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ABSTRACT
In this paper, we investigate a class of non-invertible piecewise
isometries on the upper half-plane known as Translated Cone
Exchanges. These maps include a simple interval exchange on a
boundary we call the baseline. We provide a geometric construction
for the first return map to a neighbourhood of the vertex of the mid-
dle cone for a large class of parameters, then we show a recurrence
in the first return map tied to Diophantine properties of the parame-
ters, and subsequently prove the infinite renormalizability of the first
return map for these parameters.
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1. Introduction

Piecewise isometries (PWIs) are a class of maps that can be generally described as a ‘cutting-
and-shuffling’ action of a metric space, specifically a partitioning of the phase space into
at most countably many convex pieces called atoms, which are each moved according to
an isometry. The phase space of these maps can be partitioned into two (or three) sub-
sets based on the dynamics – a polygon or disc packing of periodic islands known as the
regular set, and its complement, the set of points whose orbit either lands on, or accumu-
lates on, the discontinuity set. Some authors choose to further distinguish those points
in the pre-images of the discontinuity and those points which accumulate on it. The most
well-known andwell-understood examples of suchmaps are the interval exchange transfor-
mations (IETs), which arise as return maps to cross-sections of some measured foliations
[20] and also as generalizations of circle rotations [7, 19, 28] and their encoding spaces
generalise Sturmian shifts [12]. Furthermore, interval exchanges which aren’t irrational
rotations are known to be almost always weakly mixing [5] but never strongly mixing [16].
Piecewise isometries in general, however, are not aswell-known and as a subset of this class,
interval exchanges are in many ways exceptional, due in part to being one-dimensional, as
well as the invariance of Lebesgue measure.

In themore general setting, although the inherent lack of hyperbolicity restricts the vari-
ety of possible behaviours, for example it is known that all piecewise isometries have zero
topological entropy [8], piecewise isometries are still capable of quite complex behaviour;
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many examples show the presence of unbounded periodicity and an underlying renor-
malizability which structures the dynamics near the discontinuities [1–3, 13, 14, 17, 24];
numerical evidence suggests the existence of invariant curves in the exceptional set which
seem fractal-like and formbarriers to ergodicity [2–4, 18]; there are conjectured conditions
for piecewise isometries to have sensitive dependence on initial conditions [15].

Renormalization in theoretical physics and nonlinear dynamical systems has a long-
standing history, see for example [9–11, 21, 25–27], driven by the problem of understand-
ing phenomena that occur simultaneously atmany spatial and temporal scales, particularly
near phase transitions, periodic points, or in the case of piecewise isometries, the set of
discontinuities.

In this paper, we investigate the renormalizability of a class of piecewise isometries called
Translated Cone Exchanges on the closure of the upper half-plane H. This family of maps
was introduced in [4] and has since been investigated in [22, 23]. In particular, we use a
geometric construction to describe the action of a first return map to a subset containing
the origin, and show that this map displays renormalizable behaviour locally to the origin
in accordance with Diophantine approximation of one of its parameters. These results go
beyond [22, 23] in that they are much less constrained in the continued fraction expansion
associated with the baseline translation.

This paper is organized as follows. In Section 2, we introduce the family of maps we
will investigate, namely, Translated Cone Exchange transformations. In Section 3 we will
develop some tools thatwill be useful in the next section. Section 4 presents the preliminary
results that lead to the main result of this paper, Theorem 4.7, which gives an explicit form
of renormalization for the first return maps of maps in our class to a neighbourhood of 0.
Finally, in Section 5 we present an example for fixed values of the parameters.

2. Translated cone exchange transformations

Let H ⊂ C denote the upper half plane, and let H be its closure in C, that is

H = {z ∈ C : Im(z) ≥ 0}.
A Translated Cone Exchange transformation ( TCE ) [4] is a PWI (C, Fκ) defined on the
closed upper half plane H. For any integer d>0, let Bd+2 be the set

Bd+2 =
⎧⎨
⎩α = (α0, . . . ,αd+1) ∈ (0,π)d+2 :

d+1∑
j=0

αj = π

⎫⎬
⎭ ,

Next, for some α = (α0, . . . ,αd+1) ∈ Bd+2, partition the interval [0,π] by subintervals

Wj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[0,α0), if j = 0,
[α0,α0 + α1], if j = 1,⎛
⎝ j−1∑

k=0

αk,
j∑

k=0

αk

⎤
⎦ , if j ∈ {2, . . . , d + 1}.

We then define the partition C as

C = {Cj : j ∈ {0, . . . , d + 1}},
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Figure 1. An example of a partition of the closed upper half planeH into 6 cones.

where

C1 = {0} ∪ {z ∈ H : Arg z ∈ W1}

and

Cj = {z ∈ H : Arg z ∈ Wj} for j �= 1.

The mapping Fκ is defined as a composition

Fκ(z) = G ◦ E(z), (1)

where E is a permutation of the cones C1, . . . ,Cd, G is a piecewise horizontal translation,
and κ is a tuple of the parameters. Formally, let τ be a permutation of {1, . . . , d}, that is a
bijection τ : {1, . . . , d} → {1, . . . , d}, and let

θj(α, τ) =
∑

τ(k)<τ(j)

αk −
∑
k<j

αk.

When α and τ are unambiguous, wemay refer to θj(α, τ) simply as θj. Themap E : H → H

is then defined as (Figures 2 and 3)

E(z) =
{
z if z ∈ C0 ∪ Cd+1

zeiθj if z ∈ Cj, j ∈ {1, . . . , d} .
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Figure 2. The same partition from Figure 1 after applying the cone exchange map E.

Figure 3. The example partition from Figure 1 after the TCE F = G ◦ E is performed. Note the overlap-
ping of the cones in a region containing 0.

Note that E is invertible Lebesgue-almost everywhere in H. We define the middle cone
Cc of Fκ as

Cc =
d⋃

j=1
Cj = H \ (C0 ∪ Cd+1).

The map G : H → H is defined as

G(z) =

⎧⎪⎨
⎪⎩
z + λ if z ∈ Cd+1,
z − η if z ∈ Cc,
z − ρ if z ∈ C0,

(2)
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Figure 4. A plot of the first 3000 elements of the forward orbits of 1000 points (omitting the first 1500
to remove transients) chosen uniformly in the box [−ρ, λ] × [0, 1] under a TCE with parameters α =
(0.5,π/7,π/4, 17π/28 − 0.5), τ : 1 	→ 2, 2 	→ 1, λ = √

2/2, η = 1 − λ and ρ = 1. Each orbit is given
a (non-unique) colour to illustrate the trajectories.

Figure 5. A similar plot to Figure 4, this time of the first 3000 elements (excluding the first 1500 for
transients) of the forward orbits of 1500 points chosen uniformly in the box [−ρ, λ] × [0, 1] under
a TCE with parameters α = (π/2 + 0.1,π/8, 0.2,π/5 − 0.1, 7π/40 − 0.2), τ : 1 	→ 3, 2 	→ 2, 3 	→ 1,
λ = π/4, and η = 1 − λ. Note that the phase space is very sparse compared to Figures 4 and 9.

where ρ, λ ∈ (0,∞) are rationally independent, i.e. λ/ρ ∈ R \ Q, and −λ < η < ρ.
Finally, we collect the parameters into the tuple κ = (α, τ , λ, η, ρ). See Figures 4, 5 and 9
for plots of the orbit structure for Fκ for example choices of parameters κ .
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For a>0, let Fκ ′ denote the TCE with parameters κ ′ = (α, τ , λ/a, η/a, ρ/a). Define
sa : H → H as uniform scaling by a about the origin

sa(z) = az. (3)

Proposition 2.1: We have the following conjugacy:

Fκ ′(z) = s−1
a ◦ Fκ ◦ sa(z). (4)

Proof: Firstly, observe that for all j ∈ {0, . . . , d + 1},

aCj = Cj,

from which we can deduce that

az ∈ Cj if and only if z ∈ Cj. (5)

Let z ∈ H. From (3), we get

s−1
a ◦ Fκ ◦ sa(z) = 1

a
Fκ(az),

and by expanding Fκ as in (1), we have

s−1
a ◦ Fκ ◦ sa(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
a
(az + λ) if az ∈ Cd+1

1
a
(eiθj(az) − η) if az ∈ Cj, j ∈ {1, . . . , d}

1
a
(az − ρ) if az ∈ C0

.

Recalling (5), distributing the multiplication by 1/a, we finally see that

s−1
a ◦ Fκ ◦ sa(z) =

⎧⎪⎨
⎪⎩
z + λ/a if z ∈ Cd+1

eiθj z − η/a if z ∈ Cj, j ∈ {1, . . . , d}
z − ρ/a if z ∈ C0

= Fκ ′(z). �

Clearly from this proposition, we can normalize ρ = 1 without any loss of generality.
Indeed, normalizing in this way proves very helpful for establishing recurrence results, as
we shall see.

Simulations of the orbits of points under some TCEs appears to reveal complex
behaviour even at small scales close to the real line, such as in Figures 4 and 5. One way
to investigate this behaviour is by applying the tools of renormalization. In particular, let
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h : Cc → N \ {0} denote the first return time of z ∈ Cc to Cc under Fκ , that is

h(z) = inf{n > 0 : Fnκ (z) ∈ Cc}. (6)

The first return map Rκ : Cc → Cc of Fκ to Cc is then defined as

Rκ(z) = Fh(z)κ (z). (7)

Observe that for all z ∈ Cc, Rκ(z) = Fh(z)κ (z) = Gh(z) ◦ E(z), since E is the identity outside
of Cc.

We will now state the main theorem of our paper in a simplified form, which we
shall restate in more detail later as Theorem 4.7, after establishing some terminology and
preliminary results.

Theorem 2.2: Let α ∈ Bd+2, τ : {1, . . . , d} → {1, . . . , d} be a bijection, λ ∈ [0, 1) \ Q,
−λ < η = p − qλ < 1 for some p, q ∈ N \ {0} and set κ = (α, τ , λ, η, 1). Then there exist
λ′ ∈ [0, 1) \ Q, η′ ∈ R of the form −λ′ < η′ = p′ − q′λ′ < 1 for some p′, q′ ∈ N \ {0}, and
a convex, positive area set V ⊂ Cc containing 0 such that

Rκ ′(z) = 1
1 − λ1λ

Rκ((1 − λ1λ)z),

for all z ∈ V, where κ ′ = (α, τ , λ′, η′, 1).

3. Tools

In this section we prove some preliminary results that will serve as tools for more
detailed investigation of the renormalization of TCEs. Firstly, we note the following smaller
observations.

Proposition 3.1: Let Fκ be as in (1) and G as in (2). Then for all x ∈ R,

Fκ(x) = G(x).

Proof: This is clear from the observation that E is the identity on R. �

Proposition 3.2: The dynamics of Fκ onR and onH are separate in the sense that Fκ(R) ⊂
R and Fκ(H) ⊂ H.

Proof: The statement Fκ(R) ⊂ R is clear from Proposition 3.1 and the fact that G is a
horizontal translation.

We now prove that Fκ(H) ⊂ H. Suppose that z ∈ H such that Fκ(z) ∈ R. Then E(z) ∈
R, as G is a horizontal translation. If z ∈ H \ Cc then R 
 E(z) = z ∈ H, which is a
contradiction. On the other hand, if z ∈ Cc, then E(z) ∈ Cc But R ∩ Cc = {0}, mean-
ing that E(z) ∈ R implies E(z) = 0. But this is only the case if z = 0 ∈ R, which is a
contradiction. �
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Let ι : H → {−1, 0, 1}N denote the itinerary for Fκ , defined by

ι(z) = ι0ι1ι2 · · · ,
where

ιn = ιn(z) =

⎧⎪⎨
⎪⎩

−1, if Fnκ (z) ∈ Cd+1,
0, if Fnκ (z) ∈ Cc,
1, if Fnκ (z) ∈ C0.

This map is similar to, but distinct from the true notion of the encoding map, since here
we do not distinguish between the cones C1, C2,. . . , Cd within the middle cone Cc. The
next Lemma provides a crucial tool in the proof of Theorem 4.5, since the dynamics on
the interval [−ρ, λ) is that of a rotation of the circle (except at the point 0, in which case
Fκ(0) = −η), which is more easily understood than that of an arbitrary point in Cc.

Lemma 3.3: Let α ∈ Bd+2, τ : {1, . . . , d} → {1, . . . , d} be a bijection, λ, ρ ∈ R such that
λ/ρ /∈ Q, and −λ < η < 1. If z ∈ Cc, then for all 1 ≤ j ≤ h(z),

Fjκ(z) = E(z) + Fjκ(0).

Proof: Suppose not, for a contradiction. Then there is some n with 0 ≤ n ≤ h(z) such
that Fnκ (z) �= E(z) + Fnκ (0), and without loss of generality assume that n is the smallest
such integer. Clearly n>1, so for all 0 ≤ j ≤ n − 1, Fjκ(z) − E(z) = Fjκ(0), and therefore
ιj(z) = ιj(0) for all 0 ≤ j ≤ n − 2, but ιn−1(z) �= ιn−1(0). Since n ≤ h(z), we cannot have
Fjκ(z) ∈ Cc for all 1 ≤ j ≤ n − 1. Hence for addresses of the (n − 1)th iterates of z and 0 to
disagree, one of two cases must occur:

(1) Fn−1
κ (z) ∈ Cd+1 and Fn−1

κ (0) ∈ Cc ∪ C0; or
(2) Fn−1

κ (z) ∈ C0 and Fn−1
κ (0) ∈ Cc ∪ Cd+1.

Since the orbit of 0 is restricted to R and since E(0) = 0, the second parts of each case
become Gn−1(0) ≥ 0 and Gn−1(0) ≤ 0, respectively.

Suppose E(z) = z′, and let ε1 = Im(z′) cot(αd+1) and ε2 = Im(z′) cot(α0). Then z′ ∈
Cc if and only if−ε1 ≤ Re(z′) ≤ ε2. Note that sinceG is a horizontal translation,Fn−1

κ (z) =
Gn−1(E(z)) = Gn−1(z′) ∈ Cd+1 if and only if Re(Gn−1(z′)) < −ε1. Similarly Gn−1(z′) ∈
C0 if and only if Re(Gn−1(z′)) > ε2. The two above cases above can thus be reformulated
as:

(1) Re(Gn−1(z′)) < −ε1 and Gn−1(0) ≥ 0; or
(2) Re(Gn−1(z′)) > ε2 and Gn−1(0) ≤ 0.

In case 1, we get 0 ≤ Gn−1(0) = Gn−1(z′) − z′ = Re(Gn−1(z′)) − Re(z′). Hence
Re(Gn−1(z)) ≥ Re(z′) and thus

−ε1 ≤ Re(z′) ≤ Re(Gn−1(z′)) < −ε1,

which is a contradiction. Case 2 leads to a similar contradiction. Therefore there is no
such n. �
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3.1. Continued fractions

Recall from the theory of continued fractions that the nth convergent to a positive, irra-
tional real number λ = [λ0; λ1, λ2, . . .] is a fraction pn/qn = [λ0; λ1, . . . , λn], where pn, qn
are coprime integers and qn > 0. The numbers pn, qn can be generated by the recursive
relations:

p0 = λ0, q0 = 1,

p1 = λ1λ0 + 1, q1 = λ1,

pn = λnpn−1 + pn−2, qn = λnqn−1 + qn−2.

(8)

Furthermore, the convergents toλ satisfy the property that for all positive integers s < qn+1
and all r ∈ Z,

|qnλ − pn| ≤ |sλ − r|,
with equality only when (r, s) = (pn, qn). Also observe that we can use the recurrence
relation in (8) to set

p−1 = 1, q−1 = 0. (9)

Let g : [0, 1] → [0, 1] denote the Gauss map, given by

g(x) = 1
x

−
⌊
1
x

⌋
.

In particular, if λ = [0; λ1, λ2, λ3, . . .] ∈ [0, 1], then

g(λ) = 1
λ

− λ1 = [0; λ2, λ3, . . .].

Let λ = [0; λ1, λ2, . . .] ∈ [0, 1) \ Q. To start, let

Nλ = {(m, n) ∈ N2 : 0 ≤ n ≤ λm+1},
and define the function wλ : Nλ → N by

wλ(m, n) =
{
n if m = 0,
λ1 + · · · + λm + n if m > 0.

Note that wλ is surjective and in fact

wλ(m + 1, 0) = wλ(m, λm+1). (10)

Furthermore, if we define the subsetN<
λ ⊂ Nλ to be

N<
λ = {(m, n) ∈ N2 : 0 ≤ n < λm+1},

then wλ|N<
λ
is a bijection.

Fromnow on, we denote the jth coefficient of the continued fraction expansion of gm(λ)

by gm(λ)j. The next proposition gives us a nice relationship between the set Nλ and the
Gauss map g.
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Proposition 3.4: Let j,m, n ∈ N. Then (m + j, n) ∈ Nλ if and only if (j, n) ∈ Ngm(λ).
Moreover,

wλ(m + j, n) = λ1 + · · · + λm + wgm(λ)(j, n).

Proof: We have that (m + j, n) ∈ Nλ is equivalent to 0 ≤ n ≤ λm+j+1. We also have that
λm+j+1 = gm(λ)j+1, so 0 ≤ n ≤ gm(λ)j+1. This is equivalent to (j, n) ∈ Ngm(λ).

Ifm = j = 0, then the second part of our lemma is clearly true.
Assume j = 0 andm>0. Then

wλ(m + j, n) = wλ(m, n) = λ1 + · · · + λm + n = λ1 + · · · + λm + wgm(λ)(0, n),

where the final equality is true since (m, n) ∈ Nλ is equivalent to (0, n) ∈ Ngm(λ).
Finally, supposem, j>0. Then

wλ(m + j, n) = λ1 + · · · + λm + λm+1 + · · · + λm+j + n

= λ1 + · · · + λm + gm(λ)1 + · · · + gm(λ)j + n.

Note that since (m + j, n) ∈ Nλ is equivalent to (j, n) ∈ Ngm(λ), we have

wλ(m + j, n) = λ1 + · · · + λm + wgm(λ)(j, n). �

The bijection wλ mainly serves as a way to show that there is a ‘natural’ well-ordering
for the setN<

λ , which allows us to meaningfully index sequences byN<
λ and, as we shall

see later, define the notion of a maximal element of a finite subset ofNλ.
We define the one-sided convergents (or semiconvergents) to λ as the fractions

Pm,n(λ)

Qm,n(λ)
=

{
[0; λ1, . . . , λm] if n = 0,
[0; λ1, . . . , λm, n] if n > 0,

Indeed, this formula is compatible with the indexing wλ in that

Pm,0(λ)

Qm,0(λ)
= Pm−1,λm(λ)

Qm−1,λm(λ)
.

A standard result in the theory of continued fractions is that for (m, n) ∈ N<
λ , we have

Pm,n(λ)

Qm,n(λ)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

npm(λ) + pm−1(λ)

nqm(λ) + qm−1(λ)
, if n �= 0

pm(λ)

qm(λ)
if n = 0.

(11)

One way to interpret these fractions is as being the best rational approximates of λ from
one ‘direction’. In particular, borrowing notation from the beginning of Section 2.2 in [23],
we have (

Pm,n

Qm,n

)
(m,n)∈N<

λ ,m even
=

(p′
k
q′
k

)
k∈N

, and
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(
Pm,n

Qm,n

)
(m,n)∈N<

λ ,m odd
=

(p′′
k
q′′
k

)
k∈N

,

where (p′
k/q

′
k)k are the best rational approximates from above in the sense that p′

k/q
′
k > λ

and for all rational numbers r/s �= p′
k/q

′
k such that r/s > λ and 1 ≤ s < q′

k+1, we have

0 < |q′
kλ − p′

k| < |sλ − r|, (12)

and in a similar fashion (p′′
k/q

′′
k)k are the best rational approximates from below in the same

sense except that p′′
k/q

′′
k < λ and

0 < |q′′
kλ − p′′

k | < |sλ − r|, (13)

holds for r/s �= p′′
k/q

′′
k such that r/s < λ and 1 ≤ s < q′′

k+1.
We define the sequence (�m,n(λ))(m,n)∈Nλ by

�m,n(λ) = Qm,n(λ)λ − Pm,n(λ). (14)

We see immediately from the above discussion that Pm,n(λ)/Qm,n(λ) < λ if and only ifm
is odd and n>0 orm is even and n = 0, that is

�m,n(λ) > 0 if and only if

{
m is even and n = 0, or
m is odd and n > 0.

(15)

By expanding the definitions of Pm,n and Qm,n, we see

�m,n(λ) = n(qmλ − pm) + qm−1λ − pm−1

= n�m,0(λ) + �m−1,0(λ), (16)

for (m, n) ∈ Nλ with m ≥ 1. Moreover, by expanding the recurrence relation for pm and
qm and rearranging terms, we have the additional property

�m,0(λ) = qmλ − pm
= λm(qm−1λ − pm−1) + qm−2λ − pm−2

= λm�m−1,0(λ) + �m−2,0(λ),

form ∈ N,m ≥ 2.
Note that in agreement with the function wλ, we have �m−1,λm(λ) = �m,0(λ). A result

by Bates et al. [6] presents an interesting connection between iterates of the Gauss map and
consecutive errors in the approximation of λ by its convergents.

Lemma 3.5 (Theorem 10 of [6]): Let λ = [0; λ1, λ2, . . .] ∈ [0, 1) \ Q. For all m ∈ N,

gm(λ) = qmλ − pm
pm−1 − qm−1λ

. (17)

Equation (17) can be equivalently formulated as

gm(λ) = − �m,0(λ)

�m−1,0(λ)
. (18)
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Lemma 3.6: Let λ = [0; λ1, λ2, . . .] ∈ [0, 1) \ Q. For all (m, n) ∈ Nλ with m ≥ 1,

�0,n(gm(λ)) = − �m,n(λ)

�m−1,0(λ)
. (19)

Proof: For n = 0, �0,0(gm(λ)) = gm(λ), so (19) holds.
Next, observe that

�j,0(gm(λ)) = gm(λ)j�j−1,0(gm(λ)) + �j−2,0(gm(λ)).

Since gm(λ)j = λm+j, this becomes

�j,0(gm(λ)) = λm+j�j−1,0(gm(λ)) + �j−2,0(gm(λ)).

We thus see that

�0,n(gm(λ)) = n(q0gm(λ) − p0) + q−1gm(λ) − p−1,

and by recalling p−1, q−1, p0, and q0 from (8), we get

�0,n(gm(λ)) = ngm(λ) − 1.

Using (18), we can substitute gm(λ) and rearrange terms to get

�0,n(gm(λ)) = −n
(

�m,0(λ)

�m−1,0(λ)
+ 1

)

= −n�m,0(λ) + �m−1,0(λ)

�m−1,0(λ)
.

Finally, from this and (16) we get (19). �

Corollary 3.7: For all (m + j, n) ∈ Nλ, where m, j ∈ N, m ≥ 1, we have

�0,n(gm+j(λ)) = − �m,n(gj(λ))

�m−1,0(gj(λ))
(20)

Proof: This follows from Lemma 3.6 with gj(λ) instead of λ. �

Our next Lemma is an important tool for determining scaling properties of these errors.

Lemma3.8: Letλ = [0; λ1, λ2, . . .] ∈ [0, 1) \ Q. For all (m + j, n) ∈ Nλ such thatm, j ∈ N

and m ≥ 1,

�j,n(gm(λ)) = − �m+j,n(λ)

�m−1,0(λ)
. (21)
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Proof: Let us prove first that (21) holds for n = 0. By multiplying and dividing by
�m+k−1,0 for all 0 ≤ k ≤ j, we get

�m+j,0(λ)

�m−1,0(λ)
=

j∏
k=0

�m+k,0(λ)

�m+k−1,0(λ)

Then, using (18), we get

�m+j,0(λ)

�m−1,0(λ)
=

j∏
k=0

−�0,0(gm+k(λ)).

Rearranging this last expression and using (20), we get

�m+j,0(λ)

�m−1,0(λ)
= (−1)j+1�0,0(gm(λ))

j∏
k=1

− �k,0(gm(λ))

�k−1,0(gm(λ))

We then simplify the product by cancelling terms in the numerator and denominator to get

�m+j,0(λ)

�m−1,0(λ)
= (−1)j+1�0,0(gm(λ))

(
(−1)j

�j,0(gm(λ))

�0,0(gm(λ))

)

= −�j,0(gm(λ)).

Finally, for general (m + j, n) ∈ Nλ,m, j ∈ N,m ≥ 1, we have

�m+j,n(λ)

�m−1,0(λ)
= �m+j,n(λ)

�m+j−1,0(λ)

�m+j−1,0(λ)

�m−1,0(λ)

Using (19) and (21) for n = 0, we get

�m+j,n(λ)

�m−1,0(λ)
= �0,n(gm+j(λ))�j−1,0(gm(λ)),

and then using (20) gives us

�m+j,n(λ)

�m−1,0(λ)
= − �j,n(gm(λ))

�j−1,0(gm(λ))
�j−1,0(gm(λ))

= −�j,n(gm(λ)),

as required. �
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With these properties in mind, we will now define the sets which will partition a
neighbourhood of themiddle coneCc. Recall thatN<

λ denotes the subset ofNλ defined by

N<
λ = {(m, n) ∈ N2 : 0 ≤ n < λm+1}.

For (m, n) ∈ N<
λ , let Sm,n(λ) be the set defined by

Sm,n(λ) =

⎧⎪⎪⎨
⎪⎪⎩

(C0 − �m,0(λ)) ∩ Cc ∩ (Cc − �m,n+1(λ))

∩(Cd+1 − (n�m,0(λ) + �m−1,0(λ)))
, if m is even,

(C0 − (n�m,0(λ) + �m−1,0(λ))) ∩ Cc
∩(Cc − �m,n+1(λ)) ∩ (Cd+1 − �m,0(λ))

, if m is odd.
(22)

For brevity, we will drop the argument λ from Sm,n(λ) if it is unambiguous. Additionally
for the purposes of the case thatm = 0, and recalling (9), we have

�−1,0(λ) = q−1λ − p−1 = −1.

Recall from (15) that for (m, n) ∈ N<
λ , �m,n > 0 if and only ifm is odd and n>0 orm is

even and n = 0. Thus we can clearly see that Sm,n �= ∅ for all (m, n) ∈ N<
λ . Additionally,

since every point in Sm,n has positive imaginary part, the boundary of Sm,n consists of
segments of the non-horizontal boundary lines of C0, Cc, and Cd+1, and all of these lines
either have angle α0 or π − αd+1. Thus, Sm,n is a quadrilateral, and its opposing sides must
be parallel, so it is a parallelogram.

Indeed, since opposite edges of Sm,n are parallel, the side lengths of Sm,n are uniquely
determined by the horizontal distances between opposing edges. In the case that m is
even, these are precisely the distances between the vertices of the pairs of cones C0 − �m,0
and Cc, and Cc − �m,n+1 and Cd+1 − �m,n. In the case that m is odd, the horizontal dis-
tances are determined by the distance between the vertices of pairs of conesC0 − �m,n and
Cc − �m,n+1, andCc andCd+1 − �m,0. Since�m,n+1 − �m,n = �m,0, we know that these
distances are equal. Therefore, the side lengths of opposing edges of Sm,n are equal and can
be calculated as

�m,n sinα0

sin(α0 + αd+1)
and

�m,n sinαd+1

sin(α0 + αd+1)
(23)

These sidelengths are equal only when α0 = αd+1, in which case Sm,n is a rhombus for all
(m, n) ∈ N<

λ . See Figure 6 for an example of the geometry of the construction of sets Sm,n.
An interesting property of these sets can be found by an application of Lemma 3.8.

Theorem 3.9: Let λ ∈ [0, 1) \ Q. For all (m + j, n) ∈ N<
λ such that m, j ∈ N and m ≥ 2 is

even,
1

|�m−1,0(λ)|Sm+j,n(λ) = Sj,n(gm(λ)).

Proof: Firstly, recall from (15) that sincem is even, �m−1,0(λ) < 0, and thus
1

|�m−1,0(λ)| = 1
−�m−1,0(λ)

> 0.

Hence,
1

|�m−1,0(λ)| (Ck − x) = Ck + x
�m−1,0(λ)

,
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Figure 6. An illustration of the construction of the parallelogram S0,1(λ) for the parameters in Figure 4.
Here, the angles shown indicate the cones used to construct S1,0(λ). In this case, the vertices of these
cones canbe verified via (22) tobe−�0,0(λ) = −λ,−�1,1(λ) = 1 − 2λ, 0 and−(�0,0(λ) + �−1,0) =
1 − λ.

for all k ∈ {1, . . . , d} and all x ∈ R. Thus, we have

1
|�m−1,0(λ)|Sm+j,n(λ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
C0 + �m+j,0(λ)

�m−1,0(λ)

)
∩

(
Cc + �m+j,n+1(λ)

�m−1,0(λ)

)

∩Cc ∩
(
Cd+1 + n�m+j,0(λ) + �m+j−1,0(λ)

�m−1,0(λ)

)
,

if m + j is even,

(
C0 + n�m+j,0(λ) + �m+j−1,0(λ)

�m−1,0(λ)

)
∩ Cc

∩
(
Cc + �m+j,n+1(λ)

�m−1,0(λ)

)
∩

(
Cd+1 + �m+j,0(λ)

�m−1,0(λ)

)
,

if m + j is odd.

Using (21) many times give us

1
|�m−1,0(λ)|Sm+j,n(λ)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(C0 − �j,0(gm(λ))) ∩ (Cc − �j,n+1(gm(λ)))

∩Cc ∩ (Cd+1 − (n�j,0(gm(λ)) + �j−1,0(gm(λ)))),
if j is even,

(C0 − (n�j,0(gm(λ)) + �j−1,0(gm(λ)))) ∩ Cc

∩(Cc − �j,n+1(gm(λ))) ∩ (Cd+1 − �j,0(gm(λ))),
if j is odd.
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Figure 7. An illustration of the E-image of the partition for the first returnmap Rκ of the TCE Fκ in Figure
4. Observe the alternating stacks of parallelograms decreasing in size and cascading towards the origin.

Finally, comparing this with (22) gets

1
|�m−1,0(λ)|Sm+j,n(λ) = Sj,n(gm(λ)). �

This theorem seems to suggest the possibility of infinite renormalizability of the first
returnmaps to Cc for a whole class of TCEs. At the very least, if indeed the first returnmap
of a TCE to Cc is an isometry on Sm,n(λ) for (m, n) ∈ N<

λ withm ≥ m0 and somem0 ∈ N,
then at the very least the partition matches with its potential renormalization (Figures 7
and 8).

4. Renormalization around zero

In this section we investigate renormalizability of TCEs around the origin for a broad range
of values of λ and η.

Let λ ∈ [0, 1) \ Q and η ∈ R such that −λ < η = p − qλ < 1 for some p, q ∈ N. Note
thatN<

λ has a well-ordering <′ induced by the indexing function wλ so that

(m, n) <′ (r, s) if and only if wλ(m, n) < wλ(r, s).

Thus, the notion of a ‘maximal element’ of a finite subset ofN<
λ is well-defined.

Let (m0, n0) be the largest element ofN<
λ such that

Pm0,n0 < p or Qm0,n0 < q. (24)

The pair (m0, n0) is well-defined since p, q ≥ 1 but P0,0 = 0. Thus, wλ(m0, n0) ≥ wλ(0, 0).
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Figure 8. A similar illustration to Figure 7 of the E-image of the partition for Rκ , but with the parameters
from Figure 5.

Note that for all (m, n) ∈ N<
λ ,

�m,n = Qm,nλ − Pm,n = −η + (Qm,n − q)λ − (Pm,n − p).

Define the sequence (hm,n)(m,n)∈N<
λ
of positive integers by

hm,n = (Qm,n − q) + (Pm,n − p) + 1. (25)

We can establish some recurrence relations for the sequence hm,n using those of Pm,n and
Qm,n.

Proposition 4.1: Let (m, n) ∈ N<
λ . Then

hm,n+1 = (n + 1)hm,0 + hm−1,0 + (n + 1)(p + q − 1).

Moreover, if wλ(m, n) > wλ(m0, n0), then hm,n > 0.

Proof: Recall from the definition of Pm,n and Qm,n in (11) that

Qm,n+1 = (n + 1)Qm,0 + Qm−1,0,

and

Pm,n+1 = (n + 1)Pm,0 + Pm−1,0.

By applying this to the formula (25), we get

hm,n+1 = (Qm,n+1 − q) + (Pm,n+1 − p) + 1
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= ((n + 1)Qm,0 + Qm−1,0 − q) + ((n + 1)Pm,0 + Pm−1,0 − p) + 1

= (n + 1)(Qm,0 + Pm,0) + (
(Qm−1,0 − q) + (Pm−1,0 − p) + 1

)
.

Recalling the formula (25) for hm,0, we get

hm,n+1 = (n + 1)((Qm,0 − q) + (Pm,0 − p) + 1 + (p + q − 1)) + hm−1,0

= (n + 1)hm,0 + hm−1,0 + (n + 1)(p + q − 1).

Recall that (m0, n0) is the largest pair in N<
λ such that either Qm0,n0 < q or Pm0,n0 < p.

Thus, if wλ(m, n) > wλ(m0, n0), then necessarily Qm,n ≥ q and Pm,n ≥ p, which further
implies hm,n > 0 by (25). �

We won’t attempt to find recursive relations for all iterates of Fκ at 0, but we will at least
calculate the orbit of 0 at iterates given by the sequence (hm,n)(m,n)∈N<

λ
.

Lemma 4.2: Let (m, n) ∈ N<
λ such that wλ(m, n) > wλ(m0, n0). Then

Fhm,n
κ (0) = �m,n.

Proof: Suppose, for a contradiction, that Fhm,n
κ (0) �= �m,n. Let (at)t∈N and (bt)n∈N denote

the sequences defined by

Ftκ(0) = −η + btλ − at . (26)

Note that since η = p − qλ, we have

Ftκ(0) = qλ − p + btλ − at = (bt + q)λ − (at + p),

which is never equal to 0 since λ is irrational and bt + q and at + p are both positive.
Observe that (at)t and (bt)t are both non-decreasing and obey the following rule:

(at+1, bt+1) =
{

(at , bt + 1), if Ftκ(0) < 0,
(at + 1, bt), if Ftκ(0) > 0.

Given that a0 = a1 = b0 = b1 = 0, we can deduce that the sequences (at)t and (bt)t
achieve every non-negative integer value, that is, for any N ∈ N, there is some t ∈ N such
that at = N, and similarly there is some t′ ∈ N such that bt′ = N. Moreover, a simple
inductive argument shows that for all integers t ≥ 1,

at + bt + 1 = t.

Next, observe that Fhm,n
κ (0) �= �m,n is equivalent to the statement that ahm,n �= Pm,n and

bhm,n �= Qm,n. However, notice that

(Qm,n − q) + (Pm,n − p) + 1 = hm,n = ahm,n + bhm,n + 1.

This implies one of two cases.

(1) ahm,n < Pm,n − p and bhm,n > Qm,n − q; or
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(2) ahm,n > Pm,n − p and bhm,n < Qm,n − q.

Suppose case (1) holds. Since (bt)t is non-decreasing and takes every non-negative inte-
ger value, we know that there is some non-negative integer t∗ < hm,n such that bt∗ =
Qm,n − q. Thus,

Ft
∗

κ (0) = −η + (Qm,n − q)λ − at∗ .

Note that at∗ < at < Pm,n − p. Now, suppose�m,n > 0. Then for any 0 ≤ j ≤ Pm,n − p −
at∗ , we have

Ft
∗

κ (0) − j = −η + (Qm,n − q)λ − (at∗ + j)

> (Qm,n − q)λ − (Pm,n − p)

= �m,n

> 0.

Thus, Ft
∗+j

κ (0) = Ft∗κ (0) − j for 0 ≤ j ≤ Pm,n − p − at∗ . In particular,

Ft
∗+Pm,n−p−at∗

κ (0) = −η + (Qm,n − q)λ − (Pm,n − p).

But then

t∗ + Pm,n − p − at∗ = (Qm,n − q) + (Pm,n − p) + 1

= hm,n.

And this implies that

Fhm,n
κ (0) = Ft

∗+Pm,n−p−at∗
κ (0)

= −η + (Qm,n − q)λ − (Pm,n − p)

= �m,n.

But this contradicts our assumption that Fhm,n
κ (0) �= �m,n.

Now suppose that�m,n < 0. Let 0 ≤ j < Pm,n − p − at∗ . Then either Ft∗κ (0) − j > 0 or
�m,n < Ft∗κ (0) − j < 0. But �m,n < Ft∗κ (0) − j < 0 implies

|Qm,nλ − (at∗ + j + p)| < |�m,n| = |Qm,nλ − Pm,n|,
and at∗ + j + p < Pm,n. This contradicts the ‘best approximate’ property of the semicon-
vergent Pm,n/Qm,n. Thus Ft

∗
κ (0) − j > 0 for all 0 ≤ j < Pm,n − p − at∗ . Thus, by a similar

argument to before, we reach the contradiction that Fhm,n
κ (0) = �m,n.

In case (2), ahm,n > Pm,n − p and bhm,n < Qm,n − q.We can reach a similar contradiction
as above, by using a similar argument where the roles of (at)t and (bt)t are interchanged.

This exhausts all cases, so our assumption that Fhm,n
κ (0) �= �m,n must be false. �

Lemma 4.3: Let m ∈ N such that wλ(m, 0) > wλ(m0, n0). Then, for all 1 ≤ t < hm+1,0,

|Ftκ(0)| ≥ |�m,0|.
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Proof: recall that Ftκ(0) = −η + btλ − at , for some at , bt ∈ N. Since (at)t and (bt)t are
non-decreasing and t < hm+1,0, we have that bt ≤ qm+1 − q and at ≤ pm+1 − p, not both
equal. Hence either bt + q < qm+1 or at + p < pm+1 and bt + q ≤ qm+1. In either case,
by the best approximate property of convergents

|Ftκ(0)| = |(bt + q)λ − (at + p)| ≥ |qmλ − pm| = |�m,0|. �

Lemma 4.4: Let (m, n) ∈ N<
λ . Then for all 1 ≤ t < hm,n+1,

Ftκ(0) ≥ �m,0 or Ftκ(0) ≤ n�m,0 + �m−1,0 if m is even,

Ftκ(0) ≤ �m,0 or Ftκ(0) ≥ n�m,0 + �m−1,0 if m is odd.

Proof: From (12), recall that if m is even and n>0, then Pm,n/Qm,n > λ is a best
approximate from above, which implies

bλ − a ≤ Qm,nλ − Pm,n < 0, (27)

for all a, b ∈ Z with 0 < b < Qm,n+1 such that Pm,n/Qm,n �= a/b > λ.
Let (at)t∈N and (bt)t∈N be the sequences described by (26). Suppose that 1 ≤ t ≤ hm,n

with Ftκ(0) < 0. Then

bt ≤ Qm,n+1 − q and at ≤ Pm,n+1 − p,

since (at)t and (bt)t are non-decreasing. Thus,

bt + q ≤ Qm,n+1 and at + p ≤ Pm,n+1, (28)

not both equal. Therefore, from (26) we know that

Ftκ(0) = (bt + q)λ − (at + p),

and by (27) with (28), we have

Ftκ(0) ≤
{
Qm,nλ − Pm,n, if n �= 0,
qm−1λ − pm−1, if n = 0.

Recalling the definition of �m,n as in (14), we get

Ftκ(0) ≤
{

�m,n, if n �= 0,
�m−1,0, if n = 0.

Finally, by using (16), we have

Ftκ(0) ≤ n�m,0 + �m−1,0.

If Ftκ(0) > 0, then by Lemma 4.3, we have

Ftκ(0) ≥ �m,0.
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From (13), recall that ifm is odd and n>0, then Pm,n/Qm,n < λ is a best approximate from
below, that is

bλ − a ≥ Qm,nλ − Pm,n > 0,

for all a, b ∈ Z with 0 < b < Qm,n+1 such that Pm,n/Qm,n �= a/b < λ. Thus, in the case
thatm is odd and Ftκ(0) > 0, then

bt + q ≤ Qm,n+1 and at + p ≤ Pm,n+1,

not both equal. Thus, similarly to the above case wherem is even, we have

Ftκ(0) = (bt + q)λ − (at + p)

≥
{
Qm,nλ − Pm,n if n �= 0
qm−1λ − pm−1 if n = 0

= n�m,0 + �m−1,0.

On the other hand, if Ftκ(0) < 0, then by Lemma 4.3,

Ftκ(0) ≤ �m,0. �

In order to prove the next theorem, we will distinguish between the following two cases
and we will prove them separately. We will first prove that

if z ∈ E−1(Sm,n), then h(z) = hm,n+1,

and then we will prove that

if h(z) = hm,n+1, then Fh(z)κ (z) = E(z) + �m,n+1.

Theorem 4.5: Let α ∈ Bd+2, τ : {1, . . . , d} → {1, . . . , d} be a bijection, λ ∈ [0, 1) \ Q,
−λ < η = p − qλ < 1 for some p, q ∈ N \ {0} and set κ = (α, τ , λ, η, 1). For all (m, n) ∈
N<

λ with wλ(m, n) > wλ(m0, n0), h(E−1(Sm,n)) exists and is equal to hm,n+1. Moreover, let
z ∈ E−1(Sm,n). Then

Rκ(z) = E(z) + �m,n+1(λ). (29)

Proof: Let z ∈ Cc. Assume z ∈ E−1(Sm,n). Observe that E(z) + Fhm,n+1
κ (0) ∈ Cc, so h(z) ≤

hm,n+1. By Lemma 3.3, we know that

Fh(z)κ (z) = E(z) + Fh(z)κ (0).

Suppose, for a contradiction, that h(z) < hm,n+1. We will prove the contradiction for even
and odd m separately, starting with the case that m is even. By Lemma 4.4, we know that
either Fh(z)κ (0) ≥ �m,0 or F

h(z)
κ (0) ≤ n�m,0 + �m−1,0. Sincem is even, recall that

Sm,n = (C0 − �m,0) ∩ (Cc − �m,n+1) ∩ Cc ∩ (Cd+1 − (n�m,0 + �m−1,0)).

Observe that

Fh(z)κ (z) ∈ Sm,n + Fh(z)κ (0)
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⊂ (C0 + (Fh(z)κ (0) − �m,0)) ∩ (Cd+1 + (Fh(z)κ (0) − (n�m,0 + �m−1,0))).

Therefore, if Fh(z)κ (0) ≥ �m,0, then

Fh(z)κ (z) ∈ C0 + (Fh(z)κ (0) − �m,0) ⊂ C0.

But by the definition of h(z) as in (6), we have

Fh(z)κ (z) = Rκ(z) ∈ Cc,

which reveals a contradiction. Similarly, if Fh(z)κ (0) ≤ n�m,0 + �m−1,0, then

Fh(z)κ (z) ∈ Cd+1 + (Fh(z)κ (0) − (n�m,0 + �m−1,0)) ⊂ Cd+1,

which also contradicts Fh(z)κ (z) ∈ Cc.
Now supposem is odd. Then

Sm,n = (C0 − (n�m,0 + �m−1,0)) ∩ Cc ∩ (Cc − �m,n+1)) ∩ (Cd+1 − �m,0).

By Lemma 4.4, we know that either

Fh(z)κ (0) ≥ n�m,0 + �m−1,0 or Fh(z)κ (0) ≤ �m,n.

Clearly, either of these cases give similar contradictions as before. Therefore our assump-
tion that h(z) < hm,n+1 must be false, so in fact h(z) = hm,n+1.

Now, suppose h(z) = hm,n+1. By Lemma 3.3,

Fh(z)κ (z) = E(z) + Fh(z)κ (0),

and by Lemma 4.2 we know that

Fhm,n+1
κ (0) = �m,n+1.

Combining these two with our assumption gives us that if h(z) = hm,n+1, then Fh(z)κ (z) =
E(z) + �m,n+1. �

With this Theorem, as well as Theorem 3.9, we can prove the existence of a renormal-
ization scheme around the point 0. First, we will find the definition of the first return map
Rκ on the rest of Cc.

Lemma 4.6: Let Sm,n be as in (22) and (m0, n0) ∈ N<
λ as in (24). Define the set U(κ)

U(κ) = {0} ∪
⋃

(m,n)∈N<
λ

wλ(m,n)≥wλ(m0,n0)

Sm,n.

Then

U(κ) =
{

(C0 − �m0,0) ∩ Cc ∩ (Cd+1 − (n0�m0,0 + �m0−1,0)), if m0 is even,
(C0 − (n0�m0,0 + �m0−1,0)) ∩ Cc ∩ (Cd+1 − �m0,0), if m0 is odd,

and U(κ) is convex.
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Proof: For brevity we will drop the parameters κ when they are unambiguous.Wewill first
prove the equality

U(κ) =
{

(C0 − �m0,0) ∩ Cc ∩ (Cd+1 − (n0�m0,0 + �m0−1,0)), if m0 is even,
(C0 − (n0�m0,0 + �m0−1,0)) ∩ Cc ∩ (Cd+1 − �m0,0), if m0 is odd.

.

Observe that for all (m, n) ∈ N<
λ ,

Sm,n ⊂ Cc.

Additionally, if (m, n) ∈ N<
λ such that wλ(m, n) = j + k0 − 1, then

Sm,n ⊂
{⋃∞

m=m0
(C0 − �m,0), if m0 is even,⋃

wλ(m,n)≥wλ(m0,n0)(C0 − (n�m,0 + �m−1,0)), if m0 is odd.

Note that C0 − (n�m+1,0 + �m,0) ⊂ C0 − �m,0 for all (m + 1, n) ∈ N<
λ . Thus, we have

Sm,n ⊂
{
C0 − �m0,0, if m0 is even,
C0 − (n0�m0,0 + �m0−1,0), if m0 is odd.

.

We also know that

Sm,n ⊂
{⋃

wλ(m,n)≥wλ(m0,n0)(Cd+1 − (n�m,0 + �m−1,0)), if m0 is even,⋃∞
m=m0+1(Cd+1 − �m,0), if m0 is odd.

Thus, with a similar argument as above, we can show that

Sm,n ⊂
{
Cd+1 − (n0�m0,0 + �m0−1,0), if m0 is even,
Cd+1 − �m0,0, if m0 is odd.

,

Altogether, we deduce that

U(κ) ⊂
{

(C0 − �m0,0) ∩ Cc ∩ (Cd+1 − (n0�m0,0 + �m0−1,0)), if m0 is even,
(C0 − (n0�m0,0 + �m0−1,0)) ∩ Cc ∩ (Cd+1 − �m0,0), if m0 is odd.

.

Supposem0 is even, and let

z ∈ (C0 − �m0,0) ∩ Cc ∩ (Cd+1 − (n0�m0,0 + �m0−1,0)),

with z �= 0. Then there is some (m, n) ∈ N<
λ with m is odd and wλ(m, n) ≥ wλ(m0, n0)

such that

z ∈ C0 − (n�m,0 + �m−1,0),

and there is some (m′, n′) ∈ N<
λ withm′ even and wλ(m′, n′) ≥ wλ(m0, n0) such that

z ∈ Cd+1 − (n�m,0 + �m−1,0).

Suppose that (m, n) and (m′, n′) are the largest such pairs, which is well-defined since z �=
0. Sincem is odd andm′ is even, we either havem < m′ orm′ < m. Supposem < m′. Then

z ∈ (C0 − (n�m,0 + �m−1,0)) ∩ Cc ∩ (Cd+1 − �m,0).
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Since (m, n) is the largest pair such that z ∈ C0 − (n�m,0 + �m−1,0), and noting that (n +
1)�m,0 + �m−1,0 = �m,n+1 since n+ 1>0, we have that

z ∈ (Cc − �m,n+1)orz ∈ (Cd+1 − �m,n+1).

However, Cd+1 − �m,n+1 ⊂ Cd+1 sincem is odd and so �m,n+1 > 0. Importantly,

Cc ∩ (Cd+1 − �m,n+1) = ∅,
and thus z ∈ Cc − �m,n+1. Therefore,

z ∈ (C0 − (n�m,0 + �m−1,0)) ∩ (Cc − �m,n+1) ∩ Cc ∩ (Cd+1 − �m,0) = Sm,n,

so clearly z ∈ U(κ). In the case thatm′ < m we can use a similar argument to prove that

z ∈ (C0 − �m′,0) ∩ Cc ∩ (Cc − �m′,n′+1) ∩ (Cd+1 − (n′�m′,0 + �m′−1,0))

= Sm′,n′ ,

so that z ∈ U(κ). Ifm0 is odd and

z ∈ (C0 − (n0�m0,0 + �m0−1,0)) ∩ Cc ∩ (Cd+1 − �m0,0),

with z �= 0, then we can use a similar argument to prove that z ∈ U(κ). Hence, we have

U(κ) =
{

(C0 − �m0,0) ∩ Cc ∩ (Cd+1 − (n0�m0,0 + �m0−1,0)) if m0 is even
(C0 − (n0�m0,0 + �m0−1,0)) ∩ Cc ∩ (Cd+1 − �m0,0) if m0 is odd

.

To show that U is convex, one must note that the cones C0, Cc, and Cd+1 and all their
translates are convex sets, and that the intersection of convex sets is also convex. �

Define

Uk,l(κ) = {0} ∪
⋃

(m,n)∈N<
λ

wλ(m,n)≥wλ(k,l)

Sm,n, (30)

for wλ(k, l) ≥ wλ(m0, n0) (omitting the arguments where unambiguous), and let

κ ′ = (α, τ , λ, η′, ρ),

where −λ < η′ = p′ − q′λ < ρ is such that p′ ≤ p and q′ ≤ q. If (m′
0, n

′
0) ∈ N<

λ is
the maximal element of N<

λ such that Pm′
0,n

′
0
< p′ or Qm′

0,n
′
0
< q′, then wλ(m′

0, n
′
0) ≤

wλ(m0, n0). Furthermore,

Rκ |Um0,n0 (κ)(z) = Rκ ′ |Um0,n0 (κ)(z). (31)

Given α ∈ B, τ : {1, . . . , d} → {1, . . . , d} be a bijection, λ ∈ [0, 1) \ Q, ρ = 1, −λ < η =
p − qλ < 1 for some p, q ∈ N, let (m0, n0) ∈ N<

λ be as in (24). Let p′, q′ ∈ N \ {0} be
defined by

p′ = Pm0,0(g
2(λ)), and q′ = Qm0,0(g

2(λ)),

and let

η′ = p′ − q′g2(λ). (32)

Clearly by the definition of the one-sided convergents in (11), we have

−g2(λ) < η < 1.

With this in mind, we have the following Theorem.
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Theorem 4.7: Let α ∈ Bd+2, τ : {1, . . . , d} → {1, . . . , d} be a bijection, λ ∈ [0, 1) \ Q

and −λ < η = p − qλ < 1 for some p, q ∈ N. Set the tuples κ = (α, τ , λ, η, 1) and κ ′ =
(α, τ , λ′, η′, 1), where λ′ = g2(λ) and η′ is as in (32). Then for all z ∈ Um0,0(κ

′),

Rκ ′(z) = 1
1 − λ1λ

Rκ((1 − λ1λ)z).

Proof: We begin by noting that the quantity

(m′
0, n

′
0) = max{(m, n) ∈ N<

g2(λ) : Pm,n(g2(λ)) < p′ or Qm,n(g2(λ)) < q′}, (33)

satisfies (m′
0, n

′
0) = (m0, 0) and, importantly for the reasons of (31), we have

wλ(m′
0 + 2, n′

0) ≤ wλ(m0 + 2, 0). (34)

Here we recall the equality in Proposition 3.4 since (m′
0, n

′
0) is being considered an element

ofN<
g2(λ)

and (m0, 0) an element ofN<
λ .

Recall that by Theorem 3.9, we have

1
1 − λ1λ

Sj+2,n(λ) = Sj,n(g2(λ)),

for all (j + 2, n) ∈ N<
λ withwλ(j + 2, n) ≥ wλ(m0 + 2, 0), i.e. j ≥ m0. Note that by Propo-

sition 3.4,

wλ(m′
0 + 2, n′

0) ≤ wλ(m0 + 2, 0),

is equivalent to the statement that

wg2(λ)(m
′
0, n

′
0) ≤ wg2(λ)(m0, 0).

Hence,
1

1 − λ1λ
Um0+2,0(κ) = Um0,0(κ

′).

Let z ∈ Cc so that (1 − λ1λ)z ∈ Sm+2,n(λ) with wλ(m + 2, n) ≥ wλ(m0 + 2, 0). Also note
that since aCj = Cj for all a>0 and E consists of rotations about 0, we have

E(az) = aE(z), (35)

for a>0. Therefore z ∈ Sm,n(g2(λ)) and by expanding Rκ as in (29) we get

1
1 − λ1λ

Rκ ((1 − λ1λ)z) = 1
1 − λ1λ

(
E((1 − λ1λ)z) + �m+2,n+1(λ)

)
.

Using 35, we get

1
1 − λ1λ

Rκ ((1 − λ1λ)z) = 1
1 − λ1λ

(
(1 − λ1λ)E(z) + �m+2,n+1(λ)

)
= E(z) +

(
−�m+2,n+1(λ)

λ1λ − 1

)
.
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Figure 9. A plot of 1500 iterates of 500 uniformly chosen points within the box [−1, λ] × [0, 1.1] under
the TCE with parameters α = (π/2 − 0.6, 0.5, 0.7,π − 0.6), τ : 1 	→ 2, 2 	→ 1, λ = 
, η = 
2, and
ρ = 1. The first 400 points of each orbit are omitted to remove transients.

Now, recall that p1 = 1 and q1 = λ1, so that�1,0(λ) = λ1λ − 1. Using (21) and comparing
with the formula for Rκ ′ as in (29), we see

1
1 − λ1λ

Rκ ((1 − λ1λ)z) = E(z) +
(

−�m+2,n+1(λ)

�1,0(λ)

)

= E(z) + �m,n+1(g2(λ))

= Rκ ′(z). �

The immediate consequence of Theorem 4.7 is that when λ ∈ [0, 1) \ Q and−λ < η =
p − qλ < 1, one can renormalize infinitely ‘towards’ 0 in the sense that the domains of each
renormalization are shrinking neighbourhoods of 0 in Cc. Additionally, the renormaliza-
tions are determined by the orbit of λ under the square of the Gauss map g2(x). We shall
now apply our results in this and the previous section to an example (Figure 9).

5. An example

As an example inspired by Peres and Rodrigues [23], we will set α ∈ Bd+2, λ = 
, ρ = 1,
and η = 
2, where


 =
√
5 − 1
2

. (36)

In this case the the spaceN<
λ = N × {0} ∼= N since λ = [0; 1̄] and so λk = 1 for all k ∈ N.

Thus, w
(m, n) = w
(m) = m. Also due to λk = 1 for each k ∈ N, the semiconvergents
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Figure 10. A partition of Cc in the case where α = (1, 0.5,π − 2.5, 1), τ : 1 	→ 2, 2 	→ 1, λ = 
, η =

2, andρ = 1. A cascading pattern towards the origin can be seen, but its geometric structure becomes
clearer after we apply the cone exchange E.

Pm/Qm simply coincide with the convergents pm/qm, and the convergents are in this case
defined by

p0 = 0, q0 = 1,

p1 = 1, q1 = 1,

pm = pn−1 + pn−2, qm = qm−1 + qm−2.

It is thus clear that pm = Fibm and qm = Fibm+1, where (Fibm)m∈N is the Fibonacci
sequence with Fib0 = 0 and Fib1 = 1.

The first return times (hm)m∈N in the case of λ = 
 are given by

hm = (qm − 1) + (pm − 1) + 1 = Fibm+1 + Fibm −1 = Fibm+2 −1

for all m ∈ N. Observe that hm = hm−1 + hm−2 + 1 for all m ≥ 2, and h0 = 2, h1 = 4.
Now note that η = 
2 = 1 − 
 = 1 − λ, and thus we have

m0 = max{m ∈ N : pm < 1 or qm < 1} = 0.

The errors of the convergents �m(
) are given by

�m(
) = qmλ − pm = Fibm+1 
 − Fibm . (37)

Proposition 5.1: We have

�m(
) = −(−
)m+1
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Proof: Observe that

�m(
) = Fibm+1 
 − Fibm
= Fibm 
 + Fibm−1 
 − Fibm
= Fibm−1 
 − (1 − 
) Fibm
= −
(Fibm 
 − Fibm−1)

= −
�m−1(
).

Recall that p0 = 0 and q0 = 1. Then a simple inductive argument shows us that

�m(
) = (−
)m�0(
) = (−
)m(q0
 − p0) = −(−
)m+1 �

Noting that the recurrence relations for pm and qm give us p−1 = 1 and q−1 = 0
and so we can set �−1 = −1 = −(−
)0, which remains consistent with (37). With this
proposition in mind, form ∈ N we can determine the sets Sm as

Sm =
{

(C0 − �m) ∩ Cc ∩ (Cc − �m+1) ∩ (Cd+1 − �m−1), if m is even,
(C0 − �m−1) ∩ (Cc − �m+1) ∩ Cc ∩ (Cd+1 − �m), if m is odd.

=
{

(C0 + (−
)m+1) ∩ Cc ∩ (Cc + (−
)m+2) ∩ (Cd+1 + (−
)m), if m is even,
(C0 + (−
)m) ∩ (Cc + (−
)m+2) ∩ Cc ∩ (Cd+1 + (−
)m+1), if m is odd.

These are rhombi, as can be seen in Figure 11, and as can be deduced from the discussion
around (23) since α0 = αd+1. It is also clear to see that for allm ∈ N.

Sm+2 = 
2Sm. (38)

In this case, it is simple to find a partition for the entirity of the middle cone Cc for the map
Rκ . In particular, define the sets X and Y to be

X = Cc ∩ (Cc − (λ − η)) ∩ (Cd+1 + η) = Cc ∩ (Cc − 
3) ∩ (Cd+1 + 
2), (39)

and

Y = Cc ∩ (Cc + η) = Cc ∩ (Cc + 
2). (40)

As we will see soon, the collection {X,Y , Sn : n ≥ 2} forms a partition of Cc. We are
interested in the pre-image of these sets under E. In particular, define the partition

C′ = {
E−1(S) ∩ Cj : j ∈ {1, . . . , d}, S ∈ {Y ,X, S2, S3, . . . , }

}
.

This partition can be seen in Figure 10. As a consequence of the next theorem, (C′,Rκ)

is a PWI with a countably infinite number of atoms.We also define a separate family of sets

Q = {
Qn,j = E−1(Sn) ∩ Cj : n ∈ N, j ∈ {1, . . . , d}} ,

which includes only the rhombi, and thus forms a partition of only a subset of the middle
cone. Note that since λm = 1 for all m ∈ N and m0 = 0. We see that the set U(κ) from
Lemma 4.6 is given by

U(κ) = {0} ∪
∞⋃

m=0
Sm
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Figure 11. The same partition as in Figure 10, but after an application of E, which reveals an alternating
pattern of rhombi.

= (C0 − �0) ∩ Cc ∩ (Cd+1 − �−1)

= (C0 − 
) ∩ Cc ∩ (Cd+1 + 1).

Also observe that by removing S0 and S1 we get

U2,0(κ) = {0} ∪
∞⋃

m=2
Sm = (C0 − 
3) ∩ Cc ∩ (Cd+1 + 
2).

From this, we notice that

U2(κ) ∪ X = Cc ∩ (Cd+1 + 
2) ∩ (
(Cc − 
3) ∪ (C0 − 
3)

)
,

but since Cd+1 − 
3 ⊂ Cd+1, we know that Cc ∩ (Cd+1 − 
3) = ∅, so
U2(κ) ∪ X = Cc ∩ (Cd+1 + 
2) ∩ (

(Cd+1 − 
3) ∪ (Cc − 
3) ∪ (C0 − 
3)
)

= Cc ∩ (Cd+1 + 
2) ∩ H

= Cc ∩ (Cd+1 + 
2).

Therefore, we can see that

U2(κ) ∪ X ∪ Y = Cc ∩ (
(Cc + 
2) ∪ (Cd+1 + 
2)

)
,

and a similar argument tells us that Cc ∩ (C0 + 
2) = ∅ and so finally we get,

U2(κ) ∪ X ∪ Y = Cc ∩ (
(C0 + 
2) ∪ (Cc + 
2) ∪ (Cd+1 + 
2)

) = Cc ∩ H = Cc.

Therefore, C′ is a partition of Cc up to a set of Lebesgue measure 0.
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Figure 12. The same partition of Cc as in Figure 10, after an application of Rκ , which has shifted the
rhombi alternately. Note that there is an overlap between the cone and ribbon (both of which are more
clearly seen in Figure 11) on the top of the figure, causing an unavoidable overlap of the colours.

Note that for all (m, n) ∈ N<

 , w
(m, 1) = w
(m + 1, 0), and so by recalling that

w
(m, 0) = w
(m) = m, the condition that w
(m, 1) > w
(m0, 0) is equivalent to the
condition that

w
(m + 1, 0) > w
(m0, 0),

which is itself equivalent to

m > m0 − 1 = −1.

With this in mind, Theorem 4.5 tells us that for allm ∈ N, if z ∈ E−1(Sm), then (Figure 12)

h(z) = hm,1 = hm+1,0 = hm+1 = Fibm+3 −1,

and

Rκ(z) = E(z) + �m+1 = E(z) − (−
)m+2,

Observe that λ = 
 is a special case of irrational number within [0, 1] in the sense that it
is a fixed point of the Gaussmap g. Thus, g2(
) = 
 and thus we can choose η′ = η = 1 −

 = 
2 and Theorem 4.7 tells us that the first return map Rκ exhibits exact self-similarity
within U(κ). In particular, for all z ∈ U0,0(κ) = U(κ), we have the following conjugacy

Rκ(z) = 1
−�1

Rκ((−�1)z) = 1

2Rκ(
2z).

One consequence of this is that if there exists a periodic point z ∈ Sm of period k, then
z is a periodic point of Rκ with period k/hm+1. The self-similarity shows that for all n ∈
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Z such that 2n ≥ −m, 
2nz is a periodic point of Rκ , thus also a periodic point of Fκ

whose period is an integer multiple of hm+2n+1. In particular, there is a sequence (zn)n∈N

given by

zn = 
2n−mz, (41)

so that for all n ∈ N, zn ∈ S2n+m̃ and the period of zn is an integer multiple of h2n+m̃+1,
where {0, 1} 
 m̃ ∼= m (mod 2).

Given a map f : X → X, letO+
f (x) denote the forward orbit of x ∈ X under f, that is

O+
f (x) = {f n(x) : n ∈ N}.

Proposition 5.2: Suppose there exists a periodic point z ∈ Sm for some m ∈ N, and let
(zn)n∈N be the sequence of periodic points given by (41). Then the sequence (O+

Fκ
(zn))n∈N

of periodic orbits accumulates on the interval [−1,
].

Proof: Let n ∈ N. Note that

{Fjκ(zn) : 1 ≤ j ≤ h(z)} ⊂ O+
Fκ

(zn). (42)

Lemma 3.3 tells us that for all 1 ≤ j ≤ h(zn),

Fjκ(zn) = E(zn) + Fjκ(0).

Therefore,

|Fjκ(zn) − Fjκ(0)| = |E(zn)| = |zn|. (43)

Let H ∈ N. Then there exists an N ∈ N such that h(zn) ≥ H for all n ≥ N, and thus (43)
holds for all 1 ≤ j ≤ H. Now let ε > 0 be small. Then there exists an N ′ ∈ N such that for
all integers n ≥ N′ such that

|zn| < ε. (44)

Set N∗ = max{N,N′}. Then for all integers n ≥ N∗, both (43) holds for all 1 ≤ j ≤ H
and (44) holds. Hence, for all n ≥ N∗ we have

|Fjκ(z) − Fjκ(0)| < ε,

for all 1 ≤ j ≤ H. Since H and ε are independent and arbitrary, we conclude that the
sequence (O+

Fκ
(zn))n∈N accumulates on the setO+

Fκ
(0).

By Proposition 3.1, Fκ is a 2-IET everywhere on the interval [−1, λ] except on the
preimages of 0, since Fκ(0) = −η = 1 − λ, contrary to Fκ(x) = x + λ for x ∈ [−1, 0) and
Fκ(x) = x − 1 for x ∈ (0, λ).

Therefore Fκ is conjugate to an irrational rotation almost everywhere (with respect to
one-dimensional Lebesgue measure), since λ = 
 is irrational. In particular, since λ is
irrational and η = 1 − λ, we know, by for example Lemma 4.3, that Fjκ(0) = Fj−1

κ (−η) is
bounded away from 0 for all integers j>0, so Fjκ(0) �= 0 for any j>0.
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Hence, the orbit of Fκ(0) = −η under Fκ is also the orbit under an irrational rotation,
and thus the orbit of 0 is dense in the interval [−1, λ], i.e.

O+
Fκ

(0) = [−1, λ].

Therefore, the sequence (O+
Fκ

(zn))n∈N accumulates on the interval [−1, λ]. �

Remark 5.3: Although extending Proposition 5.2 to periodic continued fractionsλ should
follow from a similar strategy to the proof used here, an extension to aperiodic continued
fractions seems to require nothing short of assuming/proving that every TCE has at least
one periodic point in its ‘renormalizable domain’ U(κ).

6. Discussion

Translated cone exchanges, introduced first in [4] and investigated in [22, 23], are an inter-
esting and largely unexplored family of parametrized PWIs. They contain an embedding
of a simple IET on the baseline and as such they are an interesting tool to understandmore
general PWIs by gaining leverage from known results for IETs. In this paper we go beyond
results in [4, 22, 23] to show that for a dense subset of an open set in the parameter space
of TCEs there is a mapping (κ 	→ κ ′ in Theorem 4.7) that determines a renormalization
scheme for the first return map Rκ of Fκ to the vertex 0 of the middle cone Cc. This helps
us describe the small-scale, long-term behaviour of Fκ near the baseline [−1, λ] via the
large-scale, short-term behaviour of Fκ ′′ with κ ′′ = (α, τ , λ′′, η′′, 1), λ′′ = g2k(λ), a large
enough integer k>0 and some suitably chosen η′′ described by (32). Proposition 5.2 is an
example of this, where a periodic disk of small period for Fκ and the periodicity of the con-
tinued fraction coefficients of λ = 
 give rise to an countable collection of periodic disks
of arbitrarily high period clustering on [−1, λ], through the renormalizability established
by Theorem 4.7.

Although these results give a glimpse into the dynamics for orbits close to the baseline,
there remains a lot more to do to understand the dynamics of these TCEs near general
points in exceptional set, but this seems to be a far more complex task to undertake,
especially as the dynamics near the baseline primarily consists of horizontal translations,
whereas in general the effect of the rotations will be inextricably linked to translations.
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