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A B S T R A C T

An Excitable Network Attractor (ENA) is a forward-invariant set in phase space that can be used to explain
input-driven behaviour of Recurrent Neural Networks (RNNs) trained on tasks involving switching between
a discrete set of states. An ENA is composed of two or more attractors and excitable connections that allow
transitions from one attractor to another under some input perturbation. The smallest such perturbation that
makes a connection between two attractors is called the excitability threshold associated with that connection.
The excitability threshold provides a measure of sensitivity of the connection to input perturbations. Errors in
performance of such trained RNNs can be related to errors in transitions around the associated ENA. Previous
work has demonstrated that ENAs of arbitrary sensitivity and structure can be realised in a RNN by suitable
choice of connection weights and nonlinear activation function. In this paper we show that ENAs of arbitrary
sensitivity and structure can be realised even using a suitable fixed nonlinear activation function, i.e. by suitable
choice of weights only. We show that there is a choice of weights such that the probability of erroneous
transitions is very small.
1. Introduction

Recurrent Neural Networks are a class of machine learning models
suitable for learning sequential tasks. They have been successfully used
in chaotic time series forecasting (see [1] for a recent review), adaptive
filtering [2,3], pattern generation [4] and classification to name a few.
This flexibility of RNNs is not surprising as they have been shown to
be universal approximators — they can approximate, to any degree of
accuracy, any smooth bounded dynamical system on a compact time
interval [5,6]. However, like most machine learning models, RNNs are
hard to interpret and are usually considered as black box models. This
means it is hard to understand how RNNs make decisions. Due to
an increasing societal need to make machine learning models more
transparent [7], opening this black box may increase trust in RNNs
and allow for their flexibility to be taken advantage of in high-stakes
applications such as medicine [8] and policy making [9].

As RNNs become larger and increasingly more sophisticated, fine-
grained analysis of their behaviour becomes computationally expen-
sive. Since RNNs are input-driven dynamical systems, their input-driven
behaviour can be explained and interpreted using nonlinear dynamics.
Previous research — most notably the works of Beer [10,11], Hop-
field [12] and more recently Steinberg and Sompolinsky [13] – have
highlighted that neural networks in general use lower dimensional
attractors to encode information. Furthermore, recent research [14,15]
have shown that the computation in echo state networks (ESNs), an im-
portant class of RNNs, performing tasks involving learning transitions
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between finite set of states can be interpreted as a set of attractors –
encoding the states – and transitions between them. Such dynamical
system structures are characteristics of classification problems in ar-
tificial neural networks and by extension cognitive task that involves
different modes of computations [16,17]. An ENA is composed of a
number of attractors representing these computational states/modes
and input-driven (excitable) connections between them. With a suitable
notion of distance, ENA can be formed between any type of attractors
e.g stable periodic orbits or strange attractors [18,19]. We say there
is an excitable connection (or connection) between two attractors if
perturbations larger than some threshold 𝛿𝑡ℎ in some phase space
direction in the vicinity of one of the attractors makes a ‘‘jump’’ to the
basin of attraction of another. The smallest such perturbation is called
the excitability threshold.

Using tools from nonlinear dynamics, the authors of [15] extracted
an Excitable Network Attractors from the dynamics of a trained Echo
State Network (ESN) on a simple benchmark tasks that involves switch-
ing between four states. ESN are an important class of RNNs that are
able to circumvent the famous vanishing/exploding [20,21] gradient
problem by focusing training only in the output/readout layer. The
results of [15] showed that Excitable Network Attractors are effective
in capturing how ESN solves classification problems. The extracted ENA
is also able to explain the emergence of structural errors in imperfectly
trained systems beyond what performance measures like mean squared
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error can reveal. These errors usually manifest themselves as transitions
outside the set of the required number of attractors needed to solve
the task. Furthermore, other properties of the originally trained system
such as robustness to noise and the echo index [22] can be deduced
from related properties of the extracted ENA.

In part, the results of [14,15] can be explained by the fact that ENAs
are models of sequential time-dependent finite state computations [16,
23–25]. Furthermore, the ability of ENAs to capture finite state com-
putations are ground in theoretical research in language recognition
and theory of computation [26]. For example, [24] showed that for
an RNN to reliably capture a discrete finite state computation, it must
divide the phase space into 𝑛 distinct closed invariant sets where 𝑛 is at
least the number of different states and learn transitions between them.
Surprisingly, due to finite precision arithmetic of modern computers,
the results of [24] does not exclude the possibility of interpreting any
computation in RNNs using Network Attractors, even those trained on
regression tasks.

We consider the question of realising arbitrary sensitive transitions
between finite sets of states as an Excitable Network Attractor in a Con-
tinuous Time Recurrent Neural Network (CTRNN). These transitions are
represented as a directed graph with vertices representing equilibria
and edges representing allowable transitions between. The input-driven
dynamics of a CTRNN with 𝑁 hidden units is given by the system of
rdinary differential equations (ODEs)

𝑖
𝑑𝑥𝑖
𝑑𝑡

= −𝑥𝑖 +
𝑁
∑

𝑗=1
𝑤𝑖𝑗𝜙(𝑥𝑗 ) + 𝑢𝑖(𝑡) for 𝑖 = 1,… , 𝑁 (1)

where 𝑊 = [𝑤𝑖𝑗 ] ∈ R𝑁×𝑁 is the recurrent matrix between the hidden
units 𝑥𝑖 ∈ R, 𝜏𝑖 > 0 are time constants, 𝜙 the activation function and
input 𝑢𝑖(𝑡) is the input to the 𝑖th hidden unit.

Results of [23] has shown that a large class of graphs can be realised
s ENA at arbitrarily small sensitivity in a CTRNN by choosing both
he weights and the activation function. In the realisation in [23], the
ctivation function is piecewise linear and depends on the sensitivity
f the network to be realised. Here, we extend these results to smooth
ctivation functions and showed that ENAs of arbitrary sensitivity
nd graph topology can be realised in the autonomous dynamics of a
TRNN by choosing only the recurrent matrix. The activation function
an be chosen independently of the sensitivity of the network to input
erturbations. We also show that this realisation can be made ‘‘almost
omplete’’ in the sense that the number of transitions that do not tend
o some equilibrium in the network through an allowable transition
s small. We also give an upper bound on the dimension of CTRNN
ith respect to the number of vertices in the graph of the ENA. The

ealisation allows a given connection to be made arbitrarily sensitive to
nput perturbation. Our analysis showed that cycles in the graph can be
ealised as periodic orbits in phase space allowing transitions between
eriodic orbits and between periodic orbits and equilibria.

. Background

An Excitable Network Attractor consist of a set of equilibria and
arts of their basin of attraction that allow input-driven transitions
etween them. ENAs can be defined for both flows and maps. Here we
ive the definition for flows followed from [23,27]. In what follows,
e assume that 𝜉𝑖 is an equilibrium of the flow

̇ = 𝑓 (𝑥, 𝑡)

here 𝑥 ∈ R𝑁 and 𝑓 is at least 𝐶1 in 𝑥.

efinition 2.1. An excitable connection of amplitude 𝛿 > 0 is said to
exist from equilibrium 𝜉𝑖 to another equilibrium 𝜉𝑗 if

𝐵𝛿(𝜉𝑖) ∩𝑊 𝑠(𝜉𝑗 ) ≠ ∅.

here 𝐵𝛿(𝜉𝑖) is an open ball of radius 𝛿 around 𝜉𝑖 and 𝑊 𝑠(𝜉𝑗 ) is the

basin of attraction of the equilibrium 𝜉𝑗 .

2 
Definition 2.2. The quantity

𝛿𝑖𝑗𝑡ℎ = inf{𝛿 > 0 ∶ 𝐵𝛿(𝜉𝑖) ∩𝑊 𝑠(𝜉𝑗 ) ≠ ∅}

s called the excitability threshold of the excitable connection from 𝜉𝑖
to 𝜉𝑗 .

Definition 2.3. An Excitable Network Attractor at amplitude 𝛿
between a set of equilibria {𝜉𝑖}𝑁𝑖=1 is defined as the set

𝛴 =
⋃

𝑖,𝑗
{𝛷𝑡(𝑥) ∶ 𝑥 ∈ 𝐵𝛿(𝜉𝑖), 𝑡 > 0} ∩𝑊 𝑠(𝜉𝑗 ).

where 𝛷𝑡(𝑥) is the solution at time 𝑡 associated with the initial condition
.

emark. In the above definitions, the equilibria 𝜉𝑖 will mostly be taken
o be a sink for each 𝑖. However, this is not necessary. For example
xcitable connections starting from saddles can be considered as having
n excitability threshold of 0.

There is a natural way to encode vertices of a directed graph as the
et of equilibria in 𝛴 that have excitable connections between them.
onsider the directed graph 𝐺 with vertices numbered from 1 to 𝑁 .

dentifying vertex 𝑘 of 𝐺 with equilibrium 𝜉𝑘 of 𝛴, there is an edge
rom vertex 𝑖 to vertex 𝑗 of 𝐺 if 𝐵𝛿(𝜉𝑖) ∩𝑊 𝑠(𝜉𝑗 ) ≠ ∅.

efinition 2.4. We say 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix of a directed
raph 𝐺 if 𝑎𝑖𝑗 = 1 if and only if there is a directed edge from vertex 𝑖 to
ertex 𝑗 and 𝑎𝑖𝑗 = 0 otherwise. We say an adjacency matrix is admissible
f the corresponding graph contains no 1-cycles, 2-cycles or 𝛥-cliques
see Fig. 1).

efinition 2.5. Let 𝛴 be an Excitable Network Attractor of amplitude
between the set of equilibria {𝜉𝑖}. Let 𝐺 be a directed graph with an

ssociated adjacency matrix 𝐴. 𝛴 is said to realise 𝐺 at amplitude 𝛿 if
nd only if 𝑎𝑖𝑗 = 1 whenever

𝛿(𝜉𝑖) ∩𝑊 𝑠(𝜉𝑗 ) ≠ ∅.

is referred to as the graph of 𝛴.

We can also consider 𝐺 as a weighted directed graph where each
dge in 𝐺 is weighted with the corresponding excitability threshold
𝑖𝑗
th. The matrix 𝐷 ∈ R𝑁×𝑁 of edge weights of 𝐺 has components
𝑖𝑗 = 𝛿𝑖𝑗th if 𝑎𝑖𝑗 = 1 and 0 otherwise. When 𝛿𝑖𝑗th = 0 but 𝑎𝑖𝑗 = 1, then

heir is a connection from 𝜉𝑖 to 𝜉𝑗 and thus transitions can happen
ithout inputs. These transitions are called spontaneous transitions and
aybe due to a heteroclinic connection from 𝜉𝑖 to 𝜉𝑗 . Another example

f transitions other than excitable transition is spurious transitions. A
purious transition occur when there is a transition from 𝜉𝑖 ∈ 𝛴 to
quilibria or other attractors outside 𝛴. If spurious transitions can be
voided, then all initial conditions explore the network following a path
n the directed graph 𝐺. Such a realisation of 𝐺 is said to be complete.
n the case that the set of all initial conditions 𝑥 ∈ 𝛴 that results in
purious transitions is a measure zero set, the realisation of 𝐺 is said
o be almost complete. This is a generalisation of the concept of almost
omplete realisation for heteroclinic networks from [28] to excitable
etwork attractors.

efinition 2.6. Let 𝐴 ∈ R𝑁×𝑁 be a given adjacency matrix with 𝐺 as
he associated directed graph and 𝛿 > 0. Suppose 𝛴 is a realisation of

as an ENA at amplitude 𝛿 between attracting equilibria 𝜉𝑘. Let the
quilibrium 𝜉𝑘 ∈ 𝛴 be identified with vertex 𝑘 of the graph 𝐺. Then
he node 𝜉𝑘 is said to be almost complete if

({𝑥 ∈ 𝐵𝛿(𝜉𝑘)| 𝑥 ∉ 𝑊 𝑠(𝜉𝑘) and ∀𝑙 with 𝑎𝑘𝑙 = 1, 𝑥 ∉ 𝑊 𝑠(𝜉𝑙)}) = 0

here 𝜇 is Lebesgue measure on R𝑁 . 𝛴 is said to be an almost
omplete realisation if for all 𝜉 ∈ 𝛴, 𝜉 is almost complete.
𝑘 𝑘



M. Fadera and P. Ashwin

a
t
𝑎

w
d
c

𝑊

w
𝛿
a
e

t
a
c
t
𝜀
n
u
n

g
N
n
o
l
a
t
o

Physica D: Nonlinear Phenomena 470 (2024) 134358 
Fig. 1. From left to right: graph of 1 cycle, 2 cycle and 𝛥-clique. A directed graph
that does not have any of these structures as a subgraph is referred to as admissible.

There is a key difference between the above definition for ENAs of
almost completeness and that given in [28] for heteroclinic networks.
The definition in [28] uses Lebesgue measure on the unstable manifolds
of a saddle in the heteroclinic network; we make statements about some
finite neighbourhood of stable equilibrium with respect to Lebesgue
measure on the full space (i.e R𝑁 ) and will depend on neighbourhood
size. This is most appropriate when all 𝜉𝑖 are sinks.

The input-driven dynamics of ENAs are intermittent with trajec-
tories spending long times near one equilibrium before switching to
another in a short time. This provides a natural way to describe the
dynamics of the nodes of 𝛴 using the relationship between the corre-
sponding vertex and its neighbours in 𝐺. For example if a realisation
is almost complete, the ordered sequence of nodes visited by a given
input/noise-driven trajectory is known as its itinerary. The itinerary
provides a natural symbolic dynamics with respect to the network
associated with a given input/noise driving the network.

Definition 2.7. Let 𝐴 be the adjacency matrix of a directed graph 𝐺
ssociated with the ENA 𝛴. Let 𝜉𝑘 ∈ 𝛴. For this equilibrium we defined
he leading nodes 𝐿(𝑘) ∶= {𝑖 ∶ 𝑎𝑘𝑖 = 1}, the trailing nodes 𝑇 (𝑘) ∶= {𝑖 ∶
𝑖𝑘 = 1} and the disconnected nodes 𝐷(𝑘) ∶= {𝑖 ∶ 𝑎𝑖𝑘 = 𝑎𝑘𝑖 = 0}.

In terms of transitions between nodes of 𝛴, 𝐿(𝑘) contains the indices
of the set of nodes accessible from 𝜉𝑘 through an excitable transition
while 𝑇 (𝑘) contain the indices of the set of nodes that can make
transition to 𝜉𝑘. Note that for graphs with admissible adjacency matrix
this partition covers all cases.

The remainder of this paper is organised as follows. In Section 3,
we explain previous attempts to realise directed graphs as excitable
networks attractors in the dynamics of the CTRNN (1) by choosing both
the weight and the activation function to depend on the amplitude of
the ENA [23]. We discuss how this is useful in understanding some of
the global bifurcations that emerge as the amplitude changes. Using
properties of general sigmoidal functions explained in the Appendix A,
we prove how these realisations can be extended to a smooth activation
function by choosing the weight matrix 𝑊 to depend on four param-
eters and properties of the adjacency matrix 𝐴. We use the fact that
the equilibria that are needed for this realisation when 𝛿 > 0 are all
hyperbolic to remark that the this realisation holds for an open sets
of parameters in R4. In Section 3.1, we explain two possible ways of
making the realisation in Theorem 3.1 almost complete and gave a
proof for one of these methods.

In Section 4, we prove that it is possible to choose the weight
matrix 𝑊 to be invertible. This allows us to extend the results of
Theorem 3.1 through topological equivalence to an alternative formu-
lation of the CTRNN model used in the machine learning literature.
Section 5 explains the bifurcations that are possible at 𝛿 = 0. Using
bifurcation analysis and numerical simulations, we showed that the
results of Theorem 3.1 can be extended to all one-cycle free graphs
and provide a bound on the dimension of the CTRNN needed for this
realisations. We explain how these bifurcations can turn cycles in the
graph into corresponding periodic orbits and thus allowing realisation
of excitable network of periodic orbits. We conclude the paper with
possible applications and future directions of the ENA model developed

here.

3 
3. Realisation of graphs as ENAs

Ashwin and Postlethwaite [23], described a method of realising
graphs with admissible adjacency matrices as Excitable Network Attrac-
tors between stable equilibria in the input-free dynamics of a CTRNN.
These continuous time analogues of conventional discrete time recur-
rent neural networks are used in theoretical neuroscience as a model for
episodic memory [29] or as minimal models for cognition [11], as well
as in evolutionary computing [10,30] and robotics [31,32]. Although
CTRNNs are not as popular as their discrete counterparts, their power
to model continually evolving systems has recently gained traction in
the machine learning community through work on liquid time-constant
neural networks [31,32].

The (deterministic) input-driven dynamics of a CTRNN with 𝑁
hidden units is described by the system of ODEs in (1). The system may
also be driven with Wiener noise 𝑊𝑖(𝑡) with the following stochastic
differential equation

𝜏𝑖𝑑𝑥𝑖 =

(

−𝑥𝑖 +
𝑁
∑

𝑗=1
𝑤𝑖𝑗𝜙(𝑥𝑗 )

)

𝑑𝑡 + 𝑠noise𝑑𝑊𝑖(𝑡) (2)

where 𝑊𝑖(𝑡) is independent Wiener noise with noise amplitude 𝑠noise.
Assuming that 𝐴 has no 1 cycles, 2 cycles or 𝛥-cliques (see Fig. 1),

the authors of [23] showed that Eq. (1) realises 𝐴 as an ENA 𝛴 at
amplitude 𝛿 by choosing the activation function to be 𝜙𝑃 with

𝜙𝑃 (𝑥) =

⎧

⎪

⎨

⎪

⎩

0 𝑥 − 𝜃 < −2𝜀,
1∕2 + (𝑥 − 𝜃)∕(4𝜀) |𝑥 − 𝜃| ≤ 2𝜀,
1 𝑥 − 𝜃 > 2𝜀

here 0 < 𝜀 ≪ 1 controls the ‘‘speed’’ of transitions and (in [23])
epends on 𝛿; 𝜃 is a location parameter and the weight matrix 𝑊 is
hosen using

𝑖𝑗 = 𝑤𝑡 + (𝑤𝑠 −𝑤𝑡)𝛿𝑖𝑗 + (𝑤𝑝 −𝑤𝑡)𝑎𝑗𝑖 + (𝑤𝑚 −𝑤𝑡)𝑎𝑖𝑗

here 𝑎𝑖𝑗 are the entries of the adjacency matrix of the graph of 𝛴,
𝑖𝑗 is the Kronecker delta and 𝑤𝑝, 𝑤𝑚, 𝑤𝑠, 𝑤𝑡 ∈ R are parameters which
re used to control the excitability threshold and the location of the
quilibria.

In order to control the sensitivity of Excitable Network Attractors
o inputs, we need a constructive way of realising ENAs of arbitrary
mplitude where the excitability threshold can be controlled for each
onnection. In the construction described above, there is no direct way
o control the excitability amplitude without changing the parameter
. This means that both the activation function and the weight matrix
eeds to change as the amplitude changes. Although this is useful in
nderstanding global bifurcation that may arise as 𝜀 is varied, there is
o way of controlling the excitability threshold for a given connection.

This means that in their construction the excitability threshold is a
lobal property of the constructed ENA and not for each connection.
umerical bifurcation analysis in 𝑤𝑝 revealed that in an ENA with two
odes and one leading direction, the excitable connection is destroyed
n increasing 𝑤𝑝 in a saddle–node bifurcation (see Fig. 7C). Our simu-
ation with other graph topologies also revealed the same bifurcations
re responsible for destroying excitable connections. It can be shown
hat this corresponds to the value of 𝑤𝑝 where two of the fixed points
f the map 𝜙𝑃 (𝑥)+𝑤𝑝 for 𝑥 ≤ 0.5 merge. As 𝑤𝑝 gets close to this value,

these fixed points get closer to each and the amplitude of the resulting
network becomes smaller. These observations revealed that it may be
possible to use 𝑤𝑝 as the only parameter for controlling the amplitude
and by extension, the excitability threshold between any two nodes of
𝛴.

Using this idea, we extend the results of [23] to show that with the
activation function 𝜙𝑆 (see Fig. 2 for 𝜙𝑆 (𝑥) shifted by 0.25) where

𝜙 (𝑥) = 𝛾
(

2𝑥 − 1)

𝑆 2
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Fig. 2. The graph of 𝑤𝑠𝜙𝑆 (𝑥) + 𝑤𝑝 for 𝑤𝑝 = 0.25 and 𝑤𝑠 = 1 (in blue) showing the
ixed points 𝑦1 and 𝑦2. The distance between 𝑦1 and 𝑦2 along the 𝑥-axis translates to
he excitability threshold in phase space. This can be made arbitrary small by shifting
he 𝜙𝑆 (𝑥) up or down appropriately by choosing 𝑤𝑝. 𝑦1 would corresponds to the active
quilibria 𝜉𝑖 and once the thresholds between 𝑦1 and 𝑦2 is exceeded in the corresponding
oordinate direction, a transition occur from 𝜉𝑖 to 𝜉𝑗 .

ith 𝛾 defined as the smooth transition function

(𝑧) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑧 ≤ 0,
𝑒−1∕𝑧

𝑒−1∕𝑧+𝑒−1∕(1−𝑧)
if 0 < 𝑧 < 1,

1 if 𝑧 ≥ 1.

The transition function 𝛾 can in general be used to join two smooth
function 𝑓 and 𝑔 in the interval (𝑎, 𝑏) where 𝑓 is defined on (−∞, 𝑎]
and 𝑔 is defined on [𝑏,∞) by setting

ℎ(𝑥) =
(

1 − 𝛾
(𝑥 − 𝑎
𝑏 − 𝑎

))

𝑓 (𝑥) + 𝛾
(𝑥 − 𝑎
𝑏 − 𝑎

)

𝑔(𝑥).

Hence ℎ(𝑥) = 𝑓 (𝑥) for 𝑥 ≤ 𝑎 and ℎ(𝑥) = 𝑔(𝑥) for 𝑥 ≥ 𝑏 and ℎ is smooth
in the interval (𝑎, 𝑏) matching derivatives of all orders of 𝑓 at 𝑎 and
derivatives of all orders of 𝑔 at 𝑏. The function 𝜙𝑆 smoothly interpolates
between the functions 𝑓 (𝑥) = 0 for 𝑥 ≤ 1

4 and 𝑔(𝑥) = 1 for 𝑥 ≥ 3
4 .

It should be noted that 𝛾 is a non-analytic smooth function — it is
verywhere smooth but does not have a convergent Taylor series in any
eighbourhood of the origin. Furthermore, computing 𝛾 close to 0 or 1
an be problematic because either 1∕𝑥 or 1∕(1−𝑥) tend to infinity. These
roperties are inherited by 𝜙𝑆 . An alternative choice of activation is the
mooth activation function 𝜙𝜀 introduced in [23]

𝜀(𝑥) =
1

1 + exp (−(𝑥 − 0.5)∕𝜀)
for 0 < 𝜀 ≪ 1.

f the adjacency matrix 𝐴 is admissible and 𝛿 > 0 is sufficiently small,
t can be shown that (1) with activation function 𝜙𝑆 realises 𝐴 as
n Excitable Network Attractor with amplitude 𝛿 > 0 by choosing
omponents of 𝑊 as follows

𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑠 if 𝑖 = 𝑗,
𝑤𝑚 if 𝑎𝑖𝑗 = 1,
𝑤𝑝 if 𝑎𝑗𝑖 = 1,
𝑤𝑡 if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0.

(3)

here

• 𝑤𝑡 = 0,
• 𝑤𝑠 = max𝑖∈{1,…,𝑁}{2, |𝑇 (𝑖)|}.
• 𝑤𝑝 is chosen so that 𝑤𝑠𝜙𝑆 (𝑥) + 𝑤𝑝 have two fixed points 𝑦1, 𝑦2

with 𝑦1 < 𝑦2 ≤ 1
2 that are at most 𝛿 apart (see Fig. 2). We prove

in Appendix A that this is always possible if 𝛿 is sufficiently small
and illustrated it in Fig. 2. The value of 𝑤𝑝 corresponding to 𝛿 = 0
is denoted as 𝛽, and 𝑦1 and 𝑦2 merge into a single fixed point
denoted 𝛼 at this value of 𝑤 .
𝑝 s

4 
• 𝑤𝑚 = −𝑤𝑠(1 + 2𝑤𝑝).

The equilibrium identified with vertex 𝑘 of the graph 𝐺 of 𝐴 (i.e
corresponding node of the network 𝛴) is given by

[𝜉𝑘]𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑌 𝑘
𝐴 if 𝑘 = 𝑖,

𝑌 𝑘𝑖
𝑇 if 𝑎𝑖𝑘 = 1,

𝑌𝐿 if 𝑎𝑘𝑖 = 1,
𝑌 𝑘𝑖
𝐷 if 𝑎𝑖𝑘 = 𝑎𝑘𝑖 = 0.

(4)

where

𝑌𝐿 = 𝑦1,

𝑌 𝑘
𝐴 = 𝑤𝑠 + |𝐿(𝑘)|𝑤𝑚𝜙𝑆 (𝑌𝐿),

𝑌 𝑘𝑖
𝑇 = 𝑤𝑚 + |𝐿(𝑘) ∩ 𝑇 (𝑖)|𝑤𝑝𝜙𝑆 (𝑌𝐿),

𝑌 𝑘𝑖
𝐷 = 𝑤𝑡 + 𝜙𝑆 (𝑌𝐿)

(

𝑤𝑚|𝐿(𝑘) ∩ 𝐿(𝑖)| +𝑤𝑝|𝐿(𝑘) ∩ 𝑇 (𝑖)|
)

where 𝑌 𝑘
𝐴 , 𝑌𝐿 𝑌 𝑘𝑖

𝑇 and 𝑌 𝐷
𝑘𝑖 are associated with active, leading, trailing

and disconnected directions respectively. It is easy to see that 𝜙𝑆 (𝑌 𝑘
𝐴 ) =

1 and 𝜙𝑆 (𝑌 𝑘𝑖
𝑇 ) = 𝜙𝑆 (𝑌 𝑘𝑖

𝐷 ) = 0. Thus 𝜙𝑆 in some way tells us which node
of 𝛴 we are closed to. We carry the naming convention of Definition 2.7
to a generic point 𝑥 in the phase space containing 𝛴. A cell 𝑘 is active
if 𝜙𝑆 (𝑥𝑘) = 1. A cell 𝑗 is said to be

• leading from 𝑘 if 𝜙𝑆 (𝑥𝑗 ) ∈ (0, 1) and 𝑎𝑘𝑗 = 1,
• trailing to 𝑘 if 𝑎𝑗𝑘 = 1 and 𝜙𝑆 (𝑥𝑗 ) = 0 and
• disconnected from 𝑘 if 𝑎𝑘𝑗 = 𝑎𝑗𝑘 = 0 and 𝜙𝑆 (𝑥𝑗 ) = 0.

Now we state the main result of this paper.

Theorem 3.1. Let 0 ≤ 𝛿 ≪ 1 and 𝐴 ∈ R𝑁×𝑁 be an admissible adjacency
matrix. Let the components of 𝑊 be chosen using (3). Then the input-free
dynamics of (1) with the activation function 𝜙𝑆 realises 𝐴 as an Excitable
Network Attractor at amplitude 𝛿.

We used the following lemma in the proof of Theorem 3.1. It gives
an upper bound on the difference between 𝑦1 and 𝑤𝑝.

Lemma 3.2. Let 0 < 𝛿 ≪ 1, 𝑤𝑠 ≥ 1 and 𝑤𝑝 = 𝑤𝑝(𝛿,𝑤𝑠) be chosen
so that 𝑤𝑠𝜙𝑆 (𝑦) + 𝑤𝑝 has two fixed points in the interval [0,

1
2 ] that are

𝛿 apart. Let 𝑦1 = 𝑦1(𝛿,𝑤𝑠) be the smaller of the two fixed points. Then
sup𝑤𝑠 ,𝛿, 𝑤𝑠𝜙𝑆 (𝑦1) = sup𝛿,𝑤𝑠

(𝑦1 −𝑤𝑝) ≤
1
4 .

Proof. We may assume that for some choices of 𝑤𝑠 and 𝛿, 𝑦1 > 1
4 .

Otherwise there is nothing to prove. First let 𝑤𝑠 be fixed. The largest
value of 𝑤𝑠𝜙𝑆 (𝑦1) occurs when 𝑦1 is at its maximum. This occurs at
𝛿 = 0 when 𝑦1 = 𝛼 where 𝛼 satisfies

𝑤𝑠𝜙
′
𝑆 (𝛼) = 1.

Now since 𝜙′′
𝑆 (𝑦) > 0 for 1

4 < 𝑦 < 1
2 , the corresponding solution 𝛼 to

the above equation decreases as 𝑤𝑠 increases. In particular, the largest
possible value of 𝛼 occurs when 𝑤𝑠 = 1. Thus

sup
𝛿,𝑤𝑠

(𝑦1 −𝑤𝑝) = 𝑤𝑠𝜙𝑆 (𝛼) when 𝑤𝑠 = 1.

t can be shown that 𝜙′
𝑆 (0.36) ≥ 1 and thus we have 𝛼 ≤ 0.36 in which

ase 𝜙𝑆 (𝛼) ≤ 𝜙𝑆 (0.36) <
1
4 . □

From (3), 𝑤𝑠 > 1 and thus the inequality above is strict. Since 𝑦1
and 𝑦2 tend to each other as 𝛿 → 0, we can take 𝛿 sufficiently small so
hat

sup
𝑤𝑠

(𝑦2 −𝑤𝑝) ≤
1
4

(5)

Proof of Theorem 3.1. To realise 𝐴 as an ENA at amplitude 𝛿 using
1), we choose the parameters 𝑤𝑠, 𝑤𝑝, 𝑤𝑡, 𝑤𝑚 using (3). It is sufficient to
how it for the case 𝜏 = 1 for all 𝑖 and the results follows by topological
𝑖
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equivalence for all other choice of 𝜏𝑖 satisfying 𝜏𝑖 > 0 [33] with the
transformation 𝑧𝑖 = 𝜏𝑖𝑥𝑖. The remainder of the proof is divided into
three main parts.
1. We show that 𝜉𝑘 is a stable equilibrium of Eq. (1)

We will show that 𝜉𝑘 (4) is a stable equilibrium of (1) identified with
vertex 𝑘 of the graph of 𝐴. First we note that 𝑌 𝑘

𝐴 ≥ 3
4 and 𝑌 𝑘𝑖

𝑇 , 𝑌 𝑘𝑖
𝐷 ≤ 1

4 for
ll values of 𝑘 and 𝑖 for which they are defined. Let 𝑓 ∶ R𝑁 → R𝑁 be the

function with components 𝑓𝑖(𝑥) = −𝑥𝑖 +
∑𝑁

𝑗=1 𝑤𝑖𝑗𝜙𝑆 (𝑥𝑗 ) for 𝑖 = 1,… , 𝑁 .
Since the trailing and disconnected directions of 𝑘 are both less than 1

4
at 𝜉𝑘, the non zero contributions to 𝑓𝑖(𝜉𝑘) comes from 𝑘 and its leading
directions. Thus

𝑓𝑖(𝜉𝑘) = −[𝜉𝑘]𝑖 +
𝑁
∑

𝑗=1
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 )

= −[𝜉𝑘]𝑖 +𝑤𝑖𝑖𝜙𝑆 ([𝜉𝑘]𝑖) + (1 − 𝛿𝑘𝑖)𝑤𝑖𝑘𝜙𝑆 ([𝜉𝑘]𝑘)

+
∑

{𝑎𝑘𝑗=1}
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 ).

There are four cases to consider.

(a) For 𝑖 = 𝑘,

𝑓𝑘(𝜉𝑘) = −𝑌 𝑘
𝐴 +𝑤𝑠𝜙𝑆 (𝑌𝐴) +

∑

{𝑎𝑘𝑗=1}
𝑤𝑚𝜙𝑆 (𝑌𝐿)

= −𝑌 𝑘
𝐴 +𝑤𝑠 +𝑤𝑚|𝐿(𝑘)|𝜙𝑆 (𝑌𝐿)

= 0.

(b) For the case 𝑎𝑘𝑖 = 1, note that 𝑖 ≠ 𝑘 since 𝐴 has no one cycles.
Furthermore, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0 for all 𝑗 ∈ 𝐿(𝑘)∖{𝑖} by lack of
𝛥-cliques. Thus

𝑓𝑖(𝜉𝑘) = −[𝜉𝑘]𝑖 +𝑤𝑖𝑖𝜙𝑆 ([𝜉𝑘]𝑖) +𝑤𝑖𝑘𝜙𝑆 ([𝜉𝑘]𝑘)

+
∑

{𝑎𝑘𝑗=1,𝑗≠𝑖}
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 )

= −𝑌𝐿 +𝑤𝑠𝜙𝑆 (𝑌𝐿) +𝑤𝑝𝜙𝑆 (𝑌𝐴)

= −𝑌𝐿 +𝑤𝑠𝜙𝑆 (𝑌𝐿) +𝑤𝑝

= 0.

(c) For the case 𝑎𝑖𝑘 = 1. Again 𝑖 must be different from 𝑘. For
𝑗 ∈ 𝐿(𝑘), we must have that 𝑗 ∈ 𝑇 (𝑖) ∪ 𝐷(𝑖) since 𝐴 has no
𝛥-cliques in 𝐴. Hence

𝑓𝑖(𝜉𝑘) = −[𝜉𝑘]𝑖 +𝑤𝑖𝑖𝜙𝑆 ([𝜉𝑘]𝑖) +𝑤𝑖𝑘𝜙𝑆 ([𝜉𝑘]𝑘)

+
∑

{𝑎𝑘𝑗=1}
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 )

= −[𝜉𝑘]𝑖 +𝑤𝑖𝑖𝜙𝑆 ([𝜉𝑘]𝑖) +𝑤𝑖𝑘𝜙𝑆 ([𝜉𝑘]𝑘)

+
∑

{𝑎𝑘𝑗=1}
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 )

= −𝑌 𝑘𝑖
𝑇 +𝑤𝑠𝜙𝑆 (𝑌 𝑘𝑖

𝑇 ) +𝑤𝑚𝜙𝑆 (𝑌𝐴)

+
∑

{𝑎𝑘𝑗=1}
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 )

= −𝑌 𝑘𝑖
𝑇 +𝑤𝑚 + |𝐿(𝑘) ∩ 𝑇 (𝑖)|𝑤𝑝𝜙𝑆 (𝑌𝐿)

= 0.

(d) For 𝑎𝑘𝑖 = 𝑎𝑖𝑘 = 0,

𝑓𝑖(𝜉𝑘) = −[𝜉𝑘]𝑖 +𝑤𝑖𝑖𝜙𝑆 ([𝜉𝑘]𝑖)

+𝑤𝑖𝑘𝜙𝑆 ([𝜉𝑘]𝑘) +
∑

{𝑎𝑘𝑗=1}
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 )

= −𝑌 𝑘𝑖
𝐷 +𝑤𝑠𝜙𝑠(𝑌 𝑘𝑖

𝐷 ) +𝑤𝑖𝑘𝜙𝑆 (𝑌𝐴) +
∑

{𝑎𝑘𝑗=1}
𝑤𝑖𝑗𝜙𝑆 ([𝜉𝑘]𝑗 )

= −𝑌 𝑘𝑖
𝐷 +𝑤𝑡 + 𝜙𝑆 (𝑌𝐿)

(

𝑤𝑝|𝐿(𝑘) ∩ 𝑇 (𝑖)|

+𝑤𝑚|𝐿(𝑘) ∩ 𝐿(𝑖)|
)

= 0.

5 
Fig. 3. A schematic diagram showing the classification of all the vertex in the graph
of 𝛴 during a transition from active cell 𝑘 to a leading cell 𝑙. The remaining cells
depending on whether they trailing, leading or disconnected with respect to 𝑘 before
he transitions and with respect to 𝑙 after the transitions. Due to lack of one-cycles,
wo-cycles and 𝛥-cliques, this classification is exhaustive.
ource: Image adopted from [23].

hus 𝜉𝑘 is an equilibrium for each 𝑘. Now we will show that 𝜉𝑘 is
inearly stable. Let 𝐽𝑘 be the Jacobian evaluated at 𝜉𝑘. Then

𝑘
𝑖𝑙 = −𝛿𝑖𝑙 +𝑤𝑖𝑙

𝜕𝜙𝑆 ([𝜉𝑘]𝑙)
𝜕𝑥𝑙

= −𝛿𝑖𝑙 +𝑤𝑖𝑙𝜙
′
𝑆 ([𝜉𝑘]𝑙)

=

{

−𝛿𝑖𝑙 for 𝑙 ∉ 𝐿(𝑘)
−𝛿𝑖𝑙 +𝑤𝑖𝑙𝜙′

𝑆 (𝑌𝐿) for 𝑙 ∈ 𝐿(𝑘).

t is easy to see that −1 is an eigenvalue of 𝐽𝑘(repeated 𝑁 − |𝐿(𝑘)|
imes). In particular, for 𝑗 ∉ 𝐿(𝑘), the corresponding eigenvector for
he eigenvalue 𝜆𝑗 = −1 is the standard unit vector 𝐞𝑗 . If the set 𝐿(𝑘)
s empty, then we are done. Otherwise, for each 𝑗 ∈ 𝐿(𝑘), 𝜆𝑗 = −1 +
𝑠𝜙′

𝑆 (𝑌𝐿) is an eigenvalue of 𝐽𝑘. This is because the components of
𝐽𝑘 − 𝜆𝑗𝐼𝑁 where 𝐼𝑁 is the 𝑁 ×𝑁 identity matrix are

𝐽𝑘
𝑗𝑙 − 𝜆𝑗𝛿𝑗𝑙 = 𝐽𝑘

𝑗𝑙 − (−1 +𝑤𝑠𝜙
′
𝑆 (𝑌𝐿))𝛿𝑗𝑙

=

{

−𝑤𝑠𝜙′
𝑆 (𝑌𝐿)𝛿𝑖𝑙 for 𝑙 ∉ 𝐿(𝑘),

𝑤𝑖𝑙𝜙′
𝑆 (𝑌𝐿)(1 − 𝛿𝑖𝑙) for 𝑙 ∈ 𝐿(𝑘).

Due to lack of 𝛥-clique, for each 𝑙 with 𝑙 ≠ 𝑗, either

(a) 𝑙 ∉ 𝐿(𝑘) or
(b) 𝑙 ∈ 𝐿(𝑘) but disconnected from 𝑗 (see Fig. 4).

In both cases, the entry 𝐽𝑘
𝑗𝑙 − 𝜆𝑗𝛿𝑗𝑙 must be 0. Furthermore, 𝐽𝑘

𝑗𝑗 =
−1 + 𝑤𝑠𝜙′

𝑆 (𝑌𝐿). Thus row 𝑗 of 𝐽𝑘 − 𝜆𝑗𝐼𝑁 are all zeros from which it
follows that 𝜆𝑗 is an eigenvalue of 𝐽𝑘. Since 𝜆𝑗 < 0 (see Lemma A.1 for
the proof of this), 𝜉𝑘 is a linearly stable.

Associated with the edge 𝑎𝑘𝑙 = 1 of 𝐴 is the saddle 𝜂𝑘𝑙 in phase space
which differ from 𝜉𝑘 at the index 𝑙 and (possibly) 𝑘. In particular

[𝜂𝑘𝑙]𝑖 =

⎧

⎪

⎨

⎪

⎩

[𝜉𝑘]𝑖 𝑖 ≠ 𝑙, 𝑘;
𝑦2 𝑖 = 𝑙;
𝑌 𝑘
𝐴 + 𝑤𝑚

𝑤𝑠
(𝑦2 − 𝑌𝐿) 𝑖 = 𝑘.

(6)

Following similar arguments above, it can be shown that 𝜂𝑘𝑙 is an
equilibrium of the system and that −1 and 𝜆𝑙 = −1 + 𝑤𝑠𝜙′

𝑆 (𝑦2) > 0
are eigenvalues of the Jacobian at 𝜂𝑘𝑙.
2. If 𝑎𝑘𝑙 = 1, there is an excitable connections at amplitude 𝛿 from 𝜉𝑘 to 𝜉𝑙

Assume 𝑎𝑘𝑙 = 1. We define the following region:

𝑅𝑘 ∶= {𝑥 ∈ R𝑁
|𝑥 ≥ 3 ; 𝑥 ≥ 0, 𝑖 ∈ 𝐿(𝑘); 𝑥 ≤ 1 , 𝑖 ∈ 𝑇 (𝑘) ∪𝐷(𝑘)}
𝑘 4 𝑖 𝑖 4
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Fig. 4. A schematic diagram showing admissible connections involving
𝑇 (𝑖), 𝑇 (𝑘), 𝐿(𝑘), 𝐿(𝑗) and the vertex 𝑘. The black arrows are admissible connections

hile the red dashed arrows are not allowed. In particular, in phase space directions
orresponding to the red dashed arrows, 𝜙𝑆 ([𝜉𝑘]𝑗 ) = 0.

𝑙 is defined similarly. By virtue of there being no 𝛥-cliques or two-
ycles, each 𝑖 ≠ 𝑘, 𝑙 can be classified as one of six possibilities depending
hether it is trailing, leading or disconnected from 𝑘 and 𝑙. These
ossibilities are 𝐿(𝑘)∩𝐷(𝑙), 𝑇 (𝑘)∩𝐿(𝑙), 𝐷(𝑘)∩𝐿(𝑙), 𝑇 (𝑘)∩𝐷(𝑙), 𝐷(𝑘)∩𝑇 (𝑙)

and 𝐷(𝑘)∩𝐷(𝑙) (see Fig. 3). These are interpreted as how a cell switches
from one type to another during a transition. As all leading cells of 𝑙 are
either disconnected or trailing from 𝑘, we have that 𝑇 (𝑘) ∩𝐿(𝑙) ∪𝐷(𝑘) ∩
𝐿(𝑙) = 𝐿(𝑙). Furthermore, all leading cells of 𝑘 are disconnected from
𝑙. Hence 𝐿(𝑘)∖{𝑙} ⊆ 𝐷(𝑙) from which we have 𝐿(𝑘) ∩ 𝐷(𝑙) = 𝐿(𝑘)∖{𝑙}.
Now let (𝑘, 𝑙) ∶= 𝑇 (𝑘) ∩𝐷(𝑙) ∪𝐷(𝑘) ∩ 𝑇 (𝑙) ∪𝐷(𝑘) ∩𝐷(𝑙).

Consider the initial condition 𝑥(0) = 𝜉𝑘 + 𝛿𝐞𝑙 ∈ 𝐵𝛿(𝜉𝑘). Let the
associated trajectory be 𝑥(𝑡). In 𝑅𝑘,

𝑥̇𝑖 = 0, 𝑖 ∈ 𝐿(𝑘)∖{𝑙}; (7)

𝑥̇𝑙 = −𝑥𝑙 +𝑤𝑠𝜙𝑆 (𝑥𝑙) +𝑤𝑝 > 0 since 𝑥𝑖(0) > 𝑦2; (8)

𝑥̇𝑖 = −𝑥𝑖 + [𝜉𝑘]𝑖 +𝑤𝑖𝑙(𝜙𝑆 (𝑥𝑙) − 𝜙𝑆 (𝑌𝐿)), 𝑖 ∈ {𝑘} ∪ 𝐿(𝑙). (9)

Hence 𝑥𝑖(𝑡) = 𝑌𝐿 for 𝑖 ∈ 𝐿(𝑘)∖{𝑙} so long as 𝑥𝑘(𝑡) ≥ 3
4 and 𝑥𝑖(𝑡) ≤ 1

4
for 𝑖 ∈ 𝐿(𝑙) ∩ (𝑘, 𝑙). Using Eqs. (7), (8) and (9), it can be shown that
𝑥𝑖(𝑡) = −𝑤𝑖𝑙

𝑤𝑠
𝛿𝑒−𝑡+[𝜉𝑘]𝑖+

𝑤𝑖𝑙
𝑤𝑠

(𝑥𝑙(𝑡)−𝑌𝐿) is a solution for 𝑖 ∈ {𝑘}∪𝐿(𝑙) and
or all values of 𝑡 for which 𝑥(𝑡) stays in 𝑅𝑘. From this, it follows that
𝑘(𝑡) is strictly decreasing and 𝑥𝑙(𝑡) is strictly increasing. At 𝑥𝑙(𝑡) =

3
4 ,

e have that 𝑥𝑘(𝑡) ≥
3
4 and

𝑥𝑖 = −
𝑤𝑝

𝑤𝑠
𝛿𝑒−𝑡 + [𝜉𝑘]𝑖 +

𝑤𝑝

𝑤𝑠
(𝑥𝑙(𝑡) − 𝑌𝐿),

≤ [𝜉𝑘]𝑖 +
𝑤𝑝

𝑤𝑠

( 3
4
− 𝑌𝐿

)

,

≤ [𝜉𝑘]𝑖 +
𝑤𝑝

2𝑤𝑠
,

≤ [𝜉𝑘]𝑖 +
𝑤𝑝

4
,

≤ [𝜉𝑘]𝑖 +
1
8
≤ 1

4
or all 𝑖 ∈ 𝐿(𝑙).

In addition, 𝑥𝑖 ≤ [𝜉𝑘]𝑖 for 𝑖 ∈ (𝑘, 𝑙) since 𝑤𝑖𝑙 ≤ 0 and

̇ 𝑖 = −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑖𝑙𝜙𝑆 (𝑥𝑙) +𝑤𝑖𝑘𝜙𝑆 (𝑥𝑘) +
∑

𝑗∈𝐿(𝑘)∖{𝑙}
𝑤𝑖𝑗𝜙𝑆 (𝑌𝐿),

≤ −𝑥𝑖 +𝑤𝑖𝑙𝜙𝑆 (𝑌𝐿) +𝑤𝑖𝑘 +
∑

𝑗∈𝐿(𝑘)∖{𝑙}
𝑤𝑖𝑗𝜙𝑆 (𝑌𝐿),

= −𝑥𝑖 +𝑤𝑖𝑘 +
∑

𝑗∈𝐿(𝑘)
𝑤𝑖𝑗𝜙𝑆 (𝑌𝐿),

= −𝑥𝑖 + [𝜉𝑘]𝑖. (10)
 m

6 
Consequently, 𝑥𝑙(𝑡) =
3
4 before 𝑥(𝑡) exits 𝑅𝑘.

When 𝑥𝑙 ≥
3
4 and 𝑥𝑘 ≥ 0, 𝑥̇𝑘 satisfies the following bound

̇ 𝑘 = −𝑥𝑘 +𝑤𝑠𝜙𝑆 (𝑥𝑘) +𝑤𝑚𝜙𝑆 (𝑥𝑙) +
∑

𝑗≠𝑙,𝑘
𝑤𝑘𝑗𝜙𝑆 (𝑥𝑗 )

≤ 𝑤𝑠𝜙𝑆 (𝑥𝑘) +𝑤𝑚 +𝑤𝑝|𝑇 (𝑘)|

≤ 𝑤𝑠 +𝑤𝑚 +𝑤𝑝𝑤𝑠 < 0.

ence 𝑥𝑘(𝑡) decreases monotonically in finite time to 0. This also means
hat when 𝑥𝑙 ≥

3
4 , the region where 𝑥𝑘 ≤ 1

4 and 𝑥𝑘 ≤ 3
4 are positively

invariant. Furthermore for any other 𝑖 ∈ 𝑇 (𝑙), the region 𝑅𝑖∩{𝑧 ∈ R𝑁 ∶
𝑙 ≥ 3

4 , 𝑧𝑖 ≤ 1
4 } is also positively invariant. Note that 𝑘 is one such 𝑖

since 𝑘 ∈ 𝑇 (𝑙). Furthermore 𝜙𝑆 (𝑥𝑖) remains bounded above by 0 since

̇ 𝑖 = −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑖𝑙𝜙𝑆 (𝑥𝑆 ) +𝑤𝑖𝑘𝜙𝑆 (𝑥𝑘) +
∑

{𝑗≠𝑖,𝑙,𝑘}
𝑤𝑖𝑗𝜙𝑆 (𝑥𝑗 ),

≤ −𝑥𝑖 +𝑤𝑠 +𝑤𝑚 +𝑤𝑝|𝑇 (𝑖)|,

≤ −𝑥𝑖 +𝑤𝑠 +𝑤𝑚 +𝑤𝑝𝑤𝑠,

< −𝑥𝑖 −𝑤𝑠𝑤𝑝.

e may now assume that 𝑥𝑖(𝑡) ≤
1
4 for 𝑖 ∈ 𝑇 (𝑙) and 𝑥𝑙(𝑡) ≥

3
4 .

For a disconnected direction 𝑖 ∈ 𝐷(𝑙), we have

̇ 𝑖 = −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑖𝑙𝜙𝑆 (𝑥𝑙) +𝑤𝑖𝑘𝜙𝑆 (𝑥𝑘) +
∑

{𝑗≠𝑖,𝑙,𝑘}
𝑤𝑖𝑗𝜙𝑆 (𝑥𝑗 ),

≤ −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +
∑

{𝑗∈𝑇 (𝑖)∖{𝑘}}
𝑤𝑝𝜙𝑆 (𝑥𝑗 ) +𝑤𝑖𝑘𝜙𝑆 (𝑥𝑘),

≤ −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) + |𝑇 (𝑖)|𝑤𝑝𝜙𝑆 (𝑦2),

≤ −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑠𝑤𝑝𝜙𝑆 (𝑦2),

≤ −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +
𝑤𝑝

4
where we used the fact that 𝑥𝑖(𝑡) ≤ 𝑦2 for all 𝑖 ≠ 𝑘, 𝑙 and (5). Since
̇ 𝑖 < 0 for 𝑥𝑖 ∈

[

1
4 , 𝑦1

]

, 𝜙𝑆 (𝑥𝑖) = 0 in finite time.
Finally for 𝑖 ∈ 𝐿(𝑙), we have

̇ 𝑖 = −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑖𝑙𝜙𝑆 (𝑥𝑙) +𝑤𝑖𝑘𝜙𝑆 (𝑥𝑘) +
∑

𝑗≠𝑖,𝑙,𝑘
𝑤𝑖𝑗𝜙𝑆 (𝑥𝑗 )

≥ −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑝 +
∑

{𝑗∈𝐿(𝑖)}
𝑤𝑚𝜙𝑆 (𝑥𝑗 )

≥ −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑝 +
∑

{𝑗∈𝐷(𝑙)}
𝑤𝑚𝜙𝑆 (𝑥𝑗 )

o the inequality

̇ 𝑖 ≥ −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑝 > 0

ill eventually hold for 𝑥𝑖 < 𝑦1.
Putting it all together, the trajectory of 𝑥(0) enters 𝑅𝑙 in finite time

nd since all initial conditions in 𝑅𝑙 tend to 𝜉𝑙, we have that 𝑥(𝑡) → 𝜉𝑙 as
→ ∞. Fig. 5 schematically illustrates the existence of this connection.
. If 𝑎𝑘𝑙 = 𝑎𝑙𝑘 = 0, there is no excitable connection of amplitude 𝛿 from 𝜉𝑘
o 𝜉𝑙

Assume 𝑎𝑘𝑙 = 0. Let 𝑥(0) ∈ 𝐵𝛿(𝜉𝑘). We first note that 𝑥𝑖(0) ≤
1
4 for

all 𝑖 ∈ 𝑇 (𝑘) ∪ 𝐷(𝑘) and 𝑥𝑘(0) ≥
3
4 . There are three possibilities for the

trajectory with initial condition 𝑥(0).

(a) If all 𝑥𝑗 (0) < 𝑦2 for all 𝑗 ∈ 𝐿(𝑘), then 𝑥(0) ∈ 𝑊 𝑠(𝜉𝑘).
(b) If for some 𝑗1, 𝑥𝑗 (0) ≤ 𝑦2 for all 𝑗 ∈ 𝐿(𝑘)∖{𝑗1} and 𝑥𝑗1 (0) > 𝑦2,

we have by (8) that 𝑥 ∈ 𝑊 𝑠(𝜉𝑗1 ).
(c) Finally if 𝑥𝑖 > 𝑦2 for some set of indices 𝑖 ∈ 𝐼 ⊆ 𝐿(𝑘) where

|𝐼| > 1, then each 𝑥𝑖(𝑡) satisfy the ODE (8) and it can be shown
that the trajectory with initial condition 𝑥(0) will enter, in finite
time, an invariant set in the region where all indices in 𝐼 are
active i.e 𝜙𝑆 (𝑥𝑖) = 1 for all 𝑖 ∈ 𝐼 (see Appendix B for proof of
this).1

1 The four cell levels of (4) cannot be used to describe the dynamics with
ultiple active cells. Whether or not a transition will happen to a node of 𝛴
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Fig. 5. A schematic diagram showing the dynamics in the region containing 𝑅𝑘 (shaded light red) and 𝑅𝑙 (shaded light blue). Initial conditions starting in 𝑅𝑘 in the region where
𝑥𝑙 > 𝑦2 enters 𝑅𝑙 in finite time. The trajectories for some of these initial conditions enters the region where 𝑥𝑙 ≥

3
4

before leaving 𝑅𝑘. The thick red trajectory for the initial
condition 𝑥(0) = 𝜉𝑘 + 𝛿𝐞𝑙 is one such trajectories. Trajectories starting in 𝑅𝑙 asymptotes towards 𝜉𝑙 in forward time.
𝑥

𝑥

𝑥

In all cases, 𝑥(0) ∉ 𝑊 𝑠(𝜉𝑙). □

Remark 1. Since all of the equilibria involve in the realisation above
are hyperbolic for 𝛿 > 0, the realisation holds for an open sets of
parameters around (𝑤𝑝, 𝑤𝑚, 𝑤𝑠, 𝑤𝑡) ∈ R4. Furthermore, the proof can
easily be extended to the case with different excitability threshold
for each excitable connection by choosing 𝑤𝑖𝑗

𝑝 to depend on 𝛿𝑖𝑗th when
𝑎𝑖𝑗 = 1. Here we take 𝑤𝑚 = −𝑤𝑠 max𝑖,𝑗 (1 + 2𝑤𝑖𝑗

𝑝 ) so that

𝑤𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤𝑠 if 𝑖 = 𝑗,
𝑤𝑚 if 𝑎𝑖𝑗 = 1,
𝑤𝑝

𝑗𝑖 if 𝑎𝑗𝑖 = 1,
𝑤𝑡 if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0.

Remark. The choice of 𝜙𝑆 as the activation function in (1) makes the
proof above much easier. However, the construction described in the
proof of Theorem 3.1 can be extended to a large class of activation
functions. In particular, for 𝑤𝑠 ≥ 2, we prove in Appendix A that it is
possible to choose the constant 𝑤𝑝 so that 𝑤𝑠𝜙(𝑦) + 𝑤𝑝 has two fixed
points that can be made arbitrarily close to each other for a large class
of sigmoidal functions 𝜙.

3.1. Multiple active cells and almost complete realisations

A 𝛿 perturbation within 𝛴 may not always tend to an equilibrium in
𝛴. The question of almost complete realisation is concern with condi-
tions under which this occurs only for a small set of initial conditions
(in the sense of Lebesgue). As an example, when multiple directions
from the current active cell cross the threshold (i.e bigger than 𝑦2)
in the above realisation, there will be a transition to an equilibrium
outside the network attractor where all cells corresponding to these
directions are active. Consider the realisation of the adjacency matrix

𝐴 =
⎛

⎜

⎜

⎝

0 1 1
0 0 0
0 0 0

⎞

⎟

⎟

⎠

(11)

from this region will depends on interactions between the active cells in 𝐼 and
their neighbours in 𝐴.
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with the first vertex having two leading directions. The dynamics of the
system is governed by

̇ 1 = −𝑥1 +𝑤𝑠𝜙𝑆 (𝑥1) +𝑤𝑚𝜙𝑆 (𝑥2) +𝑤𝑚𝜙𝑆 (𝑥3)

̇ 1 = −𝑥2 +𝑤𝑠𝜙𝑆 (𝑥2) +𝑤𝑝𝜙𝑆 (𝑥1) +𝑤𝑡𝜙𝑆 (𝑥3)

̇ 1 = −𝑥3 +𝑤𝑠𝜙𝑆 (𝑥3) +𝑤𝑝𝜙𝑆 (𝑥1) +𝑤𝑡𝜙𝑆 (𝑥2)

Apart from the equilibria 𝜉1, 𝜉2 and 𝜉3 associated with the vertices of the
graph of 𝐴, there is an equilibrium 𝑠23 in the region where 𝜙𝑆 (𝑥1) = 0
and 𝜙𝑆 (𝑥2) = 𝜙𝑆 (𝑥3) = 1 (see Fig. 6). Both the 𝑥2 and 𝑥3 coordinates of
𝑠23 is 𝑤𝑠+𝑤𝑡. Thus if 𝑤𝑡+𝑤𝑠 = 𝑦2, then 𝑠23 merges with the equilibrium
at (𝑦2, 𝑦2) in a saddle–node bifurcation. Notices that for the same choice
of 𝑤𝑡, the stable equilibria 𝜉1, 𝜉2 and 𝜉3 still exist. Thus for 𝑤𝑡 ≤ 𝑦2−𝑤𝑠,
𝜉1 is almost complete.

Extending this method to an arbitrary adjacency matrix may require
choosing 𝑤𝑡 to be different for the sets of leading directions belonging
to different active directions and understanding the bifurcations for
these choices of 𝑤𝑡.

Remark. In general, there is a stable equilibrium in the region where
𝜙𝑆 (𝑥𝑖) = 𝜙𝑆 (𝑥𝑗 ) = 1 when 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0 even if 𝑖 and 𝑗 do not belong
to the same leading directions 𝐿(𝑘) of 𝑘. However, these equilibria will
not be visited for 𝛿 < 1

4 from 𝜉𝑘 since one of 𝑖 or 𝑗 is in 𝐷(𝑘) ∪ 𝑇 (𝑘).

Alternatively, a condition can be imposed on 𝑤𝑝 and 𝛿 so that
transitions leading to multiple active cells do not occur. Suppose for a
given 𝑤𝑝 ∈ (0, 𝛽), we know that 𝑦2 − 𝑦1 = 𝛿, then for all amplitudes 𝛿 ∈
(𝛿,

√

2𝛿) and for this fixed choice of 𝑤𝑝, the realisation of Theorem 3.1
is almost complete. We use the following observation.

Lemma 3.3. Let 0 < 𝑤𝑝 < 𝛽 be fixed so that 𝑦2 − 𝑦1 = 𝛿. Then for all
𝛿 ∈ (𝛿, 𝛿

√

2) and for any two distinct leading directions 𝑗1 and 𝑗2 of node
𝑘, we have that

𝐵𝛿(𝜉𝑘) ∩ {𝑥 ∶ 𝑥𝑗1 , 𝑥𝑗2 ≥ 𝑦2} = ∅. (12)

Proof. For the given 𝑤𝑝 and 𝛿 ∈ (𝛿, 𝛿
√

2), if 𝑥 ∈ 𝐵𝛿(𝜉𝑘) and 𝑥𝑗1 , 𝑥𝑗2 ≥ 𝑦2
for some distinct leading directions 𝑗1 and 𝑗2, then

‖𝜉𝑘 − 𝑥‖2 ≥ 2(𝑦2 − 𝑦1)2 ≥ 2𝛿2

which is a contradiction. □
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Fig. 6. A two dimensional projection of the phase portrait of the realisation of (11) in the region where 𝜙𝑆 (𝑥1) = 0. Equilibria are marked with black dots with 𝜉1, 𝜉2 and 𝜉3
enoting the nodes of 𝛴. The dashed straight lines are 𝑥1 = 𝑦2 and 𝑥2 = 𝑦2. The equilibrium 𝑠23 is in a region where both cell 2 and 3 are active. All perturbations from 𝜉𝑘 inside

the annular region between the red circle and the blue circle will either tend to 𝜉1 or one of 𝜉2 and 𝜉3. On the other hand, if 𝑤𝑡 +𝑤𝑠 = 𝑦2, then the equilibrium 𝑠23 will disappear
n a saddle–node bifurcation. In both cases, 𝜉 will be almost complete.
1
heorem 3.4. Let 𝐴 ∈ R𝑁×𝑁 be an admissible adjacency matrix. Let 𝑤𝑝

e as in Lemma 3.3 and 𝛿 ∈ (𝛿, 𝛿
√

2). With this choice of 𝑤𝑝, the realisation
of 𝐴 using Theorem 3.1 as an ENA at amplitude 𝛿 is almost complete.

roof. Let 𝑥 ∈ 𝐵𝛿(𝜉𝑘). We know that 𝜙𝑆 (𝑥𝑖) = 0 for all 𝑖 ∉ {𝑘} ∪ 𝐿(𝑘).
By Lemma 3.3, there are two cases to consider.

1. If for some 𝑗 ∈ 𝐿(𝑘), 𝑥𝑗 ≥ 𝑦2, then 𝑥𝑖 < 𝑦2 for all 𝑖 ∈ 𝐿(𝑘)∖{𝑗}.
Consequently 𝑥 ∈ 𝑊 𝑠(𝜉𝑗 ) except possibly if 𝑥𝑗 = 𝑦2.

2. On the other hand, if 𝑥𝑗 < 𝑦2 for all 𝑗 ∈ 𝐿(𝑘) then 𝑥 ∈
𝑊 𝑠(𝜉𝑘). □

4. Equivalent formulation of Theorem 3.1

Two dynamical systems are said to be smoothly equivalent if there
exist a smooth invertible transformation mapping the orbit of one to
the orbit of the other. Smooth equivalence preserve equilibria and their
stability. If 𝑊 is invertible, it can be shown using the transformation
𝑧 = 𝑊 𝑥 that the input-free dynamics of the CTRNN (1) is smoothly
equivalent to

̇ 𝑖 = −𝑧𝑖 + 𝜙

( 𝑁
∑

𝑗=1
𝑤𝑖𝑗𝑧𝑗

)

for 𝑖 = 1,… , 𝑁. (13)

Orbits of system (1) are mapped to the orbits of system (13) through
the invertible transformation 𝑧 = 𝑊 𝑥. Under some mild conditions on
𝑢(𝑡), this can be extended to the input-driven dynamics [34]. So if (1)
exhibit an ENA in its phase space, then (13) will also have a network
attractor in its phase space although the amplitude may be different.
We use the following definition of smooth equivalence from [33].

Definition 4.1. Let 𝐹 and 𝐺 be smooth functions from R𝑁 to R𝑁 . Two
systems

̇ = 𝐹 (𝑥),

̇ = 𝐺(𝑦)

are said to be smoothly equivalent if there exist a diffeomorphism
ℎ ∶ R𝑁 → R𝑁 such that 𝐹 (𝑥) = [𝐷ℎ(𝑥)]−1𝐺(ℎ(𝑥)) where is 𝐷ℎ(𝑥) is the
Jacobian matrix of ℎ(𝑥) evaluated at 𝑥.
8 
Remark. In terms of solutions between the two systems, two systems
are smooth equivalent if the ℎ is a diffeomorphism and the solutions
are related by 𝑦(𝑡) = ℎ(𝑥(𝑡)).

Remark. By the inverse function theorem, a sufficient condition for ℎ
to be a diffeomorphism is that ℎ is smooth and the determinant of the
Jacobian 𝐽ℎ(𝑥) be non-vanishing at all points 𝑥 ∈ R𝑁 . For the CTRNN
(1) with ℎ = 𝑊 𝑥, this is equivalent to 𝑊 being invertible.

Lemma 4.1. Let 𝛿 > 0 and 𝐴 ∈ R𝑁×𝑁 be an admissible adjacency matrix.
Let 𝑊 be chosen so that (1) has an ENA of amplitude 𝛿 in its phase space.
Then there is an invertible choice 𝑊̃ ∈ R𝑁×𝑁 of 𝑊 such that the dynamics
of (1) realises 𝐴 as an ENA at amplitude 𝛿.

Proof. As noted in Remark 1, the realisation of 𝐴 using Theorem 3.1
holds for a sufficiently small open ball around (𝑤𝑝, 𝑤𝑚, 𝑤𝑠, 𝑤𝑡) in R4.
The results follows from the fact that for any singular matrix 𝑊 , the
matrix 𝑊̃ = 𝑊 −𝜖I𝑁 is non-singular for all 𝜖 > 0 sufficiently small [35,
p. 54]. □

Another way of viewing Lemma 4.1 is that we can make an arbitrary
small perturbation to the choice of 𝑤𝑠 to make 𝑊 invertible without
changing the arguments of the proof of Theorem 3.1. This leads to the
following corollary which is an alternative formulation of Theorem 3.1.

Corollary 4.2. Let 𝛿 > 0 be sufficiently small and 𝐴 ∈ R𝑁×𝑁 be
admissible. Suppose 𝑊 is chosen using (3) with Lemma 4.1 applied so that
it is invertible. Then the dynamics of

𝑧̇𝑖 = −𝑧𝑖 + 𝜙𝑆

( 𝑁
∑

𝑗=1
𝑤𝑖𝑗𝑧𝑗

)

for 𝑖 = 1,… , 𝑁

realises 𝐴 as an Excitable Network Attractor at amplitude ℎ(𝛿) > 0 where
ℎ depends smoothly on 𝛿 and ℎ(0) = 0.

Proof. We can write (1) in matrix form,

𝐱̇ = −𝐱 + 𝜙𝑆 (𝑊 𝐱).

Using the transformation 𝐳 = 𝑊 𝐱, we have

𝐳̇ = −𝐳 +𝑊𝜙 (𝐳).
𝑆
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Fig. 7. A. A graph showing the function 𝑤𝑝 = 𝛽 − 𝛿2

4
for 𝑤𝑠 = 1, 10, 100 (dashed lines) and the corresponding excitability threshold for the each value of 𝑤𝑝 (solid lines). B. For any

fixed 𝛿, the shaded region shows alternative choices of 𝑤𝑝 where a choice of this 𝑤𝑝 between two connected vertex in a graph will result in excitable connections of amplitude
𝛿. The dashed line where 𝑤𝑝 = 𝛽 corresponds to the choice of 𝑤𝑝 with excitability threshold 0. Values of 𝑤𝑝 above this will result in spontaneous transitions. C. A bifurcation
diagram varying 𝑤𝑝. The solid black curve showing the stable equilibrium 𝜉𝑘 and dashed curve showing the saddle 𝜂𝑘𝑙 . The excitable connection is destroyed in a saddle–node
bifurcation.
Since 𝑊 is invertible, the system (13) is smoothly equivalent to the
system (1). Thus associated with any excitable connection 𝑎𝑘𝑙 = 1,
the equilibria 𝜉𝑘, 𝜉𝑙 and 𝜂𝑘𝑙 for the system (1) corresponds equilibria
to 𝜉𝑘 = 𝑊 𝜉𝑘, 𝜉𝑙 = 𝑊 𝜉𝑙 and 𝜂̃𝑘𝑙 = 𝑊 𝜂𝑘𝑙 respectively in the system
(13) associated with the same excitable connection. Using (6), the
excitability threshold 𝛿th associated with the connection 𝑎𝑘𝑙 = 1 in
system (13) satisfies

𝛿2th ≤ ‖𝜉𝑘 − 𝜂̃𝑘𝑙‖
2
2,

≤ ‖𝑊 (𝜂𝑘𝑙 − 𝜉𝑘)‖22,

≤ ‖𝑊 ‖

2
2‖𝜂𝑘𝑙 − 𝜉𝑘‖

2
2,

≤ 𝐶‖𝑊 ‖

2
∞‖𝜂𝑘𝑙 − 𝜉𝑘‖

2
2 for some 𝐶 > 0,

= 𝐶‖𝑊 ‖

2
∞

(

(𝑦2 − 𝑌𝐿)2 +
𝑤2

𝑚

𝑤2
𝑠
(𝑦2 − 𝑌𝐿)2

)

,

≤ 𝐶‖𝑊 ‖

2
∞
(

𝛿2 + 𝛿2(1 + 2𝑤𝑝)2
)

,

= 𝐶‖𝑊 ‖

2
∞𝛿2

(

1 + (1 + 2𝑤𝑝)2
)

where ‖𝑊 ‖∞ is the maximum absolute row sum norm of W. For 𝛿 > 0,
𝑊 is invertible and so ‖𝑊 ‖2 > 0. Furthermore,

‖𝑊 ‖∞ ≤ |𝑤𝑚|𝑁 = −𝑤𝑚𝑁

Now, define ℎ(𝛿) = −𝐶𝛿𝑁𝑤𝑚

√

(

1 + (1 + 2𝑤𝑝)2
)

. Since 𝑤𝑝 and 𝑤𝑚
depends continuously on 𝛿, ℎ is a continuous function of 𝛿 with ℎ(0) = 0.
Furthermore, as ℎ′(0) ≠ 0, their is neighbourhood of the origin where
ℎ has a continuous inverse. □

Remark. Corollary 4.2 may not hold at 𝛿 = 0 as 𝑊 may be singular.
In this case, adjustments of Lemma 4.1 will not be possible since any
𝜖 perturbation to 𝑤𝑠 will either annihilate the fixed point 𝛼 at 𝛿 = 0 or
𝑦2 − 𝑦1 > 0.

5. Bifurcations creating ENAs

One of the main contribution of this paper is the way in which
𝑤𝑝 is chosen for the fixed activation function 𝜙𝑆 . For 𝑤𝑝 = 𝛽 − 𝛿2

4 ,
it can be shown that 𝑦2 − 𝑦1 < 𝛿 (see Appendix A) and thus Excitable
Network Attractors of amplitude 𝛿 exists for this choice of 𝑤𝑝. However,
there are infinitely many such choices for 𝑤𝑝. Fig. 7 shows the exact
nature of the relationship between 𝑤𝑝 and 𝛿 for 𝑤𝑠 ∈ {1, 10, 100}
and a bifurcation diagram for 𝑤𝑝 when 𝑤𝑠 = 1. In phase space, this
bifurcations are responsible for destroying excitable connections and
sometimes creating new connections.

Consider for example the dynamics of the leading cell 𝑙 of 𝑘 in the
region 𝑅𝑘. From Eq. (8), 𝑥𝑙 satisfies

̇ = −𝑥 +𝑤 𝜙 (𝑥 ) +𝑤 .
𝑙 𝑙 𝑠 𝑆 𝑙 𝑝

9 
Fig. 8. A two cycle (B) and 𝛥-clique (D) realised in a four dimensional system. The
two cycle is realised by severing the connections from vertex 2 to vertex 3 and from
vertex 4 to vertex 1 in the four cycle A and setting the corresponding 𝑤𝑝 large. For
the 𝛥-clique, the graph C is used and the connection from vertex 4 to vertex 3 is
severed. (E) Shows noise-driven trajectories of the two cycle in (B) using Eq. (13) with
𝑠noise = 0.07, 𝑤𝑝 = 0.3 and 𝑤𝑠 = 2 initialised close to node 1 of the network. Notice that
node 2 and 4 are only non-zero during transitions from node 1 to 3 and 3 to 1.

Taking the Taylor’s expansion around 𝑥 = 𝛼 (see Appendix A for the
definitions of 𝛼 and 𝛽), we have that

𝑥̇𝑙 = −𝑥𝑙 +𝑤𝑠𝜙𝑆 (𝛼) +𝑤𝑠(𝑥𝑙 − 𝛼)𝜙′
𝑆 (𝛼)

+𝑤𝑠
(𝑥𝑙 − 𝛼)2

2
𝜙′′
𝑆 (𝛼) +𝑤𝑝 +⋯

= −𝑥𝑙 +𝑤𝑝 − 𝛽 +𝑤𝑠𝜙𝑆 (𝛼) + 𝛽 +𝑤𝑠(𝑥 − 𝛼)𝜙′
𝑆 (𝛼)

+
𝑤𝑠(𝑥𝑙 − 𝛼)2

2
𝜙′′
𝑆 (𝛼) +⋯

= 𝑤𝑝 − 𝛽 − 𝑥𝑙 + 𝛼 +𝑤𝑠(𝑥𝑙 − 𝛼)𝜙′
𝑆 (𝛼)

= 𝑤𝑝 − 𝛽 + (𝑥𝑙 − 𝛼)(−1 +𝑤𝑠𝜙
′
𝑆 (𝛼)) +

𝑤𝑠(𝑥𝑙 − 𝛼)2

2
𝜙′′
𝑆 (𝛼) +⋯

= 𝑤𝑝 − 𝛽 +
𝑤𝑠(𝑥𝑙 − 𝛼)2

2
𝜙′′
𝑆 (𝛼) +⋯
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Fig. 9. Periodic orbits from two three cycles. In A, the cycle containing the node 1, 2 and 3 share 𝑤𝑝1 while the cycle containing the nodes 4, 5 and 6 share 𝑤𝑝2. The edges along
which transitions happens from the first cycle to the second have excitability parameters 𝑤𝑝4 and 𝑤𝑝3. Setting 𝑤𝑝1 = 𝑤𝑝2 = 0.3 and 𝑤𝑝3 = 𝑤𝑝4 = 0.2, we observed periodic orbits C.
and D. close to the first and the second cycle respectively. In the noisy case with 𝑠noise = 0.07, we observe a sequence of transitions from the first cycle to the second (at 𝑡 = 40)
and back (at 𝑡 = 130).
If 𝜙′′
𝑆 (𝛼) ≠ 0, the right hand side is the normal form of a saddle node

bifurcation. It follows there is a saddle–node bifurcation at 𝑤𝑝 = 𝛽 with
two equilibria when 𝑤𝑝 < 𝛽 which merge at 𝑤𝑝 = 𝛽 and disappear when
𝑤𝑝 > 𝛽. If 𝑤𝑝 is shared between a set of connections, this bifurcation
occurs for all leading directions in this set. If the leading directions are
connected in a cycle, these global bifurcations are in fact a multiple
saddle–node on an invariant circle (SNIC) bifurcation.

5.1. Generalisation to arbitrary directed graphs

If for 𝑙 ∈ 𝐿(𝑘), we set 𝑤𝑙𝑗
𝑝 much larger than 𝛽, no equilibrium exists

in the region where 𝜉𝑘 was located and all excitable transitions to 𝜉𝑘
will tend to 𝜉𝑙. Hence an excitable connection between node 𝑘 and
node 𝑙 of 𝛴 becomes a connections from the trailing directions of 𝑘 and
node 𝑙. This approach can be used to realise a two cycle Fig. 8B using
the adjacency matrix for the four cycle Fig. 8A by setting 𝑤32

𝑝 and 𝑤14
𝑝

much larger than 𝛽. Similarly, we can get the 𝛥-clique Fig. 8D in a four
dimensional network attractor from the graph Fig. 8C using the same
trick. Replacing two-cycles and 𝛥-cliques this way, we can realise any
adjacency matrix 𝐴 ∈ R𝑁×𝑁 with no 1 cycle as an Excitable Network
Attractor in no more than 𝑁 + 2

(𝑁
2

)

= 𝑁2 dimensions.

Corollary 5.1. Given any 1-cycle free adjacency matrix 𝐴 ∈ R𝑁×𝑁

and 0 < 𝛿 ≪ 1, there exist an admissible adjacency matrix 𝐴′ ∈ R𝑀×𝑀

where𝑀 ≤ 𝑁2 such that 𝐴 can be realised as an ENA at amplitude 𝛿 using
Theorem 3.1 with the adjacency matrix 𝐴′.

The ENA in Corollary 5.1 can be thought of as identifying vertices
𝑘 of the adjacency matrix 𝐴 with equilibrium 𝑘2 in 𝑁2-dimensional
system. Furthermore, some vertices in 𝐴′ may not have corresponding
equilibria in the ENA. These are only non-zero and sometimes active
during transitions (see Fig. 8E). This realisation is similar to the coupled
two-cell realisation described in [27] where 𝑝-cells classify which equi-
libria we are currently close to and 𝑦-cells become active only during

transitions.

10 
5.2. Network attractors of periodic orbits

We can use the simultaneous SNIC bifurcations that emerge when
the vertices of 𝐴 are in a cycle to realise excitable networks of periodic
orbits. Consider the graph in Fig. 9A involving two connected three
cycles. To avoid numerical instabilities in computing 𝜙𝑆 , we used 𝜙𝜀
with 𝜀 = 0.05. The excitability parameter 𝑤𝑝1 is shared between the
nodes in the cycle on the left and 𝑤𝑝2 is shared between the nodes
of the cycle of the right. 𝑤𝑝3 and 𝑤𝑝4 controls transitions between the
two cycles and are set to 𝑤𝑝3 = 𝑤𝑝4 = 0.2. Setting 𝑤𝑝1 = 𝑤𝑝2 = 0.3
turns each of the cycles into periodic orbits. Starting close to the first
cycle in the noise-free, we see the sequence of spontaneous transitions
1 → 2 → 3 → 1 (see Fig. 9B). Similarly, we observe the sequence 4 →
5 → 6 → 4 in Fig. 9D. In Fig. 9C, the system is driven by independent
Wiener noise with noise amplitude 𝑠noise = 0.07. In this case, we observe
1 → 2 → 3 → 1 sequence of transitions and then 4 → 5 → 6 → 4 around
𝑡 = 130 in Fig. 9C showing transitions between the periodic orbit in the
region where 𝑥1, 𝑥2 and 𝑥3 are active to the periodic orbit in the region
where 𝑥4, 𝑥5 and 𝑥6 are active. From Section 5.1, this can be extended
to any sequence of transitions involving periodic orbits and equilibria.

6. Discussion and future directions

An important generalisation of Theorem 3.1 would be to find a
method to realise a directed graph 𝐴 so that each vertex of 𝐴 is asso-
ciated with a node 𝜉𝑘 ∈ 𝛴 with multiple active cells. This will require
a detailed bifurcation analysis to understand the role of 𝑤𝑝 and 𝑤𝑡 in
the region with multiple active cells. In particular, if 𝑤𝑡 is sufficiently
large, it is possible to have realisation where 𝜉𝑘 is in the region where
cell 𝑘 and all or some of its leading cells are active. It may even be
possible to realise 𝐴 in a way that 𝜉𝑘 can selectively activate some of its
leading directions if they satisfy some pre-specified condition. It would
also be interesting to extend the result of Theorem 3.1 to the class of
activation functions in Appendix A. It seems, at least for the case of 𝜙𝜀,
that system (1) with the activation function 𝜙𝑆 and 𝜙𝜀 are smoothly
equivalent except in a small region containing 𝐵𝜖(𝑦1) ∪𝐵𝜖(𝑦2) ∈ R𝑁 for

𝜖 small. This is not trivial to prove as one needs to show that there is a
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homeomorphism between the parameters in both systems. For example,
for any 𝛿 > 0 you may have to choose 𝑤𝑝 in both systems so that
𝑦2 − 𝑦1 = 𝛿 for both activation functions.

In applications, ENA have been shown to be useful in explaining
ow trained RNNs perform sequential time-dependent finite state com-
utation [14,15,24]. A finite state computer is an idealised model of
omputation where a system can be classified as belonging to one or
ore discrete sets of states at any given time. Classification problems

n machine learning are essentially of this type. In such tasks, learning
orresponds to choosing the require set of memory states and rules on
ow to switch from one state to another under the action of inputs. This
akes into account the causal relationship between different memory
tates. As an example, consider part of speech tagging where a model
eeds to learn the part of speech of a word in a sentence using
reviously seen words in the sentence. Here, the model may learned
hat only certain parts of speech follows a noun.

Errors in RNNs with ENA in their phase space can be associated
ith transitions outside the set of equilibria relevant to the task —

purious transitions. If the ENA is an almost complete realisation at the
argest excitability threshold, then such transitions do not occur and
rrors maybe due to noisy inputs that occasionally push the dynamics
utside the set of ‘‘memory’’ states needed for the task. This may occur
or example if other stable equilibria exists and the system is allowed to
un for a very long time under small noise conditions [36]. On the other
and, if there are spurious equilibria with unusually small excitability
hreshold and ‘‘large’’ basin of attraction, structural errors may emerge
n the prediction of the associated RNN. For example, it is observed
hat some errors in prediction in trained Echo State Networks are of
his type [14,15].

A possible future direction of this research is to find ways to train
uch models to realise the ENA associated with a trained RNN. This will
e computationally cheaper compared to for example the fixed point
inding technique explained in [14,15]. Our experiments have shown
hat this is possible at least in the case of two-state finite state compu-
ations problems. For example it is possible to train the realisation of a
wo cycle to learn transitions in an Echo State Network trained to solve
1-bit flip-flop task. A 1-bit flip-flop is a simple benchmark task for

lassification with discrete inputs and discrete outputs [14]. In a 1-bit
lip-flop task, the input is mostly zero but at random times, it becomes
ither a plus one or minus one. However, it may not be appropriate
o impose a particular graph structure on the ESN as other attractors
aybe accessible from the required number of attractors needed to

olve the task. Hence such a training process may involve allowing for
to be trainable possibly through genetic programming.
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Appendix A. Properties of sigmoidal functions

Definition A.1. A smooth function 𝜙 ∶ R → R is said to be sigmoidal
if

1. 𝜙(𝑥) is increasing,
2. lim𝑥→−∞ 𝜙(𝑥) = 0 and lim𝑥→∞ 𝜙(𝑥) = 1.

emma A.1. Let 𝜙 ∶ R → R be a sigmoidal function satisfying

1. 𝜙′(0.5) ≥ 1 and 𝜙′(0) < 1,
2. 𝜙′′(𝑥) > 0 for 0 < 𝑥 < 0.5.

hen for 0 < 𝑥 ≤ 0.5, 𝜙′(𝑥) = 1 has a unique solution.

roof. Since 𝜙′(𝑥) is increasing for 𝑥 ≤ 0.5, the result follows from the
act that 𝜙′(0) < 1 and 𝜙′(0.5) ≥ 1. □

orollary A.2. Let 𝑤𝑠 > 1. Then 𝑤𝑠𝜙′(𝑥) = 1 has a unique solution for
< 𝑥 ≤ 0.5.

The remainder of Appendix A, we assume that 𝜙 is a sigmoidal
unction with 𝜙′(0.5) ≥ 1 and 𝜙′(0) < 1.

emma A.3. Suppose 𝑤𝑠 > 1. Let 𝛼 be the unique point in (0, 0.5] such
hat 𝑤𝑠𝜙′(𝛼) = 1. Define 𝛽 = 𝛼−𝑤𝑠𝜙(𝛼). The function 𝑔𝛽 (𝑦) = 𝑤𝑠𝜙(𝑦)+𝛽−𝑦
atisfies 𝑔𝛽 (𝑦) ≥ 0 for 𝑦 ≤ 0.5. Furthermore 𝑔𝛽 attains its minimum at 𝛼.

roof. The results follows from the fact that 𝑔′𝛽 (𝑦) < 0 for 𝑦 < 𝛼,
′
𝛽 (𝑦) > 0 for 𝛼 < 𝑦 ≤ 0.5 and 𝑔(𝛼) = 0. □

emma A.4. Let 0 < 𝛿 ≪ 1 and 𝑤𝑠 ≥ 2. Suppose 𝜙 satisfies 𝜙′′(𝛼) ≥ 1.
et 𝑤𝑝 = 𝛽 − 𝛿2

4 . The equation 𝑔(𝑦) = 𝑤𝑠𝜙(𝑦) +𝑤𝑝 − 𝑦 for 0 < 𝑦 ≤ 0.5 has
wo roots less than 𝛿 apart.

Proof. Consider 𝑔 evaluated at 𝑟1 = 𝛼 + 𝛿
2 and 𝑟2 = 𝛼 − 𝛿

2 . Here

𝑔(𝑟1,2) = 𝑤𝑠𝜙(𝑟1,2) + 𝛽 − 𝛿2

4
− 𝑟1,2 > 0

if 𝑔(𝑟1) > 0. Using Taylor expansion of 𝑔 near 𝛼, we have

𝑔(𝑟1) = 𝑤𝑠

(

𝜙(𝛼) + 𝜙′(𝛼) 𝛿
2
+ 𝜙′′(𝛼) 𝛿

2

8
+ 𝑂(𝛿3)

)

+ 𝛽 − 𝛿2

4
− 𝛼 − 𝛿

2

=
(

𝑤𝑠𝜙′(𝛼)
2

− 1
2

)

𝛿 +
(

𝑤𝑠𝜙′′(𝛼)
8

− 1
4

)

𝛿2 + 𝑂(𝛿3)

=
(

𝑤𝑠𝜙′′(𝛼)
8

− 1
4

)

𝛿2 + 𝑂(𝛿3)

> 0

f 𝛿 is sufficiently small. Since 𝑔(𝛼) < 0 and 𝑔(𝑟1,2) > 0, the statement
ollows. □

ppendix B. Invariant sets with multiple active cells

roposition B.1. Let 𝛴 be an ENA at amplitude 𝛿 > 0. Suppose 𝑥 ∈ 𝐵𝛿(𝜉𝑘)
ith 𝑥𝑖 ≥ 𝑦2 for 𝑖 ∈ 𝐼 ⊆ 𝐿(𝑘). Then the trajectory with enters, in finite time,
n invariant set where 𝜙 (𝑥 ) = 1 for all 𝑖 ∈ 𝐼 .
𝑆 𝑖
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𝑥

𝑥
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Proof. For each 𝑖 ∈ 𝐼 , 𝑥𝑖 satisfies the ODE

̇ 𝑖 = −𝑥𝑖 +𝑤𝑠𝜙𝑆 (𝑥𝑖) +𝑤𝑝

in 𝑅𝑘. For cells in (𝑘, 𝑙), we have

̇ 𝑖 ≤ −𝑥𝑖 + [𝜉𝑘]𝑖 +
∑

𝑗∈𝐼
𝑤𝑖𝑗 (𝜙𝑆 (𝑥𝑗 ) − 𝜙𝑆 (𝑦1)).

Hence 𝜙𝑆 (𝑥𝑖) = 0 in 𝑅𝑘 for 𝑖 ∈ (𝑘, 𝐼) before 𝑥𝑗 = 3
4 for all 𝑗 ∈ 𝐼 .

So 𝑥 enters the region where 𝑥𝑖 ≥ 3
4 for all 𝑖 ∈ 𝐼 before leaving 𝑅𝑘.

Following the remainder of the proof of the existence of an excitable
connection in Theorem 3.1, 𝑥(𝑡) will enter an invariant region where
all cells in 𝐼 are active. □

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.physd.2024.134358.
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