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Abstract: This article introduces an explainable machine learning model for estimating the amount
of flow that each pipe in a district metered area (DMA) contributes to the minimum night flow
(MNF). This approach is validated using the MNF of DMAs and pipe failures, showing good
results for both tasks. The predictions from this model could be used to guide leak management or
intervention strategies. In total, 800 DMAs ranging from rural to urban networks and representing
nearly 12 million meters of pipe from a UK water company are used to train, validate, test, and
evaluate the methodology.
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1. Introduction

Minimum night flow (MNF) is an important metric commonly used to estimate and
understand leakage [1] within district meter areas (DMAs) and is the most common leakage
assessment methodology used in the UK [2]. Leakage is a pervasive problem with economic
and environmental consequences [3], making it important for water companies, regulators,
and governments. One of the main drawbacks to MNF is the resolution of data; even with
the complete coverage of smart meters, it is difficult to attribute the remaining water balance
to particular pipes. An alternative way to understand leakage is to study known cases of
historic leaks and bursts [3], i.e., pipe failures. This relies on the records of utility companies
regarding engineering work conducted on the infrastructure. One of the downsides of
using historic pipe failures to understand leakage is that this will not include unreported
or background leakage (unlike MNF). MNF approximates leakage under the assumption
that legitimate water usage is lowest at night, and therefore that most of the flow during
this period is leakage.

Previous studies have used machine learning methods to estimate the MNF of entire
DMAs based on various factors such as total customers, total pipe length, etc. [4,5]. This
paper differs from these previous works by predicting the contribution of individual
pipes to MNF. Furthermore, this approach uses data from 800 real-world DMAs that are
readily available to water companies, making it applicable to a wide range of real-world
scenarios. Finally, by attributing MNF to particular pipes in an explainable manner, this
methodology provides more information to decision makers and practitioners, which could
contribute to improved leakage assessments, leak localization practices, and sustainable
water supply management.
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2. Materials and Methods

This paper presents a linear regression model that predicts the amount of MNF a pipe
is responsible for, henceforth referred to as pipe-MNF. The data used in this study cover
the average MNF for these DMAs in September 2023, pipe failure, and pipe asset data. The
following asset data were used for each pipe: diameter, age, material (grouped into metal,
plastic, and other), number of domestic connections, number of commercial connections,
number of hospital connections, and number of agricultural connections. Separate diameter
and age features were created for each material (i.e., metal age, plastic age, metal diameter,
etc.) to ensure that all features were numeric. This also allowed for the linear regression
algorithm to have different coefficients for these various aspects; for example, the model
could assign more importance to the age of metal pipes than that of plastic pipes. Pipe
failures were also recorded and were loosely defined as any repair or replacement action
undertaken by the water utility company that had some leakage component. These actions
were then associated with the closest pipe.

The dataset was split by DMAs, with 70% of DMAs in the training set and the re-
mainder in the test set. The same DMA split was used to filter the pipe asset data into
training and testing sets. The pipe asset data and MNF data were used to train a linear
regression model that predicted the pipe MNF. However, because MNF is observed over
an entire DMA, there was no direct way to evaluate the accuracy of the model’s pipe MNF
predictions. Therefore, two different validation methods were used: (1) taking the sum of
the pipe MNF predictions over a whole DMA and comparing it to the observed MNF, and
(2) using the pipe MNF prediction as a prediction of the likelihood that a pipe failure had
occurred. The loose definition of pipe failure was used because the model attempted to
predict the pipe’s flow contribution to MNF, not burst or leak likelihood. The application
of these two validation methods to the linear regression model showed promising results.

3. Results

Once trained, the resulting linear regression model made pipe MNF predictions such
as those shown in Figure 1. This figure shows that the model highlighted a small number of
high-risk pipes that contributed significantly more to the MNF of the DMA than most of the
other pipes in this DMA. These predictions could then be used to direct or inform further
action within the DMA such as leak localization. If a larger area of a DMA was highlighted,
it suggested that leak management strategies such as pressure-reducing valves would be
useful. Table 1 shows the regression metrics for this model using validation method (1).
Figure 2a shows the predictions versus observed values for validation method (1).
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the top. A histogram of prediction values is shown at the bottom.



Eng. Proc. 2024, 69, 112 3 of 4

Table 1. Performance metrics for the linear regression model using validation method (1).

Metric Training Set Test Set

R2 0.674 0.611
MAPE 0.336 0.332
RMSE 4314 4409
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Figure 2. Performance plots for the pipe MNF prediction model: (a) observed vs. predicted DMA–
MNF values using validation method (1); (b) ROC curve for pipe failure classification, i.e., validation
method (2).

Figure 2b shows the ROC curve for the linear regression model’s pipe MNF predictions
using validation method (2). The pipe MNF predictions were not modified for this task but
were interpreted as a measure of how likely a pipe was to have failed, i.e., a higher pipe
MNF meant a higher likelihood of pipe failure. This was based on the assumption that
MNF approximates, or is proportional to, leakage, and that pipe failure is a direct measure
of where leakage has been found. Figure 2b indicates that the pipe MNF predictions
have predictive power for pipe failure and show good results in comparison with those
of other studies [6], which further validates the pipe MNF predictions that the linear
regression model made. Although validation method (2) and Figure 2b only give an
indication of accuracy with regard to reported leaks and bursts, in combination with the
regression results from Table 1 and Figure 2a, they suggest that the pipe MNF predictions
are reasonably accurate. Table 2 shows the coefficients of the linear regression model, which
correspond to the L/h increase in MNF for each feature. This table clearly shows the large
and expected impact of different types of consumers on MNF. In addition, according to this
model, plastic pipes, per mm in diameter, have a lower impact on MNF than metal pipes
do, but have a higher impact with increasing years of age.

Table 2. Shows the de-scaled coefficients of the linear regression model. The diameters are expressed
in mms, and age is expressed in years (rounded to the nearest month).

Feature Coefficient Feature Coefficient

Domestic Count 3.426 Hospital Count 452.181
Commercial Count 24.342 Agricultural Count 166.036

Metal Diameter 0.080 Metal Age 0.049
Plastic Diameter 0.001 Plastic Age 0.803
Other Diameter 0.094 Other Age 0.124
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4. Conclusions

This paper presents a model that predicts the contribution of individual pipes to MNF
and that achieved good results using two validation methods, showing that the predictions
are accurate. By using a linear regression model, the impact of each feature on the final
prediction was determined and could be explored and explained. Predictions from this
model could be used to direct or inform leak management strategies for water utilities, and
by understanding leakage through pipe-level MNF estimates, water utility companies will
be able to make better and more informed decisions on how and where to tackle leakage.
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