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Abstract

Natural transformation is the ability of a bacterial cell to take up extracellular DNA which is subsequently available for recom-
bination into the chromosome (or maintenance as an extrachromosomal element). Like other mechanisms of horizontal gene 
transfer, natural transformation is a significant driver for the dissemination of antimicrobial resistance. Recent studies have 
shown that many pharmaceutical compounds such as antidepressants and anti-inflammatory drugs can upregulate trans-
formation frequency in the model species Acinetobacter baylyi. Chemotherapeutic compounds have been shown to increase 
the abundance of antimicrobial resistance genes and increase colonization rates of potentially pathogenic bacteria in patient 
gastrointestinal tracts, indicating an increased risk of infection and providing a pool of pathogenicity or resistance genes for 
transformable commensal bacteria. We here test for the effect of six cancer chemotherapeutic compounds on A. baylyi natural 
transformation frequency, finding two compounds, docetaxel and daunorubicin, to significantly decrease transformation fre-
quency, and daunorubicin to also decrease growth rate significantly. Enhancing our understanding of the effect of chemothera-
peutic compounds on the frequency of natural transformation could aid in preventing the horizontal spread of antimicrobial 
resistance genes.

DATA SUMMARY
Supporting data and method of analysis with Supplementary Material for Effect of Chemotherapeutic Agents on Natural Trans-
formation Frequency in Acinetobacter baylyi are deposited at 10.6084/m9.figshare.24468091 [1].

INTRODUCTION
Antimicrobial resistance (AMR) is a global threat to modern medicine and is accelerated greatly by rapid dissemination of 
antimicrobial resistance genes via horizontal gene transfer (HGT) [2–6]. The increased prevalence of AMR has severe conse-
quences for modern medicine; for instance, AMR infections were linked to an estimated 1.27 million deaths worldwide in 2019 
[7]. Natural transformation, the process whereby prokaryotes take up extracellular DNA from the environment [8–10], is an 
underrecognized driver of AMR dissemination worldwide despite conferring the ability to acquire cell-free chromosomal DNA, 
plasmids and transposons [11]. While only approximately 80–90 species are known to be naturally transformable [10], the WHO’s 
list of priority multidrug-resistant pathogens is composed mostly of transformable species, indicating that this mechanism could 
be important in the acquisition of resistance [12].

Transformation frequency in bacteria can be up- or down-regulated in response to a range of stimuli [10, 13]. A wide variety of 
anthropogenic pollutants including pharmaceutical products have been demonstrated to increase transformation frequencies, 
particularly in Acinetobacter baylyi [10, 14–18]. For example, pharmaceutical compounds such as anti-inflammatory drugs [14] 
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and antidepressants [19] can increase natural transformation frequency two- to threefold. However, no data are available on the 
possible effect of chemotherapy compounds on natural transformation. Chemotherapy compounds are cytotoxic agents which 
target a range of human cell functions which are often upregulated in – or unique to – malignant cells to induce cell death [20]. 
The use of chemotherapy compounds to treat malignancies in humans may lead to increased levels of AMR in gut microbiota 
through increasing rates of de novo mutation, HGT or by acting as a selective pressure [21–23]. Consequently, this may increase 
the risk of contracting resistant bloodstream infections, a cause of death in approximately 1 in 10 cancer patients [24, 25]. A 
proposed mechanism for AMR acquisition in response to exposure to chemotherapy compounds is the induction of the SOS 
response pathway via genotoxic or cytotoxic damage which consequently leads to increased bacterial mutation rates [22, 26, 27]. 
Although the SOS stress response pathway is atypical in A. baylyi [28, 29], it is considered to be an inducer of competence for 
natural transformation [30], as it is in other species [31–33]. Therefore, exposure to chemotherapeutic compounds could be 
hypothesized to increase transformation frequencies.

Here, we use the model organism A. baylyi to test the effects of chemotherapeutic drugs on natural transformation. A. baylyi is 
a ubiquitous environmental bacterium capable of opportunistic infection [34, 35], and is constitutively naturally transformable 
[13, 36]. Acinetobacter species, particularly A. baumannii, can colonize human gastrointestinal systems [37] and can cause 
severe and even fatal infections in patients undergoing cancer chemotherapy [38, 39]. We exposed A. baylyi to six chemotherapy 
compounds currently used to treat malignancies in humans to test for dose-dependent changes in transformation frequency and 
growth rate in A. baylyi. Each drug belongs to a different class with different mechanisms of action: cytarabine, a cytosine analogue 
[40]; daunorubicin, a DNA topoisomerase II inhibitor [41]; docetaxel, a disruptor of microtubule function [42]; exemestane, an 
aromatase inhibitor [43]; imatinib, a tyrosine kinase inhibitor [44]; and methotrexate, a folate synthesis inhibitor [45] (Table 1). 
As the varied pharmacokinetic properties of these six drugs can indicate differences in diffusion between blood plasma and tissues 
[46], a range of concentrations spanning previously measured blood plasma concentrations were used.

METHODS
Chemotherapeutic drugs
Cytarabine (Abcam), daunorubicin (Cayman Chemical Company), docetaxel (Cambridge Bioscience), exemestane (Merck), 
imatinib (Cambridge Bioscience) and methotrexate (Cayman Chemical Company) were stored at −20 °C in single-use aliquots 
dissolved in DMSO (Fisher) at 100× the concentration used in each treatment. Aliquots of drug stocks were added as 1 % of the 
final volume of culture to ensure an equal final concentration of DMSO across all treatments. DMSO at 1 % (v/v) had no effect 
on transformation frequency or growth rate in A. baylyi.

Transformation assay
Genomic DNA as a substrate for natural transformation was isolated from an A. baylyi construct labelled with red fluores-
cence and spectinomycin resistance [47]. An isogenic transformable green fluorescent apraR wild-type A. baylyi ADP1 
was grown overnight in LB broth (Formedium) and diluted fivefold into 2 ml of LB broth in a universal 30 ml container  
(see Winter et al. [47] for strain construction details). Cultures were amended with chemotherapeutic drugs on a log10 dilution 
range. In the no-drug control, DMSO was added to be consistent with the 1 % DMSO concentration in drug treatment groups. 
Spectinomycin resistance-conferring DNA was obtained by lysis following the Qiagen Genomic DNA Handbook (April 2012) 
protocol. DNA from the eluate was precipitated by adding two volumes of ice-cold isopropanol and centrifuged at 26 000 g for 
15 min to pellet the DNA. DNA was dissolved in TE buffer to a final concentration of 342.4 ng µl−1 (Nanodrop 2000, Thermo 
Scientific) and frozen at −20 °C in single-use aliquots for addition to each experiment at a final concentration of 100 ng ml−1 for 
each sample. Samples were incubated at 30 °C and 180 r.p.m. for 5 h. Recipients and transformants were enumerated before and 
after incubation by plating on LB agar amended with 240 µg ml−1 apramycin (Duchefa), and LB agar amended with both 240 µg ml−1 
apramycin and 360 µg ml−1 spectinomycin (Melford), respectively. Concentrations of antibiotics far exceeding the MICs required to 

Table 1. List of the drugs used in this study, their mechanisms of action and concentrations reported for clinical samples

Drug Mechanism of action Clinically relevant concn

Cytarabine Cytosine analogue Blood plasma – 17.8 µg ml−1 [58]

Daunorubicin Topoisomerase II inhibitor Concentration inside leukaemic cells – 10.6 µg ml−1 [53]

Docetaxel Disrupts microtubule function Blood plasma – 2.42 ng ml−1 [51]

Exemestane Aromatase inhibitor (oestrogen synthesis inhibitor) Blood plasma – 4.1 ng ml−1 [59]

Imatinib Tyrosine kinase inhibitor Blood plasma – 1 µg ml−1 [60]

Methotrexate Folate synthesis inhibitor Blood plasma – 13.63 µg ml−1 [61]
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inhibit A. baylyi growth were used to reduce the chance of false positives caused by contamination. All treatments were sampled at 
a minimum of sixfold biological replication. To determine the highest concentration of DMSO which had no observable effect on 
cell viability and growth, a transformation assay was conducted as above, but without chemotherapy compounds (five-fold dilution 
of A. baylyi into LB broth for 3 h at 30°C, 180 r.p.m., with 100 ng ml−1 DNA and 10, 1, 0.01, 0.001 or 0 % DMSO; data not shown).

Statistical analyses
The effects of chemotherapy compound presence and concentration on A. baylyi transformation frequencies and growth rate were 
determined using Kruskal–Wallis and paired Wilcoxon testing, respectively. For analyses measuring growth rate, the Malthusian 
parameter was calculated and used as a response variable [48]. Fold changes in transformation frequency were calculated using 
the means of the respective compared treatment groups. In all analyses, P values of <0.05 were considered significant. False 
discovery rate adjustment for multiple testing was used in all instances where multiple tests were conducted in the same analysis.

RESULTS
Contrasting effects of different chemotherapy drugs on natural transformation frequency in A. baylyi
We tested the effect of six chemotherapeutic compounds on natural transformation and growth rate at varied concentrations 
pertaining to those found in patient blood plasma. Cytarabine was not observed to have a significant effect on transformation 
frequency (Kruskal–Wallis test, H=2.22, df=3, P=0.528; Fig. 1a) or growth rate (Kruskal–Wallis test, H=0.878, df=3, P=0.831; 
Fig. 1b). Daunorubicin resulted in significantly decreased transformation frequency (Kruskal–Wallis test, H=28.4, df=3, P<0.0001; 
Fig. 1c) and growth rate (Kruskal–Wallis test, H=17.3, df=3, P<0.001; Fig. 1d). Compared to the control group, transformation 
frequency of A. baylyi in 5.63 µg ml−1 daunorubicin significantly reduced by over 16-fold [Wilcoxon pairwise comparison, H=194, 
P<0.001; Fig. 1c and Table S1 (available in the online version of this article)]. Growth rate of A. baylyi in the presence of 56.3 µg ml−1 
daunorubicin was significantly reduced compared to the control group (Wilcoxon pairwise comparison, W=200, P<0.001; Fig. 1d 
and Table S2), and is the only treatment group in this study where a net loss of cells was observed. Growth rates of A. baylyi 
in 0.563 and 5.63 µg ml−1 daunorubicin were not significantly different to the control group (Wilcoxon pairwise comparisons, 
P>0.05; Fig. 1d and Table S2). Transformation frequency of A. baylyi in 56.3 µg ml−1 daunorubicin was below the detectable limit 
(10−7) and significantly lower than all other concentrations and the no-drug control (Wilcoxon pairwise comparisons, P<0.05; 
Fig. 1c and Table S1). Docetaxel significantly decreased the transformation frequency over sevenfold at 80.7 µg ml−1 (Wilcoxon 
pairwise comparison, W=181, P<0.01; Fig. 1e and Table S3), but did not affect the growth rate (Kruskal–Wallis test, H=2.47, 
P=0.481, df=3; Fig. 1f). Exemestane did not have a significant effect on transformation frequency (Kruskal–Wallis test, Η=2.35, 
P=0.504, df=3; Fig. 1g) or growth rate (Kruskal–Wallis test, Η=2.56, P=0.465, df=3; Fig. 1h). Imatinib had no significant effect on 
transformation frequency (Η=3.51, P=0.319, df=3; Fig. 1i) or growth rate (Kruskal–Wallis test, Η=1.29, P=0.732, df=3; Fig. 1j). 
Methotrexate had no significant effect on transformation frequency (Kruskal–Wallis test, Η=3.71, P=0.294, df=3; Fig. 1k) or 
growth rate (Kruskal–Wallis test, Η=0.101, P=0.992, df=3; Fig. 1l).

DISCUSSION
In this study, six chemotherapeutic drugs with diverse mechanisms of action were tested for their effect on natural transformation 
and growth rate in A. baylyi. Four compounds, cytarabine, exemestane, imatinib and methotrexate, demonstrated no observable 
effect on natural transformation or growth at clinically relevant concentrations, while two compounds, docetaxel and daunoru-
bicin, caused a dose-dependent decrease in transformation frequency, with daunorubicin significantly decreasing growth rate.

Docetaxel acts on eukaryotic cells by causing disruption of microtubule function leading to reduced cell proliferation [42]. If 
cell proliferation in A. baylyi was arrested by docetaxel, we expected to see a reduction in competence as competence is linked to 
growth phase in this species [36, 49, 50]. Docetaxel negatively affected transformation frequency, but not growth rate, suggesting 
that its mechanism of action primarily affects transformation machinery and is not an indirect effect of reduced growth rate. 
Clinically relevant blood concentrations of docetaxel are around 2.42 ng ml−1 [51] and are therefore lower than those used in this 
study. Exposure to daunorubicin could in theory lead to altered rates of gyrA and gyrB transcription which are also upregulated in 
the SOS response in A. baylyi [19]. Daunorubicin showed strong effects on both growth rate and transformation frequency where 
transformation frequency reduced to below detectable levels at 56.3 µg ml−1 daunorubicin. As growth rate is unaffected at lower 
concentrations of daunorubicin, its effects on transformation may be independent of effects on growth rate, indicating that the 
mechanism of action of daunorubicin may act directly on DNA uptake machinery. Intracellular concentrations of daunorubicin 
may also be sufficient for the promotion of secondary structures of ssDNA internalized by cells caused by binding of the drug 
to ssDNA [52], thereby limiting the accessibility of ssDNA for recombination. The mean concentration of daunorubicin found 
in leukaemic cells during treatment is around 18.8 µmol l−1 [53] or 10.6 µg ml−1 which is within the range tested here and so the 
observed effects may be clinically relevant. However, it is unclear how concentrations of cancer chemotherapeutics in blood 
are related to those in blood serum. To our knowledge, only one study to date has attempted to estimate non-antibiotic drug 
concentrations in the gut [54], but exclusively considered oral drug administration. As both daunorubicin and docetaxel are 
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administered intravenously, we cannot estimate the concentrations at which these drugs are found in the gut and thus the clinical 
relevance of the concentrations tested in this study. A. baylyi is a ubiquitous environmental bacterium which may come into 
contact with cancer chemotherapeutic pollutants in wastewater systems [28, 55].

The routine use of last-resort antibiotics as a prophylactic treatment for cancer patients increases the resistance of gut microbiota 
to those antibiotics [56] and has been known to increase colonization of potentially pathogenic bacteria in the gut [57]. This can 
lead to infection but could also potentially act as a donor pool of resistance or pathogenicity genes to resident species that are 
able to engage in natural transformation. The limited effect the drugs tested in this study have on transformation frequency at 
putatively clinically relevant concentrations is favourable, as it may reduce or not affect the rate of transformation events which 
can lead to the acquisition of traits which are beneficial to pathogens. Future work is needed to close the knowledge gap on  

(a)

(b)

(e)

(f)

(i)

(j)

(c)

(d)

(g)

(h)

(k)

(l)

Fig. 1. Effect of six chemotherapeutic agents on the transformation frequency and growth rate of A. baylyi. Effect of cytarabine on transformation 
frequency (a)  and growth rate (b);  daunorubicin on transformation frequency (c)  and growth rate (d);  docetaxel on transformation frequency 
(e) and growth rate (f); exemestane on transformation frequency (g) and growth rate (h);  imatinib on transformation frequency (i) and growth rate 
(j); methotrexate on transformation frequency (k) and growth rate (l). Plotted points represent individual replicates and are horizontally scattered 
for improved visibility only. Values plotted below 10−7 (dashed line) indicate frequencies below the detectable limit (*P<0.05; **P<0.01; ***P<0.001; 
****P<0.0001).
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in vitro concentrations of non-antibiotic drugs in different organ systems and different human-associated bacteria. Additionally, 
our data identify a need to further investigate the effects and mechanisms of both these and currently untested chemotherapeutic 
drugs to help monitor and establish preventative measures which can limit the spread of AMR genes.
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