
Received: 15 August 2023 Accepted: 8 February 2024

DOI: 10.1111/mice.13177

RESEARCH ARTICLE

Real-time displacement measurement for long-span bridges
using a compact vision-based system with speed-optimized
template matching

MiaominWang1,2 Fuyou Xu1 Ki-Young Koo2 PinqingWang1

1School of Infrastructure Engineering,
Dalian University of Technology, Dalian,
China
2Vibration Engineering Section, College
of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter, UK

Correspondence
Fuyou Xu, School of Infrastructure
Engineering, Dalian University of
Technology, Dalian 116024, China.
Email: fuyouxu@hotmail.com

Ki-Young Koo, Vibration Engineering
Section, Faculty of Environment, Science
and Economy, University of Exeter,
Exeter, EX4 4QF, UK.
Email: k.y.koo@exeter.ac.uk

Funding information
National Science Fund for Distinguished
Young Scholars, Grant/Award Number:
52125805; Engineering and Physical
Sciences Research Council, Grant/Award
Number: EP/W005816/1

Abstract
This paper introduces a new accelerating algorithm, efficient match slimmer
(EMS), specifically designed to lighten computational loads of sophisticated tem-
plate matching algorithms, enabling these algorithms to be effectively run on
single-board computers. Utilizing EMS in conjunction with a robust template
matching algorithm, we have developed Raspberry Vision—a compact, cost-
effective, and real-time vision-based system. Its compactness and portability
facilitate a practical measurement strategy that not only minimizes the camera-
to-target distance but also simplifies the camera calibration process in bridge
displacement monitoring, thereby enhancing measurement accuracy. The per-
formance of the system is estimated on two operational suspension bridges.
The results demonstrate that Raspberry Vision, equipped with the measurement
strategy, can significantly improve the measurement accuracy in the long-span
bridge test and is also suitable for cross-sea bridge measurements.

1 INTRODUCTION

Structural health monitoring (SHM) has become a very
important area in bridge engineering, playing a key role
in keeping structures safe and lasting longer (X. Pan
et al., 2023). At its core, SHM involves the continuous
observation of structures using various sensing tech-
nologies to detect and assess changes in the structures,
thereby ensuring structural integrity and functionality
(Javadinasab Hormozabad et al., 2021). Usually, the infor-
mation collected from bridges includes vibration response
(Perez-Ramirez et al., 2019; Pezeshki, Adeli, et al., 2023;
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Pezeshki, Pavlou, et al., 2023), deformation (Park et al.,
2015), and so forth.
Bridge displacement is a critical index for SHM (Brown-

john et al., 2017) and can be measured by displacement
transducers, such as linear variable differential transform-
ers (Boothby et al., 1998), global positioning systems (GPS;
Le & Nishio, 2019; Msaewe et al., 2021; Nakamura, 2000),
potentiometric displacement sensors (Guo et al., 2015),
dial gauges (Bidez et al., 1986), and optic fiber sensors
(Hampshire & Adeli, 2000). Additionally, displacement
can be indirectly estimated throughmethods such as strain
(Oh et al., 2017), double integration of acceleration data
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(Bajwa et al., 2020; Bunce et al., 2023; K. Feng et al.,
2023; F. Liu et al., 2021), a combination of accelerometers
and strain gauges, or a millimeter wave radar (Ma et al.,
2023). Recently, the integration of data fusion techniques in
displacementmeasurement has garnered increasing atten-
tion. These techniques involve combining data from differ-
ent sources, such as GPS and acceleration data (Shen et al.,
2023; Xu et al., 2017; Yang et al., 2021), or acceleration and
strain (Zhu et al., 2020), to enhancemeasurement accuracy
and reliability. However, installing these contact-type sen-
sors can be labor-intensive and, in some cases, impractical
in many bridge applications (Wang, Xu, et al., 2022).
In contrast to contact sensors, non-contact displace-

ment sensors such as microwave interferometric radar
(H. Zhang et al., 2023; Zhao et al., 2020), laser sensor
(Kim & Jung, 2022; H. Zhang et al., 2023), and total station
(Pehlivan, 2022) enable remotemeasurement of bridge dis-
placement without physical access to the structure. While
these contactless sensors offer significant advantages in
terms of safety and convenience, they are often accom-
panied by high costs, which can limit their widespread
use.
Vision-based displacement systems represent another

contactless approach and are capable of remotely cap-
turing structural displacement. These systems not only
eliminate the need for physical contact but also provide
a highly accurate solution for measuring bridge displace-
ment (Ma et al., 2022;Wang, Xu, et al., 2022). These systems
typically use a camera to record video footage of targets
on the bridge, which is then analyzed by image process-
ing software to calculate bridge displacement (Luo et al.,
2018; Xu & Brownjohn, 2018). Examples of such systems
include single-lens reflex camera-based systems (Ge et al.,
2023; Hoag et al., 2017; Narazaki et al., 2021), camcorder-
based systems (Shao et al., 2023), unmanned aerial vehicle
systems (Hoskere et al., 2019; Weng et al., 2021; Yoon et al.,
2018), and action camera-based systems (Xu et al., 2018;
Lydon et al., 2019).
Image signals of cameras are susceptible to a variety

of environmental factors, prompting the development of
diverse image processing algorithms to enhance their reli-
ability. Techniques such as template matching, feature
point matching, sparse optical flow, and motion magnifi-
cation have been advanced for this purpose. Among these,
template matching algorithms are particularly noted for
their robustness against lighting variations and occlusions.
When combined with subpixel refinement techniques,
these algorithms are capable of delivering highly accurate
measurement results. However, a significant limitation of
templatematching algorithms lies in their exhaustive com-
putational requirements. This aspect becomes particularly
challenging in real-time measurement systems, especially
when operating on computers with limited computational
resources (Shajihan et al., 2022; Yu et al., 2023). Addition-

ally, more sophisticated and robust versions of template
matching algorithms tend to be computationally more
complex, exacerbating the challenge of achieving rapid
computations.
Existing real-time vision-based systems for bridge

displacement measurement typically rely on high-
performance computing hardware to achieve operational
speed. These systems often incorporate various accelera-
tion strategies, such as defining a local region formatching
(Luo & Feng, 2018) and employing multi-thread process-
ing (Shuai et al., 2018), to enhance efficiency. While many
such systems have been successfully implemented in full-
scale bridge monitoring (Brownjohn et al., 2017; Hu et al.,
2023; Jeong & Jo, 2022; X. Pan et al., 2023; Tian & Pan,
2016), their widespread adoption is impeded by the high
costs and complexity associated with high-performance
hardware and intricate installation processes (C. Liu et al.,
2016; Su et al., 2019).
In an effort to mitigate these cost barriers, our pre-

vious work introduced a low-cost, real-time monitoring
system based on the Raspberry Pi platform (Wang et al.,
2023). This system used a basic template matching algo-
rithm, zero-mean normalized cross-correlation coefficient
(ZNCC), to capture structural displacement. However, the
ZNCC algorithm’s limited robustness against dramatic
illumination changes and heavy occlusions poses sig-
nificant challenges for long-term monitoring in diverse
environmental conditions.
To address this limitation, this paper proposes a new

accelerating algorithm, efficient match slimmer (EMS),
designed to enhance the performance of a more robust
template matching algorithm, gradient matching via vot-
ing (GMV; Wang, Ao, et al., 2022a), for real-time operation
on Raspberry Pi. EMS aims to decrease computational
loads by implementing a balanced risk-return criterion
technique and defining a localized matching region. The
goal is to enable sophisticated template matching algo-
rithms to operate in real time on single-board computers
(SBCs), reducing the costs of real-time vision-based sys-
tems.
In addition, applications of the existing real-time vision

systems in certain scenarios remain challenging:

1. Long-span bridges (Fukuda et al., 2013; Ye et al., 2013; J.
Zhang et al., 2022): The considerable object–camera dis-
tance (the distance between a test point [e.g., midspan]
and the camera’s location [e.g., riverbank]) can lead
to reduced measurement accuracy due to the camera’s
extensive field of view (FOV) and optical turbulence.

2. Cross-sea bridges (He et al., 2022; Jung et al., 2019;
Zhao & Yu, 2020): Identifying a stable ground area
for installing the system hardware may prove diffi-
cult, presenting a significant challenge for real-time
vision-based displacement measurement in such cases.
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To address the two limitations, a practical measurement
strategy is proposed in this study. In this strategy, the
vision-based system is mounted on a bridge tower or pier,
effectively reducing the object–camera distance and sim-
plifying the camera calibration process when measuring
the girder displacement as compared to scenarios where
the system is positioned on the riverbank. Notably, a sta-
ble ground is not required, facilitating the possibility of
displacement measurements in cross-sea bridge applica-
tions. To facilitate this strategy, we have developed a more
compact and efficient system, called Raspberry Vision.
This system represents an evolution of the previousmodel,
achieved through a comprehensive redesign of the hard-
ware package and the integration of a speed-enhanced
GMV (SGMV) algorithm facilitated by EMS.
This article is structured as follows: Section 2 introduces

EMS for accelerating template matching algorithms. Sec-
tion 3 provides an overview of the hardware and software
components of Raspberry Vision. Section 4 documents a
laboratory experiment conducted to assess the system’s
performance and explore the impact of different factors
in SGMV on its computation time and accuracy. In Sec-
tion 5, a field test on a long-span suspension bridge is
carried out, demonstrating the advantages of the proposed
measurement strategy over traditionalmethodologies. Sec-
tion 6 presents a displacement measurement of a cross-sea
bridge, illustrating the effectiveness of Raspberry Vision
in such applications. Finally, Section 7 summarizes the
conclusions drawn from this study.

2 EMS FOR COMPUTATIONAL
OPTIMIZATION OF TEMPLATE
MATCHING ALGORITHMS

2.1 Computational complexity analysis
of widely used template matching
algorithms

Template matching for object tracking involves selecting a
region of interest (ROI) in the initial video frame as a tem-
plate (with a size of w× h), and then searching for themost
similar region in subsequent frames. This process involves
comparing the template with a query window of the same
dimensions, initially positioned at the frame’s upper left
corner andmoving pixel-by-pixel as shown in Figure 1. The
window that exhibits the highest correlation with the tem-
plate is identified as thematchedwindow, which is consid-
ered as the target’s location in each frame (a size ofW×H).
The correlation 𝐶𝑞 between the template and a query

window is calculated using a general formula 𝐶𝑞 =∑𝑤×ℎ

𝑛=1 𝑓(𝐴𝑖,𝑗 ,𝐵𝑖,𝑗)

𝑤×ℎ
, where 𝑓(𝐴𝑖,𝑗, 𝐵𝑖,𝑗) is a function that esti-

F IGURE 1 Template matching algorithms and their
computational complex. GMV, gradient matching via voting; OCM,
orientation coding matching; ZNSSD, zero-mean normalized sum of
squared differences.

mates the correlation between pixel features 𝐴𝑖,𝑗 and
𝐵𝑖,𝑗 in the template and a window, respectively. Different
algorithms employ various methods for calculating this
correlation in each query window, leading to differences
in computational complexity. Additionally,more advanced
and robust template matching algorithms tend to be com-
putationally more complex. For example, the zero-mean
normalized sum of squared differences (ZNSSD; B. Pan
et al., 2010; Tian & Pan, 2016) involves multiple steps. It
requires w × h operations for calculating the average, an
equal number of subtractions to adjust the pixel intensi-
ties by removing the average, and 3 × w × h operations
for standard deviation computations. These steps are per-
formed for both the template and the corresponding query
window, culminating in 5×w× h operations for each. Sub-
sequently, w × h subtractions are carried out to determine
the differences between them. Finally, w × h squarings are
necessary to calculate the ZNSSD. As a result, the total
number of operations required in the ZNSSD algorithm
amounts to 12 × w × h.
In contrast to traditional template matching algorithms,

GMV estimates the correlation based on gradient infor-
mation between the template and its corresponding query
window. A key distinction of GMV is its extraction of the
target’s edge as the template, which consequently involves
fewer pixels in the correlation calculation. The process
begins with GMV applying a 3 × 3 Sobel operator to com-
pute the gradient vectors for each pixel in both the template
and the querywindow, necessitating 34×w× h operations.
Following this, it calculates the correlation coefficients for
both direction and magnitude, requiring 13 × w × h and 15
× w × h operations, respectively. Finally, GMV conducts a
voting process, where the correlation at each pixel is deter-
mined as either 1 or 0, requiring an additional 1 × w × h
operations. Cumulatively, this results in a total of 63 × w
× h operations for the correlation calculation between the
template and a corresponding query window.
Similarly, the orientation coding matching (OCM) algo-

rithm (D. Feng & Feng, 2016; Fukuda et al., 2013), another
prevalentmethod, computes the gradient orientation angle
at each pixel when estimating the correlation between
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F IGURE 2 Overview of efficient match slimmer (EMS).

the template and the corresponding query window. This
operation-intensive process requires a total of 42 × w × h
operations, includingmultiplications, additions, divisions,
and square roots, among others.
The need to calculate correlation in all query windows

within a video frame further increases the computational
complexity, with the number of windows being (W—w +

1) × (H—h + 1).

2.2 EMS for accelerating template
matching algorithms

The exhaustive computations inherent in traditional tem-
plate matching algorithms result in a high volume of
operations, significantly slowing down image processing
speeds, particularly in vision-based displacement mea-
surement applications. This presents substantial chal-
lenges for real-time measurement, especially in systems
based on SBCs, where computational resources are lim-
ited. To address this issue, this paper introduces EMS, an
efficient approach designed to reduce the operational load
in correlation calculations for template matching algo-
rithms. The overview of EMS is shown in Figure 2. EMS
optimizes correlation computation in each query window
by implementing a balanced risk-return criterion tech-
nique and reduces the number of windows by defining a
local matching region.

2.2.1 A balanced risk-return criterion
technique in EMS for correlation computation
optimization

The correlation between the matched window and the
template is indicative of the moved target’s complete-
ness in comparison with its initial state. In vision-based
structural displacement measurements, the target typi-
cally undergoes translational movement and maintains its
integrity, resulting in a high correlation for the matched

window.Conversely,most querywindows, especially those
far from the moved target, exhibit a significantly lower
correlation. Consequently, performing correlation compu-
tations at all pixels within these low-correlation windows
is inefficient.
To address this, EMS employs a threshold combined

with a balanced risk-return criterion technique to selec-
tively reduce the number of operations needed in the
correlation computation as shown in Figure 2. This thresh-
old, denoted as 𝐶𝑇 , represents the anticipated minimum
completeness of the target duringmeasurement.𝐶𝑇 should
fall in the range from 0 to 1, and its value is defined by
users.

A low-risk criterion
The correlation between the template and a query window
does not require complete evaluation when the matching
process based on the threshold 𝐶𝑇 that a potential match
must reach. Assume that 𝐶𝑁 is the normalized sum of the
𝑓(𝐴𝑖,𝑗, 𝐵𝑖,𝑗) of all preceding pixels when𝐶𝑞 is calculated up
to the Nth 𝑓(𝐴𝑖,𝑗, 𝐵𝑖,𝑗):

𝐶𝑁 =

∑𝑁

𝑛=1
𝑓
(
𝐴𝑖,𝑗, 𝐵𝑖,𝑗

)
𝑤 × ℎ

(1)

If, when calculating 𝐶𝑞 of a query window, it becomes
evident that even with all remaining pixels within the win-
dow having a max 𝑓(𝐴𝑖,𝑗, 𝐵𝑖,𝑗) marked as 𝑐max , 𝐶𝑞 still
cannot exceed 𝐶𝑇 , then the calculation can be discontin-
ued. There is no need to continue a calculation that will
not meet the threshold. This can be formulated:

𝐶𝑁 +
(𝑤 × ℎ − 𝑁) × 𝑐max

𝑤 × ℎ
< 𝐶𝑇 (2)

Since 𝑐max is often 1 in most matching template algo-
rithms, Formula (2) can be rearranged as

𝐶𝑁 < 𝐶𝑇 − 1 + 𝑁∕ (𝑤 × ℎ) (3)

Formula (3) represents a low-risk criterion for stopping
the correlation calculation at a given threshold 𝐶𝑇 .

A high-risk criterion
Another criterion introduces a more stringent require-
ment: Each incremental addition must exceed a threshold
value, 𝐶𝑇 . If this condition is not met, the process of cal-
culating correlation is halted immediately. This stopping
criterion is mathematically expressed as

𝐶𝑁 < 𝐶𝑇 × 𝑁∕ (𝑤 × ℎ) (4)

While this approach ensures efficiency, it also presents
a notable limitation in terms of matching accuracy. This
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is particularly evident when segments of the moved target
that are yet to be completed are assessed first. In such cases,
the cumulative score may not reach the required thresh-
old, leading to potential errors in correctly identifying the
target in subsequent frames.

A weight factor
To ensure a very low probability of incorrectly localizing
the moved target, the low-risk and high-risk criteria are
utilized as follows:

𝐶𝑁 < min

(
𝐶𝑇

𝑤 × ℎ
− 1 +

𝑁

𝑤 × ℎ
, 𝐶𝑇

𝑁

𝑤 × ℎ

)
(5)

Typically, the low-risk criterion is dominant in Equa-
tion (5), primarily governing the stopping condition.
To further accelerate the correlation computation, a
weight factor p in the range [0, 1] is introduced to bal-
ance the weights between the two criteria. This can be
formulated as

𝐶𝑁 < min

(
𝐶𝑇

𝑤 × ℎ
− 1 + 𝑃

𝑁

𝑤 × ℎ
, 𝐶𝑇

𝑁

𝑤 × ℎ

)
(6)

𝑃 =
1 − 𝑝 × 𝐶𝑇

1 − 𝐶𝑇
(7)

When p = 0, P attains its maximum for a given for
a given 𝐶𝑇 , causing the high-risk criterion to predomi-
nantly control the stopping condition. Conversely, when
p = 1, P becomes 1 regardless of 𝐶𝑇 making Equa-
tion (6) equivalent to Equation (5), where the low-risk
criterion is the primary determinant. Typically, the safe
factor can be set to values as high as 0.9 without incor-
rectly localizing the moved target. The impact of the value
of p on matching accuracy will be further discussed in
Section 3.
Furthermore, to prevent the generation of incorrect

measurement results caused by a low threshold𝐶𝑇 , EMS is
designed to record the value of 𝐶𝑁 each time the stopping
criterion is triggered during the correlation calculation
for every query window. If the highest recorded 𝐶𝑁 is
less than the threshold 𝐶𝑇 , the displacement result for
that particular frame will not be outputted. This precau-
tion helps to ensure the reliability of the measurement
outcomes.

2.2.2 Local region definition in EMS for
reduction of the number of query windows

In traditional template matching algorithms applied to
video frames with large dimensions, such as 1920 × 1080,
the correlation calculation for all query windows within
subsequent frames results in a substantial operational

load. However, in full-scale bridge measurements, the
camera’s FOV is typically quite extensive (on the scale of
meters or more), while the structural displacement is rel-
atively minor (at the level of centimeters or millimeters).
Consequently, the target moves only within a small area
in the image. Recognizing this, EMS strategically defines
a local region around the initial target’s location. This
approach significantly reduces the computational demand
by decreasing the number of querywindows that need pro-
cessing, making it a more efficient solution for large-scale
structural monitoring.
In the initial frame, the coordinate of ROI containing the

target is (w, h). The dimension of the local region, (Wlcoal,
Hlocal), is defined as

𝑊𝑙𝑜𝑐𝑎𝑙 = 𝑤 × 𝑎1 (8)

𝐻𝑙𝑜𝑐𝑎𝑙 = ℎ × 𝑎2 (9)

where a1 and a2 are amplification factors for width and
height, respectively. The values of these factors can be
determined by users based on the structural vibration
characteristics.
In bridge displacement measurement, users typically

have prior knowledge of the maximum physical dis-
placement as outlined by relevant technical standards.
Additionally, the physical dimensions of the measuring
target and its corresponding size in the image plane can
generally be estimated. Based on this information, it is
possible to approximate a range for the target’s displace-
ment within the image plane. Consequently, this enables
a rough estimation of the values for a1 and a2. To further
ensure measurement reliability, it is prudent to set these
values at 1.2 times their initial estimates. This approach
balances computational efficiency with measurement
accuracy.

2.3 Demonstration of computational
efficiency improvement using EMS

This section evaluates the computational efficiency
improvements facilitated by EMS in three widely used
template matching algorithms, thereby demonstrating
EMS’s effectiveness. An image of 1920 × 1080 pixels
featuring an annulus with an external diameter of 50
pixels and an internal diameter of 20 pixels was cre-
ated for this test. A 50 × 50 pixel ROI containing the
annulus served as the template. The objective was to
match this template within the image using three sophis-
ticated algorithms: OCM, ZNSSD, and GMV. These
processes were executed on a Raspberry Pi 4B with 8 GB
RAM.
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TABLE 1 Comparison of computational times for various
algorithms with and without EMS (unit: ms).

Case ZNSSD OCM GMV
1 243,902 336,623 72,748
2 344.608 447.905 98.344
3 179.234 276.531 57.463

Abbreviations: EMS, efficient match slimmer; GMV, gradient matching via
voting; OCM, orientation coding matching; ZNSSD, zero-mean normalized
sum of squared differences.

Three distinct cases were established for the test.

Case 1: no implementation of an accelerating algo-
rithm.

Case 2: only implementation of a local region def-
inition, setting both amplification factors a1 and
a2 at 2, which is the widely used method in the
community.

Case 3: implementation of EMS, using the same ampli-
fication factors as in Case 2, but with p = .9. For
OCM and ZNSSD, the threshold 𝐶𝑇 was set to 0.3
to assess the discrepancy between the template and
query windows during the matching process. In
contrast, the threshold 𝐶𝑇 was set to 0.7 for GMV
to calculate the correlation.

Each case was executed 20 times to ensure reliability,
and the average computational times were recorded and
are presented in Table 1.
The test results clearly demonstrate the efficiency of

EMS in three template matching algorithms. Without
EMS, processing times for localizing a template in a
1920 × 1080 pixels image were excessively long, making
real-time processing on a Raspberry Pi platform imprac-
tical. However, a significant reduction in computational
time was observed when using a local region to decrease
the number of query windows for all template match-
ing algorithms. Despite this improvement, achieving the
desired sampling rate for real-time measurement with
only the local region definition remains a challenge. As
indicated in Table 1, the implementation of EMS led to
further reductions in computational time: a 48% reduc-
tion for ZNSSD, a 38% reduction for OCM, and a 42%
reduction for GMV, compared to the reductions achieved
by solely defining a local region. This enhanced effi-
ciency renders these template matching algorithms more
suitable for SBC-based real-time measurement. Among
the three algorithms, GMV achieved the matching with
the least time. This is because GMV extracts the tar-
get’s edge as the template, which consequently involves
fewer pixels in the correlation calculation. The influence
of EMS parameter values on matching accuracy remains

an area for further exploration as will be discussed in
Section 3.

3 A COMPACT REAL-TIME
VISION-BASED DISPLACEMENT SYSTEM

3.1 Hardware

The components of the previous system are combined and
mounted on a tripod, as illustrated in Figure 3a, making
it portable and easy to be placed on the ground (e.g., river-
bank) for bridge displacementmeasurement.However, the
installation location requirementsmay result in significant
object–camera distance in long-span bridge applications,
leading to reduced measurement accuracy. Additionally, it
can be impractical to find a suitable area for the system
during cross-sea bridge tests.
Raspberry Vision consolidates the components within

an aluminum case, designed not only for easy mounting
on structural surfaces but also for enhanced sealing and
protection. This feature effectively guards against potential
damage or interference from external elements like rain
and dust. The design details are showcased in Figure 3b.
A square hole in the front wall of the case, covered by
high-transparency glass, ensures the camera maintains a
clear view of the targets. An acrylic sheet serves as a roof,
guaranteeing the output on the monitor is easily visible.
The components are secured to the bottom plate, which
is separate from the wall, preventing movements from
wind-induced vibrations.
A Raspberry Pi 4B is used in this study for image pro-

cessing. It has a 1.5 GHz quad-core 64-bit ARMCortex-A72
central processing unit (CPU) and 8GBmemory, operating
on Raspbian Buster system. For video frame capture, we
use a Raspberry Pi High Quality (HQ) Camera. This cam-
era utilizes a Sony IMX477 sensor, which has a pixel size of
1.55× 1.55 μmand a native resolution of 4056× 3040 pixels.
However, for actual measurements, the resolution is often
reduced to 1280× 720 pixels. In this configuration, the cam-
era’s image processing involves supersampling, where the
original horizontal resolution of 4056 pixels is effectively
downscaled to 1280 pixels. Correspondingly, to maintain
the aspect ratio, a proportionate number of pixels in the
vertical direction is not utilized in the captured images.
Image sequences featuring targets on the bridge are cap-

tured by the Raspberry Pi HQ camera and subsequently
transmitted to the Raspberry Pi computer for image pro-
cessing via a camera serial interface cable. The captured
images and measurement data are displayed on the moni-
tor for easymonitoring. All devices are powered by a 57,000
mAh portable power bank, capable of operating for over
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1994 WANG et al.

F IGURE 3 The hardware of (a) the previously developed system and (b) the currently developed system.

40 h. The system is controlled using a wireless mouse and
keyboard.

3.2 Software

3.2.1 Introduction of GMV

The authors previously introduced GMV to facilitate accu-
rate measurements in challenging conditions, such as
when moved targets in video frames are incompletely
recorded due to dramatic changes in illumination. Tra-
ditional template matching algorithms typically do not
assign weights to pixel-level similarities when evaluat-
ing the similarity (or correlation) between the template
and a query window in video frames. In contrast, GMV
employs a voting scheme that weights the similarities of
all pixels. This approach ensures that GMV can robustly
track targets, even when they undergo significant feature
losses. The efficacy of theGMValgorithmhas been verified
through a laboratory experiment and two field tests.
The basic workflow of GMV is structured as follows: Ini-

tially, an ROIwith a size ofw× h containing themeasuring
target is selected in the first frame of the video. From this
ROI, the edge points of the target are extracted to form
the template, with each point in the template acting as a
voter. In the subsequent step, these voters either vote for
or abstain from voting for corresponding pixels in the first
querywindow. This process determines the pixel similarity
(PS) scores at the corresponding pixels. The region similar-
ity (RS) score for the first query window is then calculated
by averaging all the PS scores within this window, with the
resulting value expected to fall within the range of [0, 1].
This voting procedure is repeated for all windows within
the subsequent frame, and the position of the query win-
dow with the highest RS score is identified as the new
location of the moved target. More details about GMV can
be found in Wang, Ao, et al. (2022a).

However, using GMV can become time-consuming
when dealing with a significant number of voters or
large frame sizes. For instance, the computational time
exceeded 3 s per framewhen processing 980 voters in 110 ×
1160 resolution video frames (Wang, Ao, et al., 2022a).
These computations were done on a Lenovo T540P laptop,
equippedwith an Intel i7-4700MQCPU. Considering these
factors, the processing time on a Raspberry Pi would be
even longer. This poses a significant challenge for real-time
measurements.

3.2.2 SGMV facilitated by EMS

GMV is accelerated by using EMS to ensure its real-time
functionality on the Raspberry Pi 4B. In this context, we
define the PS score as 𝑆𝑃𝑆 and RS score as 𝑆𝑅𝑆 . Let 𝑆𝑅𝑆𝑇 be
the threshold for the RS score. Assume that 𝑆𝑅𝑆𝑁 is the sum
of the 𝑆𝑃𝑆 of all preceding pixels when 𝑆𝑅𝑆 is calculated up
to the Nth 𝑆𝑃𝑆:

𝑆𝑅𝑆𝑁 =

∑𝑁

𝑛=1
𝑆𝑃𝑆𝑛

𝑤 × ℎ
(10)

The balanced risk-return criterion technique in EMS for
GMV is expressed as follows:

𝑆𝑅𝑆𝑁 < min

(
𝑆𝑅𝑆𝑇
𝑤 × ℎ

− 1 + 𝑃
𝑁

𝑤 × ℎ
, 𝑆𝑅𝑆𝑇

𝑁

𝑤 × ℎ

)
(11)

If, during the calculation of 𝑆𝑅𝑆 for a querywindow, 𝑆𝑅𝑆𝑁
meet the condition set in Equation (11), the calculation for
that window can be discontinued.
Additionally, EMS defines a local region to reduce the

number of query windows as outlined in Equations (8)
and (9). Given that the primary displacement in bridges
typically occurs vertically, the corresponding amplifica-
tion factors for this direction can be set as a1 = 1.2 and
a2 = 2.
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WANG et al. 1995

TABLE 2 Comparison of the previous system, Raspberry Vision, and a commercial system.

Aspects The previous system Raspberry Vision
Commercial system
(Brownjohn et al., 2017)

Hardware Computing unit Raspberry Pi 4B Raspberry Pi 4B High-performance PC
Imaging unit Raspberry Pi HQ camera Raspberry Pi HQ camera Industrial camera
Mounting Tripod Aluminum case Tripod only for camera

Image processing algorithm ZNCC SGMV Unknown
Maximum sampling rate 30 Hz 30 Hz 50 Hz
System installation location Ground Bridge tower or pier Ground
Camera calibration Method Scale factor Scale factor Unknown

Distance measurement By a laser rangefinder
(maximum 100 m)

Based on design drawings By a laser rangefinder

Tilt angle Often significant and it
is difficult to be
measured

Rarely significant –

Cost $480 $400 More than $10,000

Abbreviation: ZNCC, zero-mean normalized cross-correlation coefficient; SGMV, speed-enhanced GMV.

3.2.3 Physical displacement calculation

After SGMV successfully localizes the moved target in the
subsequent frames, the relative displacement on the image
plane is determined by comparing the target’s current
position to its initial position. Considering that Rasp-
berry Vision is specifically designed for long-span bridge
measurements, the camera is equipped with a long-focus
industry lens that exhibits minimal distortion (Fryer et al.,
1994). Given the requirement for real-time processing, the
frames captured duringmeasurement are not corrected for
distortion. Instead, we employ a straightforward camera
calibration method involving a scale factor SF to translate
pixel displacement into physical displacement, which can
be formulated as follows (D. Feng et al., 2015):

𝑆𝐹 = (𝑒 × 𝑟) ×
𝐷

𝑓cos2𝜃
(12)

where e is the physical dimension of a pixel on the cam-
era sensor (1.55 μm); r denotes the super-sampling rate,
defined as the ratio of the camera’s original horizontal res-
olution of 4056 pixels to its adjusted resolution used in
Raspberry Vision, typically set at 1280 pixels; f is the lens
focal length; 𝜃 is the tilt angle between the camera’s opti-
cal axis and the target; and D is the distance between the
target and the camera.

3.3 A practical measurement strategy

Typical real-time vision-based systems generally com-
prise a high-performance computer, an industrial-grade
camera, a tripod, and other essential peripherals. These

systems are often required to be installed on stable ground,
such as a riverbank, to ensure effective operation. How-
ever, this traditional setup presents three main drawbacks
when measuring the displacement of long-span bridges
(girders):

1. The distance between the camera and the measuring
target, often encompassing the main span, side span,
and approach, results in a substantial distance, which
can decrease measurement accuracy.

2. Accurately measuring this long distance can be chal-
lenging, leading to potential errors in the measurement
results.

3. A significant tilt angle θ often arises due to the height
difference between the camera and the target on the
bridge girder, complicating the application of Equa-
tion (12). Accurately determining this angle in field
applications can be difficult.

To overcome the aforementioned challenges, this
paper proposes a practical measurement strategy.
In our approach, Raspberry Vision is mounted on
the lower crossbeam or column of a bridge tower or
on a bridge pier. This positioning offers three key
advantages over traditional setups:

1. It significantly reduces the distance between the cam-
era and the measuring target, as it excludes the side
span and approach, thereby enhancing measurement
accuracy.

2. This shorter distance can be easily and precisely deter-
mined using the bridge’s design drawings.

3. The minimal height difference between the cam-
era’s position on the bridge tower or pier and the
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1996 WANG et al.

target on the bridge girder can typically be disregarded.
This simplification greatly eases the camera calibration
process.

However, this measurement strategy is limited by
the distribution range of the targets. Adhering to this
approach, the optical axis of the camera is aligned parallel
to the longitudinal direction of the bridge. Consequently,
only the targets within the camera’s depth of field can be
captured, which inherently limits themeasurement range.

3.4 Comparative analysis: Previous
system, Raspberry Vision, and a
commercial system

Raspberry Vision has been developed to overcome certain
limitations observed in the previous system, particularly in
the context of field applications like long-span and cross-
sea bridge measurements. A detailed comparison between
these two systems is presented in Table 2. Notably, Rasp-
berry Vision incorporates a more robust image processing
algorithm and offers a camera calibration process that is
both more convenient and practical for field applications.
Furthermore, in conjunction with the proposed measure-
ment strategy, it significantly reduces the distance between
the camera and the measuring target. An additional
advantage of Raspberry Vision is its cost-effectiveness: By
eliminating the need for a laser rangefinder, it is more eco-
nomical than the previous system. For broader context,
Table 2 also includes a comparison with a commercial sys-
tem, Dynamic Monitoring Station produced by Imetrum
Ltd. (Brownjohn et al., 2017), which particularly highlights
differences in cost.

4 LABORATORY EXPERIMENT FOR
SGMV PERFORMANCE ESTIMATION

In this section, a laboratory experiment was carried out to
test the performance of SGMV and study how the values of
parameters in SGMV influence its computational time and
measurement accuracy.
The experimental setup is shown in Figure 4. A black

ring pattern, featuring an outer diameter of 200 pixels and
an inner diameter of 100 pixels, was generated on a 24-inch
liquid crystal display (LCD) monitor using an LCD-based
motion simulation technique (LMST; Wang, Bownjohn,
et al.,2022). The pattern moved downward from its start-
ing point by 10 positions, pausing at each position for a
duration of 1 s. The distance between two consecutive posi-
tions was 5 pixels. After reaching the 10th position, the
pattern retraced its path in reverse order. The entire exer-

F IGURE 4 The setup of laboratory experiment.

cise duration was 20 s. The pixel pitch of the monitor
is 0.277 mm/pixel. Consequently, the true physical rela-
tive displacement between the pattern at two consecutive
positions amounts to 1.385mm,which is calculated bymul-
tiplying the pixel pitch (0.277 mm/pixel) with the pixel
displacement (5 pixels). This true physical displacement of
the pattern is used to evaluate the measurement accuracy
of Raspberry Vision.
The Raspberry Vision was positioned 5.625 m away from

the LCD monitor, with its optical axis oriented perpendic-
ularly to the monitor. The camera, equipped with a 50-mm
focal length lens, was configured with a resolution of 1280
× 640 pixels and a sampling rate of 30 Hz.
We conducted camera calibration prior to the experi-

ment to determine the scale factor. Given that the camera’s
optical axiswas aligned perpendicularly to themonitor, the
tilt angle θwas determined to be 0. The supersampling rate
was calculated by dividing the original horizontal resolu-
tion of 4056 pixels by the adjusted resolution of 1280 pixels,
yielding a rate of 3.169. Employing the above parameters in
Equation (7), the scale factor was subsequently calculated
to be SFlab = 0.553 mm/pixel.
In employing this camera calibration method, potential

sources of error include the following aspects. First, the
distance between the camera and the target was measured
using a laser rangefinder, which has an accuracy of approx-
imately 2 mm. This introduces a minor margin of error in
the distance measurement. Second, adjusting the camera’s
optical axis to be perfectly perpendicular to the target is
challenging, and slight deviations might occur. However,
it is important to note that these factors are unlikely to
significantly impact the overall measurement accuracy.
The experiment consists of two separate tests: the

first one assesses the factors that influence the SGMV
computational time, while the second one examines its
measurement accuracy.
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WANG et al. 1997

TABLE 3 SGMV computational time with different a1 and a2
(unit: ms).

𝒂𝟐

𝒂𝟏 1.2 1.5 2

1.5 32.8 57.3 108.7
2 49.9 100.5 181.9
3 87.7 186 346.4
4 123.3 262.1 476.9

4.1 The effect of the factors on SGMV
computational time

EMS, as implemented in SGMV, combines a balanced
risk-return criterion technique for optimizing 𝑆𝑅𝑆 cal-
culations, a local region definition to cut down the
number of query windows, and multi-threaded paral-
lel processing for handling multiple targets. The first
test was performed to examine how the values of
parameters in EMS influence SGMV’s computational
time.
The Raspberry Vision system was activated to start the

measurement. In the initial frame, an ROI containing the
target was selected, sized at 160 × 160 pixels. From this
ROI, 468 edge points were extracted to serve as a template,
with each point (or pixel) within the template acting as a
voter.

4.1.1 Sub-test 1: The dimension of the local
region

After selecting the ROI, we determine the dimensions of
the local region using parameters a1 and a2. An exploration
into how the values of these parameters impact SGMV’s
computational time was conducted, with the results listed
in Table 3. Notably, in this instance, the threshold 𝑆𝑅𝑆𝑇 was
set at 0, and the weight factor p at 1.
When the entire image, sized at 1280 × 640 pixels, is

utilized for template matching, the SGMV computational
time extends to 2900.7 ms, failing to satisfy real-time pro-
cessing prerequisites. In contrast, parameters a1 and a2 are
employed to define a local region, consequently reducing
the number of query windows and facilitating an increase
in the SGMV computational speed. Data in Table 3 illus-
trate that smaller values of a1 and a2 are associated with
a faster computational speed for SGMV. Specifically, with
a1 and a2 set to 1.2 and 2, respectively, the computa-
tional time for SGMV is significantly reduced to a mere
49.9 ms.
In all cases above, Raspberry Vision produced the same

measurement result, indicating the moved target fell into
the defined local region during the measurement. To
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F IGURE 5 Effect of influence factors on gradient matching via
voting computational time: (a) the number of query windows, (b)
𝑆𝑅𝑆𝑇 , (c) p, and (d) the number of targets.

achieve the quickest computational time, a1 and a2 can be
set to 1.2 and 2, respectively.
The number of query windows can be determined by

the formula as follows: (a1 – 1) × (a2 – 1) × 1602. Figure 5a
depicts the correlation between SGMVcomputational time
and the number of query windows, revealing a roughly
inverse linear relationship. By selecting reasonable values
for a1 and a2, while ensuring that themoved target remains
within the local range, the computational speed of SGMV
can be effectively enhanced.
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1998 WANG et al.

4.1.2 Sub-test 2: The value of 𝑆𝑅𝑆𝑇

The value of 𝑆𝑅𝑆𝑇 signifies the anticipated minimum
completeness of the target during measurement. In this
sub-test, we consider two cases: In the first case, a1 is set
to 1.2 and a2 to 1.5, while in the second case, a1 is set to 1.2
and a2 to 2. 𝑆𝑅𝑆𝑇 values vary from 0.1 to 0.9, incrementing
in steps of 0.1. In both cases, p was set as 1, indicating no
weight on the high-risk criterion. The correlation between
SGMV computational time and the value of 𝑆𝑅𝑆𝑇 is shown
in Figure 5b.
When a high value is assigned to 𝑆𝑅𝑆𝑇 , it is not neces-

sary to calculate SPS for all pixels within the majority of
query windows, thereby boosting SGMV’s computational
speed.With𝑆𝑅𝑆𝑇 set to 0.9, the computational timedrops to
17.0ms inCase 1 and 21.3ms inCase 2,marking a reduction
of 48% and 57%, respectively, when compared to scenar-
ios where 𝑆𝑅𝑆𝑇 is not incorporated into the calculation.
This represents a more than 170-fold increase in speed,
compared to GMV. However, when target completeness is
low, assigning a high value to 𝑆𝑅𝑆𝑇 might lead SGMV to
mislocate the target. Hence, it is crucial to consider both
computational speed and calculation correctness when
setting this threshold.

4.1.3 Sub-test 3

The weight factor p is strategically implemented in SGMV
to balance the high-risk and low-risk criteria, aiming
to optimize the algorithm’s computational speed. It is
important to note that the value of p influences not only
the computational time of SGMV but also its accuracy.
The sub-test conducted focused specifically on assessing
computational time.
The impact of different values of p on computational

time, under varying 𝑆𝑅𝑆𝑇 settings, was examined and is
depicted in Figure 5c. For a given 𝑆𝑅𝑆𝑇 , there appears to be
a roughly linear relationship between the computational
time of SGMV and the value of p. A lower p-value increases
the emphasis on the high-risk criterion, leading to reduced
computational time. However, this approach might intro-
duce potential measurement errors, particularly when the
moved target is not fully recorded. This aspect, concerning
the trade-off between speed and accuracy, will be further
explored in Section 4.2.

4.1.4 Sub-test 4: The number of targets

In practical bridge measurement applications, Raspberry
Vision frequently engages in multi-target tasks, and the
number of targets can influence the computational speed

of SGMV. For this sub-test, four black ring targets were
generated in the monitor using LMST. Raspberry Vision
measured these targets simultaneously, with varying num-
bers of targets in different scenarios.
Figure 5d demonstrates the correlation between the

number of targets and the SGMV computational time. As
SGMV shifts from processing one target to two, the com-
putational time rises from 20.2 to 31.8 ms, an increase of
11.6 ms. However, with further increments in target num-
bers, the corresponding increase in the computational time
becomes less pronounced. Specifically, the computational
time increases bymerely 5.6 ms when processing three tar-
gets, compared to two, and by 6.1 ms when processing four
targets, compared to three.
This diminishing increase in computational time can

be attributed to SGMV’s adaptive processing strategy.
When dealing with a single target, SGMV employs multi-
threaded parallel calculations for 𝑆𝑅𝑆 calculation. How-
ever, as the number of targets increases, SGMV adapts by
shifting to single-core processing for each target, simulta-
neously allocating the remaining cores to the additional
targets. This efficient resource allocation can improve the
processing speed of SGMV in multi-target tasks.
The results demonstrate that the proposed speed-up

strategy can significantly enhance the computational
speed of SGMV, enabling it to operate in real time on a
Raspberry Pi single-board computer. User assignment is
required for some parameters, with their values having
potential implications on not just the computational speed
but also the accuracy of the calculations. This necessi-
tates a comprehensive evaluation when considering these
parameters.

4.2 The effect of the factors on SGMV
measurement accuracy

The threshold value 𝑆𝑅𝑆𝑇 and the weight factor p are
crucial parameters that can significantly affect the com-
putational time of SGMV. However, these factors may also
contribute to incorrect localization of the moved target,
especially in scenarios where the target is substantially
incomplete due to dramatic illumination changes or occlu-
sion. Such incorrectness can lead to measurement errors.
To evaluate the impact of these factors on the accuracy of
SGMV measurements under various conditions, this test
was designed with five distinct cases.
In the first three cases, targets with varying degrees of

completenesswere used: 100% completeness in Case 1, 80%
in Case 2, and 60% in Case 3 as illustrated in Figure 6a–c.
Case 4 was designed to simulate illumination changes,
wherein a fully complete target (100%) is set against a dark-
ening background as depicted in Figure 6d. Finally, Case 5
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WANG et al. 1999

F IGURE 6 The target in different cases.

involved the addition of 30% salt and pepper noise to the
simulated images displayed on the monitor as shown in
Figure 6e.
In each of these cases, an ROI encompassing the tar-

get was selected in the initial frame. This ROI was a size
of 160 × 160 pixels. From this specified area, a total of
468 edge points were extracted to create a template. The
amplification factors were set with a1 at 1.2 and a2 at 2.

4.2.1 Sub-test 1: The value of 𝑆𝑅𝑆𝑇

In this sub-test, the threshold value 𝑆𝑅𝑆𝑇 was varied from
0.1 to 0.9, incrementing in steps of 0.1. In all cases, p
was set to 1 to ignore its effect on the stopping crite-
ria. The pattern displayed on the monitor was measured
by Raspberry Vision at these different 𝑆𝑅𝑆𝑇 values, and
the root-mean-square error (RMSE) of the measured dis-
placement was calculated by comparing it with the true
displacement.
Figure 7a presents theRMSEof themeasurement results

in all five cases. In Case 1, Raspberry Vision consistently
produced stable and accurate displacement results across
all 𝑆𝑅𝑆𝑇 values, with an RMSE of less than 0.036 mm.
In Case 2, accurate displacement measurements were
obtained when 𝑆𝑅𝑆𝑇 was set below 0.7, also with an RMSE
of 0.036 mm. However, when 𝑆𝑅𝑆𝑇 exceeded 0.8, Rasp-
berry Vision began to produce incorrect matches, leading
to larger measurement errors. This increase in error is
attributable to the target’s 80% completeness in this case.
Given that a local region was defined as twice the height
of the ROI, the maximum error did not exceed 80 mm.
In Case 3, where the target’s completeness is 60%, setting
𝑆𝑅𝑆𝑇 higher than 0.6 resulted in substantial measurement
errors. Under the varying illumination conditions of Case 4
and the noise conditions of Case 5, themeasurement errors
slightly increased with larger 𝑆𝑅𝑆𝑇 values. The RMSE in
Case 4 was less than 0.06 mm, while in Case 5, it was
less than 0.07 mm. Based on these findings, an 𝑆𝑅𝑆𝑇 value
of around 0.5 appears to be optimal to ensure reliable
measurement accuracy across various conditions. Addi-
tionally, when 𝑆𝑅𝑆𝑇 is set at 0.5, Raspberry Vision achieves
a computational speed that is conducive to real-time bridge
displacement measurement.
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F IGURE 7 Root-mean-square error of measurement result: (a)
at different values of 𝑆𝑅𝑆𝑇 , (b) at different values of p, and (c)
between the previous system and Raspberry Vision.

4.2.2 Sub-test 2: The value of p

In this sub-test, we examined the impact of the weight fac-
tor p on measurement accuracy. The value of p was varied
from 0.1 to 0.9, in increments of 0.1. In all cases, the thresh-
old 𝑆𝑅𝑆𝑇 was set to 0.5, a value at which Raspberry Vision
consistently produced accurate results in previous tests.
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2000 WANG et al.

Figure 7b illustrates the RMSE of the measurement
results across the five cases. In Case 1, Raspberry Vision
achieved stable and accurate displacement measurements
for all values of p, with an RMSE of less than 0.034 mm.
However, when the target was incomplete, the value of p
began to influence measurement accuracy. In Case 2, for
example, a p-value smaller than 0.2 led to a significant
increase in measurement error, attributable to the ampli-
fied weight of the high-risk criterion in these scenarios.
In Case 3, where the target’s completeness was only 60%
and 𝑆𝑅𝑆𝑇 was set at 0.5, even a slight increase in the weight
of the high-risk criterion could result in incorrect localiza-
tion, causing large errors in displacement results when p
was set below 0.9. In the cases involving varying illumi-
nation (Case 4) and noise (Case 5), the value of p did not
significantly impact measurement accuracy.
Considering the results obtained in Sections 4.1 and 4.2,

setting 𝑆𝑅𝑆𝑇 at 0.5, p at 0.9, a1 at 1.2, and a2 at 2 appears to
offer an optimal balance between computational speed and
measurement accuracy. Under these settings, Raspberry
Vision is capable of delivering real-timemeasurement data
at approximately 27.6 Hz (a response time of 36.2 ms),
while maintaining an RMSE of less than 0.07 mm.

4.3 Measurement accuracy comparison
of the previous system and Raspberry
Vision

In this section, we conducted a test to compare the
measurement accuracy between the previous system and
Raspberry Vision. Both systems were positioned with
the same object–camera distance, and each employed a
Lanczos interpolation algorithm to enhance integral-pixel
displacement to a subpixel level. The test encompassed five
cases,mirroring those in Section 4.2. For Raspberry Vision,
the settings were as follows: 𝑆𝑅𝑆𝑇 at 0.5, p at 0.9, and the
amplification factors a1 and a2 at 1.2 and 2, respectively.
Figure 7c displays the RMSE of the measurement results
from both systems. Notably, the figure specifically high-
lights the scale of 0.0553 mm, which is the value of SFlab;
any data exceeding this threshold are considered indica-
tive of incorrect localization during the template matching
process.
In Case 1, both Raspberry Vision and the previous sys-

tem achieved accurate displacement results, with RMSEs
of 0.034 and 0.03mm, respectively. Theminor discrepancy
in accuracy is likely due to the different methods used for
correlation calculation, which can affect the correlation
scores for subpixel interpolation. However, in scenarios
where the target was incomplete (Cases 2 and 3), the pre-
vious system failed to accurately localize the moved target,
leading to larger measurement errors (RMSEs of 0.687mm

inCase 2 and 0.934mm inCase 3, respectively). In contrast,
RaspberryVisionmaintained accurate and stablemeasure-
ment results in these cases, with RMSEs of 0.036 mm for
Case 2 and 0.037 mm for Case 3, respectively. In cases
involving varying illumination (Case 4) and noise (Case
5), both systems produced accurate results. These test
results indicate that while the previous system is capable
of achieving satisfactory results under conditions of illumi-
nation changes and noise, it lacks robustness in scenarios
with incomplete targets. On the other hand, Raspberry
Vision consistently delivers accurate and stable displace-
ment measurements across various adverse conditions,
demonstrating its superiority over the previous system.

5 FIELD TEST ON A LONG-SPAN
SUSPENSION BRIDGE

The object–camera distance becomes significant when
measuring the displacement of a long-span bridge because
stable ground, such as a riverbank, is often far from the
bridge’s test points. This can result in decreased measure-
ment accuracy and reliability. However, the high portabil-
ity of Raspberry Vision offers a solution to this challenge;
the system can be mounted directly on the bridge tower,
significantly reducing the object–camera distance.
In this section, themidspan displacement of a long-span

suspension bridge, Beida Suspension Bridge, is measured
using Raspberry Vision, employing the proposedmeasure-
ment strategy. The advantages of this strategy for long-span
bridge displacement measurements are demonstrated.

5.1 Test setup

The Beida Suspension Bridge is a steel truss suspension
bridge located in Dalian City, China, connecting Laohutan
Ocean Park and Mount Bird’s Nest Park, as illustrated in
Figure 8a. The main span measures 132 m, with 48 m on
each side span and a width of 12 m. The bridge tower, con-
structed from carbon steel plate, stands at a height of 35 m,
and the distance between the towers is 133 m.
The bridge tower is treated as a stationary structure in

this study. Tomeasure the vertical and horizontal displace-
ment (HD) of the bridge girder, we installed the camera
and computer components of Raspberry Vision on the sur-
face of the tower on the Mount Bird’s Nest Park side as
shown in Figure 8b. These components were mounted on
the horizontal surface of an L-shaped steel plate, which
wasmagnetically affixed to the tower’s surface. The camera
was equipped with a 120-mm lens. The remaining ele-
ments of the system, including the monitor and power
bank, were stationed on the sidewalk of the bridge deck.
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WANG et al. 2001

F IGURE 8 Test setup of Beida Suspension Bridge displacement measurement: (a) Beida Suspension Bridge and (b) test setup.

A wireless mouse and keyboard were employed to control
the system.
A simplified logo pattern of the Dalian University of

Technology (DUT) was used as a target. This pattern was
adhered to the surface of an aluminum plate and installed
on the midspan railing, parallel to the cross-section of
the girder, as shown in Figure 8b. To evaluate the mea-
surement accuracy of Raspberry Vision, the same pattern
was simulated on a 24-inch LCD monitor using the LMST
technology. Themovement of the simulated DUT logo pat-
tern in the monitor is the same as that of the laboratory
experiment in Section 3. The LCDmonitor was positioned
atop the railing near the bridge tower on the Laohutan
Ocean Park side as shown in Figure 8b. This approach for
measurement accuracy estimation has been applied in the
literature (Wang et al., 2023).
The settings of Raspberry Vision were as follows: 𝑆𝑅𝑆𝑇 at

0.5, p at 1, and the amplification factors a1 and a2 at 1.2 and
2, respectively.

5.2 Measurement accuracy estimation
of the simulated target in the monitor

Before conducting the experiment, camera calibration was
carried out to establish the scale factor. The camera was set

F IGURE 9 Error plot of Raspberry Vision in measuring the
simulated target in the Beida Suspension Bridge test.

to a resolution of 1280 × 640 pixels and operated at a sam-
pling rate of 30 Hz. To ensure accuracy in measurements,
the camera’s optical axis was carefully adjusted to be per-
pendicular to the monitor, thereby setting the tilt angle,
θ, to 0. The distance from the camera to the target dur-
ing this setup was 133 m. Based on these parameters, the
scale factor, SFbeida1, was calculated and determined to be
5.444 mm/pixel.
With no vehicles on the bridge, the monitor’s position

can be considered a fixed point. The displacement of the
simulated target in the monitor was measured by Rasp-
berry Vision, with the results shown in Figure 9. In this
figure,HE represents the error in the horizontal direction,
and VE signifies the error in the vertical direction.
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F IGURE 10 Beida Suspension Bridge midspan’s 2D
displacement signals outputted from Raspberry Vision: (a)
horizontal displacement (HD) and (b) vertical displacement (VD).

The measurement results reveal that most data points
have an error within 1 mm, with the maximum lateral
error being 0.941 mm and the maximum vertical error
being 1.017 mm. RMSE of the measurement results is cal-
culated, resulting in 0.411 mm in the horizontal direction
and 0.400mm in the vertical direction. RMSE for the entire
dataset is 0.405 mm, which corresponds to 1/13 pixel in
the image plane. The measurement accuracy in this case
is less than that achieved in the laboratory experiment in
Section 3.

5.3 Measurement result of the DUT
target at midspan

With camera parameters held constant, the DUT target at
midspanwasmeasured over a period of 1min. The distance
between the midspan target and the camera (the object–
camera distance) was 66.5 m. The SFbeida2 is calculated to
be 2.722 mm/pixel.
The HD and vertical displacement (VD) signals out-

putted are presented in Figure 10. During this period, a
heavy truck (approximately 30 tons) traversed the bridge.
The heavy truck entered the bridge at approximately 11.9
s from the Mount Bird’s Nest Park side and drove toward
Laohutan Ocean Park. This action amplified the VD of
the main girder at the midspan and heightened horizontal
vibration. Between 11.9 and 22.7 s, the truck was driv-
ing on the Mount Bird’s Nest Park side span. During this
period, the load was primarily concentrated on the side
span, resulting in an upward deformation of themain span
at the midspan. As the truck moved across the main span

between 22.7 and 48.0 s, considerable deformation in both
vertical and horizontal directions occurred at themidspan.
From the measurement result of the simulated target in

the monitor, it can be inferred that the RMSE of the Rasp-
berry Vision data when measuring the target at midspan
should be less than 0.405 mm. This is due to the follow-
ing rationale: Apart from the measurement distance, all
other factors such as the measurement environment, the
measured target, and camera parameters remained con-
sistent in both tests. When measuring the midspan target,
the object–camera distance was shorter, implying a higher
measurement accuracy in theory.
The quality of the captured displacement signal can be

estimated based on the simulated target measurement.
RMSEof themidspan target result is expected to be approx-
imately 0.411 × (66.5/133) = 0.206 mm in the horizontal
direction and 0.405 × (66.5/133)= 0.203 mm in the vertical
direction. The displacement range of the midspan target
was 7.17 mm in the horizontal direction and 39.47 mm
in the vertical direction. Consequently, the normalized
RMSE (NRMSE) can be calculated as follows: 0.206/7.17
× 100% = 2.9% in the horizontal direction and 0.203/39.47
× 100% = 0.5% in the vertical direction. These calculations
suggest a high-quality displacement signal in the midspan
target measurement.

5.4 Advantages of Raspberry Vision
with the newmeasurement strategy

In a prior test conducted in January 2022 (Wang et al.,
2023), the previous system—featuring all components
integrated onto a tripod—was positioned on a ground sur-
face rather than being mounted on the bridge tower. In
both this and the previous test, themonitors that displayed
the simulated targets were consistently placed at the same
location, and the midspan targets were also held in a con-
stant position. In the earlier test, the distance from the
camera to the simulated target was 181.1 m, while in the
current test, the object–camera distance was reduced by
26.6% to 133 m. Similarly, the distance from the camera to
the midspan target was 115.2 m in the prior test, but in the
current test, the object–camera distance was reduced by
42.3% to 66.5 m.
The average error of the measured displacement in this

test is calculated by averaging the horizontal and vertical
errors. Figure 11a illustrates the errors of the simulated
target measurements for both the previous and current
tests. In the figure, the errors from the previous test are
computed by averaging the measurement results from two
separate scenarios. RMSE of the displacement output from
the prior test was 0.675 mm, while the corresponding
value in the current study is 0.405 mm—demonstrating a
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(a)

(b)

F IGURE 11 (a) The errors of the simulated target
measurements in both the previous and current tests and (b)
differences between the artificial and natural targets’ measurement
results in the test.

F IGURE 1 2 Artificial and natural targets.

reduction of 40.0%. This signifies a significant improve-
ment in measurement accuracy due to the application of
Raspberry Vision combined with the new measurement
strategy.
As for the midspan target measurements across both

tests, an enhancement in measurement accuracy is antic-
ipated in the current test, relative to the previous one.
This expectation is based on the substantial reduction in
object–camera distance in the current setup.

5.5 Comparison between measuring
different feature targets

The stability of Raspberry Vision’s measurement results
when tracking artificial and natural targets at the same
cross-section of the bridge is assessed. As the camera was
mounted on the tower surface with its optical axis parallel
to the girder, selecting a suitable natural texture atmidspan
for measurement presents a challenge. Consequently, arti-
ficial and natural targets at the 1/4 cross-section were
measured as shown in Figure 12. The difference between

the two target measurements is then calculated. The dif-
ferences in both vertical and horizontal directions are
shown in Figure 11b, with an RMSE of 0.109 mm. These
findings suggest that RaspberryVision retains similarmea-
surement accuracy when handling targets with different
features.

5.6 Displacement measurement under
varying lighting conditions

Lighting conditions vary significantly over a 24-h period,
posing a challenge for long-term displacement monitor-
ing using vision-based systems. To showcase the potential
of Raspberry Vision in such applications, the system was
used to monitor bridge displacement for an hour during
the evening. At the beginning of the measurement, the
light was weak, leading to a dark frame captured by Rasp-
berry Vision, as shown in Figure 13a. Approximately 5 min
later, the decorative lights on the bridge were switched on,
and the intensity and color of these lights continued to
fluctuate as shown in Figure 13b,c.
Accurately tracking the target under such conditions

might present a challenge when using traditional algo-
rithms. Fortunately, SGMV in Raspberry Vision demon-
strates robustness against lighting changes, ensuring the
acquisition of reliable displacement signals, as shown in
Figure 14.
Throughout the measurement period, no heavy vehicles

passed the bridge nor were there strong winds. Conse-
quently, the bridge’s displacement response was much
smaller than during instances involving a heavy truck. The
HD signal appeared noisy. Most VD data were less than
SFbeida2 (2.722 mm), implying that the movement of the
target in the captured frameswas at the subpixel level. This
result illustrates that Raspberry Vision can detect subpixel
displacement under significantly varying lighting condi-
tions, thereby demonstrating the efficacy of the developed
system in such challenging environments.
In order to assess the reliability of displacement sig-

nals captured by Raspberry Vision under varying lighting
conditions, the power spectral density of these signals is
calculated as shown in Figure 15. The analysis revealed
four mode frequencies in the VD signal. Conversely, the
HD did not exhibit any distinct peak, suggesting a low
signal-to-noise ratio.
In a previous modal testing of this bridge conducted in

January 2022 (Wang et al., 2023), four modes were iden-
tified. A comparison of the results from these two tests
reveals differences listed in Table 4, all of which are less
than 5%.
The discrepancies can bemainly attributed to the source

of bridge vibration: A heavy truck was used to excite the
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F IGURE 13 Beida Suspension Bridge
midspan displacement measurement under
significantly varying lighting conditions at: (a)
4 min, (b) 6.1 min, and (c) 13.5 min.

(a)

(b)

F IGURE 14 Beida Suspension Bridge midspan displacement measured by Raspberry Vision in significantly varying lighting conditions:
(a) HD and (b) VD.

F IGURE 15 The power spectral density (PSD) of Beida
Suspension Bridge midspan target in significantly varying lighting
conditions.

bridge’s vibration in the earlier test, while the current
experiment measured the ambient vibration of the bridge.
Moreover, it is important to note that the current test had
a duration of 1 h, in contrast to the previous test, which

TABLE 4 Comparison between the identified mode
frequencies of the previous and current tests (unit: Hz).

Mode
Previous
test

Current
test

Difference
(%)

1 0.64 0.61 4.7%
2 0.90 0.94 4.4%
3 1.42 1.39 2.1%
4 1.80 1.83 1.7%

lasted for 14 min. Identifying natural frequencies based
on longer-duration ambient vibration signals is generally
more accurate and reliable. Despite significantly varying
lighting conditions during measurement, the incorpora-
tion of Raspberry Vision with the proposed measurement
strategy effectively captured the ambient vibration of the
bridge. This demonstrates the robustness of this approach
under diverse lighting conditions.
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F IGURE 16 Test setup of Xinghaiwan Cross-sea Bridge measurement: (a) The Xinghaiwan Cross-sea Bridge and (b) Raspberry Vision
on the lower crossbeam of the bridge tower.

6 FIELD TEST ON A CROSS-SEA
BRIDGE

In the context of cross-sea bridge applications, finding
a stable ground area for system hardware installation
can be challenging. This poses a difficulty for real-time
displacement measurements using vision-based systems.
To address this, Raspberry Vision was employed in this
study to monitor the displacement of a cross-sea bridge,
the Xinghaiwan Cross-sea Bridge in Dalian City, thereby
demonstrating its effectiveness in such applications.

6.1 Test setup

The Xinghaiwan Cross-sea Bridge is a cross-sea channel
connecting Ganjingzi District and Xigang District, with a
total length of 6 km. Themain bridge is a double-layer steel
truss suspension bridgewith amain span of 460mand side
spans of 180 m as shown in Figure 16a. The bridge tower is
a reinforced concrete structure with a height of 114.31 m.
The lower crossbeam of the bridge tower can be consid-

ered as a stationary area during the measurement. Rasp-
berry Vision was set up on this crossbeam to measure the
midspan displacement as shown in Figure 16b. The camera

was equippedwith a 300-mmNikon lens, and its resolution
was configured to 1280 × 640 pixels. The optical axis of the
camera was carefully adjusted to be perpendicular to the
target, resulting in the tilt angle θ being 0.
Due to the impossibility of installing artificial targets at

the bottom of the girder, we selected a white drainage pipe
at the midspan as the measurement target as illustrated in
Figure 16b. The distance between the camera and the target
was 277 m, yielding SFxinghaiwan1 of 3.718 mm/pixel.
The settings of Raspberry Vision were as follows: 𝑆𝑅𝑆𝑇 at

0.5, p at 1, and the amplification factors a1 and a2 at 1.2 and
2, respectively.

6.2 Measurement accuracy estimation
of the simulated target in the monitor

The midspan target was a white drainage pipe, approxi-
mately 160 mm in length and 82 mm in diameter. In the
captured frames, its shape appeared as a white rectangle.
Using the LMST technique, we simulated a white rect-
angle on a gray background in the monitor. The physical
dimensions of the rectangle were 157.89 mm in height
and 83.10 mm in width, closely mirroring the actual mea-
sured target size, as shown in Figure 16b. The simulated

 14678667, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13177 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [16/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2006 WANG et al.

TABLE 5 Comparison of measurement accuracy in three tests.

Tests Object–camera distance Lens Scale factor RMSE
Laboratory 5.625 m 50 mm 0.553 mm/pixel 0.034 mm (1/16 pixel)
Beida Bridge 133 m 120 mm 5.444 mm/pixel 0.405 mm (1/13 pixel)
Xinghaiwan Bridge 454 m 300 mm 7.433 mm/pixel 1.390 mm (1/5 pixel)

Abbreviation: RMSE, root-mean-square error.

F IGURE 17 The measurement errors of the simulated target
in the Xinghaiwan Cross-sea Bridge test.

rectangle experienced 10 coordinates, and its HD and VD
were computed using the formula provided in Figure 16b.
The monitor was placed on the lower crossbeam

of another bridge tower, at an object–camera dis-
tance of 454 m. The scaling factor is calculated as
SFxinghaiwan2 = 7.433. The camera’s optical axis was set
perpendicular to the monitor. Raspberry Vision was used
to measure the simulated target in real time, and the
measurement errors are illustrated in Figure 17.
In the figure, the maximum error identified is 3.97 and

3.71 mm in the horizontal and vertical directions, respec-
tively. RMSE of the measurement results is computed to
be 1.375 mm in the horizontal direction and 1.404 mm in
the vertical direction, equivalent to 1/5 pixel in both direc-
tions. This represents a decline in measurement accuracy
in comparison to the results from the Beida Suspension
Bridge test. Several factors contribute to this decrease:
The longer object–camera distance combined with high-
humidity air can lead to significant non-uniformities in the
air, resulting in minor distortions of the target in the cap-
tured frames. This phenomenon aligns with findings from
the experiments conducted by Luo et al. (2020).

6.3 Discussion of the influence factors
on measurement accuracy

The measurement accuracy of Raspberry Vision was eval-
uated through a laboratory experiment, the Beida Bridge
test, and the Xinghaiwan Cross-sea Bridge test. Table 5
presents key details such as the object–camera distance,
the focal length of the camera lens, scale factors, and the
corresponding RMSE for each of these tests. For the lab-

oratory experiment, the measurement result of Case 1 in
Section 4.2.1 is selected for comparison here. The results
indicate a decrease in measurement accuracy with an
increase in object–camera distance. This decline can be
attributed to several factors. Primarily, the longer distance
to the object, especially in conditions of high humidity, can
cause significant non-uniformities in the air. This results in
minor distortions of the target in the captured frames. Such
a phenomenon is consistent with the findings reported in
the experiments conducted by Luo et al.

6.4 Measurement result of the midspan
target

The measurement was conducted on the morning of June
15, 2022. Using Raspberry Vision, the white drainage pipe
at themidspanwasmonitored starting at 09:29:36 a.m. and
continued for a duration of 100min. TheHD andVD of the
midspan are shown in Figure 18.
From the measurement data, a gradual deflection over

time at the midspan of the bridge can be observed.
This phenomenon can be attributed to a key factor: The
monitoring commenced in the morning, and as the day
progressed, the temperature consistently increased. This
rise in temperature led to the thermal expansion of the
steel girder ridge. Given the girder’s pre-camber—wherein
the midspan elevation is higher than both ends—this
thermal expansion resulted in a downward displacement
at the midspan. The result shows that the obtained dis-
placement signals are consistent with the material prop-
erties and mechanical laws governing the bridge, thereby
demonstrating the effectiveness of Raspberry Vision in the
cross-sea bridge measurements.
The quality of the captured midspan displacement

signal can be assessed. RMSE of the midspan tar-
get result is anticipated to be approximately 1.375 ×

(277/454)= 0.688mm in the horizontal direction and 1.404
× (277/454) = 0.702 mm in the vertical direction. The
range of the HD signal was determined to be 4.69 mm,
while the vertical signal measured 13.63 mm. As a result,
NRMSE of the midspan target displacement signals can be
calculated as follows: (0.688/4.69) × 100% = 14.7% in the
horizontal direction and (0.702/13.63)× 100%= 5.2% in the
vertical direction. Although the recorded HD exhibited a
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F IGURE 18 Measurement result of midspan target of Xinghaiwan Cross-sea Bridge: (a) HD and (b) VD.

degree of noise, the quality of the VD was satisfactory for
infrastructure measurement.

7 CONCLUSION

This study presents a new algorithm called efficient match
slimmer (EMS), aimed at reducing the computational
demands of advanced template matching algorithms. By
integrating EMSwith gradient matching via voting (GMV)
algorithm, we have created a compact and low-cost vision-
based system, Raspberry Vision, for real-time bridge dis-
placement measurement. The main conclusions drawn
from this research are as follows:

1. The compactness and portability of Raspberry Vision
facilitate a practical measurement strategy for long-
span and cross-sea bridge displacement measurement.

2. The proposed measurement strategy not only mini-
mizes the camera-to-target distance but also simplifies
the camera calibration process in bridge displacement
monitoring, thereby enhancingmeasurement accuracy.

3. To achieve a balance between computational time and
measurement accuracy in Raspberry Vision, it is rec-
ommended to set the system parameters as follows for
bridge applications: 𝑆𝑅𝑆𝑇 at 0.5, p at 0.9, a1 at 1.2, and a2
at 2.0.

4. Compared to the previously developed system, Rasp-
berry Vision exhibits more cost-effective features and
shows enhanced applicability in challenging measure-
ment scenarios, particularly in long-span and cross-sea
bridge applications.

ACKNOWLEDGMENTS
The authors are grateful for the financial support of the
National Science Fund for Distinguished Young Schol-
ars (Grant Number: 52125805) and the Engineering and
Physical Sciences Research Council (EPSRC), UK, via the
Programme Grant EP/W005816/1.

REFERENCES
Bajwa, R., Coleri, E., Rajagopal, R., Varaiya, P., & Flores, C. (2020).
Pavement performance assessment using a cost-effective wireless
accelerometer system. Computer-Aided Civil and Infrastructure
Engineering, 35(9), 1009–1022.

Bidez, M., Lemons, J., & Isenberg, B. (1986). Displacements of
precious and nonprecious dental bridges utilizing endosseous
implants as distal abutments. Journal of Biomedical Materials
Research, 20(6), 785–797.

Boothby, T. E., Domalik, D. E., & Dalal, V. A. (1998). Service
load response of masonry arch bridges. Journal of Structural
Engineering, 124(1), 17–23.

Brownjohn, J. M. W., Xu, Y., & Hester, D. (2017). Vision-based bridge
deformation monitoring. Frontiers in Built Environment, 3, 23.

Bunce, A., Hester, D., Taylor, S., Brownjohn, J., Huseynov, F., & Xu,
Y. (2023). A robust approach to calculating bridge displacements
from unfiltered accelerations for highway and railway bridges.
Mechanical Systems and Signal Processing, 200, 110554.

Feng, D., & Feng, M. Q. (2016). Vision-based multipoint
displacement measurement for structural health monitor-
ing. Structural Control and Health Monitoring, 23(5), 876–
890.

Feng, D., Feng, M. Q., Ozer, E., & Fukuda, Y. (2015). A Vision-based
sensor for noncontact structural displacement measurement.
Sensors, 15(7), 16557–16575.

Feng, K., Casero, M., & González, A. (2023). Characterization
of the road profile and the rotational stiffness of supports in

 14678667, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13177 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [16/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2008 WANG et al.

a bridge based on axle accelerations of a crossing vehicle.
Computer-Aided Civil and Infrastructure Engineering, 38(14), 1935–
1954.

Fryer, J., Clarke, T., & Chen, J. (1994). Lens distortion for simple
C-mount lenses. International Archives of Photogrammetry and
Remote Sensing, 30, 97–101.

Fukuda, Y., Feng, M. Q., Narita, Y., Kaneko, S., & Tanaka, T.
(2013). Vision-based displacement sensor for monitoring dynamic
response using robust object search algorithm. IEEE Sensors
Journal, 13(12), 4725–4732.

Ge, L., Koo, K. Y., Wang, M., Brownjohn, J., & Dan, D. (2023). Bridge
damage detection using precise vision-based displacement influ-
ence lines and weigh-in-motion devices: Experimental validation.
Engineering Structures, 288, 116185.

Guo, T., Liu, J., Zhang, Y., & Pan, S. (2015). Displacement monitoring
and analysis of expansion joints of long-span steel bridges with
viscous dampers. Journal of Bridge Engineering, 20(9), 04014099.

Hampshire, T. A., & Adeli, H. (2000). Monitoring the behavior of
steel structures using distributed optical fiber sensors. Journal of
Constructional Steel Research, 53(3), 267–281.

He, Z., Li, W., Salehi, H., Zhang, H., Zhou, H., & Jiao, P. (2022).
Integrated structural health monitoring in bridge engineering.
Automation in Construction, 136, 104168.

Hoag, A., Hoult, N., & Take, A. (2017). Assessment of a bascule
lift bridge using digital image correlation. Proceedings of the
Institution of Civil Engineers—Bridge Engineering, 170(3), 168–
180.

Hoskere, V., Park, J.-W., Yoon, H., & Spencer, B. F. Jr. (2019). Vision-
based modal survey of civil infrastructure using unmanned aerial
vehicles. Journal of Structural Engineering, 145(7), 04019062.

Hu, B., Chen,W., Zhang, Y., Yin, Y., Yu, Q., Liu, X., & Ding, X. (2023).
Vision-based multi-point real-time monitoring of dynamic dis-
placement of large-span cable-stayed bridges.Mechanical Systems
and Signal Processing, 204, 110790.

Javadinasab Hormozabad, S., Gutierrez Soto, M., & Adeli, H. (2021).
Integrating structural control, health monitoring, and energy
harvesting for smart cities. Expert Systems, 38(8), e12845.

Jeong, J. H., & Jo, H. (2022). Real-time generic target tracking
for structural displacement monitoring under environmental
uncertainties via deep learning. Structural Control and Health
Monitoring, 29(3), e2902.

Jung, J., Kim, D.-J., Palanisamy Vadivel, S. K., & Yun, S.-H. (2019).
Long-term deflection monitoring for bridges using X and C-band
time-series SAR interferometry. Remote Sensing, 11(11), 1258.

Kim, K.-H., & Jung, H.-K. (2022). Development of a remote displace-
ment measuring laser system for bridge inspection. Sensors, 22(5),
1963.

Le, H. V., & Nishio, M. (2019). Structural change monitoring of a
cable-stayed bridge by time-series modeling of the global thermal
deformation acquired by GPS. Journal of Civil Structural Health
Monitoring, 9(5), 689–701.

Liu, C., Yuan, Y., & Zhang, M. (2016). Uncertainty analysis of
displacement measurement with Imetrum Video gauge. ISA
Transactions, 65, 547–555.

Liu, F., Gao, S., & Chang, S. (2021). Displacement estimation from
measured acceleration for fixed offshore structures.AppliedOcean
Research, 113, 102741.

Luo, L., & Feng, M. Q. (2018). Edge-enhanced matching for gradient-
based computer vision displacement measurement. Computer-
Aided Civil and Infrastructure Engineering, 33(12), 1019–1040.

Luo, L., Feng, M. Q., & Wu, J. (2020). A comprehensive alleviation
technique for optical-turbulence-induced errors in vision-based
displacement measurement. Structural Control and Health Mon-
itoring, 27(3), e2496.

Luo, L., Feng, M. Q., & Wu, Z. Y. (2018). Robust vision sensor
for multi-point displacement monitoring of bridges in the field.
Engineering Structures, 163, 255–266.

Lydon, D., Lydon, M., Taylor, S., Del Rincon, J. M., Hester, D., &
Brownjohn, J. (2019). Development and field testing of a vision-
based displacement system using a low cost wireless action
camera. Mechanical Systems and Signal Processing, 121, 343–
358.

Ma, Z., Choi, J., & Sohn, H. (2022). Real-time structural displacement
estimation by fusing asynchronous acceleration and computer
vision measurements. Computer-Aided Civil and Infrastructure
Engineering, 37(6), 688–703.

Ma, Z., Choi, J., & Sohn, H. (2023). Continuous bridge displace-
ment estimation using millimeter-wave radar, strain gauge and
accelerometer. Mechanical Systems and Signal Processing, 197,
110408.

Msaewe, H. A., Psimoulis, P. A., Hancock, C. M., Roberts, G.
W., & Bonenberg, L. (2021). Monitoring the response of Severn
Suspension Bridge in the United Kingdom using multi-GNSS
measurements. Structural Control and Health Monitoring, 28(11),
e2830.

Nakamura, S.-I. (2000). GPS measurement of wind-induced suspen-
sion bridge girder displacements. Journal of Structural Engineer-
ing, 126(12), 1413–1419.

Narazaki, Y., Gomez, F., Hoskere, V., Smith, M. D., & Spencer, B.
F. (2021). Efficient development of vision-based dense three-
dimensional displacement measurement algorithms using
physics-based graphics models. Structural Health Monitoring,
20(4), 1841–1863.

Oh, B. K., Kim, K. J., Kim, Y., Park, H. S., & Adeli, H. (2017).
Evolutionary learning based sustainable strain sensing model for
structural health monitoring of high-rise buildings. Applied Soft
Computing, 58, 576–585.

Pan, B., Xie, H., & Wang, Z. (2010). Equivalence of digital image
correlation criteria for pattern matching. Applied Optics, 49(28),
5501–5509.

Pan, X., Yang, T., Xiao, Y., Yao, H., & Adeli, H. (2023). Vision-
based real-time structural vibration measurement through deep-
learning-based detection and tracking methods. Engineering
Structures, 281, 115676.

Park, S., Park, H. S., Kim, J. H., & Adeli, H. (2015). 3D dis-
placement measurement model for health monitoring of struc-
tures using a motion capture system. Measurement, 59, 352–
362.

Pehlivan, H. (2022). Identification of structural displacements uti-
lizing concurrent robotic total station and GNSS measurements.
Smart Structures and Systems, 30(4), 411–420.

Perez-Ramirez, C. A., Amezquita-Sanchez, J. P., Valtierra-Rodriguez,
M., Adeli, H., Dominguez-Gonzalez, A., & Romero-Troncoso, R.
J. (2019). Recurrent neural network model with Bayesian training
andmutual information for response prediction of large buildings.
Engineering Structures, 178, 603–615.

Pezeshki, H., Adeli, H., Pavlou, D., & Siriwardane, S. C. (2023).
State of the art in structural health monitoring of offshore
and marine structures. Proceedings of the Institution of Civil
Engineers—Maritime Engineering, 176(1), 89–108.

 14678667, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13177 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [16/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WANG et al. 2009

Pezeshki, H., Pavlou, D., Adeli, H., & Siriwardane, S. C. (2023). Modal
analysis of offshore monopile wind turbine: An analytical solu-
tion. Journal of Offshore Mechanics and Arctic Engineering, 145(1),
010907.

Shao, Y., Li, L., Li, J., Li, Q., An, S., & Hao, H. (2023). Monocu-
lar vision based 3D vibration displacement measurement for civil
engineering structures. Engineering Structures, 293, 116661.

Shen, N., Chen, L., & Chen, R. (2023). Multi-route fusion method of
GNSS and accelerometer for structural healthmonitoring. Journal
of Industrial Information Integration, 32, 100442.

Shuai, J., Zhao, J., Lei, L., Zeng, P., Wu, X., & Sun, L. (2018).
Accelerate multi-thread path-dependent digital image correla-
tion by minimizing thread competition for real-time deforma-
tion measurement. Optics and Lasers in Engineering, 111, 98–
107.

Su, X., Kang, H., Chen, J., Guo, T., Sun, C., & Zhao, Y. (2019). Experi-
mental study on in-plane nonlinear vibrations of the cable-stayed
bridge. Nonlinear Dynamics, 98, 1247–1266.

Tian, L., & Pan, B. (2016). Remote bridge deflection measurement
using an advanced video deflectometer and actively illuminated
led targets. Sensors, 16(9), 1344.

Shajihan, S. A. V., Hoang, T., Mechitov, K., & Spencer, B. F., Jr.
(2022). Wireless SmartVision system for synchronized displace-
ment monitoring of railroad bridges. Computer-Aided Civil and
Infrastructure Engineering, 37(9), 1070–1088.

Wang, M., Ao, W. K., Bownjohn, J., & Xu, F. (2022a). A novel
gradient-based matching via voting technique for vision-based
structural displacement measurement. Mechanical Systems and
Signal Processing, 171, 108951.

Wang, M., Bownjohn, J., Xu, F., & Ma, Z. (2022). A novel in-plane
displacement signal generation technique for testing themeasure-
ment accuracy of vision-based displacement system. Experimental
Techniques, 47, 921–927.

Wang, M., Ao, W. K., Bownjohn, J., & Xu, F. (2022b). Completely
non-contact modal testing of full-scale bridge in challenging con-
ditions using vision sensing systems. Engineering Structures, 272,
114994.

Wang, M., Koo, K.-Y., Liu, C., & Xu, F. (2023). Development of a low-
cost vision-based real-time displacement system using Raspberry
Pi. Engineering Structures, 278, 115493.

Wang, M., Xu, F., Xu, Y., & Brownjohn, J. (2022). A robust subpixel
refinement technique using self-adaptive edge points matching
for vision-based structural displacementmeasurement.Computer-
Aided Civil and Infrastructure Engineering, 38(5), 562–579.

Weng, Y., Shan, J., Lu, Z., Lu, X., & Spencer, B. F. Jr. (2021).
Homography-based structural displacement measurement for
large structures using unmanned aerial vehicles. Computer-Aided
Civil and Infrastructure Engineering, 36(9), 1114–1128.

Xu, Y., Brownjohn, J., & Kong, D. L. (2018). A non-contact vision-
based system for multipoint displacement monitoring in a cable-
stayed footbridge. Structural Control & Health Monitoring, 25(5),
23.

Xu, Y., & Brownjohn, J. M. W. (2018). Review of machine-vision
basedmethodologies for displacementmeasurement in civil struc-

tures. Journal of Civil Structural Health Monitoring, 8(1), 91–
110.

Xu, Y., Brownjohn, J. M. W., Hester, D., & Koo, K. Y. (2017). Long-
span bridges: Enhanced data fusion of GPS displacement and deck
accelerations. Engineering Structures, 147, 639–651.

Yang, A., Wang, P., & Yang, H. (2021). Bridge dynamic displacement
monitoring using adaptive data fusion of GNSS and accelerom-
eter measurements. IEEE Sensors Journal, 21(21), 24359–
24370.

Ye, X., Ni, Y., Wai, T., Wong, K., Zhang, X., & Xu, F. (2013). A
vision-based system for dynamic displacement measurement of
long-span bridges: Algorithm and verification. Smart Structures
and Systems, An International Journal, 12(4), 363–379.

Yoon, H., Shin, J., & Spencer, B. F. Jr. (2018). Structural displacement
measurement using an unmanned aerial system. Computer-Aided
Civil and Infrastructure Engineering, 33(3), 183–192.

Yu, Q., Yin, Y., Zhang, Y., Chen, W., Hu, B., & Liu, X. (2023). Dis-
placementmeasurement of large structures using nonoverlapping
field of view multi-camera systems under six degrees of freedom
ego-motion. Computer-Aided Civil and Infrastructure Engineering,
38(11), 1483–1503.

Zhang, H., Zhu, Y., Xiong, W., & Cai, C. (2023). Point cloud registra-
tionmethods for long-span bridge spatial deformationmonitoring
using terrestrial laser scanning, Structural Control and Health
Monitoring, 2023, 2629418.

Zhang, J., Zhou, L., Tian, Y., Yu, S., Zhao, W., & Cheng, Y. (2022).
Vortex-induced vibrationmeasurement of a long-span suspension
bridge through noncontact sensing strategies. Computer-Aided
Civil and Infrastructure Engineering, 37(12), 1617–1633.

Zhao, W., Zhang, G., & Zhang, J. (2020). Cable force estimation
of a long-span cable-stayed bridge with microwave interferomet-
ric radar. Computer-Aided Civil and Infrastructure Engineering,
35(12), 1419–1433.

Zhao, Y., & Yu, C. (2020). Instantaneous dynamic deformation
monitoring on JiaozhouBayCross-Sea Bridgewith LVR-GPS tech-
nology. Journal of Physics: Conference Series, IOP Publishing, 1626,
012105.

Zhu, H., Gao, K., Xia, Y., Gao, F., Weng, S., Sun, Y., & Hu, Q.
(2020). Multi-rate data fusion for dynamic displacement mea-
surement of beam-like supertall structures using acceleration
and strain sensors. Structural Health Monitoring, 19(2), 520–
536.

How to cite this article: Wang, M., Xu, F., Koo,
K.-Y., & Wang, P. (2024). Real-time displacement
measurement for long-span bridges using a
compact vision-based system with speed-optimized
template matching. Computer-Aided Civil and
Infrastructure Engineering, 39, 1988–2009.
https://doi.org/10.1111/mice.13177

 14678667, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13177 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [16/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/mice.13177

	Real-time displacement measurement for long-span bridges using a compact vision-based system with speed-optimized template matching
	Abstract
	1 | INTRODUCTION
	2 | EMS FOR COMPUTATIONAL OPTIMIZATION OF TEMPLATE MATCHING ALGORITHMS
	2.1 | Computational complexity analysis of widely used template matching algorithms
	2.2 | EMS for accelerating template matching algorithms
	2.2.1 | A balanced risk-return criterion technique in EMS for correlation computation optimization
	2.2.2 | Local region definition in EMS for reduction of the number of query windows

	2.3 | Demonstration of computational efficiency improvement using EMS

	3 | A COMPACT REAL-TIME VISION-BASED DISPLACEMENT SYSTEM
	3.1 | Hardware
	3.2 | Software
	3.2.1 | Introduction of GMV
	3.2.2 | SGMV facilitated by EMS
	3.2.3 | Physical displacement calculation

	3.3 | A practical measurement strategy
	3.4 | Comparative analysis: Previous system, Raspberry Vision, and a commercial system

	4 | LABORATORY EXPERIMENT FOR SGMV PERFORMANCE ESTIMATION
	4.1 | The effect of the factors on SGMV computational time
	4.1.1 | Sub-test 1: The dimension of the local region
	4.1.2 | Sub-test 2: The value of 
	4.1.3 | Sub-test 3
	4.1.4 | Sub-test 4: The number of targets

	4.2 | The effect of the factors on SGMV measurement accuracy
	4.2.1 | Sub-test 1: The value of 
	4.2.2 | Sub-test 2: The value of p

	4.3 | Measurement accuracy comparison of the previous system and Raspberry Vision

	5 | FIELD TEST ON A LONG-SPAN SUSPENSION BRIDGE
	5.1 | Test setup
	5.2 | Measurement accuracy estimation of the simulated target in the monitor
	5.3 | Measurement result of the DUT target at midspan
	5.4 | Advantages of Raspberry Vision with the new measurement strategy
	5.5 | Comparison between measuring different feature targets
	5.6 | Displacement measurement under varying lighting conditions

	6 | FIELD TEST ON A CROSS-SEA BRIDGE
	6.1 | Test setup
	6.2 | Measurement accuracy estimation of the simulated target in the monitor
	6.3 | Discussion of the influence factors on measurement accuracy
	6.4 | Measurement result of the midspan target

	7 | CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


