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Abstract: In this paper, we introduce the concept of generalized Fourier series, generated by the
p-trigonometric functions, namely cosp and sinp, recently introduced related to the generalized
complex numbers systems. The aim of this study is to represent a periodic signal as a sum of p-sine
and p-cosine functions. In order to achieve this, we first present the integrals of the product of
the same or different family of p-trigonometric functions over the full period of these functions to
understand the orthogonality properties. Next, we use these integrals to derive the coefficients of
the generalized p-Fourier series along with a few examples. The generalized Fourier series can be
used to expand an arbitrary forcing function in the solution of a non-homogeneous linear ordinary
differential equation (ODE) with constant coefficients.
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1. Introduction

Generalized complex numbers comprise two component numbers of the follow-
ing form:

z = µ + iγ (µ, γ ∈ R),

where [1,2]
i2 = p + iq (p, q ∈ R).

A one-parameter family of generalized complex numbers system is

Cp := {µ + iγ : µ; γ ∈ R; i2 = p; p ∈ R},

which was studied in [3]. When p < 0, Cp(p < 0) is referred to as an elliptical complex
number system. For elliptical complex numbers ξ1 = µ1 + iγ1 and ξ2 = µ2 + iγ2 ∈ Cp,
addition and multiplication operators are defined by

ξ1 + ξ2 =
(
µ1 + iγ1

)
+
(
µ2 + iγ2

)
=
(
µ1 + µ2

)
+ i
(
γ1 + γ2

)
,

and
ξ1ξ2 =

(
µ1µ2 + pγ1γ2

)
+ i
(
µ1γ2 + µ2γ1

)
.

As it is well known, Cp is a field under these two operations [3]. On the other hand,
the p-magnitude of ξ = µ + iγ ∈ Cp is ∥ξ∥p =

√
µ2 − pγ2. The unit circle in Cp is an

Euclidean ellipse which is given by the equation µ2 − pγ2 = 1. Specially, if p = −1, this
ellipse matches the Euclidean unit circle.

Let ξ = µ + iγ ∈ Cp, in which the number ξ can be expressed with a position vector,
as was observed in [3]. The arc of ellipse between this vector and the real axis determines
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an elliptic angle θp. This angle is called the p-argument of ξ. Generalized complex numbers
and elliptical complex numbers in the literature can be found in [4–9] and the references
therein. The authors in [3] have introduced, in Cp, the p-trigonometric functions p-cosine,
p-sine, and p-tangent as

cosp(θp) = cos
(√

|p|θp
)
, (1)

sinp
(
θp
)
=

1√
|p|

sin
(√

|p|θp
)
, (2)

tanp
(
θp
)
=

sinp
(
θp
)

cosp
(
θp
) . (3)

Recently, in [10], we have introduced the following p-trigonometric functions:

cotp
(
θp
)
=

cosp
(
θp
)

sinp
(
θp
) , (4)

secp
(
θp
)
=

1
cosp

(
θp
) , (5)

cosecp
(
θp
)
=

1
sinp

(
θp
) , (6)

along with their connection with the p-hyperbolic family of functions.
In [10], we studied some important identities related to bridging the family of p-

trigonometric and p-hyperbolic functions, involving p-complex numbers. More details on
the concept of p-complex numbers and their connections to p-trigonometric functions can
be found in [2–4,11,12]. The extension of these properties to logarithmic functions with
complex arguments can be found in [10]. The study of these special functions will also
help in the development of unknown properties and identities involving other classes of
p-trigonometric series [13].

A generalized Fourier series is a series expansion of a periodic function based on
the special properties of a complete orthogonal system of functions [14–17]. The typical
example of such a series is the classical Fourier series, which is based on the bi-orthogonality
property of trigonometric functions. This can be extended with cosp(nx) and sinp(nx)
functions, which form a complete bi-orthogonal system under integration over the range of
their full period [18,19]. The generalized Fourier series plays a similar role as the classical
Fourier series [13,20], with some additional tuning knobs. By expressing a function as a
sum of p-sine and p-cosine functions, many complicated real world problems involving
these functions become easier to analyze because p-trigonometric functions are not very
well understood and applied in real-world data modeling. For example, p-Fourier series
can be used to find solutions of some ordinary differential equations (ODEs). With periodic
forcing, this application is possible because the derivatives of p-trigonometric functions
fall into simpler patterns. The p-Fourier series cannot be used to approximate arbitrary
non-periodic functions because most functions have infinitely many terms in their Fourier
series, and the series do not always converge.

2. Integration of p-Trigonometric Functions

The integration of generalized p-trigonometric functions involves basic simplification
techniques. These techniques use different p-trigonometric identities, which can be written
in an alternative form that is more amenable to the list of integrations.

Theorem 1. Below is the list of few formulas for the integration of trigonometric functions:∫
sinp(ψ) dψ =

1
p

cosp(ψ) + C, (7)
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∫
cosp(ψ) dψ =

1√
|p|

sinp(ψ) + C, (8)

∫
sinp(ωψ) dψ =

1
pω

cosp(ψ) + C, ω ̸= 0, (9)

∫
cosp(ωψ) dψ =

1
ω
√
|p|

sinp(ψ) + C, ω ̸= 0, (10)

∫
tanp(ψ) dψ =

1
p

ln(secp(ψ)) + C, (11)

∫
cotp(ψ) dψ = ln(sinp(ψ)) + C, (12)∫

secp(ψ) dψ = ln |tanp(ψ) + secp(ψ)|+ C, (13)∫
cosecp(ψ) dψ = ln |tanp(ψ)− cotp(ψ)|+ C, (14)∫

secp(ψ)2 dψ = tanp(ψ) + C, (15)∫
cosecp(ψ)2 dψ = −cotp(ψ) + C. (16)

Here, C is the constant of integration.

Lemma 1. (i) If ψ : R −→ R is an even function, then∫ a

−a
ψ(θ)dθ = 2

∫ a

0
ψ(θ)dθ ∀ a > 0. (17)

(ii) If ψ : R −→ R is an odd function, then∫ a

−a
ψ(θ)dθ = 0 ∀ a > 0. (18)

(iii) If ψ : R −→ R is a periodic function with period T, then

∫ T

0
ψ(θ)dθ =

∫ T
2

− T
2

ψ(θ)dθ =
∫ β

α
ψ(θ)dθ (where, β − α = T). (19)

Example 1. (1) Set ψ(θ) = sinp(nθ)sinp(kθ). We observe that ψ is even and
2π√
|p|

is periodic.

According to statements (i) and (iii), we may write the following:

∫ 2π√
|p|

0
sinp(nθ)sinp(kθ)dθ =

∫ π√
|p|

− π√
|p|

sinp(nθ)sinp(kθ)︸ ︷︷ ︸
2π√
|p|

− periodic

dθ = 2
∫ π√

|p|

0
sinp(nθ)sinp(kθ)︸ ︷︷ ︸

even f unction

dθ.

(2) Set ψ(θ) = cosp(nθ)cosp(kθ). We observe that ψ is even and
2π√
|p|

is periodic. According to

statements (i) and (iii), we may write the following:

∫ 2π√
|p|

0
cosp(nθ)cosp(kθ)dθ =

∫ π√
|p|

− π√
|p|

cosp(nθ)cosp(kθ)︸ ︷︷ ︸
2π√
|p|

− periodic

dθ = 2
∫ π√

|p|

0
cosp(nθ)cosp(kθ)︸ ︷︷ ︸

even f unction

dθ.
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(3) Set ψ(θ) = cosp(nθ)sinp(kθ). We observe that ψ is odd and
2π√
|p|

is periodic. According to

statements (ii), we may write the following:

∫ 2π√
|p|

0
cosp(nθ)sinp(kθ)dθ =

∫ π√
|p|

− π√
|p|

cosp(nθ)sinp(kθ)︸ ︷︷ ︸
2π√
|p|

− periodic

dθ = 0.

Based on the above relationships, it is enough to study the orthogonality of p-trigonometric

functions on
[

0,
π√
|p|

]
. Therefore, their orthogonality on

[
0,

2π√
|p|

]
or on

[
− π√

|p|
,

π√
|p|

]
is an obvious consequence.

Now, we propose the following theorem by establishing some orthogonality properties
of sinp and cosp functions, which will be useful later to derive p-Fourier series.

Theorem 2. Integrals of the product of same p-trigonometric functions:
The family

{
cosp(kψ), sinp(kψ); k = 1, 2, · · · ,

}
satisfies the following properties of

orthogonality for p < 0:

∫ π√
|p|

0
sinp(nψ) . sinp(kψ) dψ = 0 f or k ̸= n, (20)

∫ π√
|p|

0
sinp(nψ) . sinp(nψ)dψ =

π

2 |p|
√
|p|

, (21)

∫ π√
|p|

0
cosp(nψ) . cosp(kψ) dψ = 0 for k ̸= n, (22)

∫ π√
|p|

0
cosp(nψ) . cosp(kψ) dψ =

π

2
√
|p|

f or k = n. (23)

Proof. We establish the identity (20) by means of (8) as

∫ π√
|p|

0
sinp(nψ) . sinp(kψ) dψ

=
1
|p|

∫ π√
|p|

0
sin
(√

|p| nψ

)
. sin

(√
|p| kψ

)
dψ

=
1

2 |p|

∫ π√
|p|

0

(
cos
(√

|p| (n − k) ψ

)
− cos

(√
|p| (n + k) ψ

) )
dψ

= 0.

Next, we establish Equation (21) by means of Equation (8) as

∫ π√
|p|

0
sinp(nψ) . sinp(nψ)dψ

=
1
|p|

∫ π√
|p|

0
sin2 (√|p| nψ

)
dψ

=
1
|p|

∫ π√
|p|

0

1 − cos(2
√
|p|nψ)

2
dψ

=
π

2 |p|
√
|p|

.
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We then establish Equation (22) by means of Equation (8), as follows:

∫ π√
|p|

0
cosp(nψ) . cosp(kψ) dψ

=
∫ π√

|p|

0
cos
(√

|p| nψ

)
cos
(√

|p| kψ

)
dψ

=
1
2

∫ π√
|p|

0

(
cos
(√

|p|(n + k) ψ

)
+ cos

(√
|p| (n − k) ψ

) )
dψ

= 0.

We then establish Equation (23) by means of Equation (8) as

∫ π√
|p|

0
cosp(nψ) . cosp(nψ)dψ

=
∫ π√

|p|

0
cos
(√

|p|nψ

)
. cos

(√
|p|nψ

)
dψ

=
∫ π√

|p|

0
cos2

(√
|p|nψ

)
dψ

=
1
2

∫ π√
|p|

0

(
1 + cos

(
2
√
|p| nψ

))
dψ

=
π

2
√
|p|

.

Corollary 1. From the above Theorem 2, we immediately derive the following consequence:

∫ 2π√
|p|

0
sinp(nψ) . sinp(kψ) dψ = 0 for k ̸= n, (24)

∫ 2π√
|p|

0
sinp(nψ) . sinp(nψ)dψ =

π

|p|
√
|p|

, (25)

∫ 2π√
|p|

0
cosp(nψ) . cosp(kψ) dψ = 0 for k ̸= n, (26)

∫ 2π√
|p|

0
cosp(nψ) . cosp(kψ) dψ =

π√
|p|

for k = n. (27)

Theorem 3. Integrals of the product of different p-trigonometric functions:
The family

{
cosp(kψ), sinp(kψ); k = 1, 2, · · · ,

}
satisfies the following identities:

∫ 2π√
|p|

0
cosp(nψ) . sinp(kx)dψ = 0 ∀ k , n. (28)
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Proof. We establish Equation (28) by means of Equation (7). Firstly, if n ̸= k, in accordance
with the definitions of cosp and sinp, in terms of standard sin and cos functions within the
integration, we may write the following:

∫ 2π√
|p|

0
cosp(nψ).sinp(kψ) dψ

=
1√
|p|

∫ 2π√
|p|

0
cos
(√

|p| nψ

)
.sin
(√

|p| kψ

)
dψ

=
1

2
√
|p|

∫ 2π√
|p|

0
sin
(√

|p| (n + k) ψ

)
+ sin

(√
|p|(n − k) ψ

)
dψ

=
1
2

∫ 2π√
|p|

0

(
sinp

(
(n + k) ψ

)
+ sinp

(
(n − k) ψ

))
dψ

= 0.

Secondly, if n = k, we have

∫ 2π√
|p|

0
cosp(nψ) . sinp(nψ) =

∫ 2π√
|p|

0
cos
(√

|p| nψ

)
.
sin
(√

|p| nψ

)
√
|p|

dψ

=
−1√
|p| n

∫ 2π√
|p|

0
cos
(√

|p| nψ

)
.
(

cos
(√

|p| nψ

))′
dψ

= 0.

3. Generalized p-Fourier Series

In this section, we introduce the concept of generalized Fourier series. The coefficients
of Fourier series are determined by integrals of the function multiplied by p-trigonometric
functions, which are described in classical forms of the Fourier series [14–17].

Definition 1. Let T : R −→ R be a 2π√
|p|

-periodic function; thus, the generated p-Fourier series is

given by

ω0 +
∞

∑
n=1

(
ωn cosp(nψ) + χn sinp(nψ)

)
. (29)

Theorem 4. If T is a 2π√
|p|

-periodic and continuous function, then the Fourier coefficients are

given by

ω0 =

√
|p|

2π

∫ 2π√
|p|

0
T(ψ)dψ, (30)

ωn =

√
|p|

π

∫ 2π√
|p|

0
T(ψ) cosp(nψ)dψ , n ≥ 1, (31)

χn =
|p|
√
|p|

π

∫ 2π√
|p|

0
T(ψ) sinp(nψ)dψ , n ≥ 1. (32)

Proof. According to the equality

T(ψ) = ω0 +
∞

∑
n=1

(
ωn cosp(nψ) + χn sinp(nψ)

)
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and Equations (7) and (8), we have

∫ 2π√
|p|

0
T(ψ)dψ = ω0

∫ 2π√
|p|

0
dψ +

∞

∑
n=1

ωn

∫ 2π√
|p|

0
cosp(nψ)dψ + χn

∫ 2π√
|p|

0
sinp(nψ) dψ

= ω0
2π√
|p|

.

Therefore, ω0 =

√
|p|

2π

∫ 2π√
|p|

0
T(ψ)dψ.

According to

T(ψ) . cosp(nψ) = ω0 cosp(nx) +
∞

∑
k=1

ωk cosp(kψ) .cosp(nψ) + χk sinp(kψ) . cosp(nψ)

and Equations (8), (22), (23), and (28), we have

∫ 2π√
|p|

0
T(ψ) cosp(nψ)dψ

=
∫ 2π√

|p|

0
ω0cosp(nψ)dψ +

∞

∑
k=1

ak

∫ 2π√
|p|

0
cosp(kψ).cosp(nψ)dψ + χn

∫ 2π√
|p|

0
sinp(kψ).cosp(nψ)dψ

= 0 + ωn

∫ 2π√
|p|

0
cosp(nψ). cosp(nψ)dψ

= ωn .
π√
|p|

.

Hence,

ωn =

√
|p|

π

∫ 2π√
|p|

0
T(ψ) cosp(nψ)dψ.

According to equality

T(ψ) . sinp(nψ) = ω0 sinp(nψ) +
∞

∑
k=1

ωk cosp(kψ) .sinp(nψ) + χn sinp(kψ) . sinp(nψ)

and Equations (7), (20), (21), and (28), we have

∫ 2π√
|p|

0
T(ψ) sinp(nψ) dψ

= ω0

∫ 2π√
|p|

0
sinp(nψ) dψ +

∞

∑
k=1

ωk

∫ 2π√
|p|

0
cosp(kψ).sinp(nψ)dψ

+χk

∫ 2π√
|p|

0
sinp(kψ).sinp(nψ)dψ

= 0 + 0 + χn

∫ 2π√
|p|

0
sinp(nψ) . sinp(nψ) dψ

= χn
π

|p|
√
|p|

.

Therefore,

χn =
|p|
√
|p|

π

∫ 2π√
|p|

0
T(ψ) sinp(nψ) dψ.
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Remark 1. When p = −1, Equations (30), (31), and (32) are reduced to

ω0 =
1

2π

∫ 2π

0
T(ψ)dψ, (33)

ωn =
1
π

∫ 2π

0
T(ψ) cos(nψ) dψ , n ≥ 1, (34)

χn =
1
π

∫ 2π

0
T(ψ) sin(nψ) dψ , n ≥ 1. (35)

Example 2. Find the p-generalized Fourier series of the function

T(ψ) =

1 if 0 ≤ ψ ≤ π√
|p|

,

0 if π√
|p|

≤ ψ ≤ 2π√
|p|

.

Solution: T generated a p-generalized Fourier series, which is given by

ω0 +
∞

∑
k=1

ωk cosp(kψ) + χk sinp(kψ),

where

ω0 =

√
|p|

2π

∫ 2π√
|p|

0
T(ψ)dψ

=

√
|p|

2π

( ∫ π√
|p|

0
T(ψ)dψ +

∫ 2π√
|p|

π√
|p|

T(ψ)dψ

)
=

1
2

.

ωn =

√
|p|

π

∫ 2π√
|p|

0
T(ψ) . cosp(nψ) dψ , n ≥ 1

=

√
|p|

π

( ∫ π√
|p|

0
T(ψ) . cosp(nψ) dψ +

∫ 2π√
|p|

π√
|p|

T(ψ) . cosp(nψ)

)
dψ

= 0.

Moreover,

χn =
|p|
√
|p|

π

∫ 2π√
|p|

0
T(ψ) . sinp(nψ) dψ , n ≥ 1

=
|p|
√
|p|

π

∫ π√
|p|

0
T(ψ) . sinp(nψ) dψ +

∫ 2π√
|p|

π√
|p|

T(ψ) . sinp(nψ) dψ

χn =
−
√
|p|

nπ

(
(−1)n − 1

)
.

The series is given by

1
2
+

2
√
|p|

π

∞

∑
n=1

1
2n + 1

sinp
(
(2n + 1)ψ

)
.
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Theorem 5. Let T be a 2π√
|p|

-periodic and continuous function and

T(ψ) = ω0 +
∞

∑
k=1

(
ωk cosp(kψ) + χk sinp(kψ)

)
.

Then, the generalized Parseval‘s identity holds, as follows:√
|p|

2π

∫ π√
|p|

−π√
|p|

T(ψ)2 dψ = ω2
0 +

1
2

∞

∑
k=1

(
ω2

k +
1
|p| χ2

k

)
. (36)

Proof. Assume that

T(ψ) ≈ ω0 +
N

∑
k=1

(
ωk cosp(kψ) + χk sinp(kψ)

)
,

and let

F(ψ) = A0 +
N

∑
k=1

ωk cosp(kψ) + bk sinp(kψ).

Set

E =
∫ π√

|p|
−π√
|p|

(
T(ψ)− F(ψ)

)2

dψ .

We have

E =
∫ π√

|p|
−π√
|p|

(
T(ψ)

)2

dψ − 2
∫ π√

|p|
−π√
|p|

F(ψ).T(ψ) dψ +
∫ π√

|p|
−π√
|p|

(
F(ψ)

)2

dψ .

We observe that ((
A0 +

N

∑
k=1

(
Ak cosp

(
kψ
)
+ Bksinp

(
kψ
)))

.
(

A0 +
N

∑
k=1

(
Ak cosp

(
kψ
)
+ Bk sinp

(
kψ
))))

= A2
0 + 2A0

N

∑
k=1

(
Ak cosp(kψ) + Bk sinp(kψ)

)

+
N

∑
j=1

Aj

( N

∑
k=1

(
Ak cosp(jψ)cosp(kψ) + Bk cosp(jψ)sinp(kψ)

))

+
N

∑
j=1

Bj

( N

∑
k=1

(
Ak sinp(jψ)cosp(kψ) + Bk sinp(jψ)sinp(kψ)

))
.

By taking into account Equations (20), (21), (22), (23), and (28), we get

∫ π√
|p|

−π√
|p|

(
F(ψ)

)2

dψ =
2π√
|p|

.A2
0 +

N

∑
k=1

(
π√
|p|

(Ak)
2 +

π

|p|
√
|p|

(Bk)
2
)

=
2π√
|p|

(
A2

0 +
1
2

N

∑
k=1

(
A2

k +
1
|p|B2

k
))

.

On the other hand,
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F(ψ)T(ψ)

=

((
A0 +

N

∑
k=1

(
Akcosp

(
kψ
)
+ Bksinp

(
kψ
)))

.
(

ω0 +
N

∑
k=1

(
ωkcosp

(
kψ
)
+ ξksinp

(
kψ
))))

= A0ω0 + A0

N

∑
k=1

(
ωkcosp

(
kψ
)
+ χksinp

(
kψ
))

+ ω0

N

∑
k=1

(
Akcosp

(
kψ
)
+ Bksinp

(
kψ
))

+
N

∑
j=1

Aj

( N

∑
k=1

(
ωk cosp(jψ)cosp(kψ) + χk cosp(jψ)sinp(kψ)

))

+
N

∑
j=1

Bj

( N

∑
k=1

(
ωk sinp(jψ)cosp(kψ) + χk sinp(jψ)sinp(kψ)

))
.

By taking into account Equations (20), (21), (22), (23), and (28), we get

∫ π√
|p|

−π√
|p|

T(ψ) . F(ψ)dψ =
2π√
|p|

A0 ω0 +
N

∑
k=1

(
π√
|p|

Akωk +
π

|p|
√
|p|

Bk χk

)

=
π√
|p|

(
2A0ω0 +

N

∑
k=1

(
Akωk +

1
|p|Bkχk

))
.

Moreover,

E =
∫ π√

|p|
−π√
|p|

T(ψ)2dψ − 2π√
|p|

(
2A0ω0 +

N

∑
k=1

(
Akωk +

1
|p| Bkχk

)
+

2π√
|p|

A2
0

+
π√
|p|

N

∑
k=1

(A2
k +

1
|p|B2

k)

)
.

By taking Ak = ωk and Bk = χk, we get

E∗ =
∫ π√

|p|
−π√
|p|

T(ψ)2 − π√
|p|

(
2 ω2

0 +
N

∑
k=1

ω2
k +

1
|p| χ2

k

)
,

E − E∗ =
π√
|p|

(
2(A0 − ω0)

2 +
N

∑
k=1

(
Ak − ωk

)2
+

1
|p|
(

Bk − χk
)2
)

,

E − E∗ ≥ 0 or E ≥ E∗ and E = E∗ if and only if Ak = ωk and Bk = χk.
Since E∗ is positive, we get

2 ω2
0 +

N

∑
k=1

(
ω2

k +
1
|p| χ2

k

)
≤
√
|p|

π

∫ π√
|p|

−π√
|p|

T(ψ)2dψ.

If N → ∞, we get Bessel‘s inequalities, as follows:

2 ω2
0 +

∞

∑
k=1

(
ω2

k +
1
|p| χ2

k

)
≤
√
|p|

π

∫ π√
|p|

−π√
|p|

T(ψ)2dψ .

If

2 ω2
0 +

∞

∑
k=1

(
ω2

k +
1
|p| χ2

k

)
=

√
|p|

π

∫ π√
|p|

−π√
|p|

T(ψ)2 dψ,

we get the generalized Parseval‘s identity.
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Example 3. Consider T to be a 2π√
|p|

-periodic and continuous function, such that

T(ψ) = ψ +
π√
|p|

,
−π√
|p|

≤ ψ ≤ π√
|p|

.

We have

E∗ =
∫ π√

|p|
−π√
|p|

T(ψ)2dψ − π√
|p|

(
2 ω2

0 +
N

∑
k=1

(
ω2

k +
1
|p| χ2

k

))
.

Solution:

ω0 =

√
|p|

2π

∫ π√
|p|

−π√
|p|

T(ψ)dψ =

√
|p|

2π

∫ π√
|p|

−π√
|p|

(
ψ +

π√
|p|

)
dψ

=
π√
|p|

.

ωn =

√
|p|

π

∫ π√
|p|

−π√
|p|

T(ψ) . cosp(nψ)dψ

=

√
|p|

π

∫ π√
|p|

−π√
|p|

(
ψ +

π√
|p|

)
. cosp(nψ)dψ

=
2√
|p|

sin(nπ).

Hence, ωn = 0, n ≥ 1.

On the other hand,

χn =
|p|
√
|p|

π

∫ π√
|p|

−π√
|p|

T(ψ) sinp(nψ)dψ

=
|p|

√
|p|

π

∫ π√
|p|

−π√
|p|

(
ψ +

π√
|p|

)
. sinp(nψ) dψ

=
|p|
√
|p|

π

(
2π√
|p|

(−1)n
)

=
2(−1)n+1

n
.

Moreover,

∫ π√
|p|

−π√
|p|

T(ψ)2 dψ =
∫ π√

|p|
−π√
|p|

(
ψ +

π√
|p|

)2

dψ

=
8π3

3 |p|
√
|p|

.

From the above calculation, we get

E∗ =
8 π3

3|p|
√
|p|

− π√
|p|

(
2

π2

|p| +
4
|p|

N

∑
k=1

1
k2

)
.
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4. p-Fourier Series Solutions of Ordinary Differential Equations

Consider the second-order non-homogeneous differential equation:

Z ′′ + αZ ′ + βZ = T(x),
−π√
|p|

≤ ψ ≤ π√
|p|

, (37)

where T satisfies the following conditions:

(1) T is 2π√
|p|

-periodic,

(2) T and T′ are piecewise continuous differentiable of
[
−π√
|p|

,
π√
|p|

]
,

(3) α and β are constant with β ̸= 0.

We are interested in finding a solution of the differential equation, which is
2π√
|p|

-

periodic, which we shall denote by Zp and which is of the following form:

Zp(ψ) = A0 +
∞

∑
n=1

(
An cosp(nψ) + Bn sinp(nψ)

)
.

Proof.

Zp(ψ) = A0 +
∞

∑
n=1

(
An cosp(nψ) + Bn sinp(nψ)

)
.

We have

Z ′
p(ψ) =

∞

∑
n=1

(
An pn sinp(nψ) + Bn n cosp(nψ)

)
,

and

Z ′′
p (x) =

∞

∑
n=1

(
An pn2cosp(nψ) + Bn pn2sinp(nψ)

)
.

A straight forward calculation gives

Z ′′
p (ψ) + αZ ′

p(ψ) + βZp(x) = βA0 +
∞

∑
n=1

(
An pn2 + αBn n + βAn

)
cosp(nψ)

+(Bn pn2 + αAn pn + βBn) sinp(nψ).

On the other hand, we may write the following:

T(ψ) = ω0 +
∞

∑
n=1

(
ωn cosp(nψ) + χn sinp(nω)

)
.

From the differential equation

Z ′′
p (ψ) + αZ ′

p(ψ) + βZp(ψ) = T(ψ),

we get β A0 = ω0 and so

→ A0 =
ω0

β
. (38)

(pn2 + β)An + αn Bn = ωn (i)

and
α pn An + (pn2 + β)Bn = χn (ii).

Multiply Equation (i) by (pn2 + β) and Equation (ii) by nα and substitute; thus, we get(
(pn2 + β)2 − (α2 pn)

)
An = (pn + β)ωn − αn χn
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=⇒ An =
(pn + β)ωn − αn χn
(pn2 + β)2 − α2 pn

. (39)

Multiply Equation (i) by αp and Equation (ii) by (pn2 + β) and substitute; thus, we get

Bn =

(
pn2 + β

)
χn − αp ωn

(pn2 + β)2 − α2 pn
. (40)

Example 4. Solve the differential equation

Z ′′ + 3Z = T(ψ) (41)

where T is a 2π√
|p|

-periodic and continuous function given by

T(ψ) =


1 if −π√

|p|
≤ ψ ≤ 0

2 if 0 < ψ < π√
|p|

.

Solution: We find the p-Fourier series of T as

T(ψ) = ω0 +
∞

∑
n=1

(
ωn cosp(nψ) + χn sinp(nψ)

)
.

We have

ω0 =

√
|p|

2π

∫ π√
|p|

−π√
|p|

T(ψ)dψ

=

√
|p|

2π

∫ 0

−π√
|p|

T(ψ)dψ +
∫ π√

|p|

0
T(ψ)dψ


=

√
|p|

2π

(
π√
|p|

+
2π√
|p|

)

=
3
2

,

ωn =

√
|p|

π

∫ π√
|p|

−π√
|p|

f (ψ)cosp(nx)dψ

=

√
|p|

π

∫ 0

−π√
|p|

cosp(nψ)dψ + 2
∫ π√

|p|

0
cosp(nψ)dψ


= 0,
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and

χn =
|p|
√
|p|

π

∫ π√
|p|

−π√
|p|

f (ψ)sinp(nψ)dψ

=
|p|
√
|p|

π

∫ 0

−π√
|p|

sinp(nψ)dx + 2
∫ π√

|p|

0
sinp(nψ)dψ


=

√
|p|

πn

(
1 − (−1)n

)
.

We get

χ2n = 0 and χ2n−1 =
2
√
|p|

π(2n − 1)
.

Consider that

Z(ψ) = A0 +
∞

∑
n=1

(
An cosp(nψ) + Bn sinp(nψ)

)
.

According to Equations (38), (39), and (40), we obtain

A0 = ω0
β ,

An =
(pn + β)ωn − αn χn
(pn2 + β)2 − α2 pn

,

Bn =

(
pn2 + β

)
χn − αp ωn

(pn2 + β)2 − α2 pn
.

By taking into account that α = 0, β = 3, ω0 =
3
2

, ωn = 0 n ≥ 1, χ2n = 0, and χ2n−1 =

2
√
|p|

π(2n − 1)
, n ≥ 1, we get



A0 = 1
2 ,

An = 0 n ≥ 1,

B2n = 0 n ≥ 1,

B2n−1 =
1

(pn2 + 3)
2
√
|p|

π(2n − 1)
.

Thus, we can write the solution as

Z(ψ) =
1
2
+ ∑

n≥1

(
1(

pn2 + 3
) 2

√
|p|

π
(
2n − 1

))sinp
(
(2n − 1

)
ψ
)
.

5. Conclusions

We provide the definition of the generalized p-Fourier series and then study some of
its properties, involving the sinp and cosp functions. We also present examples of solutions
to some non-homogeneous differential equations using the proposed p-Fourier series. It is
well known that sinp and cosp functions are capable of modeling damped oscillations and
complex periodic shapes, similar to the Bessel and other special functions. This study was
motivated by wavelet analysis, where basis functions represent local periodic fluctuations,
as opposed to the infinitely long basis functions like the classical sin and cos functions.
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This type of analysis is particularly useful for representing non-stationary functions with a
complex geometric shape.

We started this investigation based on the foundational works on p-trigonometric func-
tions, which are a significant contribution in the study of special trigonometric functions for
modeling real-world phenomena. They are generalized versions of classical trigonometric
functions for elliptic complex numbers, and only one special case with p = −1 coincides
with standard trigonometric functions. The geometric nature of these special functions
is different, exhibiting interesting kinds of oscillations, as revealed in [21]. Although the
results presented here may seem to be similar to the classical Fourier series analysis, the
p-Fourier series are able to model signals with different kinds of flexible basis functions
beyond classical trigonometric functions.

In the future, we will validate this work using numerical simulations of stationary
and non-stationary even and odd functions. However, the use of special functions, like
Bessel, Legendre, etc., within Fourier series is an established method in obtaining analytical
solutions of ODEs for boundary value problems (BVPs) and partial differential equations
(PDEs) on certain geometric systems, which can be extended using the new classes of sinp
and cosp special functions in the future.
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7. Erişir, T.; Güngör, M.A. Holditch-Type Theorem for Non-Linear Points in Generalized Complex Plane Cp. Univers. J. Math. Appl.

2018, 1, 239–243. [CrossRef]
8. Gürses, N.; Yüce, S. One-parameter planar motions in generalized complex number plane CJ. Adv. Appl. Clifford Algebr. 2015,

25, 889–903. [CrossRef]
9. Eren, K.; Ersoy, S. Burmester theory in Cayley–Klein planes with affine base. J. Geom. 2018, 109, 45. [CrossRef]
10. Alibrahim, A.H.; Das, S. Bridging the p-Special Functions between the Generalized Hyperbolic and Trigonometric Families.

Mathematics 2024, 12, 1242. [CrossRef]
11. Özen, K.E. On the trigonometric and p-trigonometric functions of elliptical complex variables. Commun. Adv. Math. Sci. 2020,

3, 143–154. [CrossRef]
12. Zygmund, A. Trigonometric Series; Cambridge University Press: Cambridge, UK, 2002; Volume 1.
13. Trigub, R.M. Summability of trigonometric Fourier series at-points and a generalization of the Abel–Poisson method. Izv. Math.

2015, 79, 838. [CrossRef]
14. Bary, N.K. A Treatise on Trigonometric Series: Volume 1; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1.
15. Folland, G.B. Fourier Analysis and Its Applications; American Mathematical Society: Providence, RI, USA, 2009; Volume 4.

http://doi.org/10.1080/0025570X.2004.11953236
http://dx.doi.org/10.1007/s00006-018-0878-3
http://dx.doi.org/10.36890/iejg.545136
http://dx.doi.org/10.1007/s00006-016-0642-5
http://dx.doi.org/10.32323/ujma.430853
http://dx.doi.org/10.1007/s00006-015-0530-4
http://dx.doi.org/10.1007/s00022-018-0450-2
http://dx.doi.org/10.3390/math12081242
http://dx.doi.org/10.33434/cams.789085
http://dx.doi.org/10.1070/IM2015v079n04ABEH002763


Axioms 2024, 13, 600 16 of 16

16. Rønning, F. The role of Fourier series in mathematics and in signal theory. Int. J. Res. Undergrad. Math. Educ. 2021, 7, 189–210.
[CrossRef]

17. Grafakos, L. Classical and Modern Fourier Analysis; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2.
18. Hardy, G.H.; Rogosinski, W. Fourier Series; Courier Corporation: North Chelmsford, MA, USA, 1999; Volume 1.
19. Bôcher, M. Introduction to the theory of Fourier’s series. Ann. Math. 1906, 7, 81–152. [CrossRef]
20. Trigub, R.M.; Belinsky, E.S. Fourier Analysis and Approximation of Functions; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012.
21. Alibrahim, A.H.; Das, S. The forgotten p-versine and p-coversine family of functions revisited. PLoS ONE 2024, 19, e0308529.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s40753-021-00134-z
http://dx.doi.org/10.2307/1967238
http://dx.doi.org/10.1371/journal.pone.0308529
http://www.ncbi.nlm.nih.gov/pubmed/39137223

	Introduction
	Integration of p-Trigonometric Functions
	Generalized p-Fourier Series
	p-Fourier Series Solutions of Ordinary Differential Equations
	Conclusions
	References

