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Human travelling behaviours are markedly regular, to a large
extent predictable, and mostly driven by biological necessities
and social constructs. Not surprisingly, such predictability
is influenced by an array of factors ranging in scale from
individual preferences and choices, through social groups
and households, all the way to the global scale, such as
mobility restrictions in response to external shocks such as
pandemics. In this work, we explore how temporal, activity
and location variations in individual-level mobility—referred
to as predictability states—carry a large degree of information
regarding the nature of mobility regularities at the population
level. Our findings indicate the existence of contextual
and activity signatures in predictability states, suggesting
the potential for a more nuanced approach to estimating
both short-term and higher-order mobility predictions. The
existence of location contexts, in particular, serves as a
parsimonious estimator for predictability patterns even in the
case of low resolution and missing data.

1. Introduction
The understanding of the mechanisms governing human travel
behaviour is crucial to a variety of domains such as epi-
demic modelling [1–5], transportation [6–9], national security
[10], urban planning [11–18] and a host of other applications
[19]. Human mobility trajectories have been shown to exhibit
statistical regularities at multiple scales [20,21], despite the
inherent complexity that exists in the available choices for the
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routes of their daily travels [22,23]. These regularities are rooted in an array of social, spatial and
temporal mechanisms, leading to visitation patterns being highly regular [24]. Indeed, it has been
shown that a perfect algorithm can predict, with between 70% and 90% certainty, an individual’s
future location given their prior location visits [25], depending upon the spatio-temporal granularity of
observations [26,27]. In practice, however, the predictive task has proven to be more challenging than
what the high predictability could suggest. Current predictive models have been achieving performan-
ces ranging from 10% to 15% on similar mobility datasets [28–30].

Moreover, human beings tend to be routine-oriented. For instance, lack of regularity in daily
mobility is linked to high levels of stress [31,32]. This change-averse behaviour leads people
to favouring well-defined routines, which, in combination with stationarity [26], makes mobility
trajectories quite regular [33]. Several factors such as work schedules and physiological processes,
influence mobility-related decisions; for instance, daily necessities such as sleeping and eating
influence activity schedules [34–39]. Conversely, disruptions to such routines can completely alter the
mobility trajectories (as in the recent COVID-19 lockdown measures [40]), which can significantly alter
mobility trajectories and therefore the associated levels of predictability [41].

Missing from extant measures of predictability are spatio-temporal constraints and the social
embedding behind mobility regularities [42]—guessing that a person will be at home on Tuesday
at 4.00 will most likely be a correct prediction. However, it may be much harder to know a person’s
whereabouts during times in which they might not be bound by typical daily rhythms, on week-
ends, for example [43]. Additionally, predictability is computed from an asymptotic approximation
of entropy based on a non-parametric estimator [44,45] that does not account for the periodic and
rhythmic nature of travelling behaviours [46,47]. Finally, the metric does not provide insight into the
generative mechanisms that underpin the observed regularities in mobility [19].

To overcome these limitations, we conduct studies on three location-based social networks (LBSNs)
that contain location trajectories for all the users that participate in such networks. By location
trajectories, we mean visitations made by individuals throughout the history of the data, represented
as a vector whose elements correspond to a temporal sequence of alphabets with each alphabet
corresponding to a unique labelling for the given location. Our work proposes a new perspective to
mobility predictability that accounts for these missing factors, particularly connecting the observed
regularities in mobility patterns to human circadian/semi-circadian routines and the types of loca-
tions they visit. Furthermore, we study the temporal variations of predictability, unveiling structural
patterns in their frequency and time components, which we refer to as predictability states. Our results
suggest that in addition to the daily routines, regularities in mobility predictability are also marked
by periods of approximately 12 and 6 h, which could correspond to the second and fourth harmonics
of internal circadian rhythm. These findings could suggest that factors governing mobility-related
decisions are also influenced by internal biological cycles beyond sleeping and feeding needs. This is
corroborated by the predominance of 12 h periods over other cycles governed by sleep/work/study
routines, such as the 8 and 4 h cycles. Additionally, we show the role of a location-based context,
demonstrating heterogeneities in mobility profiles based on the types of locations that people visit. The
importance of this is demonstrated through agreement between the true distribution—calculated from
the full set of visitation trajectories—and a simple linear model that takes only the frequency of visiting
a location type as input. Taken together our results indicate that uncertainty and predictability in
mobility patterns should be considered as a transient state of the individuals that is heavily influenced
by their temporal and activity-location contexts.

2. Results
2.1. Datasets
We use data from three different LBSN services. Brightkite and Gowalla were two popular social
networking sites that existed from 2007 until 2012. Weeplaces was a website where users could upload
their check-in activities from other social network services (e.g. Facebook Places, Foursquare). These
datasets contain users’ check-in activity including user identification, location coordinates (i.e. latitude
and longitude) and the time-stamp of the logged activity. Additionally, the Weeplaces dataset contains
a description (i.e. the category) of the locations (e.g. nightlife, outdoors). The details of the data are
listed in table 1. For each individual in the dataset, we convert their check-in activity to trajectories
described as a time series of the form
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X = x 1 ,x 2 , …,x T ,

where x(t) ∈ V is a location and V is the set of all visited locations by that individual. For more details

on the data, refer to electronic supplementary materials, §S1, table S1 and figures S1– S6.
To compute the time-dependent predictability, we segment each user’s trajectory into non-overlap-

ping windows of a specified size (1 h, for instance). The window size can be adjusted based on the
research question. For each window (e.g. Monday at 1.00–2.00), we calculate the predictability based
on the user’s location sequence within that window. This process is repeated for all windows across all
users. Finally, we average the predictability scores across users for each specific time window (e.g. all
users on Monday at 1.00) to obtain the population-level predictability for that time frame.

To analyse the effect of temporal window of observations, we segment each user’s entire trajectory
for a defined period (e.g. a week with 168 h) into non-overlapping windows of the chosen size.
This creates multiple ‘bins’ per user—168 bins for a 1 h window, 84 bins for 2 h windows and so
on. We calculate a predictability score for each individual bin within a user’s trajectory. Averaging
the individual bin scores for each user, results in a single predictability score that reflects their
overall predictability across the chosen window size. For more details of the procedure, cf. electronic
supplementary materials, §S1.3 and figure S7.

2.2. Time-independent uncertainty and predictability
We begin our analysis by examining the information contained in the location trajectories of all
individuals in each of the datasets. When accounting for only the frequency of location visitations,
the degree of uncertainty in capturing the future locations of a trajectory given past observations is
encoded in the Shannon entropy (measured in bits)

(2.1)Hu = − ∑i ∈ Vp(x)log2p(x),

where p(x) is the probability to visit the location x. The subscript refers to the fact that this is the
uncorrelated entropy, given that no information on the sequence of location visits is considered.
Accounting for both the visitation frequency and the temporal sequence of location visits, we use
a non-parametric estimator [44,45] termed the entropy rate (Lempel–Ziv algorithm), given by the
expression

(2.2)Hc =
Nlog2N
∑i = 1

N
Λi ,

where N is the number of moves made by an individual (not necessarily to distinct locations), Λi is
the length of the shortest trajectory sub-sequence beginning at position i not seen previously. In the
absence of any structure in the sequence, equation (2.2) reduces to equation (2.1). In figure 1a, we
plot the results for the datasets finding that in all cases Hu ≈ 6 bits and Hc ≈ 5 bits. This indicates that
accounting for the temporal sequence reduces the possible space of future location visits from 26 to 25

possible locations indicating the presence of temporal correlations in visits between locations.
The entropy rate can be converted to a measure of predictability Π using Fano’s inequality [51] to

define the upper bound of how often an ideal predictive algorithm can correctly guess the next location
visit, given prior history. This is calculated by inverting

(2.3)Hu, c ≤ B(Πu, c) + (1 −Πu, c)log2(S − 1),

where S is the number of distinct locations visited and B(x) is the binary entropy function capturing the
entropy of a simple Bernoulli trial (in this case achieving maximal predictability or not). The metric

Table 1. Data from location-based social networking sites.

dataset users records period

Brightkite [48] 58 228 4 491 143 April 2008–October 2010

Gowalla [49] 107 002 6 405 492 February 2009–October 2010

Weeplaces [50] 15 799 7 658 368 November 2003–June 2011
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mathematically bounds the performance of all real predictive methods given an information sources
inferred uncertainty. The corresponding results are shown in figure 1b and mirror the trends seen for
the entropy; including information about the sequence of location visits, over and above the frequency
of visiting those locations, increases the predictability from approximately 20% to 40%. In what is to
follow we will interpolate between Πu and Πc based on the nature of the analysis.

2.3. Time-dependent predictability
Human activity routines are characterized by temporal regularities with time and frequency compo-
nents. For instance, usual working hours tend to recur every 24 h (i.e. frequency) with changes during
the weekends (i.e. time). This temporal regularity is reflected in the user check-in activity patterns
observed in electronic supplementary material, figure S4. Thus, it is reasonable to believe that mobility
regularities in both time and frequency domains should manifest themselves in the predictability
profile of an individual. Thus, in order to extract the temporal variation of the predictability, instead
of considering the complete visitation sequence of individuals, we analyse individuals at different
moments of the week. Specifically, we split the trajectory of each individual into time slots representing
the time of the week. We create 168 slots (i.e. 24 h × 7 days of the week) and define Xt = t0 as a random
variable representing the places that an individual visits at the time slot t = t0 ∈ [1, …, 168].

Given the shorter trajectories in a single-hour window, the temporal correlations are less
important, and, consequently, we plot the uncorrelated predictability Πu. The results are shown
in figure 2a, where we plot the time-series of Πu(t)  for Weeplaces—the corresponding plots for
Brightkite and Gowalla are shown in electronic supplementary materials, figures S8 and S9. As the
figure indicates, when disaggregating with respect to time, the predictability exhibits considerable
variation both from day to day as well as within a given day. For instance, we see a progressive
decrease in predictability from Monday to Friday, which then picks up again and peaks on the
weekend. Within a day there is considerable variation, with the predictability of an individual
fluctuating between 50% and 85%, with individuals being more predictable at night (the standard
deviation is shown as the shaded region in figure 2a and is consistent with the range shown
in figure 1b). Finally, we see a clear 24 h periodicity in the predictability profile with high
predictability periods during evenings and at night (peaking around 4.00 to 5.00) and troughs at
midday. This feature is seen across all three datasets.
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Figure 1. Time-independent entropy and predictability. (a) The entropy accounting for only visitation frequencies Hu and
incorporating the temporal sequence of visitations Hc. (b) The corresponding predictability values were calculated through equation
(2.3). In all cases, accounting for the sequence reduces uncertainty from 6 to 5 bits and increases predictability from 20% to 40%.
The vertical dashed lines represent the medians for each distribution while the values for the standard deviation σ are shown in the
legends.
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We note that as in other human facets, human mobility and social interactions tend to exhibit a high
degree of heterogeneity. If on one hand, most people use their mobile phones a few times a day, some
users, on the other hand, make hundreds of calls a day. Some individuals are more active in the sense
of travelling more frequently, to a diversity of locations, as well as travelling longer distances. One
would expect this activity context to influence the predictability profiles in different ways. To test for
this effect we disaggregate the data in terms of three different metrics of activity: number of unique
locations visited S; geographical coverage measured by the radius of gyration rg [20]; and monthly
recurrent frequency by averaging the number of check-ins per month f‾c. The electronic supplemen-
tary material, figure S1 shows the distribution of these quantities for all the datasets, indicating a
right-skewed heavy-tailed distribution for all three measures in line with previous observations [20,25].

The influence of the observed heterogeneity in the activity metrics on the predictability is plotted
in figure 2b–d. First, we note that the temporal trends are maintained even while disaggregating with
respect to the activity metrics. However, the range in predictability varies with respect to the levels
of activity. For instance, those who visit between 10 and 20 unique locations have an effectively flat
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Figure 2. Time-dependent predictabilities. (a) The uncorrelated predictability Πu, disaggregated with respect to time for Weeplaces.
The trajectory of each individual is split into time slots representing the time of the week. We create 168 slots (i.e. 24 h × 7 days of the
week) and define Xt = t0 as a random variable representing the places that an individual visits at the time slot t = t0 ∈ [1, …, 168].
The shaded area depicts the standard deviation (±σ) around the mean value, which is calculated for each hour. (b) The temporal
predictability disaggregated with respect to the number of unique locations visited S. (c) Now disaggregated with respect to
geographical coverage as measured by the radius of gyration rg in units of kilometres. (d) Finally, disaggregated with respect to the
average frequency of monthly check-ins f‾c. Across all users, we see daily peaks (4.00 to 5.00) and secondary peaks (12.00 to 17.00) of
predictability throughout the time series.
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temporal profile across the days of the week, as well as within a day (Πu ≈ 90%). In contrast, those
who visit more than 60 unique locations show much more temporal variability with lower levels of
predictability (50% ≤ Πu ≤ 80%). Additionally one sees a sharp drop in predictability when comparing
populations visiting less than 60 locations with those visiting more than this number. A similar trend
is seen for geographical coverage, where once again a flat trend is exhibited by populations venturing
not more than 10 km from their residence, whereas those travelling more than 100 km, experience the
same variability as those visiting more than 60 unique locations. Now one sees a sharp drop in Πu
when comparing populations travelling more than 100 km with those that travel less. Finally, the trend
is also mirrored when measuring the frequency of check-ins f‾c, the difference being the absence of
any sharp drops in Πu with a more smooth decrease between the segmented populations. Electronic
supplementary material, figures S8 and S9 indicate the same trends for Brightkite and Gowalla. Across
all datasets, the predictability decreases with more diversity in activity (as measured by S, rg and f‾c).
That is, it is harder to predict the mobility of users with more diverse routes irrespective of whether
the diversity is measured in terms of the number of unique locations visited, the geographical area
explored, or the amount of monthly data (traces). Taken together the results indicate an unexplored
facet of uncertainty and predictability; stating that ‘an individual is 80% predictable’ must be interpre-
ted in an averaged sense. Missing from this is the instantaneous changes in a person’s predictability state
over time.

Indeed, one would also expect this to vary with respect to the observation window of an individu-
al’s trajectory. For instance, if we observe a user only for an hour, they are likely to visit only a few
locations. Given the lack of diversity in routes, the predictability should be high (as indicated by figure
2). Conversely, the longer the observation window, the more the number of locations visited, and
therefore the predictability necessarily should decrease. It is interesting to consider whether there is
a saturation in this decrease in Πu. In figure 3a, we plot the distribution of Πu as a function of the
temporal window of observations for Gowalla, ranging from 1 to 72 h windows. As a baseline, the
curve for the predictability considering the full set of trajectories (absent any window) is shown as a
dashed line. As the time window gets smaller, the average predictability increases as expected. This
is because we move from daily bins (each bin representing a full day of 24 h) to hourly bins (each
bin representing a single hour within a day). In figure 3b, we plot the mode of the distributions as a
function of the window size finding a saturation in the curve at 24 h for all three datasets.

2.4. Temporal and frequency modes in predictability
The temporal variation of the predictability seen in figure 2 suggests the possible presence of additional
frequency modes in addition to the clear 24 h periodicity. To uncover this, one can use the continuous
wavelet transform to describe the regularities in the time series of the individuals [52,53]. Wavelet
analysis reveals the frequency components of signals just like the Fourier transform, but it also identifies
where a certain frequency exists in the temporal or spatial domain (see electronic supplementary
material, §S4 for details of the method). Figure 4a shows the wavelet power spectrum for each of
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Figure 3. The effect of temporal windows of observation. (a) The distribution of Πu as a function of window size for Gowalla. The
dashed curve represents the baseline distribution of Πu when taking into account the full trajectory of individuals. (b) The modes of
the distributions are plotted as a function of window size for all three datasets. Horizontal dashed lines indicate the saturated value of
Πu.
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the datasets (the dashed line indicates the statistical significance, electronic supplementary material,
equation S3). Not surprisingly, the figure reveals the circadian period (approximately 24 h) as the most
prominent component of the predictability regularity. Additionally, and somewhat surprisingly, the 12 h
component is the second-strongest component (i.e. the circasemidian period). Given working schedules
and sleeping cycles, one might have expected a mode around the 8 h period, however, the third-strongest
component is centred approximately around the 6 h regime during the day, even though the signal
is not statistically significant at the population level. We note that the power spectrum is essentially
identical across all three datasets, indicating the robustness of these modes in determining the observed
temporal variation in predictability. Conducting the wavelet analysis on individual-level data, one can
represent the percentage of users in each dataset that have either the 24, 12 or 6 h mode as their strongest
components. The results are shown in figure 4b indicating that across all datasets between 73% and 81%
of users have the 24 h mode as their strongest component, 12–18% of users have instead the 12 h mode as
their strongest component, whereas a negligible fraction have the 6 h mode.

2.5. Location context of predictability
Thus far we have investigated the temporal context of uncertainty in mobility behaviour. It stands to
reason that there is also a location-based context that influences movement patterns. For example, it
is plausible that people are more predictable about their workplace or residence, as compared with
locations that represent leisure and entertainment activities such as visiting restaurants and museums.
This is a function of those types of locations being less frequently visited as compared with those that
are driven by the daily work schedules.

To investigate this, one can scan the sequence of trajectory visits and group each location into
categories. Now that we are once again analysing the full sequence of trajectories, temporal correla-
tions in the sequence come into play and we can do a comparative analysis of both the correlated
and uncorrelated predictabilities. The Weeplaces dataset contains a standardized set of eight location
tags: Home/Work, Education, Entertainment, Food, Travel, Shops, Outdoors and Nightlife. Restricting the
analysis of trajectories to each location type, one can compare it with the baseline distributions for Πu, c
when considering all types of locations. For instance, a context-dependent trajectory for food could be:
breakfast-place-A, lunch-place-B, coffee-place-C, etc.; while a full baseline trajectory could be: home-place-X,
breakfast-place-A, work-place-Y, lunch-place-B, coffee-place-C, gym-place-Z, etc.

The results are shown in figure 5 with the baseline distribution shown as a dashed line. The figure
clearly indicates the role of a spatial context in the distributions for both Πc and Πu. For instance,
as expected, activities related to Home/Work, Travel, Shops are more predictable than the baseline;
Education, Outdoors essentially mirror the baseline, whereas activities corresponding to Food, Entertain-
ment, Nightlife have peaks markedly below the baseline.

The observed difference in predictability as a function of location-context behoves us to investigate
the extent to which the frequency of which particular location types are visited has a bearing on the
overall distribution of Πc. Note this is different from merely considering the frequency distribution of
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visiting a particular location which is the primary input to equation (2.1). Instead, here we coarse-grain
these locations into categories and investigate whether this feature can be a good estimator for P(Πc).
To that effect, we consider a linear regression model by using the relative frequency that an individual
stayed at places from each category as an input. For instance, we investigate whether knowing that
a person goes shopping often, informs us about this person’s overall predictability. We train the
model with the calculated predictability as an independent variable and the relative frequencies of the
categories as the dependent variable.

Using this linear model, we estimate the predictability denoted by P(Π̂c) (calculated from coarse-
grained trajectories, e.g. 80% home/work, 18% food, 1% nightlife, etc.) in figure 6a and plot it
against the true distribution P(Πc) (calculated from the full trajectories over multiple days, e.g. home,
restaurant, work, restaurant, etc.). As the figure indicates, this simple model does a reasonable job of
estimating the true distribution (R2 = 0.419) with the residuals being normally distributed and centred
around zero (figure 6b). (The coefficients of the model are shown in electronic supplementary material,
table S2). Our results highlight two key points. First, the linear model’s effectiveness as an approxima-
tion to the true distribution suggests the importance of location contexts. Second, this implies that
capturing coarse-grained information about individuals, such as location types and visit frequencies,
is sufficient to understand the general trends in mobility uncertainty, without resort to the full set of
fine-grained mobility trajectories.

3. Discussion
Meeting a citizenry’s needs require governments, industries and other stakeholders to be able to plan
for demands (e.g. hospital admissions, public transportation and store opening times). The predictabil-
ity of human movement is at the heart of planning, hence more accurate modelling should inform
better decision-making in terms of public policy. Extant research models uncertainty and predictabil-
ity in mobility trajectories as aggregated value for individual considering their full set of mobility
trajectories as an input. This neglects the spatio-temporal factors influencing mobility, such as the
temporal variations for different times of the day and days of the week, the levels of activity as well
as the types of locations visited. As our results indicate, the predictability is greatly influenced by
the window of observation, the length of the observation, the diversity of activities undertaken by an
individual, as well as the location of the individual. Consequently, a more accurate way of modelling
predictability is to consider it as a transient state, while taking into account the activity context.

The role of location context has some practical considerations. As our findings demonstrate, using
coarse-grained location types and measuring visit frequencies provides a reasonable proxy for the
predictability extracted from mobility trajectories. While traditional methods require finely grained
data with frequent sampling, this approach offers a simpler and potentially more efficient alternative.
Indeed, typically high-resolution mobility data are hard to come by and are restricted to only a few
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regions in the world. Our results show that much can be learnt even with low-resolution information.
On the other hand, there is increasing access to higher-resolution data, such as the ones being collected
as part of ‘track-and-trace’ systems in certain countries. In such instances, our framework of combin-
ing mobility traces with activity context can lead to more accurate characterizations. Indeed, many
governments and companies (as part of ‘data-for-good’ efforts) are starting to open their datasets to
scientists, which will naturally lead to better urban analytics, including human dynamics modelling.

The main implication of this work is that planning of activities related to human mobility (e.g.
city events, epidemic modelling and road maintenance) needs to consider time–space variations of
individual activities. Furthermore, during periods of restrictions, such as the COVID-19 pandemic,
the understanding and characterization of these time–spatial variations can aid governments to make
the correct decisions. In 2020 and 2021, many governments imposed curfew/lockdown measures on
citizens after certain hours (e.g. Spain, Colombia) in a ‘blanket’ way. Effective curfews depend on the
time and the location, and the consideration of such variations can lead to a better approach where not
all areas are treated equally. Using predictability as a state and using the states for planning could lead
to more just/equitable outcomes.

3.1. Limitations
Our work of course has limitations; given the analysis was conducted on a particular type of dataset
(LBSNs) that vary in their spatio-temporal resolution, geographical coverage and sampling rates. It
will be instructive to conduct this analysis in different regions of the world and using other sources
of mobility information such as censuses, GPS data and call data records. Nevertheless, given that we
conducted the analysis on three different datasets, finding similar trends points towards the results
holding up to scrutiny in different settings.

Our analysis relies on the assumption that check-in data comprehensively represents all user
activities throughout the day or week. In reality, limitations in data collection methods and potential
user participation bias may affect this assumption. Additionally, while our datasets capture spatial
information (latitude and longitude), the data reflects app usage rather than detailed activity types.
Check-ins may not distinguish between specific activities at a given location, such as a work meeting,
lunch break, or shopping trip. These factors call for cautious interpretation of the results and highlight
the need for further research that incorporates additional data sources or methods to capture a more
nuanced picture of user activity.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Brightkite and Gowalla data: These LBSN datasets are publicly available from the Stanford Network
Analysis Project (SNAP) database. We accessed them using their respective accession codes: Brightkite [48] and
Gowalla [49]. Both datasets are cited Brightkite and Gowalla within the paper. Weeplaces data: This LBSN dataset
is owned by Yong Liu and can be downloaded from their website: [50]. We have cited this data source Weeplaces
within the paper.

Supplementary material is available online [54].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
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