factors in adults aged-46 (BCS70).

Duration (min) Stepping proportion (%) Steps (n) Stepping events (n)
N B [95%CI] B [95%CI] B [95%CI] B [95% Cl]
Sex
(Ref: Male) 1897 Ref. Ref. Ref. Ref.
Female 2068 -0.24  [-0.49,0.01] 012 [-0.51,0.27] -17.90*  [-22.04,-13.76] 0.03 [-0.27,0.21]
Highest qualification 929 Ref Ref Ref. Ref.
(Ref: None)
GCSE 1231 013 [-0.45,0.18] -0.01 [-0.50,0.49] -340 [-8.66,1.85] 0.07 [-0.37,0.23]
FE 629 014 [-0.52,0.24] 0.36  [-0.96,0.24] -3.05  [-9.40,3.30] 019 [-0.55,0.18]
HE 1176 -0.15  [-0.50,0.20] 0.03 [-0.53,0.59] 0.37 [-5.53,6.28] 029 [-0.63,0.04]
Disability
(Ref: None) 3472 Ref. Ref. Ref. Ref.
Some extent 388 0.30 [-0.11,0.71] 0.65 [-1.29,0.00] 411 [-2.77,10.99] 020 [-0.20,0.59]
Severely hampered 103 -0.07 [-0.89,0.76] 0.26  [-1.05,1.56] 7.74  [-6.09,21.57] 0.16  [-0.63,0.95]
Self-rated health
(Ref: Excellent) 814 Ref. Ref. Ref. Ref.
Very good 1560 0.06 [-0.25,0.37] 021 [-0.29,0.70] -2.84  [-8.09,2.41] 0.28 [-0.02,0.58]
Good 1100 0.02 [-0.33,0.36] 0.34  [-0.21,0.89] 213 [-7.96,3.69] 0.28  [-0.05,0.61]
Fair 412 0.38 [-0.10,0.85)] 0.03 [-0.78,0.72] -1.05  [-9.05,6.94] 0.54*  [0.09,1.00]
Poor 79 019 [-1.15,0.76] 093 [-0.57,2.43] -1.38  [-17.32,14.56] 0.13  [-0.78,1.05]
NS-SEC group
(Ref: Professional) 1996 Ref. Ref. Ref. Ref.
Intermediate 1207 0.16  [-0.12,0.44] -0.15  [-0.60,0.30] -3.75  [-8.50,1.01] 0.37**  [0.10,0.64]
Routine 540 0.41*  [0.02,0.80] 0.14  [-0.48,0.76] 282 [-3.729.37] 0.54*  [0.16,0.91]
Body mass index
(Ref: 18.5<25) 1229 Ref. Ref. Ref. Ref.
Overweight (25<35) 1518 0.31*  [0.03,0.59] 0.62  [0.17,1.07] 9.56™*  [4.83,14.29] 025 [-0.02,0.52]
Obese (30<35) 1033 0.94**  0.62,1.26] 0.81* [0.31,1.32] 25.06™*  [19.73,30.40] 0.80**  [0.50,1.11]
Morbidly obese (=35) 107 237 [1.64,3.10] 1.05 [-0.10,2.20] 48.64™*  [36.40,60.88] 1.80"*  [1.10,2.50]
Underweight (<18.5) 78 129" [0.44,2.14] 0.67 [-0.67,2.01] 29.23"*  [15.03,43.43] 116" [0.34,1.97]
Occupational activity
(Ref: Sitting) 2188 Ref. Ref. Ref. Ref.
Standing 627 1,73 [1.39,2.07] -1.58"*  [-2.11,-1.04] 131 [4.37,7.00] 1.90"*  [1.58,2.23]
Physical work 956 142 [1.10,1.73] -1.38"*  [-1.87,-0.88] 206 [-3.21,7.33] 247 [1.87,2.47]
Heavy manual 185 1.83*  [1.24,2.42] -1.09*  [-2.01,-0.16] 6.34  [-3.49,16.17] 3.3 [2.56,3.69]
Smoking habits
(Ref: Never) 2036 Ref. Ref. Ref. Ref.
Past smoker 1285 -0.29*  [-0.55,-0.04] 029 [-0.12,0.69] -4.30 [-8.61,0.01] 013 [-0.38,0.11]
Occasional smoker 181 -0.05 [-0.60,0.51] -0.88*  [-1.76,-0.01] -71.95  [-17.26,1.35] 0.09 [-0.62,0.44]
Daily smoker 463 021 [-0.17,0.59] 057 [-1.17,0.03] -5.05  [-11.42,1.32] 021 [0.16,0.57]

Multivariate linear regressions of upright event metrics. Presented as the unstandardised regression coefficient (B) and 95% confidence intervals [95% CI]. Mutually adjusted for all socioeconomic, lifestyle and health factors, and daily wear time. Additionally
adjusted for daily step count. N = sub-group sample size. * p < 0.05, * p < 0.01, *** p < 0.001
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5.4.2.1 Sensitivity analyses

When conducting sensitivity analyses by excluding participants with an
EU-SILC disability classification of 'severely hampered' (n = 103) and
subsequently excluding both 'some extent' and 'severely hampered' (n = 491), it
was observed that the overall interpretation of the results remained largely
consistent. Although certain values within a categorical variable changed, the
fundamental conclusions drawn from the analyses remained unaffected

(Appendix 8.11).

5.5 Discussion

This chapter aimed to describe accumulation patterns of upright and
stepping events in midlife adults according to sociodemographic and health
related factors. On average participants stood up 52.9+15.3 times a day and were
upright for an average 6.4+1.9 h-d'. The maijority of upright events comprised
more standing than stepping (35.616.1% stepping) and were characterised by
intermittent rather than continuous standing or stepping. Upright events were not
uniformly distributed across the day but tended to occur in bursts. The duration
of the events also varied with the typical event duration lasting just 8.0+3.7

minutes.

Overall, participants accumulated 9389+3586 steps-d-' with an average
198170 stepping events per day, an average of 44.1+16.2 steps per event, and a
step-weight average cadence 89.5+8.8 steps-min-'. Previous studies employing
thigh worn accelerometers in midlife populations have reported similar
frequencies of upright events (either as sit-to-stand transitions, sedentary breaks,

or sitting interruptions);%1.273.333 whereas devices located at the hip or waist have
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tended to report higher frequencies.334-336 Though, wrist worn devices have
recently demonstrated good agreement with the activPAL algorithm.337 Average
duration of upright events were similar to those that have previously been

reported.273.334

People with the same number and total time spent in upright postures can
vary considerably in the composition of standing and stepping. Likewise, people
recording the same total daily step count can accumulate the steps in many
different ways; differences which are likely to moderate the relationship between
total daily steps and health outcomes. In agreement with Blankenship et al.,?"3
upright events cannot all be treated the same for the purposes of studying the
relationship between interruptions in sitting postures and health outcomes.
However, in addition to Blankenship, this study also shows that it is insufficient to
only report the average duration of upright events, the duration of stepping time
within the event, and the average time between events. The temporal distribution
of the upright events, and how sustained or intermittent stepping is, can also vary
when people have the same average duration of upright events, mean duration
of stepping time, and average time between events. Furthermore, this study
showed that these associations persist even when adjusting for total daily step

count.

This chapter highlights that the time spent upright is made up of varying
combinations of stepping and standing and that the time spent stepping, within
an upright event, can be comprised of a single sustained stepping event or
multiple short stepping events interspersed with periods of standing. This also
means that the same average cadence of the steps within an upright event could

be based on a single stepping event done at the same step-rate or multiple
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stepping events each with its own cadence ranging from high to low. Current
cadence-based metrics typically report time or number of steps above set step-
rates;?%” and associations with health outcomes do not always remain after
adjusting for total volume.238.239 \Weighting cadence by steps per stepping event,
is a simple way of accounting for all steps when examining associations between

step-rate and health outcomes.

The burstiness of upright events in this study revealed that events are often
clustered together followed by longer periods of sedentary time. In addition,
sedentary event burstiness (the variation in the duration of the upright events)
suggests that some people have more uniform upright durations, while others
have more variation. It is highly unlikely that people will only have long sustained
upright events, so the most uniform patterns of duration are likely to reflect people

who are only upright for short periods — a more transient pattern of being upright.

The fragmentation of upright events has been shown to be associated with
health outcomes regardless of volume of activity.'°1% Therefore, these new
metrics which characterise the number and temporal distribution of events, in
addition to the variance of event durations, and the composition of standing and
stepping, provide new knowledge about how people accumulate daily values of

standing and stepping through different patterns.

This chapter further highlights that key demographic and health factors are
characterised by distinct postural and stepping phenotypes that may be
differentially associated with health outcomes. These differences in the pattern of
upright events and accumulation of steps would be expected to moderate any
observed relationships between total daily steps and health outcomes. 02104~

106238 For example, patterns of posture and stepping varied considerably by
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occupational physical activity. More active occupations were characterised by
more time being upright, accumulated in both higher upright and sedentary event
bursts compared to sedentary occupations. The upright time was composed of a
higher proportion of standing than sedentary occupations, but a greater number

of shorter and slower stepping events.

This type of work pattern may partly explain why studies comparing the
association of occupational activity and leisure time activity on health outcomes,
find that for the same volume of activity, occupational activity is less healthy.338 If
people in sedentary occupations get more of their activity from less frequent, but
longer, more intense and sustained periods of physical activity during their non-
work time, then they would be expected to have better health outcomes even if
they have the same volume of activity. This supports the suggestion of others that
occupational activity may be insufficiently intense33, but also highlights that

observed differences may be due to different patterns of accumulation.

Patterns of activity that are characterised by frequent transient/fragmented
durations have consistently been associated with a range of health outcomes
including fatigue, heart failure, physical function, cognitive impairment, and
mortality, independent of the total volume of physical activity.01.102.105,254,339 Thjg
chapter adds to these findings by describing a new dimension to the way in which
postural activity is accumulated — the burstiness of upright events.263.323.324 Whj|st
the burstiness metric has not been studied in aetiological studies of physical
activity and health, a phenotype of both bursty and fragmented upright postures
accompanied by intermittent, rather than sustained periods of stepping is likely to
be associated with a loss of capacity and less confidence about undertaking

sustained periods of activity.
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The findings of this chapter have important implications for research, as
much of the variation in the accumulation of activity events described here, is
masked by analytical approaches which aggregate posture, stepping and
standing over time or simply sum upright events.?’2273 The novel phenotypes
identified will help to advance research into physical activity and health, and
healthy ageing. The findings highlight why simple aggregate measures of posture
and stepping can mask important variations in behaviour and why future studies

cannot afford to ignore patterns of accumulation.

5.5.1 Strengths and limitations

This chapter is not without limitations. Accelerometers are not direct
measures of behaviour but rather a proxy. Many, including the activPAL, rely on
proprietary algorithms to translate the accelerometer signal into behavioural
information, which is then further processed to derive outcome metrics of
interest.340:341 |n addition, algorithm versions may change over time; it is important
to note we used the activPAL VANE algorithm, which may not be comparable with
the CREA algorithm, particularly with regards to transitions between sedentary

and upright postures.34?

Detection of valid wake and sleep times using accelerometers is
challenging, with disagreement between currently available algorithms.32° We
employed a simple and pragmatic method to identify and characterise waking
wear time but, like other wake/sleep time algorithms, it is challenging to assess
criterion validity against a true gold-standard, and as such there may have been

some misclassification.320.343
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The particular accelerometer used in this study may underestimate step
count at slower paced walking steps, potentially leading to an overestimate of
stepping cadence.?** The resolution used to categorise postures (activPAL
software recommended minimum 10 seconds) may also be shorter than they
actually take place, leading to misclassification of the time spent in different

postures.

Whilst not necessarily a limitation, the age of the sample (all participants
were 46 years old) has likely led to an underestimate of the true level of variation
in the measures reported in this study. A wider age range, that included older
people, might be expected to show greater variation. BCS70 is a rich dataset,
and access to the raw accelerometer files allowed us to look beyond the
aggregate measures of standing and stepping from previous studies using
BCS70 summary data,'8345 was a strength of this study. However, the cross-

sectional design of this study means we cannot determine causality.

As previously described, participants who declined to wear an
accelerometer were more likely to be male, smokers, report poorer health, and
have a higher BMI, limiting the generalisability of our findings.??° Finally, Chapter
2 noted the lack of adjustment for total volume of physical activity in most physical
function studies;* this chapter demonstrated that associations persisted after

adjustment for daily step count.

5.6 Summary

This chapter has revealed novel phenotypes of standing, sitting and
stepping that go beyond simply describing average amounts and durations of

these behaviours. Findings indicate that a given volume of physical activity is
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accumulated in different patterns by different population subgroups defined by
sociodemographic, and general health characteristics. These different patterns
may have important relations with functional and health outcomes. The findings
may provide potential explanations for why particular population sub-groups
appear to have different health outcomes even when the volume of physical
activity is similar. The chapter lays the groundwork for the following chapters to
investigate how different patterns of physical activity accumulation can add to our

understanding of the relationship between physical activity and physical function.
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Chapter 6
Physical Activity Accumulation and Physical
Function: Insights from The Maastricht
Study

6.1 Overview

Chapter 6 aims to address the fourth thesis objective by investigating the
associations between the pattern metrics, derived in Chapter 4, and physical
function outcomes from DMS. This chapter was published as a peer reviewed
paper: Cross-sectional associations between patterns and composition of upright
and stepping events with physical function: insights from The Maastricht Study .34
The published version is available digitally using the following DOI:

https://doi.org/10.1186/s11556-024-00343-w.

6.2 Introduction

As described in earlier chapters, physical activity characterised by short,
transient events, often labelled as fragmented activity, has been associated with
various health outcomes. These include physical function outcomes, even after
adjustment for total volume of physical activity.'%0-102.347 One limitation of much of
this evidence, and the wider physical activity field arises from its reliance on
epoch-based activity measures, where active events are defined as contiguous

minutes registering a specified acceleration or count threshold. '

An alternative approach which offers more detail and precision involves

‘event-based’ analysis that segments the data into a contiguous time-series of
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postures (sit/lying, standing, ambulating).'”® A time-series of different postures
allows upright and stepping events to be quantified by their composition, and
temporal distribution.?”3325 Very limited evidence exists on the association
between event-based physical activity metrics and health outcomes. Palmberg et
al.’™® examined the fragmentation of minute-by-minute posture classifications
(upright or sit\lying postures) and reported that more fragmented upright time was

positively associated with mental fatigue.

To our best knowledge, no studies have explored the associations between
physical function and composition of upright events and stepping events, or their
temporal distribution (burstiness). If patterns of accumulation of physical activity
are associated with physical function, independent of volume of physical activity,
then there is the potential to broaden the current physical activity guidelines that
primarily focus on increasing volume. This chapter aims to investigate the
association between event-based metrics that capture the composition and
temporal distribution of upright and stepping events with measures of physical
function, including grip strength, the six-minute walk test, chair-rise test, and SF-

36 physical functioning score.

6.3 Methods

For detailed descriptions of the study design, physical activity
measurement, and data processing methods, derived metrics, and physical

function measures refer to the general methods in Chapter 4.
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6.3.1 Covariates

Covariates were selected a priori based on the commonly selected
covariates in the literature that are known to influence physical activity, as well as
covariates shown to be associated with the upright and stepping metrics within
this study.3?® These included age (in years) and sex. Body mass index (BMI) was
calculated using the standard formulae (kg)/height (m)?, using values from
measurements taken during the examination. BMI was kept continuous in
analyses but reported in the descriptives table using standardised categories of;
healthy weight (15 to 24.9 kg/m?), overweight (25 to 29.9 kg/m?), obese (30 to

39.9 kg/m?), and severely obese (240 kg/m?).

Education level was divided into low ((un)completed primary education, or
lower vocational education), middle (intermediate vocational education or higher
secondary education), and high (higher vocational education or university
education). Smoking status was categorised into non-smoker, former smoker,
and current smoker. Presence of T2DM was defined according to the fasting
glucose state and directly after an oral glucose tolerance test and the use of
glucose lowering medication,?'* and was included in the main model as a binary
variable. Dutch Healthy Diet index (DHD) score, (which includes assessment of

alcohol consumption), was used as measure of diet quality.34®

6.3.2 Statistical analyses

Participant characteristics were described by sex and presented as mean
+ SD for continuous variables and number (%) for categorical variables.
Multivariable linear regressions were used to assess the variation in upright event

metrics across participant characteristics. Further multivariable linear regression
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models were used to assess the associations of each upright/stepping event
metric with each physical function outcome. Associations were expressed as a
one standard deviation increase in the upright/stepping event metric equating to
an absolute change in the physical function outcome. The associations in model
1 were adjusted for age, sex, and waking wear time. Model 2 was further adjusted
for education level, BMI, smoking status, and T2DM (to account for oversampling
in the study). Model 3 was additionally adjusted for daily step count (step volume),
to test if the associations persisted over and above a traditional metric of activity
volume. Given the established sex-related differences in physical activity®*® and
physical function,3%93%1 we tested and reported sex interaction effects.
Subsequently, for consistency, all analyses were stratified by sex. The interaction
with diabetes (yes/no) was also tested and reported. We assessed the
assumptions of linear regression, including linearity, homoscedasticity, and
multicollinearity, to ensure the validity of our models. All analyses were run on the
sample with complete data for all accelerometer metrics, covariates, and physical

function outcomes.

6.3.2.1 Sensitivity analysis

To assess the robustness of our results, analyses were repeated to assess
the impact of slight variations in the analytical sample due to the availability of
data for different covariates. These included rerunning analyses involving
participants with any combination of the physical function outcomes (rather than
just on those with data on all outcomes). In addition, to further assess the
potential impact of oversampling of diabetes, we repeated analyses and
substituted the binary classification of T2DM status (yes/no) for a 3-level

classification which included a class for pre-diabetes. Finally, we additionally
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included DHD as an additional predictor to evaluate the potential influence of self-
reported diet quality on the association between physical activity and physical

function.

6.4 Results

A total of 6085 participants, (50.5% female), with a mean (SD) age of 59.6
+ 8.7 years, had 6 (18.8%) or 7 (88.2%) valid days of accelerometer data (with
an average waking wear time of 16.4 £ 1.0 hours), covariates data, and all
physical function outcomes (Figure 6.1). Excluded participants were more likely
to be overweight, current smokers, have lower education, and poorer
performance in physical function tests, except for grip strength. Men had higher
grip strength, 6BMWT distance, and SF-36pf (all p-values <0.05), but there was no
difference between chair rise test time (p = 0.56). Participant characteristics are

presented in Table 6.1.

When mutually adjusted for all covariates, there were clear differences in
upright event metrics by age, sex, diabetes, education, BMI, smoking status
(Appendix 8.12). Total step volume was associated with better performance in all
three performance-based physical function outcomes (except for grip strength in
males), and a higher SF-36pf score for both males and females. The associations
in the fully adjusted model are summarised for each physical function outcome

below.

6.4.1 Grip strength

A higher number of stepping events per day was associated with lower

grip strength in both males and females. Duration of stepping event was
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positively associated with grip strength, and number of steps per stepping event

was positively associated in females (Table 6.2, Figure 6.2).

The Maastricht Study (full dataset 4)
n=9187

ActivPAL accelerometer file
n=38104

A

6+ valid days of accelerometer wear
n =7055

v

Invalid accelerometer wear
n=1049

A 4

Complete covariates data (model 3)
n=6942

v

No complete covariate data
n=113
Body mass index =1
Education = 105
Smoking = 61

A 4

Final sample (complete data)
n = 6085

\ 4

No complete physical function data
n =857
TCST = 340
6MWT =516
Handgrip strength = 202
SF-36 physical functioning = 29

Figure 6.1. Flow chart of The Maastricht Study participants through our study.

6.4.2 Timed chair stand test

Upright event metric associations with TCST performance were

differentially associated with sex. For males, duration of stepping event and

number of steps per stepping event were associated with poorer TCST

performance, as was step count within upright events. For females, number of

upright events per day and step-weighted average cadence was associated with

better TCST performance, as was a higher sedentary burstiness (Table 6.3,

Figure 6.3).
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Table 6.1. Summary of participant characteristics, upright and stepping event metrics, and

physical function outcomes.

.. " Male
Participant characteristics (n = 3013)
Age 60.7 + 8.6

Type 2 diabetes, n (%)?

BMI category, n (%)
Healthy (18.5 to 24.9 kg/m?)
Overweight (25 to 29.9 kg/m?)
Obese (30 to 39.9 kg/m?)
Morbidly Obese (240 kg/m?)

Education level, n (%)

812 (27%)

915 (30%)

1485 (49%)

588 (20%)
25 (1%)

High 1345 (45%)
Medium 805 (27%)
Low 863 (29%)
Smoking status, n (%)
Never 1091 (36%)
Former 1527 (51%)
Current 395 (13%)
Upright and stepping event metrics
Daily step count (steps/day) 457
3759
Daily number of upright events (n/day) 52.2+13.3
Daily number of stepping events (n/day) li%’;i
Mean duration of all step events 33.3+£9.7
(min/event)
Mean number of steps per all stepping 48.1 +18.6
events (n/event)
Step-weighted mean cadence (steps/min) 90.4+94
Duration of all upright events (min) 7.0+£26
Proportion of stepping to standing time (%) 35.7 £5.8
Number of steps per upright event 189.2 +
(n/event) 85.4
Number of stepping events per upright 79+28
event (n/event)
Upright event burstiness (Bn) 0.28 £ 0.09
Sedentary event burstiness (Bn) 0.32+£0.09
Physical function metrics
Grip strength (kg) 41.8+8.2
N 604.7 +
Six-min walk test (meters) 82.8
10x chair stand test (s) 24.7+5.5
SF-36 Physical functioning score 88.8+14.8

Female
(n=3072)
58.6 £ 8.7
367 (12%)

1470 (48%)

1096 (36%)

477 (16%)
29 (1%)

1109 (36%)
884 (29%)
1079 (35%)

1325 (43%)
1426 (46%)
321 (10%)

9747 +
3395
52.9+13.0
209.0 £
57.1
300+7.6

43.2+14.2

90.7+7.8
8.0+3.0
349+5.2
1929 +
79.0
9.2+31

0.33+0.08
0.32+0.07

26.0+5.6
579.4
73.3
248+ 5.7
86.5+16.2

Total
(n = 6085)
59.6 £+ 8.7
1179 (24%)

2,385

2,581

1,065
54

2,454
1,689
1,942
2,416
2,953
716
9604 + 3582

526 £13.1
198.0 + 59.1

31.6+8.8
45.6 + 16.7
90.6 + 8.6
75+29
35.3+5.6
191.1 +£82.2
8.5+3.0

0.31+0.09
0.32+0.08

33.8+10.6
591.9+79.2

247+56
87.7+15.6

Mean + SD or n (%)
2Row percentage
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Figure 6.2. Regression plots for each activity metric with grip strength, by sex. Adjusted for age, type 2 diabetes, education level, body mass
index, smoking status, waking wear time, and average daily step count
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Figure 6.3. Regression plots for each activity metric with the timed chair stand test, by sex. Adjusted for age, type 2 diabetes, education level,
body mass index, smoking status, waking wear time, and average daily step count.

D
275
25.0 ?é
225
200
175

20 30 40 50 60
Avg. duration of stepping events (min)

H

_—

27.5
25.0
225
20.0

17.5
20 30 40

Avg. proportion of stepping to standing (%
L

é——s

27.5
25.0
22,5

20.0

0.0 0.2 0.4
Avg. sedentary event burstiness (b)

154



A
@ T00 700
&
[T
gﬁa[ﬁ] 630
= 800 / &00
% /
& D50 550

5000 10000 15000 20000
Avg. daily step count (n)

E
E 700 700
&
@
5650 650
£ 600 _——ﬁ 600
2., =
Z 550 550

25 a0 75 100
Avg. steps per step event (n)

I
@ 700 700
8]
@
EGSD 650
opoD e —— 6500
= = —_—
=
o 250 550

5 10 15
Avg. stepping events per upright event (n)

_—--— BO0
e —————

25 50 75
Avg. daily upright events (n)

700
650
% B00
550
70 ao a0 100 110
Avg. step-weighted cadence
700
650
e —— 60O
550
100 200 300 400

Avg. steps per upright event

\
%

100 200 300
Avg. daily stepping events (n)

G

_—_—

3 10 19
Avg. upright event duration (min)

K

i—-—q
?—j

Q0.0 0.2 0.4

Avg. upright event burstiness (b)

SEX E Male E Female

700

630
00—

20 30 40 50 60
Avg. duration of stepping events (min)

H

700
650
B e —
550
20 30 40

Avg. proportion of stepping to standing (%
L

700
650
00—
550 %
0.0 0.2 0.4
Avg. sedentary event burstiness (b)

Figure 6.4. Regression plots for each activity metric with the six-minute walk test (6MWT), by sex. Adjusted for age, type 2 diabetes, education
level, body mass index, smoking status, waking wear time, and average daily step count.
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Figure 6.5. Regression plots for each activity metric with the Short From-36 physical functioning sub-scale (SF-36pf), by sex. Adjusted for age,
type 2 diabetes, education level, body mass index, smoking status, waking wear time, and average daily step count.
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6.4.3 Six-minute walk test

Sedentary burstiness was associated with better 6GMWT test performance
in both males and females. Number of steps per stepping event, and step-
weighted average cadence were also both associated with better 6MWT in both
males and females. Duration of stepping events was positively associated with
6MWT in females only. For both sexes, a higher number of stepping events was

associated with poorer performance the 6MWT (Table 6.4, Figure 6.4).

6.4.4 SF-36 physical function

A higher upright event burstiness score was associated with a poorer SF-
36pf score in males. A higher sedentary burstiness was associated with a better
SF-36pf score in females. For both males and females, step-weighted average
cadence was positively associated with SF-36pf, but to a greater degree in
females. Females also had a positive association with duration and number of
steps per stepping event and SF-36pf, as was within upright event stepping

proportion and step count (Table 6.5, Figure 6.5).

6.4.5 Sensitivity analyses

When running analyses on participants without all physical function
outcomes, sample sizes increased for all outcomes; handgrip strength (n = 6740),
TCST (n = 6602), 6MWT (n = 6426), and SF-36pf (n = 6913). With the larger
sample sizes, nine of the 88 associations across all upright metrics and physical
function outcomes in males and females changed significance. The four of these

which became non-significant were sedentary burstiness with 6MWT for males,
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number of step events with SF-36pf for males, and duration of step events and

within upright event step count with SF-36pf for females (Appendix 8.13).

When substituting the binary diabetes classification for the WHO
classification, which includes pre-diabetes, none of the associations changed
significance. These associations are highlighted in Appendix 8.13. Inclusion of
DHD score as an additional predictor yielded negligible changes to the observed
study findings. Further, the reduction in sample size (n = 5668) due to availability
of DHD score precludes definitive conclusions about whether these small
changes can be attributed to confounding effects of diet quality per se, or to

differences in the analytical sample.

6.5 Discussion

This chapter aimed to investigate the associations between features of
upright and stepping events, including the composition and the temporal
distribution, with objective measures of physical function in a large population-
based cohort. We observed that greater sedentary burstiness, duration of
stepping events, volume of steps per stepping event, and step-weighted cadence
were associated with better physical function in one or more of the 6MWT, TCST,

SF-36f, and grip strength outcomes, independent of total volume of steps.

Number of stepping events was negatively associated with physical
function. Upright event composition metrics (within event; duration, proportion of
stepping, step count, and number of stepping events) were not associated with
physical function outcomes after adjustment for volume. Secondary to our initial
focus, it was interesting that there were clear differences in associations between

males and females, though the explanation for this is not immediately obvious.

158



Table 6.2. Associations of upright and stepping event metrics with handgrip strength.

Model 1 Model 2 Model 3
Males Females Males Females Males Females
B [95% CI] B [95% CI] B [95% CI] B [95% Cl] B [95% CI] B [95% ClI]
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Daily step count b 0.15[-0.08,0.38] 0.21[-0.04,0.46] 0.12[-0.11,0.36] 0.27 [0.02,0.52] - -
(per + 3582 steps) (0.19) (0.094) (0.294) (0.037) - -
Upright events -0.111[-0.35,0.13] -0.15[-0.39,0.09] -0.02[-0.25,0.22] 0.011[-0.23,0.25] -0.04 [-0.28,0.20] 0.00[-0.25,0.24]
(per+ 13.1n) (0.36) (0.222) (0.89) (0.934) (0.729) (0.971)
Stepping events © -0.17 [-0.41,0.08] -0.19[-0.43,0.06] -0.17 [-0.42,0.07] -0.121-0.36,0.13] -0.45[-0.73,-0.17] -0.38 [-0.66,-0.10]
(per + 59.1n) (0.18) (0.141) (0.156) (0.346) (0.001) (0.007)
Duration of stepping events 0.31[0.09,0.53] 0.60 [0.33,0.88] 0.29 [0.07,0.50] 0.60 [0.32,0.88] 0.35[0.09,0.61] 0.67 [0.35,0.99]
(per + 8.8 sec) (0.005) (<0.001) (0.01) (<0.001) (0.007) (<0.001)
Steps per stepping event 0.24 [0.02,0.45] 0.51[0.23,0.79] 0.21[-0.01,0.42] 0.51[0.22,0.79] 0.22[-0.03,0.48] 0.52 [0.20,0.84]
(per + 16.7 steps) (0.029) (<0.001) (0.057) (<0.001) (0.081) (0.001)
Step-weighted cadence 0.12[-0.10,0.34] 0.11[-0.15,0.37] 0.05[-0.17,0.27] 0.11[-0.15,0.38] -0.04 [-0.28,0.20] 0.02[-0.27,0.30]
(per + 8.6 steps/min) (0.267) (0.404) (0.655) (0.405) (0.722) (0.913)
Duration of upright events -0.01[-0.27,0.24] -0.04 [-0.26,0.19] -0.07 [-0.33,0.18] -0.10 [-0.32,0.13] -0.16 [-0.43,0.10] -0.16 [-0.38,0.07]
(per + 2.9 min) (0.911) (0.746) (0.577) (0.398) (0.233) (0.176)
Stepping proportion of upright events 0.30 [0.07,0.53] 0.20 [-0.06,0.45] 0.23 [0.00,0.46] 0.13[-0.12,0.38] 0.18[-0.05,0.42] 0.09[-0.17,0.34]
(per + 5.6 %) (0.011) (0.126) (0.047) (0.308) (0.126) (0.496)
Step count of upright events 0.20[-0.03,0.43] 0.20 [-0.04,0.45] 0.13[-0.10,0.35] 0.151-0.09,0.40] -0.03[-0.36,0.29] 0.00[-0.33,0.33]
(per + 82.3 steps) (0.086) (0.106) (0.281) (0.22) (0.834) (0.997)
Stepping events within upright events -0.03[-0.28,0.23] -0.111[-0.34,0.11] -0.06 [-0.31,0.20] -0.14 [-0.37,0.08] -0.151[-0.42,0.12] -0.22[-0.45,0.01]
(per+3.0n) (0.845) (0.322) (0.671) (0.217) (0.266) (0.065)
Upright event burstiness -0.24 [-0.48,-0.00] -0.02 [-0.28,0.24] -0.20 [-0.44,0.04] 0.05[-0.21,0.31] -0.22 [-0.46,0.02] 0.04 [-0.22,0.30]
(per + 0.09) (0.05) (0.882) (0.1) (0.697) (0.075) (0.75)
Sedentary event burstiness 0.07 [-0.15,0.29] 0.24 [-0.02,0.50] 0.08 [-0.14,0.29] 0.29 [0.03,0.55] 0.03[-0.20,0.25] 0.26 [-0.01,0.52]
(per + 0.08) (0.545) (0.074) (0.486) (0.029) (0.816) (0.058)

Results are presented as regression coefficient (B) with 95% confidence interval [95% CI] and p-value, where the predictor is standardised and the outcome is unstandardised (a one
standard deviation increase in the predictor equates to an absolute change in the physical function outcome. Associations were adjusted for the following covariates; Model 1: age, sex, and
waking wear time. Model 2: model 1 + type 2 diabetes, education level, body mass index, and smoking status. Model 3: model 2 + average daily step count. @ denotes significant sex
interaction (p < 0.05) for Model 1. ® denotes significant type 2 diabetes interaction (p < 0.05) for Model 2. Bold indicates statistical significance (p < 0.05)
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Table 6.3. Associations of upright and stepping event metrics with timed chair stand test.

Model 1 Model 2 Model 3
Males Females Males Females Males Females

B [95% CI] B [95% CI] B [95% CI] B [95% CI] B [95% Cl] B [95% Cl]

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Daily step count -0.78 [-0.97,-0.60] -1.03 [1.23,-0.82] -0.51 [-0.70,-0.33] -0.68 [-0.89,-0.48] - -
(per + 3582 steps) (<0.001) (<0.001) (<0.001) (<0.001) - -
Upright events -0.33 [-0.52,-0.13] -0.43 [-0.62,-0.23] -0.20 [-0.40,-0.01] -0.26 [-0.46,-0.07] -0.13[-0.32,0.06] -0.22 [-0.42,-0.02]
(per+ 13.1n) (0.001) (<0.001) (0.038) (0.009) (0.191) (0.029)
Stepping events -0.55 [-0.75,-0.35] -0.52 [-0.73,-0.32] -0.46 [-0.65,-0.26] -0.46 [-0.66,-0.26] -0.16 [-0.38,0.07] -0.17 [-0.39,0.05]
(per + 59.1n) (<0.001) (<0.001) (<0.001) (<0.001) (0.174) (0.138)
Duration of stepping events 2 -0.38 [-0.56,-0.21] -0.83 [-1.06,-0.60] -0.111[-0.28,0.07] -0.37 [-0.60,-0.14] 0.33 [0.13,0.54] 0.13[-0.13,0.38]
(per + 8.8 sec) (<0.001) (<0.001) (0.244) (0.001) (0.001) (0.337)
Steps per stepping event 2 -0.42 [-0.60,-0.25] -0.89 [-1.12,-0.67] -0.15[-0.33,0.02] -0.43 [-0.66,-0.21] 0.25 [0.05,0.45] 0.03 [-0.22,0.29]
(per + 16.7 steps) (<0.001) (<0.001) (0.089) (<0.001) (0.016) (0.791)
Step-weighted cadence 2 -0.66 [-0.84,-0.48] -1.02 [1.24,-0.81] -0.38 [-0.56,-0.20] -0.62 [-0.83,-0.40] -0.16 [-0.35,0.04] -0.39 [-0.62,-0.16]
(per + 8.6 steps/min) (<0.001) (<0.001) (<0.001) (<0.001) (0.113) (0.001)
Duration of upright events -0.22 [-0.43,-0.00] -0.03 [-0.22,0.15] -0.2[-0.41,0.01] -0.09 [-0.27,0.09] 0.02[-0.19,0.24] 0.06 [-0.12,0.24]
(per + 2.9 min) (0.046) (0.727) (0.065) (0.314) (0.826) (0.526)
Stepping proportion of upright events -0.38 [-0.57,-0.20] -0.24 [-0.45,-0.03] -0.33 [-0.52,-0.15] -0.16 [-0.36,0.04] -0.151[-0.34,0.04] 0.00[-0.21,0.21]
(per + 5.6 %) (<0.001) (0.025) (<0.001) (0.116) (0.123) (0.999)
Step count of upright events -0.51 [-0.70,-0.33] -0.58 [-0.78,-0.38] -0.32 [-0.51,-0.14] -0.38 [-0.58,-0.18] 0.31[0.05,0.57] 0.23[-0.04,0.49]
(per + 82.3 steps) (<0.001) (<0.001) (0.001) (<0.001) (0.018) (0.090)
Stepping events within upright events -0.20[-0.41,0.02] -0.01[-0.20,0.18] -0.23 [-0.44,-0.02] -0.121-0.30,0.07] -0.011[-0.22,0.21] 0.06 [-0.12,0.25]
(per+3.0n) (0.072) (0.906) (0.030) (0.213) (0.946) (0.506)
Upright event burstiness -0.01[-0.21,0.19] -0.20 [-0.42,0.01] 0.12[-0.07,0.31] -0.07 [-0.28,0.14] 0.17 [-0.02,0.36] -0.05 [-0.25,0.16]
(per + 0.09) (0.902) (0.062) (0.22) (0.489) (0.084) (0.666)
Sedentary event burstiness -0.31[-0.49,-0.13] -0.41[-0.62,-0.19] -0.24 [-0.41,-0.06] -0.35 [-0.56,-0.14] -0.06 [-0.24,0.12] -0.23 [-0.44,-0.02]
(per + 0.08) (0.001) (<0.001) (0.009) (0.001) (0.510) (0.035)

Results are presented as regression coefficient (B) with 95% confidence interval [95% CI] and p-value, where the predictor is standardised and the outcome is unstandardised (a one
standard deviation increase in the predictor equates to an absolute change in the physical function outcome. Associations were adjusted for the following covariates; Model 1: age, sex, and
waking wear time. Model 2: model 1 + type 2 diabetes, education level, body mass index, and smoking status. Model 3: model 2 + average daily step count. @ denotes significant sex
interaction (p < 0.05) for Model 1. ® denotes significant type 2 diabetes interaction (p < 0.05) for Model 2. Bold indicates statistical significance (p < 0.05)
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Table 6.4. Associations of upright and stepping event metrics with six-minute walk test.

Model 1 Model 2 Model 3
Males Females Males Females Males Females

B [95% Cl] B [95% CI] B [95% CI] B [95% CI] B [95% Cl] B [95% Cl]

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Daily step count 19.98 [17.57,22.39] 22.33 [19.69,24.98] 11.25 [9.04,13.47] 12.02 [9.60,14.44] - -
(per + 3582 steps) (<0.001) (<0.001) (<0.001) (<0.001) - -
Upright events 6.06 [3.46,8.67] 6.66 [4.00,9.31] 1.65 [-0.64,3.95] 1.33[-1.02,3.69] 0.13[-2.14,2.41] 0.451[-1.88,2.78]
(per+ 13.1n) (<0.001) (<0.001) (0.158) (0.268) (0.909) (0.704)
Stepping events b 8.54 [5.89,11.20] 7.26 [4.56,9.97] 4.88 [2.55,7.22] 4.65 [2.27,7.02] -3.69 [-6.34,-1.04] -3.49 [-6.14,-0.83]
(per + 59.1n) (<0.001) (<0.001) (<0.001) (<0.001) (0.006) (0.01)
Duration of stepping events 2 15.77 [13.45,18.10] 22.23[19.27,25.18] 7.98 [5.88,10.09] 10.1 [7.40,12.79] 2.10[-0.34,4.54] 3.4410.40,6.47]
(per + 8.8 sec) (<0.001) (<0.001) (<0.001) (<0.001) (0.092) (0.027)
Steps per stepping event 2 16.46 [14.17,18.74] 23.20 [20.24,26.15] 8.85[6.78,10.92] 11.00 [8.30,13.70] 3.61[1.21,6.02] 4.89 [1.83,7.94]
(per + 16.7 steps) (<0.001) (<0.001) (<0.001) (<0.001) (0.003) (0.002)
Step-weighted cadence 2 19.90 [17.58,22.22] 23.61 [20.83,26.38] 11.83 [9.72,13.94] 12.54[10.00,15.07] 8.32[6.03,10.61] 8.92[6.23,11.61]
(per + 8.6 steps/min) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
Duration of upright events 2 5.08 [2.23,7.94] 1.21[-1.24,3.67] 4.18 [1.69,6.66] 2.59[0.45,4.73] -0.10 [-2.64,2.44] -0.34 [-2.51,1.82]
(per + 2.9 min) (<0.001) (0.333) (0.001) (0.018) (0.940) (0.756)
Stepping proportion of upright events 6.25[3.72,8.77] 5.1[2.33,7.87] 4.77 [2.57,6.97] 3.71[1.30,6.12] 1.06 [-1.19,3.31] 0.431[-2.01,2.87]
(per + 5.6 %) (<0.001) (<0.001) (<0.001) (0.003) (0.357) (0.730)
Step count of upright events 14.32 [11.85,16.79] 14.14 [11.49,16.78] 8.57 [6.37,10.76] 8.52[6.18,10.86] -1.02 [-4.09,2.06] -0.611[-3.72,2.50]
(per + 82.3 steps) (<0.001) (<0.001) (<0.001) (<0.001) (0.517) (0.699)
Stepping events within upright events 3.15[0.30,6.00] 0.20 [-2.29,2.70] 3.52[1.03,6.01] 2.60 [0.42,4.78] -0.94 [-3.48,1.60] -0.98 [-3.20,1.24]
(per+3.0n) (0.030) (0.873) (0.006) (0.019) (0.470) (0.387)
Upright event burstiness 3.30[0.66,5.94] 5.82 [2.95,8.68] -1.11[-3.43,1.20] 1.60 [-0.90,4.11] -2.07 [-4.35,0.21] 1.05[-1.42,3.52]
(per + 0.09) (0.014) (<0.001) (0.346) (0.209) (0.075) (0.404)
Sedentary event burstiness 8.16 [5.77,10.54] 9.54 [6.65,12.44] 5.54 [3.45,7.64] 7.57 [5.05,10.10] 2.19[0.04,4.33] 5.24[2.72,1.77]
(per + 0.08) (<0.001) (<0.001) (<0.001) (<0.001) (0.045) (<0.001)

Results are presented as regression coefficient (B) with 95% confidence interval [95% CI] and p-value, where the predictor is standardised and the outcome is unstandardised (a one
standard deviation increase in the predictor equates to an absolute change in the physical function outcome. Associations were adjusted for the following covariates; Model 1: age, sex, and
waking wear time. Model 2: model 1 + type 2 diabetes, education level, body mass index, and smoking status. Model 3: model 2 + average daily step count. @ denotes significant sex
interaction (p < 0.05) for Model 1. ® denotes significant type 2 diabetes interaction (p < 0.05) for Model 2. Bold indicates statistical significance (p < 0.05)
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Table 6.5. Associations of upright and stepping event metrics with SF-36 physical functioning subscale.

Model 1 Model 2 Model 3
Males Females Males Females Males Females

B [95% CI] B [95% CI] B [95% CI] B [95% CI] B [95% Cl] B [95% Cl]

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Daily step count 2b 3.14 [2.62,3.67] 4.44 [3.87,5.01] 1.88 [1.37,2.40] 2.87 [2.31,3.43] - -
(per + 3582 steps) (<0.001) (<0.001) (<0.001) (<0.001) - -
Upright events 0.55[-0.01,1.11] 0.87 [0.30,1.44] -0.16 [-0.69,0.37] -0.04 [-0.58,0.50] -0.47 [-1.00,0.06] -0.22[-0.76,0.32]
(per+ 13.1n) (0.056) (0.003) (0.556) (0.888) (0.080) (0.423)
Stepping events 1.45[0.88,2.02] 1.94 [1.36,2.52] 0.94 [0.40,1.48] 1.52 [0.98,2.07] -0.63 [-1.24,-0.01] 0.04 [-0.57,0.65]
(per + 59.1n) (<0.001) (<0.001) (0.001) (<0.001) (0.046) (0.899)
Duration of stepping events 2 2.52[2.01,3.02] 4.08 [3.44,4.72) 1.36 [0.87,1.84] 2.23[1.61,2.86] 0.14 [-0.43,0.70] 0.85[0.15,1.56]
(per + 8.8 sec) (<0.001) (<0.001) (<0.001) (<0.001) (0.628) (0.017)
Steps per stepping event ab 2.51[2.01,3.00] 4.29 [3.65,4.93] 1.37 [0.89,1.85] 2.42 [1.80,3.05] 0.23[-0.33,0.78] 1.09 [0.38,1.79]
(per + 16.7 steps) (<0.001) (<0.001) (<0.001) (<0.001) (0.424) (0.003)
Step-weighted cadence 2 2.86 [2.35,3.36] 4.75[4.14,5.35] 1.66 [1.17,2.15] 3.05[2.46,3.64] 0.90 [0.37,1.43] 2.26 [1.64,2.88]
(per + 8.6 steps/min) (<0.001) (<0.001) (<0.001) (<0.001) (0.001) (<0.001)
Duration of upright events 1.08 [0.46,1.69] 0.59 [0.06,1.11] 0.97 [0.40,1.55] 0.84[0.35,1.34] 0.14 [-0.44,0.73] 0.27 [-0.23,0.77]
(per + 2.9 min) (0.001) (0.029) (0.001) (0.001) (0.630) (0.285)
Stepping proportion of upright events 2 0.77 [0.23,1.31] 1.67 [1.07,2.26] 0.58 [0.07,1.08] 1.46 [0.91,2.02] -0.16 [-0.68,0.36] 0.81[0.25,1.38]
(per + 5.6 %) (0.005) (<0.001) (0.026) (<0.001) (0.547) (0.005)
Step count of upright events 2b 2.33[1.80,2.86] 3.14[2.57,3.71] 1.51 [1.00,2.01] 2.30[1.76,2.84] -0.15[-0.86,0.57] 0.73[0.01,1.45]
(per + 82.3 steps) (<0.001) (<0.001) (<0.001) (<0.001) (0.687) (0.047)
Stepping events within upright events 0.68 [0.06,1.29] 0.46 [-0.07,0.99] 0.78 [0.20,1.35] 0.87 [0.37,1.37] -0.09 [-0.67,0.50] 0.18[-0.34,0.69]
(per+3.0n) (0.030) (0.091) (0.008) (0.001) (0.773) (0.498)
Upright event burstiness -0.14[-0.71,0.42] 0.42[-0.19,1.04] -0.82 [-1.36,-0.29] -0.25[-0.83,0.33] -1.02 [-1.55,-0.49] -0.36 [-0.93,0.21]
(per + 0.09) (0.624) (0.177) (0.002) (0.399) (<0.001) (0.215)
Sedentary event burstiness 2 1.16 [0.65,1.67] 2.01[1.39,2.64] 0.77 [0.29,1.26] 1.72 [1.14,2.31] 0.08 [-0.41,0.58] 1.24 [0.66,1.83]
(per + 0.08) (<0.001) (<0.001) (0.002) (<0.001) (0.745) (<0.001)

Results are presented as regression coefficient (B) with 95% confidence interval [95% CI] and (p-value), where the predictor is standardised and the outcome is unstandardised (a one
standard deviation increase in the predictor equates to an absolute change in the physical function outcome. Associations were adjusted for the following covariates; Model 1: age, sex, and
waking wear time. Model 2: model 1 + type 2 diabetes, education level, body mass index, and smoking status. Model 3: model 2 + average daily step count. @ denotes significant sex
interaction (p < 0.05) for Model 1. ® denotes significant type 2 diabetes interaction (p < 0.05) for Model 2. Bold indicates statistical significance (p < 0.05)
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Collectively, these findings suggest that some specific dimensions of the
pattern in which physical activity is accumulated, are related to physical function,

over and above the volume of activity.

These findings contribute to the growing body of research examining the
relationship between physical activity patterns and physical function.®® Our
results align with previous studies that have established associations between a
higher frequency of short or transient stepping event durations and poorer
physical function performance.’%21% The mechanism behind these associations
is assumed to relate to the capacity of an individual. Higher capacity would likely
show a less fragmented physical activity profile, due to the capacity to perform

longer bouts of sustained stepping.

Our additional examination of the temporal distribution and the composition
of upright events provides further insight into how different patterns of physical
activity accumulation are related to physical function. Higher sedentary
burstiness was associated with better 6MWT performance in both men and
women, and better TCST and SF-36pf results particularly in females. Again, we
assume these associations relate to capacity, with higher sedentary burstiness
meaning greater variation in upright event duration. Conversely, lower sedentary
burstiness would be characterised by more uniform upright event durations,
which would be shorter due to the finite period of a day, when adjusted for volume.
Observed sex differences in many of the associations was interesting, and not an
immediately understood finding. However, significant sex differences in the
upright and stepping metrics were observed here, and in previous research in a

midlife population.32°
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A potential explanation for positive associations between sedentary
burstiness and physical function is that those who undertake a mix of both short
and long upright event durations (higher sedentary burstiness) have a higher
endurance capacity, compared to females who record mainly short duration
upright events. In addition, as the direction of causality is not known due to the
cross-sectional design, the associations could also be due to declining physical
function decreasing sedentary burstiness. Despite associations with
demographic and lifestyle factors,3?° the upright event burstiness was not
associated with the three performance-based physical function outcomes, and

only the SF-36pf in males.

Higher step volume is associated with a range of health outcomes,3%?
though evidence on the independent effect of step-rate is equivocal.?*® Step-rate
has been shown to be associated with a range of health outcomes, 353354 including
the 400-m walk test in older adults;3%° though, conversely, step-rate has not
always been shown to be associated with mortality when adjusted for
volume.™23% Qur results also show that higher step-weighted cadence is
associated with better 6MWT performance and SF36-pf score in both males and
females, and TCST performance in females, even after adjustment for volume

(total daily step count).

This could be attributed to our approach to cadence quantification. Unlike
previous studies, which primarily relied on step counts above predefined
thresholds (e.g., 100 steps/min) and peak cadence metrics (e.g., the 30 highest
cadence values per day),'80:239.353 or simply the average (unweighted) step-rate
over the measurement period,3%* our method involves calculating a step-weighted

average of all steps. This approach considers the cadence of every step,
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potentially mitigating the bias associated with fixed thresholds, such as the
possibility of someone consistently maintaining a cadence of 90 steps/min
without registering any higher-paced stepping, as opposed to individuals who

briefly exceed 100 steps/min but predominantly perform lower-paced steps.

6.5.1 Strengths and limitations

This chapter has several strengths, including a large and diverse sample
from a population-based cohort and a comprehensive range of physical function
outcomes. Previous work has demonstrated the causal relationship between
physical activity and physical function,%:3% however, the cross-sectional nature
of this chapter prevents us from establishing causality. The possibility of reverse
causation is present due to the study design. A degree of bidirectional causation
is assumed due to the outcome of choice, poor physical function would be
expected to impact physical activity behaviour. Nevertheless, the presence of
these associations, irrespective of direction, remains an important finding.
Understanding that patterns of physical activity differ for those with poor physical

function offers valuable insights for further exploration in this area.

Some limitations of the device-based accelerometer data processing are
acknowledged. We have discussed these in previous chapters and will further
discuss these limitations in detail in Chapter 8. We used the previously employed,
simple, pragmatic method to identify waking wear time, which may have impacted
the accuracy of temporal distribution of sedentary and upright burstiness metrics.
In addition, accelerometers are not direct measures of physical activity behaviour

but rather a proxy, which may result in a level of misclassification.
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Our study revealed magnitudes of effects that do not reach the clinically
meaningful differences established for conventional measures of physical
function.3%7-3%° However, given the novelty of these physical activity metrics
(particularly burstiness) and the absence of well-defined standards, we made the
deliberate choice to standardise them for analysis. This approach equates a one-
standard-deviation change in the predictor to an absolute change in the physical
function outcome. Our findings suggest that upright and stepping event measures
of physical activity are associated with health outcomes that are not wholly
explained by the volume of physical activity undertaken. Accumulation of patterns
is different across population sub-groups,3?® and having demonstrated these are
associated with health outcomes, independent of volume, future work should not

ignore how steps are accumulated.

6.6 Summary

This chapter addressed the fourth thesis objective by determining patterns
of upright and stepping event accumulation, independent of stepping volume, are
an important consideration in research into physical function. Future research into
physical activity and health should examine both physical activity volume and
patterns of accumulation to add to our understanding of the benefits of physical
activity. Longitudinal studies with repeated measures are now needed to examine
how physical activity patterns change with age, and their prospective association
with physical function and other health outcomes. In addition, future research
should aim to understand these associations at earlier life stages, beyond the

focus in later life only.
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Chapter 7
Physical Activity Accumulation and Physical
Function: Insights from The 1970 British
Cohort Study

7.1 Overview

Chapter 7 aims to address the fifth thesis objective by investigating the
associations between the physical activity pattern metrics and physical function
outcomes in an early midlife population. This chapter builds on the previous by
applying the same analysis to an early midlife population with the addition of
balance as an unexplored function outcome. This chapter was published as a
peer reviewed paper: Cross-sectional associations between temporal patterns
and composition of upright and stepping events with physical function in mid-life:
Insights from the 1970 British Cohort Study. The published version is available

digitally using the following DOI:38° https://doi.org/10.1111/sms.14645.

7.2 Introduction

In previous chapters we have described the significant variation in the
frequency, duration, composition, and distribution of upright events and stepping
events across sociodemographic and health-related characteristics, with

potential phenotypes emerging.32®

We further examined associations between these upright and stepping
metrics and performance-based physical function.34¢ After adjusting for total
stepping volume, we observed associations with higher sedentary burstiness (the

clustering of sedentary events), higher duration of stepping events, and higher
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step-weighted cadence (mean cadence of all stepping events, weighted by
number of steps per events) with better physical function performance. A higher
number of stepping events, when adjusted for stepping volume, i.e. more

fragmented stepping, was associated with poorer physical function performance.

The mechanistic explanation behind these associations was thought to be
related to endurance capacity. Higher endurance capacity would be expected to
be associated with less fragmented physical activity, due to the capacity to
perform longer bouts of sustained stepping without experiencing fatigue. Given
the cross-sectional nature of the study, causation was not implied; however, these
findings emphasise the importance of further investigating the influence of how

physical activity is accumulated on health outcomes.

This previous evidence was derived from The Maastricht Study, a large
cohort study (n = 6085).2'* Though the age range was 40 to 79 years, (mean age
was 59.6 £ 8.7 years), no analysis was performed on age differences in these
associations. However, as function is strongly associated with age,*¢' and
endurance capacity reduces with age,3? it is possible that the strength of
associations between patterns of physical activity accumulation and function

would differ between younger and older adults.

Midlife presents a potential window of opportunity for intervention for
preserving physical function, in this study we aimed to explore whether
associations observed in The Maastricht Study remained in a cohort of adults all
at the same age (46 years) in early midlife. Although, declines in function do occur
from midlife, it is unclear whether any changes are associated with changes in
physical activity volume or patterns of accumulation. In addition, we introduce the

upright-to-sedentary transition probability (USTP), a variation of ASTP, and we
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would like to know if previous associations extend to measures of balance, a

previously unexplored physical function outcome.

If specific patterns of physical activity accumulation are associated with
physical function in early midlife, independently of volume, then it raises the
possibility that changes in pattern of accumulation could help people to preserve
physical function without the need to increase volume. However, longitudinal and
intervention studies would be required before such conclusions could be made.
Finally, replication of research results is important and unexplained sex

differences seen in the previous study need further examination.

Therefore, the aim of this study was to examine whether a range of measures of
patterns of physical activity accumulation were associated with physical function
in a cohort of adults all in midlife. Based on previous findings, we hypothesise

that:

a) More fragmented upright and stepping activity will be associated with
poorer function.

b) Higher burstiness of upright events will be associated with poorer function.

c) Longer durations of stepping events and higher step-weighted cadence

will be associated with better function.

7.3 Methods

For detailed descriptions of the study design, physical activity
measurement, and data processing methods, derived metrics, and physical
function measures refer to the general methods in Chapter 4. For a detailed

description of covariates, see the methods section of Chapter 5.
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7.3.1 Statistical analyses

Linear and multinomial logistic regression models were used to assess the
associations of all upright and stepping event metrics with grip strength, balance,
and the SF-36pf. Given the established sex-related differences in physical activity
and functional capacity,3?® each association was formally tested for a sex
interaction. For clarity, and due to the number of regressions, all analyses were
stratified by sex whether interactions were significant or not. Sex interaction p-

values were reported.

Model 1 was adjusted for waking wear time. Model 2 was additionally
adjusted for other covariates listed above. Model 3 was further adjusted for total
stepping volume (daily step count), to test if the associations persisted for a given
value of a traditional metric of activity volume. We assessed the assumptions of
linear and multinomial logistic regressions, including linearity, homoscedasticity,
and multicollinearity, to ensure the validity of our models. Chi squared analyses
were used to determine differences between the included sample, versus all
eligible participants at the age 46 follow-up of BCS70 measures. All analyses
were run on the final sample with complete data for all accelerometer metrics,

covariates, and physical function outcomes.

7.3.1.1 Sensitivity analyses

To assess the robustness of our results, analyses were repeated to assess
the impact of the waking wear time method. Our original method may be subject
to misclassification of arise/bed-time. For example, an upright event at 04:00h
(the individual’s first upright event after 03:00h) might be to visit the toilet and
return to bed for several hours, thus misclassifying arise time and registering an

extended sedentary event, therefore skewing daily pattern metrics. We re-
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processed the data using a per-day window with fixed times from 06:00h to
22:00h, though this method is similarly prone to bias if an individual arose before

or after 06:00hn.

7.4 Results

A total of 4378 participants (53.4% female) had 6+ valid days of
accelerometer data, covariates data, and all physical function outcomes. Figure
7.1 shows the flow of participants through the study. Compared to the invited
sample at the age 46 measurement phase (n = 8581), the included sample in this
study were more likely to; be female, have a healthier BMI, have a higher level of

education, have higher self-reported health, and be less likely to smoke.

The British Cohort Study (age 46 sweep)

n=8581
1 _ Did not consent
¥ " n =2089

Consented to wearing activPAL device

n=6492
T - Did not return device, or device lost
v g n=923

Returned activPAL device

n=5569
T - Incomplete actviPAL data
v i n =1042

6+ days of valid activPAL data

n=4572
1 _ Incomplete covariate and/or function data
" n=149

Final sample (complete data)
n=4378

Figure 7.1. Flow chart of included participants through the study that had 6+ valid days
of activPAL data, and all covariate and physical function outcome data.

Participant characteristics are presented in Table 7.1. Males tended to have
a higher BMI and were more likely to be smokers. They also had a higher grip

strength, higher SF-36pf scores, and better balance performance. The variation
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in upright and stepping event metrics across the included covariates is described
in Chapter 5.325 Briefly, females had more upright events than males, spent more
time upright, and patterns of upright events were more likely to be clustered
together in bursts. Higher BMI was associated with fewer upright events and a
lower daily step count, but the temporal distribution of upright events was less
bursty. Also, on average, each upright event had a higher step count. People in
active occupations were upright for longer, and displayed burstier patterns of
upright events, with a greater variance in durations. Compared to people in
sedentary occupations stepping events were shorter and slower paced.

Assumptions of statistical tests stated in the methods were met for each analysis.

7.4.1 Grip strength

A higher total step volume was associated was only associated with higher
grip strength in females. A higher number of stepping events per day was
associated with higher grip strength in both males and females, as was a higher
upright event burstiness. A higher USTP was negatively associated with grip

strength in both males and females.

A higher number of upright events was associated with higher grip strength
in males but not females. Duration of stepping events, number of steps per
stepping event, and step-weighted cadence were all negatively associated with
grip strength in males. In males, within upright event step count was negatively
associated, and number of stepping events was positively associated with grip

strength (Table 7.2, Figure 7.2).
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Table 7.1. Summary of participant characteristics, upright event metrics, and physical
function outcomes (n = 4378, The 1970 British Cohort Study).

Participant characteristics Male Female Total
Sex 2040 (46.6%) 2338 (53.4%) 4378
BMI category, n (%)

Healthy (18.5 to 24.9 kg/m2) 479 (23.5%) 900 (38.5%) 1379
Overweight (25 to 29.9 kg/m?) 919 (45.0%) 753 (32.2%) 1672
Obese (30 to 39.9 kg/m?) 572 (28.0%) 548 (23.4%) 1120
Morbidly Obese (=40 kg/m?) 28 (1.4%) 90 (3.8%) 118
Underweight (<18.5 kg/m?) 42 (2.1%) 47 (2.0%) 89
Highest qualification, n (%)
None 588 (28.8%) 504 (21.6%) 1092
GCSE 612 (30.0%) 744 (31.8%) 1356
A Level 268 (13.1%) 395 (16.9%) 663
Degree and higher 572 (28.0%) 695 (29.7%) 1267
Socioeconomic group (NS-SEC), n (%)
r'\)/lrz;]:sgs?gr?gl administrative, and 1063 (55.0%) 970 (48.9%) 2033
Intermediate occupations 587 (30.4%) 662 (33.4%) 1249
Routine and manual occupations 249 (12.9%) 330 (16.6%) 579
Never worked and long-term 34 (1.8%) 22 (1.1%) 56
unemployed
Smoking status, n (%)
Never 989 (48.5%) 1212 (51.8%) 2201
Did, but not at all now 664 (32.5%) 754 (32.2%) 1418
Occasionally 108 (5.3%) 102 (4.4%) 210
Daily 279 (13.7%) 270 (11.5%) 549

Upright event metrics
Daily number of steps (n) 9514 + 3672 9422 + 3430 9465 + 3545
Daily number of upright events (n) 50.9+15.6 548 +14.7 53.0 £15.2
Upright event burstiness 0.28 £0.10 0.32+£0.08 0.29 £ 0.09
Sedentary burstiness 0.28 £0.09 0.27 £0.08 0.28 £0.09
USTP (%) 2611 26+1.0 26+1.0
Daily number of stepping events (n) 195.5+£72.5 203.0+65.9 199.5 + 69.1
Mean duration of all step events (s) 326+9.2 298+75 31.1+£85
Mean number of steps perall stepping 46 54 47 427 £144 443 +162
events (n)

Step-weighted mean cadence 88.9+9.1 904 82 89.7 + 8.6
(steps/min)

Duration of all upright events (minutes) 8.0+£37 78+38 79+38
Dally 0proportlon of stepping to standing 359 + 6.4 356458 357 + 6.1
time (%)

Megn number stepping events per 91+42 89+36 9.0+309
upright event (n)

Mean number of steps per upright 1996+974 18114790  189.7 +885
event (n)

Physical function metrics
Grip strength (kg) 456+ 8.6 28.0+5.6 36.2+11.3
Single-leg stance balance, n (%)

<30s open 217 (10.6%) 293 (12.5%) 510
0-<15s closed 1206 (59.1%) 1453 (62.1%) 2659
15-30s closed 617 (30.2%) 592 (25.3%) 1209
SF-36 Physical functioning score 90.6 £18.7 89.1+£18.9 89.8£18.9
Mean % SD or n (%)
an = 3917
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7.4.2 SF-36 physical functioning

Both a higher total step volume and a higher step-weighted cadence was
associated with a better SF-36pf score in both males and females. In females,
number of upright events, duration of stepping events, and steps per stepping
event were associated a better SF-36pf score, as was within upright event
stepping proportion. USTP was negatively associated with SF-36pf score in
females. In males, within upright event step count was negatively associated with

SF-36pf score (Table 7.3, Figure 7.3).

7.4.3 Balance

A higher total step volume was associated with better balance
performance in females. A higher step-weighted cadence was associated with
better balance performance in both males and females. In males, number of
upright events was positively associated with balance, and number of stepping
events was negatively associated. In females, sedentary event burstiness and
within upright event number of stepping events was negatively associated with

balance performance (Table 7.4, Figure 7.4).

7.4.4 Sensitivity analyses

When rerunning analyses using the alternative waking wear time
classification of 06:00h to 22:00h, the results remained largely consistent

(Appendix 8.14).
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Table 7.2. Associations of upright and stepping event metrics with handgrip strength (n = 4378).

Model 1 Model 2 Model 3
Males Females Males Females Males Females
B [95% CI] B [95% CI] B [95% CI] B [95% CI] B [95% CI] B [95% CI]
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Daily step count 0.07 [-0.24,0.37] 0.4110.11,0.72] 0.10[-0.21,0.40] 0.58 [0.28,0.89] - -
(per + 3545 steps) (0.673) (0.008) (0.540) (<0.001) - -
Upright events 0.29[-0.02,0.60] 0.10[-0.20,0.41] 0.37 [0.06,0.68] 0.30[-0.01,0.61] 0.32[0.01,0.63] 0.26 [-0.06,0.57]
(per+ 15.2 n) (0.0670) (0.513) (0.020) (0.061) (0.041) (0.107)
Stepping events 2 0.82[0.52,1.12] 0.32[0.01,0.64] 0.79 [0.48,1.10] 0.45[0.14,0.77] 0.90 [0.53,1.28] 0.57 [0.19,0.95]
(per + 69.1 n) (<0.001) (0.042) (<0.001) (0.005) (<0.001) (0.004)
Duration of stepping events 2 -0.82[-1.10,-0.53] 0.25[-0.08,0.58] -0.74 [-1.03,-0.45] 0.29[-0.04,0.62] -1.03 [-1.34,-0.71] -0.06 [-0.42,0.30]
(per + 8.5 sec) (<0.001) (0.143) (<0.001) (0.089) (<0.001) (0.754)
Steps per stepping event 2 -0.95 [-1.23,-0.66] 0.21[-0.12,0.53] -0.88 [-1.17,-0.59] 0.24 [-0.09,0.57] -1.17 [-1.48,-0.86] -0.11[-0.47,0.24]
(per + 16.2 steps) (<0.001) (0.219) (<0.001) (0.154) (<0.001) (0.535)
Step-weighted cadence 2 -1.14 [-1.44,-0.84] 0.151-0.16,0.46] -1.11 [-1.41,-0.80] 0.20[-0.11,0.51] -1.30 [-1.62,-0.98] -0.02 [-0.35,0.30]
(per + 8.6 steps/min) (<0.001) (0.331) (<0.001) (0.212) (<0.001) (0.884)
Duration of upright events 0.41[0.09,0.73] 0.18[-0.10,0.47] 0.32[-0.00,0.64] 0.10[-0.19,0.39] 0.22[-0.11,0.55] 0.04 [-0.26,0.33]
(per + 3.8 min) (0.013) (0.210) (0.052) (0.478) (0.189) (0.796)
Stepping proportion of upright 0.36 [0.06,0.66] 0.07 [-0.24,0.38] 0.291-0.01,0.59] 0.031-0.28,0.33] 0.181-0.13,0.49] -0.07 [-0.38,0.25]
events
(per + 6.1 %) (0.019) (0.674) (0.062) (0.862) (0.256) (0.670)
Step count of upright events -0.11[-0.40,0.17] 0.28 [-0.04,0.61] -0.15[-0.44,0.13] 0.29[-0.04,0.62] -0.59 [-0.95,-0.23] -0.23[-0.65,0.19]
(per + 88.5 steps) (0.438) (0.090) (0.295) (0.084) (0.001) (0.275)
Stepping events within upright 0.61[0.32,0.90] 0.22-0.09,0.54] 0.51[0.22,0.81] 0.191-0.13,0.50] 0.4310.12,0.74] 0.091-0.24,0.42]
events
(per +3.9n) (<0.001) (0.168) (0.001) (0.253) (0.006) (0.579)
Upright event burstiness 0.23[-0.07,0.53] 0.29[-0.04,0.62] 0.34[0.03,0.64] 0.47 [0.14,0.80] 0.31[0.01,0.62] 0.43[0.10,0.76]
(per + 0.09) (0.141) (0.085) (0.030) (0.006) (0.042) (0.011)
Sedentary event burstiness 0.40[0.11,0.69] 0.01[-0.32,0.33] 0.38[0.09,0.67] -0.07 [-0.39,0.25] 0.29[-0.00,0.59] -0.13[-0.46,0.19]
(per + 0.09) (0.007) (0.968) (0.010) (0.676) (0.050) (0.429)
USTP -0.86 [-1.18,-0.55] -0.49 [-0.79,-0.19] -0.73 [-1.05,-0.42] -0.47 [-0.77,-0.17] -0.69 [-1.01,-0.36] -0.42 [-0.74,-0.11]
(per + 1.0) (<0.001) (0.001) (<0.001) (0.002) (<0.001) (0.008)

Results are presented as regression coefficient (B) with 95% confidence interval [95% Cl] and p-value, where the predictor is standardised and the outcome is unstandardised (a one standard
deviation increase in the predictor equates to an absolute change in the physical function outcome. Associations were adjusted for the following covariates; ; Model 3: sex, waking wear time,
education level, socioeconomic status, body mass index, smoking status, and average daily step count
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Table 7.3. Associations of upright and stepping event metrics with the SF-36 physical functioning subscale (n = 4378).

Model 3
Males Females Males Females Males Females

B [95% CI] B [95% CI] B [95% CI] B [95% CI] B [95% CI] B [95% CI]

(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Daily step count @ 3.42 [2.57,4.26] 5.29 [4.46,6.12] 2.51[1.70,3.32] 4.20 [3.39,5.01] - -
(per + 3545 steps) (<0.001) (<0.001) (<0.001) (<0.001) - -
Upright events 1.54 [0.67,2.41] 2.27[1.41,3.12] 0.94[0.11,1.77] 1.44 [0.62,2.27] 0.491[-0.33,1.32] 0.95[0.13,1.77]
(per+ 15.2 n) (0.001) (<0.001) (0.026) (0.001) (0.240) (0.023)
Stepping events 1.54 [0.69,2.39] 3.18 [2.32,4.04] 1.67 [0.85,2.49] 3.09 [2.26,3.91] -0.57 [-1.56,0.41] 0.76 [-0.25,1.76]
(per+ 69.1 n) (<0.001) (<0.001) (<0.001) (<0.001) (0.253) (0.139)
Duration of stepping events 2 2.37[1.58,3.17] 4.42 [3.50,5.34] 1.29 [0.52,2.06] 2.81[1.92,3.70] -0.14[-0.97,0.68] 1.04 [0.08,2.00]
(per + 8.5 sec) (<0.001) (<0.001) (0.001) (<0.001) (0.736) (0.034)
Steps per stepping event 2 2.52[1.74,3.31] 4.73 [3.82,5.65] 1.41[0.64,2.17] 3.02[2.13,3.91] 0.10 [-0.71,0.91] 1.39 [0.44,2.34]
(per + 16.2 steps) (<0.001) (<0.001) (<0.001) (<0.001) (0.806) (0.004)
Step-weighted cadence 2 3.48 [2.66,4.30] 5.68 [4.85,6.52] 2.17 [1.36,2.97] 3.90[3.08,4.72] 1.30 [0.47,2.13] 2.89[2.04,3.74]
(per + 8.6 steps/min) (<0.001) (<0.001) (<0.001) (<0.001) (0.002) (<0.001)
Duration of upright events 0.53[-0.38,1.44] -0.24 [-1.04,0.57] 0.91 [0.05,1.77] 0.41[-0.36,1.17] -0.23[-1.10,0.65] -0.34[-1.11,0.43]
(per + 3.8 min) (0.251) (0.564) (0.038) (0.301) (0.612) (0.386)
Stepping proportion of upright 1.01 [0.16,1.86] 2.81[1.96,3.66] 0.63[-0.18,1.43] 2.05[1.24,2.85] -0.46 [-1.28,0.36] 1.06 [0.25,1.88]
events
(per + 6.1 %) (0.019) (<0.001) (0.126) (<0.001) (0.275) (0.010)
Step count of upright events 1.81[1.01,2.61] 3.41[2.49,4.33] 1.46 [0.71,2.21] 2.94 [2.07,3.82] -1.09 [-2.04,-0.14] -0.10[-1.22,1.01]
(per + 88.5 steps) (<0.001) (<0.001) (<0.001) (<0.001) (0.024) (0.855)
Stepping events within upright -0.14 [-0.97,0.69] 0.26 [-0.63,1.14] 0.47 [-0.32,1.27] 1.09 [0.24,1.94] -0.78 [-1.59,0.04] -0.29 [-1.16,0.59]
events
(per +3.9n) (0.743) (0.568) (0.240) (0.012) (0.061) (0.521)
Upright event burstiness -0.13[-0.97,0.72] 0.74[-0.19,1.68] 0.02[-0.79,0.83] 0.85[-0.04,1.73] -0.19[-0.99,0.61] 0.40[-0.47,1.28]
(per + 0.09) (0.770) (0.119) (0.961) (0.060) (0.640) (0.365)
Sedentary event burstiness 1.04 [0.21,1.86] 1.33[0.43,2.23] 1.11[0.33,1.89] 1.02 [0.16,1.87] 0.21[-0.58,1.00] 0.33]-0.53,1.18]
(per + 0.09) (0.014) (0.004) (0.005) (0.020) (0.608) (0.452)
USTP -2.26 [-3.15,-1.37] -2.75 [-3.56,-1.94] -1.87 [-2.71,-1.03] -2.56 [-3.33,-1.78] -0.76 [-1.62,0.11] -1.57 [-2.36,-0.77]
(per + 1.0) (<0.001) (<0.001) (<0.001) (<0.001) (0.088) (<0.001)

Results are presented as regression coefficient (B) with 95% confidence interval [95% Cl] and p-value, where the predictor is standardised and the outcome is unstandardised (a one standard
deviation increase in the predictor equates to an absolute change in the physical function outcome. Associations were adjusted for the following covariates; Model 1: sex, and waking wear time.

Model 2: model 1 + education level, socioeconomic status, body mass index, and smoking status. Model 3: model 2 + average daily step count.

a denotes significant sex interaction (p < 0.05) for Model 1
Bold indicates statistical significance (p < 0.05)
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Table 7.4. Associations of upright and stepping event metrics with single-leg stance balance test (n = 4378). Odds ratios [95% CI] of achieving a
better single-leg stance balance performance, based on <30s eyes open as the reference category, followed by 0-<15s eyes closed, and >15s eyes

closed.
Model 1 Model 2 Model 3
Males Females Males Females Males Females
OR [95% CI] OR [95% CI] OR [95% CI] OR [95% CI] OR [95% CI] OR [95% CI]
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

Daily step count 1.13[1.03,1.24] 1.28 [1.17,1.41] 1.0810.98,1.19] 1.18 [1.07,1.30]
(per + 3545 steps) (0.007) (<0.001) (0.123) (0.001)
Upright events 2 1.03[0.94,1.13] 1.25[1.14,1.38] 0.9910.90,1.09] 1.17 [1.06,1.29] 0.97 [0.88,1.07] 1.15[1.04,1.28]
(per+ 15.2 n) (0.480) (<0.001) (0.834) (0.002) (0.600) (0.006)
Stepping events 0.94 [0.86,1.03] 1.08[0.98,1.19] 0.96 [0.87,1.06] 1.07 [0.97,1.19] 0.84 [0.75,0.94] 0.9310.83,1.06]
(per+ 69.1 n) (0.179) (0.119) (0.435) (0.174) (0.004) (0.276)
Duration of stepping events 1.20 [1.10,1.30] 1.28 [1.16,1.41] 1.11[1.01,1.21] 1.15[1.03,1.27] 1.07[0.97,1.18] 1.10[0.98,1.23]
(per + 8.5 sec) (<0.001) (<0.001) (0.022) (0.011) (0.163) (0.103)
Steps per stepping event 1.22 [1.12,1.32] 1.28 [1.16,1.42] 1.12[1.03,1.22] 1.14 [1.03,1.27] 1.080.99,1.19] 1.10[0.98,1.23]
(per + 16.2 steps) (<0.001) (<0.001) (0.010) (0.011) (0.086) (0.091)
Step-weighted cadence 1.31[1.20,1.44] 1.33[1.21,1.47] 1.18 [1.08,1.30] 1.18 [1.06,1.30] 1.16 [1.05,1.28] 1.14[1.03,1.27]
(per + 8.6 steps/min) (<0.001) (<0.001) (<0.001) (0.002) (0.004) (0.013)
Duration of upright events 0.99[0.90,1.09] 0.88 [0.79,0.99] 1.04 [0.94,1.15] 0.95[0.85,1.07] 1.00[0.90,1.11] 0.911[0.81,1.03]
(per + 3.8 min) (0.903) (0.027) (0.426) (0.435) (0.985) (0.150)
Stepping proportion of upright 1.01[0.92,1.10] 1.06 [0.96,1.17] 0.9910.90,1.09] 1.02[0.92,1.13] 0.95[0.86,1.05] 0.980.88,1.09]
events
(per+ 6.1 %) (0.847) (0.221) (0.884) (0.689) (0.296) (0.701)
Step count of upright events 1.08 [0.99,1.17] 1.07 [0.96,1.18] 1.07 [0.98,1.16] 1.04 [0.94,1.16] 0.951[0.84,1.06] 0.90[0.78,1.04]
(per + 88.5 steps) (0.087) (0.222) (0.155) (0.434) (0.358) (0.161)
Stepping events within upright 0.92[0.84,1.01] 0.86 [0.78,0.96] 0.9810.89,1.08] 0.9310.83,1.05] 0.93]0.84,1.02] 0.87 [0.76,0.98]
events
(per+3.9n) (0.085) (0.009) (0.665) (0.223) (0.137) (0.023)
Upright event burstiness 0.96 [0.88,1.06] 1.03[0.93,1.15] 0.96 [0.87,1.06] 1.00[0.90,1.12] 0.951[0.86,1.05] 0.991[0.88,1.10]
(per + 0.09) (0.432) (0.536) (0.423) (0.938) (0.324) (0.831)
Sedentary event burstiness 0.96[0.88,1.05] 0.9110.82,1.01] 0.9810.89,1.07] 0.9110.82,1.02] 0.94[0.86,1.04] 0.88 [0.79,0.99]
(per + 0.09) (0.374) (0.080) (0.662) (0.101) (0.212) (0.031)
USTP 0.91[0.82,1.00] 0.951[0.87,1.05] 0.90 [0.81,1.00] 0.9310.84,1.04] 0.94[0.84,1.04] 0.97 [0.87,1.08]
(per + 1.0) (0.049) (0.322) (0.046) (0.200) (0.225) (0.576)

Results are presented as odds ratios (OR) with 95% confidence interval [95% Cl] and p-value, where the predictor is standardised. Associations were adjusted for the following covariates; Model 1:
sex, and waking wear time. Model 2: model 1 + education level, socioeconomic status, body mass index, and smoking status. Model 3: model 2 + average daily step count.
a denotes significant sex interaction (p < 0.05) for Model 1
Bold indicates statistical significance (p < 0.05)



7.5 Discussion

This study evaluated the relationships between the temporal distribution
and composition of upright and stepping events, with physical function outcomes
in a large and representative sample of UK adults all aged 46 years. A number of
measures describing differences in patterns of upright and stepping accumulation
were associated with a range of physical function measures, even after adjusting
for the overall volume of stepping. However, the associations were not consistent

and often not in the expected direction.

For grip strength, a higher number of stepping events and more bursty
(clustered) upright events were associated with higher grip strength, whereas the
more transient the upright events were the lower the grip strength. Relationships
with measures of the composition of stepping and upright events were not

consistently associated with grip strength and were often in the wrong direction.

For SF-36pf, total steps per day, and a higher step-weighted cadence were
associated with higher scores. More transient sedentary events (less prolonged)
were also associated with higher SF-36pf scores and more transient upright
events lower scores. These results were in the expected direction but were mostly
attenuated to the null when adjusted for average daily step count, except for step-
weighted cadence. This suggests people perceive better function when they do
more daily stepping independent of how the steps were accumulated. As with grip
strength, measures of the composition of upright events were inconsistently
associated with SF-36pf and varied between males and females. Only stepping
at a higher cadence was associated with better balance in both males and

females.
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It might be expected that in both sexes, recording a higher number of longer
duration and higher cadence stepping events would be indicative of better
capacity, and therefore function, compared to shorter, lower cadence stepping.
However, this was not consistently supported by the findings. It might also be
expected that bursts of transient sit-to-stand transitions might also be associated
with better function due to the strength and power required to get up and down
frequently. Although this was associated with grip strength it was not associated

with perceptions of function or balance.

Further, the majority of results varied considerably between sexes. Though
sex differences were observed in Chapter 6, in a population with a wider age
range and older average age, the contradictory findings here were unexpected
and an explanation is not immediately obvious. Three possible explanations for
the inconsistent and sometimes contradictory findings of this study are proposed.
Firstly, exercise training outcomes are very exercise-type specific.363 Daily
stepping events and postural transitions may not be sufficiently specific to alter
hand grip strength or balance, especially in a population of adults aged 46 years
who would not be expected to have experienced major losses in function. It may
be that the expected associations would be more consistent in cardiovascular or

metabolic outcomes rather than musculoskeletal outcomes.

Secondly, the most inconsistent results of this study were in the measures
of the composition of upright results — number of stepping events, durations, and
the mix of standing and stepping. Compared to estimating postural transitions,
measures of standing and stepping are more subject to misclassification. For
example, detecting slower paced steps appears to be a problem for

accelerometers and the activPAL used in this study does not accurately detect
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steps recording at lower cadences.?'3 Therefore, within each upright event the
duration of standing could be overestimated and stepping underestimated. Also,
the true step cadence may be overestimated due to the absence of lower
cadence steps. The resulting misclassification would attenuate associations
toward the null. Finally, it is possible that the null findings may be due to
insufficient, between person variation in stepping activity and minimal changes in
function at age 46 years to demonstrate a consistent association with measures

of muscle strength.

Despite the inconsistency of the findings in this study, they still contribute to
the growing body of research examining the relationship between patterns of
physical activity accumulation and physical function.®® Higher step volume is
associated with a range of health outcomes,®5? and stepping cadence has been
linked to various health outcomes.3°3:3% However, its association with mortality is
inconsistent when adjusted for volume.'23% Unlike prior research, which has
predominantly relied on fixed thresholds or peak cadence metrics, our approach
calculates a step-weighted average, considering the cadence of all stepping. This
method addresses potential biases associated with classifying stepping using
fixed thresholds, where epochs may be misclassified based on very brief changes
in cadence. The respective negative and null associations in males and females
observed between step-weighted cadence and grip strength was contrary to the

other physical function outcomes, an unexpected finding.

Our findings align with a number of previous studies that have established
associations between a higher frequency of short or transient step event
durations and poorer physical function performance in older adults.'%41%5 These

studies employed the ASTP index of fragmentation using the epoch method,
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where activity (or posture) is classified over a fixed period of time. We employed
an event-based approach for a similar index of upright events.'”® In addition,
previous studies have focused on older adults whereas we have demonstrated
associations of physical activity metrics with better physical function outcomes in
an early midlife population where losses in function would be expected to be
much lower. No association was seen between USTP and balance. The
burstiness of upright events was positively associated with grip strength in both

sexes, but inconsistently so with SF-36pf.

The inconsistent sex differences in the reported associations are not
immediately intuitive. We note that a previous study also reported sex differences
in associations of step volume and grip strength in midlife, and the authors again
were unable to offer an explanation beyond potential residual confouding.’®” This
represents an interesting avenue for further exploration. It is possible that the
study population may contribute to some of the counterintuitive findings. Relative
to Chapter 6, which included a wide age range, the homogeneity in both physical
function and physical activity metrics in BCS70 may explain some of the deviation
from expected associations. For example, the degree of decline in physical
function and/or physical activity in midlife may not be large enough to detect
associations seen in the older population of our previous study. We also only have
a limited number of measures of function that may not be as closely associated
with postural changes and stepping activity compared to measures such as timed

sit-to-stand and gait speed.

We also note that our analyses were adjusted for BMI due to the known
association between higher BMI and higher grip strength,364 though the potential

of residual confounding by body composition remains, which may potentially
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impact the observed direction and magnitude of associations. We are wary of
overinterpreting our findings. The small magnitude of the associations and
multiple associations tested raises the possibility that some of these results could

be attributed to artifacts.

7.5.1 Strengths and Limitations

To our knowledge this chapter is the first study to examine associations
between physical activity patterns and physical function in early midlife. Further
strengths of our study include the large and diverse sample from a population-
based cohort, with multiple physical function outcomes. Moreover, the choice of
device, which provided high resolution, time-stamped postural data, allowed for
an event-based analysis.3®> The data processing techniques further allowed for
extraction of specific metrics of interest. However, the cross-sectional design
prevents the establishment of causality. In addition, selection bias was introduced

resulting from non-response to acceleration data collection.

The included sample was generally healthier than those who declined to
participate or were excluded due to insufficient data. Again, this may have limited
the ability to detect associations between patterns of physical activity
accumulation and physical function. Acknowledging limitations in accelerometer
data processing, we employed a previously utilised, practical method for
identifying waking wear time.3?® Criterion validity assessment of wake/sleep
algorithms is challenging, potentially leading to misclassification, affecting the
accuracy of sedentary and upright burstiness metrics. For example,
misclassifying the arise time of an individual, could add an extended sedentary

event (which is actually sleep) to the contiguous posture events and inflate the
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burstiness of upright event metrics. However, sensitivity analyses showed no
changes in results when employing an alternative method of fixed hours of waking

wear (06:00h to 22:00h).

As discussed in previous chapters, accelerometers are proxy measures of
physical activity, which may introduce misclassification. In addition, the activPAL
underestimates slower-paced stepping,®** highlighting the need for more precise
measures of slower paced stepping in physical activity research.33” Nevertheless,
the methods used here are a considerable advance in what could be achieved

previously with self-report-measures.

The measures of postural transitions allowed us to examine the effects of
these on physical function separate from the composition of the events, similar to
the research that has investigated sedentary breaks.2”® In addition, we have then
investigated the distribution and composition of upright events (the breaks in
sedentary events). The variation in the composition of uprights events highlights
that all sedentary breaks are not the same, even when matched for duration.
Simply counting sedentary events (or postural transitions) may lead to misleading

conclusions about associations with health outcomes.

In this preliminary investigation of physical activity patterns, we made the
pragmatic choice to average pattern metrics across valid measured days, as
previous ASTP studies have done.'® This ignores potentially important between
day differences in physical activity accumulation , an area that warrants further

investigation.

It is possible that changes in patterns of physical activity accumulation
occur before changes in physical function, or even before declines in volume of

activity. Being able to detect changes in activity accumulation (prior to declines in
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volume), could be important at a time in the life course when sufficient function
remains to participate successfully in interventions. There is evidence that
trajectories of stepping volume and cadence are associated with trajectories in
physical function, at least in older adults.®¥” Increasing the number of faster paced
steps as a proportion of total steps was associated with an improvement in
physical function over 2-years. Consequently, there is a need for more
prospective studies with multiple measures of patterns of physical activity

accumulation starting in midlife.

7.6 Summary

This chapter has addressed the fifth and final objective of the thesis and
demonstrated that the pattern in which upright and stepping events are
accumulated, is associated with levels of physical function, in early midlife. The
associations remained even after controlling for the volume of physical activity,
suggesting that patterns of accumulation are likely to be at least as important as
the total volume of activity in understanding associations with health outcomes.
While our findings offer valuable insights into the associations between these
metrics and physical function, the inconsistency in results indicate that much
remains to be explored. However, if the findings were repeated in longitudinal
studies with repeat measures, then future guidance on physical activity for health
should reflect this evidence and guide people not only on how much physical
activity to do but also on different patterns of accumulation. A better
understanding of how patterns of accumulation are related to health could in the
future lead to the refining of public health recommendations, affording individuals
greater flexibility in achieving guideline adherence.
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Chapter 8
General discussion

8.1 Primary aims

The primary aim of this thesis is to improve our understanding of patterns
of physical activity accumulation and their association with physical function.
Firstly, we conducted a systematic review to examine the current evidence for the
association between physical activity and physical function across different
populations. Then, we developed a suite of novel metrics to describe the patterns
of upright and stepping events including measures of upright fragmentation
(USTP), and the temporal distribution of upright and sedentary events

(burstiness).

We utilised these measures to examine whether patterns of physical activity
accumulation were associated with sociodemographic factors and physical
function outcomes in both late and early midlife, independent of total volume of
physical activity. These findings provide valuable insights into the relationship
between physical activity patterns and physical function, laying the groundwork
for future research that could impact the development of physical activity

guidelines and screening strategies for early declines in physical function.

8.2 Synthesis of existing evidence

In Chapter 2, we systematically reviewed the literature to understand the
association between physical activity and physical function, establishing that
higher levels of physical activity are generally associated with better physical

function across a range of performance-based measures of physical function.
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This review highlighted a significant gap: most studies focused on older
populations and relied on aggregate measures of physical activity, which fail to
capture the nuances of how activity is accumulated. Addressing this gap became

a central objective of the subsequent chapters.

8.3 Derived pattern metrics

In response to the limitations identified in the existing literature, Chapter 3
delved into the methodological challenges of processing accelerometer data to
create meaningful physical activity measures. We emphasised the importance of
examining physical function during midlife—a critical period often overlooked in
research. Chapter 4 then focused on deriving a suite of pattern metrics from thigh-
worn accelerometer data, emphasising an event-based approach to capture
upright and stepping behaviours more accurately. These metrics included
measures of fragmentation, temporal distribution, and the composition of upright

events, providing new and nuanced views of physical activity patterns.

8.4 Population sub-groups associations

We examined the variation in patterns of physical activity accumulation by
a range of sociodemographic factors in a midlife population. We identified that
upright and stepping behaviour is accumulated in different ways across different
populations, even for a given volume of activity. These differences in
accumulation patterns could have significant implications for understanding
associations with health outcomes. For example, individuals in more active
occupations may have more fragmented activity patterns, which could in-part

explain why associations between occupational physical activity are often far
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smaller than this observed for leisure time PA, or null. Similarly, the variations in
physical activity patterns observed across different BMI categories, smoking
statuses, and self-rated health statuses highlight the need for tailored
interventions that consider these factors. Understanding these differences is
crucial for developing targeted strategies to improve physical function and overall

health in diverse populations.

The observed differences between the BCS70 and DMS cohorts provide
further insight into how physical activity patterns might vary by age and other
sociodemographic factors. The BCS70 cohort, being uniformly younger (aged
46), likely represents a population that has not yet experienced the age-related
changes in physical activity patterns that are more evident in the older DMS
cohort. This age difference could account for the variations in stepping cadence,
frequency of stepping and upright events, and the burstiness of these events. The
younger BCS70 cohort may maintain more consistent activity patterns due to
fewer age-related declines in physical function and overall health, leading to

fewer changes in their daily routines and activity levels.

In contrast, the wider age range of the DMS cohort (40 to 75 years) may
capture a broader spectrum of physical activity patterns influenced by the natural
aging process. As people age, there are typically decreases in physical function,
increases in chronic health conditions, and changes in lifestyle that are reflected
in more fragmented and less intense physical activity patterns. This broader age
range and the inclusion of older adults in DMS likely contribute to the observed
negative associations between age and daily step count, cadence, and frequency

of stepping and upright events, with function.
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8.5 Associations with physical function

In Chapters 6 and 7 we conducted two cross-sectional studies to explore
the associations between upright and stepping metrics and physical function
outcomes in DMS and BCS70. Some consistent associations emerged, as did
some unexpected and contradictory findings. The studies within this thesis
collectively highlight the complex relationship between physical activity patterns
and physical function. A consistent theme is the mechanistic link between activity
fragmentation, burstiness, and physical function, where frequent transitions
between activity and inactivity (high fragmentation) often signal reduced
endurance and capacity, particularly in older adults. For example, a higher
number of stepping event for the same given volume of steps (more fragmented)
was associated with poorer 6MWT performance, balance, and self-reported SF-
36pf. Higher USTP (fragmented uprigtht events) was even associated with lower
upper body strength (grip), in addition to poorer scoring on the SF-36pf.

The findings suggest that higher fragmentation, reflected in frequent, brief
bouts of activity, may indicate underlying issues such as early onset fatigue or
lower cardiovascular endurance. This mechanistic pathway is particularly
relevant in older adults, where maintaining sustained activity becomes
increasingly difficult. The associations observed between higher cadence and
better physical function outcomes, like the 6MWT, further support the idea that
sustained, higher intensity activity is crucial for maintaining physical function.
However, the nuanced nature of these relationships was evident in the observed
sex differences, with some metrics showing positive associations with function in
one sex but not the other.

Sex differences were particularly notable in the associations with physical

function. These differences likely stem from both physiological factors, such as
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variations in muscle mass and cardiovascular response, and behavioural factors,
like differences in the types of physical activity typically performed by men and
women. Further, the sometimes contradictory associations in the mid-life
population might be partly explained by the specificity of exercise training
outcomes and different functional measures.?®3 Daily stepping events and
postural transitions may not be sufficiently specific to alter the musculoskeletal
performance, especially in a population of adults aged 46 years who would not
be expected to have experienced maijor losses in function.

The most inconsistent results were in the measures of the composition of
upright events. Compared to estimating postural transitions, measures of
standing and stepping are more subject to misclassification. For example,
detecting slower paced steps appears to be a problem for accelerometers,
including the activPAL used in this study.?'3

The introduction of the burstiness metrics provided deeper insights into how
physical activity is distributed throughout the day. While high USTP (indicating
fragmented upright activity) was generally associated with poorer function,
burstiness, characterising the clustering of activity, revealed more complex
relationships. For example, higher burstiness of sedentary events was associated
with better 6BMWT performance, suggesting that the ability to cluster activity,
especially postural transitions that require power in the lower extremity, may
reflect greater functional capacity. However, these associations were not always
consistent, highlighting the complexity of physical activity patterns and their
impact on function.

These findings contribute to the growing body of research examining the
relationship between physical activity patterns and physical function.®® We have
added new knowledge to the literature by exploring measures of the temporal
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distribution of upright and sedentary events and their association with function.
By adopting an event-based approach rather than an epoch approach, we have
improved the accuracy of the metrics employed. Overall, these findings
underscore the complexity of the relationship between physical activity patterns
and physical function outcomes, highlighting the need for further research to

elucidate these associations, both in mid- and later-life.

8.6 Strengths and limitations

The choice of performance-based measures in this study, including grip
strength, gait speed, chair rise tests, walk tests, and balance tests, was driven by
the need for objective, reliable, and precise measures of physical function. These
measures offer significant advantages over self-report tools, particularly in their
ability to detect early decline that may occur before they would be reported. In
addition, objective measures have been consistently associated with future
health outcomes. However, performance-based measures lack self-report
measures’ ability to capture an individual’s perception of their physical function,
which is a distinct and important aspect of physical function.?? The SF-36 physical
functioning sub-scale was included to capture subjective perceptions of physical
function. This dual approach ensured a comprehensive understanding of physical
function, acknowledging the value of both objective performance and subjective

experience in assessing overall health.

The choice of pattern metrics were based on previous research, reviewed
in Chapter 3. This includes the growing body of literature around fragmentation
as a measure of physical behaviour, and it's associations with health outcomes.

We built on this evidence by emplying a more precise, and particularly
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appropriate, event-based approach to address certain limitations of previous
studies. In addition, we chose to include burstiness as a novel measure for
classifying habitual physical activity behaviour. Further metrics include simple
counts and durations, in addition to a novel step-weighted method of classifying
step-rate. Alternative pattern metrics were reviewed and described in Chapter 3,
these measures could also have provided interesting evidence, and should be
explored. However, we justified our choice of measures, which included the
appropriateness of these measures for the event-based approach taken with data
processing, and the growing interest with fragmentation of physical activity, which
includes physical function. The inclusion of further metrics was not feasible within

the scope of this thesis.

The device employed in this thesis is a significant strength. The issues
related to self-report measures and those related the epoch-based approaches
prevalent in physical activity research have been outline in previous chapters.
The thigh worn activPAL provided high resolution time-stamped event data. This
allowed for an event-based approach, and the derivation of a suite of novel
metrics that quantified the composition and temporal distribution of upright and

stepping events.

The range of metrics derived allowed us to answer questions about how
physical activity was accumulated, a previously under-explored area of the
research. These metrics, and the subsequent analysis, provide evidence for the
inclusion of pattern metrics in physical activity research, and move on from the

reliance on summary volume measures alone.

The two cohort studies utilised in this thesis were a further strength. Both

had large sample sizes, and one included only adults in midlife, allowing us to
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examine the relationship between physical activity and physical function in an
age-group expected to be functioning reasonably well, but at a time when things
are likely to be changing. The wide range of performance-based physical function
measures available in both cohorts allowed for a comprehensive analysis of
associations with physical activity. This allowed us to identify differences in
associations for specific measures of function including perceived and objectively
measured function. In addition, the range of covariates allowed for adjustment of
potential confounding factors known to be associated with both physical activity

and physical function.

The thesis is not without limitation. The original research Chapters (5, 6,
and 7) describe cross-sectional analyses, making it impossible to establish
causation. BCS70 was scheduled to collect self-report measures of health and
the SF-36pf in 2020. However, due to the pandemic, this was postponed, and
data collection was only completed in January 2024, with data expected to be
available for research in autumn 2024. DMS data was collected in the early
2010s, with the follow-up data collection currently underway. Unfortunately, this
meant that prospective analysis using these cohorts was not feasible during this

PhD.

Linked with the cross-sectional designs is the challenge posed by the bi-
directional nature of the physical activity — physical function relationship. Previous
studies have demonstrated the causal relationship between physical activity and
physical function.®8-3% However, the possibility of reverse causation exists and is
to some extent assumed. The level of a person’s physical function is likely to
impact their physical activity behaviour in terms of both volume and pattern.

Nonetheless, the presence of these associations, regardless of direction, remains
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a significant finding. Understanding that patterns of physical activity differ for
those with poor physical function offers valuable insights for further exploration in

this area.

Despite selecting the most appropriate device to address the thesis
objectives, the activPAL does have limitations. Like other devices, it
underestimates slower-paced stepping, as the minimum cadence registered is 20
steps/min and evidence suggesting underestimate occurs from cadences below
69 steps/min, potentially leading to an underestimation of total steps and
overestimate of stepping cadence.3'”344 In addition, accelerometers are not direct
measures of physical activity behaviour but rather proxies, and proprietary
algorithms apply rules to the activPAL. Minimum resolution of event durations (10
s here) may result in a level of misclassification, potentially underestimating the
number of upright events, and therefore the related metrics. There is also a
minimum signal threshold required to change the classification of an event, but
the exact rules are not disclosed due to the proprietary nature of the activPAL
algorithm. This could lead to misclassification of shorter events and inflation of
the preceding or subsequent event, depending on these rules. While the exact
impact is unknown, it is assumed that this affects stepping behaviour more
significantly due to the error at lower cadences, likely underestimating all stepping

metrics and thereby attenuating associations.

Some limitations of the accelerometer data processing are acknowledged.
We employed a simple, pragmatic method to identify waking wear time. Like other
wake/sleep time algorithms, assessing criterion validity is challenging, and as
such, there may have been some misclassification. This would have had the most

significant impact on the accuracy of the temporal distribution of sedentary and
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upright burstiness metrics (e.g., if an upright event was registered before the
person’s true arise time). We also made the pragmatic choice to average pattern
metrics across valid measured days. This ignores potentially important between-
day differences in physical activity accumulation, an area that warrants further

investigation.

The studies within the thesis required a high number of valid days of
activPAL wear and all covariate and function outcomes, allowing for analysis of
habitual activity and robust adjustment. However, this reduced our sample size
and introduced the potential for selection bias, as the final samples included in
each study were considerably smaller than the cohort study sizes. In both cases,
the final sample included in the studies generally had a healthier BMI, a higher
level of education or socioeconomic class, and were less likely to be smokers.
Consequently, the findings might not be fully representative of the broader
population. This selection bias could lead to an overestimation of the associations
between physical activity patterns and physical function, as the healthier, more
active individuals included in the sample may naturally exhibit stronger
relationships between these variables. Conversely, the exclusion of less healthy
individuals might underestimate the variability and range of physical activity

patterns and their impacts on physical function in the general population.

8.7 Implications and future directions

While the preliminary nature of the research in this thesis means that it is
too early to draw any clinical or policy recommendations, the findings offer
practical implications for future physical activity and physical function research.
Broadly speaking, physical activity is related to physical function as evidenced by
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the systematic review in Chapter 2. However, researchers should consider the
complex interplay between patterns of physical activity accumulation and
physical function when developing exposure measures in future prospective

studies.

These findings of this thesis align with align closely with the WHO'’s ICF
framework, which emphasises a holistic view of health that integrates physical,
environmental, and personal factors. The ICF framework supports thethat
recognises the importance of early intervention and prevention in maintaining
physical function and delaying the onset of disability and frailty, a key theme
throughout this thesis. By focusing on the patterns of physical activity
accumulation and their relationship to physical function, this research contributes
to a nuanced understanding of how health outcomes can be optimised within the
ICF’s broader conceptual model. Future research should continue to explore
these patterns within the ICF framework, with longitudinal analyses, potentially
informing public health strategies that prioritise both the prevention of functional

decline and the promotion of healthy aging, especially in mid-life.

Analyses of physical activity volume alone masks important between-
person differences in how the volume was accumulated in ways that can affect
outcomes. Confirmation of these findings by future studies, employing
prospective or repeated measures designs, could present several new
opportunities. For example, the integration of technology-based approaches in
healthcare holds promise for utilising movement sensors to gain insights into

individuals' functioning, potentially enabling remote screening.

Longitudinal studies, ideally with repeat measures, may highlight that

changes in patterns of physical activity are a precursor to changes in physical
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function and could therefore be used to identify people at the early stages of
decline prior to engagement in the healthcare system. Moreover, incorporating
pattern metrics to evaluate intervention success ensures that effective
interventions are appropriately assessed. For example, even if people didn’t
increase the volume of physical activity as a result of intervention but increased
the proportion of their volume undertaken in more sustained events, that could

have important functional benefits and improved quality of life.

8.7.1 Incorporating pattern metrics into research

To advance beyond the scope of this thesis, prospective studies, with
repeated measures are imperative to establish causality and elucidate the impact
of physical activity pattern metrics on subsequent physical function. Additionally,
examining the trajectories of physical activity patterns across the lifespan can
provide valuable insights into how activity accumulation changes over time.
Integrating pattern metrics of physical activity accumulation into study designs

can enhance our comprehension of their role in shaping health outcomes.

Efforts to refine and standardise metrics for defining patterns of physical
activity accumulation are crucial to improve comparability across studies and
enhance the accuracy of associations with health outcomes. The diverse range
of potential physical activity metrics, coupled with the use of different
measurement devices, poses a challenge to achieving comparability and building

a robust evidence base.
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8.7.2 Additional pattern metrics

As introduced in the earlier chapters, the concept of "pattern” in relation to
physical activity behaviours lacks a standard definition. While we explored
various pattern metrics in this research, there remains scope for further
investigation into additional metrics that could shed light on the complex

relationship between physical activity behaviours and physical function.

Exploring metrics related to temporal distribution, similar to burstiness, or
entirely different patterns, could uncover novel insights into the dynamics of
physical activity and its impact on physical function. Limited research has
examined the variability or stability of physical activity behaviours, particularly in

relation to within and between day variability.

8.7.3 Additional health outcomes of interest

Given the bi-directional nature of the physical activity — physical function
relationship, and the specificity of exercise in relation to different types of physical
function, alternative health outcomes warrant exploration. Cardiovascular or
metabolic outcomes, that are more influenced by the acute effects of the last bout
performed, may be more likely to exhibit stronger associations with how
fragmented physical activity is and how bursty it is. For example, recent evidence
in DMS used 24-h time-use compositions to show that shorter sitting times (along
with other posture and activity metrics) are associated with preferable

cardiometabolic health.3%¢

In addition to mortality and morbidity risk, examining the progression from
declining physical function to frailty and subsequent disability would be

informative for public health prevention strategies. Determining associations
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between physical activity patterning and the progression through these states,
could identify key times in the life course when interventions to preserve function

as we age could be optimised.

8.8 Conclusion

This thesis comprehensively reviewed the current literature and identified
limitations in our understanding of the association between physical activity and

physical function.

We have highlighted how people accumulate their physical activity in
different ways, even when they are doing similar amounts. Specific populations
sub-groups accumulate their physical activity in ways that may not be optimal for
health and function. We have demonstrated that independent of the amount of
physical activity, patterns of accumulation are associated with various measures
of function. The replication of these findings in a midlife population further
emphasises the importance of considering activity patterns in understanding
physical function earlier in the life course than is typically done. However, the

findings leave further questions for future research to investigate.

By moving beyond traditional summary measures of physical activity and
exploring how physical activity is accumulated we have shown that future public
health guidance should avoid one size fits all messaging. These findings also
raise the potential for screening of people with or at risk of poor health, using
remote accelerometer devices, potentially detecting early changes in activity
patterns in midlife that indicate a trajectory towards declining function. In addition,
future physical activity intervention trials should look beyond aggregate measures

of physical activity as the primary outcomes.
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Appendix 8.1. Systematic review search strategy.

Systematic review search strateqy:

Associations between physical function and device-based measures of habitual

physical activity in mid- and later-life: A systematic review and meta-analysis

Terms:

1. (physical* adj2 (activ* or inactiv* or behavio* or exercis* or fitness)). ti,ab
2. (sedentary adj2 (activ* or behavio*)). ti,ab

3. (habitual™ adj2 (activ* or exercise)). ti,ab

4. (sitting adj2 (time or behavio*)). ti,ab

5. energy expend*. ti,ab

6. exercis*. ti,ab

7. acceleromet*. ti,ab

8. (activity adj2 (monitor* or device*)). ti,ab
9. motion sensor*. ti,ab

10. inclinometer*. ti,ab

11. pedometer*. ti,ab

12. Heart rate. ti,ab

13. (physical* adj2 (function* or capacit* or impair* or abilit* or capabilit*)). ti,ab
14. (function* adj2 (capacit* or limitation* or impair* or status or capabilit*)). ti,ab
15. (speed™* adj2 (gait or walk*)). ti,ab

16. (mobility* adj2 (capacit* or limitation* or impair* or status or capabilit*)). ti,ab
17. grip strength. ti,ab

18. balance. ti,ab

19. (transition* adj2 (sit* or stand*)). ti,ab

20. (sit* adj2 stand*). ti,ab

21. timed up and go. ti,ab

22. (observational adj2 (stud* or cohort)). ti,ab
23. (cohort ajd2 (stud* or analy*)). ti,ab

24. (follow up adj2 (stud* or analy*)). ti,ab
25. epidemiolog*. ti,ab

26. prospective. ti,ab
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27. cross sectional. ti,ab
28. retrospective. ti,ab

29. longitudinal. ti,ab

Example strateqy:

lor2or3or4or5or6

AND

7or8or9orl0orllorl?2

AND

13 or14or150r16or17 or18or 19 or 20 or 21
AND

22 or 23 or 24 or 25 or 26 or 27 or 28 or 29
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Appendix 8.2. Adapted quality assessment tool.

Adapted version of The National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies

Website: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

Major Components

Response options

between exposure(s) and outcome(s) — with age and sex the minimum?

1. Was the research question or objective in this paper clearly stated? Yes | No | Not Applicable/ Not Reported
2. Was the study population clearly specified and defined? Yes | No | Not Applicable/ Not Reported
3. Was the participation rate of eligible persons at least 50%? Yes | No | Not Applicable/ Not Reported
4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were Yes | No | Not Applicable/ Not Reported
inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?

5. Was a sample size justification, power description, or variance and effect estimates provided? Yes | No | Not Applicable/ Not Reported
6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? Yes | No | Not Applicable/ Not Reported
7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if | Yes | No | Not Applicable/ Not Reported
it existed?

8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the Yes | No | Not Applicable/ Not Reported
outcome (e.g., categories of exposure, or exposure measured as continuous variable)?

9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across | Yes | No | Not Applicable/ Not Reported
all study participants?

10. Was the accelerometer protocol reported up to the standards of the Montoye et al. (2018) guidelines? Reporting of; Yes | No | Not Applicable/ Not Reported
brand, epoch, placement, days, valid hours/days, hon-wear criteria, accelerometer outcomes and interpretation (e.g. MVPA

and cut points used)

11. Was the exposure(s) assessed more than once over time? Yes | No | Not Applicable/ Not Reported
12. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across Yes | No | Not Applicable/ Not Reported
all study participants?

13. Were the outcome assessors blinded to the exposure status of participants? Yes | No | Not Applicable/ Not Reported
14. Was loss to follow-up after baseline 20% or less? Yes | No | Not Applicable/ Not Reported
15. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship Yes | No | Not Applicable/ Not Reported
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Appendix 8.3. Data extraction tables.

Supplementary Table 1-3-1. Ascertainment and measurement characteristics of device-measured physical activity.

Wear Valid day valid days Wear time mean PA Cut-off Mean
Author, Year Device Name/Brand Placement days definition required (SD) or median [IQR] exposure  Units values/definition (SD) or median
(N) (h/day) (h/day) measure/s [IQR]
Adachi 2018 AlP Kenz Waist 7 N/R N/R N/R Step count  Steps/day Device detected 6523 (2990)
Lifecorder
MVPA Min/day Device detected 17.1 (16.6)
Aggio 2016* A Actigraph Hip 7 >10 3 Non-sarcopenia: 854.8 LPA Min/day 100-1040 CPM Non-sarcopenia:
GT3X [850.8, 858.8], 201.9 [198.1, 205.6],
Sarcopenia: 848.4 Sarcopenia: 196.4
[838.3, 858.5], Severe [187.1, 205.7], Severe
sarcopenia: 839.5 sarcopenia: 169.2
[821.1, 857.9] [152.5, 185.9]
MVPA Min/day >1040 CPM Non-sarcopenia: 42.1
[40.1, 44.0],
Sarcopenia: 37.9
[32.8, 43.1], Severe
sarcopenia: 19.8
[14.4,25.1]
Aoyagi 2009 AP Kenz Waist l-year N/R N/R N/R Step count  Steps/day Device detected 6574 (2715)
Lifecorder
TPA (PA)  Min/day >3 METs 17.3 (11.9)
Cooper 2015 HR+A  CamNtech Chest 5 N/R >2 N/R TPA Min/day Device detected M: 38.1 (15.7), F:
Actiheart (PAEE) 34.2 (13.3)
MVPA kJ/kg/day >3 METs M: 90.5 (64.9), F:
79.9 (54.9)
Cooper 2020 A activPAL3 Thigh 7 >10 1 M: 16 (1.3), F: 15.7 TPA Hour/day Device detected M:2.0(0.7),F: 2.0
micro (1.3) 0.7)
MVPA Hour/day >100 step M: 0.8 (0.4), F: 0.8
cadence threshold  (0.4)
Davis 2014 A ActiGraph Waist 7 >10 5 14.4 (1.4) MVPA Min/registered  >1951 CPM 0.9(1.3)
GT1M hour
Duck 2019 A ActiGraph Waist/Hip 7 >10 4 N/R LPA Min/day 100-1951 CPM 114.17 (55.91)
GT3X
MPA Min/day 1952-5724 CPM 10.88 (11.91)
VPA Min/day N/R 0.52 (2.80)
MVPA Min/day >1952 CPM 11.40 (13.11)
Gobbo 2020 A ActiGraph Waist 5 >10 3(inc.1w/e N/R MVPA Min/day >2020 CPM 21.1 (22.5)
GT3X day)
Hall 2017 A ActiGraph Waist 7 >10 4 14 (N/R) Step count  Sum of steps Device detected N/R
GT3X and
GT3X+
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Supplementary Table 1-3-1. Ascertainment and measurement characteristics of device-measured physical activity.

Wear Valid day valid days Wear time mean PA Cut-off Mean
Author, Year Device Name/Brand Placement days definition required (SD) or median [IQR] exposure  Units values/definition (SD) or median
(N) (h/day) (h/day) measure/s [IOR]
LPA % of total wear  Device detected N/R
time in LPA
MVPA %of total wear ~ Device detected N/R
time in MVPA
Hsueh 2020 A ActiGraph Waist 7 >10 4 (inc. Lw/e  M:905.7 (109.5), F: Step count  Steps/day Device detected M: 8408 (4051.7), F:
GT3X day) 925.3 (73.2) min/day 7079.0 (3034.2)
TPA Min/day >100 CPM M: 292.0 (90.3), F:
326.4 (79.6)
MVPA Min/day >2020 CPM M: 36.7 (27.8), F:
19.5(19.1)
Izawa 2017 A Omron HJA- N/R 7 >10 4 (inc. Lw/e N/R MVPA Min/day >3 METs M: 50.9 (37.6), F:
750C day) (MPA) 48.1 (27.3)
Jantunen 2017 Sense-Wear Upper 10 N/R 5(inc. L w/e  1436.8 (6.0) min/day TPA MET min/day  >1.5 METs 1779.6 (298.5)
Pro 3 Arm day)
Armband
LPA MET min/day  >1.51t0<3.0 496.7 (181.6)
METs
MVPA MET min/day  >3.0 METs 295.6 (230.0)
Johansson 2021 A ActiGraph Hip 8 >10 4 M: 116.9 (17.1), F: LPA Min/day 150-2698 CPM M: 380.8(87.9), F:
wWGT3X-BT 116.6 (15.6) total hours 415.6(87.3)
MVPA Min/day >2690 CPM M: 41.1(32.5), F:
34.8(26.6)
Kim 2015 A ActiGraph Wrist 8 N/R 5 N/R TPA (PA) counts/min/day Mean count per 1771.8 (520.6)
GT3X+ minute of vector
magnitude (daily
total counts
divided by valid
wear-time)
Kruger 2016 HR+A  CamNtech N/R 7 N/R 4 6.97 day/week TPA kJ Device detected 4893 (3763)
ActiHeart (PAEE)
Lai 2020 A ActiGraph Waist 7 >10 4 15.4 (1.4) MVPA Min/day >2020 CPM 25.0 (26.2)
GT3X+
Lerma 2018 A ActiGraph Hip 7 N/R N/R 13.99 (0.13) LPA Min/day 100-1951 CPM 283.1 (73.3)
GT3X+
MVPA Min/day >1952 CPM 25.0 (20.9)
Lohne-Seiler 2016 A ActiGraph Hip 7 >10 1 14.0 (1.2) h/day Step count ~ Steps/day N/R M: 7356, F: 7551
GT1M
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Supplementary Table 1-3-1. Ascertainment and measurement characteristics of device-measured physical activity.

Wear Valid day valid days Wear time mean PA Cut-off Mean
Author, Year Device Name/Brand Placement days  definition required (SD) or median [IQR] exposure  Units values/definition (SD) or median
(N) (h/day) (h/day) measure/s [IOR]
Manas 2019* A ActiGraph Hip 7 >8 4 786.0 (82.6) min/day LPA Min/day 100-1951 CPM 226.8 (86.2)
GT3X and
ActiTrainer
MVPA Min/day >1952 CPM 19.4 (23.8)
Meier 2020 P Omron HJ- Waist 7 N/R N/R 94.4% had complete Step count  Steps/day Device detected 4943(2632)
321 data
Mendham 2021 A Actigraph Waist + 7 >10 4 N/R TPA Min/day >100 CPM N/R
GTX3+and Thigh
ActivPAL
LPA Min/day 100-2019 CPM 326.2 (91.0)
MVPA Min/day >2020 CPM 9.1[2.3,15.9]
Mizumoto 2015* A/P Kenz Buttock 1- N/R N/R N/R Step count  Steps/day N/R Baseline: 4244.0
Lifecorder GS week (2683.3), Follow up:
4809.8 (3116.3)
MVPA Mins/day N/R Baseline: 8.7 (12.1),
Follow up: 8.2 (9.6)
Nagai 2018* A TDK Wrist 14 >10 4 1015 (74) min/day LPA Min/day >1.5t0 <3 METs 463 (150)
ActiBand
MVPA Min/day >3 METs 42 (34)
Oguma 2017* A Kenz Waist 7 >10 4 N/R Step count  Steps/day Device detected 2691 [1607-4423]
Lifecorder EX
TPA (PA METh/week Equation reported 2.6 [0.6-69]
Index) in paper
Osuka 2015 A Kenz Hip 7 >10 5 875.3 (92.4) min/day LPA Min/day Device detected 57.1(22.7)
Lifecorder 1.8-2.9 METs
MVPA Min/day Device detected 17.6 (15.3)
>3.6 METs
Pina 2021 A Actigraph Hip 7 >10 4 Scot: 913 (46), SA: 878  TPA Min/day >100 CPM Scot: 324 (64), SA:
GT3X+ (80) min/day 334 (96)
LPA Min/day 100-2019 CPM Scot: 287 (55), SA:
318 (92)
MVPA Min/day >2020 CPM Scot: 27 [15-44], SA:
11 [3-21]
Reid 2016* A ActivPAL3 Thigh 7 >10 + N/R 15.7 (1.1) Step count  Hour/day Device detected 2.0 (0.6)
>80% of (all
waking stepping)
hours
LPA Hour/day Device detected 1.0(0.4)
(stepping)
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Supplementary Table 1-3-1. Ascertainment and measurement characteristics of device-measured physical activity.

Wear Valid day valid days Wear time mean PA Cut-off Mean
Author, Year Name/Brand  Placement days  definition required (SD) or median [IQR] exposure  Units values/definition (SD) or median
(N) (h/day) (h/day) measure/s [IOR]
MVPA Hour/day Device detected 1.0(0.4)
(stepping)
Sit-to- Transitions/day  Device detected 53.3(14.8)
stand
transitions
Ribeiro 2020 ActiGraph Hip 7 >10 7 1058.6 [1000.1-1125.7] MVPA Min/day Freedson 16.1 [6.7-25.1]
GT3X+ min/day min/day
Rojer 2018 DynaPort Lower 7 >18 4 6.9 days TPA Min/day N/R 271.6 (64.5)
MoveMonitor  back
Step count  Steps/day Device detected 8608.1 (2961.8)
Sanchez-Sanchez 2019 ActiGraph Hip 7 >8 4 84.39 (16.03) total TPA Counts/day >1.5 METs 409365.6 (180677.0)
ActiTrainer hours
LPA Hour/day 1.5-2.99 METs 5.01 (1.5)
MVPA Hour/day >3 METs 1.02 (0.78)
Santos 2012 Actigraph Hip 4 >10 3(inc1wle  819.6 (87.5) min/day TPA Min/day >100 CPM 239.7 (100.5)
GT1M day)
LPA Min/day 100-2019 CPM 213.8 (88.7)
MVPA Min/day >2020 CPM 26.0 (24.1)
Savikangas 2020 UKK RM42 Waist 7 >10 3 14.1 (1.3) LPA Min/day >0.0167 to 210.3 (66.3)
<0.091g
MVPA Min/day >0.091g 32.5(20.1)
Schrack 2019 CamNtech Chest 7 95% of 3 N/R TPA Total log Device detected Low ASTP: 53009.04
Actiheart data activity counts (25578.54), Mid
ASTP: 35114.73
(13698.46), High
ASTP: 21675.93
(11309.85)
Spartano 2019 Actical Hip 8 >10 4 749 (71) mins/d Step count  Steps/day Device detected 6927 (3678)
(model no.
198-0200-00)
MVPA Min/day >1486 CPM 19 (22)
Thiebaud 2020* Lifecorder EX Hip 30 >12 N/R N/R LPA Min/day <3 METs 60.1 (18.9)
MPA Min/day 3-6 METs 21.2 (14.0)
VPA Min/day >6 METSs 1.9 (2.0)
van der Velde 2017 ActivPAL3 Thigh 8 >10 1 15.7 (0.9) TPA Hour/day Device detected 2.0(0.7)
High Min/day Device detected 19.2 [9.6-32.0]
intensity (=110 step/min)
PA
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Supplementary Table 1-3-1. Ascertainment and measurement characteristics of device-measured physical activity.

Wear Valid day valid days Wear time mean PA Cut-off Mean
Author, Year Device Name/Brand Placement days  definition required (SD) or median [IQR] exposure  Units values/definition (SD) or median
(N) (h/day) (h/day) measure/s [IQR]
Ward-Ritacco 2014 A New Hip 7to >10 4 N/R Step count  Steps/day Device detected 9076.2 (3822)
Lifestyles- 10
1000
MVPA Min/day >3.6 METs 30.0 (20.8)
Ward-Ritacco 2020 A ActiGraph Hip 7to >10 4 N/R Step count  Steps/day Device detected 7711 (2838)
GT9X 10
Westbury 2018 A GENEActiv Wrist 7 N/R 7 N/R TPA Min/day >40mg M: 137.8 [81.7,
217.2], F: 186.0
[122.1, 240.4]
MVPA Min/day >100mg M: 14.3 [1.8, 30.2],
F:9.5[2.1, 18.6]
Yamada 2011* P Yamax Pocket 14 N/R N/R N/R Step count  Steps/day TPA >40 4414.4 (2726.3)
PowerWalker
EX-510
Yasunaga 2017 A Omron HJA- Waist 7 >10 4 (inc. Lw/e  901.1 (87.5) min/day LPA Min/day >1.5to0 328.7 (101.4)
350IT day) <3.0METs
MVPA Min/day >3METs 50.2 (33.5)
Yerrakalva 2022 A Baseline: Hip 7 >10 4 N/R TPA Min/day >100cpm 251 (117)
ActiGraph
GT1M
Follow-up:
GT3X
LPA Min/day 100-808cpm 224.9 (56.5)
MVPA Min/day >809cpm 77.4 (46.3)

*Asterisk denotes not included in meta-analyses, N/A = not applicable, N/R = not reported, A = accelerometer, P = pedometer, HR= heart rate, PA = physical activity LPA = light intensity
physical activity, MVPA = moderate-to-vigorous physical activity, Steps = average or total step count, TPA = total physical activity, MET = metabolic equivalent of task, PAEE = physical

activity energy expenditure, kJ = kilojoule, CPM = counts per minute
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Supplementary Table 1-3-2. Ascertainment and measurement characteristics of performance-based physical function outcomes.

Author, Year Measure Device Definition and protocol Units Mean (SD)
Adachi 2018 Gait N/A Usual gait over 10-m; faster of 2 attempts. Slow Gait <1.0m/s n N=41 (13.3%)
Aggio 2016* Gait N/A Gait over 3-m Meters/s Non-sarcopenia: 0.95 (0.2), Sarcopenia: 0.82
(0.2), Severe sarcopenia: 0.62 (0.1)
HGS Jamar hydraulic 3 attempts with each hand, max used kg Non-sarcopenia:32.3 (9.9), Sarcopenia:28.7
dynamometer (10.1), Severe sarcopenia: 22.2 (6.1)
Aoyagi 2009 Gait GaitScan8000 Pressure Usual gait over 5-m Meters/s 1.43 (0.22)
sensors
HGS Smedley dynamometer 2 attempts with dominant hand, max used Newtons 262 (83)
Balance Force platform (G-5500) Stand eyes-open 30s, then closed 30s. Total movement of CoG Meters Eyes open: .45 (.17), Eyes closed: .94 (.39)
in horizontal axis was measured over 30s (body sway)
Cooper 2015 HGS Nottingham electronic 3 attempts with each hand, max used kg M: 46.4 (11.5), F: 27.0 (7.5)
dynamometer
Chair rise N/A Time to complete 10 chair rises. Stands/min M: 26.2 (7.3), F: 24.9 (7.3)
TUG N/A Time taken to rise from a chair, walk 3-m, return, and sit back Meters/s M: 0.7 (0.2), F: 0.7 (0.1)
down
Balance N/A Time (up to max of 30s) participant could maintain one-legged In/s M: 1.6 (0.6), F: 1.6 (0.5)
stand eyes closed
Cooper 2020 HGS Smedley dynamometer Up to 3 attempts with each hand, max used kg M: 48.2 (8.8), F: 29.9 (5.6)
Davis 2014 Gait N/A Usual gait over 3 or 4 -m Score (0-4) 3.5(0.8)
Chair rise N/A Time to complete 5 chair rises Score (0-4) 2.7(1.3)
Balance N/A Ability to maintain tandem, semi, and side-hy-side stance for Score (0-4) 3.6 (0.8)
10s
Duck 2019 TUG N/A Time taken to rise from a chair, walk 10-m, return, and sit back  Score 9.11 (2.93)
down
Balance Berg Balance Scale 14-item instrument, with each item rated O (poor balance) to 4 Seconds 50.35 (6.05)
(better balance)
Gobbo 2020 Gait N/A 2 attempts at gait over 4-m, max used Meters/s 1.0(0.2)
HGS Camry digital dynamometer 2 attempts with dominant hand, max used kg 26.2 (8.2)
model EH101
TUG N/A Time taken to rise from a chair, walk 3-m, return, and sit back Seconds 9.6 (2.4)
down
Hall 2017 Gait N/A 2 attempts at gait over 4-m, max used Meters/s i
Chair rise N/A No. of chair rises completed in 30-s n i
Walk N/A 6MWT: Distance covered in 6-min walking Yards i
Balance N/A Duration of single-leg stance, eyes-open (up to 60s) Seconds T
Hsueh 2020 Gait N/A Gait over 11-m (central 5-m used) Seconds M: 2.89 (1.08) F: 3.11 (0.71)
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Supplementary Table 1-3-2. Ascertainment and measurement characteristics of performance-based physical function outcomes.

Author, Year Measure Device Definition and protocol Units Mean (SD)
HGS Jamar Plus+ digital 2 attempts with both hands, max used kg M: 33.3 (6.5) F: 21.4 (3.5)
dynamometer
Chair rise N/A Time taken to complete 5 chair rises Seconds M: 7.54 (2.16) F: 7.45 (2.70)
TUG N/A Time taken to rise from a chair, walk 3-m, return, and sit back Seconds M: 7.13 (2.90) F: 7.20 (1.82)
down
Balance N/A Duration of single leg stance (up to 60s), eyes open, 2 attempts  Seconds M: 39.6 (23.8) F: 34.8 (23.0)
Izawa 2017 Gait N/A 2 attempts at gait over 5-m, max used Meters/s M:1.8 (0.3), F: 1.7 (0.3)
TUG N/A Time taken to rise from a chair, walk 3-m, return, and sit back Seconds M:6.1(1.2), F: 6.5 (1.4)
down
Balance N/A Duration of single leg stance (up to 60s), eyes open, 2 attempts ~ Seconds M: 41.8 (21.6), F: 44.2 (22.1)
Jantunen 2017 Chair rise N/A No. of chair rises completed in 30-s n 115 (2.3)
Walk N/A 6MWT: Distance covered in 6-min walking Meters 584.8 (103.6)
SFT N/A Senior Fitness test battery, composite score of 5 tests Score 46.4 (17.5)
Johansson 2021 HGS Jamar Plus+ Digital hand 3 attempts with each hand, max used kg N/R
Dynamometer
Chair rise N/A Time taken to complete 5 chair rises, two attempts, max used Seconds N/R
Kim 2015 Gait N/A Gait over 11-m (central 5-m used) Meters/s 1.20 (0.25)
HGS Smedley dynamometer 3 attempts, max used kg 23.4 (71.5)
Kruger 2016 Gait N/A Gait over 6-m Meters/s 1.36 (0.33)
HGS Jamar dynamometer 3 attempts with dominant hand, max used kg 20.4 (6.7)
Lai 2020 Gait N/A Gait over 11-m (central 5-m used) Seconds N/R
HGS Jamar Plus+ dynamometer 3 attempts with both hands, max used kg N/R
Chair rise N/A Time taken to complete 5 chair rises, two attempts, max used, Seconds N/R
two attempts, fastest used
TUG N/A Time taken to rise from a chair, walk 3-m, return, and sit back Seconds N/R
down, 2 attempts, max used
Lerma 2018 Gait N/A 2 attempts at gait, faster used Meters/s 1.1(0.3)
Chair rise N/A Time taken to complete 5 chair rises, two attempts, max used, Seconds 15.2 (4.8)
two attempts, fastest used
Walk N/A 400mWT: Time taken to walk 400-m Meters/s 1.4 (0.3)
SPPB N/A SPPB Score 9.8 (1.6)
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Supplementary Table 1-3-2. Ascertainment and measurement characteristics of performance-based physical function outcomes.

Author, Year Measure Device Definition and protocol Units Mean (SD)
Lohne-Seiler 2016 HGS Chattanooga dynamometer 3 attempts with dominant hand, max used kg Mean {95%Cls}: 33.5 {32.3, 34.8}
Balance N/A Duration of single leg stance, eyes open Seconds Mean {95%Cls}: 19.5 {16.7, 22.2}
Manas 2019* SPPB N/A SPPB Score 8.4 (3.2)
Meier 2020 Gait N/A Gait over 4-m Meters/s 1.1(0.2)
HGS Jamar Plus+ dynamometer 3 attempts with each hand, max used kg 29.9(10.3)
Mendham 2021 Gait N/A Gait over 12-m (central 10-m used) 1.5(0.3)
Meters/s
HGS T.K.K. 5401, Grip-D, Takei 3 attempts with non-dominant hand, max used kg 19.6 (4.5)
Walk N/A 6MWT: Distance covered in 6-min walking Meters 450 [395, 490]
TUG N/A Time taken to rise from a chair, walk 3-m, return, and sit back Seconds 6.9 [6.2,8.1]
down
Mizumoto 2015* Gait Walk Way MW-1000 Gait over 2.4-m (central 2-m used) on a pressure sensor, mean Dichotomous N/R
pressure sensor of 5 attempts
HGS Smedley-type dynamometer 2 attempts with dominant hand, max used Dichotomous N/R
Nagai 2018* Gait N/A Gait over 12-m (first 10-m used) Meters/s 1.4 (0.3)
HGS Smedley dynamometer N/R kg 26.7 (7.6)
Oguma 2017* HGS Tanita 6103 dynamometer 2 attempts with dominant hand, max used kg 19.0 (4.9)
Chair rise N/A N/R Stands/30s 11 [9-13]
TUG N/A N/R Seconds 12.1[9.9-15.9]
Balance N/A One leg standing test, eyes open Seconds 4.0 [2.5-6.5]
Osuka 2015 Chair rise N/A Average of 2 attempts, time taken to complete 5 chair rises Seconds 6.8
TUG N/A Average of 2 attempts, time taken to rise from a chair, walk 3- Seconds 6.3
m, return, and sit back down
Balance N/A Average of 2 attempts, single leg stance, eyes open, up to 60s Seconds 38.9
Pina 2021 Gait N/A Gait over 10-m (central 6-m used) Meters/s Scot: 1.5[1.4,1.7],SA: 1.6 [1.4,1.7]
HGS Scot: T.K.K.5001, Grip-A, 3 attempts with non-dominant hand, max used kg Scot: 23.0 [19.5, 27.5], SA: 20.1 [17.0, 23.8]
Takei. SA: T.K.K. 5401,
Grip-D
Reid 2016* TUG N/A Time taken to rise from a chair, walk 8-ft, return, and sit back Seconds 5.6 [4.9, 6.5]
down
Ribeiro 2020 PF composite  TKK dynamometer Composite score between 0-16 was derived from the following  Score 10.0 [8.0-12.0]
score tests: 5x Chair rise, HGS, 6MWT, sit-and-reach
Rojer 2018 Gait N/A Gait over 4-m, faster of two attempts used Meters/s 1.43 (0.21)
HGS Jamar dynamometer 3 attempts with each hand, max used kg 35.1 (11.0)
Sanchez-Sanchez Gait N/A 2 attempts, gait over 3-m, fastest used Meters/s 0.73 (0.26)
2019
HGS Jamar dynamometer 3 attempts with dominant hand, max used kg 22.26 (8.21)
Santos 2012 Chair rise N/A No. of chair rises completed in 30-s n 13.7 (4.7)
Walk N/A 6MWT: Distance covered in 6-min walking Meters 450.2 (148.4)
TUG N/A Time taken to rise from a chair, walk 8-ft, return, and sit back Seconds 8.5 (5.7)
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Supplementary Table 1-3-2. Ascertainment and measurement characteristics of performance-based physical function outcomes.

Author, Year Measure Device Definition and protocol Units Mean (SD)
Savikangas 2020 Gait N/A Gait over 10-m Meters/s 1.98 (0.38)
Walk N/A 6MWT: Distance covered in 6-min walking Meters 477.55 (82.56)
SPPB N/A SPPB Score 10.19 (1.54)
Schrack 2019 Gait N/A Gait over 6-m Meters/s Mid ASTP: 1.21 (0.22)
Walk N/A 400mWT: Time taken to walk 400-m at a fast pace Seconds Mid ASTP: 264.84 (51.51
ExSPPB N/A ExSPPB Score Mid ASTP: 2.99 (0.53)
Spartano 2019 Gait N/A Gait: faster of two trials over 4m course Meters/s 1.17 (0.19)
HGS Jamar dynamometer 3 attempts with each hand, max used kg M: 39.1 (8.7), F: 23.3 (5.7)
Chair rise N/A Time taken to complete 5 chair rises Seconds 9.9 (2.6)
Thiebaud 2020* Gait N/A Gait over 24-m (central 20-m used) Seconds 1.56 (0.18)
van der Velde 2017 HGS Jamar dynamometer 3 attempts with each hand, max used kg 35.7 (10.6)
Chair rise N/A Time taken to complete 10 chair rises Seconds 23.8 (5.5)
Walk N/A 6MWT: Distance covered in 6-min walking Meters 585.1 (80.5)
Ward-Ritacco 2014 Chair rise N/A No. of chair rises completed in 30-s n 21.8(6.9)
Walk N/A 6MWT: Distance covered in 6-min walking Meters 651.5 (104.2)
TUG N/A Time taken to rise from a chair, walk 8-ft, return, and sit back Seconds 4.5(0.8)
down
Ward-Ritacco 2020 Chair rise N/A No. of chair rises completed in 30-s n 20.00 (5.00)
Walk N/A 6MWT: Distance covered in 6-min walking Meters 565.8 (68.5)
TUG N/A Time taken to rise from a chair, walk 8-ft, return, and sit back Seconds 5.35 (0.86)
down
Westbury 2018 Gait N/A Gait over 3-m Meter/s 1.0(0.2)
HGS Jamar dynamometer 3 attempts with each hand, max used kg 24.1 (8.4)
Yamada 2011* Gait N/A Gait over 10-m Seconds 9.9(2.2)
Chair rise N/A Time taken to complete 5 chair rises Seconds 8.9 (3.6)
TUG N/A N/R Seconds 8.8(2.1)
Balance N/A Time participant could maintain one-legged stand (hands on Seconds 13.3(12.1)
waist)
Yasunaga 2017 Gait N/A Gait over 11-m (central 5-m used), fastest of 2 attempts Meters/s 1.3(0.2)
HGS Smedley-type dynamometer 1 attempt with dominant hand kg 27.4 (8.3)
TUG N/A Time taken to rise from a chair, walk 3-m, return, and sit back Seconds 6.2 (1.2)
down, fastest of 2 attempts
Balance N/A Time (up to max of 60s) participant could maintain one-legged Seconds 42.9 (21.7)
stand eyes open, best of 2 attempts
Yerrakalva 2022 Gait N/A Gait over 5-m (first 4-m used) cm/s 111.4 (25.0)
HGS Smedley dynamometer 2 attempts with both hands, max used kg 28.9 (10.3)
Chair rise N/A Time take to complete 5 chair rises Stands/min 27.7 (1.7)

*Asterisk denotes not included in meta-analyses, N/A = not applicable, N/R = not reported, HGS = handgrip strength, Gait = gait speed, TUG = timed up-and-go test, BMWT = 6-minute

walk test, 400mWT = 400-meter walk test, kg = kilograms, SPPB = short physical performance battery, M = male, F = female, PF = physical function.

1 = reported across six age bands



Supplementary Table 1-3-3. Associations between device-measured physical activity metrics with performance-based physical function outcomes.

Author, Year PA exposure measure/s PF outcome measure/s Adjustment Effect size (95%CI) or [SE] p-value
Adachi et al 2018 Step count Gait Age + additional OR=0.94 (0.73,1.21) 0.695
MVPA Gait Age + additional OR =0.94 (0.73,0.99) 0.031
Aggio 2016* LPA Gait Age + additional B =0.02 (0.02, 0.03) <0.001
LPA HGS Age + additional B =0.21 (-0.06, 0.48) 0.125
MVPA Gait Age + additional B =0.03 (0.02, 0.03) <0.001
MVPA HGS Age + additional B =0.58 (0.34, 0.82) <0.001
Aoyagi 2009 Step count Gait Age and/or sex R=0.31 <0.05
Step count, HGS Age and/or sex R=0.12 >0.05
Step count, Balance Age and/or sex R =-0.14,-0.15 >0.05
TPA (PA >3METSs) Gait Age and/or sex R=0.34 <0.05
TPA (PA >3METSs) HGS Age and/or sex R=0.12 >0.05
TPA (PA >3METS) Balance Age and/or sex R=-0.13,-0.13 >0.05
Cooper 2015 TPA (PAEE) HGS Sex Bt =0.632 (0.158, 1.105) <0.05
TPA (PAEE) Chair rise Sex Bt =0.943 (0.594, 1.292) <0.05
TPA (PAEE) TUG Sex B+ =0.029 (0.021, 0.036) <0.05
TPA (PAEE) Balance Sex Bt =0.073 (0.047, 0.099) <0.05
MVPA HGS Sex Bf =0.638 (0.166, 1.110) <0.05
MVPA Chair rise Sex B1 =0.670 (0.321, 1.018) <0.05
MVPA TUG Sex Bt =0.023 (0.016, 0.031) <0.05
MVPA Balance Sex Bf =0.036 (0.010, 0.062) <0.05
Cooper 2020 TPA HGS Sex + additional B =0.60 (0.30, 0.90) N/R
MVPA HGS Additional M: B=-1.17 (=2.01,-0.33), F: B=10.73 (0.19, 1.27) N/R, N/R
Davis 2014 MVPA Gait Age, sex + additional B =0.659 (0.398, 0.920) <0.001
MVPA Chair rise Age, sex + additional B =0.851 (0.429, 1.272) <0.001
MVPA Balance Age, sex + additional B =0.269 (0.005, 0.532) 0.046
Duck 2019 LPA TUG Unadjusted R =-0.404 <0.01
LPA Balance Age, sex + additional B =0.013 (0.011), =0.146 Non-sig.
MPA TUG Unadjusted R =-0.363 <0.01
MPA Balance Age, sex + additional B =-0.006 (0.049), p =-0.013 Non-sig.
VPA TUG Unadjusted R =-0.105 <0.01
VPA Balance Unadjusted R =0.091 Non-sig.
MVPA TUG Unadjusted R =-0.337 N/R
MVPA Balance Unadjusted R =0.270 N/R
Gobbo 2020 MVPA Gait Age + additional M: B =0.01 (-0.00, 0.02), F: B =0.00 (-0.00, 0.00) >0.05, >0.05
HGS Age + additional M: B =-0.08 (-0.21, 0.04), F: B =-0.05 (-0.14, 0.03) >0.05, >0.05
TUG Age + additional M: B =-0.02 (-0.14, 0.09), F: B =10.02 (-0.09, 0.14) >0.05, >0.05
Hall 2017 Step count Gait Unadjusted RY N/A
Step count Chair rise Unadjusted R N/A
Step count Walk Unadjusted R N/A
Step count Balance Unadjusted R N/A
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Supplementary Table 1-3-3. Associations between device-measured physical activity metrics with performance-based physical function outcomes.

Author, Year PA exposure measure/s PF outcome measure/s Adjustment Effect size (95%CIl) or [SE] p-value
LPA Gait Unadjusted Rt N/A
LPA Chair rise Unadjusted Rt N/A
LPA Walk Unadjusted Rt N/A
LPA Balance Unadjusted Rt N/A
MVPA Gait Unadjusted RY N/A
MVPA Chair rise Unadjusted RY N/A
MVPA Walk Unadjusted R N/A
MVPA Balance Unadjusted R N/A
Hsueh 2020 Step count Gait Age + additional M: B=-0.19 (-0.60, 0.22), F: =-0.31 (=0.57, —0.001) 0.35, 0.049
Step count HGS Age + additional M: B=10.04 (-0.44,0.51), F: p=0.46 (0.12, 0.78) 0.87,0.009
Step count Chair rise Age + additional M: B =0.30 (-0.36, 0.96), F: B =-0.35 (—0.70, 0.01) 0.36, 0.05
Step count TUG Age + additional M: B =-0.09 (-0.50, 0.32), F: B =-0.20 (-0.50, 0.12) 0.66, 0.22
Step count Balance Age + additional M: B=0.16 (-0.32, 0.63), F: B=10.26 (-0.04, 0.55) 0.50, 0.09
TPA Gait Age + additional M: B=-0.24 (-0.64,0.17), F: p=-0.11 (-0.36, 0.16) 0.23,0.44
TPA HGS Age + additional M: B =0.07 (-0.39, 0.53), F: $=0.21 (-0.10, 0.52) 0.75,0.19
TPA Chair rise Age + additional M: B =-0.13 (-0.78, 0.52), F: B =—-0.23(—0.54, 0.10) 0.69, 0.17
TPA TUG Age + additional M: B =-0.30 (-0.69, 0.10), F: B=-0.15 (-0.42, 0.13) 0.14,0.31
TPA Balance Age + additional M: B=0.23 (-0.23, 0.68), F: B =0.06 (-0.21, 0.33) 0.31,0.67
MVPA Gait Age + additional M: B =-0.24 (-0.57, 0.08), F: p=-0.12 (-0.36, 0.11) 0.13,0.29
MVPA HGS Age + additional M: B=0.07 (=0.31, 0.45), F: $=0.39 (0.12, 0.64) 0.70, 0.004
MVPA Chair rise Age + additional M: B =0.05 (=0.50, 0.60), F: B =-0.22 (-0.49, 0.05) 0.85,0.11
MVPA TUG Age + additional M: B=-0.19 (-0.51,0.14), F: p=-0.13 (=0.37, 0.12) 0.24,0.32
MVPA Balance Age + additional M: Bp=0.23 (-0.15, 0.59), F: B =0.25 (0.02, 0.49) 0.23,0.036
Izawa 2017 MVPA (MPA) Gait Age + additional M: B=0.310 (0.001, 0.004), F: p=0.396, (0.002, 0.006) 0.001, 0.001
MVPA (MPA) TUG Age + additional M: B =-0.321 (-0.015, -0.006), F: p =-0.473 (-0.031, -0.014) 0.001, 0.001
MVPA (MPA) Balance Age + additional M: B=0.217 (0.042, 0.208), F: p=0.252 (0.048, 0.355) 0.003, 0.011
Jantunen 2017 TPA Chair rise Age, sex B =0.06 (0.05, 0.07) <0.001
TPA Walk Age, sex 3=0.09 (0.08, 0.10) <0.001
TPA SFT Age, sex 3=0.08 (0.07, 0.10) <0.001
LPA SFT Age, sex =0.09 (0.07,0.12) <0.001
MVPA SFT Age, sex $=10.10(0.08,0.11) <0.001
Johansson 2021 LPA HGS Age N/R N/R
LPA Chair rise Age N/R N/R
MVPA HGS Age M: B=-0.09, F: B=0.08 <0.001, 0.001
MVPA Chair rise Age M: B =031, F: p=-0.26 <0.001, <0.001
Kim 2015 TPA (PA) Gait Age, sex Rs=0.231 0.001
TPA (PA) HGS Age, sex Rs =0.081 0.251
Kruger 2016 TPA (PAEE) Gait Age + additional p=0.15 0.04
TPA (PAEE) HGS Age + additional B=10.07 0.45
Lai 2020 MVPA Gait Age, sex + additional B =-0.061 (-0.091, —0.031) <0.001
MVPA HGS Age, sex + additional B =0.045 (0.017, 0.072) 0.002
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Supplementary Table 1-3-3. Associations between device-measured physical activity metrics with performance-based physical function outcomes.

Author, Year PA exposure measure/s PF outcome measure/s Adjustment Effect size (95%CIl) or [SE] p-value
MVPA Chair rise Age, sex + additional B =-0.037 (=0.081, 0.006) 0.094
MVPA TUG Age, sex + additional B =-0.045 (=0.079, —0.011) 0.009
Lerma 2018 LPA Gait Age, sex + additional B =0.026 (-0.014, 0.066) >0.05
LPA Chair rise Age, sex + additional B =-0.622 (-1.349, 0.104) >0.05
LPA Walk Age, sex + additional B =0.064 (0.013, 0.116) <0.05
LPA SPPB Age, sex + additional B =0.430 (-0.015, 0.876) >0.05
MVPA Gait Age, sex + additional B =0.295 (0.146, 0.444) <0.05
MVPA Chair rise Age, sex + additional B =-4.433 (-7.217, —1.650) <0.05
MVPA Walk Age, sex + additional B =0.407 (0.219, 0.595) <0.05
MVPA SPPB Age, sex + additional B =3.233 (1.045, 5.422) <0.05
Lohne-Seiler 2016 Step count HGS Age, sex + additional B =-0.133"" (-0.61, 0.34) >0.05
Step count Balance Age, sex + additional B =1.88 (0.85, 2.90) <0.05
Manas 2019* LPA (SB ratio) SPPB Age, sex + additional B =0.96 (0.09, 1.82) 0.03
MVPA (SB ratio) SPPB Age, sex + additional B =0.03 (0.02, 0.04) <0.001
Meier 2020 Step count Gait Age, sex + additional g =0.01[0.004] 0.05
Step count HGS Age, sex + additional B =0.01[0.16] 0.53
Mendham 2021 TPA Gait Age N/R N/R
TPA HGS Age N/R N/R
TPA Walk Age N/R N/R
TPA TUG Age N/R N/R
LPA Gait Age N/R N/R
LPA HGS Age N/R N/R
LPA Walk Age N/R N/R
LPA TUG Age N/R N/R
MVPA Gait Age N/R N/R
MVPA HGS Age N/R N/R
MVPA Walk Age N/R N/R
MVPA TUG Age N/R N/R
Mizumoto 2015* Step count Gait Age, sex + additional OR=1.72(0.77, 3.86) >0.05
Step count HGS Age, sex + additional  OR =2.89 (1.10, 7.58) <0.05
MVPA Gait Age, sex + additional OR =0.74 (0.33, 1.64) >0.05
MVPA HGS Age, sex + additional OR =1.86 (0.71, 4.89) >0.05
Nagai 2018* LPA Gait Unadjusted Rpb =-0.30 <0.01
LPA HGS Unadjusted Rppb =-0.16 <0.01
MVPA Gait Unadjusted Rpp =-0.17 <0.01
MVPA HGS Unadjusted Rpp =-0.12 <0.01
Oguma 2017* Step count HGS Unadjusted Rs=0.24 0.003
Step count Chair rise Unadjusted Rs=0.35 <0.001
Step count TUG Unadjusted Rs=-0.51 <0.001
Step count Balance Unadjusted Rs =0.32 <0.001
TPA (PA Index) HGS Unadjusted s=0.28 <0.001
TPA (PA Index) Chair rise Unadjusted Rs =0.39 <0.001
TPA (PA Index) TUG Unadjusted Rs =-0.56 <0.001
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Supplementary Table 1-3-3. Associations between device-measured physical activity metrics with performance-based physical function outcomes.

Author, Year PA exposure measure/s PF outcome measure/s Adjustment Effect size (95%CIl) or [SE] p-value
TPA (PA Index) Balance Unadjusted Rs=0.34 <0.001
Osuka 2015 LPA Chair rise Age, sex + additional B =-0.07 0.047
LPA TUG Age, sex + additional  p=-0.08 0.013
LPA Balance Unadjusted Rs=0.23 <0.001
Pina 2021 LPA Gait Age, sex + additional ~ y=-0.012 0.876
LPA HGS Age, sex + additional  y=-0.045 0.644
MVPA Gait Age, sex + additional  y=0.007 0.773
MVPA HGS Age, sex + additional  y=0.097 0.001
Reid 2016* Step count (All stepping)  TUG Age, sex + additional RR =0.98 (0.95, 1.02) 0.341
LPA (Light stepping) TUG Age, sex + additional RR =0.98 (0.93, 1.03) 0.378
MVPA (MVPA stepping) TUG Age, sex + additional  RR =0.97 (0.92, 1.03) 0.383
Sit-to-stand transitions TUG Age, sex + additional  RR =1.00 (1.00, 1.00) 0.961
Ribeiro 2020 Active/lnactive PF composite score Age, sex + additional OR =1.81 (0.95, 3.46) 0.074
Rojer 2018 TPA HGS Age, sex Y: B =0.001 [0.001] O: B =0.002 [0.001] >0.05, >0.05
TPA Gait Age, sex Y: B =0.001 [0.001] O: B =0.005 [0.002] >0.05, <0.05
Step count HGS Age, sex Y: B =0.051 [0.024] O: B =0.052 [0.038] <0.05, >0.05
Step count Gait Age, sex Y: B =0.026 [0.027] O: B =0.182 [0.041] >0.05, <0.05
Sanchez-Sanchez 2019 TPA Gait Age, sex + additional B =0.041 (0.019, 0.063) <0.001
TPA HGS Age, sex + additional B =0.857 (0.312, 1.402) <0.01
LPA Gait Age, sex + additional B =-0.006 (-0.021, 0.009) >0.05
LPA HGS Age, sex + additional B =0.428 (0.051, 0.805) <0.05
MVPA Gait Age, sex + additional B =0.070 (0.043, 0.097) <0.001
MVPA HGS Age, sex + additional B =0.933 (0.246, 1.620) <0.01
Santos 2012 MVPA Chair rise Age, sex + additional B =0.035 (0.014, 0.055) N/R
Walk Age, sex + additional B =1.770 (1.178, 2.632) N/R
TUG Age, sex + additional B =-0.023 (-0.049, 0.003) N/R
Savikangas 2020 LPA Gait Age, sex R =0.203 <0.01
LPA Walk Age, sex R=0.279 <0.001
LPA SPPB Age, sex R =0.145 <0.01
MVPA Gait Age, sex R=0.315 <0.001
MVPA Walk Age, sex R =0.465 <0.001
MVPA SPPB Age, sex R =0.220 <0.001
Schrack 2019 TPA (Log activity counts)  Gait Age, sex + additional ~ 0.11 [0.04] 0.004
Walk Age, sex + additional ~ -0.16 [0.03] <0.001
ExSPPB Age, sex + additional ~ 0.13 [0.04] <0.001
Spartano 2019 Step count Gait Age, sex + additional B =0.006 [0.001] 0.0001
Step count HGS Age, sex + additional  M: B =-0.16 [0.09], F: B = 0.09 [0.06] 0.077,0.125
Step count Chair rise Age, sex + additional B =-0.010 [0.002] <0.0001
MVPA Gait Age, sex + additional B =0.048 [0.005] <0.0001
MVPA HGS Age, sex + additional ~ M: B =0.58 [0.34], F: B = 0.64 [0.19] 0.090, 0.0008
MVPA Chair rise Age, sex + additional B =-0.057 [0.006] <0.0001
Thiebaud 2020* LPA Gait Age + additional p=-0.250 0.016
MPA Gait Age + additional p=-0.112 0.337
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Supplementary Table 1-3-3. Associations between device-measured physical activity metrics with performance-based physical function outcomes.

Author, Year PA exposure measure/s PF outcome measure/s Adjustment Effect size (95%CIl) or [SE] p-value
VPA Gait Age + additional B=0.357 0.003
van der Velde 2017 TPA, High intensity PA HGS Age, sex + additional B =0.02 (0.01; 0.03) <0.05
TPA Chair rise Age, sex + additional B =-0.88 (—1.24; -0.52) <0.05
TPA Walk Age, sex + additional B = 24.45 (19.74, 29.15) <0.05
High intensity PA HGS Age, sex + additional B =0.04 (0.03; 0.06) <0.05
High intensity PA Chair rise Age, sex + additional B =-2.82 (-3.62; -2.03) <0.05
High intensity PA Walk Age, sex + additional B =61.25(50.73, 71.77) <0.05
Ward-Ritacco 2014 Step count Chair rise Age + additional B =0.23 (0.000, 0.001) >0.05
Step count Walk Age + additional B=0.31(0.002,0.01) <0.01
Step count TUG Age + additional =-0.16 (0.000, 0.000) >0.05
MVPA Chair rise Age + additional R=0.38 <0.01
MVPA Walk Age + additional R=0.50 <0.01
MVPA TUG Age + additional R=-0.32 <0.05
Ward-Ritacco 2020 Step count Chair rise Age + additional B =0.67 (0.28, 1.05) 0.001
Walk Age + additional B =4.09 (-0.85, 9.03) 0.103
TUG Age + additional B =-0.04 (-0.11, 0.02) 0.200
Westbury 2018 TPA Gait Sex B =0.29 (0.12, 0.47) <0.001
TPA HGS Sex B =0.15 (-.02, 0.33) 0.08
MVPA Gait Sex B =0.19 (0.01, 0.37) 0.04
MVPA HGS Sex B =0.10 (-0.08, 0.27) 0.29
Yamada 2011* Step count Gait Unadjusted R =-0.475 <0.01
Chair rise Unadjusted R =-0.297 <0.01
TUG Unadjusted R =-0.412 <0.01
Balance Unadjusted R =0.440 <0.01
Yasunaga 2017 LPA Gait Age, sex + additional B =0.001 (-0.001, 0.004) >0.05
LPA HGS Age, sex + additional B =0.058 (-0.024, 0.141) >0.05
LPA TUG Age, sex + additional B =-0.011 (-0.025, 0.004) >0.05
LPA Balance Age, sex + additional B =0.139 (-0.131, 0.409) >0.05
MVPA Gait Age, sex + additional B =0.019 (0.011, 0.026) <0.001
MVPA HGS Age, sex + additional B =0.092 (-0.135, 0.318) >0.05
MVPA TUG Age, sex + additional B =-0.155 (-0.153, -0.077) <0.001
MVPA Balance Age, sex + additional B =1.187 (0.462, 1.913) <0.01
Yerrakalva 2022 TPA HGS Age, sex + additional B =0.1(-0.2,0.4) >0.05
TPA Gait Age, sex + additional B =4.4(2.0,6.7) <0.05
TPA Chair rise Age, sex + additional B =1.1(0.7,1.4) <0.05
LPA HGS Age, sex + additional B =-0.04 (-0.5, 0.4) >0.05
LPA Gait Age, sex + additional B =3.0(1.8,4.2) <0.05
LPA Chair rise Age, sex + additional B =0.6 (0.4, 0.8) <0.05
MVPA HGS Age, sex + additional B =0.2(-0.2, 0.6) >0.05
MVPA Gait Age, sex + additional B =5.4(4.2,6.0) <0.05
MVPA Chair rise Age, sex + additional B =1.2(0.6,1.8) <0.05

*Asterisk denotes not included in meta-analyses, N/A = not applicable, N/R = not reported, B = unstandardised regression coefficient, = standardised regression coefficient, R = correlation
coefficient, Rpp = point biserial correlation, y = compositional linear regression coefficient, T = reported across six age bands, I = standardised by physical activity exposure only, LPA = light
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Supplementary Table 1-3-3. Associations between device-measured physical activity metrics with performance-based physical function outcomes.

Author, Year PA exposure measure/s PF outcome measure/s Adjustment Effect size (95%CIl) or [SE] p-value

intensity physical activity, MVPA = moderate-to-vigorous physical activity, Steps = average or total step count, TPA = total physical activity, HGS = handgrip strength, Gait = gait speed,
TUG = timed up-and-go test.
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Appendix 8.4. Quality assessment of the methodological quality of included studies

Author QL Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Total
Adachi (2018) y y nr y n na na y y n n y nr y y 8
Aggio (2016) y y y y n na na y y y n y nr y y 10
Aoyagi (2009) y y nr y n na na n y n n y nr nr y 6
Cooper (2015) y y y y n na na y y y n y nr n y 9
Cooper (2020) y y y y n na na y y y n y nr n y 9
Davis (2014) y y nr y n na na n y y n y nr y y 8
Duck (2019) y y nr y n na na n y y n y nr y y 8
Gobbo (2020) y y n y y y y n y y n y nr n y 10
Hall (2017) y y nr y n na na y y y n y nr n n 7
Hsueh (2020) y y nr y n na na y y y n y nr n y 8
Izawa (2017) y y n y n na na y y n n y nr y y 8
Jantunen (2017) y y y y n na na y y n n y nr n y 8
Johansson (2021) y y y y n na na y y y n y nr n y 9
Kim (2015) y y y y n na na n y n n y nr n y 7
Kruger (2016) y y nr y y na na n y n n y nr nr y 7
Lai (2020) y y nr y n na na y y y n y nr y y 9
Lerma (2018) y y nr y n na na y y n n y nr y y 8
Lohne-Seiler (2016) y y n y n na na n y n n y nr y y 7
Manas (2019) y y nr y n na na y y y n y nr y y 9
Meier (2020) y y nr y n na na n y n n y nr nr y 6
Mendham (2021) y y nr y y na na y y n n y nr nr y 8
Mizumoto (2015) y y n y n n n y y n y y nr n y 8
Nagai (2018) y y nr y n na na y y y n y nr y n 8
Oguma (2017) y y y y n na na n y y n y nr y n 8
Osuka (2015) y y y y n na na y y y n y nr n y 9
Pina (2021) y y nr n n na na y y y n y nr y y 8
Reid (2016)* y y n y y na na y y y n y nr nr y 9
Ribeiro (2020) y y y y y na na n y y n y nr n y 9
Rojer (2018) Y Y nr Y n na na y y y n y nr y y 9
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Author Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Total
Sanchez-Sanchez y y nr y n na na y y y n y nr y y 9
(2019)

Santos (2012) y y nr y n na na n y y n n nr nr y 6
Savikangas (2020) y y n y n na na y y y n y nr n y 8
Schrack (2019) y y nr y n na na n y y n y nr nr y 7
Spartano (2019) y y y y n na na y y y n y nr nr y 9
Thiebaud (2020)* y n nr n n na na y y y n y nr nr y 6
van der Velde (2017) y y y y n na na y y y n y nr y y 10
Ward-Ritacco (2014) y y nr y n na na y y y n y nr nr y 8
Ward-Ritacco (2020) y y nr y y na na n y y n y nr nr y 8
Westhury (2018) y y n y n na na y y n n y nr y n 7
Yamada (2011) y y nr n n na na n y n n n nr nr n 3
Yasunaga (2017) y y n y n na na y y y n y nr y y 9
Yerrakalva (2022) y y y y n y y y y y y y nr y y 13

y; Yes. n; no. na; not applicable. nr; not reported.

Q1 - Was the research question or objective in this paper clearly stated? Q2 - Was the study population clearly specified and defined? Q3 - Was the participation
rate of eligible participants >50%? Q4 - Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were
inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants? Q5 - Was a sample size justification, power
description, or variance and effect estimates provided? Q6 - For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s)
being measured? Q7 - Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed? Q8 -
For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or
exposure measured as continuous variable)? Q9 - Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented
consistently across all study participants? Q10 - Was the accelerometer protocol reported up to the standards of the Montoye et al. (2018) guidelines? Reporting
of; brand, epoch, placement, days, valid hours/days, non-wear criteria, accelerometer outcomes and interpretation (e.g. MVPA and cut points used) Q11 - Was
the exposure(s) assessed more than once over time? Q12 - Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented
consistently across all study participants? Q13 - Were the outcome assessors blinded to the exposure status of participants? Q14 - Was loss to follow-up after
baseline 20% or less? Q15 - Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between
exposure(s) and outcome(s) — with age + sex the minimum?
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QA score QA score

Mean (SD) Range
All reports (n = 42) 8.1(1.5) 3,13
Reports included in 8.2 (1.3) 6, 13

meta-analyses (k = 34)
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Appendix 8.5. Meta regressions and bubble plots.
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Supplementary Figure 1-5-1. Bubble plots of meta-regression for moderate-to-vigorous physical activity and handgrip strength for;
age, sample size (n), percentage of females per study, and risk of bias (quality assessment score)
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Supplementary Figure 1-5-2. Bubble plots of meta-regression for total physical activity with handgrip strength for; age, sample size
(n), percentage of females per study, and risk of bias (quality assessment score)
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MVPA and Chair rise by age MVPA and Chair rise by n
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Supplementary Figure 1-5-3. Bubble plots of meta-regression for moderate-to-vigorous physical activity with chair rise for; age,
sample size (n), percentage of females per study, and risk of bias (quality assessment score)
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Supplementary Figure 1-5-4. Bubble plots of meta-regression for moderate-to-vigorous physical activity with gait speed for; age,
sample size (n), percentage of females per study, and risk of bias (quality assessment score)
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Supplementary Figure 1-5-5. Bubble plots of meta-regression for total physical activity with gait speed for; age, sample size (n),

Weights: Inverse-variance

percentage of females per study, and risk of bias (quality assessment score)
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Supplementary Figure 1-5-6. Bubble plots of meta-regression for light physical activity with gait speed for; age, sample size (n),
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percentage of females per study, and risk of bias (quality assessment score)



Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:

Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. err.: SE
Random-effects meta-regression Number of obs = 13 Random-effects meta-regression Number of obs = 13
Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .01019 tau2 = .01046

(A) 12 (%) = 88.20 12 (%) = 87.25

H2 = 8.48 (B) H2 =  7.85

R-squared (%) = 0.00 R-squared (%) = 0.00

Wald chi2(1) = 0.06 Wald chi2(1) = 0.01

Prob > chi2 = 0.8063 Prob > chi2 - 0.9125

_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. Z P>|z| [95% conf. interval]
age -.0015296 .0062391 -0.25 0.806 -.0137581 .0106988 n -3.35e-06 .0000305 -0.11  0.912 -.0000631 .0000564
_cons .2862545 .4227316 0.68 0.498 -.5422842 1.114793 _cons .1868621 .0469646 3.98 0.000 .0948131 .2789111

Test of residual homogeneity: Q_res = chi2(11) = 102.16 Prob > Q_res = 0.0000 Test of residual homogeneity: Q_res = chi2(11) = 67.76 Prob > Q_res = 0.0000

Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:
Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. err.: SE

Random-effects meta-regression Number of obs = 13 Random-effects meta-regression Number of obs = 13

Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .009824 tau2 = .009458
12 (%) = 88.99 (D) 12 (%) = 87.73
(C) H2 =  9.08 H2 = 8.15
R-squared (%) = 0.00 R-squared (%) = 0.00
Wald chi2(1) = 0.59 Wald chi2(1) = 0.80
Prob > chi2 = 0.4439 Prob > chi2 = 0.3724
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
female .0022466 .0029346 0.77 0.444 -.003505 .0079983 rob -.0164824 .0184773 -0.89 0.372 -.9526972 .0197323
_cons .0525061 .1728945 0.30 0.761 -.2863609 .3913731 _cons .3284359 .1669153 1.97 0.049 .0012878 .6555839

Test of residual homogeneity: Q_res = chi2(11) = 100.63 Prob > Q_res = 0.0000 Test of residual homogeneity: Q res = chi2(11l) = 96.46 Prob > Q_res = 0.0000

Supplementary Figure 1-5-7. Meta-regression output for moderate-to-vigorous physical activity with chair rise for; (A) age, (B)
sample size, (C) percentage of females per study, and (D) risk of bias (quality assessment score)

Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:
Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. err.: SE
Random-effects meta-regression Number of obs = 11 Random-effects meta-regression Number of obs = 11
Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .001855 tau2 = .003481
(A) 12 (%) = 40.77 (B) I2 (%) = 51.14
H2 = 1.69 H2 = 2.05
R-squared (%) = 16.79 R-squared (%) = 0.00
Wald chi2(1) = 1.94 Wald chi2(1) = 0.00
Prob > chi2 = 0.1641 Prob > chi2 = 9.9970
_meta_es | Coefficient Std. err. 7 P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
age .0044013 .0031632 1.39 0.164 -.0017984 .010601 n -2.22e-07 .00008593 -9.00  0.997 -.0001165 .000116
_cons -.1362307 .221096 -0.62 0.538 -.5695709 .2971095 _cons .1717266 .0397358 4.32 0.000 .0938458 .2496073

Test of residual homogeneity: Q_res = chi2(9) = 16.68 Prob > Q_res = 0.0539 Test of residual homogeneity: Q_res = chi2(9) = 18.41 Prob > Q_res = 0.0307

Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:
Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. err.: SE

Random-effects meta-regression Number of obs = 11 Random-effects meta-regression Number of obs = 11

Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .002757 tau2 = .003025
C 12 (%) = 50.51 12 (%) = 46.71
( ) H2 = 2.02 (D) H2 = 1.88
R-squared (%) = 0.00 R-squared (%) = 0.00
Wald chi2(1) = 0.89 Wald chi2(1) = 0.15
Prob > chi2 = 0.3446 Prob > chi2 = 9.7000
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
female .0013765 .0014564 0.95 0.345 -.0014779 .0042309 rob .004495 .011664 0.39 0.700 -.018366 .027356
_cons .0823167 .096629 9.85 0.394 -.1070726 .271706 _cons .132817 .1023774 1.30 0.195 -.067839 .3334729

Test of residual homogeneity: Q _res = chi2(9) = 18.70 Prob > Q_res = 0.0279 Test of residual homogeneity: Q_res = chi2(9) = 17.18 Prob > Q_res = 0.0460

Supplementary Figure 1-5-8. Meta-regression output for total physical activity with gait speed for; (A) age, (B) sample
size, (C) percentage of females per study, and (D) risk of bias (quality assessment score)
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Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:

Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. err.: SE

Random-effects meta-regression Number of obs = 10 Random-effects meta-regression Number of obs = 10

Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .000882 tau2 = .001589
(A) I2 (%) = 42.12 B 12 (%) = 60.78
H2 = 1.73 ( ) H2 =  2.55
R-squared (%) = 35.33 R-squared (%) = 0.00
Wald chi2(1) = 2.28 Wald chi2(1) = 0.11
Prob > chi2 = 0.1308 Prob > chi2 = 0.7372
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
age -.0022516 .0014901 -1.51 0.131 -.0051721 .0006688 n 3.62e-06 .0000108 0.34 0.737 -.0000175 .0000248
_cons .197563 .0957764 2.06 0.039 .0098447 .3852814 _cons .0465493 .0291841 1.60 0.111 -.0106505 .1037492

Test of residual homogeneity: Q_res = chi2(8) = 11.76 Prob > Q_res = 0.1624 Test of residual homogeneity: Q_res = chi2(8) = 22.18 Prob > Q_res = 0.0046

Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:
Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. err.: SE

Random-effects meta-regression Number of obs = 10 Random-effects meta-regression Number of obs = 10

Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .001434 tau2 = .001326
(C) 12 (%) = 63.50 (D) 12 (%) = 58.22
H2 = 2.74 H2 = 2.39
R-squared (%) = 0.00 R-squared (%) = 2.76
Wald chi2(1) = 0.09 Wald chi2(1) = 0.98
Prob > chi2 = 0.7636 Prob > chi2 = 0.3215
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
female -.0004349 .0014457 -0.30 0.764 -.0032685 .0023987 rob -.0114224 .0115213 -0.99 0.321 -.0340036 .0111589
_cons .0785198 .082466 0.95 0.341 -.0831107 .2401502 _cons .1642439 .1121764 1.46 0.143 -.0556178 .3841056

Test of residual homogeneity: Q_res = chi2(8) = 23.15 Prob > Q _res = 0.0032 Test of residual homogeneity: Q_res = chi2(8) = 20.48 Prob > Q_res = 0.0087

Supplementary Figure 1-5-8. Meta-regression output for light physical activity with handgrip strength for; (A) age, (B) sample size,
(C) percentage of females per study, and (D) risk of bias (quality assessment score)

Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:
Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. ‘err.i SE

Random-effects meta-regression Number of obs = 18 Random-effects meta-regression Number of obs = 18

Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .002789 tau2 = .002925
(A) 12 (%) = 69.45 (B) 12 (%) = 70.27
H2 = 3.27 H2 = 3.36
R-squared (%) = 6.45 R-squared (%) = 1.91
Wald chi2(1) = 1.70 Wald chi2(1) = 1.25
Prob > chi2 = 0.1919 Prob > chi2 = 0.2629
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
age .0021139 .00162 1.30 0.192 -.0010613 .005289 n -.0000176 .0000157 -1.12  0.263 -.0000483 .0000132
_cons -.0698531 .1072536 -0.65 0.515 -.2800662 .14036 _cons .0926447 .0275085 3.37 0.001 .038729 .1465603

Test of residual homogeneity: Q_res = chi2(16) = 60.56 Prob > Q_res = 0.0000 Test of residual homogeneity: Q_res = chi2(16) = 63.56 Prob > Q_res = 0.0000

Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:
Effect size: fisherz Effect size: fisherz
std. err.: SE Std. err.; SE

Random-effects meta-regression Number of obs = 18 Random-effects meta-regression Number of obs = 18

Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .002721 tau2 = .003101
(C) 12 (%) = 68.74 (D) 12 (%) = 72.62
H2 = 3.20 H2 = 3.65
R-squared (%) = 8.75 R-squared (%) = 0.00
Wald chi2(1) = 1.39 Wald chi2(1) = 1.19
Prob > chi2 = 0.2379 Prob > chi2 = 0.2746
_meta_es | Coefficient Std. err. Z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
female .0007143 .0006053 1.18 0.238 -.000472 .0019007 rob -.0136958 .012535 =1.09 0.275 -.038264 .0108724
_cons .0278897 .0380723 0.73 0.464 -.0467307 .1025102 _cons .193879 .1158183 1.67 0.094 -.0331208 .4208788

Test of residual homogeneity: Q res = chi2(16) = 56.91 Prob > Q res = 0.0000 Test of residual homogeneity: Q res = chi2(16) = 68.20 Prob > Q_res = 0.0000

Supplementary Figure 1-5-9. Meta-regression output for moderate-to-vigorous physical activity with handgrip strength for; (A) age,
(B) sample size, (C) percentage of females per study, and (D) risk of bias (quality assessment score)
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Effect-size label: Standarised regression coefficient:

Effect size: fisherz

Effect-size label: Standarised regression coefficient:

Effect size: fisherz

Std. err.: SE Std. err.: SE
Random-effects meta-regression Number of obs = 14 Random-effects meta-regression Number of obs = 14
Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .002236 tau2 = .002162
(A) I2 (%) = 62.91 B I2 (%) = 64.32
H2 = 2.70 ( ) H2 = 2.80
R-squared (%) = 0.00 R-squared (%) = 0.00
Wald chi2(1) = 0.12 Wald chi2(1) = 0.55
Prob > chi2 = 0.7267 Prob > chi2 = 0.4572
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
age -.000644 .0018429 -0.35 0.727 -.004256 .0029679 n -8.25e-06 .0000111 -0.74 0.457 -.00003 .0000135
_cons .1121226 .1212493 0.92 0.355 -.1255216 .3497668 _cons .0845119 .0261942 3.23 0.001 .0331722 .1358516
Test of residual homogeneity: Q_res = chi2(12) = 35.89 Prob > Q_res = 0.0005 Test of residual homogeneity: Q_res = chi2(12) = 35.15 Prob > Q_res = 0.0004
Effect-size label: Standarised regression coefficient: Effect-size label: Standarised regression coefficient:
Effect size: fisherz Effect size: fisherz
Std. err.: SE Std. err.: SE
Random-effects meta-regression Number of obs = 14 Random-effects meta-regression Number of obs = 14
Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .002084 tau2 = .002052
(C) 12 (%) = 67.59 (D) 12 (%) = 65.50
H2 = 3.09 H2 = 2.90
R-squared (%) = 0.00 R-squared (%) = 9.00
Wald chi2(1) = 0.97 Wald chi2(1) = 1.57
Prob > chi2 = 0.3254 Prob > chi2 = 0.2097
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
female .0012018 .0012222 0.98 0.325 -.0011936 .00835973 rob -.0139659 .0111327 -1.25 ©.210 -.0357857 .0078538
_cons -.0018811 .0751264 -0.03 0.980 -.1491262 .1453639 _cons .1984021 .1038656 1.91 0.056 -.0051707 .4019749
Test of residual homogeneity: Q_res = chi2(12) = 36.19 Prob > Q _res = 0.0003 Test of residual homogeneity: Q_res = chi2(12) = 35.65 Prob > Q_res = 0.0004

Supplementary Figure 1-5-10. Meta-regression output for total physical activity with handgrip strength for; (A) age, (B) sample size,
(C) percentage of females per study, and (D) risk of bias (quality assessment score)

Effect-size label: Standarised regression coefficient:

Effect-size label: Standarised regression coefficient:

Effect size: fisherz

Effect size: fisherz

Std. err.: SE Std. err.: SE
Random-effects meta-regression Number of obs = 16 Random-effects meta-regression Number of obs = 16
Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .004312 tau2 = .004534
(A) I2 (%) = 60.29 B) I2 (%) = 59.50
H2 = 2.52 H2 = 2.47
R-squared (%) = 0.00 R-squared (%) = 0.00
Wald chi2(1) = 0.26 Wald chi2(1) = 0.11
Prob > chi2 = 0.6098 Prob > chi2 = 08.7366
_meta_es | Coefficient Std. err. Z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
age .0022648 .0044372 0.51 0.610 -.006432 .0109617 n -.0000167 0000498 -0.34 0.737 -.0001143 .0000808
_cons .1017223 .3221858 0.32 0.752 -.5297502 .7331949 _cons .2742415 .0338929 8.09 ©.000 .2078127 .3406704
Test of residual homogeneity: Q_res = chi2(14) = 42.46 Prob > Q_res = 0.0001 Test of residual homogeneity: Q_res = chi2(14) = 42.36 Prob > Q_res = 9.0001

Effect-size label: Standarised regression coefficient:

Effect size: fisherz

Effect-size label: Standarised regression coefficient:

Effect size: fisherz

Std. err.: SE Std. err.: SE
Random-effects meta-regression Number of obs = 16 Random-effects meta-regression Number of obs = 16
Method: REML Residual heterogeneity: Method: REML Residual heterogeneity:
tau2 = .004089 tau2 = .00322
12 (%) = 60.08 I2 (%) = 49.90
(C) H2 = 2.51 (D) H2 = 2.00
R-squared (%) = 0.00 R-squared (%) = 19.09
Wald chi2(1) = 0.58 Wald chi2(1) = 2.70
Prob > chi2 = 0.4452 Prob > chi2 = 9.1001
_meta_es | Coefficient Std. err. z P>|z| [95% conf. interval] _meta_es | Coefficient Std. err. z P>|z| [95% conf. interval]
female -.00087869 .0010307 -0.76  0.445 -.0028069 .0012332 rob -.0196365 .0119405 -1.64 ©.100 -.0430395 .0037666
_cons .3113835 .0638756 4.87 0.000 .1861897 .4365774 _cons .4357582 .10957488 4.12 0.000 .2284944 .643022
Test of residual homogeneity: Q res = chi2(14) = 41.60 Prob > Q_res = 0.0001 Test of residual homogeneity: Q_res = chi2(14) = 30.14 Prob > Q_res = 0.0073

Supplementary Figure 1-5-11. Meta-regression output for moderate-to-vigorous physical activity with gait speed for; (A) age, (B)
sample size, (C) percentage of females per study, and (D) risk of bias (quality assessment score)
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Appendix 8.6. Eggers and funnel plots.

. *Chair_mvpa
. meta bias if pa==2 & pf==1, egger

Effect-size label: Standarised regression coefficient:

Effect size: fisherz
5td. err.: SE

Regression-based Egger test for small-study effects
Random-effects model
Method: REML

H8: betal = B; no small-study effects

betal = 1.61

SE of betal = 8.974 (A)
z = 1.65
Prob > |z| = 8.8993

. meta bias if pa==2 & pf==2, epgger

Effect-size label: Standarised regression coefficient:

Effect size: fisherz
std. err.: SE

Regression-based Egger test for small-study effects
Random-effects model

Method: REML

He: betal = @; no small-study effects

betal = .48

SE of betal = 1.823 (C)
z = 8.47
Prob > |z]| = 8.6378

. meta bias if pa==1 & pf==@, egger

Effect-size label: Standarised regression coefficient:

Effect size: fisherz
Std. err.: SE

Regression-based Egger test for small-study effects
Random-effects model
Method: REML

He: betal = 8; no small-study effects

betal = -2.86

SE of betal = 8.784 E
z = -8.88
Prob > |z| = 9.9373

. meta bias if pa==8 & pf==2, egger

Effect-size label: Standarised regression coefficient:

Effect size: fisherz
Std. err.: SE

Regression-based Egger test for small-study effects
Random-effects model

Method: REML

HB: betal = @; no small-study effects

betal = 1.26

SE of betal = 1.192
e 2= (R

Prob > |z| = 8.2899

. meta bias if pa==0 & pf==8, egger

Effect-size label: Standarised regression coefficient:

Effect size: fisherz
Std. err.: SE

Regression-based Egger test for small-study effects
Random-effects model

Method: REML

HB: betal = @; no small-study effects

betal = 8.53

SE of betal = 8.699 (D)
z = .76
Prob > |z| = 8.4448

. meta bias if pa==2 & pf==8, cgger

Effect-size label: Standarised regression coefficient:

Effect size: fisherz
Std. e&rr.: SE

Regression-based Egger test for small-study effects
Random-effects model

Method: REML

He: betal = @; no small-study effects

betal = B.69

SE of betal = e.6e77 (F)
= 1.81
Prob > |z| = 8.3186

Supplementary Figure 1-6-1. Egger’s test output for the associations between; (A) moderate-to-vigorous physical activity and chair
rise (B) total physical activity and gait speed (C) moderate-to-vigorous physical activity and gait speed (D) total physical activity and
handgrip strength (E) light physical activity and handgrip strength (F) moderate-to-vigorous physical activity and handgrip strength
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Supplementary Figure 1-6-2. Bubble plots, visual output of Egger’s tests for the associations between; (A) moderate-to-vigorous
physical activity and chair rise (B) total physical activity and gait speed (C) moderate-to-vigorous physical activity and gait speed (D)
total physical activity and handgrip strength (E) light physical activity and handgrip strength (F) moderate-to-vigorous physical
activity and handgrip strength
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Appendix 8.7. Leave-one-out analysis.

(A) (B)

Standarised regression coefficient: Standarised regression coefficient:

Omitted study n with 95% ClI Omitted study n with 95% Cl
Cooper 2015 1651 ——— 0.08 [ -0.05, 0.20] Duck 2019 99 B N E— 0.06 [-0.01,0.12]
Hall 2017 483 = 0.08 [-0.05, 0.22] Hall 2017 489 ‘ 0.05[-0.05, 0.14]
Hsueh 2020 123 —— 0.13[ 0.09, 0.17] Hsueh 2020 123 —_—r 0.09[ 0.02,0.15]
2 0 1 2 Yasunaga 2017287 0.06 [ -0.03, 0.16]
Random-effects REML model »_(‘)5 6 ,65 :| _1'5

Random-effects REML model

Standarised regression coefficient:

Standarised regression coefficient:

Omitted study n with 95% CI Omitted study n with 95% CI

Cooper 2015 | 1651 —_—— 0.18[0.13, 0.24] Hall 2017 489 0.23[0.07, 0.38]
Davis 2014 | 217 R 0.16 [0.09, 0.23] Hsueh 2020 123 0.27[0.19, 0.35]
Hall 2017 489 ———— 0.14[0.07, 0.22] Lohne-Seiler 2016 152 0.23[0.13, 0.33]

Hsueh 2020 123 . —
lzawa 2017 200 ———1——
Yasunaga 2017 287 —————=——

0.15[0.08, 0.21]
0.13[0.07, 0.20]
0.14[0.07, 0.22]

Random-effects REML model

065 a4 A5 2 25
Random-effects REML model

Supplementary Figure 1-7-1. Balance leave-one-out sensitivity analysis for the association with (A) total physical activity (B) light physical activity
(C) moderate-to-vigorous physical activity (D) step count

(A) (B)
Standarised regression coefficient: Standarised regression coefficient:

Omitted study n with 95% Cl Omitted study n with 95% CI

Cooper 2015 1617 ——— 0.14[0.10, 0.18] Hall 2017 489 0.09[0.06,0.12]
Hall 2017 489 @ —— 0.13[0.10,0.17] Hsueh 2020 124 0.10[0.07,0.12]
Hsueh 2020 124 0.14[0.11,0.17] Johansson 2021 3653 ——————=—— 0.08 [0.06,0.11]
Jantunen 2017 695 . 0.15[0.13,0.17] Lerma 2018 91 0.09[0.07,0.12]
Johansson 2021 3653 ——————=— 0.13[0.09, 0.17] Osuka 2015 802 0.10[0.07,0.13]
Ribeiro 2020 227 —_— 0.15[0.12,0.17] Ribeiro 2020 227 0.10[0.07,0.12]
van der Velde 2017 1932 0.14[0.09, 0.18] van der Velde 2017 1932 f———— 0.10[0.07,0.13]
Yerrakalva 2022 1433 —————1——— 0.13[0.09,0.17] Yerrakalva 2022 1433 —— 0.10[0.07,0.13]

Random-effects REML model

Standarised regression coefficient:

Random-effects REML model

Standarised regression coefficient:

Omitted study n with 95% CI Omitted study n with 95% CI

Cooper 2015 1617 ———— 0.19 [0.13, 0.26] Hall 2017 489 0.22[0.02, 0.42]
Davis 2014 217 — 0.18[0.12, 0.25] Hsueh 2020 124 —— 0.29[0.08, 0.50]
Hall 2017 489 ——— 0.18[0.11, 0.24] Spartano 2019, = 1352 RS 0.34[0.22, 0.46]
Hsueh 2020 124 L 0.18 [0.12, 0.25] Ward-Ritacco 2014 64 —_— 0.23[0.04, 0.42]

Johansson 2021 3653 ——=—1———

0.17 [0.11, 0.23]

Lai 2020 e —=FfF—— 0.17 [0.11, 0.23]
Lerma 2018 9] ————a—— 0.17 [0.11, 0.24]
Ribeiro 2020 227 e 0.19[0.13, 0.25]
Santos 2012 312 e 0.18[0.12, 0.25]
Spartana 2019 1352 T 0.20 [0.14, 0.25]

van der Velde 2017 1932

Ward-Ritacco 2014 64 ———1——

Yerrakalva 2022 1433

0.18[0.11, 0.25]
0.17 [0.11, 0.23]
0.19 [0.12, 0.26]

Random-effects REML model

25

Ward-Ritacco 2020 80

Random-effects REML model

0.24 [0.04, 0.45]

Supplementary Figure 1-7-2. Chair rise test leave-one-out sensitivity analysis for the association with (A) total physical activity (B)
light physical activity (C) moderate-to-vigorous physical activity (D) step count
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Standarised regression coefficient:

(B)

Standarised regression coefficient:

Omitted study n with 95% CI Omitted study n with 95% CI
Hall 2017 489 — 0.18[0.13, 0.23] Hall 2017 489 -————— 0.12[0.05,0.19]
Hsueh 2020 124 _— 0.17 [0.12, 0.22] Hsueh 2020 124 0.12[0.05, 0.18]
Kim 2015 207 ————— 0.17[0.12, 0.21] Lerma 2018 91 0.11[0.05, 0.18]
Kruger 2016 247 —_— 0.17 [0.13, 0.22] Mendham 2021 Hl——T— 0.10[0.04, 0.15]
Mendham 2021 11 —_—r 0.16 [0.12, 0.20] Pina 2021 288 —— 0.10[0.04, 0.17]
Pina 2021 288 @————— 0.17[0.12, 0.21] Sanchez-Sanchez 2019497 ———— 0.12[0.09, 0.16]
Rojer 2018 236 ———— 0.18 [0.14, 0.22] Savikangas 2020 20— —= 0.10[0.04, 0.17]
Sanchez-Sanchez 2019497 ~———+——— 0.17 [0.12, 0.22] Yasunaga 2017 287 0.12[0.05,0.19]
Schrack 2019 680 — 0.18[0.13, 0.23] Yerrakalva 2022 1433 p——— 0.12[0.04, 0.19]
Westbury 2018 131 —_—— 0.16 [0.12, 0.21] 05 4 15 2

Yerrakalva 2022 1433 ———=7—— 0.16 [0.11, 0.21] Random-effects REML model

Random-effects REML model

25

(C) (D)
Standarised regression coefficient: Standarised regression coefficient:

Omitted study n with 95% Cl Omitted study n with 95% CI
Adachi 2018 313 ——————— 0.26 [0.22, 0.31] Adachi 2018 313 e 0.26 [0.16, 0.35]
Aoyagi 2009 170 ————— 0.26 [0.22, 0.31] Aoyagi 2009 170 ——————= 0.26 [0.16, 0.35]
Davis 2014 217 @ —— 0.27[0.22, 0.31] Hall 2017 489 s 0.25[0.15, 0.34]
Gobbo 2020 151 _— 0.27[0.23, 0.32] Hsueh 2020 124 —— 0.26 [0.17, 0.35]
Hall 2017 489 @ — e 0.27[0.22, 0.32] Meier 2020 | 304 —_—— 0.28[0.20, 0.37]
Hsueh 2020 U 0.27[0.22, 0.31] Rojer 2018 236 _ 0.25[0.16, 0.34]
lzawa 2017 o, A 0.26 [0.21, 0.30] Spartano 20191352 e 0.30[0.22, 0.37]
Lerma 2018 ) N E— 0.26[0.22, 0.31] -'1 2 3 4
Mendham 2021 111 ——e— 0.26 [0.22, 0.30] Randomeffects REML model
Pina 2021 288 _— 0.27[0.23, 0.32]
Sanchez-Sanchez 2019497 —_— 0.27 [0.22, 0.32]
Savikangas 2020 293 ——o—— 0.26 [0.22, 0.31]
Spartano 2019 1352 ————1—— 0.25[0.21, 0.30]
Westbury 2018 131 —_— 0.27[0.22, 0.31]
Yasunaga 2017 287 —————— 0.26 [0.22, 0.31]
Yerrakalva 2022 1433 —_— 0.28 [0.24, 0.32]

Random-effects REML model

35

Supplementary Figure 1-7-3. Gait speed leave-one-out sensitivity analysis for the association with (A) total physical activity (B) light
physical activity (C) moderate-to-vigorous physical activity (D) step count

(A)

(B)

Standarised regression coefficient: Standarised regression coefficient:

Omitted study

n

with 95% CI

Omitted study n

with 95% CI

122 —

Cooper 2015 1589 e 0.22[0.05, 0.38] Hsueh 2020 e 0.12[0.03, 0.21]
Hsueh 2020 122 =% - 0.21[0.12, 0.30] Mendham 2021 111 | ———=+— 0.08[0.03, 0.14]
Mendham 2021 111 —— 0.18[0.14, 0.23] Osuka2015 802 — o — 0.14[0.02, 0.25]

0 2
Random-effects REML model

(C)

Yasunaga 2017 287 |

0

Random-effects REML model

Standarised regression coefficient:

0.13[0.01, 0.24]

Standarised regression coefficient:

Omitted study n with 95% CI Omitted study n with 95% CI
Cooper 2015 1589 e 0.26 [0.15, 0.37] Hsueh 2020 122 0.25[0.03, 0.46]
Gobbo 2020 151 M S 0.27 [0.17, 0.37] Ward-Ritacco 2014 64 ——— e —— 0.21[0.07, 0.35]
Hsueh 2020 122 0.24[0.13, 0.36] Ward-Ritacco 2020 80 —t 0.29[0.14, 0.43]
Izawa 2017 200 — o f—— 0.22[0.11, 0.33] 0 5

Lai 2020 118 0.24[0.13, 0.36] Random-effects REML model

Mendham 2021 M1 — 0.24 [0.13, 0.35]

Santos 2012 312 — 0.26 [0.16, 0.37]

Ward-Ritacco 2014 64 —— 0.24[0.13, 0.35]

Yasunaga 2017‘ 287 ———=—— 0.21[0.12, 0.31]

Random-effects REML model

Supplementary Figure 1-7-4. Timed up-and-go leave-one-out sensitivity analysis for the association with (A) total physical activity
(B) light physical activity (C) moderate-to-vigorous physical activity (D) step count
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(A) (C)
Standarised regression coefficient: Standarised regression coefficient:
Omitted study n with 95% CI Omitted study n with 95% CI
Cooper 2015 1612 —_— 0.07 [0.04, 0.11] Adachi 2018 313 0.07 [0.03, 0.10]
Cooper 2020 4702 = 0.07[0.03, 0.11] Aoyagi 2009 170 —_— 0.07[0.03, 0.10]
Hsueh 2020 124 —————— 0.07 [0.04, 0.10] Cooper 2015 1612 —— 0.07[0.03, 0.11]
Johansson 2021 3653 R 0.08 [0.04, 0.11] Cooper 2020 (m) 2240 —_—— 0.08[0.05, 0.11]
Kim 2015 207 —_— 0.07 [0.03, 0.10] Cooper 2020 (f) 2462 — 0.07[0.03, 0.11]
Kruger 2016 247 1 0.06 [0.03, 0.10] Gobbo 2020 151 eSS 0.07 [0.04, 0.11]
Mendham 2021 11 — 0.07 [0.03, 0.10] Hsueh 2020 124 _— 0.07 [0.03, 0.10]
Pina 2021 288 e 0.07[0.03, 0.11] Johansson 2021 3653 —— 0.07[0.04, 0.11]
Ribeiro 2020 230 —_——— 0.07 [0.04, 0.11] Lai 2020 118 R —— 0.07 [0.03, 0.10]
Rojer 2018 236 _—— 0.07 [0.04, 0.11] Mendham 2021 111 0.07 [0.03, 0.10]
Sanchez-Sanchez 2019497 —_—— 0.07 [0.03, 0.10] Ribeiro 2020 230 S 0.07 [0.03, 0.10]
van der Velde 2017 1932 —_— 0.05[0.03, 0.08] Pina 2021 288 S— 0.07 [0.03, 0.10]
Westbury 2018 131 —— 0.07[0.03, 0.10] Sanchez-Sanchez 2019497 ~—— 0.07 [0.03, 0.10]
Yerrakalva 2022 1433 e 0.08 [0.04, 0.11] Spartano 2019 1352 —— o 0.06 [0.03, 0.10]
0 05 1 van der Velde 2017 1932 ————=——— 0.06 [0.03, 0.09]
Random-effects REML model Westbury 2018 131 0.07[0.03, 0.10]
Yasunaga 2017 287 ——— 0.07[0.04, 0.11]
Yerrakalva 2022 11433 ——— 0.07[0.04, 0.11]
02 04 06 08 A
Random-effects REML model
(B) (D)
Standarised regression coefficient: Standarised regression coefficient:
Omitted study n with 95% CI Omitted study n with 95% Cl
Cooper 2020 4702 | ———1—— 0.05[0.01, 0.08] Adachi 2018 313 e 0.02[-0.04, 0.08]
Hsueh 2020 124 0.05[0.02, 0.09] Aoyagi 2009 170 ——r—=1—— 0.01[-0.04, 0.06]
Johansson 2021 3653 ——— 0.06 [0.03, 0.10] Hsueh 2020 124 ——=1+—— 0.01 [ -0.04, 0.06]
Mendham 2021 111 —_— 0.05[0.02, 0.09] Lohne-Seiler 2016 152 s e 0.03 [ -0.03, 0.08]
Pina 2021 288 — 0.06 [0.02, 0.09] Meier 2020 304 E— 0.03[-0.03, 0.08]
Ribeiro 2020 230 —_—— 0.06 [0.02, 0.09] Rojer 2018 236 e 0.02[-0.03, 0.08]
Sanchez-Sanchez 2019497 E— 0.05[0.01, 0.09] Spartano 2019 (m) 622 T A 0.04 [-0.00, 0.09]
van der Velde 2017 1932 | —————— 0.04 [0.01, 0.08] Spartano 2019 (f) 730 —————— 0.01[-0.05, 0.07]
Yasunaga 2017 287 — 0.05[0.02, 0.09] -05 0 05
Yerrakalva 2022 1433 e — 0.06 [0.03, 0.10] Random-effects REML model

Random-effects REML model

Supplementary Figure 1-7-5. Handgrip strength leave-one-out sensitivity analysis for the association with (A) total physical activity
(B) light physical activity (C) moderate-to-vigorous physical activity (D) step count

Standarised regression coefficient: Standarised regression coefficient:

Omitted study n with 95% CI Omitted study n with 95% CI

Hall 2017 489 E— 0.18[0.05, 0.30] Hall 2017 489 ———=—— 0.22[0.16, 0.28]
Jantunen 2017 695 e i —— 0.20[0.09, 0.31] Lerma 2018 9f ———— 0.19[0.15, 0.22]
Mendham 2021 111 ———— 0.16 [0.06, 0.25] Mendham 2021 M1 —— 0.18[0.15, 0.22]
Ribeiro 2020 226 e e—— 0.21[0.13, 0.30] Ribeiro 2020 s === 0.21[0.15, 0.27]
Schrack 2019 680 E— 0.19[0.06, 0.31] Savikangas 2020 293 ——+—— 0.18[0.15, 0.22]
van der Velde 20171932 e 0.16 [0.05, 0.27] van der Velde 20171932 0.22[0.14, 0.29]

0 A 2 3 15 2 25 3

Random-effects REML model

Standarised regression coefficient:

Random-effects REML model

Standarised regression coefficient:

Omitted study n with 95% CI Omitted study n with 95% Cl
Hall 2017 489 0.38[0.29, 0.46] Hall 2017 489 0.41[-0.07, 0.89]
Lerma 2018 91 ——+—— 0.34[0.29, 0.40] Ward-Ritacco 2014 64 T 0.34[ 0.05, 0.63]
Mendham 2021 111 e 0.37[0.30, 0.44] Ward-Ritacco 2020 80 — 0.53[ 0.35, 0.70]
Santos 2012 312 ———— 0.38 [0.30, 0.46] 0 2 4 6 38

Savikangas 2020 293 ———— 0.32[0.28, 0.35] Random-effects REML model

van der Velde 20171932

Ward-Ritacco 2014 64 ———=—

Random-effects REML model

3

.35

0.38[0.30, 0.46]
0.35[0.29, 0.41]

Supplementary Figure 1-7-6. Walk test leave-one-out sensitivity analysis for the association with (A) total physical activity (B) light
physical activity (C) moderate-to-vigorous physical activity (D) step count
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Appendix 8.8. The Maastricht Study data access application (Appendix B).

THE
Wersion 4, May 2022 MAASTRICHT
STUDY

Appendix B

Analysis Plan/Application data/materials

To be filled in by The Maastricht Study

Analysis plan & Date received: Date approval:

Applicafions submitted on Tueszday in cdd weeks, are in general discuzeed on Thursday i even weeks (Wi the.
sxcenfinon of July and Auguat).

1. Title:

Variation in the behavigural composition and temporal distribution of wpright events and the
aszociations with physical functicn

2. Applicant *:

Mame: Joshua Culverhouse

Position: PhD student

Institute: University of Exeter

Address: S Lukes Campus, Heaviiree Rd, Exeter EX1 2LU, UK

Email: josh_culverhouwsei@maastrichtuniversity.nl
j.culverhousei@exeter ac_uk

Phone number: 07710970308

* NOTE: For student projects, a different form applies. Please see appendix F.

3. Co-applicants

Writing team: Dr Richard Pulsford, Associate Professor Melvyn Hillsdon, Associate Professar
Annemarie Koster

Informed co-owner(s): yes (sinke thru or delefs what iz not sapplicable)
Mame(s) co-owner(s) that were informed:

A Koster

B de Galan

H Savelberg
GJ Dinant

P Dagnelie

C Stehouwer

C wvd Kallen

H Bosma
Simone Eussen
M van Dongen

Provide list of co-owner(s) who agreed to be co-author:
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A Koster

B de Galan

H Savelberg

C Stehouwer

H Bosma
Simone Eussen

4, Research questions and hypotheges:

Are the distribution and composition of upright events associated with measures of physical function?

Hypothesis:
¢ A higher number of majority stepping events will be associated with better physical functicn
performance
« A higher number of majority standing events will be asseciated with better physical functicn
performance

* Longer longest stepping event, and higher highest cadence events, will be associated with
better physical function performance

« We are unsure of the direction of the association with temporal distribution (burstiness)
metrics.

5. Background
EBackground and rationals for addrezsing the research questions and hypotheses.

Phyysical function 1z a key determinant of healthy ageing and is predictive of falls, hospitalization,
morbidity, and mortality.(1-2) Physical activity has been linked with physical function, with greater
levels of activity and struchured exercise interventions showing improvement or delay in the loss of
physical function in older adults (3-4). However, much of this evidence is based largely on self-
reports of physical activity.

Device-bazad measures of physical activity address many of the limitations of self-report and provide
precise and accurate information of phvsical activity behaviours, including mevement, nactivity, and
posture. A number of studies have begun to examine associations between device-derived metrics of
physical activity and physical fimction outcomnes, with positive associations.(3-6) However, thess
studies have described physical activity by summanizing steps or movement acceleration over
predefined time periods, or epochs, and then aggregating these summary measures to produce broad
estimates of averape amounts of phiysical activity achieved over a day or week. This approach may
miss important differences in how the physical activity is accurnulated.

In free-living, physical behaviours are comprized of 2 series of contignous “events’ (V) Active
behaviowrs begin with a transition from sitting to an upright posture, and end with a fransition back to
a sezted posture (at which time an mactive event begins). These upright events are considered
‘physically active’ (or non-sedentary), but vary considerably m terms of the amount and intensity of
movement that ccours within them (versus the amount of standing)), their duration, frequency, and
their distribution acress a day or week (5)

The vanaticn mn the composition and distribution of these events are potentially linked with physical
function outcomes {3) However, these differences are almost entirely masked by the process of
summarizing behaviours over epochs and then aggregating these epochs to compute summary activity
metrics for a day or wesk. Using the activPAL events and stepping cutput, we have developed a
method for characterizing the composition and distribution of upright events, and have applied these
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m ongoing work with the 1970 British Cohort Study to examine associations with socioeconomic and
lifestyle characteriztics, and basic health outcomes in a middle-aged population (age 46). In addition,
we have applied these new metrics to basic phy=ical fimetion cutcomes, including grip strength and
the SF-36.

The Maastricht Stody not only has activPAL data on over 2k people, it also has a more extensive
range of physical function measures including the chair stand test and the S-mumste walk test. In the
proposed work we amm to characterize the aszociations between the composition and distribution of
upright events with indices of phy=ical fimction.

Peferences:

(1) Cooper B, Kuh D, Cooper C, et al. Objective measures of physical capability and subssquent
health: A systematic review. Age dgeing. 2011;40013:14-23. doi:10.1095/azeimg/afg117

(2} Cooper B, Koh D, Hardy B Objectively measured physical capability levels and mortality:
Systematic review and meta-analysis. AL 2010;341(77741:639. doa-10.1136/m).c4467

(3) Dipietrg L. Camphell WW, Buchner DM, et al. Physical Activity, Injuricus Falls, and
Physical Function m Aging: An Umbrella Review. Med Sci Sporis Exerg. 2019;51(6):1303-
1313, doi:10.1249/MIS5 0000000000001942

(4) Chaze JAD), Phallips LT, Brown M. Physical activity intervention effects on physical fimetion
among community-dwelling older adults: & systematic review and metz-analysis. JAging
Fhyr et 2007;25(17:149-70. doi; 10.1123/japa 2016-0040.

(3} Culverhouse JW, Hillsdon M, Lear B Brailey G, Metcalf B. Nunns M, Pulsford B “The
aszociation between device-measured physical activity and performance-bazed physical
fimction cutcomes in adults: a systematic review and meta-analysis’ BLT Public Health
( Urnder raview)

(6) Famsey KA Pojer AGM, Andrea LD, Heymans MW, Trappenburg MC, Verlaan 3, et al.
The association of objectively measured physical activity and sedentary behavior with
skeletal muscle strength and muscle power m older adults ;. A systematic review and meta-
analysis. 2021;67(January). dei- 10.1016/.am 2021.101266.

(7} Granat MH. Event-based analysis of free-living behaviour. Plygiof Meas. 2012;33(113:1783-
BOO. dpi- 10.1088/0967-3334/33/11/1785.

(3} Park C, Mishra B Golledze ], Najafi B. Digital biomarkers of physical frailty and frailty
phenotypes using sensor-based physical activity and machine leaming. Sensors.
2021;21016):1-12. doi- 10.3390/:21163289.

6. Design and sample
Study design and main in- and exclusion chitena of the study sampls, 5.9, cross-sectional study in
participants with fype 2 diabefes.

Cross-sectional study in participants with aclivPAL accelerometer data and physical function
outcomes
T, Variables

Al requested variables showld be lisfed in the Table. Please copy — pasfe the exact vanable names
from the online data dictionary of The Maasiricht Study (hifpsYdemsasirichistudie app/data-
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= Plagze nofe thal with respect do the GOPR, information about co-owners cannct be found in thiz dafs
dictionary. In ime, the dats dichionary will be coupled fo & new dsfa request spplication system. Az soon s thiz
coupling iz 8 fact, co-cwners will be informed automafically after 5 data request has been submitted bo the
NMasstrichf Study. Until then, you can confacf the dafa mansgement team for information on the co-owners.

Variable Name

General Description

| "Co-owneris)"

Main independent variablafs)

activPAL derved variables:

- Upnght duration

- Stepping duration

- Average upright event
duration

- Burstiness (upright)

- Burstiness (non-upright)

events
events
events

- Longest stepping event
- Step-weighted cadence

- Mumber of upright events

- Mumber of stepping upright
- Mumber of standing upright

- Mo of faster stepping upright

- Highest cadence step event

Either raw activPAL files — or
Events output — the listed
metrics will be derved by the
applicant

A Koster, B de Galan; H
Savelberg

acceleramatne.data. available

accelerometry data available
and valid

Owuicome variable(s)

6 minute walk test vars: Walktest completed? H Savelherg; A Koster;
Wicompeted Once starfed, did participant GJ Dinant
Wifinish comiplete GMWT?
Wldistanne Distance covered SMWT (m)
| MiTspesd Gait speed 6MWT (m/s)
H Sauvelberg: A Woster

Timed chair stand test vars: H Savelherg, A Koster,
ToSTdans Timed chair stand test GJ Dinant
JCaTtime performed?

TCET fime ()
GRIP max. Qverall Maximal Grip strength Cwverall P Dagnelie, A Koster, GJ
GRIP..ava. Querall (k) Dinant

Mean Grip strength Both hands

(kg)
SF36 vars: SF36 physical functioning
SF36_PF General health rafing
SF3e_Q0 SF36 Physical compaonent
SF36_PCS SuUmMMmary score
SF36 GH SF36 general health
Conmfounders
Age Age at visit 1 (vears)
SEx Sex of the participant
B Body mass index

DEXA_WE_TOTAL_PFAT

Dexa total body fat percentage

C Stehouwer; G wd
Kallen

N_Diabetes_WHOZ;
M_Diabetes_2b

Diabetes

M _Education 3cat

Education level 3 categories
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Ingome. saunalent Income level that takes
houzseheld size into account
N_CcoupationalStatusGroup |SEINS | Occupational status groups A Koster; H Bosma
based on ISEI-03
smoking 3cat Smoking status (3 categories)
NIT aleghgltat Alcohol total (g/day)
DHD. suml; DHCL S0 min.ale Diet Simone Eussen; M van
Dongen
a. Statistical analyses

Concisely describe the stalistical amalyses. This shouwld include: 1. Statisfical festing, 2. Mods!
stricture; 3. Sensitivity analyses; and 4. Inferaction and stralifed analyses.

If applicable, a claar disfinction showld be mads befween canfounders, interactions and mediafors
{for statistical advice Sse Altachment 1).

1. Statistical testing
The analyfical =ample will include all participants in the The Maastricht Study who have
activPAL data and performance-based measures of physical function (listed above). Cross-
sectional analyses of the association between upright event metrics (derved from the
activPAL) and physical function cutcomes will be examines using multvariate regression.
Azsumptions: Explanatory variables are continuous and will be divided into quintiles for visual
inspection of ineanty. Histegrams of the residuals of the will be checked for normality.

In addition to the inferential statistics, thorowgh descriptive summanes of the uprght metrics
and physical function owtcomes will be produced.

2. Model structure

«  Model 1: crude; each newly derived upright/stepping event metric will be regressed
individually with each of the physical funcfion measures (addifionally adjusted for waking wear
fime)

« Model 2- as model 1 + socic-demographics (age, sex, T2DM, education, and income)

* Model 3- as model 2 = lifestyle factors (body composition, smoking, alcchol use, and dief)

+« Model 4: as model 3 + adjustment for tradificnal stepping metrics; total step count, duration of
upright time, duration of stepping

3. Interaction and siratified analyses
Interaction of sex and type 2 diabetes will be performed.

4. Exclusions
Analyses will be performed using a ‘complete case analysis’ approach. The requested
cenfounders are commen covariates that should be available for fhe_majority_of the sample,
and the number of participants excluded on this basis should be minimal. Paricipants require
activPAL data to be included. This is re-gnalysed, by the applicants and requires participants
fo hiave a minimum number of “valid days’, determined by wear hours.

9. Mock Tables

Include mock-up of key tables.

Please zee supplementary document attached with drafi tables.
10. Timeline

A& timeline for completion and submission of the paper.

The main applicant iz currently im Maasiricht and we expect that data analyses can be performed
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between June and July 2023, with a draft paper produced by August, with a view to submit the paper
by September 2023.

11. Compensation

What compensation is proposed by the applicant?

(for information refer to ‘Procedure data materials’ see https-ivawnw demaastrichiztudie. nlfdata-
guidelines)

The main applicant (Joshua Culverhouse) is a visiting PhD student from the University of Exeter, UK.
He is currently hosted at Maasfricht University by Associate Professor Annemarie Koster, where he
will be reprocessing the activPAL data to create new vanables describing the composition and
temporal distribution of upright events — as compensation for access to the dafa. These new mefrics
will b2 made available for others to utilize.

12. Agreement for the of data and/or materials of the Maastricht Study
This agreement is for the analysis plan entitled:

Variation im the behayvioural composition and temporal distribufion of upright evenis
The participating researchers are:

Joshua Culverhouse
Richard Pulsford
Melwyn Hillsdon

| cerlify that | am aware of the rules described in “Procedure Data/Materials - The Maastricht Study’

which include:

' The data/materials should be freated confidentially

' The data/materials may not be shared with ofhers whe are not incleded in this project

' | agree with the “Maastricht Study Data License Agreement” as stated in Appendix D (see
below)

' The approval is valid for 1 year: After a year a written progress report should be submitied.

' For publications the rules as described in the “Procedure Publicaiis’ are applicable.

Date 12/06/2023

Name main applicant and signature

Joshua Culverhouse
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Appendix 8.9. Stata syntax to produce upright and stepping event metrics

from activPAL stepping output .csv.

06_11_23_activpal_code_bcs70_assoc.do - Printed on 19/05/2024 17:56:23

I

2 e - — -

3 1% 218 25 - i . K

& T3 ) .= 1ae . . Ly eyl §

A g S | Nl 0 | G LT e | N

I W B o U R LN NI S

G O N () e V) 1t ) | ) o T ) (i) R, O | Y

8

9 LD = () K 0

B NR R e B am Al B 1Ry

i Nt Al A =

12 183 I LISy 1) I s

13 el % 1 ks

14 [ | 2

15 (A \__/'

16 .

i A ) ©7 ¢ AL 2

18 | ey, PO Jures. L LRSS

X9 483 BN R OF OO s

20 1Py R AR Y

21 €9 L)X __T\Ie)
S i W [

22: &f

23 LA R E R R 2 2 R R R e e R R R R R R R R R R R R R S R R S R R R ]

24  * Project title: Upright event metrics "

25 * Datasets used: BCS7@ activPAL stepping bouts .CSV ¥

26 * Author: J Culverhouse ®

27 * Date: ©1/07/2023 *

28 * Description: Stata code deriving upright event metrics from posture "

29 - data (activPAL stepping output) *

36 LR R EE RS2 2 EE E e S R R R R 2

;; AR AR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

33  *** Install packages e

34 PR R R R R e e R S R S RS R ]

35

36 * asgen for step-weight cadence

37 ssc install asgen

;g LA AR R R R R R L R R R R R R R R R R R R R R R R R R R R R R R R

49  *** Importing activPAL stepping output .csv files o

41 R R R E R R R R S E E E E E E E R R R

42

43 *** Following lines of code imports .csv files into Stata, taking the name of
the and adding it as a new variable (so ID can be extracted later), then appends
them all in the same Stata file

a4

45 c¢d "folder_path"

46

47 local filepath = ""c(folder_path)'"

48

49  local files : dir ""filepath'" files "*.csv"

50

51 tempfile name

52 save ‘name', replace empty

53

Page 1
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D6_11_23_activpal_code_besT0_assoc.do - Printed on 19/05/2024 17:56:23

54
55
56
a7
58
59
68
61
62
63
64
65
66
67
68
69

7@
71
72
73
74
75
76
77
78
79
8e
81
82
83
84
85
86
87
88
89
1%
91
92
93
94
95
96
a7
98
29
lea
1e1
le2
le3
le4
1es
1e6

foreach x of local files {
fIUi: imPﬂr‘t delimited 'I~glﬂ-, dﬂ'liﬂitﬂr‘(uj"] CaEE{DrESEFVE} clear
qui: gen path = subinstr(" x'", ".csv", "", .)

append using " name’

save “name', replace

o o oo ok o ok ol o ol ok o ol ol ok ol R R o o ol ke e ol ke ol o ok ol R Rl ok ol ok ol ol ok ok ol ok ok ol ok ok ol ok R R
*** Basic set-up / importing e

o o ok ok o ok ok ok ok ok ok ok ke ok ol R R R o ol o o o ol ke e ol ok ke o ok ol ok ol ol ol ol o o o ok ol ol ok ol ol ok ok ol ok ok ol ok ok ol ok R Rl R o ok R

**% The above method of importing imports the files ‘as-is', which includes 14
unnesscary rows at the top of each file (with activPAL software info), and
variable names are not detected. The lines of code below rename the variables to
match the activPAL stepping output var names, and drops the unnesscary rows.

drop v2 v6 v7 v1e

rename vl time
rename v3 data_count
rename vd4 event_type
rename v5 duration_s
rename v8 num_steps
rename v9 cadence
rename id path

drop if data_count=="" & event_type=="" & num_steps=="" & cadence==""
drop if time == "Time"

destring _all, replace
* Converting excel time to stata time

gen double starttime = round((time+td{38dec1899))*Ba4800)*128
format starttime ¥tcHH:MM:S55.s

gen date = dofc(starttime)
format date ¥td

s o ke o e o o o o o o o o o o o o o o o o e o o oo o

**% Extract numeric ID from DMS ID, destring s
o ok e o ok ol o ol ok o el ol ke e el ke ol ol ol ok ok ol ok ol o ol ok R

gen id = substr(path,1,7)
destring id, replace

order id date starttime

LR E L EE L EE E L EE R 2 R S 2 2 22 S E AR R R R R R R R R R R R R 2 R E R R E R R R E R R E SRR SRR RS R R R R L

*** Dropping non valid days / wear ¥
FXEEEXFEXEEEXEEEEEREEEEERXRXXF XX R XX R EEEEEREREERER XXX XXk kxR kX kR EEEREEET R X TR kK
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1e7
18
1es
118
111
112
113
114
115
116
117
118
119
128
121
122
123

124

125
126
127

128
129
13@
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
148
147
148
149
158
151
152
153
154
155
156

*** Dropping first parital day and any days over 7

* Generates a cumulative count of bouts per day

bysort id date (data_count), sort : gen daybouts = _n

* Generates a var that with only the 1st bout of each day as 1

bysort id (data_count), sort : gen cu_days = sum{daybouts) if daybouts ==1
* Generates wvar with numbered days from 1

bysort id date (data_count), sort : egen days_new = max{cu_days)

* Drops day 1 and any day after 8 (which is the 7th full day)
drop if days_new ==1 | days_new »8

*** Dropping nonwear

/* The code below does the followinig

1) Identifies the data_count wvalues on nonwWwear rows

2) Generates a column of the minimum nonwear data count per person { the
first nonwear event)

3) Drops cases with a data count »= than the minimum nonwear datacount
{which removes all data from the first nonwear period, per person)

4) Drops generated vars

Note: this works for cohorts where the device was applied by
researcher/nurse, as there should be no non-wear. Further steps would need to be
applied if devices were sent in the post and there is potential non-wear to
clean before device is applied. This method assumes the first non-wear is after
device is removed.

*/

-

gei nonwear_datacount = data_count if ewvent_type==4

-

byiurt id : egen nonwear_value = min(nonwear_datacount)
&

drzp if data_count »= nonwear_value

"

drip nonwear_datacount nonwear_value

***5ame again but for -1s

&

ge; nonwear_datacount = data_count if event_type==-1

&*®

byiort id : egen nonwear_value = min{nonwear_datacount)
&

drip if data_count »= nonwear_value

&

drip nonwear_datacount nonwear_value

*** Calculating total wear time from day2 (first whole day)

* Genertate seconds from midnight that 1st bout starts

gen stHour = hh{starttime)

gen stMin = mm{starttime)

gen stSec = ss(starttime)

gen startsecs = (stHour*6@*6@8) + (stMin*6@) + stSec if cu_days ==2

303



157
158
159
160
161
162
163
164

165
166

167
168
169
17e
171
172
173

174
175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
1906
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

bysort id : egen tot_dur = total(duration_s)
gen fin_dur = tot_dur + startsecs if cu_days ==2

gen tot_days_wear = fin_dur /60 / 60 / 24

*** Determining if last bout of 7th day is nonwear/invalid due to length, or

crosses midnight into 8th day and needs to be dropped

* Generates col for each participant with the max data count vale (i.e. the
final bout for each person)
bysort id (data_count), sort : egen fin_bt_data_count = max(data_count)

* Fills in all cells with total days value
bysort id (data_count): egen tot_days_wear_new = mean(tot_days_wear)

* Drops final bout if: over 7 days_new
drop if tot_days_wear_new >7 & tot_days_wear_new <. & data_count ==
fin_bt_data_count

*** Recalculating total days for remaining participants
drop tot_days_wear fin_dur tot_dur tot_days_wear_new
bysort id : egen tot_dur = total(duration_s)

gen fin_dur = tot_dur + startsecs if cu_days ==

gen tot_days_wear = fin_dur /60 / 60 / 24

sum tot_days_wear if tot_days_wear >7 & tot_days_wear <., detail

AR 2 A S RS S LR e e R e e e R e R R e R e R R S e e R R R R R S S R R

*** participant count ety
AR AR R R e e R R R R e R R R R R R R R R R R R R

*** Create a participant count (1) at their first bout - as reference for
counting participants and creating new vars later - to get single values of
repeated values in one consistent row

bysort idlata_count), sort : gemartdcipantcount
gepartldfppatsicipantcount

drop participantcount

sum participants

drop startsecs fin_bt_data_count tot_dur fin_dur tot_days_wear cu_days

AR R R S R R R L R R R A R R

*** Day identifier (cumul count of first of each) .o
A AR R R R R R R R A R R R P R A e L R R R R R R R R

* Uses daybouts to cumul count first bout of each day
bysort idiata_count), sort : gesay fis@aybdutiaybduts

LR AL LR R R R R R R R R R L R R L R R R R R R R R R R )

*** Convert duration vars to minutes e
P R

gedur= mduration_s/60

LA AR R R e R R R R R R R R R R R R R R e R R R R R A
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288
289
21e
211

212
213
214

215
216
217
218
219
22e
221
222
223
224
225
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227
228

229
238

231
232
233

234
235
236
237

238
239
248
241

242
243
244

245
246
247
248

249
25@
251

*+* Recoding event_types e
o o o o o O o o o o o o ol o o ol ol o o e o ol o o o

##% Needed for the CREA version output from activPAL - will be slighty different
for VANE version as it won't have cycling, and different types of sitting, just
8,1,2 hopefully

* Importing from SP55 changed the decimal values - below covers anything above 2
* Recodes cycling to stepping (as this is what the 'steps' would have been
allocated too in the older VANE algorithm)

recode event_type 2.81/2.1=2

* Recodes all others (seated transport, types of lying, etc.) to sit/lying
recode event_type 3.81/5=8

L R s

*** Upright event creation re
LR EE L E L EE R EE R E R 22 S R R 2 2 R 22 R A E R R R R R E R R R 2 R R E R R AR E R EE R R R E S ER S RS R R R L L L

*** Upright bout number across measurement period

* Classfies upright postures with a 1

gen upr_bt_num_ =.

bysort id (data_count) : replace upr_bt_num_ = 1 if event_type != @

* Creates a cumulative count within upright events (upright postures between two
sit/lying events) *NOTE* The 1 value for this wvar becomes the classifier for
each upright event later on

gen upr_bt num__ =,

bysort id (data_count): replace upr_bt num__ = cond{missing{upr_bt num [ n-1]),
upr_bt_num_, upr_bt_num_ + upr_bt_num__[_n-1])

* Cumulative count of each upright event per person
bysort id (data_count), sort: gen upr_bt_num___ = sum{upr_bt num__) if
upr_bt_num__==1

* Fills in each upright event with its respective cumulative count

gen upr_bt_num = upr_bt_num___

bysort id (data_count): replace upr_bt_num = upr_bt_num[_n-1] if missing(
upr_bt_num) & upr_bt_num_==

**%* Upright event duration

* Minutes

bysort id upr_bt_num (data_count) : egen upr_bt_dur_min = sum(dur_min) if
upr_bt_num !=.

sort id data_count

* Seconds

bysort id upr_bt_num (data_count) : egen upr_bt_dur_s = sum{duration_s) if
upr_bt_num !=.

sort id data_count

**% Cumulative count of upright event per day

bysort id date (data_count), sort: gen upr_bt_num_day___ = sum{upr_bt_num__) if
upr_bt_num__==

* Fills in each upright event with its respective cumulative count

gen upr_bt_num_day = upr_bt_num_day___

bysort id date (data_count): replace upr_bt_num_day = upr_bt_num_day[_n-1] if
missing{upr_bt_num_day) & upr_bt_num_==1
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252
253
254
255
256
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258
259

260
261
262
263
264
265

266
267
268

269
278

271
272
273
274
275
276

277
278
279
28@
281
282
283
284
285

286
287
288
289

298
291

292

293

*#% Sitting bout number across measurement period

gen sit_bt_num_ =.

bysort id (data_count) : replace sit_bt_num_ = 1 if event_type ==
* Cumulative count of sit events per persn
bysort id (data_count), sort: gen sit_bt_num__ = sum(sit_bt_num_} if sit_bt_num_

* Cumulative count of sit events per day
bysort id date (data_count), sort: gen sit_bt_num_day = sum{sit_bt_num_) if

sit_bt_num_==1

EXXXEEEX X XXX EREEEREEFERERRXEF XXX EER X EEEXEEEEEFEAXFE XXX XXX EEE X EEEXEEEEEE TR X EE

*** Upright 18 second MINIMUM event creation i

tEE LR L EEE LA R 2SS R RS2 2 2 R R R R R R 2 2 2 2 2 a2 R E R E A R R R R R SR R E R 2 2

* Upright events should not be less than 18s (if you applied the recommended
minimums through PALbatch analysis), but this just checks. Can be used for
events data, and change duration if you're interested in shorter/longer upright

events.

*** Upright bout »>=1@sec

bysort id (data_count) : gen upr_bt_l@sec = sum{upr_bt_num__) if upr_bt_num__==1

& upr_bt_dur_s :=18

bysort id (data_count): replace upr_bt_18sec = upr_bt_1@sec[_n-1] if missing(
upr_bt_l@sec) & upr_bt_num_==1 & upr_bt_dur_s >=18

0 e o o o o o o 0 o o o o o o 0 o o e o o o o o o o

*#% Sedentary bouts INCLUDING uprigths less than <18 seconds -
o o o o o o o o o o o o o o o o o o o ol o o

* Unlike upright bouts - sedentary bouts are only one row at a time (uprights
can be 1s and 2s for multiple rows). The below creates count and duration
vairbles for the time between »>1min upright bouts - which can include multiple
sedentary bouts and the upright bout/s <lmin in between

* An idiots way of creating ones in the gaps between >18s upr events

gen sit_ = upr_bt_lesec +1
replace sit_ =1 if sit_==.
replace sit_ =. if sit_:1

* Cumulative count within these bouts - allows for next step...

gen sit__ =.

bysort id (data_count): replace sit__ = cond(missing(sit_[_n-1]), sit_, sit_ +

sit_ [_n-11)

* Cumulative count of 1s - therefore each sedentary bout

bysort id (data_count), sort: gen sit_pum = sum(sit_ ) if sit_ ==1

* Fills in each bout with the bout number (to allow for sorting by bout number.)
bysort id (data_count): replace sit num = sit num[_n-1] if missing(sit_num) &

sit ==1

*** Dyuration of gaps between »>18sec upright bouts (sedentary time - but also

Wwith upr bts <lBsec)

bysort id sit_num (data_count)
dur_min) if sit_num !=.

sort id data_count

*

egen sit_and_less_1@sec_upr_dur_min = sum(
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** Creating filter for waking wear based on 1st bout (>=1min) after 5am **
EE R R R R R R

* Putting a 1 qualifierfor waking wear time between ©3:80 and 23:0@, from first
upright to last upright

* Cumulative count of rows between these hours per day pp

bysort id date (data_count) : gen wake_ = _n if stHour>=3 & stHour<24

* Replaces the last row of a waking day - if the immediate row after is the
first row of the next day (if there was literally one sleeping bout - it will
give this a missing value)

replace wake_ =. if wake_[_n+1]==1

* Replaces final bout with missing (this because it crosses 24:00 and can make
the wear_time more than the 26h window (3am-11pm))

replace wake_=. if wake_[_n+1]==.

* This generates waking wear time from first upright bout >=1@sec after 3am -
but with gaps (puts ones in all the upright bouts)

bysort id date (data_count) : gen wake_time = 1 if stHour>=3 & upr_bt_1@sec !=.
*This then replaes missing values between 3am and middnight with 1s - so that
all time after 3am filled with 1s

replace wake_time =1 if wake_time[_n-1]==1 & stHour>3 & stHour<24

* Final step replaces the wake_tie with missing if wake_ is missing, which is
the time after 11pm - and the final bouts that may go into the next day etc.
replace wake_time=. if wake_==.

// Just to clarify - wake_ is now a continous count of rows per day from 3am,
with final bout replaced with . if immediately proceed by the first bout of the
next day, and if the final bout is sit/lying (we don't want to count these as
the cross to the next day - they are the 'sleeping bouts')

// and wake_time is now a classifier with 1s in every cell from the frist
upright bout after 3am to the penultimate event before 11lpm - because the
last/next bout is the event that crosses into the next day, which we don;t want
to count

drop wake_
*f

LA R R R R R R R R R A R R R R R R R R R R R R R )

** Experimenting with wear time from 6am to 19pm "k
LR R R R R R R R R R R R

* Putting a 1 qualifierfor waking wear time between ©3:00 and 23:00, from first
upright to last upright

* Cumulative count of rows between these hours per day pp

bysort id date (data_count) : gen wake_ = _n if stHour>=6 & stHour<22

* Replaces the last row of a waking day - if the immediate row after is the
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first row of the next day (if there was literally one sleeping bout - it will
give this a missing value)

replace wake_ =. if wake_[_n+1]==1

* Replaces final bout with missing (this because it crosses 24:8@ and can make
the wear_time more than the 28h window (3am-11pm})

replace wake_=. if wake_[_n+1]==.

* This generates waking wear time from first upright bout :=1@sec after 3am -
but with gaps (puts ones in all the upright bouts)

bysort id date (data_count) : gen wake_time = 1 if stHour:=6

*This then replaes missing values between 3am and middnight with 1s - so that
all time after 3am filled with 1s

replace wake_time =1 if wake_time[_n-1]==1 & stHour:e & stHour<22

* Final step replaces the wake_tie with missing if wake_ is missing, which is
the time after 11pm - and the final bouts that may go into the next day etc.
replace wake_time=. if wake_==.

{/{ Just to clarify - wake_ is now a continous count of rows per day from 3am,
with final bout replaced with . if immediately proceed by the first bout of the
next day, and if the final bout is sit/lying (we don't want to count these as
the cross to the next day - they are the "sleeping bouts')

f/f and wake_time is now a classifier with 1s in every cell from the frist
upright bout after 3am to the penultimate event before 1lpm - because the
last/next bout is the event that crosses into the next day, which we don;t want
to count

drop wake_

R R R R R R R R R R R R R R R R R Ry

M Deriving upright event and stepping metrics e
e o e ofe o ofe o o o ol o ol ol e o e o o o e e e e ol e ol e e e o ol o ol o ol e e e e e e e o ok

**% No. upright events >l8sec

bysort id date (data_count ) : egen upr_18s_bts_per_day_ = sum{upr_bt_num__) if
upr_bt_num__  ==1 & upr_bt_l8sec !=. & wake_time ==

bysort id date (data_count ) : egen upr_1@s_bts_per_day = max(
upr_l18s_bts_per_day_}

drop upr_18s_bts_per_day_

*#% Upright duration per day

bysort id date (data_count ) : egen upr_18s_dur_day_ = sum{dur_min) if wake_time

==1 & upr_bt_l@sec !=.

bysort id date (data_count ) : egen upr_18s_dur_day_min = max{upr_1@s_dur_day_)
drop upr_18s_dur_day_

gen upr_18s_dur_day_h = upr_18s_dur_day_min/68

**% Standing duration per day

bysort id date (data_count ) : egen std_dur_day_ = sum{dur_min) if wake_time ==1

& upr_bt_l8sec !=. & event_type==1

bysort id date (data_count ) : egen std_dur_day_min = max(std_dur_day_)
drop std_dur_day_

gen std_dur_day_h = std_dur_day_min/68
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**% Stepping duration per day

bysort id date (data_count ) : egen stp_dur_day_ = sum{dur_min) if wake_time ==
& upr_bt_l8sec !=. & event_type==2

bysort id date (data_count ) : egen stp_dur_day_min = max{stp_dur_day_)

drop stp_dur_day_

gen stp_dur_day_h = stp_dur_day_min/6@

*** Stepping proportion per event metric

* Stepping duration per upright ewvewnt

bysort id date upr_bt_num_day (data_count) : egen within_stp_dur_ = sum{dur_min}
if event_type==2

bysort id date upr_bt_num_day (data_count) : egen within_stp dur = max(
within_stp_dur_) if upr_bt_num_day !=.

sort id data_count

drop within_stp_dur_

replace within_stp dur = @ if upr_bt num_ ==1 & within_stp dur==.

* Standing duration per upright evewnt

bysort id date upr_bt_num_day (data _count) : egen within_std dur_ = sum{dur_min)
if event_type==1

bysort id date upr_bt_num_day (data_count) : egen within_std _dur = masx(
within_std _dur_) if upr_bt_num_day !=.

sort id data_count

drop within_std_dur_

*=** propoertion of time stepping

gen perc_dur_stp = (within_stp_dur / upr_bt_dur_min})*1@@

**% Ctep-weighted mean cadence per upright bout

bysort id date upr_bt_num_day : asgen stpw_mean_cad_ = cadence if event_type==2,
wi{num_steps)

sort id data_count

bysort id date upr_bt_num_day : egen stpw_mean_cad = max(stpw_mean_cad_)

sort id data_count

replace stpw_mean_cad =8 if stpw_mean_cad==. & within_stp_dur==8

drop stpw_mean_cad_

* No. of stepping events within upright

bysort id date upr_bt_num_day (data_count) : egen within_num_stp_bts_ = sum(
event_type) if event_type==2

bysort id date upr_bt_num_day (data_count) : egen within_num_stp_bts__ = max(
within_num_stp_bts_) if upr_bt_num_day !=.

gen within_num_stp_bts = within_num_stp_bts_ /2

sort id data_count

drop within_num_stp_bts_ within_num_stp_bts__

replace within_num_stp_bts = & if within_stp_dur==8

*** No. of steps within upright events

bysort id date upr_bt_num_day (data_count) : egen within_num_stps = sum{num_steps
y if upr_bt_num_day !=.

sort id data_count

*** Step count per day (withing »=18sec)

bysort id date (data_count ) : egen steps_day_ = sum{num_steps) if wake_time ==1
& upr_bt_lesec !=.

bysort id date (data_count ) : egen steps_day = max{steps_day_)

drop steps_day_

* Check
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list id if steps_day ==0 | steps_day ==.

EXXEXXEXEEREEE A LR R R RN X R TR R R R EEEEEE TR RN E LR EEXAXEEEE R LR LT R E TR E S

** Valid day of wear (duration & no. upright events) classifier s
A R R R e S R R S
* Calculate minutes of wear during wake time

bysort id date (data_count) : egen wear_ = sum(dur_min) if wake_time ==1
bysort id date (data_count) : egen wear_time_min = max(wear_)

drop wear_

* Adds a 1 classifier to wear that is valid (>=19 waking wear)

bysort id date (data_count) : gen valid_wear =1 if wear_time_min >600 &
wear_time_min <. & upr_10s_bts_per_day >3

* Count valid days per person

bysort id (data_count) : gen valid_days_ =1 if day_first_bt !=. & valid_wear==1
bysort id (data_count) : egen valid_days__ = sum(valid_days_) if valid_days_==1 &
valid_wear==1

bysort id (data_count) : egen n_valid_days = max(valid_days__)

drop valid_days_ valid_days__
drop if valid_wear ==.

LA R R R R e R R R R R A R R L R R R R R R R A

***%* Burstiness - Between UPRIGHT events %
AR S R RS R R R R R R R R R e R R R R S R R R R R R R R R R R R R R R

*** BURSTINESS between upright events (n, mean(SD) of sit/lying bouts) ******

* n - number of upright events per day
// upr_10s_bts_per_day

* t - mean duration of sit/lyig bouts

bysort id date (data_count): egen mean_ = mean(sit_and_less_1@sec_upr_dur_min) if
sit__ ==1 & wake_time==1

bysort id date (data_count): egen mean_sed_dur_day = max(mean_)

drop mean_

* © - mean duration of sit/lyig bouts

bysort id date (data_count): egen sd_ = sd(sit_and_less_1@sec_upr_dur_min) if
sit__ ==1 & wake_time==1

bysort id date (data_count): egen sd_sed_dur_day = max(sd_)

drop sd_

* burstiness between upright events

gen burst_between_upr_bts = (sqrt(upr_10s_bts_per_day+1)*(sd_sed_dur_day/
mean_sed_dur_day)-sqrt(upr_10s_bts_per_day-1))/((sqrt(upr_10s_bts_per_day+1)-2)*(
sd_sed_dur_day/mean_sed_dur_day)+(sqrt(upr_10s_bts_per_day-1)))

sum burst_between_upr_bts if day_first_bt !=. , detail

LA R AR R R R R R L R R R L L R R R R R A L )

*** Burstiness - Between NON-UPRIGHT events e
LR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R E R R R

*** BURSTINESS between NON-upright events (n, mean(SD) of upright bouts) ******
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* n - number of upright events per day (already created)

bysort id date (data_count ) : egen non_upr_bts_per_day_ = sum(sit__) if sit__
==1 & wake_time ==1

bysort id date (data_count ) : egen non_upr_bts_per_day = max(non_upr_bts_per_day
drop non_upr_bts_per_day_

* t - mean duration of upright events per day

bysort id date (data_count): egen mean_ = mean(upr_bt_dur_min) if upr_bt_num__ ==
1 & wake_time==

bysort id date (data_count): egen mean_upr_dur_day = max(mean_)

drop mean_

* @ - mean duration of sit/lyig bouts

bysort id date (data_count): egen sd_ = sd(upr_bt_dur_min) if upr_bt_num__ ==1 &
wake_time==

bysort id date (data_count): egen sd_upr_dur_day = max(sd_)

drop sd_

* burstiness between upright events

gen burst_between_sed_bts = (sqrt(non_upr_bts_per_day+1)*(sd_upr_dur_day/
mean_upr_dur_day)-sgrt(non_upr_bts_per_day-1))/((sqrt(non_upr_bts_per_day+1)-2)*(
sd_upr_dur_day/mean_upr_dur_day)+(sqrt(non_upr_bts_per_day-1)))

sum burst_between_sed_bts if day_first_bt !=, , detail

EXEXEEEXEEEEEE R EE RS R ER R A X R EEE R XS EEE R XXEEREREEE XX EEE R XS ERERE XN %X

*** ASTP (active-to-sedentary tranisition probability) Fragmentation - ***
LR AR R e e e R R R R R

* ASTP is the reciprocal (the shortest event length over...) the mean duration
of the events (upright events)

* 10s events (in minutes) - times by 100 to give percentage
gen daily_astp = ((0.16666666666/mean_upr_dur_day)*100)

A AR AR R R R R R R R R R AR R R R R R A A R R R R R R R R R R R R R R R R A )

LA A LR Al
e FINAL VARIABLES (1 value per person) o
e o

LA LR R R R R R R L R R R R R R R R R R R R R R R R R R R )

*** Average waking wear hours

bysort id (data_count) : egen avg_waking_wear_ = mean(wear_time_min) if
day_first_bt !=.

bysort id (data_count) : egen avg_waking wear_h_ = max(avg_waking_wear_)
gen avg_waking_wear_h = avg_waking_wear_h_/60

drop avg_waking_wear_ avg_waking_wear_h_

LA R R R R E R R RS R R R R R DAILY SUMMARIES AR R R L R e e S

*** Average number of bouts per day per person

bysort id (data_count) : egen avg_n_upr_bts_day_ = mean(upr_10s_bts_per_day) if
day_first_bt !=,

bysort id (data_count) : egen avg_n_upr_bts_day = max(avg_n_upr_bts_day_)
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drop avg_n_upr_bts_day_

*** Average upright duration per day

bysort id (data_count) : egen
day_first_bt !=.

bysort id (data_count) : egen
drop avg_upr_dur_day_

*** Average standing duration
bysort id (data_count) : egen
day_first_bt !=.

bysort id (data_count) : egen
drop avg_std_dur_day_

*** Average stepping duration
bysort id (data_count) : egen
day_first_bt =,

bysort id (data_count) : egen
drop avg_stp dur_day_

avg_upr_dur_day_ = mean{upr_1@s_dur_day_h) if
avg_upr_dur_day = max(avg_upr_dur_day_)

per day

avg_std_dur_day_ = mean(std_dur_day_h} if
avg_std_dur_day = max(avg_std_dur_day_}

per day

avg_stp_dur_day_ = mean(stp_dur_day_h) if

avg_stp_dur_day = max{avg_stp_dur_day )

*** Average stepping proportion per upright

bysort id (data_count) : egen avg_stp_prop_ = mean(perc_dur_stp) if upr_bt_num__

==1 & upr_bt_18sec !=, & wake_time ==1

bysort id (data_count) : egen
drop avg_stp_prop_

avg_stp_prop = max({avg_stp_prop_)

**% ayerage stepping events per day per person (>1@)

bysort id date (data_count) : egen n_stp_evnts_1@ per_day_ = sum{event_type) if

event_type==2 & num_steps>=1@8
bysort id date (data_count) :
n_stp_evnts_18_per_day_)

max

egen n_stp_evnts_1@_per_day__

bysort id date (data_count) : gen n_stp_evnts_1@_per_day___ =

n_stp_ewvnts_18_per_day__ /2
bysort id (data_count) : egen

avg_n_stp_evnts_1@_per_day_ = mean(

n_stp_evnts_18_per_day___ ) if day_first_bt !=,

bysort id (data_count) : egen
avg_n_stp_evnts_18 per_day_)

avg_n_stp_evnts_per_day_10 = max(

drop n_stp_ewvnts_1@8_per_day_ n_stp_evnts_10_per_day__
avg_n_stp_evnts_10@ per_day_ avg_n_stp_evnts_10_per_day_

*** Avg. step count per day

bysort id (data_count ) : egen avg_steps_day_ = mean(steps_day) if day_first_bt

drop avg_steps_day_

bysort id (data_count ) : egen avg_steps_day = max{avg_steps_day)

EXEXAXEEXREEEXXEEEEEEERRERTREE X EmpﬂSITIDN EEFXXXFXEEXX XX EEREEFEEEEEEEE X TR XK

*** Average duration of upright event

bysort id (data_count) : egen

avg_upr_event_dur_ = mean{upr_bt_dur_min) if

upr_bt_num__ ==1 & upr_bt_18sec !=. & wake_time ==1

bysort id (data_count) : egen
drop avg_upr_event_dur_

avg_upr_event_dur = max{avg_upr_event_dur )

*** Average number of step events per upright event

bysort id (data count) : egen avg within_num_stp bts = mean(within_num_stp bts)
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if wpr_ bt _num__ ==1 & upr_bt_l8sec !=. & wake_time ==
bysort id (data_count) : egen avg_within_num_stp_bts = max(
avg_within_num_stp bts )

drop avg within_num stp bts_

*** Average number of steps per upright event

bysort id (data_count) : egen avg _within_num_stps_ = mean({within_num_stps) if
upr_bt_num__ ==1 & upr_bt_1@8sec !=. & wake_time ==1

bysort id (data_count) : egen avg_within_num_stps = max(avg_within_num_stps_)
drop avg_within_num_stps_

*** Average step-weight cadence per upright event

bysort id (data_count) : egen avg_stpw_mean_cad_ = mean(stpw_mean_cad) if
upr_bt_num__ ==1 & upr_bt_1@sec !=. & wake_time ==

bysort id (data_count) : egen avg_stpw_mean_cad = max{avg_stpw_mean_cad_}
drop avg_stpw_mean_cad_

oo o ol b o sl ol PATTERN HETRICS o o e o e b ol b o o ol ol o o

**% Average upright burstines (inter-event-time)

bysort id (data_count ) : egen avg_inter_burst_ = mean(burst_between_upr_bts) if
day_first_bt |=.

bysort id (data_count ) : egen avg_inter_burst = max(avg_inter_burst_)

drop avg_inter_burst_

*¥% Average non-upright burstiness

bysort id (data_count ) : egen avg_intra_burst_ = mean(burst_between_sed_bts) if
day_first_bt I=.

bysort id (data_count ) : egen avg_intra_burst
drop avg_intra_burst_

max(avg_intra_burst_)

*** Average daily ASTP

bysort id (data_count )} : egen avg daily astp_ = mean(daily_astp) if day_first_bt
I=,

bysort id (data_count ) : egen avg_daily_astp = max(avg_daily_astp_)

drop avg_daily astp_

EXEEXXEFAXEEEEEERERERRERE 'STEPPIN.G METHICS FEFEXXXEXXEEE R EEEREEEEE RS XN EREE

*** Longest continuous stepping event (»=18 steps)

bysort id (data_count) : egen longest_step_bt_min_ = max(dur_min) if event_type
==2 & wake_time ==1 & num_steps >=18

bysort id (data_count) : egen longest_step bt _min = max(longest_step_bt_min_)
drop longest_step bt min_

**%* Ctep-weighted mean cadence of every step count

bysort id (data_count) : asgen avg_stpw_cad_all_ = cadence if wake_time==1 &
event_type==2 & num_steps>=18, w(num_steps)

bysort id (data_count) : egen avg_stpw_cad_all = max(avg_stpw_cad_all )

drop avg_stpw_cad_all_

*#% Average steps per stepping event (»>=18 steps)

bysort id (data_count) : egen avg_stps_per_stp_evnt_18_ = mean(num_steps) if
event_type==2 & wake_time ==1 & num_steps >=18@

bysort id (data_count) : egen avg_stps_per_stp_evnt_18 = max(
avg_stps_per_stp_evnt_18_)

drop avg_stps_per_stp_evnt_18_
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***pverage duration per stepping event-time (>=10 steps)

bysort id (data_count): egen avg_dur_stpev_18_ = mean{duration_s) if wake_time ==
1 & event_type ==2 & num_steps»=18

bysort id (data_count): egen avg_dur_stpev_18 = max(avg_dur_stpev_18_)

drop avg_dur_stpev_18_

*¥* Highest cadence stepping event (=18 steps)

bysort id (data_count) : egen highest_cad_stp_event_ = max(cadence) if wake_time
==1 & event_type==2 & num_steps »>=18

bysort id (data_count) : egen highest_cad_stp_event = max(highest_cad_stp event_)
drop highest_cad_stp_event_

EEEEEEEXEEREREREREREEEEERR0%E TIOYING LUP *HFrF 555k b r e e h ek e Ea eSS S S S X R X T FH %%

* Collapse to one row per person
drop if participants !=1

*** Dropping unneeded vars

drop date - valid_wear

drop n_stp_evnts_10 per_day

drop mean_sed_dur_day - burst_between_sed_bts

L L
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Appendix 8.10. Histograms of the composition metrics of all 1.64 million

upright events
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Appendix 8.11. Sensitivity analyses.

Supplementary Table 5.11-1.Sensitivity analyses regressions (excluding EU-SILC severely hampered).

() 2 3 (C) ©) (6) @] ®)
N Upr std_ Stp N Dur stps_per Stpw
upev dur h dur h dur h stpev stpev stpev cad
0.Sex 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Sex 4.41™ [3.43,5.38] 0.37"" [0.28,0.46] 0.37"" [0.29,0.46] -0.00 [-0.02,0.01] 12.75™ [9.64,15.86] -3.05™ [-3.51,-2.59] -4.24™ [-5.13,-3.35] 1.04™" [0.54,1.54]
0.Qual 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Qual 0.00 [-1.24,1.25] -0.01 [-0.13,0.11] -0.01 [-0.13,0.10] 0.00 [-0.01,0.02] 0.05 [-3.90,4.00] 0.11 [-0.48,0.69] 0.08 [-1.06,1.21] 0.13 [-0.51,0.77]
2.Qual -0.02 [-1.52,1.47] -0.01 [-0.15,0.13] -0.01 [-0.15,0.12] 0.01 [-0.01,0.02] -1.80 [-6.56,2.95] 0.41 [-0.30,1.11] 0.40 [-0.97,1.77] -0.09 [-0.86,0.68]
3.Qual -0.78 [-2.16,0.60] -0.13 [-0.26,0.00] -0.12 [-0.24,0.00] -0.01 [-0.03,0.01] -7.98™ [-12.36,-3.59] 1.41" [0.76,2.07] 2.12" [0.86,3.38] 0.41 [-0.30,1.12]
0.Disab 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Disab -0.29 [-1.88,1.30] 0.06 [-0.09,0.21] 0.06 [-0.09,0.20] 0.00 [-0.02,0.02] -2.13 [-7.17,2.91] 0.21 [-0.53,0.96] 0.27 [-1.18,1.72] -0.18 [-0.99,0.64]
0.SRhealth 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.SRhealth 0.77 [-0.45,1.99] 0.16™ [0.04,0.27] 0.12° [0.01,0.23] 0.03"" [0.02,0.05] 9.56™" [5.67,13.44] -1.44™ [-2.02,-0.87] -2.90™" [-4.02,-1.79] -1.38™" [-2.01,-0.75]
2.SRhealth 0.79 [-0.58,2.15] 0.13" [0.00,0.26] 0.10 [-0.02,0.23] 0.03"" [0.01,0.05] 10.60™" [6.26,14.94] -1.61™ [-2.26,-0.97] -3.23™ [-4.47,-1.98] -1.61™ [-2.31,-0.91]
3.SRhealth 0.37 [-1.51,2.25] 0.18" [0.01,0.36] 0.14 [-0.03,0.31] 0.05™" [0.02,0.07] 13.20™ [7.22,19.17] -1.66™" [-2.55,-0.77] -3.48™ [-5.20,-1.76] -2.32™ [-3.29,-1.36]
4.SRhealth -1.47 [-5.96,3.01] -0.15 [-0.57,0.28] -0.15 [-0.55,0.25] 0.00 [-0.06,0.06] 2.33 [-11.93,16.58] 0.03 [-2.08,2.15] -0.16 [-4.26,3.94] -1.30 [-3.60,1.01]
0.NSSEC_3 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.NSSEC_3 1.96™" [0.82,3.10] 0.23"* [0.12,0.33] 0.19™ [0.09,0.29] 0.04™" [0.03,0.05] 6.99"" [3.37,10.62] -0.99™ [-1.53,-0.46] -2.18™ [-3.22,-1.14] -1.26™ [-1.84,-0.67]
2.NSSEC_3 -0.35 [-1.92,1.22] 0.11 [-0.04,0.26] 0.07 [-0.07,0.21] 0.04™" [0.02,0.06] 3.78 [-1.22,8.78] -0.37 [-1.12,0.37] -1.21 [-2.64,0.23] -1.19™ [-2.00,-0.39]
3.NSSEC_3 -6.24 [-17.62,5.14] -1.14° [-2.22,-0.07] -1.03" [-2.04,-0.02] -0.11 [-0.26,0.03] -22.90 [-59.07,13.27] 2.51 [-2.86,7.88] 5.25 [-5.15,15.64] 3.35 [-2.50,9.19]
4NSSEC_3 0.72 [-1.39,2.83] 0.26" [0.06,0.46] 0.22" [0.03,0.41] 0.04™ [0.02,0.07] 7.86" [1.16,14.57] -1.40™ [-2.39,-0.40] -3.04™ [-4.97,-1.12] -1.74" [-2.83,-0.66]
0.BMIC 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.BMIC -3.15™ [-4.26,-2.05] -0.10 [-0.21,0.00] -0.10 [-0.19,0.00] -0.01 [-0.02,0.01] -0.96 [-4.49,2.56] 0.20 [-0.32,0.73] 0.29 [-0.72,1.30] -0.14 [-0.71,0.43]
2.BMIC -6.48™" [-7.73,-5.22] -0.12° [-0.24,-0.00] -0.11 [-0.22,0.01] -0.01 [-0.03,0.00] -2.67 [-6.66,1.31] 0.47 [-0.12,1.06] 0.62 [-0.52,1.77] -0.58 [-1.22,0.07]
3.BMIC -13.10™" [-16.08,-10.13] -0.03 [-0.31,0.25] -0.00 [-0.27,0.26] -0.02 [-0.06,0.02] -6.85 [-16.31,2.61] 1.19 [-0.22,2.59] 1.43 [-1.29,4.15] -1.61° [-3.14,-0.08]
4BMIC -8.26™" [-11.58,-4.95] -0.08 [-0.39,0.24] -0.07 [-0.37,0.22] -0.01 [-0.05,0.04] 0.83 [-9.71,11.37] 0.21 [-1.36,1.77] -0.10 [-3.13,2.93] -1.35 [-3.05,0.36]
0.0ccAct 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.0ccAct -0.60 [-1.92,0.72] 1.18™ [1.06,1.31] 1.08™" [0.96,1.20] 0.10"™" [0.09,0.12] 29.10™" [24.90,33.30] -3.97™ [-4.59,-3.35] -7.87" [-9.08,-6.66] -3.76™ [-4.44,-3.08]
2.0ccAct -0.43 [-1.66,0.80] 1.06™" [0.94,1.17] 0.91™" [0.80,1.02] 0.15™" [0.13,0.16] 3517 [31.25,39.09] -4.56™" [-5.15,-3.98] -9.65™" [-10.78,-8.53] -5.80™" [-6.44,-5.17]
3.0ccAct -0.06 [-2.44,2.31] 1.28™ [1.05,1.50] 1.03™* [0.82,1.24] 0.25™" [0.22,0.28] 51.86"" [44.31,59.41] -6.16™" [-7.28,-5.04] -13.51° [-15.68,-11.34] -8.58™" [-9.80,-7.36]
0.Smoking 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Smoking 1.51" [0.50,2.52] -0.117 [-0.20,-0.01] -0.12° [-0.21,-0.03] 0.01 [-0.00,0.02] 0.14 [-3.07,3.35] -0.04 [-0.51,0.44] -0.23 [-1.15,0.69] -0.30 [-0.82,0.22]
2.Smoking 2.53" [0.35,4.72] 0.24" [0.03,0.45] 0.24" [0.04,0.43] 0.00 [-0.03,0.03] 3.88 [-3.07,10.83] -0.70 [-1.73,0.33] -0.96 [-2.95,1.04] 0.01 [-1.11,1.14]
3.Smoking 2.90"™" [1.38,4.41] 0.20"™ [0.06,0.34] 0.18" [0.04,0.31] 0.02" [0.00,0.04] 9.82"" [5.00,14.64] -1.22™ [-1.94,-0.51] -2.20" [-3.59,-0.82] -1.26™ [-2.04,-0.48]
wake time h 2.25™ [1.74,2.76] 0.24™" [0.19,0.29] 0.22"" [0.18,0.27] 0.02"* [0.01,0.03] 7.95"" [6.33,9.57] -0.93™ [-1.17,-0.69] -1.69™ [-2.15,-1.22] -0.65™" [-0.91,-0.39]
daily n_stps 0.00"" [0.00,0.00] 0.00"" [0.00,0.00] 0.00"" [0.00,0.00] 0.00"" [0.00,0.00] 0.01"™" [0.01,0.01] 0.00"™" [0.00,0.00] 0.00"" [0.00,0.00] 0.00"" [0.00,0.00]
cons 11.10" [2.76,19.45] -0.74 [-1.52,0.05] -0.59 [-1.33,0.15] -0.15" [-0.25,-0.04] -73.25™" [-99.76,-46.73] 38.35™ [34.41,42.29] 57.64"" [50.02,65.26] 95.15™" [90.86,99.43]
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

95% confidence intervals in brackets
" p<0.05" p<0.01,™ p<0.001
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Supplementary Table 5.11-2. Sensitivity analyses regressions (excluding EU-SILC severely hampered).

(©] ) 3) “4) ®) )
prop_stp Upev Upev Upev Upev Nonupev
_to_std dur_min n_stpev n_stps bursti bursti

0.Sex 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Sex -0.12 [-0.51,0.26] -0.26 [-0.51,-0.02] -0.06 [-0.30,0.17] -17.84™ [-21.95,-13.73] 0.05"* [0.04,0.05] -0.00 [-0.01,0.00]
0.Qual 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Qual 0.02 [-0.47,0.51] -0.08 [-0.39,0.23] -0.03 [-0.33,0.27] -2.03 [-7.26,3.19] 0.00 [-0.00,0.01] -0.01 [-0.01,0.00]
2.Qual -0.36 [-0.95,0.23] -0.14 [-0.52,0.23] -0.19 [-0.55,0.17] -2.49 [-8.78,3.80] 0.00 [-0.00,0.01] -0.01" [-0.02,-0.00]
3.Qual 0.00 [-0.54,0.55] -0.17 [-0.52,0.17] -0.32 [-0.65,0.01] 0.02 [-5.78,5.81] -0.00 [-0.01,0.01] -0.02" [-0.03,-0.01]
0.Disab 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Disab -0.65" [-1.28,-0.03] 0.31 [-0.09,0.71] 0.21 [-0.17,0.59] 3.30 [-3.36,9.97] 0.00 [-0.00,0.01] -0.00 [-0.01,0.01]
0.SRhealth 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.SRhealth 0.23 [-0.25,0.72] 0.09 [-0.22,0.39] 0.32" [0.03,0.62] -2.58 [-7.72,2.55] 0.01 [-0.00,0.01] 0.00 [-0.00,0.01]
2.SRhealth 0.25 [-0.28,0.79] 0.05 [-0.29,0.39] 0.30 [-0.02,0.63] -1.99 [-7.74,3.75] 0.01" [0.00,0.02] 0.00 [-0.01,0.01]
3.SRhealth -0.15 [-0.89,0.59] 0.45 [-0.02,0.92] 0.58" [0.13,1.04] 0.27 [-7.63,8.17] 0.01 [-0.00,0.02] 0.00 [-0.01,0.01]
4.SRhealth 0.82 [-0.95,2.59] -0.37 [-1.49,0.76] -0.18 [-1.26,0.89] 2.77 [-16.08,21.61] -0.02 [-0.05,0.00] 0.00 [-0.02,0.03]
0.NSSEC_3 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.NSSEC_3 -0.19 [-0.64,0.26] 0.15 [-0.14,0.44] 0.37" [0.10,0.65] -4.13 [-8.92,0.66] 0.01" [0.00,0.01] 0.01 [-0.00,0.01]
2.NSSEC_3 0.07 [-0.55,0.69] 0.39 [-0.01,0.78] 0.52" [0.14,0.90] 2.16 [-4.45,8.77] 0.00 [-0.01,0.01] 0.01" [0.00,0.02]
3.NSSEC_3 1.75 [-2.74,6.24] -0.83 [-3.69,2.02] -0.68 [-3.42,2.05] 18.36 [-29.47,66.18] 0.00 [-0.06,0.07] -0.03 [-0.09,0.04]
4.NSSEC_3 -0.40 [-1.24,0.43] 0.39 [-0.14,0.91] 0.59" [0.08,1.10] 0.87 [-7.99,9.74] 0.01" [0.00,0.02] -0.00 [-0.01,0.01]
0.BMIC 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.BMIC 0.55" [0.12,0.99] 0.31" [0.03,0.58] 0.26 [-0.01,0.52] 9.92""* [5.26,14.58] -0.02"" [-0.02,-0.01] -0.00 [-0.01,0.01]
2.BMIC 0.87"" [0.38,1.37] 0.97"" [0.65,1.28] 0.84™" [0.54,1.14] 25.81™ [20.55,31.08] -0.03"" [-0.04,-0.02] -0.00 [-0.01,0.01]
3.BMIC 0.92 [-0.25,2.10] 2.41™ [1.67,3.16] 1.90™" [1.18,2.61] 49.23™ [36.72,61.73] -0.04™" [-0.06,-0.03] 0.01 [-0.01,0.03]
4.BMIC 0.49 [-0.82,1.80] 1.44™ [0.60,2.27] 1.37" [0.57,2.16] 30.08™" [16.15,44.02] -0.00 [-0.02,0.01] 0.00 [-0.01,0.02]
0.OccAct 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.0ccAct -1.53™ [-2.05,-1.01] 1.79"" [1.46,2.12] 1.98™" [1.67,2.30] 2.14 [-3.42,7.70] 0.04™" [0.03,0.04] 0.02"" [0.01,0.02]
2.0ccAct -1.34™ [-1.82,-0.85] 1.46™" [1.15,1.77] 2.19™ [1.89,2.48] 3.42 [-1.76,8.60] 0.04™" [0.04,0.05] 0.02""* [0.01,0.03]
3.0ccAct -0.98" [-1.92,-0.04] 1.80"" [1.20,2.39] 3.09"™" [2.52,3.66] 6.24 [-3.74,16.22] 0.06™" [0.05,0.07] 0.03™" [0.01,0.04]
0.Smoking 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Smoking 0.36 [-0.04,0.76] -0.34™ [-0.60,-0.09] -0.16 [-0.40,0.09] -4.67" [-8.91,-0.42] -0.00 [-0.01,0.00] -0.00 [-0.01,0.00]
2.Smoking -0.71 [-1.57,0.15] -0.10 [-0.65,0.45] -0.14 [-0.66,0.39] -7.69 [-16.88,1.50] -0.01 [-0.02,0.01] -0.00 [-0.02,0.01]
3.Smoking -0.48 [-1.08,0.12] 0.20 [-0.18,0.58] 0.23 [-0.14,0.59] -5.19 [-11.57,1.18] -0.01 [-0.02,-0.00] -0.01" [-0.02,-0.00]
wake time_h -0.33" [-0.53,-0.13] -0.01 [-0.13,0.12] -0.02 [-0.15,0.10] -8.37"" [-10.50,-6.23] 0.02"" [0.02,0.02] 0.00 [-0.00,0.01]
avg_daily_n_stps 0.00™" [0.00,0.00] 0.00™" [0.00,0.00] 0.00"" [0.00,0.00] 0.02""* [0.02,0.02] 0.00"" [0.00,0.00] 0.00"" [0.00,0.00]

cons 35.69™" [32.40,38.99] 4.50™" [2.40,6.59] 4.30™" [2.29,6.30] 144.73" [109.68,179.79] -0.08"™" [-0.13,-0.03] 0.19™ [0.14,0.24]

0.00 0.00 0.00 0.00 0.00 0.00

95% confidence intervals in brackets
»<0.001

e

*p<0.05," p<001,
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Supplementary Table 5.11-3. Sensitivity analyses regressions (excluding EU-SILC severely hampered and some extent).

M @ (3) “) () (6) (7 ®)
N upr_ Std Stp N Dur Stps Stpw
upev ur_h dur_h dur_h stpev stpev per_stpev cad
0.Sex 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Sex 426" [3.23,5.29] 0.36"" [0.27,0.46] 0.37""" [0.27,0.46] -0.00 [-0.01,0.01] 13.72" [10.42,17.01] 2318 [-3.67,-2.68] 448" [-5.43,-3.52] 0.91"" [0.38,1.44]
0.Qual 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Qual -0.42 [-1.73,0.89] 0.02 [-0.11,0.14] 0.01 [-0.11,0.13] 0.01 [-0.01,0.02] 0.19 [-4.00,4.37] 0.11 [-0.51,0.74] 0.04 [-1.17,1.26] 0.07 [-0.60,0.75]
2.Qual -0.07 [-1.65,1.51] -0.01 [-0.16,0.14] -0.02 [-0.16,0.12] 0.01 [-0.01,0.03] -1.85 [-6.88,3.18] 0.41 [-0.34,1.17] 0.43 [-1.03,1.89] 0.01 [-0.81,0.82]
3.Qual -0.85 [-2.30,0.59] -0.10 [-0.23,0.04] -0.10 [-0.22,0.03] -0.00 [-0.02,0.02] -6.78" [-11.40,-2.16] 1.27" [0.58,1.96] 175" [0.41,3.09] 0.18 [-0.57,0.92]
0.Disab 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
0.SRhealth 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.SRhealth 0.62 [-0.62,1.86] 0.15 [0.04,0.27] 0.12° [0.01,0.23] 0.03"" [0.02,0.05] 9.52""" [5.57,13.48] -1.47"" [-2.07,-0.88] 297" [-4.11,-1.82] -1.40"" [-2.04,-0.76]
2.SRhealth 0.93 [-0.48,2.34] 0.15 [0.01,0.28] 0.11 [-0.01,0.24] 0.03""" [0.01,0.05] 1117 [6.68,15.65] -1.72" [-2.40,-1.05] -3.40"" [-4.71,-2.10] -1.64"" [-2.36,-0.91]
3.SRhealth 0.49 [-1.61,2.58] 0.13 [-0.06,0.33] 0.10 [-0.09,0.28] 0.04™ [0.01,0.06] 12.34™" [5.66,19.02] -1.73"" [-2.73,-0.73] -3.53" [-5.47,-1.59] 223" [-3.31,-1.15]
4.SRhealth -1.02 [-7.06,5.02] -0.01 [-0.58,0.55] -0.03 [-0.56,0.50] 0.02 [-0.06,0.09] 4.56 [-14.70,23.83] -1.05 [-3.93,1.84] -2.24 [-7.83,3.35] -2.04 [-5.15,1.07]
0.NSSEC_3 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.NSSEC_3 1.90" [0.70,3.11] 0.25"" [0.14,0.36] 0.21°" [0.10,0.31] 0.04"" [0.03,0.06] 8.10"" [4.26,11.94] -1.09"" [-1.67,-0.52] 242" [-3.54,-1.31] -1.50"" [-2.12,-0.88]
2.NSSEC_3 -0.34 [-2.00,1.32] 0.11 [-0.04,0.27] 0.08 [-0.07,0.22] 0.04"" [0.02,0.06] 3.71 [-1.59,9.00] -0.40 [-1.19,0.40] -1.30 [-2.84,0.23] -1.35" [-2.20,-0.49]
3.NSSEC_3 -7.30 [-19.77,5.17] -1.04 [-2.21,0.13] -0.93 [-2.03,0.17] -0.11 [-0.27,0.04] -19.03 [-58.81,20.76] 1.72 [-4.24,7.68] 4.06 [-7.49,15.61] 3.41 [-3.01,9.83]
4.NSSEC_3 0.43 [-1.84,2.70] 0.22° [0.01,0.43] 0.18 [-0.02,0.38] 0.04™ [0.01,0.07] 7.57 [0.32,14.82] -1.53" [-2.62,-0.45] -3.20" [-5.31,-1.10] -1.67" [-2.84,-0.50]
0.BMIC 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.BMIC -3.18™" [-4.34,-2.02] -0.14" [-0.25,-0.03] -0.13" [-0.23,-0.03] -0.01 [-0.02,0.01] -1.36 [-5.07,2.34] 0.28 [-0.28,0.83] 0.43 [-0.65,1.50] -0.11 [-0.71,0.48]
2.BMIC -6.51"" [-7.83,-5.19] -0.14" [-0.27,-0.02] -0.13" [-0.25,-0.01] -0.01 [-0.03,0.01] -3.29 [-7.50,0.93] 0.59 [-0.04,1.22] 0.77 [-0.45,2.00] -0.71° [-1.39,-0.03]
3.BMIC -13.76™" [-17.07,-10.46] 0.06 [-0.25,0.37] 0.09 [-0.21,0.38] -0.03 [-0.07,0.01] -9.20 [-19.74,1.35] 171" [0.13,3.29] 2.38 [-0.68,5.44] -1.00 [-2.70,0.70]
4.BMIC -7.91"" [-11.46,-4.35] -0.10 [-0.43,0.23] -0.10 [-0.41,0.22] -0.00 [-0.05,0.04] 0.84 [-10.49,12.17] 0.18 [-1.51,1.88] -0.08 [-3.37,3.21] -1.18 [-3.01,0.64]
0.0ccAct 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.0ccAct -0.26 [-1.65,1.13] 1.16™" [1.03,1.29] 1.06™" [0.94,1.18] 0.10"" [0.08,0.12] 28.80"" [24.37,33.23] -3.89"" [-4.56,-3.23] 27757 [-9.04,-6.46] -3.66"" [-4.37,-2.94]
2.0ccAct -0.14 [-1.45,1.17] 1.10"" [0.98,1.23] 0.95"" [0.84,1.07] 0.15"" [0.13,0.17] 36.35"" [32.16,40.53] -4.67"" [-5.30,-4.04] -9.92""* [-11.14,-8.71] -5.92"" [-6.60,-5.24]
3.0ccAct 0.22 [-2.26,2.70] 1.32"" [1.09,1.56] 1.07"" [0.85,1.29] 0.25"" [0.22,0.28] 53.72"" [45.82,61.62] -6.37"" [-7.55,-5.18] -13.91™ [-16.20,-11.62] 871" [-9.99,-7.44]
0.Smoking 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Smoking 1.46™ [0.39,2.52] -0.14™ [-0.24,-0.04] -0.14™ [-0.24,-0.05] 0.01 [-0.01,0.02] 0.24 [-3.16,3.64] -0.01 [-0.52,0.50] -0.16 [-1.14,0.83] -0.20 [-0.75,0.35]
2.Smoking 238" [0.09,4.68] 0.27 [0.06,0.49] 027" [0.06,0.47] 0.01 [-0.02,0.03] 4.11 [-3.21,11.43] -0.69 [-1.79,0.40] -1.03 [-3.15,1.09] -0.05 [-1.23,1.13]
3.Smoking 2.84"" [1.21,4.47] 0.14 [-0.01,0.30] 0.13 [-0.02,0.27] 0.01 [-0.01,0.03] 8.03™ [2.83,13.23] -1.04™ [-1.82,-0.26] -1.87° [-3.38,-0.36] -1.23" [-2.07,-0.40]
wake_time_h 1.98"" [1.44,2.52] 0.24"" [0.19,0.29] 0.22°" [0.17,0.27] 0.02""" [0.01,0.03] 7.91°" [6.20,9.62] -0.92"" [-1.17,-0.66] -1.67"" [-2.16,-1.17] -0.65"" [-0.93,-0.37]
daily n_stps 0.00""" [0.00,0.00] 0.00""" [0.00,0.00] 0.00""" [0.00,0.00] 0.00""" [0.00,0.00] 0.01""" [0.01,0.01] 0.00""" [0.00,0.00] 0.00""" [0.00,0.00] 0.00""" [0.00,0.00]
cons 15.55™" [6.75,24.35] -0.65 [-1.48,0.17] -0.51 [-1.29,0.27] -0.14 [-0.25,-0.03] -71.94™" [-100.01,-43.86] 38.24™" [34.03,42.44] 57.51"" [49.36,65.66] 95.41"™" [90.88,99.94]
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

95% confidence intervals in brackets
"p<0.05" p<0.01,™ p<0.001
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Supplementary Table 5.11-4. Sensitivity analyses regressions (excluding EU-SILC severely hampered and some extent).

O 2 3) “4) ®) )
Prop upev_ Upev Upev Upev Nonupev
stp_to_std ur_min n_stpev n_stps bursti bursti

0.Sex 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

1.Sex -0.05 [-0.46,0.35] -0.27" [-0.50,-0.04] -0.01 [-0.25,0.24] -17.717 [-22.01,-13.42] 0.05™" [0.04,0.05] -0.00 [-0.01,0.00]
0.Qual 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

1.Qual -0.11 [-0.62,0.41] 0.10 [-0.19,0.40] 0.09 [-0.22,0.40] 0.02 [-5.43,5.48] 0.00 [-0.01,0.01] -0.01 [-0.01,0.00]
2.Qual -0.29 [-0.91,0.33] -0.06 [-0.41,0.30] -0.15 [-0.52,0.22] -1.46 [-8.02,5.10] 0.00 [-0.01,0.01] -0.01" [-0.02,-0.00]
3.Qual -0.01 [-0.58,0.55] -0.07 [-0.39,0.26] -0.22 [-0.56,0.12] 1.20 [-4.82,7.22] -0.00 [-0.01,0.01] -0.02"™ [-0.03,-0.01]
0.Disab 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
0.SRhealth 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

1.SRhealth 0.26 [-0.23,0.74] 0.12 [-0.16,0.40] 0.36" [0.07,0.65] -2.04 [-7.19,3.11] 0.01 [-0.00,0.01] 0.00 [-0.00,0.01]
2.SRhealth 0.26 [-0.29,0.81] 0.12 [-0.19,0.44] 0.36" [0.03,0.69] -1.57 [-7.42,4.29] 0.01" [0.00,0.02] 0.00 [-0.01,0.01]
3.SRhealth -0.11 [-0.93,0.71] 0.17 [-0.30,0.64] 0.42 [-0.08,0.91] -2.33 [-11.04,6.39] 0.00 [-0.01,0.02] -0.01 [-0.02,0.01]
4.SRhealth 1.71 [-0.66,4.08] 0.04 [-1.32,1.40] 0.10 [-1.32,1.52] 1.73 [-23.39,26.85] -0.00 [-0.04,0.03] -0.02 [-0.06,0.01]
0.NSSEC_3 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.NSSEC 3 -0.23 [-0.70,0.25] 0.18 [-0.09,0.45] 0.42" [0.14,0.70] -3.85 [-8.85,1.15] 0.01" [0.00,0.02] 0.00 [-0.00,0.01]
2.NSSEC_3 0.08 [-0.57,0.73] 0.19 [-0.18,0.57] 0.40" [0.01,0.79] 0.59 [-6.31,7.49] 0.00 [-0.01,0.01] 0.01 [-0.00,0.02]
3.NSSEC_3 1.41 [-3.49,6.31] -0.54 [-3.34,2.27] -0.37 [-3.30,2.56] 23.95 [-27.91,75.81] -0.03 [-0.10,0.05] -0.04 [-0.12,0.03]
4.NSSEC_3 -0.32 [-1.21,0.57] 0.36 [-0.15,0.87] 0.58" [0.04,1.11] 1.45 [-8.00,10.91] 0.01 [-0.00,0.03] -0.01 [-0.02,0.01]
0.BMIC 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

1.BMIC 0.60" [0.15,1.06] 0.23 [-0.03,0.49] 0.20 [-0.07,0.48] 9.86™" [5.04,14.69] -0.02" [-0.02,-0.01] 0.00 [-0.01,0.01]
2.BMIC 0.88™" [0.36,1.40] 0.86™" [0.57,1.16] 0.78™" [0.47,1.10] 25.52™" [20.02,31.01] -0.03™ [-0.04,-0.02] 0.00 [-0.01,0.01]
3.BMIC 0.22 [-1.08,1.52] 2,77 [2.03,3.51] 2.04™" [1.26,2.82] 53.22"" [39.47,66.96] -0.04™ [-0.06,-0.02] 0.01 [-0.00,0.03]
4.BMIC 0.45 [-0.95,1.85] 1.33" [0.53,2.13] 1.417 [0.57,2.24] 27.65™" [12.88,42.42] -0.00 [-0.02,0.02] 0.00 [-0.02,0.02]
0.OccAct 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

1.0ccAct -1.49™ [-2.04,-0.94] 1.58™" [1.26,1.89] 1.82"" [1.49,2.15] 0.21 [-5.57,5.98] 0.04™" [0.03,0.05] 0.01"" [0.01,0.02]
2.0ccAct -1.377 [-1.89,-0.86] 1.57" [1.28,1.87] 2.26™" [1.95,2.57] 3.79 [-1.66,9.25] 0.05™" [0.04,0.05] 0.02"" [0.01,0.03]
3.0ccAct -0.99 [-1.96,-0.02] 1.93"™" [1.38,2.49] 3.21™ [2.63,3.79] 6.62 [-3.68,16.91] 0.06™" [0.05,0.07] 0.03"" [0.01,0.04]
0.Smoking 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]
1.Smoking 0.49" [0.07,0.91] -0.37" [-0.61,-0.13] -0.16 [-0.41,0.09] -4.81° [-9.24,-0.38] -0.00 [-0.01,0.00] -0.00 [-0.01,0.00]
2.Smoking -0.68 [-1.58,0.22] -0.02 [-0.53,0.50] -0.06 [-0.60,0.48] -6.56 [-16.10,2.98] -0.00 [-0.02,0.01] 0.00 [-0.01,0.01]
3.Smoking -0.27 [-0.91,0.37] -0.02 [-0.39,0.34] 0.03 [-0.35,0.42] -6.73 [-13.51,0.05] -0.01™ [-0.02,-0.00] -0.01 [-0.02,-0.00]
wake time_h -0.29"" [-0.50,-0.08] 0.04 [-0.08,0.16] 0.02 [-0.10,0.15] -7.47" [-9.71,-5.24] 0.02"" [0.02,0.02] 0.00 [-0.00,0.01]
daily_n_stps 0.00"" [0.00,0.00] 0.00™" [0.00,0.00] 0.00"" [0.00,0.00] 0.02""* [0.02,0.02] 0.00™ [0.00,0.00] 0.00"" [0.00,0.00]

cons 34.79™ [31.33,38.25] 3.76™" [1.78,5.74] 3.56™ [1.49,5.63] 129.27" [92.67,165.87] -0.06" [-0.11,-0.01] 0.18"™" [0.13,0.23]

0.00 0.00 0.00 0.00 0.00 0.00

95% confidence intervals in brackets
"p<0.05" p<0.01,™ p<0.001
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Appendix 8.12. Associations with covariates.

Supplementary Table 6.12-1 Associations of participant characteristics with upright and stepping event outcomes.

N Upright events (n) Burstiness of upright events  Burstiness of sedentary events  Stepping events (n) Duration of step events (s)  Steps per stepping events (n)

Sex (Ref: Male) 3016 Ref. Ref. Ref. Ref. Ref. Ref.

Female 3072 0.19 [-0.46,0.85] 0.04 [0.04,0.05] -0.01 [-0.01,-0.00] 20.18 [17.84,22.52] -3.79 [-4.13,-3.44] -6.01 [-6.67,-5.36]
Age (years) 6085 -0.18 [-0.22,-0.14] 0 [-0.00,0.00] 0[0.00,0.00] -0.26 [-0.40,-0.12] 0.05 [0.03,0.07] 0.05 [0.01,0.09]
Type 2 diabetes 4906  Ref. Ref. Ref. Ref. Ref. Ref.
(Ref: No)

Yes 1179 0.16 [-0.70,1.02] -0.01 [-0.02,-0.01] 0 [-0.01,0.00] -0.48 [-3.55,2.60] -0.09 [-0.55,0.36] 0[-0.86,0.86]
Education (Ref: Low) 1942 Ref. Ref. Ref. Ref. Ref. Ref.

Med 1689 0.27[-0.57,1.11] -0.01 [-0.01,-0.00] -0.01 [-0.01,-0.00] -3.13 [-6.13,-0.12] 0.34[-0.11,0.78] 0.62 [-0.22,1.46]

High 2454  -0.42[-1.20,0.36) -0.01 [-0.02,-0.01] -0.02 [-0.02,-0.01] -13.51 [-16.31,-10.72]  2.04 [1.63,2.45] 4[3.22,4.79]
?R°e‘:?’ l'gf‘;:z'gfex 2385 Ref. Ref. Ref. Ref. Ref. Ref.

25<30 2581 -2.39[-3.10,-1.67] -0.02 [-0.02,-0.01] 0[-0.00,0.01] 7.64 [5.08,10.19] -0.76 [-1.14,-0.38] -1.73 [-2.44,-1.01]

30<40 1065 -5.56 [-6.53,-4.60] -0.03 [-0.04,-0.02] 0[-0.01,0.00] 5.98 [2.52,9.43] -0.81 [-1.32,-0.30] -1.65 [-2.62,-0.69]

240 54 -9.06 [-12.46,-5.65] -0.03 [-0.06,-0.01] -0.01 [-0.03,0.01] -0.62 [-12.79,11.54] -0.26 [-2.05,1.54] -0.99 [-4.39,2.41]
(s;‘e?:k,'g :tr;’“‘s 2416 Ref. Ref. Ref. Ref. Ref. Ref.

Former 2953  0.98 [0.30,1.66] 0.01 [0.00,0.01] 0[0.00,0.01] 0.58 [-1.85,3.02] -0.13 [-0.49,0.23] -0.26 [-0.94,0.42]

Current 716 4.26 [3.21,5.32] 0[-0.01,0.01] 0[-0.01,0.00] 7.34[3.57,11.10] -1.18 [-1.74,-0.63] -2.01 [-3.06,-0.96]

Each upright event metric is adjusted for covariates for all covariates in the table, and daily number of steps.
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Supplementary Table 6.12-2. Associations of participant characteristics with upright and stepping event outcomes.

Within upright event composition metrics

N Daily step count (n) Step-weighted cadence (steps/min) Duration (min) Stepping proportion (%) Step count (n) Stepping events (n)

Sex (Ref: Male) 3016 Ref. Ref. Ref. Ref. Ref. Ref.

Female 3072 -115.47 [-293.64,62.71] -0.4 [-0.78,-0.02] 0.9 [0.76,1.05] -0.75 [-1.03,-0.48] -0.6 [-3.18,1.98] 1.21 [1.07,1.36]
Age (years) 6085 -37.00 [-47.67,-26.33] -0.07 [-0.09,-0.05] 0.02 [0.01,0.03] -0.06 [-0.08,-0.04] 0.65 [0.49,0.80] 0.02 [0.01,0.03]
(Tg:ff ﬁo‘g'abetes 4906  Ref. Ref. Ref. Ref. Ref. Ref.

Yes 1179 -1159.98 [-1392.36,-927.59]  -0.5 [-0.99,-0.00] -0.24 [-0.43,-0.05] 0.23 [-0.13,0.59] -0.67 [-4.07,2.72] -0.18 [-0.37,0.01]
Education (Ref: Low) 1942 Ref. Ref. Ref. Ref. Ref. Ref.

Med 1689 -1.80[-230.34,226.74] 0.62 [0.13,1.10] -0.22 [-0.40,-0.04] 0.16 [-0.19,0.51] -2.48 [-5.79,0.83] -0.36 [-0.55,-0.17]

High 2454  -52.56 [-265.17,160.04] 2.13 [1.68,2.58] -0.52 [-0.69,-0.35] 0.78 [0.46,1.11] -0.31[-3.39,2.77] -0.94 [-1.11,-0.77]
:3;;:3’1’2_35‘?2{'5';"” 2385 Ref. Ref. Ref. Ref. Ref. Ref.

25<30 2581 -790.04 [-983.55,-596.52] -1.15 [-1.56,-0.73] 0.4 [0.24,0.55] 0.66 [0.36,0.96] 9.47 [6.65,12.28] 0.56 [0.40,0.72]

30<40 1065 -1903.04 [-2161.50,-1644.59] -1.38 [-1.94,-0.83] 0.79 [0.58,1.00] 1.41 [1.00,1.81] 20.48 [16.67,24.28] 0.84 [0.63,1.06]

240 54 -3593.18 [-4514.43,-2671.94] -2.87 [-4.83,-0.91] 1.72 [0.99,2.46] 1.19 [-0.23,2.61] 30.85 [17.45,44.26] 1.3 [0.55,2.06]
Smoking status 2416 Ref. Ref. Ref. Ref. Ref. Ref.
(Ref: Never)

Former 2953 -250.18 [-435.60,-64.76] -0.31[-0.70,0.09] -0.21 [-0.36,-0.06]  0.09 [-0.20,0.37] -4.01 [-6.69,-1.32] -0.09 [-0.24,0.06]

Current 716  -1468.21 [-1752.47,-1183.96] -1.54 [-2.15,-0.93] -0.43 [-0.65,-0.20] 0.04 [-0.40,0.48] -11.7 [-15.85,-7.55]  -0.33 [-0.56,-0.09]

Each upright event metric is adjusted for covariates for all covariates in the table, and daily number of steps (except daily steps)
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Appendix 8.13. Sensitivity analyses.

Supplementary Table 6.12-1. Sensitivity analyses with full sample size for grip strength (n =6426) and timed chair stand test (n =6602), model 3.

Grip strength (kg) TCST (s)

Males Females Males Females
Upright events -0.04 [-0.27,0.18] -0.03 [-0.26,0.20] -0.13 [-0.32,0.06] -0.2 [-0.40,-0.01]
(per +13.1n) (0.714) (0.809) (0.187) (0.044)
Burstiness of upright events -0.21 [-0.44,0.02] 0.05 [-0.20,0.30] 0.18 [-0.02,0.37] -0.02 [-0.23,0.19]
(per + 0.09) (0.072) (0.678) (0.077) (0.857)
Burstiness of sedentary events 0.14 [-0.07,0.35] 0.25 [-0.00,0.50] -0.16 [-0.34,0.02] -0.25 [-0.47,-0.04]
(per +0.08) (0.198) (0.052) (0.085) (0.022)
Stepping events -0.38 [-0.64,-0.11] -0.37 [-0.64,-0.11] -0.18 [-0.40,0.05] -0.24 [-0.46,-0.01]
(per +59.1 n) (0.005) (0.006) (0.124) (0.041)
Duration of stepping events 0.41[0.17,0.65] 0.61 [0.30,0.92] 0.29 [0.09,0.50] 0.06 [-0.21,0.32]
(per + 8.8 sec) (0.001) (<0.001) (0.005) (0.675)
Steps per stepping event 0.28 [0.04,0.52] 0.46 [0.15,0.77] 0.24[0.03,0.44] -0.02 [-0.29,0.24]
(per + 16.7 steps) (0.023) (0.004) (0.023) (0.868)
Step-weighted cadence 0.05 [-0.17,0.28] 0[-0.27,0.27] -0.15 [-0.35,0.04] -0.46 [-0.69,-0.24]
(per + 8.6 steps/min) (0.642) (0.977) (0.125) (<0.001)
Duration of upright events -0.13 [-0.38,0.12] -0.11 [-0.33,0.10] 0.03 [-0.18,0.24] -0.01 [-0.19,0.17]
(per + 2.9 min) (0.316) (0.303) (0.78) (0.924)
Stepping proportion of upright 0.3 [0.08,0.52] 0.02 [-0.22,0.26] -0.18 [-0.37,0.01] -0.01 [-0.22,0.19]
events
(per + 5.6 %) (0.008) (0.883) (0.062) (0.908)
Step count of upright events 0.1 [-0.21,0.41] 0.02 [-0.30,0.34] 0.29 [0.03,0.55] 0.14 [-0.13,0.41]
(per + 82.3 steps) (0.525) (0.898) (0.031) (0.303)
Stepping events within upright -0.09 [-0.34,0.16] -0.19 [-0.41,0.04] -0.04 [-0.25,0.18] 0[-0.19,0.19]
events
(per +3.0n) (0.481) (0.1) (0.729) (0.998)

Model 3 adjusted for age, sex, waking wear time, type 2 diabetes, education level, body mass index, smoking status, and average daily step
count. Bold indicates statistical significance p < 0.05. Green indicates coefficient became significant with sensitivity analyses. Red indicates
coefficient became non-significant with sensitivity analyses.
Supplementary Table 6.12-2. Sensitivity analyses with full sample size for six-minute walk test (n =6426) and SF-36 physical functioning (n

=6913), model 3.

6MWT (m) SF-36 physical functioning

Males Females Males Females
Upright events 0.2 [-2.04,2.45] 0.35 [-1.96,2.66] -0.45 [-0.99,0.09] -0.04 [-0.60,0.52]
(per +13.1n) (0.859) (0.763) (0.103) (0.89)
Burstiness of upright events -2.91 [-5.17,-0.65] 1[-1.45,3.45] -1.04 [-1.59,-0.48] -0.55 [-1.15,0.05]
(per + 0.09) (0.012) (0.422) (<0.001) (0.0712)
Burstiness of sedentary events 5.5[2.99,8.01] 0.58 [0.07,1.09] 1.57 [0.96,2.18]
(per +0.08) (0.052) (<0.001) (0.026) (<0.001)
Stepping events -3.08 [-5.70,-0.45] -3 [-5.64,-0.35] 0.44 [-0.20,1.09]
(per +59.1 n) (0.022) (0.026) (0.829) (0.178)
Duration of stepping events 1.75[-0.69,4.19] 3.26 [0.26,6.26] 0.28 [-0.30,0.87]
(per + 8.8 sec) (0.159) (0.033) (0.34) (0.07)
Steps per stepping event 3.07 [0.67,5.48] 4.6 [1.58,7.62] 0.39 [-0.19,0.96] 0.93 [0.18,1.67]
(per + 16.7 steps) (0.012) (0.003) (0.192) (0.015)

Step-weighted cadence

8.1[5.83,10.37]

9.39 [6.71,12.06]

1.6 [1.06,2.15]

2.56 [1.92,3.21]

(per + 8.6 steps/min) (<0.001) (<0.001) (<0.001) (<0.001)
Duration of upright events -0.3[-2.82,2.22] -0.45 [-2.60,1.70] 0.23 [-0.37,0.84] 0.15 [-0.37,0.67]
(per + 2.9 min) (0.817) (0.68) (0.448) (0.581)
Stepping proportion of upright 1.29 [-0.94,3.52] 1.55[-0.87,3.97] 0.27 [-0.27,0.80] 1.23 [0.65,1.81]
events

(per + 5.6 %) (0.256) (0.208) (0.327) (<0.001)
Step count of upright events -0.96 [-4.04,2.11] -0.4 [-3.49,2.69] 0.15 [-0.60,0.89]

(per + 82.3 steps) (0.539) (0.8) (0.701) (0.07)
Stepping events within upright -0.7 [-3.23,1.83] -0.78 [-3.00,1.43] 0.25 [-0.35,0.86] 0.28 [-0.26,0.82]
events

(per +3.0n) (0.587) (0.488) (0.411) (0.312)

Model 3 adjusted for age, sex, waking wear time, type 2 diabetes, education level, body mass index, smoking status, and average daily step
count. Bold indicates statistical significance p < 0.05. Green indicates coefficient became significant with sensitivity analyses. Red indicates
coefficient became non-significant with sensitivity analyses.
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Supplementary Table 6.12-3. Sensitivity analyses substituting binary type 2 classification for WHO classification with pre-diabetes. Model 3 (n

=6085).
Grip strength (kg) TCST (s)

Males Females Males Females
Upright events -0.04 [-0.28,0.20] 0[-0.25,0.24] -0.12 [-0.32,0.07] -0.22 [-0.41,-0.02]
(per +13.1n) (0.725) (0.989) (0.202) (0.03)
Burstiness of upright events -0.22 [-0.46,0.02] 0.04 [-0.22,0.30] 0.17 [-0.03,0.36] -0.05 [-0.25,0.16]
(per +0.09) (0.072) (0.766) (0.089) (0.67)
Burstiness of sedentary events 0.03 [-0.19,0.26] 0.25[-0.01,0.52] -0.07 [-0.25,0.11] -0.23 [-0.44,-0.02]
(per +0.08) (0.789) (0.06) (0.469) (0.035)
Stepping events -0.45 [-0.73,-0.18] -0.38 [-0.66,-0.10] -0.15 [-0.38,0.07] -0.17 [-0.39,0.06]
(per +59.1 n) (0.001) (0.007) (0.184) (0.144)
Duration of stepping events 0.35[0.10,0.61] 0.67 [0.35,0.99] 0.33[0.13,0.54] 0.12[-0.13,0.38]
(per + 8.8 sec) (0.007) (<0.001) (0.002) (0.349)
Steps per stepping event 0.22 [-0.03,0.48] 0.52 [0.20,0.84] 0.25 [0.04,0.45] 0.03 [-0.23,0.29]
(per + 16.7 steps) (0.08) (0.001) (0.017) (0.81)
Step-weighted cadence -0.05 [-0.29,0.20] 0.01[-0.27,0.30] -0.16 [-0.35,0.04] -0.39 [-0.62,-0.16]
(per + 8.6 steps/min) (0.708) (0.933) (0.11) (0.001)
Duration of upright events -0.16 [-0.43,0.10] -0.16 [-0.38,0.07] 0.02 [-0.19,0.24] 0.06 [-0.12,0.24]
(per + 2.9 min) (0.225) (0.172) (0.836) (0.528)
Stepping proportion of upright 0.18 [-0.05,0.42] 0.09 [-0.17,0.34] -0.15 [-0.34,0.04] 0[-0.20,0.21]
events
(per + 5.6 %) (0.127) (0.5) (0.133) (0.991)
Step count of upright events -0.04 [-0.36,0.29] 0[-0.33,0.32] 0.31 [0.05,0.57] 0.23 [-0.04,0.49]
(per + 82.3 steps) (0.83) (0.995) (0.019) (0.093)

Stepping events within upright
events
(per +3.0n)

-0.15[-0.42,0.11]

(0.257)

-0.22 [-0.45,0.01]

(0.065)

-0.01[-0.22,0.21]

(0.955)

0.06 [-0.12,0.25]

(0.505)

Model 3 adjusted for age, sex, waking wear time, type 2 diabetes, education level, body mass index, smoking status, and average daily step
count. Bold indicates statistical significance p < 0.05. Green indicates coefficient became significant with sensitivity analyses. Red indicates

coefficient became non-significant with sensitivity analyses.

Supplementary Table 6.12-4. Sensitivity analyses substituting binary type 2 classification for WHO classification with pre-diabetes. Model 3 (n

=6085).
6MWT (m) SF-36 physical functioning

Males Females Males Females
Upright events 0.12 [-2.15,2.39] 0.5 [-1.82,2.83] -0.48 [-1.00,0.05] -0.22 [-0.76,0.31]
(per +13.1n) (0.919) (0.671) (0.075) (0.414)
Burstiness of upright events -2.11 [-4.39,0.17] 1[-1.47,3.46] -1.01 [-1.54,-0.49] -0.36 [-0.93,0.21]
(per +0.09) (0.069) (0.427) (<0.001) (0.214)
Burstiness of sedentary events 2.27 [0.13,4.41] 5.21[2.69,7.73] 0.09 [-0.40,0.59] 1.24 [0.66,1.83]
(per +0.08) (0.037) (<0.001) (0.708) (<0.001)
Stepping events -3.74 [-6.39,-1.09] -3.46 [-6.12,-0.81] -0.63 [-1.25,-0.02] 0.03 [-0.58,0.65]
(per +59.1 n) (0.006) (0.01) (0.043) (0.912)
Duration of stepping events 2.12 [-0.32,4.56] 3.44 [0.40,6.47] 0.14 [-0.42,0.71] 0.86 [0.16,1.56]
(per + 8.8 sec) (0.088) (0.026) (0.617) (0.016)
Steps per stepping event 3.62 [1.22,6.02] 4.9 [1.85,7.95] 0.23 [-0.32,0.79] 1.09 [0.39,1.80]
(per + 16.7 steps) (0.003) (0.002) (0.412) (0.002)
Step-weighted cadence 8.28 [5.99,10.56] 8.85[6.16,11.54] 0.9[0.37,1.43] 2.26 [1.64,2.89]
(per + 8.6 steps/min) (<0.001) (<0.001) (0.001) (<0.001)
Duration of upright events -0.15 [-2.68,2.39] -0.37 [-2.52,1.79] 0.15 [-0.44,0.73] 0.27 [-0.23,0.77]
(per + 2.9 min) (0.909) (0.74) (0.622) (0.283)

Stepping proportion of upright
events

1.04 [-1.21,3.28]

0.41 [-2.02,2.85]

-0.17 [-0.69,0.35]

0.81[0.25,1.37]

(per + 5.6 %) (0.365) (0.741) (0.527) (0.005)
Step count of upright events -1.03 [-4.10,2.04] -0.62 [-3.73,2.49] -0.14 [-0.85,0.57] 0.73 [0.01,1.45]
(per + 82.3 steps) (0.511) (0.695) (0.699) (0.046)

Stepping events within upright
events
(per +3.0n)

-0.99 [-3.53,1.55]

(0.444)

-0.99 [-3.20,1.23]

(0.382)

-0.09 [-0.68,0.50]

(0.767)

0.18 [-0.34,0.69]

(0.498)

Model 3 adjusted for age, sex, waking wear time, type 2 diabetes, education level, body mass index, smoking status, and average daily step
count. Bold indicates statistical significance p < 0.05. Green indicates coefficient became significant with sensitivity analyses. Red indicates
coefficient became non-significant with sensitivity analyses.
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Appendix 8.14. Sensitivity analyses. Different waking-wear classification.

Supplementary Table 7.5-1. Associations of upright and stepping event metrics with handgrip strength, SF-36 physical functioning, and single-leg stance balance test. Using
06:00am to 22:00h waking wear classification

Handgrip strength (kg) - Model 3

SF-36 physical functioning - Model 3

Balance - Model 3

Males Females Males Females Males Females
B [95% CI] B [95% CI] B [95% CI] B [95% CI] OR [95% CI] OR [95% CI]
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

Daily step count
(per + 3582 steps)
Upright events

0.25 [-0.07,0.57]

0.3 [-0.03,0.62]

0.77 [-0.08,1.61]

0.98 [0.14,1.83]

1.0[0.92,1.10]

1.1[1.01,1.21]

(ver +13.1 n) (0.126) (0.074) (0.074) (0.022) (0.915) (0.036)
Stepping events 0.65[0.27,1.02] 0.49 [0.09,0.88] -0.48 [-1.45,0.49] 0.38 [-0.63,1.39] 0.86 [0.78,0.96] 0.910.81,1.01]
(ver + 59.1 n) (0.001) (0.015) (0.336) (0.461) (0.006) (0.065)
Duration of stepping events -1.04 [-1.36,-0.71] -0.04 [-0.41,0.34] -0.19 [-1.02,0.65] 1.24[0.25,2.23] 1.05[0.96,1.15] 1.11 [1.00,1.24]
(per + 8.8 sec) (<0.001) (0.854) (0.664) (0.014) (0.28) (0.048)
Steps per stepping event -1.17 [-1.49,-0.85] -0.09 [-0.47,0.28] 0.05[-0.77,0.87] 1.6 [0.62,2.58] 1.06 [0.97,1.16] 1.12 [1.01,1.24]
(per + 16.7 steps) (<0.001) (0.628) (0.907) (0.001) (0.175) (0.038)
Step-weighted cadence -1.3 [-1.63,-0.98] 0.0 [-0.34,0.34] 1.17 [0.32,2.01] 3.11[2.24,3.98] 1.12 [1.02,1.23] 1.14 [1.03,1.26]
(per + 8.6 steps/min) (<0.001) (0.985) (0.007) (<0.001) (0.017) (0.008)
Duration of upright events 0.21 [-0.13,0.55] 0.03 [-0.27,0.33] -0.38 [-1.27,0.50] -0.55 [-1.33,0.23] 0.99 [0.89,1.09] 0.97 [0.89,1.05]
(ver + 2.9 min) (0.227) (0.841) (0.396) (0.169) (0.761) (0.408)
Stepping proportion of upright

events 0.17 [-0.15,0.49] -0.08 [-0.41,0.25] -0.18 [-1.02,0.66] 1.23 [0.39,2.06] 0.93[0.84,1.01] 0.95[0.87,1.04]
(per + 5.6 %) (0.294) (0.623) (0.674) (0.004) (0.097) (0.273)
Step count of upright events -0.62 [-0.99,-0.25] -0.19 [-0.61,0.24] -1.13 [-2.09,-0.16] -0.23 [-1.34,0.88] 0.92[0.83,1.02] 0.89[0.79,1.01]
(per + 82.3 steps) (0.001) (0.392) (0.022) (0.689) (0.133) (0.066)
Stepping events within upright

events 0.39[0.07,0.70] 0.08[-0.27,0.42] -0.81 [-1.63,0.01] -0.56 [-1.45,0.33] 0.92[0.84,1.01] 0.89[0.81,0.98]
(per + 3.0 n) (0.017) (0.668) (0.052) (0.217) (0.065) (0.019)
Upright event burstiness 0.30[-0.00,0.60] 0.42[0.07,0.76] -0.24 [-1.02,0.54] 0.44 [-0.46,1.34] 1.02 [0.94,1.11] 1.02 [0.92,1.12]
(per + 0.09) (0.053) (0.019) (0.545) (0.342) (0.621) (0.709)
Sedentary event burstiness 0.21[-0.09,0.52] -0.16 [-0.50,0.17] 0.34[-0.47,1.15] 0.32[-0.54,1.18] 0.98 [0.89,1.07] 0.92 [0.83,1.01]
(per + 0.08) (0.173) (0.334) (0.411) (0.466) (0.611) (0.065)
USTP -0.54 [-0.88,-0.20] -0.35 [-0.67,-0.03] -0.28 [-1.18,0.62] -1.20 [-2.01,-0.39] 0.93[0.85,1.03] 0.95[0.87,1.05]
(per + 1.0) (0.002) (0.034) (0.537) (0.004) (0.172) (0.317)

Results are presented as regression coefficient (B) with 95% confidence interval [95% CI] and p-value, where the predictor is standardised and the outcome is unstandardised (a
one standard deviation increase in the predictor equates to an absolute change in the physical function outcome. Associations were adjusted for the following covariates; ; Model
3: sex, waking wear time, education level, socioeconomic status, body mass index, smoking status, and average daily step count

324



BLANK PAGE

325



