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Abstract
Objectives: The aim of this study was to investigate GPT-3.5 in generating and coding medical documents with International Classification of 
Diseases (ICD)-10 codes for data augmentation on low-resource labels.
Materials and Methods: Employing GPT-3.5 we generated and coded 9606 discharge summaries based on lists of ICD-10 code descriptions 
of patients with infrequent (or generation) codes within the MIMIC-IV dataset. Combined with the baseline training set, this formed an aug-
mented training set. Neural coding models were trained on baseline and augmented data and evaluated on an MIMIC-IV test set. We report 
micro- and macro-F1 scores on the full codeset, generation codes, and their families. Weak Hierarchical Confusion Matrices determined within- 
family and outside-of-family coding errors in the latter codesets. The coding performance of GPT-3.5 was evaluated on prompt-guided self-gen-
erated data and real MIMIC-IV data. Clinicians evaluated the clinical acceptability of the generated documents.
Results: Data augmentation results in slightly lower overall model performance but improves performance for the generation candidate codes 
and their families, including 1 absent from the baseline training data. Augmented models display lower out-of-family error rates. GPT-3.5 identi-
fies ICD-10 codes by their prompted descriptions but underperforms on real data. Evaluators highlight the correctness of generated concepts 
while suffering in variety, supporting information, and narrative.
Discussion and Conclusion: While GPT-3.5 alone given our prompt setting is unsuitable for ICD-10 coding, it supports data augmentation for 
training neural models. Augmentation positively affects generation code families but mainly benefits codes with existing examples. Augmenta-
tion reduces out-of-family errors. Documents generated by GPT-3.5 state prompted concepts correctly but lack variety, and authenticity in 
narratives.
Key words: ICD coding; data augmentation; large language model; clinical text generation; evaluation by clinicians. 

Background and significance
Large-scale multilabelled text classification (LMTC) tasks in 
Natural Language Processing (NLP) associate input docu-
ments with a set of output labels from a large label space, 
often hierarchically with a big-head long-tail distribution and 
data sparsity issues. Medical document coding is the task of 
assigning structured codes from a medical ontology—for 
example, the International Classification of Diseases (ICD) 
(https://www.who.int/standards/classifications/classification- 
of-diseases)—to clinical documents, a task performed by 
specially trained hospital staff. Coding consumes human 
resources that could be allocated to patient care. To ease this 
burden, research in machine learning and NLP cast medical 
document coding as an LMTC task.1

In automatic ICD coding, discharge summaries serve as 
input, yielding codes from a specified ICD version (eg, ICD- 
10-CM) (https://www.cdc.gov/nchs/icd/icd-10-cm.htm). ICD 

coding faces distribution challenges mirroring other LMTC 
tasks. Few common conditions (eg, hypertension), contrast 
with many underrepresented or absent in corpora, such as 
MIMIC-IV.2 Moreover, limited real-world data availability, 
often restricted for privacy reasons, compounds these chal-
lenges. However, modern deep learning ICD-coding 
approaches (eg, CAML,3 HLAN,4 RAC5) are data-driven, 
and adversely affected by data sparsity unless explicitly 
designed to handle label under-representation. Techniques 
such as auxiliary information,6–9 or data augmentation and 
synthesis10–12 attempt to mitigate these issues. ICD-coding 
models with pretrained encoders at best match the current 
state-of-the-art—usually involving domain-specific versions 
of BERT.13 Large language models (LLMs) such as GPT-3 
and its newer variants14 (eg, GPT-3.5) or Large Language 
Model Meta AI (LLaMA)15 have recently displayed state-of- 
the-art performance on several tasks with emerging 
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capabilities.16 In the medical domain, notably Med-PaLM 
217 matching human performance in multiple-choice medical 
schools’ exams. While using models such as GPT-3.5 is prob-
lematic with real discharge summaries due to privacy issues, 
these models have the potential to aid in generating synthetic 
discharge summaries for training local models.

Recently, LLMs, notably GPT-3.5, have become a new 
standard for advanced NLP tasks, especially ones reliant on 
understanding natural language. These models retain and 
apply background knowledge observed during training, yet 
can also produce fluent but inaccurate information (known 
as hallucination).18 Writing and coding discharge summaries 
require extensive background knowledge making it of inter-
est to explore an LLM’s capability of reading, coding, and 
generating discharge summaries. An LLM capable of han-
dling medical text could address the data sparsity issue by 
synthesizing new data. This study aims to investigate the via-
bility of GPT-3.5-generated medical documents for data aug-
mentation in training local neural models and their credibility 
in clinical settings. We investigate GPT-3.5 given its perform-
ance in natural language understanding tasks requiring back-
ground knowledge, within an ethical experimental setting for 
clinical note data (by disabling content monitoring by the 
service provider). Furthermore, we explore GPT-3.5’s ability 
to code real discharge summaries and self-generated text.

Recent studies have prompted discussions on GPT’s utility 
in medicine, including applications in medical chatbots,19 or 
radiology.20 Yeung et al21 compared the ChatGPT with a 
clinical GPT model22 on generating patient vignettes. While 
research exists in generating data in low-resource settings in 
similar domains (eg, law23) to the best of our knowledge, 
GPT’s performance in generating discharge summaries based 
on input conditions and its ability to perform ICD coding has 
not yet been reported.

Objective
This study aims to assess GPT-3.5’s efficacy in the context of 
automated ICD-10 coding and investigate its viability as:

� A data generator for ICD-10 coding, enhancing the train-
ing of local neural models by including GPT-3.5- 
generated discharge summaries, especially for rare labels; 

� An automated ICD-coding classifier, either using synthetic 
text with explicit code descriptions or real data as 
prompts; and 

� A discharge summary generator focusing on producing 
clinically accurate and plausible synthetic data from 
expert perspectives. 

Materials and methods
We queried GPT-3.5 (gpt-3.5-turbo) (https://platform.openai. 
com/docs/models/gpt-3-5), from hereon referred to as G, 
through the OpenAI Python API (https://platform.openai.com/ 
docs/api-reference?lang=python) to generate patient discharge 
summaries based on specific conditions and procedures repre-
sented by ICD-10-CM and ICD-10-PCS code descriptions 
from gold standard labels associated with MIMIC-IV dis-
charge summaries (from the table hosp/d_icd_diagnoses.csv. 
gz). These label combinations were chosen to closely follow 
real scenarios to correspond to correlations between real 

labels. Note that sharing MIMIC data via any online API is 
prohibited (https://physionet.org/news/post/415; our method 
was consulted with and approved by PhysioNet, as we merely 
use the descriptions of attached codes, which are not consid-
ered part of the dataset).

While various dataset splits have been proposed since the 
release of coded discharge summaries in MIMIC-IV, we spe-
cifically chose not to follow the one proposed by Edin et al24

due to its exclusion of the long tail, which contrasts with our 
aim of addressing this aspect through generation techniques. 
Instead, we adopted the dataset split proposed by Nguyen et 
al25 (Table 1) that preserved the long tail, aligning better 
with our focus. Nonetheless, we utilized the implementation 
of common ICD-coding models produced by Edin et al24 for 
our analysis.

Label selection
Candidate source documents for generation were selected 
from MIMIC-IV based on label populations in our selected 
split. We identified codes common across training, valida-
tion, and test sets, choosing those appearing up to five times 
in the training set, resulting in 195 unique codes (compared 
to 15 353 unique few-shot codes in training).

For these 195 codes, we produced a list of codes belonging 
to their families (identified by the head of the code). Families 
with at least 1 relatively frequent code (population >100 in 
training) and at least 1 code exclusive to the test set (zero- 
shot) were retained leaving 16 families. The constraint of 
having at least 1 frequent code was included to explore the 
scenario where the model may predict a label due to its domi-
nance in the population, and the increase in population of 
other labels potentially leading to more confusion.

From these 16 families, we randomly selected 10 to gener-
ate from (E10, G43, H35, H81, S00, S02, S06, T82, T84, 
T85). Of these, 114 codes had a population lower than 100 
and are henceforth termed generation codes (a list of codes is 
available in Supplementary Material 1).

Preparation of samples for generation
As there exist correlations among labels (eg, different compli-
cations of type 1 diabetes, cancer correlating with the pres-
ence of chemotherapy), rather than creating random 
combinations of ICD codes we opted to work our way back 
from existing real scenarios.

In Nguyen’s MIMIC-IV training set, we found documents 
with the 98 relevant few-shot codes (the 16 zero-shot were 
by-definition absent). Some documents contained multiple 
relevant codes. We have collected documents for each of the 

Table 1. MIMIC-IV Nguyen dataset split. Zero-Shot corresponds to labels 
absent from the training set

Traina Devb Testc

# Documents 110 442 4017 7851
# Labels (total) 1 784 304 65 516 124 518
# Labels (unique) 25 230 6738 9159
# Labels (unique zero-shot) N/Ad 291 587
# Labels (unique few-shot) 15 300 919 1646

Few-shot corresponds to labels appearing at least once but no more than 5 
times in the training set.

a Training set.
b Development set.
c Test set.
d Not Applicable (zero-shot implies absence in the training set).
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relevant codes and cloned them to bring their population up 
to 100. To increase variety, we have randomly dropped up to 
5 of the assigned nonrelevant labels within clones to create 
the new set of labels for generation (referred to as the silver 
standard).

We identified documents containing the siblings of the 16 
zero-shot labels. A silver standard set was created for each of 
these documents substituting the sibling code with the zero- 
shot code (similar to the zero-shot approach in10). If multiple 
siblings were present, a random one was replaced with the 
zero-shot code. This resulted in 9606 input sets of labels— 
6779 unique and 2827 duplicated.

Generation
Natural language generation is the task of producing natural 
language text based on a set of input data. We used the model 
“gpt-3.5-turbo-0613” given its wide recognition in the field 
of LLMs, relative cost-effectiveness, and time efficiency (com-
pared to gpt-4). We utilized a temperature (parameter in the 
0-1 range controlling randomness) of 0 to produce determin-
istic outputs. We set the temperature to 0.1 for duplicates, 
allowing output variation.

Within the prompt (see Supplementary Material 2), we 
specified to write a discharge summary for a patient with a 
list of standard descriptions of their conditions and proce-
dures based on our silver standard. We added further 
specifications:

� Length of up to 4000 words (following the maximum cut-
off point in previous work24) The overall input and out-
put token restriction of GPT-3.5 is 4096 (inclusive of the 
prompt); 

� Inclusion of social and family history; 
� Anonymization was required for personal and location 

data (due to uncertainty of the anonymity of the data 
used in training of GPT-3.5), maintaining numeric infor-
mation when relevant despite potential removal in 
preprocessing; 

� Explicit ICD code mentions within the main text were to 
be avoided to prevent model association or potential 
errors; 

� Clear numeric values were preferred rather than ranges, 
especially for time-related codes; 

� Providing a specific concept for codes involving the 
umbrella term “other” encompassing a range of 
conditions; 

� Omission of the keyword “unspecified” present in stand-
ard descriptions opting for a more natural means of 
expression; and 

� Coding of the discharge summary was to be positioned at 
the end in a regular pattern (codes in square brackets) for 
model coding assessment. 

An example of the generation process can be seen in  
Figure 1.

The generated documents were processed to find the dis-
charge diagnoses and extract the assigned codes with a regu-
lar expression. In total, we have generated 9606 synthetic 
training documents. We removed all mentions of ICD-10 
codes and preprocessed the documents the same as the base-
line data. Then, we merged these documents with the baseline 
training set (110 442 MIMIC-IV documents), forming the 
augmented training set (120 048 documents). The baseline 

and augmented settings used the same validation and test sets 
with 4017 and 7851 real documents, respectively.

Analysis between the generated text, and MIMIC-IV ICD- 
10-coded discharge summaries (the entire dataset, and the 
subset used for source label sets used in generation) showed 
differences in word count (per label and overall—Figures 2A 
and 2B) between synthetic and real data while retaining simi-
lar distributions of label counts (Figure 2). The synthetic dis-
charge summaries tend to be shorter which could be the 
result of GPT-3.5’s 4096 token limit. The synthetic discharge 
summaries were accepted for publication by PhysioNet will 
be made available at https://doi.org/10.13026/bnc2-1a81.

Local neural models
Most recent LMTC neural architectures are encoder-decoder 
models whose encoder processes the input text to generate a 
latent representation.

Architectures using a non-BERT-like encoder (eg, in 
CAML,3 LAAT,26 or Multi-Res CNN27) utilize noncontex-
tual (eg, Word2Vec28) word embeddings, while BERT29-like 
encoders (eg, in PLM-ICD30) enable contextual token repre-
sentation. The decoder determines a probability for each 
label based on the latent representation. A probability thresh-
old determines positive predictions.

Evaluation
We have conducted 4 evaluation rounds:

� Local neural model evaluation: Assessing CAML, LAAT, 
and Multi-Res CNN models’ performance on Nguyen’s 
test set. Models were trained either solely on Nguyen’s 
training set or enhanced with data generated by G (the 
augmented training set). 

� GPT’s coding on real data: Evaluation of G’s coding abil-
ity on MIMIC-IV using Nguyen’s test set; 

� GPT’s coding on GPT-generated data: Evaluation of G’s 
coding ability on generated documents (with provided 
code descriptions in the prompt) 

� Acceptability of generated data in clinical practice: 
Reviewing G-generated discharge summaries by clinical 
professionals to gauge their suitability in clinical settings. 

Local neural model evaluation
We used the codebase and training procedure of Edin et al24

to train and evaluate CAML, LAAT, and Multi-Res CNN on 
the ICD-coding task using Nguyen’s split. Each model is 
trained with 20 epochs on the training set. Throughout the 
training, we evaluated the model on the validation set, select-
ing the model with the highest mean average precision from 
each run as the final model. Subsequently, this final model 
underwent evaluation on the test set. Additionally, we 
explored PLM-ICD, considered a state-of-the-art model for 
this task. However, its performance on the baseline and aug-
mented data was notably lower than previously reported. 
This model has been reported to be unstable during training, 
which depends on random seeds. We decided against tuning 
the random seed, and only report the performance for 
CAML, LAAT, and Multi-Res CNN.

The models’ test performance was evaluated using stand-
ard information retrieval metrics commonly used in LMTC 
tasks—micro- and macro-averaged Precision, Recall, and F1 
scores.
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Micro-averaging assigns equal weight to each prediction, 
favoring high-population classes (eg, hypertension). Macro- 
averaging, in contrast, computes the performance for each 
unique label and averages across the label space, giving each 
label’s average result equal weight regardless of their popula-
tion. This highlights poor performance in less common 
classes. Our primary evaluation metrics common with the 
majority of previous work are micro-F1 and macro-F1 scores. 
Metrics are further explained in Supplementary Material 3.

GPT’s coding on real clinical notes
We used the Azure AI Services API (https://azure.microsoft. 
com/en-gb/products/ai-services) to test GPT’s ability to assign 
diagnosis codes based on real clinical notes. The API returns 
a free text response which we further processed to retrieve 
the predicted ICD-10 codes. In postprocessing, we verify the 
response format. For correctly structured arrays of JSON 
objects we simply extract the predictions. For incorrectly 
structured outputs, we employ a regular expression pattern 
to extract all diagnoses and ICD code pairs. The result is 
a list of predicted diagnoses and corresponding ICD-10 
codes for each clinical note. Figure 3 illustrates the API call 
workflow.

For reproducibility, we specified the model version and the 
API version as “gpt-3.5-turbo-0613” and “2023-03-15-pre-
view,” respectively. All parameters were set to zero for deter-
ministic responses from G, including temperature, top P, 
frequency penalty, and presence penalty. The system prompt 
directed G to act as a clinician assigning ICD-10 diagnosis 
codes to clinical notes, specifying the expected output format 
as JSON objects with keys “diagnosis” and “icd_code.” Refer 

to Figure 3 for all hyperparameter details. Our code implemen-
tation can be found in our Github repository (https://github. 
com/EdinburghClinicalNLP/chatgpt_icd_coding).

We opted out of human review of the data for 2 reasons. 
First, the terms of the data use agreement of MIMIC-IV 
(https://physionet.org/news/post/415) did not grant us the 
authority to permit a third party to process the data for abuse 
detection. Second, we assessed the likelihood of harmful mis-
use to be low given the sensitive nature of the clinical notes.

In our evaluation of GPT’s performance, we have also 
employed hierarchical evaluation techniques—set-based hier-
archical evaluation31 and Count-Preserving Hierarchical 
Evaluation (CoPHE).32 These metrics award partial credit to 
mispredicted labels by extending prediction and gold stand-
ard sets with their ancestor labels. While set-based evaluation 
ancestor labels track only the presence of descendants, in 
CoPHE, ancestor labels link to the count of descendants, 
penalizing over- and under-predictions within code families.

Comparing set-based and CoPHE results helps to evaluate 
the model’s tendency to over-/under-predict. A lower CoPHE 
score indicates this phenomenon. See Supplementary Mate-
rial 4 for details on calculating hierarchical scores.

We utilize macro-averaged metrics from weak hierarchical 
confusion matrices10 to summarize in-family versus out-of- 
family (OOF) prediction errors. These metrics are chosen to 
explore how expanding the population of codes within code 
families to a minimum of 100 instances impacts within- 
family performance. Within-family errors involve false posi-
tives that align with false negatives within the same family in 
the gold standard. On the other hand, an OOF error for a 
false negative in the gold standard lacks a false positive 

Figure 1. An example generation of a synthetic discharge via GPT-3.5.
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Figure 2. A comparison between the discharge summary data in MIMIC-IV, seed MIMIC discharge summaries for generation (the source data), and the 
generated discharge summaries. Subfigures 2A and 2B focus on the number of words in documents, indicating that the GPT-generated data generally 
contains fewer words overall and per assigned label compared to the real data from MIMIC-IV. Subfigure 2C demonstrates that, although there’s a 
variance in document size, the distribution of the number of labels per document remains relatively similar across the datasets.

Figure 3. The workflow of the GPT-3.5 prediction. We used Azure AI Services API to query GPT-3.5 and we employed a postprocessing step to extract 
the predicted diagnoses and ICD-10 codes for each clinical note.
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within the prediction set from the same family to match. 
Our primary goal in generating synthetic data is to reduce 
OOF errors, enhancing true positive predictions or ensuring 
mispredictions occur within family.

GPT-3.5’s coding on synthetic data
The prompt asked G to code the conditions and procedures 
mentioned in the document it generated. This experiment 
tested G’s ability to assign ICD-10 codes to concepts pre-
sented in their standard descriptions. Alongside this, the 
prompt required creating a patient’s social and family his-
tory, which might have led to the model introducing new 
conditions like substance abuse and potentially coding them, 
despite not being part of the initial prompt.

Acceptability of generated data in clinical practice
Four clinical professionals (coauthors S.B., L.D., M.H., and 
R.S.P.) assessed the quality of the generated data. As the data 
was generated based on labels associated with MIMIC-IV 
discharge summaries, this evaluation included both synthetic 
discharge summaries generated by G and discharge summa-
ries from MIMIC-IV. The clinicians were presented with 20 
discharge summaries—10 synthetic and 10 real (based on 
whose adjusted gold standard the synthetic ones were 
generated).

Each discharge summary was assessed for:

� Correctness—accuracy in describing patient conditions 
and procedures; 

� Informativeness—clarity and sense in supporting informa-
tion (eg, test results, medication suggestions); 

� Authenticity (patient)—whether such a patient could 
exist; 

� Authenticity (clinical scenario)—whether the hospital 
course was plausible as reported; and 

� Acceptability—suitability of the document for clinical 
use. 

Additionally, they separately evaluated correctness and 
informativeness for both nonlow-resource and low-resource 
labels to gauge G’s ability to generate low-resource data. 
Scores from 1 (failure to perform) to 5 (perfect performance) 
were assigned to each metric, with accompanying comments 
justifying the score. An example evaluation by a clinician can 
be seen in Figure 4.

Results
Local neural model evaluation
We assessed performance across 3 code subsets: the entire 
codeset in MIMIC-IV (overall), a restricted generation set 
(fðgenÞ) containing only the 114 low-population candidate 
generation labels, and a set of codes from the code families 
present in fðgenÞ ðf Þ. Results are shown in Table 2. Baseline 
results for CAML and LAAT align closely with prior findings 
by Nguyen et al25 for overall metrics. While Nguyen et al25

did not report on Multi-Res CNN, its performance trends 
were similar to CAML and LAAT in comparison to Edin 
et al24 on nonfiltered codesets. LAAT excels in micro-F1, 
Multi-Res CNN leads in macro-F1, and CAML generally lags 
behind. Baseline models outperform augmented ones in 
overall micro-F1, a common observation when enhancing 

Figure 4. An example evaluation of a synthetic discharge summary by a clinical expert.
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lower-resource label performance. Nonetheless, macro-F1 
scores improved for 2 out of 3 models within the overall 
codeset and for all models on f and fðgenÞ. Multi-Res CNN 
and CAML macro-F1 scores display sizable relative improve-
ment (26% and 78%, respectively) in fðgenÞ.

Augmented models performed on par with or outperformed 
baseline models in micro-F1 scores for f and fðgenÞ. Augmented 
Multi-Res CNN outperforms its baseline in micro-F1 for both f 
and fðgenÞ, indicating benefits for the code family from augment-
ing less-populous members. Augmented LAAT shows improve-
ment in macro-F1 in both f and fðgenÞ but lags in micro-F1. 
LAAT’s performance may have been biased toward high- 
population classes and the augmentation’s boosting of low- 
frequency classes (misrepresenting their frequency) may have 
introduced confusion. Apart from having a recurrent encoder 
(Bi-LSTM), the LAAT model employed in this experiment is 
about twice the size of the Multi-Res CNN (21.9M versus 
11.9M parameters). This added model complexity may have 
enabled better performance on already frequent labels, but 
increased the need for more examples of lower-resource labels.

Comparing within-family and out-of-family errors 
(Table 2), augmented models generally exhibit fewer out-of- 
family errors on f and fðgenÞ. An exception to this is aug-
mented Multi-Res CNN in fðgenÞ, whose slight increase in 
OOF came with a sizable reduction in within-family error.

Unlike baseline models, augmented ones occasionally pre-
dicted codes absent from the original data, although incor-
rectly, except for 1 correctly predicted code (S02.63XA) by a 
Multi-Res CNN model trained on augmented data. While 
consistent enhancement in zero-shot code performance was 
not achieved through augmentation, the potential for 
improvement is evident.

GPT’s coding ability on real and synthetic data
We examined G’s ability to code real MIMIC-IV documents 
and generate coded documents with explicit code 

descriptions in the prompt. The results (Table 3) show that 
the performance on prompt-guided self-generated (synthetic) 
data resembles that of local models on the MIMIC-IV test 
set, not surpassing it. Hierarchical metrics show higher preci-
sion, recall, and consequently, F1-score in CoPHE compared 
to set-based hierarchical evaluation indicating errors coming 
from within-family misprediction, rather than incorrectly 
estimating the number of expected labels.

However, the performance on the MIMIC-IV test set is 
notably low, especially in precision. The improvement in the 
precision from leaf-only results to hierarchical is minimal. 
This implies that incorrect predictions were more likely to be 
out-of-family. Moreover, results on CoPHE are lower than 
on the set-based hierarchical evaluation indicating a tendency 
of the model to over-/under-predict within the scope of the 
family—an issue previously reported in local ICD-coding 
models32 and present in the reported hierarchical results for 
baseline LAAT.

These results demonstrate that G can identify ICD-10 
codes in self-generated mentions based on provided descrip-
tions if presented within the prompts. Its performance when 
tasked with standard ICD coding without explicitly identified 
concepts or nonstandard surface forms of the concepts signif-
icantly deteriorates.

Acceptability of generated data in clinical practice
We calculated the inter-evaluator agreement for the 7 metrics 
using Fleiss’ kappa (κ).33 As κ is designed for categorical vari-
ables and does not fully capture ordinal scores, also produced 
the mean scores for each metric (μ). The results are presented 
in Table 4.

The evaluators’ agreement was poor (κ<0) in examples 
from MIMIC-IV for Correctness and Informativeness of 
nonlow-resource codes, and the acceptability of the discharge 
summaries. For the other metrics, a κ>0 was reached but 
never exceeded 0.4 (lower than moderate agreement). All 

Table 2. A comparison between local neural network models (MRCNN stands for Multi-Res CNN) trained on baseline (base) and augmented (aug) 
training sets is evaluated using micro- and macro-averaged F1 scores (mi and ma respectively) on 3 codesets—overall on all codes present in MIMIC-IV; f 
comprising all codes within the families we chose for generation; and f ðgenÞ corresponding to candidate codes used in generation with a population of at 
most 100 in the training set.

Experiment

F1 " WHCM error #

mioverall maoverall mif maf mif ðgenÞ maf ðgenÞ OOFf IFf OOFf ðgenÞ IFf ðgenÞ

CAMLbase 53.65 3.87 38.43 3.03 17.41 6.64 66.53 25.05 83.81 9.83
CAMLaug 53.54 3.90 38.41 3.78 20.68 11.86 65.98 23.77 79.79 9.17
LAATbase 57.29 6.18 43.59 4.96 26.79 14.48 58.57 28.35 74.03 12.20
LAATaug 57.18 6.09 43.36 5.38 25.70 14.98 55.93 29.78 73.65 11.98
MRCNNbase 55.66 6.40 40.16 5.04 26.80 13.92 52.72 32.41 69.68 15.24
MRCNNaug 54.69 6.46 42.69 5.85 30.39 17.68 49.65 32.36 70.41 10.22

The highest score in each metric for each model pair (baseline versus augmented) is highlighted in bold. Weak hierarchical confusion matrix (WHCM) error 
rates are produced for codesets f and f ðgenÞ. Performance on the common test set is reported using the macro-averaged proportion of errors that were out-of- 
family (OOF) and within family (IF). The best (lowest) error rate for each error type for each model pair (baseline versus augmented) is presented in bold.

Table 3. Results of GPT-3.5’s coding ability on real and self-generated data.

Evaluation set

Leaf-only Set-based CoPHE

P R F1 P R F1 P R F1

GPT-3.5 real 9.46 33.51 14.76 10.59 44.87 17.13 10.30 44.33 16.72
GPT-3.5 synthetic 59.06 40.72 48.20 66.46 41.32 50.96 67.20 41.55 51.35
Best baseline (LAAT) real 60.42 54.46 57.29 61.28 54.50 57.68 60.84 54.33 57.39
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mean scores are higher than 4. Hence, while the clinicians 
disagreed on the exact scores, they rated real discharge sum-
maries positively. The disagreement may be due to clinicians 
being UK-based with significant differences in reporting style 
within the United Kingdom and the United States (where 
MIMIC-IV is from).

For GPT-generated summaries, slight agreement was seen in 
acceptability, and fair agreement in the correctness of low- 
resource labels. All other metrics had poor agreement. Both 
correctness metrics scored above 4, with low-resource correct-
ness surpassing 4.5—an encouraging outcome for our primary 
goal of generating low-resource code data. Mean informative-
ness in the low-resource scenario and authenticity of scores 
were at least 3. Once again, performance on the low-resource 
codes exceeded nonlow-resource codes. Other metrics had μ 
scores above 2. Informativeness and authenticity for nonlow- 
resource codes had a poor agreement (κ<0), while acceptabil-
ity had some agreement with the lowest mean score of 2.225.

While G generally produces correct notes, the clinical eval-
uators have identified several challenges in the generation of 
natural-looking clinical notes:

GPT-3.5 tends to do verbatim reproductions of the prompted 
diagnoses list
G tends to copy all concepts mentioned in the prompt when 
generating a clinical note. While instruction following is a 
desirable behavior, excluding noncrucial details is essential 
when generating a natural-looking clinical note. Real clinical 
notes often omit irrelevant and less critical findings for brev-
ity, particularly if the information is inferrable from sur-
rounding contexts such as medications and treatments. For 
instance, G unnecessarily noted a normal BMI.

GPT-3.5 may phrase diagnoses in an unnatural manner
G tends to use an overly technical and unnatural style when 
specifying diagnoses. For instance, G mentioned “anaemia, 
which was unspecified,” in the generated clinical note as it was 
prompted with “D64.9: Anemia, unspecified.” G also occa-
sionally introduces vague phrases (eg, “geriatric team provided 
supportive care, including behavioural interventions and medi-
cation management”) without further detail. This contrasts 
with the more streamlined language of real clinical notes.

GPT-3.5 lacks details when introducing supporting 
information
G tends to introduce crucial supporting information without 
sufficient details. For instance, G mentioned “Following a 
traumatic event” without further specification of the 

mentioned traumatic event, which is unacceptable in the clin-
ical setting. This omission limits the overall informativeness 
of the patient’s medical context, potentially hindering the 
notes’ usability for a comprehensive view.

GPT-3.5 may introduce spurious supporting information
G sometimes introduces improbable but possible details. For 
instance, G overemphasized the significance of a patient’s 
anxiety disorder regarding an episode of syncope and a subse-
quent facial fracture, which the clinicians consider unlikely.

GPT-3.5 failed to present diagnoses as interconnected events
G does not effectively present diagnoses as interconnected, 
resulting in fragmented notes that lack coherence. The clini-
cians described G-generated clinical notes as collections of 
unrelated facts. For example, G presented complications of 
Type 1 diabetes mellitus separately without illustrating their 
relation. The lack of coherence between diagnoses may 
impede the plausibility of the clinical note and undermine the 
overall acceptability and usefulness of synthetic notes.

GPT-3.5 failed to prioritize and emphasize critical diagnoses
G struggles to prioritize diagnoses based on clinical signifi-
cance, which undermines the authenticity of the portrayed 
scenario. For example, G often places critical conditions on 
the same level as minor issues, such as impacted ear wax, cat-
aracts, and conjunctival hemorrhage. Hence, we concluded 
that G struggles to effectively convey the relative clinical sig-
nificance of certain diagnoses.

Discussion, conclusion, and future studies
In this work, we have investigated the capability of GPT- 
3.5’s potential in augmenting ICD-10 coding for local neural 
models in low-resource scenarios. While overall performance 
dipped with synthetic data augmentation, filtered codeset 
evaluation showed improvements, especially in advanced 
models like LAAT and Multi-Res CNN. Error analysis indi-
cated augmented models made fewer out-of-family predic-
tions, with some shift to within-family errors (closer to the 
correct answer). Augmentation showed promise in improving 
the prediction of generated codes and their siblings. 
Zero-shot labels did not consistently benefit from the aug-
mentation, emphasizing the need for real data in augmenta-
tion success. However, a zero-shot code learned from the 
synthetic data was predicted correctly. The potential of LLM- 
generated discharge summaries should further be explored 
with different (eg, local or specialized) LLMs, prompt engi-
neering, and further supplementing the prompt with external 
knowledge (eg, from ontologies).

In guided synthetic settings with ICD-10 descriptions, 
GPT-3.5 showed partial code identification ability displaying 
lesser over-/under-prediction tendencies than previously 
reported local models. It, however, struggled in the realistic 
scenario without in-prompt aid, performing below locally- 
trained models. Hence, the explored setup of producing a 
synthetic document based solely on the associated ICD codes 
is unsuitable for deployment in a clinical setting.

Clinician-evaluated synthetic discharge summaries showed 
correctness in individual codes, yet lacked naturalness and 
coherence compared to real data, resulting in lower informa-
tiveness, authenticity, and acceptability scores. Synthetic 

Table 4. Evaluator agreement (κ) and mean scores (μ) for samples from 
MIMIC-IV (real), versus GPT-generated (synthetic) data

Metrics κreal μreal κsynthetic μsynthetic

Correctness—nonlow 
resource

−0.386 4.175 −0.163 4.375

Correctness—low resource 0.043 4.350 0.206 4.525
Informativeness—nonlow 

resource
−0.155 4.550 −0.220 2.775

Informativeness—low 
resource

0.241 4.675 −0.277 3.000

Authenticity—patient 0.340 4.750 −0.078 3.150
Authenticity—scenario 0.373 4.775 −0.333 2.250
Acceptability −0.056 4.550 0.035 2.225
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summaries failed to represent holistic patient narratives or 
prioritize critical diagnoses.

One potential solution to generating synthetic discharge 
summaries involves restructuring the prompt to order diag-
noses chronologically, providing their corresponding time-
stamps. This could guide LLMs in creating synthetic notes 
mirroring the chronological progression of a patient’s medi-
cal journey, enhancing coherence and prioritization.

Another promising solution is to retrieve real clinical notes 
as in-context learning examples to help guide the generation 
process34 to aid LLMs in generating more realistic and coher-
ent content. As this study focuses on evaluating LLMs’ exist-
ing capability, we opted to evaluate it in a zero-shot 
framework. Future work may explore this idea’s potential for 
generating more realistic-looking clinical notes.

Limitations
In this study, while the annotation experts are involved as 
coauthors, we ensured that they were independent from the 
development of the algorithms that involved the synthetic 
data. While the evaluation utilized few clinical experts 
(n¼4), they provided sufficient expertise in evaluating the 
notes. The study was blinded with respect to the real/syn-
thetic status of documents, but according to the experts, the 
synthetic data differed from real enough to be 
distinguishable.
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