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Protocols for trainable and differentiable quantum generative modeling
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We propose an approach for learning probability distributions as differentiable quantum circuits (DQC) that
enable efficient quantum generative modeling (QGM) and synthetic data generation. Contrary to existing QGM
approaches, we perform training of a DQC-based model, where data is encoded in a latent space with the
proposed phase feature map of exponential capacity. This is followed by a trainable quantum circuit, forming
the model. We then map the trained model to the bit basis using a fixed unitary transformation, in this case
corresponding to a quantum Fourier transform circuit. It allows fast sampling from parametrized distributions
using a single-shot readout. Importantly, latent space training provides models that are automatically differen-
tiable, and we show how samples from solutions of stochastic differential equations (SDEs) can be accessed by
solving stationary and time-dependent Fokker-Planck equations with a quantum protocol. Our approach opens a
route to multidimensional generative modeling with qubit registers explicitly correlated via a (fixed) entangling
layer. In this case quantum computers can offer advantage as efficient samplers, which perform complex inverse
transform sampling enabled by the fundamental laws of quantum mechanics. On a technical side the advances are
multiple, as we introduce the phase feature map, analyze its properties, and develop frequency-taming techniques
that include qubitwise training and feature map sparsification.
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I. INTRODUCTION

Quantum computing (QC) promises to offer a computa-
tional advantage by meticulous usage of an exponentially
large Hilbert space for qubit registers [1]. However, the use
of QC is limited to specific tasks, as efficient solutions are
only expected for some problem types [2]. One example
corresponds to sampling from quantum states created by
random entangling circuits [3,4]. This task lies at the heart
of quantum supremacy experiments [5–8]. While being com-
putationally advantageous for producing samples (just need
to send a “measure” instruction), the considered distributions
are not suitable for industrially relevant advantage [9], though
may be helpful in studying related concept such as quantum
chaos [10]. Finding a subset of problems with distributions
which are both classically intractable and industrially useful
is an open challenge. Quantum generative modeling (QGM)
aims to exploit trainable circuits that can prepare distributions
as quantum states, for instance, trying to match patterns
from available data. Being a subject of the emerging field
of quantum machine learning (QML) [11,12], QGM utilizes
the Born rule inherent to quantum mechanics [13]. The
goal is to represent a parametrized probability distribution
pθ (x). It represents a probability to measure a bit string
x from a variational state |ψθ〉 parametrized by a vector
of gate parameters θ [14,15]. For the simple case of pure
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states this reads pQCBM
θ

(x) = |〈x|ψθ〉|2. This approach is the
basis of quantum circuit Born machines (QCBMs) [16] that
learn models directly from samples of a target distribution
ptarget (x) using various implicit loss functions [17,18]. A
similar approach is used for generating circuits in quantum
generative adversarial networks (QGANs) [19–23], where
the training schedule corresponds to the minimax game. To
date, QCBMs have been used for loading static distributions
corresponding to bars-and-stripes dataset [15,17], learning
datasets of correlated currency pairs [24], and digitized
Gaussian and bimodal distributions [17]. QGANs were used
for (reduced) MNIST datasets [25], financial modeling [20],
learning pure states [26], and sampling particle traces [27].
While making a step toward sampling-based advantage,
current QGM performance remains limited even for idealized
statevector simulators [17], and in the case of QCBM
may require matching all state amplitudes for representing
particular distributions. Developing models that can balance
expressivity and trainability is an open problem.

A promising application for generative modeling corre-
sponds to solving stochastic differential equations (SDEs),
where system evolves in the presence of noise, and expected
behavior relies on averaging over multiple samples and tra-
jectories [28]. Note that the samples are generated from an
underlying probability distribution, which obeys a Fokker-
Planck equation. Depending on the problem context, this may
also require sampling from evolving distributions, and assum-
ing differential constraints added into the generative model.
However, many popular generative modeling algorithms are
not suitable for this task. For example, QCBM architecture is
not automatically differentiable with respect to variable x, and
QGAN differentiation leads to an ill-defined loss landscape
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[29]. Thus, both have limited application for SDE solving. The
latter would be hugely beneficial as differential constraints
remove strong dependence on data, regularize models, and
offer additional structure to learning (see quantum approach
to adding differential constraints in Refs. [30,31] and physics-
informed neural network architectures in classical machine
learning [32–34]). SDE-based sampling is also motivated by
works in the financial sector where Monte Carlo techniques
are used. To date, various quantum protocols for associated
PDEs has been considered, in many cases taking the perspec-
tive of real and imaginary time evolution [35–38] or using
amplitude amplification for tasks like option pricing [39–43].
More broadly, the area of differential equations with quan-
tum computers has been developing rapidly, starting from
fault-tolerant QC oriented [44–47] to near-term and quantum-
inspired protocols [30,31,48–52]. Furthermore, differentiable
distributions allow for the use of gradient ascent which en-
ables extremal learning [53], with relevant applications in
design/optimization tasks.

We first note that the ability of differentiating generative
models can be restored when using feature map encoding of
continuous distributions [54], at the expense of multishot mea-
surement to get a sample from QNNs. Second, the differential
constraints at the sampling stage can be implemented using
quantum quantile mechanics (QQM) [29], where a quantum
circuit is trained to generate samples from SDEs and can be
evolved in time, albeit with expectation-based sampling. Here,
merging differentiability with fast sampling will offer both po-
tential expressivity advantage and sampling advantage of QC.

In this work we develop a workflow for training of
quantum generators that can be differentiated with respect
to a continuous stochastic variable. For this, we separate the
training and sampling stages of QGM. During the training
stage we build an explicit model for probability distributions
in the latent space (taken as a phase space) enabled by the
phase feature map, followed by a variational circuit, and
DQC-type readout. The sampling stage is then performed in
the bit basis space enabled by the fixed unitary transformation
(quantum Fourier transform), and followed by projective
measurements for a sample-by-sample readout. The proposed
workflow leads to differentiable quantum generative models
(DQGM [55]), and is used for sampling from SDEs. Another
consequence of training in the phase space is inherent model
regularization, enforced by the proposed qubitwise learning,
feature map sparsification, and frequency-taming techniques
for circuit initialization based on Fourier series. Showing
probability distribution (or generic function) loading into state
amplitudes, we proceed to solve Fokker-Planck equations,
giving access to time-series of the Ornstein-Uhlenbeck
process. Finally, considering correlated registers where
quantum correlations are included by entangling circuits
[56,57], we discuss how classically hard multidimensional
distributions can be automatically “inverted” by QCs, making
a step toward a sampling advantage.

II. THE APPROACH

Generative modeling concerns the process of drawing
samples of a stochastic variable Xt ∼ pθ,t (x) from a train-
able distribution with variational angles θ, which is also

parametrized by t . Typically, we associate t to time as a
deterministic variable, which may enter explicitly (as an ad-
ditional parameter) or implicitly encoded in θ(t ). We will
use the notation θ, t throughout for both cases, and specify
encoding where ambiguity may arise. In the generic quan-
tum case the model can be constructed using Born’s rule,
pθ,t (x) = tr{|x〉〈x|ρ̂θ,t }, where samples x corresponding to
length-N binary strings are readout from the density op-
erator ρ̂θ,t = Eθ,t (ρ̂0) created by a parametrized completely
positive trace-preserving (CPTP) map Eθ,t from some ini-
tial density operator ρ̂0. The latter typically corresponds to
the computational zero state ρ̂0 = |ø〉〈ø|, where |ø〉 ≡ |0〉⊗M

for M � N . In many cases unitary quantum channels are
considered, Eθ,t (ρ̂0) = Ûθ,t ρ̂0Û†

θ,t with M = N and Ûθ,t is a
generic parametrized unitary on N-qubit register. Note that
when Ûθ ∈ SU (2N ) in principle any state of the register can be
prepared, and we call such a model maximally expressive. We
recall that typically QCBM-style generative modeling relies
on sample-based training of pQCBM

θ,t (x) = tr{|x〉〈x|Ûθ,t ρ̂0Û†
θ,t }

at digital (i.e., integer, binary) values of x only, and an-
gles θ are sought separately at different points of time t .
The generic goal is minimizing a loss function LQCBM

θ,t =∑2N −1
x=0 D[ptarget (x, t ), pQCBM

θ,t (x)], for some distance measure
D[·, ·]. The optimization procedure gives the optimal an-
gles θopt = argminθ[LQCBM

θ,t ] at fixed t . In practice, this is
achieved using data samples x ∈ Xdata (typically, from ob-
servations) and a proxy loss, corresponding to maximum
mean discrepancy (MMD) [17], Stein discrepancy (SD) [18],
Kullback-Leibler divergence, as well as other types of f-
divergences [58]. Once pQCBM

θ,t (x) is successfully trained, one
can proceed directly to sampling from the same circuit.

We propose to act differently. We start by describing the
protocol for generating computational states {|x〉} (each as-
sociated to binary strings x ∈ B = {00..0, 10..0, . . . , 11..1}).
This can be achieved in two steps. First, a parametrized fea-
ture map creates a latent (phase) space representation of the
variable x, ρ̂x̃ = Ûϕ (x)ρ̂0Û†

ϕ (x). For convenience, we call the
corresponding circuit the phase feature map. For ρ̂0 = |ø〉〈ø|
it reads

Ûϕ (x) =
N∏

j=1

[
R̂z

j

(
2πx

2 j

)
Ĥj

]
, (1)

where R̂z
j (φ) = cos(φ/2)1̂ j − i sin(φ/2)Ẑ j is a single-qubit

rotation and Ĥj is a Hadamard gate, acting at site j. The circuit
in Eq. (1) maps an initial state into a superposition product
state ρ̂x̃ = |̃x〉〈̃x| based on the latent state |̃x〉 := Ûϕ (x)|ø〉,
which explicitly reads

|̃x〉 = e−i�/2

2N/2

N⊗
j=1

(
|0〉 j + exp

(
−i

2πx

2 j

)
|1〉 j

)
, (2)

where � = 2π (1 − 2−N ) is an overall phase. Importantly,
the phase space representation contains all computational ba-
sis states, which we can label by integers {x�} = {0, 1, . . .

2N − 1}, and associated states are not entangled. Next, we ap-
ply the quantum circuit ÛTϕ

such that it transforms latent states
{|̃x�〉} into binary states {|x〉} as a bijection. The subscript
ϕ highlights that the transformation circuit is designed for
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FIG. 1. DQGM training and sampling. At the training stage we
use the latent space model representation, where the phase feature
map directly follows by the variational circuit (and basis transforma-
tion circuits effectively cancel each other). At the sampling stage,
we revert the trained variational circuit and map the model from
the latent to the bit space, while the feature map and inverse basis
transformation are treated as a part of the projective measurement,
and are subsumed in a sampling process.

the specific feature map. The corresponding density operator
ρ̂x = ÛTϕ

ρ̂x̃Û†
Tϕ

thus encodes the variable x in the bit basis.
We note that in the considered case such transformation rep-
resents an inverse quantum Fourier transform circuit, ÛTϕ

=
Û†

QFT [59], which consists of O(N2) gates (Hadamards and
controlled-phase). Other options are available for different
basis choices, and we discuss them in the conclusions section.
Having generated the state ρ̂x we proceed by applying a varia-
tional ansatz. We choose it in the form Ŵθ̃,t = Ũθ̃,t Û†

Tϕ
, where

with the tilde in θ̃ and Ũθ̃,t we highlight that the circuit struc-
ture and parametrization angles are different from QCBM.
Our strategy is building a differentiable quantum generative
model (DQGM [55]), fully in the latent space, p̃θ̃ ,t (x) =
tr{ĈøŨθ̃,t ρ̂x̃Ũ

†
θ̃,t

}, with the cost (measurement) operator being

Ĉø = ρ0. The model is trained to match the target distribution
for θ̃opt,t = argminθ̃

∑
x∈X D[ptarget (x, t ), p̃θ̃ ,t (x)] for a grid X

of real-valued x ∈ [0, 2N − 1) (or in other normalized inter-
val), at given t . Note that due to training in the latent space
the cost can be also a local operator [60], or single-ancilla
SWAP/Hadamard test for measuring the overlap. We then
sample the trained model using projective measurements as
Xt ∼ pθ̃opt,t = tr{|x〉〈x|ÛTϕ

Ũ†
θ̃opt,t

ρ̂0Ũθ̃opt,t Û
†
Tϕ

} (see Fig. 1). To

show that we can sample the model successfully in the bit
basis, let us formulate the connection between DQGM and
QCBM in Theorem 1 below.

Theorem 1. Probability distributions of binary samples
{Xt } from maximally expressive QCBM at global optimum
θopt and maximally expressive DQGM at global optimum θ̃opt

are equivalent.
Proof. Generative modeling from QCBM can be expressed

as sampling from a generalized probability distribution

pgQCBM
θ,t (x) = tr{|x〉〈x|Ûθ,t ρ̂0Û†

θ,t } (3)

= tr{ĈøÛ†
ϕ (x)Û†

Tϕ
Ûθ,t ρ̂0Û†

θ,t ÛTϕ
Ûϕ (x)}, (4)

where Û†
ϕ (x) corresponds to the phase feature map. At dig-

ital values of the variable Eq. (4) corresponds to pQCBM
θ,t (x),

but extends QCBM to x ∈ R. Note that in the intervals be-
tween digital points � < x < � + 1 (� = 0, 1, . . . , 2N − 2) the
samples come from the superposition of neighboring states,

∝ α|x�〉 + β|x�+1〉 (with x-dependent complex coefficients
α, β), preserving sampling locality. The latent DQGM model
can be rewritten as

p̃θ̃,t (x) = tr{ρ̂x̃Ũ
†
θ̃,t

ρ̂0Ũθ̃,t } = tr{|x〉〈x|Ŵ†
θ̃,t

ρ̂0Ŵθ̃,t }, (5)

directly following from cyclic properties of the trace and pre-
viously introduced definitions. Comparing models in Eqs. (3)
and (5), and given that quantum states Ûθ,t ρ̂0Û†

θ,t and

Ŵ†
θ̃,t

ρ̂0Ŵθ̃,t are trained to match the same target distribu-

tion, for maximally expressive circuits Ûθ,t , Ũθ̃,t ∈ SU (2N )
the probability distributions match at the global optimum,
pgQCBM

θopt,t
(x) = p̃θ̃opt,t (x). This follows from the fact that both

circuits are in principle capable of expressing any state
(quasidistribution) [59,61], where Ŵθ̃,t can absorb a fixed
transformation by readjusting the angles, and both aim to
prepare the same optimal state. �

While we show that the two approaches are equivalent
during the sampling stage, the two models are vastly different
during the training stage. For the QCBM and its general-
ization in Eq. (4) the sampling and training settings are the
same. They require a variational state to match bit string
probabilities already in training. This basis may work better
for peaked or discrete distributions (like bars-and-stripes),
but challenging for smooth functions which are continuous
and have no sharp transitions (equivalently, have large fill-
ing ratio [62]). For the DQGM we only require training of
the latent model, where a superposition product state is ob-
tained from x-parametrized single qubit rotations (spans all
O(2N ) amplitudes) and needs a certain overlap with a vari-
ational state (with a support of the same size). Intuitively,
this task is easier to achieve, and we substantiate the claim
later when conducting numerical experiments. As DQGM
and QCBM originate from the same phase feature map, they
have the same model capacity—spectrum characterized by
exponentially large number of frequencies (considered in the
next subsection). At the same time, DQGM has better model
expressivity in terms of access to Fourier coefficients for
relevant low-frequency components, thanks to the (nonvari-
ational) unitary transformation ÛTϕ

that can remove a part of
the training complexity. Due to all of this our approach is more
suitable for smooth models.

1. Model differentiation and constrained training
from stochastic differential equations

One of the important consequences of the proposed ap-
proach is the possibility for differentiating a constructed
quantum model. This can be done by using quantum auto-
matic differentiation (AD) applied to the phase feature map
[30]. Note that as we use the latent model in training, we
can apply differential constraints already at this stage. Only
once trained we proceed to sampling. Let us discuss ex-
amples where such physics (or finance/biology/chemistry)
constraints are important. Consider a stochastic differential
equation written as [28]

dXt = f (Xt , t )dt + g(Xt , t )dWt , (6)

where dWt is a standard Wiener process, Xt is time-dependent
stochastic variable, and f (·), g(·) are some scalar functions
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typically referred as drift and diffusion. For any SDE in the
form of Eq. (6) we can write an equation of motion for the
probability distribution. This can correspond to a Fokker-
Planck equation (FPE)

∂

∂t
p(x, t ) = − ∂

∂x
[ f (x, t )p(x, t )] + 1

2

∂2

∂x2
[g2(x, t )p(x, t )],

(7)

written for the time-dependent probability distribution func-
tion p(x, t ) of the stochastic variable Xt . This is the PDE
which describes the evolution of p(x, t ) from a known initial
distribution at a time t0 under the random forces (noise) as
stated in Eq. (6). The FPE is a special case of the Kolmogorov
Forward equation. Alternatively, if instead we want to deter-
mine previous distributions for a given end distribution, then
a Kolmogorov backward equation (KBE) [63] is used. For the
case of Eq. (6) this can be written as

− ∂

∂t
p(x, t ) = f (x, t )

∂

∂x
p(x, t ) + g2(x, t )

2

∂2

∂x2
p(x, t ). (8)

This is solved for p(x, t ), t � T where p(x, T ) is a known
final distribution.

More generally, the evolution can be described by the
Feynman-Kac formula [38]. Importantly, once we learn the
p(x, t ) in the domain of interest t ∈ T , in-principle we can
obtain stochastic trajectories (samples from time-incremented
distributions), offering full generative modeling of time-
series. Normally, given only access to a function p(x, t ),
generating samples requires a costly inversion procedure (or
equivalent), and is challenging for multidimensional prob-
lems. For the quantum generative models it requires learning
t-parametrized DQGM at different times, giving direct access
to fast sampling. Below we sketch the workflow, and pro-
vide more details when considering examples in the Results
section.

The stochastic problem (6) can be approached from a
data-driven perspective, where we first learn a representation
of the steady state from available samples. This is highly
relevant also from the point of view of model discovery
[64], as drift and diffusion coefficients may not be immedi-
ately known. Setting the loss function for DQGM as Ldata

θ,t0
=∑

x∈X D[ptarget (x, t0), p̃θ,t0 (x)], we can learn a distribution at
a point of time t0.

Now, let us comment on two possible ways of encoding the
time variable. First, time t can be embedded explicitly. One
option is to use a t-dependent feature map for parametriz-
ing the model. For instance, we employed it successfully in
DQC-based quantum function propagation [29]. In this case,
it is convenient to use an identity-valued feature map at t0,
and learn to adjust angles as t deviates from t0. Second,
explicit encoding of time can take a polynomial of t (or
even a feed-forward neural network), with θ’s being trainable
coefficients. In this case, t = t0 training can be performed
for zeroth degree term, and adjusting remaining coefficients
at other times. Finally, we can also assume an implicit de-
pendence of variational coefficients θ(t ) on time. In this
case, we learn to represent data at t0 with parameters θ(t0),
and then demand that each point of time the distribution
satisfies differential constraints for a PDE in question. This
leads to model-dependent updates of variational parameters

θ(t + t )
γ←− θ(t ) (with an update rule γ ), thus evolving the

model in discrete time [65]. Below, we show how to intro-
duce model-dependent differential constraints, and training or
evolving DQGM in both explicit and implicit manner. We note
both are physics-informed, and represent a step forward from
static sample generation.

Given the SDE in Eq. (6), the evolution of associated
p(x, t ) requires solving a PDE either forward or backward
in time. The former case corresponds to solving the Fokker-
Planck equation (corresponding to the Kolmogorov forward
equation) written in Eq. (7). We evolve the system toward the
stationary state at ts > t from some initial distribution. The
stationary distribution of FPE then satisfies the second-order
differential equation

FPE(p, x, ts; f , g) := − d

dx
[ f (x, ts)p(x, ts )]

+ 1

2

d2

dx2
[g2(x, ts )p(x, ts )] = 0, (9)

and we call the corresponding differential constraint on the
distribution the FPE differential operator. Specifically, we can
substitute p(x, ts ) with p̃θ,ts (x) and train a quantum generative
model to respect the FPE constraint assigning the differen-
tial loss Ldiff

θ,ts
= ∑

x∈X D[0, FPE( p̃θ,ts , x; f , g)], such that it
remains true for all x. We note that this inherently regular-
izes the model, and in particular leads to improved derivative
matching, highly relevant for studying tails of distributions
and dynamics.

Next, we note that we can train a quantum model to repre-
sent the PDF at some point of time t0, using data as a snapshot
during evolution. Then, the full PDE and associated differen-
tial constraints are used to propagate it in the t0 < t < ts in-
terval reaching the steady state at ts. Specifically, we can write
the differential loss based on the difference of the RHS and the
LHS of the FPE, which we call the dynamical FPE differential
operator DFPE(p, x, t ; f , g). The loss dictates that our model
minimizes Levol

θ = ∑
x,t∈T ×X D[0, DFPE( p̃θ,t , x; f , g)], and

we assume explicit time embedding. Then the workflow for
evolving differentiable quantum generative models has a style
similar to PINN/DQC workflow [30]. Once done, the model
can be sampled within the trained region, and generalized in
between the points.

Alternatively, we can use an evolutionary approach for up-
dating circuit parameters [65]. In this case, the time-derivative
of our model ∂ p̃θ,t (x)/∂t can be reexpressed using a chain rule
as (∂ p̃θ,t (x)/∂θ)(∂θ/∂t ). The differential constraints in space
and time then require that a vector of updates satisfies γ =
(JT · J)−1 · JT · F, where F is a vector corresponding to differ-
ential operator FPE( p̃θ,t , x; f , g) evaluated at the grid x ∈ X .
The matrix J is the Jacobian for our model evaluated at x ∈ X ,
each having |θ| entries. The update can be performed us-
ing a simple Euler’s forward update θ(t + t ) = θ(t ) + tγ ,
where t is a time step, and we stress that γ is recalculated
as we “march” over the grid of times. Going beyond linear
updates, more sophisticated schemes (e.g., Runge-Kutta) can
be employed.

Finally, we can evolve the probability distribution using the
Kolmogorov backward equation (KBE), where the goal is to
study the dynamics at times prior to the steady state. Let us
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define τ < ts as a backward time. A generic KBE associated
to the SDE in Eq. (6) is written in Eq. (8). It is convenient to
set a starting point τ = ts and find p(x, τ < ts) backward in
time, discovering (and sampling) the model at earlier times.
All steps discussed before apply here as well.

Once we define the setting for solving problems based
on SDE/PDE, we need to specify how to differentiate
the proposed model (something that is not possible with
QCBM/QGAN architectures). In the next subsection, where
we analyze the phase feature map, we will also show how
to read out x derivatives of DQGM. While this can be done
through the parameter shift rule [66,67] and generalizations
[68], can be readout exactly and more efficiently by avoiding
the regular parameter shift rule.

A. Phase feature map analysis

We note that by construction the latent space probability
distribution p̃θ̃ (x) corresponds to a parametrized quantum
circuit with feature map encoding [69–72], and can be ana-
lyzed by studying associated Fourier series (for brevity, we
omit t dependence in this subsection). We proceed to an-
alyze the model capacity of the phase feature map Ûϕ (x).
While Chebyshev series are available with additional variable
transformations [30], for the discussed phase map with ho-
mogeneous we remain in Fourier space (potential upgrades
to other basis sets are discussed in the end of the paper).
Specifically, we define capacity as the number of modes (fre-
quencies) that are in principle available in the model. This
is determined by the spectral properties of the generator of
the feature map, Ĝ : Ûϕ (x) = exp(−ixĜ/2). We note that
parametrized quantum circuits can generally represent a func-
tion (model) as

fθ (x) =
∑
ω∈�

cω,θeiωx, (10)

where the spectrum of frequencies � represent all possible
differences of eigenvalues of Ĝ, and cω,θ are θ-dependent
coefficients associated to each frequency [68,71]. The
important properties of the spectrum are that it includes
zero frequency, pairs of equal-magnitude positive and
negative frequencies, and coefficients obey cω = c∗

−ω leading
to real-valued models (as expected from an expectation
value). While the analysis can proceed by studying the
generator of the phase map, here we derive model capacity
explicitly from the latent state written in Eq. (2). Let us
define the phase for each qubit rotation as ϕ j := 2π/(2 j ).
The N-qubit superposition state |̃x〉 has an equal overlap
with all computational basis states, |〈x|̃x〉|2 = 1/2N ∀ x ∈ B,
but each individual contribution comes with a different
phase (sum of individual ϕ j’s). Expanding the tensor
product in Eq. (2) we see that the computational zero
state |ø〉 has a phase of zero, by convention. Next, there
are N states with single excitations, | j〉 := eiϕ j xX̂ j |ø〉,
each with their phase exponentially decreasing from
the highest (ϕ1 = 2π/2) to lowest (ϕN = 2π/2N ) as
qubit number increases. Next, we have N (N − 1)/2
states with double excitations, | j j′〉 := ei(ϕ j+ϕ j′ )xX̂ j X̂ j′ |ø〉,
with corresponding phases of a sum of contributions.
In general, there are N!/m!(N − m)! states with m

excitations (and sums of m phases), culminating with a
fully excited state |1〉 := ei�X̂ ⊗N |ø〉, with � = ∑

j ϕ j =
2π (2N − 1)/2N . We collect sum of phases associated
to bit basis states {|x�〉}, calling them frequencies
{ν�} = {2π�/2N }2N −1

�=0 at this point. We note that the
latent state can be rewritten in a simple form |̃x〉 =
(e−i�/2/2N/2)

∑2N −1
�=0 eiν�x|x�〉. Next, we proceed to construct

the model itself as in Eq. (5), which comes from the overlap
(squared) of the latent feature state with an ansatz-prepared
state, Ûθ|ø〉 = ∑2N −1

�=0 a�,θ|x�〉 (hereafter we simplify the
notation by removing tildes where appropriate). The latent
space probability distribution then reads

p̃θ (x) = 1

2N

2N −1∑
�,�′=0

a∗
�,θa�′,θei(ν�−ν�′ )x

= 1

2N
+ 1

2N−1

∑
�>�′

{Re{a∗
�,θa�′,θ} cos[(ν� − ν�′ )x]

− Im{a∗
�,θa�′,θ} sin[(ν� − ν�′ )x]}, (11)

where in the second and third line of Eq. (11) we split the dou-
ble sum to show real and imaginary part of the θ-dependent
density operator elements a∗

�,θa�′,θ , and account for quantum
state normalization. We recall that frequencies {ν�} are simply
integer multiples of the smallest (‘base’) frequency 2π/2N

defined by the register size. Looking at the differences of
{ν� − ν�′ }2N −1

�,�′=0 we observe that the model in Eq. (11) cor-
responds to Eq. (10) with ω ∈ � = {0,±1,±2, ...,±(2N −
1)} × 2π/2N , where multiplicity for each frequency decreases
as 2N − �, � = 0, 1, · · · , 2N − 1, and we just need to collect
associated coefficients cω,θ for each ω. We thus see that the
spectral properties of the phase feature map and associated
latent model establish its capacity of exponential size with
(2N − 1) nonzero frequencies, and the same degree (times the
base frequency) [71].

Given the analysis above, we draw several conclusions that
are highly important for the successful training of quantum
generative models. We list them below.

(1) Both DGQM and QCBM have O(2N ) model capacity
but have different model expressivity in terms of coefficients
{cω,θ}. As variational unitary circuits have limited depth due
to trainability, the performance will widely vary depending
on typically accessible model coefficients for the given ansatz
[71]. The exponential capacity can then be seen as a prob-
lem for certain distributions (see discussion in Ref. [72]), as
highly oscillatoric terms will lead to overfitting and corrupt
derivatives when solving differential equations.

(2) In latent space there is a clear separation between
high and low frequency parts of the model, corresponding
to qubits with small and large j. This suggests that DGQM
can be trained to adjust mostly low frequency components
while keeping high frequency components intact, and use
the full register for sampling. This is the core of qubitwise
training described in the next subsection. We note that such
an approach does not hold for QCBMs.

(3) A family of models accessible by DQGM is that of
trigonometric polynomials with exponentially many frequen-
cies and constrained variationally controlled coefficients. In
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FIG. 2. Frequency-taming techniques. (a) Qubitwise training,
where variational circuit is first trained to adjust low frequency part
of a model (stage 1). In the second stage we keep Û (1)

θ fixed, and train
the higher frequency components with Û (2)

θ , also correlating it with
the lower frequency register. This continues until sufficient accuracy.
The final optimization run is for the full circuit and register. (b) For
the Fourier initialization we first find classical Fourier series for a
distribution of interest with (2L − 1) ∼ poly(N ) frequencies, and use
Ûinit to prepare the corresponding state.

cases where a smooth probability distribution is modeled it
may suffice to train only the low-frequency part of the register
L < N chosen such that 2L ∼ poly(N ). This allows for clas-
sical Fourier (cosine/sine) series to be used for probability
distribution modeling and/or differential equation solving.
The quantum model then requires O[poly(N )] depth circuit as
an instruction for creating the state ρ̂θ that matches this series.
In this case we can initialize the system close to a predicted
solution (performing Fourier series initialization), but still get-
ting sampling advantage for the full register and only using the
variational state preparation for inducing further correlations.

(4) The structure of the phase map is quite peculiar—
unlike product and tower feature maps [30], where phases
of x-dependent rotations are either qubit-independent or have
a prefactor of j, the phase feature map has ∼2− j scaling.
Thus, for the same capacity of the phase and product feature
maps, the latter has higher expressivity as more qubits and
wider variational circuits are used. We address this issue by
proposing several feature map ‘frequency-taming’ techniques
in the next section.

B. Frequency-taming techniques

In this subsection we describe several strategies that can be
used for DGQM training. Specifically, we exploit the knowl-
edge of latent space to perform training in several stages and
provide means of regularizing trained generative models.

1. Qubitwise learning

As one of the frequency taming techniques for DQGM
training we consider splitting the ansatz into lower and higher
frequency parts. We call this qubitwise learning, similarly
to the layerwise learning in classical and quantum machine
learning [73]. We sketch the procedure in Fig. 2(a), where
training is broken into stages. First, the goal is to get the base
frequencies right for the model, and qubits j = N, N − 1, . . .

are trained. Next, we save quasioptimal angles for the first
cycle of optimization, and proceed to include higher frequen-
cies (qubits with smaller j). It is also important to correlate
the registers, possibly with a tailored ansatz, and this question

is a matter of future research. Finally, when all quasioptimal
angles are found, we perform training for the full register.

2. Fourier initialization

One of the common problems affecting machine learning
models is initialization that leads to local minima, and pro-
hibits finding high-quality models. In Ref. [29] we have shown
that initialization with low-degree polynomial (truncated
Chebyshev series) can vastly reduce number of optimization
epochs. Here, we propose to use the structure of the quantum
model in Eq. (11), and match coefficients for all frequencies
ω ∈ � by preparing a suitable quantum state Ûinit|0〉⊗L =∑2L−1

�=0 a�,init|x�〉 [Fig. 2(b)]. Note that the preparation circuit
can be exponentially deep in L (see circuit construction in
Ref. [74]), but since we only care about poly(N ) frequencies
we choose L  N , suggesting that this is a feasible step for
cases where limited expressivity suffices, but fast sampling is
needed for dataset augmentation (and specifically relevant for
multidimensional distributions).

3. Feature map sparsification

As we noted before, one of the desirable features when
working with a feature map of exponential capacity is the
possibility to control coefficients for different frequencies. For
example, the comparison of serial and product feature maps in
Ref. [71] has shown that for the same model capacity the prod-
uct feature map had better expressivity as already with a layer
of rotations one has independent control over multiple coeffi-
cients, unlike the serial case. For the phase feature map we are
in the situation where feature map rotations are concatenations
of base frequency rotations, and no variational control of the
model is allowed at that stage—to enable sampling we cannot
simply change the feature map as it is an integral part of the
measurement circuit. We overcome this issue by proposing
the strategy for spreading the features over larger number of
qubits, which we name the feature map sparsification strategy.

The idea relies on the fact that we can concatenate two
circuits if we use a modified quantum gate teleportation circuit
[75]. Note that we have chosen to work in the X Pauli basis
for simplicity as the spectrum of the models is the same, and
given that Ĥ Ẑ = X̂ Ĥ we simply append an extra layer of
Hadamards to the transformation circuit ÛTϕ

. We show the
sparsification workflow in Fig. 3. Concentrating on lowest
frequencies, we observe that the second-to-last qubit in the
feature map shall be in the R̂x(ϕN−1x)|0〉N−1 state, and ϕN−1 =
2ϕN . We can prepare the same state by merging two rotations
from different qubits. We take a seed state as R̂x(ϕN x)|0〉s [la-
beled as s in Fig. 3(a)]. Using a Bell state with an ancilla qubit,
we can teleport the state from the seed to the register qubit,
such that an additional Rx(ϕN x) gate is applied. Note that the
process can be made deterministic if we add an x-dependent
correction circuit. In this case sparsification is performed by
the unitary gate Ûsp, and circuit identity in Fig. 3(a) holds.

It is important to stress that we can use sparsification during
the training stage, where all qubits (including ancillas and
seeds) are trained to match the model—this does not change
the frequencies, but increases expressivity. Next, during the
sampling stage we then use the trained model, but only sample
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FIG. 3. Feature map sparsification. (a) Low-frequency part of the
phase feature map, where the rotation gate from the seed qubit (s) is
teleported to the register qubit N − 1, which stores the second lowest
frequency. Higher-frequency sparsifications can be constructed in the
similar way, with varying split in frequencies (degree of sparsifica-
tion). (b) Training and sampling stages for the sparsified phase map,
where the variational circuit acts on all qubits including seeds and an-
cillas, while during sampling only the N-qubit register is transformed
and measured. Again, only lowest frequencies are shown.

qubits from the state register on which the transformation
circuit acts.

4. Phase map differentiation

We recall that the DQGM model is built as

p̃θ (x) = tr{ĈøÛθÛϕ (x)ρ̂0Û†
ϕ (x)Û†

θ
}. (12)

Our goal is to evaluate d p̃θ (x)/dx analytically (i.e., in a bias-
free manner). For this, first observe that

dÛϕ (x)

dx
= −iM̂xÛϕ (x), (13)

where we introduce the operator M̂x := π
∑N

j=1 X̂ j/2 j as the
generator of the phase map (again, we use the X Pauli basis for
convenience). We note that it commutes with the map trivially,
[M̂x, Ûϕ (x)] = 0 ∀ x. We recall that Ĉø = ρ̂0.

Now we proceed to differentiating the full model, which
gives

d p̃θ (x)

dx
= itr{ρ̂0ÛθÛϕ (x)M̂xρ̂0Û†

ϕ (x)Û†
θ
}

− itr{ρ̂0ÛθÛϕ (x)ρ̂0M̂xÛ†
ϕ (x)Û†

θ
}, (14)

where we change the order in which M̂x acts on ρ̂0. We ob-
serve that the corresponding measurement of two overlaps can
be combined into the measurement of the expectation value

d p̃θ (x)

dx
= tr{(δ1Ĉ)ÛθÛϕ (x)ρ̂0Û†

ϕ (x)Û†
θ
}, (15)

where we defined a differential cost operator δ1Ĉ := iM̂xĈø −
iĈøM̂x. Note that the result is valid for both global and local

cost operators. For instance, for the global cost the modified
differential cost operator can be rewritten as

δ1Ĉ = π

N∑
j=1

1

2 j
Ŷj ⊗ |ø〉 j̄〈ø|, (16)

and the state |ø〉 j̄ simply means that we are in zero for the
register of N − 1 qubits, apart from the j-th one. We see
that we need N evaluations of this expectation. This is an
improvement over the 2N evaluations for the parameter shift
rule. By analyzing the commutators in δ̂C, that correspond to
SWAP-like operators, we may possibly do better, and this is a
question for future research.

Similarly, we can write a second-order derivative for the
quantum probability distribution. For this, we can differentiate
the expression in Eq. (16), and observe that d2 p̃θ (x)/dx2 can
be written as an expectation value

d2 p̃θ (x)

dx2
= tr{(δ2Ĉ)ÛθÛϕ (x)ρ̂0Û†

ϕ (x)Û†
θ
}, (17)

where we introduce another Hermitian operator

δ2Ĉ := 2M̂xĈøM̂x − M̂xĈø − ĈøM̂x, (18)

which can be decomposed into O(N2) noncommuting terms
and measured separately.

C. Preparing multidimensional correlated distributions

It is unlikely that sampling from a single univariate dis-
tribution using a quantum computer gives a computational
advantage over using a classical computer. In the end, for
most practical cases we can use—for example—a finite-
degree polynomial approximation. This is commonly used
in financial analysis. However, when working with multi-
variate (multidimensional) distributions, sampling becomes
complicated. This prompts us to consider problems compris-
ing of a D-dimensional vector of stochastic variables X =
(X1, X2, . . . , XD). The underlying probability distribution cor-
responds to p(x) with x = (x1, x2, · · · , xD), and often it is
convenient to work with a multivariate cumulative distribu-
tion function F (x). If the distributions are not correlated,
then we can do inverse sampling assuming that the multivari-
ate CDF factorizes into a product of marginal distributions,
Fsimple(x) = F1(x1) · F2(x2) . . . FD(xD), and the same is true for
the probability density function. This means, even though we
consider multivariate distributions, the simulation can be par-
allelized efficiently following the univariate case. However,
for correlated variables this decoupling procedure is not valid.
Classical simulation of multivariate distributions and corre-
sponding generative modeling is generally difficult. Potential
approaches include delayed rejection adaptive Metropolis al-
gorithm, and the state-of-the-art protocols based on a tensor
train decomposition [76]. In general, they assume truncation
of correlations, and the full generative modeling requires in-
cluding fine structure, at large computational cost.

Another notable approach for dealing with multivariate
distributions corresponds to quantum generative adversarial
networks, specifically in cases where classical discrimina-
tor networks are used [57,77]. QGAN-based generators are
known to excel when working with complex multidimensional
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distributions, and this has been demonstrated to translate
well into the quantum regime when generators are based
on QCBM-type circuits [78]. We consider the multivariate
QGAN a suitable choice when no priors on distributions (i.e.,
physics-informed processes) are available.

Let us now proceed to describe an approach specific to
DQGM models that can be used for time-series based on
underlying SDEs and differential constraints. A way for
including correlations between stochastic variables can be
provided by quantum hardware, as quantum systems are good
at correlating subsystems. Recently, generative modeling was
shown to benefit from correlation, and specifically entangle-
ment [56]. One way to think about it is simply consider a joint
register for the vector of variables x. However, in this case
we are left with a QCBM-type problem of enlarged size, and
training for large D can become prohibitive. A more subtle
way corresponds to including correlations by encoding copu-
las into quantum hardware, as recently proposed in Ref. [57].

The concept of copula was developed to yield multivariate
sampling by correlating latent variables, while keeping the
sampling procedure individual to each variable. Imagine a
bivariate distribution such that two stochastic variables X1 and
X2 are distributed normally, but are in fact correlated. The
correlation for normal distributions can be accounted using a
covariance matrix, which grows with the dimension D. Thus,
accounting for correlations again becomes challenging for
generic D-dimensional distributions. However, this problem
can be resolved by introducing a copula—a function that links
marginal distributions of different variables [79]. Copulas
absorb correlations between variables while being agnostic
to the type of marginal distribution. Specifically, following
Sklar’s theorem we write a copula C[v] acting on some vector
v as a function

F (x) = C[F1(x1), F2(x2), . . . , FD(xD)], (19)

which links marginals into a full multivariate CDF. Similarly,
a copula density function c[z] for the latent variable vector z
is defined as

c[x] = c[F1(x1), . . . , FD(xD)]p1(x1) · . . . pD(xD). (20)

A useful property of copulas is that by generating a vector
of samples from the copula as Z = (Z1, Z2, . . . , ZD) ∼ c, we
can transform them into samples of the original multivariate
distribution as [79]

X = (Q1(Z1), Q2(Z2), . . . , QD(ZD)), (21)

where Qj (Zj ) are marginal quantile functions (inverted CDFs)
for distribution of jth stochastic variable. Here, we stress that
copula produces correlations at the level of latent variables,
as used in the inverse sampling [29]. It represents a modified
PDF that deviates from a uniform multivariate distribution,
and thus correlates the outcomes for multivariate PDF sam-
pling.

Since the copulas capture correlations only, while having
flat marginals, they can be modeled by entangled states [57].
Namely, the correlations can be introduced using a quantum
circuit of finite depth that is applied prior to separate varia-
tional registers (see Fig. 4). Yet, when we link D registers,
even for tractable N-wide individual distributions, we are left
with D × N qubits that are maximally entangled, in the logical

FIG. 4. Multivariate quantum generative models based on cop-
ulas. (a) A model is trained to represent a copula dependence for
latent variables, where the correlation between registers is included
as series of Bell measurements. (b) The trained model is sampled
in the bit basis starting from the cluster state that is transformed by
variational circuits.

sense. As we form a cluster state, this requires the bond
dimension to go up, preventing efficient classical simulation.
This is the setting in which we expect to get an advantage in
quantum generative modeling.

We propose to build a quantum generative model for cop-
ulas, expressing it as a function of latent variables encoded
using the phase feature map. The corresponding circuits for
quantum copula modeling are shown in Figs. 4(a) and 4(b).
First, the copula PDF is constructed as a function of variables
z using the feature map encoding. We note that both DQGM
and generalized QCBM models can be built. In the former
case one needs to think in terms of frequencies, and in the
latter case one shall think in terms of bit strings. The model
is then constructed by first applying variational circuits on
separate registers, then followed by the Bell circuit measure-
ment and expectation of the cost operator Ĉø (global or local)
[see Fig. 4(a)]. Intriguingly, this setting is similar to learning
from data that has shown a great promise recently [80], and
uncovering the relation between two subjects is an interesting
avenue for the future research. Once we trained the model
for copula, we can revert the circuit, and read out samples
in the transformed basis for DQGM [Fig. 4(b)]. Note that
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the probability density function remains the same. For the
generalized QCBM, we note that ÛTϕ

is a part of training,
while being absent in the sampling stage.

We highlight that while building a quantum generative
model for copulas, one can build powerful intuition about
processes in the system. First, we observe that by generating
a cluster state and using identity operators instead of vari-
ational circuits one enforces maximally correlated samples
of c(z1, z2). This in turn leads to strong correlation for sam-
ples X ∼ p(x). However, by performing local operations on
registers of separate variables one can effectively decorrelate
their samples in the copula space, and thus in the space of
multivariate PDF samples. We elaborate on this point in the
Results section considering an example based on a Gaussian
copula for bivariate distributions [81].

Furthermore, the importance of representing a copula as
a differentiable quantum model comes from the fact that for
many stochastic processes (for instance, in financial model-
ing) certain copulas are shown to perform well, and represent
an excellent starting point [79]. Going beyond learning from
data, one can use knowledge of differential constraints when
learning copulas. This creates inherent regularization and
helps capturing properties specific to the process. For in-
stance, the system of Fokker-Planck equations formulated for
a copula PDF, and used as a differential constraint, may offer
an edge when training copula circuits [82].

III. RESULTS

To test the proposed protocols, we conduct several numer-
ical experiments. The goal is to showcase the performance of
the DQGM approach in various scenarios, spanning from ex-
plicit learning of distributions to solving stochastic differential
equations, propagating them in time, and addressing multi-
variate problem. As an underling model for this we choose
the Ornstein-Uhlenbeck process [28]. Being a starting point
for the Hull-White and Vasicek models, Ornstein-Uhlenbeck
SDE helps with, amongst others, modeling currency exchange
rates [24]. First, we test the approach on learning a static
distribution. Second, we introduce differential constraints and
solve the steady-state FPE for OU. Third, we evolve the
learnt solution in time, specifically solving the time-dependent
FPE for OU using the implicit time embedding. Finally, we
present results for multivariate sampling with quantum copula
models.

A. Learning generative models

We start with representing a probability density function
(PDF) by DQGM circuits, with consequent sampling. Here,
the goal is to understand the expressivity of the proposed
generative models and their capability of representing typical
PDFs. Additionally, we aim to compare it to the generalized
QCBM architecture and highlight the differences in training.
We choose the target distribution that corresponds to a normal
process (Ornstein-Uhlenbeck being one example). The corre-
sponding PDF reads

ptarget (x) = 1√
2πσ 2

0

exp

[
− (x − μ0)2

2σ 2
0

]
, (22)

where μ0 is a mean and σ 2
0 is a variance. We note that to be

able to load a PDF in a quantum register suitable parameter
scale should be chosen. Namely, μ0 and σ0 are chosen such
that the probability can be potentially stored in a register of
N qubits with x ∈ [0, 2N − 1) and 0 � p(x) � 1. We choose
the mean square error (MSE) as a loss, which is normalized
by the number of samples at which distributions are com-
pared. As a testing ansatz for simplicity we use a hardware
efficient ansatz (HEA) [83] with alternating SU (2) rotations
and CNOT-based entangling layers. Specifically, we compose
a variational circuit of d layers and width w. Here, d = 0
corresponds to single SU (2) layer (for instance, decomposed
into X − Z − X parametrized rotations), followed by d repe-
titions of CNOTs on odd/even sublattices and SU (2) layers.
The parameter w defines on how many qubits the variational
ansatz acts, starting from the bottom one (lowest frequency).
For instance, w = 3 for N = 6 register means we only use
qubits j = 4, 5, 6, and act with an identity on the rest. Varia-
tion is performed using gradient-based Adam optimizer, and
we use Julia’s Yao package as a simulator [84].

We start by considering a target distribution with N = 6
qubits. We set the mean to μ0 = 32 and the standard deviation
of σ0 = 8. The training grid is set up to include all integer
points of x, and we use a thousand of epochs. The training
is performed for varying depth and width. We test the perfor-
mance of both DQGM and generalized QCBM for modeling
the target as well as providing samples. As a metric, we plot
the quality of the solution, represented by the MSE loss eval-
uated for twenty times more points (referred as a generalized
grid). The results are shown in Fig. 5. In Fig. 5(a) we show the
quality of solution for DQGM at the end of training. We ob-
serve that at full width training the model contains exponential
number of frequencies, limiting the performance due to large
‘out-of-sample’ error. At the same time, with smaller width
we can capture the target distribution using lower frequency
components, and reach high-quality solutions. While the per-
formance is likely to be model dependent, we observe that
the optimal solution requires choosing a suitable combination
of w and d which we discuss further later. As an example of
trained PDF we pick d = 4 and highest-performing width of
w = 3. This can be seen as a simplest instance of qubitwise
learning, and generally highlight the relevance of frequency-
taming. The trained DQGM closely follows the target model
at all points [see Fig. 5(b)]. We then apply the basis transfor-
mation and sample our model with the extended register of
M = 10 qubits. The histogram is shown in Fig. 5(c), where
107 shots are used, and we normalize bins over the total
number of samples.

Next, we consider the performance of generalized QCBM
for the same problem. The results for d and w scanning are
depicted in Fig. 5(d). As encoding assumes transformations on
bitstrings, smaller w circuits do not perform well, and w = N
is required, as expected. We note that the presence of high fre-
quencies in the model and absence of regularization that limits
high frequency components generally impacts the QCBM’s
performance. The instance with the best quality is shown in
Fig. 5(e). While overall the shape represents the distribution
well, high-frequency components impact the model quality
as it does not generalize. The impact on solving differential
equations based on such a model will be tremendous. This
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(a) (b) (c)

(d) (e) (f)

DQGM samplingDQGM training

QCBM training QCBM sampling

DQGM PDF

QCBM PDF

FIG. 5. DQGM and QCBM comparison. (a) MSE loss for DQGM trained at different depths and widths, showing quality of solution
on the generalized grid. This corresponds to the quality metric, where smaller numbers (deviation) means higher quality. (b) PDF from the
DQGM training at d = 4 and w = 3. (c) Sampled probability distribution from transformed DQGM using N = 10 qubits and 107 samples
at the readout. (d) Quality metric based on the MSE loss for the generalized QCBM trained at different depth and width. (e) Best model for
QCBM shown for d = 4 and w = N . (d) QCBM samples from N = 6 qubits and 106 shots.

can traced directly to the exponential capacity of the phase
feature map, and the absence of simple frequency-taming.
One option for regularization here is including more points
during training, but this comes at the price of training on
dense grids. Finally, we show the sampling from generalized
QCBM in Fig. 5(f). The histogram qualitatively matches with
the target, as requested by optimization loss.

Following the use of the variational approach, we have also
implemented the initialization procedure. In this case the tar-
get distribution is expanded in cosine series for 4 qubits, such
that the coefficients of the preparation state are known. Using
a SO(24) circuit that can create an arbitrary real-amplitude
state, we efficiently utilize all frequencies. The resulting PDF
is shown in Fig. 6. We note that initialization may be required
in cases where we want to off-load part of job from the
variational procedure.

B. Solving stationary Fokker-Planck equations

We proceed to introduce differential constraints, where
together with learning from data by minimizing Ldata

θ , we wish
to minimize Ldiff

θ coming from the FPE differential operator.
Here the goal is understanding how the addition of physics-
informed (or financial process-informed) terms helps to guide
the DQGM training, leading to meaningful models with cor-
rect sensitivities. We note that other approaches like QCBM
cannot include such loss terms, highlighting the increased
capabilities of the DQGM approach. While the data-based
learning does not require knowing the model parameters per
se, the SDE/PDE/ODE learning does depend on the model

parameters introduced by the drift and diffusion terms. We
again choose the Ornstein-Uhlenbeck process as it lies at
the core of many financial models. SDE of the OU process
corresponds to static drift and diffusion terms, and reads

dXt = −ν(Xt − μ)dt + σdWt , (23)

where μ, σ , and ν are model parameters, which can be dis-
covered while learning from data. Using Eq. (9) we can see

FIG. 6. Fourier initialization of DQGM. We use a cosine ex-
pansion and initialize the circuit for L = N , reaching high-quality
solutions and exploiting the full spectrum of N = 4 DQGM.
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(a) (b) (c)

(d) (e) (f)

(g)

(h)
10-qubit 
sampler

6-qubit 
sampler

FIG. 7. DQGM trained to sample from the Ornstein-Uhlenbeck process by matching the steady state of FPE. (a) History of the data
training, showing the data loss which is used for optimization. Differential loss (labeled as “diff”) and the full weighted loss are plotted for
comparison. (b) Probability distribution p(x) from the data-trained DQGM, where small number of epochs is used. (c) Derivatives of the
model trained on data. (d) History of DQGM training with differential constraints (stationary FPE), where the full weighted loss is used for
optimization, and the other two loss functions are plotted for comparison. (e) The probability distribution function from DQGM trained on
the full loss. (f) Derivatives of the generative model based on FPE constraints. (g) Normalized sampling histogram for N = 6 DQGM trained
using FPE differential constraints, where 106 shots are measured. (h) Normalized sampling histogram from an extended 10-qubit register.

that at the steady-state FPE for OU corresponds to

νp(x, ts ) + ν(x − μ)
d

dx
p(x, ts ) + σ 2

2

d2

dx2
p(x, ts ) = 0. (24)

Notably, when starting from some initial mean, we arrive to
μ as a new mean in the steady state (at the rate of ν), and the
variance σ 2/2ν. It is convenient to set ν = 1, assuming that
time is in units of ν−1.

In the following we assume that OU reached the steady
state, and learn the corresponding distribution from the dif-
ferential constraints. The workflow is as follows. First, we
choose SDE/FPE parameters as μ0 = 32 and the variance of
σ 2

0 = 32. The quantum model is set up with N = 6 qubits,
d = 4 and w = 3 as suggested by previously performed depth
scanning. We set up three different loss functions to track
the performance during training. The first two correspond to
the data loss Ldata

θ,ts
and the differential loss for static FPE,

Ldiff
θ,ts

, as described in the second section. The third loss, which
we call the full loss, is then taken as a weighted average
of data and differential contribution, Lfull

θ,ts
= Ldata

θ,ts
+ ηLdiff

θ,ts
,

where coefficient η controls the weight of FPE constrained
(this is generally needed as the two may be imbalanced even
when normalized over the grid). We perform DQGM training
in two stages. At first, our goal is learning the initial condition
of FPE, where the gradient descent is performed on Ldata

θ,ts
. We

deliberately choose a coarser grid with 32 points of x and 200
epochs, simulating imperfect training conditions (i.e., when
knowledge of probability distribution is not available, and data
is noisy). The results are shown in Figs. 7(a)–7(c). Looking
at the history, the training loss goes down promptly, yet we

observe a large separation between the data and diff loss con-
tributions [Fig. 7(a)]. In Fig. 7(b) we show the corresponding
PDF which captures the data well. Yet when plotting deriva-
tives of the target model and DQGM in Fig. 7(c) significant
deviations are visible. The latter can impact predictions when
considering out-of-sample examples. In the second stage we
turn on the differential loss, and the full loss with equal
contributions (η = 1). We use angles from the data training.
Smaller learning rates are used to avoid jumping far from
the previously found valley in a landscape, and we simulate
1200 epochs. The full loss goes down together to much lower
values [Fig. 7(d)]. This translates into a high-quality PDF
[Fig. 7(e)]. But most importantly, the presence of differen-
tial constraints provided high-quality derivatives plotted in
Fig. 7(f). This paves the road to training models, and not just
learning from data, especially in cases where large datasets
are not available or cannot be loaded efficiently. We complete
static FPE learning by sampling from optimal DQGM, based
on the full loss. The originally trained and extended 6- and
10-qubit sampling shown in Figs. 7(g) and 7(h), showcases
improvements offered by including the knowledge about the
model and underlying SDE/PDE.

C. Solving time-dependent Fokker-Planck equations

Once the initial state is learnt and differential constraints
are accounted for, we may ask an additional question: Can we
predict the trajectories of the stochastic process that lead to
the steady state? To answer the question, let us first solve the
problem using the conventional Euler-Maruyama technique
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FIG. 8. Time-dependent SDE sampling. (a) Samples from clas-
sically evolved distribution at different time points (t0, t0 + 0.1,
t0 + 0.3). (b) Samples from time-evolved DQGM at the same three
times obtained by evolving circuit parameters with the implicit time
embedding.

[85]. In this subsection we aim to show that DQGM is able to
address problems which are described by distributions evolv-
ing in time. While similar evolutionary approaches are also
applicable to implicit QCBM-type models, the advantage of
using DQGM is in preparing high-quality distributions and
their derivatives, which enable time-propagation (for trained
PDFs with visible oscillations the propagation becomes
unstable).

We set up an SDE solver for the OU process with increas-
ing variance. For simplicity, we consider a process without
mean reversion, setting μ = 32, and a variance of σ = 512 as
SDE/FPE parameters. We start from the Dirac delta function
distribution at zero time, and learn the PDF at t0 = 0.144 (in
the units of inverse κ). At this point the distribution matches
the variance of 64, and continues to grow thereafter. The
results from classical SDE sampling are shown in Fig. 8(a) for
three different times being t0, t0 + 0.1, and t0 + 0.3, chosen
such that changes are significant. Next, we perform time-
evolved simulation with the DQGM. We express the solution
as DQGM at t0 with a w = 2 and d = 1 circuit that performed
well before, while choosing a variational circuit structure
with real-amplitude states (layers of parametrized Y rotations
and CZ gates). The training follows data-based loss and 500
epochs. Then, we assume the implicit time embedding, and
update parameters of the model θopt,t0 from the initial ones by
evaluating the FPE operator and Jacobians. We use a simple
Euler’s scheme with t = 0.001 and three hundred steps.
Note that this may lead to instability for longer propagation
times, where Runge-Kutta and stencil-point methods are pre-
ferred. The histograms for time-evolved DQGM are shown

in Fig. 8(b), where 107 samples are used. We observe good
agreement with classical sampling, and note that having a
smooth model the sampling can further be extended to larger
register sizes. We also note that explicit encoding may be
beneficial for situations where we need to generalize in time.
This will be a question for future research on the topic.

D. Sampling from bivariate normal distributions

Next, we study a pedagogical example of sampling from
a multivariate distribution. Here the goal is to understand
how DQGM can be taken further and consider correlated
distributions of many random variables. Indeed, univariate
distributions of various type can be most often prepared and
sampled classically. But in the case of multivariate nature
PDFs are difficult to invert. We note that the power of DQGM
approach is in ability to work explicit forms of distributions,
adding priors that remain inaccessible to implicit QCBM
modeling.

We consider a bivariate normal distribution p(x1, x2). This
type of distribution can be fully characterized by its mean
values for each stochastic variable μ1,2, their respective
standard deviations σ1,2, and importantly the correlation pa-
rameter ρ12. Let us first analyze different examples using
known classical procedures of inverse sampling which ac-
counts for the covariance matrix. In Figs. 9(a)–9(c) we show
three examples for classical bivariate sampling. The first
example concerns highly correlated samples (X1, X2) with
ρ12 = 0.999, each normally distributed with μ1,2 = 0.5 and
σ1,2 = 0.1 [Fig. 9(a)]. One can think of financial processes
with similar correlation at highly regulated markets or, for
instance, looking at EUR-DKK currency pair. Next, as a ref-
erence we show sampling from uncorrelated distribution with
ρ12 = 0 [Fig. 9(b)], which is equivalent to separate inverse
sampling of X1 and X2, plotted together. The third example in
Fig. 9(c) concerns a negative correlation value of ρ12 = −0.5.
This example is relevant in cases when significant but not
absolute dependence of two processes is present.

We continue the analysis in the quantum domain using
copula as a tool. First, we note that for multivariate normal
processes the Gaussian copula PDF c(z) can be expressed as

c(z) = 1√
1 − ρ2

12

exp
{[

2ρ12Q1(z1)Q2(z2)

− ρ2
12

(
Q2

1(z1) + Q2
2(z2)

)]
/2

(
1 − ρ2

12

)}
, (25)

where Qj (z j ) are standard normal quantile functions for vari-
ables j = 1, 2 expressed as (shifted) inverse error functions
parametrized by (μ j, σ j ) [86]. Now, let us look at the limit-
ing cases. For ρ12 = 0 the copula PDF becomes the uniform
distribution for both variables. In the limit of ρ12 → 1 we get
maximal correlations, such that it is given by the Dirac δ func-
tion, c(z1, z2) ∼ δ(z1 − z2). For nonzero ρ12 the structure is
introduced, leading to preference of some samples over others.
Using the described intuition from Gaussian copula, we note
that perfect correlation of ρ12 → 1 is readily modeled by a
cluster state circuit with variational circuits being identities
(here, it is easier to use the generalized QCBM picture for
gaining the intuition). Once the copula circuit is set up, we
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FIG. 9. Classical and quantum multivariate sampling with normal copulas. (a, b, c) Scatter plots for classical sampling of random variables
X1 and X2 from the bivariate normal distribution. The probability density functions are centered at 0.5, standard deviations are 0.1, and
correlation between variables is ρ12 = {0.999, 0.0, −0.5} for panels (a), (b), and (c), respectively. 104 samples are shown. (d) Scatter plot for
quantum generative modeling from the maximally logically entangled copula transformed into normal samples and mimicking ρ12 → 1 case.
Here and below N = 12 qubits are used for the full register, sample values are normalized to be in [0,1] dividing by 2N/2, and 104 are plotted.
(e) Sampling from uncorrelated registers, where copula circuit has uncorrelated bases for the two registers. (f) Partially correlated copula
transformed into bivariate samples that mimics negative ρ12 = −0.5 correlation.

perform mapping Z1,2 → X1,2 as described in Eq. (21), and
present scatter plots for (X1, X2).

The resulting samples in the multivariate data space are
shown in Fig. 9(d), resembling the highly correlated case
discussed before. Next, the decorrelation circuit can be set up
such that the measurement for Z1 and Z2 are performed in dif-
ferent bases, for instance, acting with Hadamards on the first
register. The corresponding sampling is shown in Fig. 9(e),
mimicking ρ12 = 0 case. Finally, by employing single qubit
rotations on the first register in X and Y basis the partial
correlation can be reproduced [see Fig. 9(f)].

We note that the present study shows only the first steps
in understanding multidimensional correlated sampling from
quantum circuits. However, using the developed tools and
combining with knowledge of stochastic processes may im-
prove this understanding ever further.

E. Scalability

Let us now describe the scalability of the DQGM ap-
proach as an explicit-implicit modeling tool. Here the goal
is highlight modalities in which the approach can be used in

generative modeling, and also when mapping implicit models
to explicit (feature map-based models) for the readout. For
this, we first discuss the closest relative being the implicit
quantum circuit Born machine. The scalability of QCBM with
the number of qubits N depends on the ability to work with
2N state amplitudes (exponentially increasing expressivity),
but this implies decreasing trainability [87]. In our work
we connect this to generalized QCBM, where models show
the presence of exponentially many frequencies. As DQGM
scales we also expect the expressivity to grow exponentially,
but this can be: (1) limited by keeping only low frequencies
in training; (2) applying the frequency taming techniques
outlined in Sec. II B. Concerning the Fourier initialization,
the cost can be exponential in the subsystem size Ninit for
generic distributions (e.g., using Grover-Rudolph protocol),
but due to high expressivity it is sufficient to keep Ninit small.
Alternatively, one can use efficient state loading for smooth
functions developed in Ref. [62]. Crucially, there is no direct
analogy of initialization for QCBM (unless designing a highly
specific sparse circuit for that matter).

For the number of iterations, we note that both QCBM
and DQGM are based on nonconvex optimization method. In
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general, finding optimal angles for these models is NP-hard
[88], and there is no provable guarantees on the number of
iterations to converge to the global optimum (unlike for con-
vex optimization schemes). However, the statement concerns
most of machine learning protocols including deep neural
networks, where excellent performance is achieved through
a range of heuristics. This means that with a suitable model
parametrization one can expect converging DQGM/QCBM to
a required quality, but this depends on the model and cannot
be easily bounded.

For the depth of the QCBM and DGQM circuits, it largely
depends on the ansatz chosen when building the model.
However, DQGM has an advantage of frequency-band selec-
tion or separation when training, unlike QCBM that requires
uniform layers. Otherwise, both typically use a hardware
efficient ansatz (HEA) of depth d scaling linearly O(N ) in
the system size N , such that one can generate entangled
states that support nontrivial models. Other options include re-
stricted ansatze with shared parameters (QAOA) or embedded
symmetries.

Moreover, the depth of the required circuits has to account
for the trainability as well. In fact even O[log(N )]-deep HEA
can be untrainable for the QCBM-type training due to the
global loss function, as highlighted in Ref. [89]. On the con-
trary, DQGM has the option of training with the local loss,
avoiding the corresponding concentration. As we go to larger
d , the trainability drops, and to restore this once may need to
use overparameterization [90] (in principle, requiring an ex-
ponential depth scaling). However, there is also a “goldilock”
zone [91] where HEA with limited depth is still trainable and
sufficiently expressive, which we can utilize for DQGM.

When considering the number of trained qubits w and the
corresponding circuit depth d , we balance the model expres-
sivity and trainability, as well as quantum resources required
for the algorithm. There is a set of constraints to fit, as usual
when working with variational circuits. To be more specific,
we have added the discussion of d and w choices for HEA
that can effectively combine high-expressivity with sufficient
trainability, as presented in Ref. [91].

Specific to our protocol and generative modeling, we out-
line a set of principles summarized as follows. The choice
with small w limits number of basis functions and therefore
expressivity (also referred as model capacity). As w grows,
more basis functions become available and expressivity in-
creases as ∼2w. The depth d dictates the accessibility of
different basis functions, and therefore d is required to scale
with w at least linearly. However, the trainability and the
onset of barren plateaus sets a restriction on either keeping
d small (trainable) but tailoring the ansatz structure such that
it is problem specific. Another options is overparametrizing
an ansatz [90], which for small w is possible in O[poly(w)] or
O(2w ) depth, depending on the ansatz.

Finally, we note one distinct advantage that is specific to
DQGM. This corresponds to the targeted readout of functions
represented as fθ∗(x) = |〈x|ψθ∗〉|2. In this case, instead of
sampling all possible values and selecting the outcomes for
the chosen point x, the DQGM allows evaluating the function
at x via the phase feature map. This simplifies the readout
when models require extracting information only for a limited
set of points [92].

IV. CONCLUSIONS

We developed protocols for efficiently training differen-
tiable quantum generative models, which we refer to as
DQGM. Separating training and sampling stages, we train
circuits in the latent space as a feature map encoded differen-
tiable circuit, and sample the optimized circuit with additional
(fixed) basis transformation. On a technical side, we intro-
duced the phase feature map, analyzed its properties, and
developed frequency-taming techniques that include qubit-
wise training and feature map sparsification. For numerical
simulations, we benchmark the approach against QCBM and
show how samples from propagated stochastic differential
equations can be accessed by solving a Fokker-Planck equa-
tion on a quantum computer. We highlight that the proposed
approach is especially suitable for generative modeling tasks
which result from stochastic differential equations, as it al-
lows implementing differential constraints into the generative
workflow. Our approach also sheds light on a path to mul-
tidimensional generative modeling based on copulas, where
qubit registers are explicitly correlated via a (fixed) entangling
layer. In this case quantum computers can offer advantage as
efficient samplers, which perform complex inverse transform
sampling enabled by fundamental laws of quantum mechan-
ics. At the same time we note that other approaches are avail-
able when working with multivariate distributions with SDE
knowledge, where multivariate QGAN is a notable example.

We note that our approach and associated findings only
started to uncover the relation between models built in latent
spaces and their connection to equivalent models that can
be sampled efficiently. So far we have employed the phase
feature map [Eq. (1)] which results into the Fourier basis.
Other options become available when Ûϕ is modified, and
even becomes a general CPTP map or a linear combination
of unitaries. For instance, this enables working in the expo-
nentially large basis of orthogonal Chebyshev polynomials
[93] or Hartley kernels [94]. As the choice of basis is often
crucial to solving differential equations [92], we believe that
the development of new latent spaces paired with DQGM will
push further the boundaries of quantum machine learning and
generative modeling.
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APPENDIX: ADDITIONAL SIMULATIONS

Throughout this work the results have been centered
around processes following normal-type distributions, as
Gaussians can be expressed by quantum circuits with smaller
registers. To highlight that our algorithm is not restricted to
such probability distributions we carry out some further simu-
lations on two more distributions. Specifically, below we show
the results for log-normal and Pareto distributions.

A log-normal distribution has probability density
function of

plogn
target (x) = 1

x
√

2πσ 2
0

exp

[
− (ln(x) − μ0)2

2σ 2
0

]
, (A1)
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FIG. 10. Simulation of regression for log-normal and Pareto dis-
tributions. Both examples are shown for five-qubit registers and
for 63 training points uniformly distributed between 0 and 2N − 1.
(a), (b) Results for log-normal distribution with μ = −0.5, σ =
0.25. (c), (d) Result for Pareto distribution with α = 0.2, xm = 2.
(a), (c) Plots of target density function and result from training as
function of x. (b), (d) Histogram of 106 samples from result of
training resulting in panels (a) and (b), respectively.

where μ0 and σ0 are parameters that define its shape and
moments. The log-normal distribution is similar to the normal
distribution though differs by the factor of 1/x and additional
ln(·) scaling of the variable in the power of exponent. The
distribution of a product of a set of positive independent
random variables is log-normal. This distribution appears in
biology, chemistry, medicine, social sciences and other areas
of science. Some particular appearances are concentration of
rare elements in minerals, incubation period of diseases, and
the distribution of income (exempting top 1%).

In our simulation we perform regression on this dis-
tribution with μ0 = −0.5, σ0 = 0.25 as well as x rescaled
uniformly by a factor of 2N−1 such that the same scale of
distribution is considered as qubit number N increases. The
simulation is implemented in the same way as before. We
use N = 5 qubits and 63 training points uniformly distributed
between 0 and 2N − 1. The results of this are shown in
Figs. 10(a) and 10(b). As can be seen the target and trained
result are near identical. Notably, DQGM-based workflow
allows representing asymmetric distribution without major
deviations.

Additionally we consider the Pareto distribution. This is
further distinct from the distributions considered so far with
density function

ppareto
target (x) = αxα

m

xα+1
. (A2)

It is linked to what is commonly known as the 80–20 rule
which states how for certain processes 80% of outcomes are
due to 20% of causes. This distribution appears in a variety
of situations such as the rate of hard disk drive error rates, the
size of human settlements and the income of the top 1% of
earners.

Our simulation is implemented in the same way as previous
normal and log-normal examples, assuming α = 0.2, xm = 2.
The results of this are shown in Figs. 10(c) and 10(d). As
can be seen, the target and trained result are close with sam-
pling as expected. We note that due to the spectral nature
of training there are small oscillations at the end point of
x domain, but this can eliminated by adding an extra reg-
ularization that contains information about derivatives. We
conclude that DQGM is a versatile tool for cases where dis-
tributions follow smooth functions and are expressible and
differentiable.
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