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Abstract

The world’s digital information ecosystem continues to struggle with the spread of misinfor-

mation. Prior work has suggested that users who consistently disseminate a disproportion-

ate amount of low-credibility content—so-called superspreaders—are at the center of this

problem. We quantitatively confirm this hypothesis and introduce simple metrics to predict

the top superspreaders several months into the future. We then conduct a qualitative review

to characterize the most prolific superspreaders and analyze their sharing behaviors. Super-

spreaders include pundits with large followings, low-credibility media outlets, personal

accounts affiliated with those media outlets, and a range of influencers. They are primarily

political in nature and use more toxic language than the typical user sharing misinformation.

We also find concerning evidence that suggests Twitter may be overlooking prominent

superspreaders. We hope this work will further public understanding of bad actors and pro-

mote steps to mitigate their negative impacts on healthy digital discourse.

Introduction

Misinformation impacts society in detrimental ways, from sowing distrust in democratic insti-

tutions to harming public health. The peaceful transition of power in the United States was

threatened on January 6th, 2021 when conspiracy theories about the presidential election being

“stolen” fueled violent unrest at the U.S. Capitol [1]. During the COVID-19 pandemic, an

abundance of health-related misinformation spread online [2, 3], ultimately driving the U.S.

Surgeon General to warn Americans about the threat of health misinformation [4]. The public

confusion created by this content led the World Health Organization to collaborate with

major social media platforms and tech companies across the world in an attempt to mitigate

its spread [5].

Recent research suggests that superspreaders of misinformation—users who consistently

disseminate a disproportionately large amount of low-credibility content—may be at the cen-

ter of this problem [2, 6–11]. In the political domain, one study investigated the impact of mis-

information on the 2016 U.S. election and found that 0.1% of Twitter users were responsible

for sharing approximately 80% of the misinformation [6]. Social bots also played a
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disproportionate role in spreading content from low-credibility sources [12]. The Election

Integrity Partnership (a consortium of academic and industry experts) reported that during

the 2020 presidential election, a small group of “repeat spreaders” aggressively pushed false

election claims across various social media platforms for political gain [8, 9].

In the health domain, analysis of the prevalence of low-credibility content related to the

COVID-19 “infodemic” on Facebook and Twitter showed that superspreaders on both of

these platforms were popular pages and accounts that had been verified by the platforms [2].

In 2021, the Center for Countering Digital Hate reported that just 12 accounts—the so-called

“disinformation dozen”—were responsible for almost two-thirds of anti-vaccine content circu-

lating on social media [10, 11]. This is concerning because eroding the public’s trust in vac-

cines can be especially dangerous during a pandemic [13] and evidence suggests that increased

exposure to vaccine-related misinformation may reduce one’s willingness to get vaccinated

[14, 15].

Despite the growing evidence that superspreaders play a crucial role in the spread of misin-

formation, we lack a systematic understanding of who these superspreader accounts are and

how they behave. This gap may be partially due to the fact that there is no agreed-upon method

to identify such users; in the studies cited above, superspreaders were identified based on dif-

ferent definitions and methods.

In this paper, we tackle this gap by providing a coherent characterization of superspreaders

of low-credibility content on Twitter. In particular, we address two research questions. First,

(RQ1) can superspreaders of low-credibility content be reliably identified? To be useful,

any method for measuring the degree to which an online account is a superspreader of such

content should be accurate and predictive. Here we focus on simple approaches utilizing data

that are widely available across platforms. More complex methods may require detailed infor-

mation about the structure of the entire social network, which is typically unavailable.

Mitigating the negative impact of superspreaders of low-credibility content additionally

requires a deeper understanding of these users, leading to our second research question:

(RQ2) who are the superspreaders, i.e., what types of users make up most superspreader

accounts and how do they behave? A better understanding of the origins of misinformation

is an important step toward decreasing its amplification and reach [16].

To answer our first research question, we begin by collecting 10 months of Twitter data and

defining “superspreaders” as accounts that introduce low-credibility content, which then dis-

seminates widely. Operationally, we define low-credibility content as content originally pub-

lished by low-credibility, or untrustworthy sources. With this definition, we evaluate various

platform-agnostic metrics to predict which users will continue to be superspreaders after being

identified. The labeling of sources and the metrics are detailed in Methods, below. We do this

by ranking accounts in an initial time period with each metric and then comparing how well

these rankings predict a user will be a superspreader in a subsequent period. We also compare

all metrics to an optimal performance based on data from the evaluation period. The metrics

considered are based on Bot Score (likelihood that an account is automated, calculated utilizing

BotometerLite [17]), Popularity (number of followers), Influence (number of retweets of low-

credibility content earned during the initial period), and h-index, repurposing a metric initially

proposed to study scholarly impact [18]. We find that the h-index and Influence metrics out-

perform other metrics and achieve near-optimal accuracy in predicting the top

superspreaders.

After validating the h-index and Influence metrics, we address our second research ques-

tion by conducting a qualitative review of the worst superspreaders. Behavioral statistics and

relevant user characteristics are analyzed as well; e.g., whether accounts are verified or sus-

pended. This allows us to provide a qualitative description of the superspreader accounts we
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identify. 52% of superspreaders on Twitter are political in nature. We also find accounts of

pundits with large followings, low-credibility media outlets, personal accounts affiliated with

those media outlets, and a range of nano-influencers—accounts with around 14 thousand fol-

lowers. Additionally, we learn that superspreaders use toxic language significantly more often

than the typical user sharing low-credibility content. Finally, we examine the relationships

between suspension, verified status, and popularity of superspreaders. This analysis suggests

that Twitter may overlook verified superspreaders with very large followings.

Related work

There is a great deal of literature on the identification of influential nodes within a network

[19]. While some of this work is not directly related to the social media space, it offers some

guidance about how nodes—in our case, accounts—interact within an information diffusion

network. Given that the dynamics of diffusion are hard to infer, this work often takes a struc-

tural and/or a topical approach.

Structural approaches focus on extracting information about potentially influential users

from the topology of social connections in a network [20–24]. A classic example is PageRank,

an algorithm that counts the number and quality of connections to determine a node’s impor-

tance [21]. Several authors have found that the k-core decomposition algorithm [25, 26] out-

performs other node centrality measures in identifying the most effective spreaders within a

social network [23, 24]. This algorithm recursively identifies nodes that are centrally located

within a network. Unfortunately, this method is unable to differentiate between individuals in

the network’s core.

Topical approaches take into account network structure and also consider the content

being shared [27, 28]. For example, Topic Sensitive PageRank [27] calculates topic-specific

PageRank scores. Another way to extend PageRank is to bias the random walk through a

topic-specific relationship network [28].

Given the ample evidence of manipulation within social media information ecosystems

[7, 12, 29, 30], it is important to investigate whether the results mentioned above generalize to

misinformation diffusion on social media platforms. Simple heuristics like degree centrality

(i.e., the number of connections of a node) perform comparably to more expensive algorithms

when seeking to identify superspreaders [31]. These results, though encouraging, rely on

model-based simulations and decade-old data. More recent work has proposed methods for

identifying fake news spreaders and influential actors within disinformation networks that rely

on deep neural networks and other machine learning algorithms [32, 33]. These methods,

however, are hard to interpret. Another approach is to pinpoint the smallest possible set of

influential accounts by applying optimal percolation to the diffusion network [34–36]. This is

similar to the network dismantling method used in our evaluation of different metrics to rank

superspreaders.

Here we evaluate simple metrics inspired by the literature [23, 31] that can be applied easily

to most social media platforms, and address the gaps related to the misinformation space. We

consider a Twitter user’s degree within the social (follower) network as well as the diffusion

(retweet) network of low-credibility content. We also apply the h-index [18]—previously pro-

posed as a measure of node influence [37]—in a novel way to the realm of misinformation.

Finally, we consider a bot score metric [17] that has been shown to capture the role of potential

platform manipulation by inauthentic accounts [12].

This paper addresses two research questions. To address RQ1, we collect a dataset of low-

credibility content spreading on Twitter. We then compare different metrics for identifying

superspreaders of this content and provide details about these metrics as well as optimal
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performance. A dismantling analysis [7, 12] is utilized to quantify how much future low-credi-
bility content each user is responsible for spreading. To characterize the identified supersprea-

ders (RQ2), we focus on the worst-offending accounts. We manually classify them into

different categories and then describe their behavior.

Methods

Low-credibility content diffusion

We begin this analysis by building a low-credibility content diffusion dataset from which we

can identify problematic users. To identify this content, we rely on the Iffy+ list [38] of 738

low-credibility sources compiled by professional fact-checkers—an approach widely adopted

in the literature [2, 6, 12, 35, 39]. This approach is scalable, but has the limitation that some

individual articles from a low-credibility source might be accurate, and some individual arti-

cles from a high-credibility source might be inaccurate.

Tweets are gathered from a historical collection based on Twitter’s Decahose Application

Programming Interface (API) [40]. The Decahose provides a 10% sample of all public tweets.

We collect tweets over a ten-month period (Jan. 2020–Oct. 2020). We refer to the first two

months (Jan–Feb) as the observation period and the remaining eight months as the evaluation
period. From this sample, we extract all tweets that link to at least one source in our list of low-

credibility sources. This process returns a total of 2,397,388 tweets sent by 448,103 unique

users.

Metrics

Let us define several metrics that can be used to rank users in an attempt to identify super-

spreaders of low-credibility content.

Popularity. Intuitively, the more followers you have on Twitter, the more your posts are

likely to be seen and reposted. As a simple measure of popularity, we can use an account’s

number of followers, even though it does not fully capture its influence [41]. Specifically, let us

define Popularity as the mean number of Twitter followers an account had during the observa-

tion period. We extracted the numbers of followers from the metadata in our collection of

tweets.

Influence. Various measures of social media influence have been proposed [41]. One that

is directly related to spreading low-credibility content can be derived from reshares of posts

that link to untrustworthy sources. We compute the Influence I of account i by summing the

number of retweets of all posts they originated that link to low-credibility sources during our

observation period. This is formally expressed as I i ¼
P
t2T i
rt, where ρt denotes the number

of retweets of post t, and T i is the set of all observed posts by account i that link to low-credibil-

ity content. One could also consider quoted tweets, however we focus on retweets because they

are commonly treated as endorsements; quoted tweets can indicate other intent such as

criticism.

Bot score. Some research has reported that social bots can play an important role in the

spread of untrustworthy content [12]. Therefore, we adopt a Bot Score metric that represents

the likelihood of an account being automated [42]. A user’s Bot Score is given by the popular

machine learning tool BotometerLite [43], which returns a score ranging from zero to one,

with one representing a high likelihood that an account is a bot. Machine learning models are

imperfect but enable the analysis of significantly larger datasets. BotometerLite is selected for

its high accuracy, which will minimize error, and its reliance only on user metadata from the

Twitter V1 API [17]. This allows us to analyze the user objects within our historical data,
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calculating the likelihood that a user was a bot at the time of observation; as opposed to relying

on other popular tools that query an account’s most recent activity at the time of estimation

[44]. Since we obtain a score from the user object in each tweet, we set user i’s Bot Score equal

to the mean score across all tweets by i in the observation period.

h-index. To quantify an account’s consistent impact on the spread of content from low-

credibility sources, we repurpose the h-index, which was originally developed to measure the

influence of scholars [18]. The h-index of a scholar is defined as the maximum value of h such

that they have at least h papers, each with at least h citations. Similarly, in the context of social

media, we define h(i) of user i as the maximum value of h such that user i has created at least h
posts linking to low-credibility sources, each of which has been reshared at least h times by

other users.

We apply this metric to the Twitter context and adopt the most common metric on this

platform for resharing content, the retweet count. As a result, a Twitter user i with h = 100

means that the user has posted at least 100 tweets linking to low-credibility sources, each of

which has been retweeted at least 100 times.

Unlike common measures of influence, such as the retweet count or the number of follow-

ers, this repurposing of the h-index focuses on problematic repeat-offenders by capturing the

consistency with which a user shares low-credibility content [45]. For example, a user i who

posts only one untrustworthy tweet that garners a large number of retweets earns h = 1, regard-

less of the virality of that individual tweet.

Accounting for future low-credibility content

This work seeks to predict which Twitter accounts will be superspreaders of untrustworthy

content in the future. To this end, we identify accounts in the observation period and then

quantify how much low-credibility content they spread during the evaluation period. We con-

struct a retweet network with the data from each period. The observation network (Jan–Feb

2020) and the evaluation network (Mar–Oct 2020) involve approximately 131 thousand and

394 thousand users, respectively. In each network, nodes represent accounts and directed

edges represent retweets pointing from the original poster to the retweeter. Each edge (i, j) is

weighted by the total number wij of times any of i’s posts linking to low-credibility content are

retweeted by j.
We create four separate rankings of the 47,012 users that created at least one post linking to

low-credibility content during the observation period based on each of the metrics defined

above: h-index, Popularity, Influence, and Bot Score.

For each ranking, we employ a network dismantling procedure [7, 12] wherein accounts

are removed one by one in order of ascending rank from the retweet network. As we remove

account i from the network, we also remove all retweets of posts linking to low-credibility con-

tent originated by i, i.e., the outgoing edges from i. We can calculate the proportion of untrust-

worthy content removed from the network with the removal of account i as

Mi ¼
P

jwij
P
k jwk j

; ð1Þ

where the denominator represents the sum of all edge weights prior to beginning the disman-

tling process. This quantifies how much low-credibility content each user is responsible for

during the evaluation period.

Note that Twitter’s metadata links all retweets of a tweet to the original poster. Therefore,

the valueMi for each account i is the same across all ranking algorithms. The performance of a

metric depends only on the order in which the nodes are removed, determined by the metric-
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based ranking. We compare how quickly the metrics remove low-credibility content from the

network relative to one another. Metrics that remove this content most quickly are considered

the best ones for identifying superspreaders. This is because they rank the accounts responsible

for disseminating the largest proportion of low-credibility content at the top.

We also compare each ranking to the optimal ranking for our dismantling-based evaluation.

This optimal strategy is obtained by ranking candidate superspreaders according to descending

values ofM, whereM is calculated by using the evaluation period instead of the observation

period. That is, the account with the largestM value is removed first, followed by the one with

the second largestM, and so on, until all users have been removed. Note that this optimal rank-

ing is only possible using information from the future evaluation period as an oracle. It serves

as an upper bound on the performance that can be expected from any ranking metric.

Account classification and description

The top superspreader accounts according to the rankings described above are classified into

one of the 16 different categories detailed in Table 1. We adopted and slightly altered a classifi-

cation scheme from a previous study [45]. Health-related and COVID-19-specific categories,

i.e., “public health official,” “medical professional,” and “epidemiologist,” were removed. A

“media affiliated” category was added to capture accounts that might have some affiliation

with low-credibility sources, as seen in previous research [2]. This classification scheme takes

into account different types of journalists as well as other influential individuals and entities,

such as politicians, media outlets, religious leaders, and organizations. Additionally, accounts

in certain categories (“elected official” and “political”) are annotated with their political affilia-

tion: “right” (conservative) or “left” (liberal). The same is done for hyperpartisan accounts in

certain other categories, such as media and journalists.

Two authors independently annotated each account. In cases of disagreement, two addi-

tional authors followed the same process. The category and political affiliation of these

accounts were then derived from the majority classification (three of the four annotators).

Accounts for which the disagreement could not be resolved were excluded.

Table 1. Classification scheme utilized during the process of manually annotating superspreader accounts. An account’s political affiliation was recorded if an annota-

tor classified that account as political. The same was done for hyperpartisan accounts in certain other categories, such as media and journalists.

Classification Examples Political Affiliation

Elected official Mayors, governors, senators Recorded

Public service City offices, public departments

Media outlet News outlets, TV news channels If hyperpartisan

Journalist (hard news) Investigative journalists, public health and economics reporters If hyperpartisan

Journalist (soft news) Sports and entertainment reporters If hyperpartisan

Journalist (broadcast news) TV anchors, radio show hosts If hyperpartisan

Journalist (new media) Twitch streamers, podcast hosts If hyperpartisan

Media affiliated Editors, high-level employees, owners of media outlets If hyperpartisan

Public intellectual Academic researchers, mainstream opinion columnists

Political Activists, campaign staffers, political personalities, political pundits, anonymous hyperpartisan accounts Recorded

Entertainer Musicians, comedians, social media personalities

Sports related Baseball players, sports managers

Religious leader Priests, rabbis, churches

Organization Organizations not classified elsewhere

Other Accounts not classified elsewhere. Primarily personal accounts of non-public figures with moderate followings

Deactivated/suspended Accounts deactivated/suspended at the time of annotation

https://doi.org/10.1371/journal.pone.0302201.t001
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Source-sharing behavior

We investigate the typical behavior of a top superspreader account with respect to sharing

low-credibility sources, relative to their general source-sharing behavior. Specifically, for a

given account, we calculate the ratio rm ¼
jT i j
jPi j

, where jT ij represents the total count of user i’s
posts that link to low-credibility sources and jPij is the count of all posts by user i that link to

any source during the observed period. This also allows us to better understand the proportion

1 − rm of non-low-credibility sources that would be lost if the account were removed. This type

of content may originate from trusted sources and is assumed to be harmless. An ideal method

would identify users that consistently share high-impact untrustworthy content and a minimal

proportion of harmless content.

To calculate rm, we first download all tweets sent by the identified superspreaders during a

three-month period (Jan 1, 2020–April 1, 2020). We were able to gather tweets from 123 super-

spreader accounts that were still active. We then extract all links from the metadata of these

tweets. We expand links that are processed by a link-shortening service (e.g., bit.ly) prior to

being posted on Twitter. Sources are obtained by extracting the top-level domains from the

links. Low-credibility sources are identified by matching domains to the Iffy+ list described

earlier. Finally, we calculate the proportion rm for all superspreaders. The inability to calculate

rm for inactive accounts might introduce bias in this measurement.

Language toxicity

We wish to investigate the content of superspreader posts beyond source-sharing behaviors to

understand if they are taking part in respectful discourse or increasing the levels of abusive lan-

guage in public discussion. We utilize the Google Jigsaw Perspective API [46] to estimate the

probability of each tweet in the 10-month dataset being toxic. The API defines toxic language

as rude, disrespectful, or unreasonable comments that are likely to make users disengage from

an online interaction. We then calculate the toxicity of an account by averaging the score

across all of their original tweets. We only consider English-language tweets; five supersprea-

ders tweeting exclusively in other languages are excluded.

While recognizing the model’s “black box” nature as a limitation, we still embrace its adop-

tion, aligning with prevailing practices in social media research. This approach ensures our

work’s comparability with other pertinent studies [47].

Results

Dismantling analysis

After ranking accounts in the observation period based on the investigated metrics (h-index,

Popularity, Influence, and Bot Score), we conduct a dismantling analysis to understand the effi-

cacy of each one (see Methods for details). The results of this analysis are show in Fig 1 (top).

Bot Score performs the worst: even after more than 2,000 accounts are removed from the

network, most of the low-credibility content still remains in the network. This suggests that

bots infrequently originate this content on Twitter. Instead, as previous research suggests, bots

may increase views through retweets and expose accounts with many followers to low-credibil-

ity content, in hopes of having them reshare it for greater impact [12].

We also observe in Fig 1 (top) that while Popularity performs substantially better than Bot

Score, it fails to rank the most problematic spreaders at the top; upon removing the top 10

users, almost no low-credibility content is removed from the network. In contrast, the h-index

and Influence metrics place superspreaders at the top of their rankings and the dismantling
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procedure removes substantial amounts of low-credibility content from the network

immediately.

The Popularity metric draws on the structure of the follower network and therefore contains

valuable information about how low-credibility content might spread. However, the follower

network is not a perfect predictor of diffusion networks [23]. The retweet network used by the

h-index and Influence metrics provides a more direct prediction.

Cramer von Mises (CvM) two-sample comparisons show significant differences between

the optimal curve and those for h-index (P< 0.001, d = 0.61, 95% CI: [0.02, 0.02]) and Influ-

ence metrics (P< 0.001, d = 0.44, 95% CI: [0.01, 0.01]). All confidence intervals are calculated

based on bootstrapping (5,000 resamples). However, the amount of low-credibility content

removed using either metric is within 2% of the optimal, on average. In fact, removing the top

10 superspreaders eliminates 34.6% and 34.3% of the low-credibility content based on h-index

and Influence, respectively (optimal: 38.1%). In other words, 0.003% of the accounts active

during the evaluation period posted low-credibility content that received over 34% of all

retweets of this content over the eight months following their identification. Removing the top

1,000 superspreaders (0.25% of the accounts who posted during the evaluation period) elimi-

nates 73–78% of the low-credibility content (optimal: 81%). This represents a remarkable con-

centration of responsibility for the spread of untrustworthy content.

Fig 1. Top: The effect of removing accounts that created low-credibility posts during January and February 2020 (observation period) on the

proportion of untrustworthy content present during the following eight months (evaluation period). Nodes (accounts) are removed one by one from a

retweet network in order of ascending rank, based on the metrics indicated in the legend. The remaining proportion of retweets of low-credibility posts

is plotted versus the number of nodes removed. The lowest value for all curves is not zero, reflecting the fact that approximately 13% of the low-

credibility retweets in the evaluation network are by accounts who did not create low-credibility posts during the observation period. Bottom:

Likelihood that the difference between the performance of h-index and Influence happened by random chance. The most prolific superspreaders

according to these two metrics remove a similar amount of low-credibility content. To compare them for any given number of removed accounts, we

conduct Cramer von Mises two-sample tests with increasingly larger samples and plot each test’s P-value on the y-axis. After removing more than 50

accounts (gray area) the Influence metric performs significantly better (P< 0.05). The difference is not significant if fewer accounts are removed.

https://doi.org/10.1371/journal.pone.0302201.g001
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Comparing the performance of h-index and Influence to one another across all ranked

accounts illustrates that ranking by the Influence metric removes significantly more low-credi-

bility content on average (CvM: P< 0.001, d = 0.22, 95% CI: [0.01, 0.01]). However, it is more

useful to compare the performance between these metrics with respect to the highest ranked

accounts, since those would be considered as potential superspreaders. Let us again utilize

CvM tests to compare the impact of removing samples of top superspreaders of increasing

size, up to 1,000 accounts. We first check if the amount of low-credibility content attributed to

the top two ranked accounts according to each metric is significantly different, then the top

three, and so on, until we have considered the top 1,000 accounts in each group. As shown in

Fig 1 (bottom), rankings by h-index and Influence are not significantly different when com-

paring the amount of low-credibility content attributed to the top-ranked accounts. Only after

removing accounts ranked 51st or below—who likely would not be categorized as supersprea-

ders—does the performance of these metrics begin to differ significantly (CvM: P = 0.048,

d = 0.17, 95% CI: [−0.03, 0.07]).

Overall, these results suggest that, with respect to our sample, both h-index and Influence

metrics perform well at identifying superspreaders of low-credibility content. Since removing

accounts based on these two metrics yields similar reductions in untrustworthy content, we

explore other reasons to prefer one over the other in later sections.

Describing superspreaders

In this section we characterize superspreaders of low-credibility content in terms of their

account type, untrustworthy content sharing behavior, and use of toxic language. We also

investigate the relationship between an account’s follower count and its verified or suspended

status. The top 1% of accounts with h-index above zero are selected as superspreaders, yielding

181 accounts, and then an equal number of top-ranked accounts are taken for comparison,

based on the Influence metric. We note that other thresholds could be adopted to classify an

account as a superspreader. This approach allows us to focus on a large but manageable num-

ber of accounts that have large influence within the low-credibility content ecosystem.

Account classification. The groups selected by the two metrics overlap, so there are a

total of 250 unique accounts. These were manually classified into different categories following

the procedure detailed in Methods. After the first round of classifications, two authors agreed

on 211 accounts (84.4%, Krippendorf’s α = 0.79). Of the remaining 39 accounts reviewed by

two additional authors, 21 were classified by a majority of annotators and the rest were

excluded, yielding 232 classified accounts.

Fig 2 reports the number of superspreader accounts in each category. Over half of the

accounts (55.1%) were no longer active at time of analysis. Of these 128 inactive accounts, 111

(86.7%) were reported by Twitter as suspended. The suspended accounts were evenly distrib-

uted among the superspreaders identified by h-index (47.5%, 86 accounts) and Influence

(42.5%, 78 accounts). The remaining 17 inactive accounts were deleted. The high number of

suspensions serves as further validation of these metrics: Twitter itself deemed many of the

accounts we identified as superspreaders to be problematic.

The accounts still active were classified according to the scheme in Table 1. 52% (54

accounts) fall into the “political” group. These accounts represent users who are clearly politi-

cal in nature, discussing politics almost exclusively. They consist largely of anonymous hyper-

partisan accounts but also high-profile political pundits and strategists. Notably, this group

includes the official accounts of both the Democratic and Republican parties (@TheDemocrats
and@GOP), as well as@DonaldJTrumpJr, the account of the son and political advisor of then-

President Donald Trump.

PLOS ONE Identifying and characterizing superspreaders of low-credibility content on Twitter

PLOS ONE | https://doi.org/10.1371/journal.pone.0302201 May 22, 2024 9 / 17

https://doi.org/10.1371/journal.pone.0302201


The next largest group is the “other” category, making up 14 active accounts (13.4%). This

group mostly consists of nano-influencers with a moderate following (median� 14 thousand

followers) posting about various topics. A few accounts were classified in this group simply

because their tweets were in a different language.

The “media outlet” and “media affiliated” classifications make up the next two largest

groups, consisting of 19 active accounts combined (18.3%). Most of the media outlets and

media affiliated accounts are associated with low-credibility sources. For example,

Breaking911.com is a low-credibility source and the@Breaking911 account was identified

as a superspreader. Other accounts indicate in their profile that they are editors or executives

of low-credibility sources.

The remainder of the superspreaders consist of (in order of descending number of

accounts) “organizations,” “intellectuals,” “new media,” “public service,” “broadcast news,”

and “hard news” accounts. Notable among these accounts are: the prominent anti-vaccination

organization, Children’s Health Defense, whose chairman, Robert F. Kennedy Jr., was named

as one of the top superspreaders of COVID-19 vaccine disinformation [10, 11, 48]; the self-

described “climate science contrarian” Steve Milloy, who was labeled a “pundit for hire” for

the oil and tobacco industries [49]; and the popular political pundit, Sean Hannity, who was

repeatedly accused of peddling conspiracy theories and misinformation on his show [50–52].

Examining the political ideology of superspreaders, we find that 91% (49 of 54) of the

“political” accounts are conservative in nature. Extending this analysis to include other hyper-

partisan accounts (i.e., those classified as a different type but still posting hyperpartisan con-

tent), 91% of accounts (63 of 69) are categorized as conservative.

Fig 2 also reports political affiliations by superspreader account class. The conservative/lib-

eral imbalance is largely captured within the political accounts group. However, we also see

that approximately half of the “media outlet” and “media affiliated” superspreaders consist of

hyperpartisan conservative accounts. These results agree with literature that finds an

Fig 2. Classification of superspreader accounts. A large portion (55.1%) of accounts are no longer active. For each class annotated with political

affiliations, colors indicate the ideological split. The last group aggregates all accounts with political affiliations.

https://doi.org/10.1371/journal.pone.0302201.g002
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asymmetric tendency for conservative users to share misinformation online compared to lib-

eral users [6, 53, 54].

Low-credibility content sharing behavior. The dismantling analysis focuses on low-cred-

ibility content and does not capture the rest of the content shared by an account. This distinc-

tion is important because moderation actions, such as algorithmic demotion, suspension, and

deplatforming, limit a user’s ability to share any content. To better understand the full impact

of removing superspreaders, we analyze the likelihood that a superspreader shares a low credi-

bility source. We estimate this likelihood using the proportion rm defined in Methods.

Fig 3 compares the distributions of proportions of low-credibility links shared by the super-

spreaders identified by the h-index and Influence metrics. We see that accounts identified via

h-index share relatively more low-credibility sources than those identified with the Influence

metric; a two-way Mann-Whitney U test confirms that this difference is significant (p< 0.01,

d = 0.16, 95% CI: [−0.04, 0.13]). Specifically, the median proportion of shared sources that are

low-credibility for accounts identified by the h-index (median = 0.07, mean = 0.22, n = 84) is

approximately two times larger than for those identified with the Influence metric

(median = 0.03, mean = 0.17, n = 91). In other words, while removing superspreader accounts

based on the two metrics has a similar effect on curbing untrustworthy content, using the h-

index metric is preferable because it removes less content that is not from low-credibility

sources. This result makes sense in light of the fact that the h-index prioritizes accounts who

share low-credibility sources consistently.
Language toxicity. Let us now explore the language used by superspreaders. We first

compare the distribution of mean toxicity scores for accounts identified by the h-index and

Influence metric. Toxicity scores are estimated with the Perspective API [46] (see details in

Methods).

We find that superspreaders identified by the h-index display similar average toxicity

(median = 0.18, mean = 0.20, n = 178) to those identified with the Influence metric

(median = 0.18, mean = 0.20, n = 179); a Mann-Whitney U two-way comparison indicates this

difference is not significant (P = 0.61, d = 0.01, 95% CI: [−0.02, 0.02], n = 245). Fig 4 shows

superspreaders having significantly higher toxicity than all accounts within our dataset

(P< 0.001, d = 0.12, 95% CI: [0.01, 0.03], n = 149, 481). However, at the individual level, we

observe no significant correlation between toxicity and h-index (Spearman r = 0.03, P = 0.67)

or Influence (Spearman r = 0.08, P = 0.26).

Account prominence. Approximately one in five of the superspreader accounts (48 out of

250) have been verified by Twitter. Given such a large proportion of verified accounts, we

investigate the relationship between the prominence (verified status, followers, and retweets)

and active/suspended status of these accounts.

Fig 3. Low-credibility content sharing behavior of superspreaders (points) as captured by the boxplot distribution of the ratio rm. Users identified

via the h-index share a significantly higher ratio of untrustworthy sources than those identified with the Influence metric.

https://doi.org/10.1371/journal.pone.0302201.g003
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Fig 5 (top) shows that more prominent superspreaders are less likely to be suspended: only

3% of suspended accounts were verified. As shown in Fig 5 (bottom), superspreaders with

many (more than 150 thousand) followers are also less likely to have been suspended. A similar

pattern is observed using different thresholds for the number of followers.

Additionally, we find a significant correlation between a superspreader’s number of follow-

ers and the amount of low-credibility content they were responsible for (M) during the evalua-

tion period (Spearman r = 0.42, P< 0.001).

Fig 4. Distributions of language toxicity scores for superspreaders vs. all accounts in the low-credibility content

ecosystem.

https://doi.org/10.1371/journal.pone.0302201.g004

Fig 5. Relationship between suspension, verified status, and popularity of top 250 superspreaders. Top: Percentage of suspended superspreader

accounts that are verified. Bottom: Percentage of suspended superspreader accounts based on numbers of followers.

https://doi.org/10.1371/journal.pone.0302201.g005
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Discussion

In this paper we address two research questions at the core of the digital misinformation prob-

lem. Specifically, we compare the efficacy of several metrics in identifying superspreaders of

low-credibility content on Twitter (RQ1). We then employ the best performing metrics to

qualitatively describe these problematic accounts (RQ2).

The h-index and Influence metrics display similar (and near-optimal) performance in iden-

tifying superspreaders. However, the accounts identified by Influence share a larger proportion

of tweets that do not link to low-credibility sources. This makes the h-index preferable as a tool

to identify superspreaders of low-credibility content because mitigation measures are likely to

remove or restrict the spread of all information shared by those accounts. On the other hand,

some bad actors may intentionally post harmless content to mask their deleterious behavior.

The dismantling analysis reveals a striking concentration of influence. It shows that just 10

superspreaders (0.003% of accounts) were responsible for originating over 34% of the low-

credibility content in the eight months following their identification. Furthermore, a mere

0.25% of accounts (1,000 in total) accounted for more than 70% of such content. This high-

lights the significant role of these superspreaders, further exacerbated by their use of more

toxic language than that of average content sharers.

A manual classification of the active superspreaders we identify reveals that over half are

heavily involved in political conversation. Although the vast majority are conservative, they

include the official accounts of both the Democratic and Republican parties. Additionally, we

find a substantial portion of nano-influencer accounts, prominent broadcast television show

hosts, contrarian scientists, and anti-vaxxers. While past research has identified influencers

responsible for the spread of fake news within political discussions [34, 35], few of our identi-

fied superspreaders overlap with those found in this work. This discrepancy is likely due to our

broader focus on general low-credibility content. Moreover, we employ distinct methodologies

for categorizing content as low-credibility and pinpointing influential accounts. These meth-

odological differences enable us to uncover a wider array of actors who illustrate various moti-

vations for spreading untrustworthy content: fame, money, and political power.

Our analysis shows that removing superspreaders from the platform results in a large

reduction of unreliable information. However, the potential for suspensions to reduce harm

may conflict with freedom of speech values [55]. The effectiveness of other approaches to

moderation should be evaluated by researchers and industry practitioners [56]. For instance,

platforms could be redesigned to incentivize the sharing of trustworthy content [57].

The current work is specifically focused on original posters of low-credibility content and

their disproportionate impact. However, it opens the door for future research to delve into the

roles of “amplifier” accounts that may reshare misinformation originally posted by others [8].

This study relies on data obtained prior to Twitter’s transformation into X. At that time,

Twitter was actively experimenting with ways to mitigate the spread of misinformation [58].

This is starkly contrasted by X’s recent decisions to lay off much of their content moderation

staff and disband their election integrity team [59, 60]. Despite these changes, the key mecha-

nism studied here—a user’s ability to reshare content—remains a fundamental aspect of the

platform.

Internal Facebook documents detailed a program that exempted high-profile users from

some or all of its rules [61]. Evidence presented in this paper suggests that Twitter was also

more lenient with superspreaders who were verified or had large followings. Social media plat-

forms may be reluctant to suspend prominent superspreaders due to potential negative public-

ity and political pressure. Paradoxically, the more prominent a superspreader is, the greater

their negative impact, and the more difficult they are to mitigate.
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