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however, there has been less work on understanding and 
predicting seasonal variability of shelf sea environments, 
where shallow bathymetry creates a dynamic physical envi-
ronment subject to high variability via energetic mixing 
processes as well as the influence of atmospheric variabil-
ity (Otto et al. 1990; Huthnance 1991; Becker and Pauly 
1996; Dippner 1997; Pätsch et al. 2017). This knowledge 
gap is especially pertinent given the disproportionately high 
importance of shelf seas to humans and ecosystems. For 
example, despite occupying just 7% of global ocean area 
they support over 90% of the world’s fisheries (Pauly et al. 
2002; Kröger et al. 2018).

We identify the European North-West shelf seas (hereaf-
ter NWS; area within the 200 m isobath marked in Fig. 1) 
as a prime region of interest. The operations of many NWS 
industries are sensitive to variability of physical fields, 
especially temperatures, and could benefit from accurate 
forecasts months ahead. Such industries include fisheries, 

1 Introduction

Near-term climate predictions are vital to both land (Ely et 
al. 2013; Palin et al. 2016; Clark et al. 2017; Turco et al. 
2017; Bell et al. 2017; Ceglar et al. 2018) and marine sector 
applications (Stock et al. 2015; Hobday et al. 2016; Mills et 
al. 2017; Payne et al. 2017; Scott et al. 2021). Traditionally, 
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Abstract
The European North-West shelf seas (NWS) support economic interests and provide environmental services to adjacent 
countries. Expansion of offshore activities, such as renewable energy infrastructure, aquaculture, and growth of interna-
tional shipping, will place increasingly complex demands on the marine environment over the coming decades. Skilful 
forecasting of NWS properties on seasonal timescales will help to effectively manage these activities. Here we quantify 
the skill of an operational large-ensemble ocean-atmosphere coupled global forecasting system (GloSea), as well as bench-
mark persistence forecasts, for predictions of NWS sea surface temperature (SST) at 2–4 months lead time in winter and 
summer. We identify sources of and limits to SST predictability, considering what additional skill may be available in the 
future. We find that GloSea NWS SST skill is generally high in winter and low in summer. GloSea outperforms simple 
persistence forecasts by adding information about atmospheric variability, but only to a modest extent as persistence of 
anomalies in the initial conditions contributes substantially to predictability. Where persistence is low – for example in 
seasonally stratified regions – GloSea forecasts show lower skill. GloSea skill can be degraded by model deficiencies 
in the relatively coarse global ocean component, which lacks dynamic tides and subsequently fails to robustly represent 
local circulation and mixing. However, “atmospheric mode matched” tests show potential for improving prediction skill 
of currently low performing regions if atmospheric circulation forecasts can be improved. This underlines the importance 
of coupled atmosphere-ocean model development for NWS seasonal forecasting applications.
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renewable and non-renewable energy, transport and rec-
reation (Payne et al. 2017, 2019). Interannual sea surface 
temperature (SST) variability can be on the order of degrees 
Celsius in large areas of the NWS (Fig. 1; Tinker et al. 2018) 
and seasonal climatologies will therefore not suffice for 
making predictions of upcoming conditions. Whilst 6-day 
operational forecasts (Tonani et al. 2019) and uninitialized 
end-of-century climate projections (Tinker et al. 2016) exist 
for the physical marine environment of the NWS, no opera-
tional NWS seasonal product currently exists. Tinker et al. 
(2018) and Tinker and Hermanson (2021) began to explore 
the prospect for NWS seasonal forecasting and suggest 

there may be potential predictability of temperatures on 
the NWS in boreal winter (DJF). There is likely also scope 
for predictability in other seasons which have not yet been 
explored, for example boreal summer (JJA), albeit limited 
by internal predictability limits as well as ocean or atmo-
spheric modelling deficiencies.

The shallow NWS environment has lower thermal inertia 
than the deep open ocean and is primarily driven by vari-
ability in the atmosphere (Becker and Pauly 1996; Dippner 
1997; Sharples et al. 2006). For example, from a simple box 
model, Holt et al. (2010) suggested that surface fluxes could 
be expected to be twice as important as lateral heat transport 

Fig. 1 Climatologies and variability of the European North-West shelf 
seas. CMEMS-v5 SST climatologies (a, b) and standard deviations 
(c, d) across the period 1993–2021 in winter (DJF; panel column a, 
c) and summer (JJA; column b – d). Black line marks the 200 m iso-

bath. Mixing fronts are shown by white dashed contours in b) and 
d), defined as where SST minus near-bottom temperature is equal to 
0.5 °C. Key NWS regions are marked by text annotations in a)
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for determining the heat content. However, advection is 
likely to play a more substantial around the shelf break. 
Here, whilst sub-mesoscale processes may occur, particu-
larly sub-surface, on-shelf transport in the surface layer is 
primarily influenced by wind-driven Ekman transport (e.g. 
Huthnance et al. 2009; Graham et al. 2018).

North Atlantic – European domain-scale atmospheric 
circulation patterns, most notably the North Atlantic Oscil-
lation (NAO), are well-known determinants of seasonal sur-
face climate over Europe (Hurrell 1995; Hurrell and Deser 
2009). Capturing changes in the dominant circulation pat-
terns in operational seasonal forecasting systems remains a 
challenge (e.g. Kim et al. 2012), with the recent exception 
of winter (DJF) surface NAO (Riddle et al. 2013; Scaife et 
al. 2014; Palin et al. 2016; Clark et al. 2017; Athanasiadis et 
al. 2017; Baker et al. 2018; Thornton et al. 2023). The sum-
mer NAO is also known to impact European surface climate 
(Folland et al. 2009; Bladé et al. 2012) but is found to have 
a much weaker predictable signal in dynamical forecasting 
systems (Patterson et al. 2022; Dunstone et al. 2023). Addi-
tional circulation patterns include the East Atlantic pattern 
(EA), East Atlantic – Western Russia pattern (EAWR) and 
Scandinavian pattern (SCAND), which are also known to 
impact European surface climate (Barnston and Livezey 
1987; Bueh and Nakamura 2007; Woollings et al. 2010; 
Lim 2015; Wang and Tan 2020). Recent studies suggest 
that some of these lower-order modes may be predictable 
at certain times of year, for example in summer (Lledó et 
al. 2020) and specifically EA in late autumn – early winter 
(Thornton et al. 2023), but the literature has thus far centred 
predominantly on NAO as the leading predictable mode of 
variability in winter.

Here, we quantify the skill of a large ensemble global 
ocean-atmosphere coupled dynamical seasonal forecasting 
system, namely the UK Met Office Global Seasonal Fore-
casting System (GloSea), in making predictions of the key 
end-user relevant NWS variable, sea surface temperature 
(SST), using retrospective forecasts (hereafter hindcasts) 
across 1993–2016. We extend existing NWS seasonal fore-
casting work (Tinker et al. 2018; Tinker and Hermanson 
2021) to consider both winter (DJF) and summer (JJA) 
seasons, when the dynamics of the marine environment are 
markedly different, and focus on the impact of atmospheric 
variability and the inherent predictability offered by the 
dynamics of the shelf sea waters themselves.

In this paper we directly assess the seasonal predictability 
of NWS SST. To do so, we first characterise the influence of 
atmospheric circulation patterns on NWS SST (Sect. 3.1), 
and their predictability (Sect. 3.2), before presenting the cur-
rent skill levels of GloSea and persistence forecasts of NWS 
SST (Sect. 3.3) and tests of upper limits to NWS SST skill 
with the use of idealised atmospheric fields (Sect. 3.4 and 

3.5). In Sect. 4, we discuss the implications of our findings 
and consider the potential for improved predictability on the 
NWS. We describe our data and methodology in Sect. 2.

2 Data and methodology

2.1 Persistence hindcasts

Persistence analysis is employed here for two purposes. 
First, it serves as a skill benchmark which the more sophis-
ticated GloSea system should aim to beat. Second, persis-
tence will be a scientific tool for quantifying the inherent 
memory of waters (thermal inertia) as a potential source of 
predictability on the NWS.

Here, persistence hindcasts are empirical models built 
using reanalysis data of the physical marine environment of 
the NWS. The data is sourced from version 5 of the regional 
physical reanalysis of the NWS produced by the UK Met 
Office and distributed by the Copernicus Marine Environ-
ment Monitoring Service (hereafter CMEMS-v5; Renshaw 
et al. 2021). The reanalysis is based on the Forecasting 
Assimilation Model 7 km Atlantic Margin model (FOAM 
AMM7) using the NEMO version 3.6 ocean model (Madec 
and the NEMO team 2016). The model is run for the domain 
20°W – 13°E, 40°N – 65°N at ~ 7 km horizontal resolution, 
across the period 1993 – near-present. The original model 
simulation has 51 terrain-following vertical levels and data 
is distributed on 24 vertical geopotential levels. CMEMS-
v5 has been extensively validated (Renshaw et al. 2021) 
and forms a ‘best estimate’ of the observational truth on the 
shelf. At ~ 7 km horizontal resolution, CMEMS-v5 includes 
dynamic tides and resolves key shelf sea processes such as 
seasonal stratification.

The process for building a timeseries of persistence hind-
casts at 2–4 months lead time from CMEMS-v5 data per 
target season is as follows: SST anomaly data are averaged 
over a 15-day period centred on the first day of the month 
preceding the target season, per hindcast year. For example, 
a winter (DJF) predictor field is formulated from the 15-day 
average centred on the November 1st immediately preced-
ing that winter. The hindcast prediction is then taken as per-
sistence of this fixed field through the winter. The 15-day 
averaging period is selected to reflect the span of start dates 
and information available for a typical GloSea hindcast set-
up (as discussed in Sect. 2.2). The hindcast data are con-
strained to winter and summer of 1993–2016 to match the 
length of the GloSea hindcast period.
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2.3 Atmospheric circulation identification

Atmospheric circulations over the North Atlantic – Euro-
pean domain likely impact NWS SST variability due to the 
fast response of shallow seas to atmospheric forcing (Becker 
and Pauly 1996; Dippner 1997; Sharples et al. 2006). Here, 
we investigate dominant circulation patterns in winter and 
summer as identified by the three leading modes of atmo-
spheric variability. As the circulations will have different 
centres of action which change across seasons, a fixed point 
(or box) difference definition for each mode is not suitable 
for our investigation. We employ an empirical orthogonal 
function (EOF; Hannachi et al. 2007; Wilks 2011) analysis 
of ERA5 (Hersbach et al. 2020) geopotential height anom-
alies at 500 hPa (hereafter Z500), temporally detrended 
and weighted by the square root of the cosine of the lati-
tude (North et al. 1982) across the domain 90°W–40°E and 
20°–80°N (as in Hall and Hanna 2018), to define the three 
leading atmospheric circulation patterns per season. ERA5 
Z500 fields are projected onto the EOFs to generate obser-
vation-based principal component timeseries per circulation 
pattern. EOFs are calculated using the xeofs Python pack-
age (Rieger and Levang 2024) across the period 1979–2021. 
Z500 EOFs are denoted by EOFZ500 subscript notation.

The loading pattern of each ERA5-derived atmospheric 
circulation is presented in Fig. 2. In both seasons, EOF1Z500 
closely resembles the North Atlantic Oscillation (NAO) 
and EOF2Z500 resembles the East Atlantic pattern (EA). 
EOF3Z500 most closely resembles the East Atlantic – West-
ern Russia pattern in the winter (EAWR; though given the 
domain constraints it may be missing the eastern low pres-
sure node) and the Scandinavian pattern (SCAND) in the 
summer. GloSea full ensemble Z500 fields from the same 
domain are projected onto the ERA5-derived loading pat-
terns to get GloSea principal component predictions for the 
three atmospheric circulation patterns per season and for 
each individual member.

2.4 Hindcast skill measures

Hindcast skill is assessed by validation against available 
reanalyses (hereafter observation-based products). We 
focus predominantly on the Pearson Anomaly Correlation 
Coefficient skill measure (ACC; Jolliffe and Stephenson 
2011), i.e.

ACC =

∑ N
i=1(hi−

−
h)(vi−

−
v)√

∑ N
i=1(hi−

−
h)

2

(vi−
−
v)

2  (1)

2.2 GloSea large ensemble hindcasts

We use operational hindcast data from versions 5 and 6 of 
the UK Met Office Global Seasonal Forecasting System 
(GloSea; MacLachlan et al. 2015). Both versions use the 
HadGEM3 ocean-atmosphere-land-sea-ice coupled cli-
mate model. GloSea6 uses HadGEM3-GC3 (Williams et al. 
2018) whereas GloSea5 uses HadGEM3-GC2 (Williams et 
al. 2015) but both versions show similar skill. The model 
is initialised with observational analyses of the atmosphere, 
land, ocean and sea ice. The global ocean component of the 
model (NEMO; Megann et al. 2014) is run on the ORCA025 
grid, i.e. a 0.25° horizontal resolution tri-polar grid with 75 
vertical levels, 18 (24) of which are in the top 50 m (100 m) 
of the water column. The model’s atmospheric component 
is run at N216 resolution (0.8° in latitude and 0.5° in lon-
gitude) with 85 vertical levels. Operationally, GloSea pro-
duces real-time forecasts as well as hindcasts for the period 
1993–2016, which we use here for skill assessment. GloSea 
employs a lagged ensemble technique; the hindcasts are 
generated on four calendar dates per month: the 1st, 9th, 
17th and 25th and are integrated forward for the next six 
simulated months. For each start date, seven individual 
members (differing only by stochastic perturbation of atmo-
spheric initial conditions; i.e. Bowler et al. 2009) are ini-
tialised. All initialisations use only conditions which would 
have been available at the time.

To obtain an ensemble of hindcast simulations at 2–4 
months lead time per target season, we combine the 21 
members from start dates centred on the 1st of the month 
preceding the target season. For example, a winter (DJF) 
hindcast ensemble combines members initialised on Octo-
ber 25th, November 1st, November 9th (3 start dates × 7 
members) per hindcast year. Multiple hindcasts have been 
run and we are able to combine all available data from 
five hindcasts to form a larger ensemble of 105 members 
(5 × 21-member ensembles) per year. We take this step to 
provide a hindcast ensemble for skill assessment which best 
represents the real-time forecasting set up, which is soon 
due to increase from a 42- to 100-member ensemble. Using 
such a large ensemble has the notable advantage of being 
able to better extract predictable signals in the extra-tropics, 
which are thought to be underrepresented in models (Eade 
et al. 2014; Scaife and Smith 2018).

The linear trend across the hindcast period is preserved 
in all analyses (except when defining atmospheric circula-
tion patterns, see Sect. 2.3) to match real-time forecasting 
procedures, which are capable of capturing skill originating 
from long-term trends.
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and observation-based estimate. Significance (p value) is 
calculated using a positive one-tailed t test as we are testing 
for positive correlation only.

We assess the significance of the difference between Glo-
Sea and persistence hindcast ACC skill by bootstrapping. 
That is, we randomly select 105 members (with replace-
ment) per year, calculate the ACC score of the ensemble 
mean and build a distribution of ACC scores by repeating 
this process 1000 times. GloSea ensemble mean ACC is 
deemed significantly different from persistence where per-
sistence lies outside the 97.5th and 2.5th percentiles of the 
randomly selected GloSea ensembles distribution.

where N is the number of years in the hindcast period, hi  and 
vi  are the hindcast and verification fields, respectively, and 
overbars denote timeseries means. For validation of winter 
and summer NWS SST skill, v  is taken as CMEMS-v5 SST 
seasonal mean fields. Note that for GloSea validation, NWS 
SST data on the ORCA025 tri-polar grid are re-gridded to 
CMEMS-v5 specification by nearest-neighbour interpola-
tion. For atmospheric circulation validation, v  is taken as 
ERA5-derived winter and summer principal components. 
ACC is a useful measure of the extent to which the sim-
ulated phase of variability matches observations, where a 
score of 1 implies perfect association between simulation 

Fig. 2 Leading modes of North Atlantic – European atmospheric vari-
ability. The three leading modes of atmospheric variability (EOFZ500 
1–3; panel columns) derived from ERA5 Z500 anomalies, across the 
1979–2021 reanalysis period, in winter (DJF; row a – c) and summer 

(JJA; d – f). Percentage of total variance explained by each mode is 
marked in square brackets. Loading patterns are expressed as linear 
regressions on the standardised principal components
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The NWS SST fields from this 20-member sub-sample are 
averaged to create a new sub-selected ensemble mean. This 
technique relies on having observation-based estimates 
available against which to compare the predicted principal 
components, and as such it does not have relevance for real-
time forecasting application. Instead this procedure repre-
sents a set of “atmospheric mode matched” experiments 
which enable us to ask how GloSea would perform if it 
could accurately predict the evolution of each atmospheric 
circulation pattern, to provide an idealised upper limit asso-
ciated with atmospheric variability forecasts. Of course, the 
true limit of predictability will be lower than this.

The statistical significance of the sub-selected ensemble 
mean results is assessed by bootstrapping. That is, 20 mem-
bers are chosen at random (with replacement) per year, and 
this process is repeated 1000 times to build a distribution 
of sub-selected ensemble mean ACC scores. The mode-
matched sub-ensemble mean is deemed significantly differ-
ent from random chance where it falls outside the 97.5th and 
2.5th percentiles of the random-selection distribution.

3 Results

3.1 Influence of atmospheric circulations on NWS 
SST

We first investigate the impact of atmospheric circulations 
on NWS SST in observation-based and modelled (GloSea) 
fields. In both observation-based and GloSea versions, 
EOFZ500 1–3 show strong correlation against NWS SST 
(Fig. 3). In winter, EOF1Z500 (NAO) is positively correlated 
with large areas of English Channel and North Sea SST, and 
the spatial impact patterns match closely between observa-
tion-based (Fig. 3a[i]) and GloSea fields (Fig. 3b[i]). Winter 
EOF2Z500 (EA) is strongly positively correlated with SST 
around the Southern Bight (see Fig. 1a for NWS region 
locations) in both observation-based (Fig. 3a[ii]) and Glo-
Sea versions (Fig. 3b[ii]). Winter EOF3Z500 (EAWR) dem-
onstrates strong positive correlation in the Celtic Sea, outer 
shelf and northern North Sea regions, again in both observa-
tion-based (Fig. 3a[iii]) and GloSea fields (Fig. 3b[iii]). The 
broad similarity between observation-based and modelled 
atmospheric circulation impact on NWS SST in the winter 
indicates that GloSea tends to correctly simulate the spa-
tial impact of winter atmospheric circulation variability on 
NWS SST. However, the correlations tend to be weaker in 
GloSea compared to observation-based fields and there are 
some cases where GloSea displays the wrong sign of cor-
relation between winter atmospheric circulations and NWS 
SST. For example, the model- and observation-based cor-
relations are of opposite sign for EOF1Z500 (NAO) in the 

A limitation of the ACC statistic is its insensitivity to 
errors in magnitude, which can mask poor skill associated 
with the strength of signals arising from unrealistic variabil-
ity in the model ensemble. In some cases, particularly in the 
northern extra-tropics in winter, it is possible for the ACC 
skill of the signal extracted from the mean of a large ensem-
ble of model simulations to be high but for the ensemble 
mean variance to be too small (Eade et al. 2014; Scaife et 
al. 2014; Scaife and Smith 2018; Smith et al. 2020). In such 
cases, there is a relatively high proportion of noise in the 
ensemble and therefore unrealistic disagreement between 
individual members. This suggests that each member can-
not truly be interpreted as a plausible alternative realisation 
of the real world (Scaife and Smith 2018). This behaviour 
is described as the “signal-to-noise paradox” (Scaife and 
Smith 2018) as it results in the ensemble mean being better 
able to predict the real world than its own ensemble mem-
bers. Here we use a measure of the ratio of predictable com-
ponents (RPC) to quantify the error in the signal-to-noise 
ratios in the hindcasts. Using the definition by Scaife and 
Smith (2018), which is itself an iteration of the definition 
by Eade et al. (2014): RPC is calculated as the ratio of the 
predictable component of observed variability (PCobs ) and 
the predictable component of model variability (PCmodel ). 
PCobs  is estimated by ACC (Eq. 1) between model ensem-
ble mean and the observations (ACCmo ), whereas PCmodel  
is taken as the average ACC between each model member 
and the remaining ensemble mean (ACCmm ). Therefore,

RPC =
PCobs

PCmodel
=

ACCmo

ACCmm
 (2)

A perfect forecast system, with infinite samples and ensem-
ble members, exhibits an RPC of 1, indicating that the pre-
dictable fraction of variance in the observations matches 
the predictable fraction of the model itself. When the model 
ensemble mean is more skilful in predicting the observed 
signal than individual members the RPC is greater than 1. 
With an RPC greater than 1, the signal-to-noise ratio is erro-
neously low and the magnitude of variability in the ensem-
ble mean will be suppressed.

2.5 Ensemble sub-selection

In Sect. 3.4, we employ an observation-matching approach 
to sub-select the full 105-member GloSea ensemble, based 
on comparisons of the modelled to observation-based state 
of the three atmospheric circulations investigated (EOFZ500 
1–3, as defined in Sect. 2.3). That is, for each year and for 
each atmospheric mode, the 20 members which have pre-
dicted principal components closest (least absolute differ-
ence) to ERA5-derived principal components are selected. 
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no substantial on-shelf correlation (Fig. 3a[v]). Summer 
EOF3Z500 (SCAND) is positively correlated with central 
and northern North Sea and northern outer shelf region SST 
(Fig. 3a[vi]). Despite being only third in terms of contri-
bution to total atmospheric variance, EOF3Z500 (SCAND) 
has a substantial influence on NWS summer SST. The 

Irish Sea (Fig. 3a[i] vs. Figure 3b[i]) and EOF2Z500 (EA) 
in the north and west portions of the NWS (Fig. 3a[ii] vs. 
Figure 3b[ii]).

According to summer observation-based estimates, 
EOF1Z500 (NAO) correlates strongly with SST in the Celtic 
Sea (Fig. 3a[iv]), but EOF2Z500 (EA) demonstrates little to 

Fig. 3 Observation-based and modelled influence of atmospheric 
variability on NWS SST. Panels a[i] – a[vi]: correlation (Pearson r) 
between ERA5-derived EOFZ500 1–3 principal components (panel 
columns) against CMEMS-v5 SST, in winter (DJF; row i – iii) and 
summer (JJA; iv – vi), across 1993–2021 (common period between 
datasets; n = 28). Panels b[i] – b[vi]: correlation (Pearson r) between 

GloSea predicted EOFZ500 1–3 principal components (panel columns) 
against GloSea predicted SST, in winter (DJF; row i – iii) and sum-
mer (JJA; iv – vi). Note, in panels b[i] – b[vi] (GloSea) correlations 
are calculated for all individual ensemble members and hindcast years 
(n = 2520) to avoid artificially smoothing variability within the ensem-
ble. Black line marks the 200 m isobath
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3.2 Prediction skill of atmospheric circulation 
patterns

We now consider how skilfully GloSea predicts each atmo-
spheric circulation pattern per season, which will likely 
impact the performance of GloSea NWS SST given the clear 
influence of atmospheric variability on the NWS. We do this 
to begin to attribute the sources of NWS SST prediction skill, 
and subsequently understand potential limits to predictabil-
ity. In the winter, only predictions of EOF1Z500 (NAO) are 
skilful and significant at the 95% confidence level in GloSea 
(ACC = 0.57; p = 0.002; Fig. 4a). In addition, the signal-to-
noise ratio is anomalously low and hence the RPC is above 

spatial patterns of modelled (GloSea) atmospheric circula-
tion impact on NWS SST are approximately correct in the 
summer, by comparison to observation-based estimates, 
but do exhibit some notable inconsistencies (Fig. 3 sum-
mer observation-based vs. GloSea panels), suggesting that 
GloSea may produce errors in the spatial impacts of sum-
mer atmospheric circulations on NWS SST in some cases. 
For example, EOF1Z500 (NAO) is negatively correlated with 
SST in the English Channel, southern North Sea and Irish 
Sea regions in observation-based estimates but the correla-
tions are positive in GloSea (Fig. 3a[iv] vs. Figure 3b[iv]).

Fig. 4 Timeseries of predicted and observation-based atmospheric cir-
culation patterns. GloSea full ensemble mean principal components 
(red lines) for EOF1Z500 (a, b), EOF2Z500 (c, d) and EOF3Z500 (e, f) 
in winter (DJF; panel column a, c, e) and summer (JJA; column b, d, 
f), at 2–4 months lead time across 1993–2016 hindcast period. ERA5 
principal components are shown by the black line. All principal com-

ponent values are normalised by their respective timeseries standard 
deviations. Background shading represents the density (count) of Glo-
Sea individual member principal components per year. ACC scores 
(with p value in brackets) are marked in the white boxes. Where sig-
nificant at the 95% confidence level, p values are emboldened and RPC 
values are also displayed
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3.3 GloSea and persistence NWS SST skill

We now assess the skill of GloSea in predicting NWS 
SST in winter and summer. Both GloSea and persistence 
demonstrate high skill across much of the NWS in winter 
(ACC > 0.6; Fig. 5a and b) and show similar spatial pat-
terns, suggesting that persistence contributes to GloSea pre-
diction skill. High persistence in winter is likely attributable 
to the thermal inertia of the waters, which are generally fully 
mixed in winter and thus suppress the influence of atmo-
spheric variability on SST. Persistence and GloSea winter 
skill is low in the English Channel and southern North Sea 
regions (ACC < 0.4), which are some of the shallowest por-
tions of the NWS. Lower thermal inertia associated with 
shallow bathymetry is likely to tie SST closer to atmospheric 

1 for winter EOF1Z500 (NAO). Winter EOF2Z500 (EA) and 
EOF3Z500 (EAWR) demonstrate no significant predictability 
(Fig. 4c and e). In the summer, signals are generally weaker 
and only EOF2Z500 (EA) is significantly predictable at the 
95% confidence level (ACC = 0.36, p = 0.043; Fig. 4d). 
Predictions of summer EOF3Z500 (SCAND) are significant 
at 90% confidence (ACC = 0.3, p = 0.078; Fig. 4f), whilst 
summer EOF1Z500 (NAO) skill is negative and insignifi-
cant (ACC = -0.29; p = 0.918; Fig. 4b). Summer EOF2Z500 
(EA) significance is degraded when hindcasts are tempo-
rally detrended (not shown), suggesting that a portion of the 
skill is attributable to low-frequency decadal signals or the 
trend. The opposite is true for summer EOF3Z500 (SCAND); 
predictions are significant at the 95% confidence level when 
detrended.

Fig. 5 Dynamical (GloSea) and persistence NWS SST prediction skill. 
GloSea full ensemble mean (n = 105) SST ACC (panel column a, d), 
persistence ACC (column b, e), and GloSea minus persistence (col-
umn c, f), for winter (DJF; top panel row) and summer (JJA; bottom 
row), at 2–4 months lead time across the hindcast period 1993–2016. 
The p = 0.05 statistical significance level is marked by grey dashed 

contours, where the side of the contour with higher ACC scores marks 
p < 0.05. p values are calculated using a one-tailed test. Mean ACC 
for the NWS domain is marked in the bottom right. Black line marks 
the 200 m isobath. Stippling marks locations where GloSea is signifi-
cantly different from persistence, as assessed by bootstrapping method 
described in Sect. 2.4
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response of SST to summer EOF3Z500 (SCAND) in GloSea 
(Fig. 3a[vi] vs. Figure 3b[vi]), potentially due to (iii) defi-
ciencies in the GloSea global ocean component associated 
with locally erroneous representation of key NWS physics 
such as seasonal stratification (discussed in greater detail in 
Sect. 3.5). Summer EOF2Z500 (EA) is skilfully predicted by 
GloSea (Fig. 4d) but is shown to have weaker impact on on-
shelf SST (Fig. 3a[v] and 3b[v]) meaning GloSea NWS SST 
prediction skill is unaffected.

Exceptions to low summer skill include the English 
Channel, southern North Sea, Irish Sea regions and around 
the Fair Isle current (see Fig. 1a for NWS region locations) 
where, unlike winter for the most part, skill is high in both 
GloSea and persistence systems (ACC > 0.6; Fig. 5d and 
e). These regions tend to remain fully mixed throughout 
the year due to strong tidal mixing (see mixing fronts in 
Fig. 1b and d, as well as van Leeuwen et al. 2015), which 
typically favours higher thermal inertia. However, the high 
summer skill seemingly contradicts the reasoning for low 
skill in these regions in winter when the waters are also fully 
mixed but nonetheless shallow and therefore likely to have 
low thermal inertia.

We propose that the high persistence in waters with low 
thermal inertia, seen in the shallow English Channel and 
southern North Sea regions in summer (Fig. 5e), occurs 
because these regions are only weakly influenced by the 
dominant summer atmospheric circulations according to 
observation-based estimates (Fig. 3a summer panels). This 
state contrasts with the situation in the winter (Fig. 3a win-
ter vs. summer panels). However, this cannot explain the 
English Channel, southern North Sea and Irish Sea skill in 
GloSea, which falsely simulates summer EOF1Z500 (NAO) 
as being impactful on SST in these regions (Fig. 3a[iv] vs. 
Figure 3b[iv]). The ORCA025 ocean grid used by Glo-
Sea is relatively coarse and parameterises tidal mixing 
(i.e. Simmons et al. 2004) rather than including dynamic 
tides of varying amplitude. The parameterisation of tides is 
expected to be an underestimation for the NWS, which can 
lead to artificial stratification in the English Channel, south-
ern North Sea and Irish Sea regions (Tinker et al. 2018), 
therefore artificially amplifying air-sea exchange. Intui-
tively, this would suggest that the true SST persistence in the 
English Channel, southern North Sea and Irish Sea regions 
should be degraded in GloSea due to the artificial influence 
of EOF1Z500 (NAO), yet summer SST skill is maintained 
in these regions in GloSea (Fig. 5d). We explain this as a 
cancellation of errors between the GloSea EOF1Z500 (NAO) 
prediction and SST response. That is, the GloSea summer 
SST response to EOF1Z500 (NAO) has the incorrect sign in 
these regions (Fig. 3a[iv] vs. Figure 3b[iv]), in parallel to 
summer EOF1Z500 (NAO) prediction skill displaying the 
wrong sign (ACC = -0.29; Fig. 4b).

variability in these parts and therefore lead to accelerated 
decoupling from initial conditions. GloSea shows higher 
skill than persistence overall during winter (Fig. 5c). The 
NWS-wide improvements are modest in GloSea (area mean 
ACC = 0.60 for GloSea vs. ACC = 0.55 for persistence) 
but spatially coherent and significantly different from per-
sistence across large areas, including the North Sea. The 
majority of improvement comes in regions which are shown 
to be impacted by winter EOF1Z500 (NAO), in both observa-
tion-based (Fig. 3a[i]) and modelled fields (Fig. 3b[i]), not-
ing that EOF1Z500 (NAO) is skilfully predicted in GloSea 
(Fig. 4a). That is, the skilful simulation of winter EOF1Z500 
(NAO) in GloSea likely leads to improved NWS SST pre-
dictions over persistence, which lacks information on the 
evolution of the atmosphere over the predicted period. SST 
in the Southern Bight region, where EOF2Z500 (EA) is most 
influential (Fig. 3a[ii] and 3b[ii]), remains poorly simulated 
in GloSea, likely because EOF2Z500 (EA) is not skilfully 
predicted (Fig. 4c). The areas of impact associated with 
winter EOF3Z500 (EAWR), namely the Celtic Sea, outer 
shelf and northern North Sea regions (Fig. 3c), show statis-
tically significant but relatively small changes in GloSea as 
persistence is already high in these areas (Fig. 5b).

Summer NWS SST skill in both GloSea and persistence 
hindcasts is low in large areas (ACC < 0.3; Fig. 5d and e), 
particularly in the Celtic Sea and North Sea regions where 
ACC is almost entirely statistically insignificant in both 
systems. Moreover, there is no statistically significant dif-
ference between GloSea and persistence across most of the 
NWS. Persistence in the Celtic Sea and North Sea regions 
is low in summer likely due to seasonal stratification in the 
warmer summer months (shown by mixing fronts in Fig. 1b 
and d, and van Leeuwen et al. 2015; Pingree and Griffiths 
1978) which results in a thin mixed layer (reduced thermal 
inertia), thus amplifying the impact of atmospheric variabil-
ity on SST. Though there is moderate improvement in Glo-
Sea skill relative to persistence on-shelf (within the 200 m 
isobath where this study is focussed) large areas remain 
statistically insignificant (Fig. 5f). Summer EOF1Z500 
(NAO) is shown to impact the Celtic Sea in observation-
based (Fig. 3a[iv]) and modelled fields (Fig. 3b[iv]) but is 
not skilfully predicted in GloSea (Fig. 4b), meaning there 
is no associated meaningful improvement in SST skill in 
GloSea (Fig. 5d). Summer EOF3Z500 (SCAND) is shown 
to be both influential on North Sea SST (Fig. 3) and some-
what skilfully predicted by GloSea (Fig. 4f) yet there is little 
meaningful improvement in GloSea SST skill in these parts 
relative to persistence. Potential explanations may include 
one or a combination of (i) the skill of summer EOF3Z500 
(SCAND) being still too low (ACC = 0.3, Fig. 4f) to ade-
quately constrain SST evolution in the particularly sensi-
tive stratifying regions, (ii) the weak and spatially erroneous 
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EOF1Z500 (NAO) and EOF2Z500 (EA), when matched to 
observation-based estimates, the areas which perform worst 
in the full ensemble mean, namely the English Channel and 
southern North Sea (Fig. 5a), show the largest improve-
ments (Fig. 7d and e). This is consistent with the influence 
of EOF1Z500 (NAO) and EOF2Z500 (EA) in these regions in 
winter (Fig. 3). Regarding winter EOF3Z500 (EAWR), there 
is widespread improvement in skill across most of the NWS 
(Fig. 7f). Skill in the small area in the southeast Celtic Sea/
west of France is boosted but remains low (Fig. 7c).

In the summer, the sub-selected ensembles matched to 
observation-based estimates of EOF1Z500 (NAO) show 
considerable improvement in skill (Fig. 8a and d) in areas 
of the NWS, namely the Celtic Sea and North Sea, where 
the GloSea full ensemble mean is both very low in skill 
(Fig. 5d) and where summer EOF1Z500 (NAO) is shown 
to be impactful in the summer (Fig. 3). Therefore, summer 
EOF1Z500 (NAO) forecasts offer the greatest opportunity 
for improvement of NWS summer SST predictions. How-
ever, large areas in the Celtic Sea and parts of the eastern 
North Sea remain low in skill and statistically insignificant. 
This is likely due to one or a combination of: poor model 
representation of NWS summer stratification (i.e. Tinker et 
al. 2018) in the seasonally stratifying regions of the Celtic 
Sea and North Sea, deficiencies in simulating the impacts 
of meteorological events such as storms/rainfall/freshwa-
ter inputs on the water column (i.e. Jardine et al. 2023), or 
errors in exchange between the shelf and open ocean in the 
GloSea global ocean model component, which is not best 
suited to the fine-scale processes of the shelf-break (Graham 
et al. 2018). Also of note is the fact that improved summer 
EOF1Z500 (NAO) predictions lead to degraded SST perfor-
mance in regions such as the English Channel (Fig. 8d). 
This is consistent with the interpretation of results presented 
in Sect. 3.3 where full ensemble GloSea SST skill is sug-
gested to be high in such regions due to a cancellation of 
errors between summer EOF1Z500 (NAO) predictions and 
SST response. That is, improved EOF1Z500 (NAO) predic-
tions will degrade SST predictions in areas where the spatial 
impacts of atmospheric circulations are erroneous, likely 
due to deficiencies in the ocean model component such as 
in the case of artificial stratification in the English Chan-
nel. The sub-selected ensembles matched to observation-
based estimates of summer EOF3Z500 (SCAND) also show 
meaningful improvement in skill across parts of the NWS 
(Fig. 8c and f) but again, ocean model deficiencies may limit 
improvement in summer. In the case of matching to obser-
vation-based estimates of summer EOF2Z500 (EA), there is 
little improvement and skill is often significantly degraded 
relative to the full ensemble mean (Fig. 8b and e). This is 
explained by the weak impact by EOF2Z500 on NWS sum-
mer SST (Fig. 3) meaning that the sub-selection procedure 

GloSea summer SST skill in the outer shelf region is 
high (Fig. 5d) and sees improvements when compared with 
persistence (Fig. 5f), albeit the difference is not statistically 
significant. We note that the same region displays lower sub-
stantially skill when hindcast data are temporally detrended 
(not shown). Skill in the outer shelf region may be associ-
ated with low-frequency decadal signals in the North Atlan-
tic. The advection of these signals onto the NWS should be 
captured by the GloSea hindcasts.

3.4 Observation-matched GloSea atmospheric 
circulation patterns

We have shown that GloSea can be skilful in predicting 
NWS SST, particularly in winter. However, large amounts 
of variance remain unexplained at current levels of skill so 
we now ask what the prediction skill of NWS SST would 
be with improved forecasts of atmospheric circulation pat-
terns. The “atmospheric mode matching” procedure gives 
an upper estimate of the skill that could be achieved if we 
had improved atmospheric forecasts with respect to each 
individual circulation pattern. To do so, we sub-select mem-
bers from the full GloSea ensemble which best simulate 
observation-based estimates of each atmospheric circula-
tion pattern’s principal components per hindcast year (see 
Sect. 2.5). In both winter and summer, ACC skill for the 
“atmospheric mode matched” sub-selected ensemble mean 
for each circulation pattern (blue lines in Fig. 6) is close to 1 
and is significantly improved over the GloSea full ensemble 
mean (red lines). This idealised method achieves near per-
fect skill for each mode in terms of capturing the amplitude, 
sign and phase of variability (ACC > 0.9 across all seasons 
and circulation patterns) and it corrects any anomalous sig-
nal-to-noise ratios (RPC ≈ 1). Note, however, we find that 
there is little overlap between members in sub-ensembles 
selected for each atmospheric circulation pattern (on aver-
age across the hindcast period, 5.62% and 3.33% of mem-
bers overlap in winter and summer, respectively), indicating 
that individual members tend not to skilfully predict mul-
tiple circulation patterns simultaneously.

3.5 Sub-selected ensemble GloSea NWS SST skill

Using only the members whose predictions of each atmo-
spheric circulation pattern track observation-based estimates 
(n = 20), a new sub-selected NWS SST ensemble mean field 
is generated per mode from the members’ corresponding 
ocean fields. In the winter and for all three atmospheric cir-
culation patterns, the sub-selected ensemble mean shows 
improvement in SST skill across large areas of the NWS, 
with improvements on the order of ACC > 0.25 relative to 
the GloSea full ensemble mean (Fig. 7). Concerning winter 
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predictions of atmospheric circulation patterns, the “atmo-
spheric mode matched” analysis presented in this study is 
a useful way of identifying locations where more NWS 
SST skill may be attainable with some future increases in 
atmospheric skill, as well what skill remains unexplained 
in GloSea under improved atmospheric circulation predic-
tion. In this study, we have evaluated NWS SST predictabil-
ity from the perspective of atmospheric circulation drivers. 
Alternative approaches could involve methods to explicitly 
link predictable modes of the variable of interest (i.e. NWS 
SST) to potential sources of predictability (e.g. DelSole and 
Chang 2003; Fan et al. 2020; Zhang et al. 2023; Chen et al. 
2024).

GloSea winter NWS SST prediction skill is generally 
high and beats persistence, particularly in shallow regions 

serves only to reduce the ensemble size without the benefit 
of better representing impactful atmospheric circulations.

4 Summary and discussion

We have quantified the current levels of skill in predict-
ing boreal winter and summer European North-West shelf 
seas sea surface temperature using a dynamical forecast-
ing system and have understood potential sources of skill 
improvement. Approximate locations where we find high 
and low current skill, as well as locations where there may 
be improvements in skill with improved atmospheric fore-
casts, are summarised in the schematic in Fig. 9. Whilst it 
is unrealistic to expect GloSea to ever produce near perfect 

Fig. 6 GloSea “atmospheric mode matched” tests. Sub-selected ensem-
ble mean principal component predictions (blue lines) with respect to 
EOF1Z500 (a, b), EOF2Z500 (c, d) and EOF3Z500 (e, f) in winter (DJF; 
panel column a, c, e) and summer (JJA; column b, d, f), at 2–4 months 
lead time across 1993–2016 hindcast period. Red line shows the origi-
nal full ensemble mean (as in Fig. 4). ERA5 principal components are 

shown by the black scatter markers. All principal component values 
are normalised by their respective timeseries standard deviations. ACC 
(with p value in brackets, calculated using a one-tailed test) and RPC 
scores marked in the white boxes are for GloSea “atmospheric mode 
matched” sub-selected ensembles
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if predicted well. EOF2Z500 (EA) in winter and EOF3Z500 
(SCAND) in summer also contribute to NWS SST predict-
ability. Winter EOF2Z500 (EA) is linked to precipitation over 
North-West continental Europe and Britain (Casanueva et 
al. 2014; Hall and Hanna 2018; West et al. 2021), indicating 
a potential mechanism for influencing the NWS via vari-
ability in coastal runoff. With increased freshwater runoff 
we might expect increased stratification in the otherwise 
well-mixed Southern Bight area (Simpson et al. 1993; van 
Leeuwen et al. 2015) with consequences for SST variability. 
Despite being the lowest order EOF in summer, EOF3Z500 
(SCAND) exerts strong control over summer NWS SST, 
reflective of its broad links to European surface climate 
(Bueh and Nakamura 2007; Wang and Tan 2020). If pre-
dicted well, it offers potential for skill improvement across 
the NWS in summer.

Even in “atmospheric mode matched” tests, only ~ 50% 
of the variance in NWS SST on seasonal timescales can be 
explained. Whilst unpredictable noise associated with atmo-
spheric variability (e.g. short-term weather) contributes an 
inherent limit to total NWS SST predictability, the impact of 

where EOF1Z500 (NAO) exerts a strong control. This builds 
on the well-documented understanding of GloSea winter 
NAO prediction skill (e.g. Scaife et al. 2014) and echoes the 
NWS winter predictability results of Tinker and Hermanson 
(2021). In the summer, GloSea NWS SST skill is generally 
lower when the stratified surface mixed layer is particularly 
sensitive to atmospheric variability. For both seasons, pros-
pects for future seasonal forecast skill in dynamical fore-
casting systems are identified through GloSea “atmospheric 
mode matched” simulations. Potential increases in NWS 
SST skill stem primarily from improved EOF1Z500 (NAO) 
predictions in both winter and summer, in line with well 
understood surface climate impacts of winter and summer 
NAO (Hurrell 1995; Folland et al. 2009; Hurrell and Deser 
2009; Bladé et al. 2012). Winter NAO has previously been 
shown to impact SST across large areas of the NWS (Becker 
and Pauly 1996; Dippner 1997; Tinker et al. 2018) mean-
ing its role in producing skilful simulations of NWS SST is 
expected. However, we also demonstrate for the first time 
the key contribution of summer NAO to NWS SST variabil-
ity and its potential for improving summer SST simulations 

Fig. 7 GloSea NWS winter SST prediction skill if improved atmo-
spheric predictions were possible. Top panel row: Winter (DJF) only 
EOF1Z500 (panel column a, d), EOF2Z500 (column b, e) and EOF3Z500 
(column c, f) GloSea sub-selected ensemble mean SST ACC (n mem-
bers = 20), at 2–4 months lead time across the hindcast period 1993–
2016. Bottom panel row: sub-selected ensemble mean (i.e. top row) 
minus full ensemble mean (i.e. Figure 5a). The p = 0.05 statistical 

significance level is marked by grey dashed contours, where the side 
of the contour with higher ACC scores marks p < 0.05. p values are 
calculated using a one-tailed test. Mean ACC for the NWS domain is 
marked in the bottom right for the top row. Black line marks the 200 m 
isobath. Stippling shows locations where the sub-selected ensemble 
mean is significantly different from random member selection, as 
assessed by bootstrapping method described in Sect. 2.5
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(i.e. Tinker and Hermanson 2021) but would likely be pro-
hibitively expensive. Future work could instead aim to force 
a simple shelf seas model (e.g. “S2P3”; Halloran et al. 2021) 
to explore the benefits of improved shelf dynamics at lower 
expense, or to improve representation of tides in GloSea 
either by using a shelf-enabled global NEMO ocean compo-
nent (in development) or by improving their parameterisa-
tion (e.g. Tinker et al. 2022). Whilst we have focussed here 
on seasonal SST predictability, it will be important to con-
sider the predictability of other variables, averaging periods 
and lead times. For example, predictability of sub-surface 
temperature fields could be critical for ecosystem applica-
tions (e.g. Smyth et al. 2010; Marsh et al. 2015), and explor-
ing prospects for early-warning systems of NWS extreme 
events, including marine heatwaves (e.g. Berthou et al. 
2024), could be important for climate adaptation.

We have demonstrated that considerable NWS SST 
seasonal forecasting skill already exists through both the 
persistence of anomalies in the initial conditions and the 
predictability of atmospheric circulation. Further skill can 
likely be derived from improvements to both atmospheric 

fine-scale ocean processes on the NWS remains a potentially 
significant source of skill and has not been explored in detail 
in this study. The GloSea ocean model component, which 
is relatively coarse resolution for this regional application 
and lacks dynamic tides, may fail to properly resolve NWS 
processes, such as stratification, shelf-break transport and 
shelf-edge exchange (Holt et al. 2017). Therefore, alongside 
continuing development aimed at improving atmospheric 
variability simulation in dynamical forecast systems, there 
is significant scope to derive further NWS SST skill through 
ocean component development with greater attention given 
to resolving shelf seas processes. Moreover, in certain cases, 
improvements to the ocean component of GloSea may be 
required to unlock skill offered by any improvements to 
atmospheric forecasts. For example, we have shown that 
errors in the spatial impact of summer EOF1Z500 (NAO) on 
SST in the English Channel within GloSea, potentially due 
to artificial stratification, results in degraded SST skill in 
this region when predictions of summer EOF1Z500 (NAO) 
are improved. The prospect of dynamically downscaling the 
ocean component of a GloSea large ensemble is appealing 

Fig. 8 GloSea NWS summer SST prediction skill if improved atmo-
spheric predictions were possible. Top panel row: Summer (JJA) only 
EOF1Z500 (panel column a, d), EOF2Z500 (column b, e) and EOF3Z500 
(column c, f) GloSea sub-selected ensemble mean SST ACC (n mem-
bers = 20), at 2–4 months lead time across the hindcast period 1993–
2016. Bottom panel row: sub-selected ensemble mean (i.e. top row) 
minus full ensemble mean (i.e. Figure 5d). The p = 0.05 statistical 

significance level is marked by grey dashed contours, where the side 
of the contour with higher ACC scores marks p < 0.05. p values are 
calculated using a one-tailed test. Mean ACC for the NWS domain is 
marked in the bottom right for the top row. Black line marks the 200 m 
isobath. Stippling shows locations where the sub-selected ensemble 
mean is significantly different from random member selection, as 
assessed by bootstrapping method described in Sect. 2.5
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