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A B S T R A C T

For the real-time characterisation of an inhomogeneous impact inhibiting constraint such as
downhole rock layers, an unconventional method using machine learning (ML) and drill-bit
vibrations is investigated. An impact oscillator with one-sided elastic constraint is employed
in modelling the bit-rock impact actions. Measurable drill-bit dynamics, such as acceleration,
were acquired and processed into features and 2D-images that were later used in developing ML
models capable of predicting the stiffness of impacted rock constraint. Explored ML networks
include Multilayer Perceptron (MLP), Convolutional Neural Network and Long Short-Term
Memory Network. Both simulation and experimental studies have been presented to validate the
proposed method while using coefficient of determination (𝑅2) and normalised mean absolute
error (NMAE) as the performance metrics of the ML models. Results showed that the feature-
based models had better performances for both simulation and experiment compared to the raw
signal and 2D-image based models. Aside being simple and computationally less expensive, the
feature-based MLP models outperformed other models having 𝑅2 values > 0.7 and NMAE values
< 0.2 for both simulation and experiment, thus presenting them as the preferred ML model
for dynamic downhole rock characterisation. In general, this study presents a new modality
to achieving logging-while-drilling during deep-hole drilling operations such as carried out in
hydrocarbon, mineral and geothermal exploration.

. Introduction

Fossil fuels have not only been of substantial benefits to producing nations, but have also been the main drive of the global
conomy. According to BP Statistical Review of World Energy 2022 [1], fossil fuels accounted for 82% of primary energy use in 2021
ith global energy consumption growing by 31 Exajoules for that year, the largest increase in history. As new economies continue

o emerge, it is obvious that global energy demand will also continue to increase and the reliance on fossil fuel will persist for some
imes before the full transition into greener energy. While we await this full transition, it has become necessary for oil companies and
ll stakeholders to engage in practises, innovations and technologies that not only increase their profits for diversification purposes
ut also minimise the environmental impact of exploration and production activities. A typical example of such technology is the
ibro-impact drilling (VID) system, a rotary-percussive drilling system which is also referred to as the resonance enhance drilling
ystem [2,3]. The VID system combines percussive impacts and rotational torques to break downhole rocks and it has shown great
otential in increasing drilling efficiency via improved rate of penetration (ROP), improved borehole quality, reduced non-productive
ime and minimised environmental footprint of drilling operations. As an engineering system experiencing impacts against some
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kinds of motion inhibiting constraints (downhole rocks), the VID system has received huge research interests over the years and its
concept, development and advantages are discussed below.

2. The vibro-impact drilling system: concept and advantages

The VID system relies on the principle of resonance to instigate controllable high-frequency low-amplitude axial vibrations on the
rill-bit. This way, the drill-bit imposes controlled percussive impacts on the underlying rock formation alongside the already existing
otational pressure. The percussive impacts of the VID sysyetm exerts greater load and stress on the underlying rock formation thus
racturing it better compared to an ordinary rotary drilling system. The rotation on the other hand helps to remove the already
ractured rock material, hence, exposing fresh rock surfaces for each bit-rock impact. Both the rotary and the dynamic loading of
he drill-bit in the VID system thus complement each other to increase ROP. The system comprises a sequential arrangement of
vibro-isolator, an oscillator, a vibro-transmission section and a rotary drill-bit such as the polycrystalline diamond cutter or the

atural/synthetic diamond cutter [4]. The vibro-isolator forms the connection between the drill-string and the system and connects
irectly with the oscillator which then connects with the drill-bit via the vibro-transmission spring. As protection measures, both
he vibro-isolator and the vibro-transmission units help to respectively decouple the drill-string and the drill-bit from the oscillator.
he oscillator is operated at certain range of frequencies and amplitudes to oscillate the attached drill-bit. When the frequency of
scillation (𝑓 ) of the drill-bit equals or nears the natural frequency (𝑓𝑛) of the drilled rock formation, resonance sets in and this

results in the high-frequency low-amplitude axial vibrations of the drill-bit. Compared to the high-amplitude impacts and excessive
fracturing of conventional percussive drilling, the VID impacts are controlled and only propagate cracks just ahead of the drill-bit,
hence, less likely to compromise the borehole integrity. Also, compared to the constant bit-rock grinding contact of conventional
rotary drilling systems, the intermittency of VID impacts reduces its bit-rock contact time to about 2% of the entire drilling time [5].
This alongside the lower weight-on-bit (WOB) of the VID system helps it to reduce wearing and tearing of drilling accessories, thus
reducing the need to trip in and out of the borehole as well as the non-productive time. In summary the operational and economic
advantages of the VID system as highlighted in [6] include:

• Higher ROP due to combined effects of rotary and dynamic loading.
• Increased borehole stability due to controlled fracture propagation and lower WOB.
• Reduced tool wearing and tool failure due to reduced WOB and reduced bit-rock contacts.
• Efficient energy usage due to drill-bit focused energy.
• Reduces tripping and reduced non-productive time due to longer tool lifespan and reduced tool failure.
• The use of lower WOB and controlled propagated fractures increases personnel safety and reduces drilling hazards especially

in areas with narrow drilling margin (i.e. formation pressure to fracture pressure margin).
• Reduces environmental footprint due to reduced time on site, reduced energy usage and reduced emissions.

Based on the above, the technology is envisaged to be capable of an annual savings of $1.05 billion for operators [7], however, the
ystem requires that resonance is maintained between the drill-bit and the underlying rock formation. Considering the anisotropic
nd the inhomogeneous nature of downhole rock materials, it becomes important that the operating parameters of the VID system
ust be tuned in real-time to meet the resonance conditions of the continuously changing downhole rock formation. Such adjustable
arameters include the frequency (𝑓 ), dynamic force (𝐹𝑑) and amplitude of oscillation (𝐴) of the oscillator. While investigating the

strategies for maintaining resonance in the VID system, Wiercigroch [4], proposed that the system’s operating parameters including
𝑓 and 𝐹𝑑 of the oscillator should be constantly varied to match the compressive strength of the underlying formation [4]. Based on
this, the real-time characterisation of the highly inhomogeneous downhole rock just at the drill-bit head has become necessary for
the VID system [2,7].

Well logs acquisition via conventional logging while drilling (LWD) has always been the main method of rock strength
characterisation during deep drilling, however, LWD sensors are often integrated into the drill collars at about 40–100 ft (12–30 m)
away from the drill-bit head [8]. The gap between the location of these sensors and the drill-bit thus creates a lag in the transmitted
downhole information with respect to the actual drilled depth. This makes conventional LWD unsuitable for the VID system as it
requires real-time rock strength estimation at the drill-bit head in order to meet the conditions for resonance and moderate crack
propagation [2,7]. From a dynamic point of view, the compressive strength and the drillability of a rock material can be summed up
in its stiffness and this can be explored to characterise downhole rocks as the drill-bit impacts constraint media. For the purpose of
characterising downhole rock stiffness values, the present study proposes the use of the drill-bit acceleration measurements (𝑣′) and
ML models. The proposed use of 𝑣′ is based on their being readily available at the drill-bit head and their ability to better indicate
impact events compared to other measurable drill-bit dynamics such as displacement (𝑥) and velocity (𝑣). The use of ML models is
ased on their ability to capture and map complex nonlinear relationships as would be expected between the resulting 𝑣′ and the
mpacted rock’s stiffness from data [9,10]. The downhole measured 𝑣′ are transmitted and processed at the surface. This is made
ossible by the recent developments of high-speed telemetry systems such as the mud-pulse telemetry (MPT), the electromagnetic
elemetry (EMT), acoustic telemetry (AT), and wired drill-pipe telemetry (WDT) [11]. The MPT delivers an average data rate of
bout 5–10 bps [12] while the AT and EMT delivers a higher rate of about 20 bps [13] and 100 bps [14], respectively. WDT on the
ther hand, offers the highest data transmission as high as 57 megabits per second [15] allowing the streaming of high-resolution,
eal-time drilling and subsurface data like drill-bit acceleration from extended depths. At the surface, the downhole 𝑣′ are acquired
ver a specific period(s) as time-series data and are later analysed for features that may indicative of the impacted rock’s stiffness.
2
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Fig. 1. Physical model of the impact oscillator representing an engineering system with one-sided impact constraint.

For this study, the dynamic impact oscillator as a single-degree-of-freedom (SDOF) system with one-sided impact constraint
and representing the bit-rock impact interaction of the VID system was utilised. The use of SDOF and the proposed use of drill-bit
dynamics and machine learning for rock stiffness characterisation has been previously studied [16]. The study, however, made use
of only simulated acceleration signals and manually defined feature data including impact durations and statistical features. In this
current study, both simulation and experimental data has been investigated for the proposed method while also implementing both
manual and automatic feature extraction for the acceleration signals. Based on their performance, short training time, simplicity
and low memory usage, the previous study [16] recognised Multilayer Perceptron (MLP) as the most preferred network for the
dynamic rock stiffness characterisation. For this current study, MLP has been adopted for developing the extracted feature-based
network models. Aside this, automatic feature learning networks including Long-Short Term Memory (LSTM) and Convolutional
Neural Network (CNN) have also been investigated in this paper. The rest of the paper is structured as follows. The mathematics
of the impact oscillator as an impacting engineering system representing the bit-rock impact interactions of the VID system is
discussed Section 3. The adaptation of measured acceleration signals into formats and feature elements that are acceptable as inputs
into the proposed artificial networks is carried out in Section 4. These involved (i) the identifying impact events and estimating
their durations along each of the signals (Section 4.1), and (ii) the transformation of the signals into 2D-image representation using
continuous wavelet transform (Section 4.3). The preliminaries of the proposed artificial networks including MLP, LSTM and CNN
are discussed in Section 5. The training and testing of the proposed networks on simulation data is presented in Section 6 while the
experimental validation of the models using data from a fabricated impact oscillator rig (Section 7.1) is presented in Section 7.2.
The conclusions about the network models and the entire study are presented in Section 8.

3. Physical model of the bit-rock impact system

In this study, a SDOF impact oscillator has been adopted as a generic engineering system to represent the bit-rock impact actions
of the VID system. The system, Fig. 1, consists of a mass 𝑚 that is directly connected to a rigid frame via a linear spring of stiffness
𝑘1 and damping coefficient 𝑐, representing the drill-bit. At the other end of the rigid frame is a secondary linear spring with stiffness
𝑘2 and representing the rock formation. When subjected to sufficient external harmonic excitation of amplitude 𝐴 and frequency
𝛺, and the displacement of the mass, 𝑦, exceeds 𝑔 (i.e., 𝑦 > 𝑔), impacts occurs between the mass and the secondary spring. After
each impact, the restoring force on the mass becomes a function of the resultant stiffness of the two springs, i.e., 𝑘1 + 𝑘2. For
this study, 𝑘2 representing the stiffness of impacted downhole rock is unknown and needs to be calculated in real-time during the
drilling operation using the VID system. 𝑘1 and 𝑚 represents the entire drillstring and the drill-bit, respectively. The stiffness of the
drillstring, 𝑘1, continues to change as its length increases with the drilled depth while 𝑘2 continues to also change as the drilling
progresses through different layers of rocks. In Fig. 1, the lengths of the primary and secondary springs are adjusted to introduce
variations in 𝑘1 and 𝑘2, respectively.

According to [17], the equation of motion of the system is given as:

𝑚𝑦′′ + 𝑐𝑦′ + 𝑘1𝑦 +𝐻𝑒(𝑦 − 𝑔)𝑘2(𝑦 − 𝑔) = 𝐴 sin(𝛺𝑡), (1)

where 𝑦′′ and 𝑦′ represent the acceleration and velocity of the mass, respectively, and 𝐻 (⋅) is a Heaviside step function.
3
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Fig. 2. Examples of measurable dynamical variables including (a) displacement (𝑥), (b) velocity (𝑣) and (c) acceleration (𝑣′) of the system while in operation.

Fig. 3. Data generation via pair-wise parameter sweeps calculated for (a) 𝜔 = 0.93, 𝑎 ∈ [2.6, 4.05], 𝛽 ∈ [50, 75.5], 𝜁 = 0.01, 𝑒 = 2.1, (b) 𝜔 = 0.93, 𝑎 ∈ [0.8, 2.55],
𝛽 ∈ [0.5, 39.5], 𝜁 = 0.01, 𝑒 = 1.26, (c) 𝜔 ∈ [0.65, 0.8], 𝑎 = 5.6, 𝛽 ∈ [0.5, 39.5], 𝜁 = 0.01, 𝑒 = 2.1, (d) 𝜔 ∈ [0.925, 0.9395], 𝑎 = 0.7, 𝛽 ∈ [0.5, 39.5], 𝜁 = 0.01, 𝑒 = 1.26.

dditional windows present their representative phase trajectories on the 𝑥–𝑣 plane.

According to Shaw & Holmes [18] and Wiercigroch & Sin [19], the dimensionless form of Eq. (1) is given as:
{

𝑥′ = 𝑣,

𝑣′ = 𝛤 sin(𝜔𝜏) − 2𝜁𝑣 − 𝑥 − 𝛽(𝑥 − 𝑒)𝐻𝑒(𝑥 − 𝑒),
(2)

here 𝑥′ and 𝑣′ respectively denote the differentiation of the system’s displacement and velocity with respect to dimensionless time
. The remaining of the equation parameters are as defined as follows:

𝑥 =
𝑦
𝑦0
, 𝛽 =

𝑘2
𝑘1
, 𝛺 = 2𝜋𝑓, 𝜔 = 𝛺

𝜔𝑛
, 𝜔𝑛 =

√

𝑘1
𝑚
,

𝑎 = 𝐴 , 𝑒 =
𝑔
, 𝛤 = 𝑎𝜔2, 𝜁 = 𝑐 , 𝜏 = 𝜔𝑛𝑡,

(3)
4
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Fig. 4. Typical examples of simulated acceleration signals and their accompanying phase-portraits on the 𝑥–𝑣 plane as observed from the mathematical impact
scillator model for (a) P-1-1 (b) P-1-2 (c) P-3-2 and (d) P-3-3 impact responses, with the red line representing impact boundary.

here 𝑥 is the dimensionless displacement of the mass, 𝑦0 > 0 is an arbitrary reference distance, 𝛽 is the stiffness ratio, 𝜁 is the
damping ratio, 𝑓 is excitation frequency (in Hz), 𝛺 is excitation angular frequency (in rad/s), 𝜔𝑛 is natural angular frequency (in
rad/s), 𝜔 is frequency ratio, 𝑎 is the dimensionless excitation amplitude, 𝑒 is dimensionless gap between the mass and the secondary
spring, 𝛤 is the dimensionless forcing amplitude, 𝑐 is damping coefficient (in kg/s), and 𝜏 is the dimensionless time.

Measurable dynamical system variables including displacement (𝑥), velocity (𝑣) and acceleration (𝑣′) time histories (Fig. 2) were
derived by solving Eq. (2) using the fourth-order Runge–Kutta method of solving differential equation at a fixed time-step. Compared
to 𝑥 and 𝑣, it can be observed that impact events are more deducible from the 𝑣′ signals, hence, will be adopted and analysed for
the impacted constraint (i.e. downhole rock) characterisation. To simulate sufficient acceleration data for developing the network
models, the solutions to Eq. (2) were implemented for different values of 𝛽, 𝜔𝑛 and 𝑎 as shown in Fig. 3. For this study, 𝛽 (ratio of 𝑘2 ∶
𝑘1) has been adopted as the characterise-able and predictable stiffness property of the system. In real-life cases, 𝑘1 is mathematically
calculated and it is dependent on the length, material and diameter of the drill-string pipes [20,21]. Once 𝑘1 is calculated, its values
is used to calculate 𝑘2 from the predicted 𝛽 values, hence, in this study, we shall work towards predicting 𝛽 from the acceleration
ignals rather than 𝑘2 itself.

For the considered parameter sweeps Fig. 3, the resulting system solutions were seen to be characterised with a rich variety
ynamical responses (Fig. 4). The responses have been denoted as P-𝑛1-𝑛2, where 𝑛1 is the number of period(s) expended by the
ass before returning to its original position and 𝑛2 is the number of impact(s) made during the period(s). In total, 2999 dynamic

cceleration signals were simulated from the parameters sweep.

. Data adaptation for network inputs

The acceleration (𝑣′) measurements of the VID drill-bit have been observed to better project its impact events compared to
ther measurable variables (Fig. 2) and have been chosen for analysis. The acceleration measurements are collected downhole and
ransmitted in real-time to the surface using high-speed telemetry techniques [22]. Like other time series data, their direct usage
ay be of a threat to the robustness and accuracy of the resulting network model and might also be computationally expensive. To

ircumvent this problem, time series data are often converted to formats that permits easy handling and computation via manual
r automated feature identification [23].

For this study, both manual and automated feature extraction were implemented on the acceleration signals. Impact durations
ere manually extracted from the signals while a CNN network was trained to automatically learn and extract features from
D-image representations of the 𝑣′ data. Both the impact durations and CNN features were then used as inputs for training and
eveloping the stiffness predicting ML models. The transformation of the 𝑣′ signals into impact duration feature data and to 2D-image
epresentation using continuous wavelet transform (CWT) is described below.

.1. Acceleration-based impact durations as stiffness feature

At impact, the acceleration of the drill-bit decreases rapidly due to the restraining elastic force from the impacted rock.
epending on the stiffness of the rock, the drill-bit’s deceleration reaches its maximum, and it returns back to its initial position.
he aforementioned phenomenon results in the occurrence of negative peaks along the acceleration time histories, Figs. 2 and 4,
nd the durations of these peaks are envisaged to be proportional to the rock stiffness. Signals collected over known periods are
rocessed for impacting points and impact durations (𝜏i). Computed 𝜏i are then used as direct or indirect inputs into the artificial

networks. To calculate 𝜏 , the second derivative of each acceleration signal is first used to locate the beginning (𝑆 ) and the end
5
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Fig. 5. Impact durations from the second derivative of the acceleration signals, where each pair of broken red lines represent 𝑆pk and 𝐸pk indicating the start
and end of each impact event, respectively.

(𝐸pk) of impact events (Fig. 5). Based on the data points indexes along the 𝑥-axis, the difference between 𝑆pk and 𝐸pk is calculated
and then converted to impact duration as follows for each impact event:

𝜏i = (𝑆pki − 𝐸pki ) ⋅ 𝜏s, (4)

where 𝜏i is the impact duration of the 𝑖th peak in the signal and 𝜏s is the signal’s sampling time interval, which in this case is
dimensionless.

Fig. 6 shows the variation of resulting 𝜏i values for signals of different 𝛽 values and the variation has been compared across
different impact motion categories including P-2-3, P-3-2 and P-5-4. It is observed that for some impact motion categories (e.g., P-2-3
and P-5-4), estimated 𝜏i values are seen to be overlapping thus showing no clear distinction between signals of different 𝛽 values.

To avoid the possibility of this effect to impair the learning and convergence of networks during training, the resulting 𝜏i values
were computed into an average value for each signal 𝜏. Fig. 7 shows the representation of Fig. 6 using average values, 𝜏 and it can
e seen that the signals are well separated from each other with respect to their 𝛽 values. Along each impact motion category, the
esulting 𝜏 values are seen to decrease as 𝛽 increases. The same applies even when the considered impact motions are of different

categories (see Fig. 8), however, Fig. 9 shows that there exist a very small difference (mean absolute difference of 0.0103) in the
resulting 𝜏 values when the system is operated under different forcing parameters (𝛤 ) but the same stiffness parameter (𝛽). Also, in
erms of the resulting 𝜏 values, it was observed that signals of lower 𝛽 values were better separated compared to signals of higher
𝛽 values.

The complex nonlinear relationship observed between investigated 𝛽 values and their corresponding 𝜏 as seen in Figs. 6, 7 and 8
further justifies the use of ML models which are capable of mapping nonlinearity from exemplary data. On the other hand, the
influence of the forcing parameter 𝛤 on resulting 𝜏 as seen in Fig. 9 necessitated that the system’s forcing parameters should be
ncluded in the network input features.

.2. Statistical features of raw signals

The use of statistical measurements as inputs for developing ML models have been widely applied to different fields of study. This
nclude epileptic seizure detection [24], fault diagnosis in machines [25,26], electrocardiograms signals classification [27], drilling
peration recognition [28], Human activity recognition [29] etc. For this study, the statistical features listed in [16] (Table 1), were
omputed for the raw acceleration signals (StaRaw) and also for the resulting impact durations (𝜏i) computed along each signal

(StaID). The resulting StaRaw and StaID features were then used alongside the systems forcing parameters to develop predictive
network models.

4.3. Time–frequency images generation

Various methods are currently used to decompose time series signals into a two-dimensional time–frequency space in order to
observe their frequency component as a function of time. These include short time Fourier transform [30], Cohen’s class [31],
Wigner–Ville transform [32], Choi–Williams distribution [33], empirical mode decomposition [34] and continuous wavelet trans-
form [35]. Most of these methods, except the continuous wavelet transform (cwt), utilise the same windowing function across the
entire signal and this may not be able to capture all frequencies characterising the signal. A Wide window function often give
better frequency resolution but poor time resolution while a narrower window on the other hand gives good time resolution but
poor frequency resolution [36]. By using a wavelet as the windowing function, CWT as a wavelet transform analyses signals at
6
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Fig. 6. Estimated impacting points (green) laid on the raw acceleration signals and their accompanying 𝑥–𝑣 phase portraits (i and ii) alongside a plot of their
estimated impact durations 𝜏i for different 𝛽 values for (a) P-2-3 (b) P-3-2 and (c) P-5-4 impact motions. The black and red parts representing non-impacting
points and impact boundaries of the trajectories, respectively. The resulting 𝜏i of some impact motion categories are seen overlapping with no clear separation
between signals of different 𝛽 values.

Fig. 7. Resulting average impact duration (𝜏) for the signals represented in Fig. 6. The 𝜏 shows a clear separation between signals of different 𝛽 values.

different scales (wide and narrow) while performing a time–frequency analysis. It uses finer discretisation to produce more redundant
representation such that a 1-by-N signals is transformed to a M-by-N matrix of coefficients where ‘‘M’’ is the number of scales.
The main idea of CWT is to use inner products to measure the similarity between the signal and the mother wavelet which in
its compressed or stretched, is shifted continuously across the entire signal. The process of Stretching or compressing the mother
wavelet is referred to as dilation or scaling. The mother wavelet is shifted at small intervals along the 𝑥-axis of the signal, and the
correlation coefficient is calculated for each shift. The procedure is repeated at different dilation or scaling factors on the 𝑦-axis to
capture the frequency-based variation. For a time series with a uniform time-step 𝛿𝑡, the CWT coefficient is given as

𝑇 (𝑎, 𝑏) = 1
√

𝜋 ∫

+∞

−∞
𝑥(𝜏)𝜓 ∗

( 𝑡 − 𝑏
𝑎

)

𝛿𝑡, (5)

where 𝜓 ∗ (𝜏) is the complex conjugate of the mother wavelet function 𝜓(𝜏), 𝑎 and 𝑏 are the dilation and location parameters of
the wavelet.

For this study, the analytic Morse wavelet as available in MATLAB [37] was utilised as the mother wavelet and its parameters
including symmetry and time-bandwidth- product were set to 3 and 9, respectively. Once the dilation is completed for each
acceleration signal, the resulting CWT coefficients were converted into a 2D-images such as shown in Fig. 10. It can be observed that
7
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Fig. 8. (a) Actual and (b) average impact durations calculated for signals of different 𝛽 values and different impact categories.

Fig. 9. Estimated 𝜏 for signals of the same impact category (P-1-1) and stiffness ratio (𝛽 = 17) but different forcing amplitude (𝛤 ) values.

Fig. 10. Resulting 2D-image for (a) P-1-1 (𝛤 = 2.5, 𝛽 = 0.5) and (b) P-1-2 (𝛤 = 2.6, 𝛽 = 39.5) acceleration signals.

impact events are characterised with regions of high cwt coefficients and are displayed with brighter colours. It was also observed

that some signals with higher 𝛽 values were characterised with higher ranges of absolute cwt coefficients (as seen in Figs. 10 a and

10 b), however, this was not consistent for all the signals.
8
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Fig. 11. A typical architecture of an MLP model with three hidden layers, a single output layer and trained on four feature data.

5. Networks for the predictive models

As earlier stated, the VID systems as non-smooth system is characterised with a rich variety of dynamical responses which are
not only sensitive to its operating parameters but also to parameters that define its surrounding conditions and environment. It is
on this basis that the resulting dynamical responses have been proposed for characterising its impact inhibiting constraints which
include the underlying downhole rock layers. Due to the complex non-linearity existing between the dynamical responses and the
system’s parameters, establishing a theoretical hypothesis for this purpose has been extremely difficult. However, in this study we
have adopted a data-driven approach that relies on the power of artificial networks to learn complex nonlinear relationships from
exemplary data. Dynamical responses in the form of acceleration signals measured from the impacting element (i.e. the drill-bit) were
manually and automatically processed for features that may be indicative of the variations in the stiffness of impacted downhole
rock layers. Extracted features were then used to train and develop MLP networks as simple and less computational network models
adaptable for online usage. Aside using MLP network models, the possibility of using LSTM networks and CNN to directly map
the acceleration signals into their corresponding constraint stiffness was also explored. The utilised networks are briefly discussed
below.

5.1. Multilayer perceptron networks

MLPs are often referred to as universal approximators. As feedforward networks, MLPs pass and analyse information in a single
forward direction through series of interconnected neurons organised in layers. These include an input layer, one or more hidden
layers and an output layer [38]. The input and the output layers often contain neurons which are fixed and equal to the number
of feature(s) making up the input and output data, respectively. The hidden layers on the other hand make use of neurons whose
numbers are usually adjusted to maximise the networks performances. Inadequate hidden neurons will cause the network to under
perform while their excess numbers may cause it to over-fit. Weighted connections are used to propagate the values of the neurons
in a current layer to the next layer neuron values. The weights (𝑤), indicates the importance of a neuron value to its next connected
neuron value. Hence, for a layer, its neuron values are weighted, summed, and transformed using their activation functions, to
arrive at new values [39]. It should be noted that the aforementioned computation only occurs in the hidden and output layers
and not in the input layer which is the zeroth layer. The network inputs are thus passed through the input layer to the hidden layer
unaltered. In addition to 𝑤, bias (𝑏), is another network element associated with computing the value of a neuron. 𝑏 represents
the threshold used in shifting the activation functions in order to condition the neuron values from both the hidden and output
layers [39]. Suppose an observation 𝑥𝑖, the 𝑘th output variable (𝑦𝑜

𝑘
) is given as [40]:

𝑦𝑜𝑘 = 𝑓 𝑜𝑘

( 𝑃
∑

𝑗=1
𝑤𝑜𝑗𝑘𝑓

ℎ
𝑗

( 𝑄
∑

𝑖=1
𝑤ℎ𝑖𝑗𝑥𝑖 + 𝑏

ℎ
𝑗

)

+ 𝑏𝑜𝑘

)

(6)

where 𝑃 is the number of input feature variables/input layer neurons, and 𝑄 is the number of hidden neurons, 𝑤𝑗𝑘 is the weight
parameter between the 𝑗th hidden neuron and the 𝑘th output neuron, 𝑤𝑖𝑗 is the weight parameter between the 𝑖th input neuron and
𝑗th hidden neuron while 𝑏𝑗 and 𝑏𝑘 denote the 𝑗th hidden neuron and 𝑘th output neuron bias parameters, respectively. 𝑖 = 1, 2, 3,… , 𝑄,
𝑗 = 1, 2, 3,… , 𝑃 and 𝑘 = 1, 2,… .., 𝑅, given that 𝑅 is the number of output feature variables/output layer neurons. 𝑓ℎ and 𝑓 𝑜 are the
hidden and output layers activation functions, which are respectively represented as a hyperbolic tangent and linear function.

As the main network of interest for this study, different models of the MLP network were developed using the impact duration,
statistical and pre-trained deep network (CNN) features. A two-layer network architecture with three hidden layers was adopted for
each of the MLP. Their training was carried out using the Levenberg–Marquardt function and mean square error as the training and
performance function, respectively. Any attempt to further increase the number of layers or the number of hidden layers resulted
in over-fitting. A typical architectural structure of one of the MLP model with four feature elements as inputs, three hidden layers
and a single output layer that outputs one output is shown in Fig. 11.

5.2. Long short-term memory network

LSTM networks as recurrent neural networks (RNNs) are capable of self-learning temporal features from sequential data. They
make use of memory cells and gates in place of inter-connecting hidden neurons which thus makes them immune to vanishing
gradient problem [41]. Aside from being able to learn from long time series data, LSTMs are also able to accept input data of
9
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Fig. 12. Operations and flow of data within the LSTM unit at time 𝑡.

different lengths and this is exceptionally useful for unequal length time series data that would have needed padding. At every time
step 𝑡 of a time-series, the network uses its initial state vectors including the cell state, 𝑐t−1 and the hidden state ℎt−1, alongside the
current sequence value 𝑥t to calculate a new learnt information ℎt and an updated cell state 𝑐t . 𝑐t and ℎt vectors are updated using
the input gate (𝑖t), forget gate (𝑓t), Cell candidate (𝑔̂t) and output (𝑜̂t) gate [42]. The input gate determines which new information
should be stored in the cell state while the forget gate determines which information should be removed. The cell candidate adds
the new information to cell state while the output gate controls the level of cell state added to hidden state. At any time step 𝑡, the
calculations are

𝑖t = 𝜎g(𝑊i𝑥̂t + 𝑅iℎt−1 + 𝑏i), (7)

𝑓t = 𝜎g(𝑊f 𝑥̂t + 𝑅fℎt−1 + 𝑏f ), (8)

𝑔̂t = 𝜎g(𝑊g𝑥̂t + 𝑅gℎt−1 + 𝑏g), (9)

𝑜̂t = 𝜎g(𝑊o𝑥̂t + 𝑅oℎt−1 + 𝑏o), (10)

𝑐t = 𝑓t ⊙ 𝑐t−1 + 𝑖t ⊙ 𝑔̂t , (11)

ℎt = 𝑜̂t ⊙ tanh(𝑐t ), (12)

where 𝜎g and ⊙ represent a sigmoid and an element-wise multiplication function, respectively.
The operations and the flow of data at time 𝑡 within the LSTM unit is illustrated in Fig. 12. Computed 𝑐t and ℎt vectors at each

time step 𝑡 are transmitted to the next time-step 𝑡 + 1, and both respectively representing the long-term and short-term memory of
the LSTM unit at each time, 𝑡.

For this study, the potential of LSTM to directly learn stiffness indicating features from raw and minimally processed acceleration
signals, and from a pre-trained deep network (CNN) features has been investigated. A sequence-to-one regression LSTM network
consisting of a sequence input layer, a single LSTM layer, a fully connected layer and a regression layer was designed and trained
for this study. The number of hidden units in the lstm layer were kept at 100 while its output mode was set as ‘‘last’’. In the
training option, the adaptive moment estimation (adam) [43] solver was found to perform better compared to the other solvers
under a maximum training epoch of 250. Further increase in the number of hidden unit and maximum epochs added no significant
improvement the developed network models when compared to the increase in the training time.

5.3. Convolutional neural network

Similar to LSTMs, CNNs are a category of RNNs and are often used as deep neural networks to directly learn linear and
nonlinear transformations from 2D-image data sets. CNNs can be applied to both classification and regression problems. For a
typical regression CNN, its architecture includes an input section consisting of an image input layer, an intermediate image feature
learning section comprising several hidden layers and the output section consisting fully connected layer and a regression layer.
The hidden layers consisting of convolutional and pooling layers automatically reconstruct the input images while hierarchically
extracting deep level features that are specific to the images without disorienting the spatial correlation between pixels [44]. The
intermediate fully connected layers combine the features learnt by the previous layers to a certain given size while identifying
general patterns in the images. Being a self-supervised learning model, the learnt features are non-handcrafted and are expected to
be dependent on the target values of the problem and should portray more predictive power. The last fully connected layer combines
and multiplies the vector inputs by a weight matrix and then adds a bias vector to arrive at a predicted 𝐸-value, hence, its output
10
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Fig. 13. Regression-based CNN integrated with a feature input layer.

size or number of neurons is usually equal to the number of target features. The regression layer on the other hand computes the
half-mean-squared-error loss between the prediction(s) and the actual target(s) as

Loss = 1
2𝑁

𝐻
∑

𝑖=1

(

𝑦𝑛 − 𝑦̂𝑛
)2 , (13)

Where 𝑦𝑛 is the targeted output, 𝑦̂𝑛 refers to the network prediction, 𝐻 is the total number of responses across all observations as
targets can sometimes be non-single output, and 𝑁 is the total number of observations [45].

For this study, CNN networks were explored in two ways. The first was to convert a pre-trained classification model,
Resnet18 [46], into a regression model which was then used to (i) directly map the images into stiffness values (PTRN-CNN) and
(ii) to extract automated features (PTRNFtrs) for use with the MLP and LSTM networks. This way the richness of its depth, 71 layer
arrays including 18 convolutional and fully connected layers, that have been trained to distinguish 1000 categories of objects is
explored to automatically learn stiffness indicative features from the 2D-acceleration images. The second way CNN was utilised was
to train a fresh CNN model (TRN-CNN) on the 2D-acceleration images to map them into the targeted rock constraint stiffness. In this
case a 22-layers CNN model consisting of 6 core convolutional and fully connected layers was developed. To ensure that the effect
of the variations in the system’s forcing parameters on learnable features as seen in Fig. 9 is incorporated into the CNN models, a
feature input layer was added just before the final fully connected layers to feed in the corresponding forcing parameters of each
signal (Fig. 13).

6. Constraint stiffness prediction models: simulation

Aside the primary aim of developing a non-conventional method of LWD using readily available drill-bit acceleration data,
another important aspect of this study is to explore the potential of minimally processed raw data, manual features and automatic
features for this purpose. Manual features including impact durations and statistical features, and automatic spatio-temporal
image features from a pre-trained deep network have been investigated to develop simple and online adaptable downhole rock
characterisation network models. Also, the possibility of using LSTM and CNN as RNNs to directly predict constraint stiffnesses
from minimally processed signal data and signal images, respectively was also examined. The flow chart of the predictive models
development is shown in Fig. 14 while the notations of the developed models alongside their composing feature elements are
presented in Table 1. For the VID system, the excitation frequency (𝜔) and excitation amplitude (𝑎) which both indicate the forcing
amplitude (𝛤 ) representing the WOB are the parameters that are often adjusted in real-time and have been found to significantly
influence resulting feature values (Fig. 9). It is on this basis that 𝜔, 𝑎 and 𝛤 have been added as part of the network input features.
After training, each of the trained models was evaluated on a different set of data which were not part the training data while using
coefficient of determination (R2) and normalised mean absolute error (NMAE) as performance metrics. The closer R2 is to 1 and
the closer NMAE is to zero, the better the network model. Where 𝑦 is the mean of the target values, R2 and NMAE are given as

𝑅2 = 1 −

𝑁
∑

𝑛=1
(𝑦𝑛 − 𝑦̂𝑛)2

𝑁
∑

𝑛=1
(𝑦𝑛 − 𝑦)2

(14)

NMAE =

𝑁
∑

𝑛=1
∣ 𝑦𝑛 − 𝑦̂𝑛 ∣

, (15)
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Fig. 14. Flow diagram of the predictive models development.

Table 1
Networks notation and composing input data.

Network Composing elements

MLP-AvID 𝑎 𝜔 𝛤 Averages of 𝜏i from each signal
MLP-StaID 𝑎 𝜔 𝛤 Statistics of 𝜏i from each signal
MLP-StaRaw 𝑎 𝜔 𝛤 Statistics of the signals raw data
MLP-PTRNFtrs 𝑎 𝜔 𝛤 Pre-trained CNN extracted features
LSTM-RawAcc 𝑎 𝜔 𝛤 Signals raw data
LSTM-PTRNFtrs 𝑎 𝜔 𝛤 Pre-trained CNN extracted features
PRTRN-CNN 𝑎 𝜔 𝛤 2D-images of the signals
TRN-CNN 𝑎 𝜔 𝛤 2D-images of the signals

The performances of the network models both during training and testing using simulation data is presented in Table 2. On
the test data samples, Fig. 15 shows that most of the models yielded 𝑅2 values greater than 0.96 and NMAE values lesser than
0.15 except for LSTM-RawAcc which uses minimally processed raw acceleration data. Despite the longer training time (about
9 h) and the high computer memory requirement the LSTM-RawAcc yielded [𝑅2, NMAE] values of [0.7871, 0.2554] and [0.6668,
0.3909] during training and testing, respectively. The network however showed significant improvement when used alongside the
spatial and temporal features extracted by the pre-trained deep network (LSTM-PTRNFtrs) with [𝑅2, NMAE] values of [0.9970,
0.0278] and [0.9780, 0.0933] during training and testing, respectively. The statistical features based MLP (MLP-StaRaw) had the
best performance both during training and testing with [𝑅2, NMAE] values of [1.000, 0.0019] and [0.9990, 0.015], respectively.
For the image based networks, the use of pre-trained deep network to extract spatial–temporal features which are later used to
develop a typical MLP model (MLP-PTRNFtrs) yielded better predictions compared to directly using of the images (PTRN-CNN and
TRN-CNN). Fig. 16 shows the comparison between the actual and the predicted 𝛽 for the simulation MLP-StaRaw and LSTM-RawAcc
network models alongside their histogram of error distribution. The errors were seen to be lower and occurring within a shorter
range, between −0.49 to 1.79 for the exceptionally performing MLP-AvID network compared to the poorly performing LSTM-RawAcc
network which were between −17.52 to 18.45.

7. Experimental validation

7.1. Experimental impact oscillator rig and data

To validate the proposed method of downhole rock characterisation as an impact inhibiting constraint, an experimental impact
oscillator rig as described in Section 3 was designed and fabricated. The schematics representation of its design and its laboratory
set-up is shown in Fig. 17. The entire components are held on a wheeled rigid frame which is freely driven by a fixed linear DC
servomotor. A mass (𝑚) is connected to one arm of the rigid frame using two parallel leaf springs with primary stiffness (𝑘 ) and
12
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Table 2
Models performances on simulation data.
Networks Training Testing

𝑅2 NMAE 𝑅2 NMAE

MLP-AvID 0.991 0.046 0.982 0.079
MLP-StaID 0.994 0.032 0.991 0.046
MLP-StaRaw 1 0.0019 0.999 0.015
MLP-PTRNFtrs 0.9999 0.0059 0.9957 0.0343
LSTM-RawAcc 0.7871 0.2554 0.6668 0.3909
LSTM-PTRNFtrs 0.9970 0.0278 0.9780 0.0933
PTRN-CNN 0.9926 0.0503 0.9894 0.0782
TRN-CNN 0.9885 0.0535 0.9699 0.1102

Fig. 15. Bar plots showing the performances of the various network models on the simulation test data samples.

Fig. 16. The comparison between (a) MLP-AvID and (b) LSTM-RawAcc networks predicted 𝛽 values for simulation data against actual values alongside their
histograms of errors (c) and (d), respectively.
13
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Fig. 17. (Colour online) [48] (a) Photograph and (b) schematics of the experimental apparatus. A wheeled holding frame is driven freely by a linear DC
servomotor on a fixed basement under sinusoidal excitation. A mass is connected with the holding frame via two parallel leaf springs that prevent it from
rotation ensuring horizontal displacement only. Impact will occur when the mass hits the bolt that is attached to the elastic beam mounted on a separate column
of the holding frame. Mass displacement and acceleration are measured by an eddy current probe and an accelerometer, respectively, and then collected by
the data acquisition system. A sample of the raw data is shown in the internal panel of (a), where impact regimes are easily recognisable in the form of sharp
spikes in acceleration. The motor has a movable rod which is harmonically excited using desired frequency and amplitude. Position of the rod is monitored by
a PID motion controller and is displayed together with the mass displacement and acceleration through a graphic user interface (GUI) in Labview at a sampling
rate of 1 kHz.

damping coefficient 𝑐. The parallel leaf springs help to restrict the mass 𝑚 to only horizontal displacement when the rig is subjected
to horizontal oscillation by the linear DC servomotor. The leaf springs and the attached mass, 𝑚 represent the drill-string with
its adjoining bottom hole assemblages as found in a typical drilling system. The values of the primary stiffness 𝑘1 and damping
coefficient 𝑐 are often varied by adjusting the lengths of the leaf springs. On the other arm, a bolt is held opposite the mass 𝑚 using
an elastic beam with secondary stiffness 𝑘2 and depicting the impacted rock’s stiffness. To mimic the type of inhomogeneity that
often characterises the downhole rock layers, different elastic beams were used and varied in length. During operation, the entire
system is subjected to an harmonic excitation via a sinusoidally driven linear motor with adjustable amplitude, 𝐴 and frequency, 𝛺.
As earlier discussed in Section 3, when 𝑦 exceeds 𝑔, the mass makes impact with the bolt and the displacement (𝑥) and acceleration
(𝑣′) measurements of the mass are respectively recorded using an eddy current probe and an accelerometer at a sampling rate
of 1 kHz. The recordings are first passed through a low-pass filter allowing certain lower frequency components of the signal to
pass through while blocking higher frequency components. The filtered signals are amplified, collected and saved on a dedicated
computer for further analysis using a data acquisition card which is available as a graphic user interface (GUI) on Labview [47].
A sample of the raw data is shown in the internal panel of (b), where impact regimes are easily recognisable in the form of sharp
spikes in acceleration.

In real-life cases, 𝑘1 is usually calculated mathematically and it often depends on the length of the drill-string, the material and
diameter of the drill pipes [20,21], however, for the purpose of this study, the free vibration equations of a damped, single degree of
freedom linear spring mass was adopted [49]. The equations are based on the relationship between 𝑘1, natural angular frequency 𝜔𝑛
and load mass (𝑚). It involves calculating period (𝑇 ) and logarithmic decrement (𝛿) of the system from its free vibration displacement
signal. The two quantities are then used to calculate the damping ratio (𝜁) and natural angular frequency (𝜔𝑛) of the system and
these are then used to compute 𝑘1 as follows:

𝑇 =
𝜏𝑛 − 𝜏0
𝑛

, (16)

𝛿 = 1
𝑛
log

(

𝑥(𝜏0)
𝑥(𝜏𝑛)

)

, (17)

𝜁 = 𝛿
√

4𝜋2 + 𝛿2
, (18)

𝜔𝑛 =

√

4𝜋2 + 𝛿2
𝑇

, (19)

𝑘1 = 𝜔𝑛
2 × 𝑚. (20)

For this current study, the leaf springs which are made of mild steel plates of width 9.91 mm and thickness 0.54 mm were kept
at a constant length of 108.44 mm. A block of mild steel of mass 0.503 kg was made to hang from one arm of the rigid frame under
the support of the leaf springs, thus permitting its axial displacement and impact with the secondary beam. Based on Eqs. (16)–(20),
the free vibration analysis of the mass, yielded 𝜔 , 𝜁 and 𝑘 to be 28.8341 rad/s, 0.0011 and 0.4165 N/mm, respectively.
14

𝑛 1



Mechanical Systems and Signal Processing 223 (2025) 111880K.O. Afebu et al.

m
(
b
a
d
i

o
a
r
1
m
t
w
s
t

s
t
s

Fig. 18. (a) Linear fitting of obtained quasi-static deformation test data (slope=𝑘2) (b) Estimating forcing amplitude (𝛤 ) from the motor driving force data.

Table 3
Resulting stiffness parameters for beams of different length, width and thickness in millimetre.

Beams Length Thickness Width 𝑘2 𝛽

2 136 0.6 2.03 1.6156 3.8790
2 130 0.6 2.03 1.9173 4.6035
3 136 0.7 2.52 3.2149 7.7188
3 130 0.7 2.52 3.3554 8.0561
4 136 0.8 2.98 5.0300 12.0768
4 130 0.8 2.98 5.8332 14.0053

On the other hand, the 𝑘2 of the elastic beams at different lengths representing the changing downhole rock was determined via
quasi-static deformation test using INSTRON 3367. For each of the beams, the deformation in the form of its extension is plotted
against the load values and the slope of their line of best fit is taken as 𝑘2 in N/mm. A typical example is shown in Fig. 18a. Table 3
shows the details of the utilised beams and their estimated stiffness parameters.

The linear DC motor (Fig. 17) was swept over frequencies (𝑓 ) and amplitudes (𝐴) of 3.8–5.5 Hz and 1.5 to 3.5 N, respectively
for each of the beams at stated lengths while sampling at a frequency rate of (𝑓𝑠) 1 kHz. Displacement (𝑥) and acceleration (𝑣′)

easurements were directly measured from the experiment using Eddy-current probe and accelerometer respectively. The velocity
𝑣) measurements were derived from the displacement data via differentiation. The driving force data were also directly estimated
y the driving motor-software in millinewton (𝑚𝑁) using the linear relationship between its current and its force. The forcing
mplitude (𝛤 ) of the system is estimated from the force signal as the maximum peak value. Typical examples of obtained impact
ynamics from the experiment are shown in Fig. 19 in terms of their acceleration measurements and their defining phase portraits
n the 𝑥–𝑣 plane.

As a first step, the experimental acceleration signals were smoothened to remove background noises and re-bounce induced
utliers using the Savitzky–Golay smoothing algorithm while ensuring minimal truncation and distortion of the overall signal. In all,
total of 237 acceleration signals were collected from the experiment and an attempt was made at validating and matching obtained

esponses with mathematical simulations using Eq. (2). This was however difficult as only period-one motion with one-impact (P-
-1) could be replicated. This might be due to the fact that amongst the obtained experimental impact dynamics, the P-1-1 impact
otions are more stable and exhibited little or no multistability compared to the others. An example of obtained P-1-1 signal from

he experiment alongside its mathematically simulated replica are shown in Fig. 20. It was observed that the experimental signals
ere characterised with shorter amplitudes compared to their simulated counterparts. The shortened amplitudes of the experimental

ignals might have resulted from their smoothing process as they were characterised with inevitable amounts of re-bounce noises
hat needed to be smoothed out.

Just as carried out for the simulation data, the experimental signals were processed into impact durations and 2D-images. Fig. 21a
hows the estimated impact durations for experimental signals of different stiffness values while Fig. 21b is their representation using
heir average values. Similar to simulation, the experimental signals were again seen to be much more distinctive in terms of their
tiffness values when represented as average impact duration, 𝜏. Also, the signals were much more separated at lower stiffness values

compared to higher values.

7.2. Constraint stiffness prediction models: experimental

On the overall, 257 experimental signals were acquired from the experimental procedure and these were in a way quite limited
for training and testing a network model. As a way of utilising the limited experimental data, they were subdivided into 159 samples
for training and 78 samples for testing. The 159 training samples were further projected into 2000 samples via random bulk-sampling
15
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Fig. 19. Acceleration measurements of typical impact motions obtained from the experimental set-up alongside their representative phase portraits in 𝑥–𝑣 plane for
a) period-one one-impact (P-1-1), (b) period-four one-impact (P-4-1), (c) period-four three-impact (P-4-3), (d) period-four four-impact (P-4-4) and (e) period-five
hree-impact (P-5-3) motions. The impacts, being forward impacts are displayed as high amplitude negative peaks along the acceleration measurements.

Fig. 20. Representative (a) simulation and (b) experimental acceleration data for 𝜔 = 1.092, 𝜏 = 0.0288, 𝜁 = 0.01, 𝛽 = 12.077, 𝑒 = 5.57, 𝑓 = 5 Hz.
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Fig. 21. Estimated (a) impact durations 𝜏i and (b) average impact duration 𝜏 for experimental signals of different 𝛽 values.

Fig. 22. Distribution of the original data set against the augmented data by their sample index numbers.

Table 4
Models performances on experimental data.
Networks Training Testing

𝑅2 NMAE 𝑅2 NMAE

MLP-AvID 0.7676 0.0960 0.8584 0.08
MLP-StaID 0.5060 0.1360 0.7120 0.1180
MLP-StaRaw 0.9548 0.040 0.7420 0.1520
MLP-PTRNFtrs 1 0 0.7700 0.1455
LSTM-RawAcc 0.2379 0.2061 0.2088 0.2211
LSTM-PTRNFtrs 0.9151 0.0608 0.5450 0.1381
PTRN-CNN 0.9999 0.0108 0.5970 0.1784
TRN-CNN 0.9106 0.0619 0.4004 0.1983

into the data. The final and augmented training data were investigated for evenness and uniformity to ensure that some samples
were not over sampled. Fig. 22 shows the distribution histogram of the augmented training data based on the index numbers of the
original 159 training data samples and their frequency of occurrence in the augmented 2000 data set. It can be observed that some of
the original data sample indexes were randomly sampled multiple times with the highest and lowest being 23 and 5 respectively. the
least but their overall distribution in the data was relatively uniform with majority being re-sampled 9–14 times. The experimental
network models were therefore trained on the augmented 2000 training data sample and tested on the 78 samples test data. The
performances of the experimental models during training and testing are shown in Table 4 while Fig. 23 shows the performances
of the networks on the test data samples.

Similar to the simulation networks, the raw signals based LSTM (LSTM-RawAcc) were again seen to have the least performance for
he experimental data both during network training and testing with [𝑅2, NMAE] values of [0.2379, 0.2061] and [0.2088,0.2211],

respectively. However, a significant improvement was again noticed for the network when used alongside the spatio-temporal
features from the pre-trained deep network. The resulting [𝑅2, NMAE] values during training and testing were seen to have improved
o [0.9151, 0.0608] and [0.5450, 0.1381], respectively. The average impact duration based MLP (MLP-AvID) was seen to show the
est performance on the out-of-sample test data followed by its pre-trained network features counterpart (MLP-PTRNFtrs) with [𝑅2,

NMAE] values of [0.8584,0.08] and [0.7700,0.1455], respectively. They were both seen to outperforming their statistical feature
based counterpart (MLP-StaRaw) which previously showed the best performance for simulation data. The aforementioned could
17



Mechanical Systems and Signal Processing 223 (2025) 111880K.O. Afebu et al.
Fig. 23. Bar plots showing the performances of the various network models on the experimental test data samples.

Fig. 24. The comparison between (a) MLP-AvID and (b) LSTM-RawAcc networks predicted 𝛽 values for experimental data against actual values alongside their
histograms of errors (c) and (d), respectively.

be an indication of the inability of the MLP-StaRaw network to withstand noises in the in the experimental signals which is often
inevitable. Compared to simulation, the results obtained from using the image-based networks, PTRN-CNN and TRN-CNN to directly
predict 𝛽 values for the experimental data seem to be indicative of over-fitting in the networks performances. Both the PTRN-CNN
and TRN-CNN networks yielded excellent [𝑅2, NMAE] values of [0.9999,0.0108] and [0.9106,0.0619], respectively during training
but these were drastically reduced to [0.5970,0.1784] and [0.4004,0.1983], respectively during testing. We however envisaged that
this could be as a result of the limited experimental data and that the over-fitting can be addressed with improved number of data.
The comparison between a typical well-performing network such as MLP-AvID and a poor-performing network like LSTM-RawAcc
as seen in Table 4 is shown in Fig. 24 alongside their error histograms. For the MLP-AvID network, most of the errors are seen
to be concentrated between −0.98 to 1.2 and between −4.4 to 4.2 for the LSTM-RawAcc network. This signifies that typical well-
performing networks will be characterised with lower error values and shorter error ranges when compared with poor-performing
networks.
18
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8. Conclusions

In an attempt to provide the VID system with real-time rock stiffness characterisation just at the drill-bit head, an ML-
ased method that uses readily available drill-bit’s vibration dynamics has been proposed and investigated. Both simulation and
xperimental verification have been presented in this study using impact oscillator as a SDOF engineering system mimicking the
nteraction between the drill-bit and the impacted downhole rock. Vibration dynamics of the oscillatory system such as acceleration
hich are measurable during its operation were collected, analysed and processed into features that could be indicative of the

tiffness variations in the impacted downhole rock. These features include manually defined knowledge-based features such as
mpact durations and statistical features, and those that were automatically learnt and defined using pre-trained deep network
ayers. These features were used to develop network models capable of predicting 𝛽 as the stiffness ratio between the impacted rock

layer (𝑘2) and the impacting drill-string system (𝑘1). Predicted 𝛽 is used alongside pre-determined 𝑘1 to compute 𝑘2 (Eq. (3)) which
is then used in tuning the excitation frequency (𝑓 ) and amplitude (𝐴) of the of the VID system to ensure resonance and safe zone
fracturing as the drilling progresses through the inhomogeneous rock layers.

Aside the feature-based network models, efforts were also made at investigating the use of minimally processed raw acceleration
data to develop predictive LSTM networks and also the use of their image representations to develop predictive CNN models. By
comparing the networks predicted 𝛽 values to their actual values using 𝑅2 and NMAE, the results showed that the feature-based
models had better performances for both simulation and experiment. The LSTM models on the other hand despite their long training
time and huge computer memory usage, had the worst performances for both simulation and experiment. The feature based MLP
models were seen to outperformed other models with 𝑅2 values greater than 0.7 and NMAE values lesser than 0.2 for both simulation
and experiment. This suggests that the feature-based MLP models have better potential of being used for real-time downhole rock
stiffness characterisation for a typical rotary-percussive drilling system like the VID system using drill-bit vibrations. This way,
appropriate load parameters are selected to ensure optimal ROP, stable borehole and prolonged tool-life.
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