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Abstract. In recent years, there has been a shift from focusing ex-
clusively on the accuracy of machine learning systems to a more
holistic and human-centered approach that includes privacy, fair-
ness, transparency and more. Many of these dimensions are of-
ten considered to conflict with each other. For example, there can
be a trade-off between the accuracy and fairness of a predictive
model. In fairness analysis, the aim is to establish that machine
learning models do not discriminate based on protected or sensi-
tive characteristics such as race, gender, age, or religion. In prac-
tice there are many alternative notions of fairness, some of which
themselves may not be mutually compatible. In this paper, we ex-
plore this relationship between accuracy and different notions of
fairness using German Credit dataset, where training a model us-
ing standard techniques has been shown to lead to biased pre-
dictions. We explore the trade-off between accuracy and six dif-
ferent fairness metrics using a multi-objective training approach,
which aims to maximize both accuracy and fairness. Our results
show that in certain cases, there exists a trade-off between accu-
racy and different notions of fairness. In these cases, the multi-
objective approach provides a set of models that balance the trade-
off in different ways. Further, in other cases, the approach does not
lead to a trade-off, instead giving rise to a model that is both ac-
curate and fair simultaneously, when this was not achieved using
a single-objective approach. Therefore, we show that by explicitly
targeting fairness during training, decision makers can have access
to a range of models that might meet their accuracy and fairness
requirements. Moreover, we also show that a multi-objective ap-
proach identifies situations where an assumed trade-off between
fairness and accuracy need not exist.

1 Introduction

The positive impact of AI is undeniably profound, revolutionizing
various aspects of our lives, including healthcare, business, and
daily interactions [31]. AI’s ability to deliver innovative solutions
efficiently and accurately has significantly contributed to enhanc-
ing decision-making and problem-solving capabilities [11]. Nev-
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ertheless, from a socio-technical perspective, conventional ma-
chine learning systems encounter numerous challenges, with ethi-
cal considerations in AI being a prominent concern [24]. The grow-
ing reliance on AI has led researchers to closely examine issues re-
lated to the safety, privacy, and fairness of AI systems [41].
Despite extensive research on fairness in AI, the concept remains
complex and multifaceted, continually raising the fundamental
question: what defines fairness? Fairness can be defined differ-
ently across disciplines. Mulligan et al. [35] explore the concept
of fairness across various disciplines, including law, social science,
quantitative fields, and psychology. The paper [35] helps us to un-
derstand that within different disciplines, fairness definition can
differ. While individuals may have different perspectives on what
constitutes fairness, establishing a unified definition for fairness
in both the real and algorithmic worlds remains a complex task
[43, 3]. Human prejudice is a natural characteristic [19], and in-
telligent algorithms aim to mitigate this behavior by enabling ma-
chines to make human-like decisions without such biases. Despite
significant advancements in AI that have greatly simplified our
lives in various domains, including healthcare, education, finance,
and agriculture [25], there are ongoing concerns regarding privacy,
fairness, and transparency in AI that require further attention [26].
Ferrara defines fairness as the absence of bias or discrimination
in AI systems [18]. Due to its subjective and contextual nature, the
concept of fairness poses the challenge of selecting an appropri-
ate definition, necessitating both quantitative and qualitative un-
derstanding. Quantitative understanding relates to the statistical
measurements conducted on data, while qualitative understand-
ing is contextual and dynamically changes according to specific
needs and problems.

Claims regarding AI bias are not merely speculative; substan-
tial evidence indicates the presence of bias in AI systems due to
factors such as race, color, ethnicity, or religion [32]. For instance,
in 2015, Amazon acknowledged that its recruitment algorithm ex-
hibited gender-related bias. The algorithm penalized applicants
whose resumes included words associated with women [14]. Since
the algorithm was trained on resumes collected over a decade, it
reflected a greater percentage of male applicants, leading to the
rejection of female candidates [14]. In response, companies have
begun implementing gender decoder tools to analyze and suggest
changes to address gender disparities [13]. The application of AI
extends beyond recruitment algorithms. AI is extensively used in



US courtrooms to predict the future behavior of criminals. The
Correctional Offender Management Profiling for Alternative Sanc-
tions (COMPASS) system assesses the likelihood of criminals reof-
fending [42]. In 2016, reports indicated that these algorithms ex-
hibited bias against black defendants, incorrectly flagging black
Americans as high risk and white Americans as low risk, result-
ing in black Americans being labeled as recidivists at nearly twice
the rate of white Americans [1]. Efforts to address this included in-
corporating a “race-neutral” component to ensure similar perfor-
mance across racial groups [4]. Evidence of AI bias is also present
in the US healthcare system, where algorithms have been found to
be racially biased against black patients, requiring them to be more
gravely ill than white patients to receive equivalent care [47]. Re-
searchers have addressed such issues by including subgroup anal-
ysis to identify and mitigate bias in AI models [48].
These real-world examples underscore the importance of consid-
ering fairness in AI systems. Ensuring fairness not only enhances
the accuracy and sustainability of AI systems but also contributes
to achieving broader societal goals [5] While conducting fairness
analysis, a protected or sensitive attribute refers to a demographic
category for which non-discrimination needs to be established,
ensuring that the outputs of models do not discriminate against
individuals based on characteristics such as race, gender, age, or
religion. Let us suppose there are two applicants: Nathan (male ap-
plicant) and Zahra (female applicant). They both are requesting a
loan amount of $40000 for 12 months. They both exhibit a positive
checking account and have a credit account opened at the bank.
The credit scores show that they have duly paid their credits to the
bank. They are both skilled employees with more than two years
of experience. Even though they possess the same criteria on pa-
per and should have received the loan, the AI model did not ap-
prove Zahra’s loan while approving Nathan’s request. This raises
questions regarding the model being susceptible to bias.

Integrating ethical attributes into AI systems presents several
challenges due to the complexity of combining qualitative, sub-
jective, and contextual factors. Addressing both accuracy and fair-
ness simultaneously is particularly challenging. To tackle this is-
sue, we frame accuracy and fairness as a Multi-Objective Opti-
mization problem. This approach is adopted because accuracy
and fairness represent conflicting objectives; improving one typ-
ically impacts the other. Our primary contribution is to explore the
trade-offs between accuracy and various fairness metrics through
a Multi-Objective Optimization approach. This framework aims to
balance both accuracy and fairness, demonstrating that this ap-
proach can improve outcomes in both dimensions. Our findings
reveal that, in some cases, a trade-off between accuracy and fair-
ness exists, while in others, it is possible to achieve models that
are both accurate and fair simultaneously. We validated our ap-
proach using several real-world datasets. The results indicate that
the Multi-Objective framework can identify solutions that balance
both accuracy and fairness in some instances, while in others, a
trade-off between these objectives is necessary.

2 Related Work

AI-driven decision-making systems assist humans in various
decision-making tasks such as hiring, lending loans, healthcare,
and many more. These classification systems operate by learning
patterns and rules from human-collected data and then making
predictions on new, unseen data. Any classification task will ad-
here to these steps to enhance the model’s overall performance

Fairness Type Definition Examples

Group
Fairness

Ensures AI system does
not disproportionately
benefit or harm particu-
lar group

Demographic Parity,
Equalized Odds, Equal
Opportunity, Disparate
Impact

Individual
Fairness

Similar treatment is done
with similar individuals,
regardless of the group.

Causal Discrimination,
Fairness Through Un-
awareness, Fairness
Through Awareness

Counterfactual
Fairness

Ensures that AI decisions
are not influenced by cer-
tain sensitive attributes
that could cause discrim-
ination

Causal Reasoning:
Counterfactual fair-
ness, No unresolved
discrimination, No
proxy discrimination,
Fair Inference

Table 1: Fairness in AI can be broadly classified into three cate-
gories: Group, Individual, and Counterfactual fairness.

iteratively. However, this process is not without challenges. The
model must also be carefully evaluated to ensure that it does
not introduce or perpetuate biases present in the historical data,
which could affect fairness in loan approval decisions. These bi-
ases can emerge at every stage of the process, from data collec-
tion to analysis, training, and prediction [36]. Implementing such
ethical practices is essential to mitigate potential discrimination
or harm, particularly in high-stakes applications. To understand
different types of fairness, a wide literature is available, differen-
tiating into three broad categories: Group fairness, Individual fair-
ness, and Counterfactual fairness [49]. Table 1 briefly describes the
three broad categories.

An important note is that achieving one type of fairness does
not guarantee another. Given the complexity and multifaceted na-
ture of fairness, the criteria for fairness can vary based on spe-
cific needs and contexts. In the context of analyzing fairness in
ML systems, Verma and Rubin [45] discuss 20 different notions of
fairness measurements in a classification model. These 20 defini-
tions can be broadly sub-categorized into three categories: Statis-
tical measures, Similarity-based measures, and Causal Reasoning.
The paper illustrates the different notions of fairness in a human-
interpretable way using a well-established case study based on a
public credit scoring dataset. Research in fairness in AI is a grow-
ing field, which brings this study relatively new and rapidly evolv-
ing. In the article, Mitchellc et al.[34] points out the choices and
assumptions made by researchers leading to fairness issues in
the decision making procedure. Furthermore, highlighting choices
and assumptions which may lead to fairness concerns. As ML
systems have extensive application across various realms, includ-
ing healthcare, education, transportation and many more, Pessach
and Shmueli [37] provides an overview of how to identify, analyse,
and improve the algorithmic fairness in the classification tasks.
The fairness enhancing mechanisms includes; prepossessing, in-
training, and post-processing mechanisms through which a model
can achieve reasonable accuracy and fairness. The paper surveys
to understand the pros and cons of ML systems, providing an idea
regarding the use of different notions of fairness definitions, as
they are domain-specific and delve into the emerging research in
algorithm fairness. Pre-processing techniques tries to remove the
source of bias before model training by excluding the features cor-
related with the protected attributes, reducing the attributes of
input features in the dataset. However, this results in data loss,
which simultaneously removes and introduces bias [10, 40]. Em-
ploying techniques such as sampling, reweighing, massaging [27]
or even selecting some attributes in the dataset [39] as a data pre-
processing step in ML systems can influence bias output. An ex-



ample of fairness notion here would be fairness through unaware-
ness [29] where sensitive attributes are discounted from the data
before training, influencing bias in the data. Post-processing tech-
niques modify the predictions after training the algorithm. Fol-
lowing this mechanism, Pleiss et al. [38] investigate the relation-
ship between calibration and error rates. In the paper, calibration
refers to the number of instances when the prediction aligns with
the model’s output, and error rates refer to the model’s ability to
perform similarly across different subgroups in the dataset. Their
study illustrates that calibration is only compatible with the fair-
ness notion of equal opportunity (false negative rate). The authors
emphasize that when calibration complies with the false negative
rate, any algorithm used is no more effective, and the predictions
are generated by chance, concluding that calibration and error rate
constraints are incompatible objectives. Pre-processing and post-
processing techniques include a straightforward method of chang-
ing the data before and after the training process. In the in-training
technique, modifications are made while training the algorithm it-
self [46]. Generative adversarial networks (GANs) are widely used
in the training process, leveraging Neural Network architecture for
classifying and giving fair results during adversarial attacks. Zhang
et al. [51] propose adversarial networks for mitigating bias in the
algorithm. Apart from GANs, the idea of using multi-objective opti-
mization algorithms has recently been proposed. FOMO [30] uses
the NSGA-II algorithm to optimize fairness and accuracy in the
model. Unlike other optimization techniques, such as gradient de-
scent, multi-objective algorithms do not have any regularization
techniques. The method proposes a novel meta-model that maps
protected attributes to sample weights, helping to optimize the
weights.
Hardt et al. [22], proposes a combination of two metrics known
as Equalized Odds, which uses post-processing technique to en-
hance fairness and accuracy in the models. A toolkit developed
by Microsoft[2], tries to use the reduction approach in the train-
ing process for optimizing fairness in systems. The paper includes
demographic parity and equalized odds. Foulds et al.[20] suggests
the inclusion of a definition which satisfies three criteria of inter-
sectionality, privacy, and economic guarantees. The approach uti-
lizes the fairness cost as regularization to balance the trade-offs
between accuracy and fairness.
Despite substantial research aimed at mitigating bias in ML sys-
tems, the application of a multi-objective perspective remains rel-
atively underexplored. In our research, we investigate the relation-
ship between fairness metrics and model accuracy. Through this
approach, we seek to offer valuable insights into the relationship
between fairness and accuracy in ML models.

3 Measuring Fairness

In this section, we will be discussing about the statistical mea-
sures for analysing fairness. Statistical notions are fundamental for
understanding fairness in classification-based machine learning
models [45]. These notions are defined using a confusion matrix
and probability metrics. A confusion matrix is a tool for evaluat-
ing the performance of a classification algorithm, where the rows
represent the predicted classes and the columns represent the ac-
tual classes. Each class in the matrix consists of positive and neg-
ative values. In our research, we have chosen six fairness notions
from the thirteen statistical definitions available. These selections
are based on their use of confusion metrics to quantify fairness
within machine learning models. While other statistical fairness

definitions might be intuitive, they often lack formalization, which
is crucial for integration with clarity metrics. Table 2 summarizes
the mathematical interpretation of these definitions expressed in
terms of statistical measurements and probabilities. The notations
used in the equations can be interpreted as:

• ŷ = Predictive decision for an individual, 1 indicates a positive
outcome, and 0 refers to a negative outcome.

• G = Protected or the sensitive attribute in the dataset, 1 indicat-
ing protected attribute, and 0 indicating unprotected attribute.

• Y = Actual classification decision for an individual.

Since treatment equality measures the ratio of errors in the model,
there is no probability equation in the table. To understand the in-
tuitive meaning of these definitions, we explain six fairness notions
with their real-world application.

No.
Fairness

Definition
Probability
Equation

Statistical Meaning

1.
Group

Fairness
[16]

P (ŷ = 1| G = 0) =
P (ŷ = 1| G = 1)

Positive Prediction

2.
Predictive
Parity [12]

P (Y = 1| ŷ = 1, G = 0) =
P (Y = 1| ŷ = 1, G = 1)

False Negative Rate (FDR)/
Positive Predictive Value

3
Predictive
Equality

[12]

P (ŷ = 1| Y = 0, G = 0) =
P (ŷ = 1| Y = 0, G = 1)

False Positive Rate (FPR)/
True Negative Rate (TNR)

4
Equal

Opportunity
[12]

P (ŷ = 0|Y = 1, G = 0) =
P (ŷ = 0| Y = 1, G = 1)

False Negative Rate (FNR)/
True Positive Rate (TPR)

5
Overall

Accuracy
[6]

P (ŷ = Y , G = 0) =
P (ŷ = Y ,G = 1)

Accuracy

6
Treatment

Equality
[6]

- Ratio of False Negative
and False Positive

Table 2: Six fairness notions are considered in the paper, with their
Mathematical interpretation through probabilities and their statis-
tical significance.

3.1 Group Fairness (Statistical Parity) [16]

Ensuring group fairness involves assessing the positive predictions
in the dataset to ensure equal treatment across all demographic
groups. The intuition behind this definition is that, after train-
ing the algorithm and generating predictions, positive predictions
should be consistent across different subgroups in the dataset.

3.2 Predictive Parity (Outcome Test) [12]

Unlike group fairness, this definition not only considers the algo-
rithm’s predictions but also compares them with the actual out-
comes of the data. The intuition behind this definition is that the
algorithm’s predictions should exhibit equal accuracy with the ac-
tual outcomes among different demographic groups.

3.3 Predictive Equality (False positive error rate
balance) [12]

This fairness metric calculates those instances while the model’s
prediction is positive, but the actual outcome is negative. Intu-
itively, predictive equality arises when the algorithm erroneously



predicts the positive instances for a particular demographic group
that belongs to a negative class. A society may face severe reper-
cussions for having a high false positive rate.

3.4 Equal Opportunity (False negative error rate
balance) [12]

Inverting the notations of Predictive Parity by swapping predic-
tions of the model (ŷ) from 1 to 0 and actual outcomes (Y ) from
0 to 1 promotes the calculation of Equal Opportunity. Intuitively,
Equal Opportunity represents those instances when the algorithm
mistakenly predicts a negative outcome despite the actual out-
come being positive.

3.5 Overall Accuracy Equality [6]

Overall accuracy measures the model’s capability to correctly clas-
sify those instances when the predictions align with the actual
outcome. It evaluates the model’s probability of correctly predict-
ing positive outcomes when the actual outcome is positive and
its probability of correctly predicting negative outcomes when the
actual outcome is negative. Overall accuracy can be crucial while
conducting fairness analysis, particularly within the healthcare
sector.

3.6 Treatment Equality [6]

Treatment equality calculates the ratio of false negatives and false
positives for the different demographic groups in the dataset. The
uniqueness of calculating the ratio of errors makes this definition
fall apart from all the other definitions discussed above. It mea-
sures the magnitude of errors of the model across different demo-
graphic groups.

4 Dataset

For our baseline experiment, we employed the German Credit
Dataset [23], consisting of 1000 loan applicant records and 20 at-
tributes. The goal of conducting the fairness analysis on the Ger-
man dataset is to check whether males and females are granted
loans equally or whether there is discrimination based on the sex
of an individual. Personal status and sex attributes in the origi-
nal dataset are classified into five classes: 1. Divorced/separated
males, 2. Divorced/separated/married females, 3. Single males, 4.
Married/widowed males, and Single females. Out of 1000 records
in the dataset, there was no instance reported for single female ap-
plicants, leading to bias in the dataset. To overcome this issue, we
created two columns from the personal status and sex attributes
and applied one hot encoding that originated two new attributes:
i. Sex, where 1 indicates females, and 0 indicates males, ii. The per-
sonal status column assigning 1 to married applicants and 0 to sin-
gle applicants. Finally, the dataset comprised 57 variables and 1000
entries, containing an additional attribute describing the outcome,
whether the applicant has a good or a bad credit score.

5 Baseline Experimental Study

Fairness analysis aims to establish that ML systems do not discrim-
inate based on sensitive attributes in a dataset, such as sex, race,
or religion. For conducting fairness analysis, our methodology uti-
lizes the standard logistic regression model for the classification

problem [44]. The rationale behind choosing logistic regression for
training the model is that we reimplemented the fairness analy-
sis on a well-established case study [45] and chose the same algo-
rithm for training the model. The next step involves splitting train-
ing data as 80% and test data as 20%. We applied a 10-fold cross-
validation technique [7] to measure the model’s accuracy. Finally,
we obtain the predictions and calculate the model’s performance,
resulting in a final accuracy of 75%.
In our experiments, we are interested in conducting a fairness
analysis on sex-related descriptions and whether male and fe-
male applicants are treated equally regarding the loan approval
model. To calculate fairness, we need the following four attributes:
i) Predicted outcomes of the model, ii) Actual outcomes in the
dataset, iii) sensitive attribute (females), and iv) insensitive at-
tribute (males). Once we have these four attributes, we can calcu-
late the fairness metrics for the sensitive attribute. In general, dur-
ing statistical fairness analysis, the difference between the prob-
abilities associated with the sensitive and insensitive attributes is
compared against a threshold to determine the presence of signif-
icant bias. Such a threshold is often an arbitrary choice. Verma and
Rubin [45] employ an arbitrary threshold of 0.06 for the statisti-
cal fairness measurements. Indicating that the definition would be
deemed unfair if there is a discrepancy of 6% or more. Determining
a meaningful threshold for a model is domain-specific. For exam-
ple, in the healthcare sector, we aim to have a threshold as small as
possible so that the difference between the sensitive attributes is
minimal, whereas, in other scenarios, the threshold may vary. For
statistical validity, we introduced statistical tests in our analysis by
conducting a “Student’s t-test" [33] on the sensitive attributes of
the six fairness notions. By implementing these tests, we under-
stand whether an observed disparity represents a significant differ-
ence between the two groups or whether the result we got is of ran-
dom chance, avoiding the need to define an arbitrary threshold. By
conducting the baseline experiments, we understand if there is any
disparity between the sensitive group and the insensitive group in
a given problem.

Definition Male Female Fairness
Difference

Statistical
T-test

Group
Fairness

0.808±0.038 0.691±0.050 0.118±0.063 3.60E-14

Predictive
Parity

0.803±0.036 0.765±0.048 0.056±0.048 0.0012

Predictive
Equality

0.433±0.096 0.550±0.083 0.178±0.097 4.11E-06

Equal
Oppor-
tunity

0.897±0.035 0.828±0.056
0.079±0.050

8.86E-07

Overall
Accuracy

0.765±0.030 0.726±0.035 .049±0.035 2.26E-05

Treatment
Equality

0.504±0.246 0.774±0.518 0.454±0.401 0.014

Table 3: Results for our baseline experiment. Columns two and
three represent the fairness analysis conducted on sex attributes
for each definition. The fourth column represents the standard
way of analysing fairness in ML models, where if the difference be-
tween the male and female applicants is more than a threshold,
the definition is deemed unfair. The bold instances in the column
represent when a significant difference between male and female
groups persists. Column five illustrates the p-values from the t-test
results.

Our results are presented in Table 3, where we calculate the six
different notions of fairness for each male and female applicant



Figure 1: Overview of Multi-objective framework.

in the dataset. To ensure that the model’s performance is consis-
tent and reliable, we ran the model thirty times, assessing fairness
for each subgroup and presenting the mean and standard devia-
tion for the fairness metric. This gives us an average of fairness and
indicates how much fairness varies. In Table 5.2, columns second
and third provide information regarding each subgroup’s mean
and standard deviation. In Table 3, columns second and third pro-
vide information regarding each subgroup’s mean and standard
deviation. Choosing an arbitrary threshold of 6% would mean that
any variation of more than six percent between the male and fe-
male columns would be considered unfair. Column four illustrates
the difference between the two subgroups for each fairness notion.
For comparison with Verma and Rubin [45], the following two fair-
ness notions, Predictive Equality and Overall Accuracy, would sat-
isfy the fairness criteria as they do not exceed the 6% threshold,
while the remaining fairness notions are considered unfair.
In the fairness analysis, we used t-tests to establish a general and
uniform criterion, demonstrating the presence of bias in all cases.
This experiment demonstrates that bias is present in the train-
ing of ML models and reveals that as the accuracy of the model
increases, the disparity between the male and female groups in-
creases significantly, indicating the presence of bias in the ML sys-
tems. In the next section, we will implement our multi-objective
approach on the same dataset and analyse the tradeoffs between
the two conflicting objectives.

6 Multi-Objective Approach

Recent studies have shown that optimizing accuracy in ML sys-
tems may prevent us from including human-centric approaches
in the decision-making process [45]. Thus, the aim is to build accu-
rate machines replicating human-centric behaviours such as fair-
ness, transparency, explainability, etc. Multi-objective optimiza-
tion tries to simultaneously optimize multiple conflicting objec-
tive functions within a given problem [28]. Since these objectives
often conflict with one another, achieving all of them at once can
be challenging. This approach is utilized in various domains, such
as healthcare and education [21]. Typically, focusing on one objec-
tive results in a trade-off with another. The goal of multi-objective
optimization is to identify a set of solutions that form the Pareto-
optimal front, representing the best trade-offs among the conflict-

ing objectives. Problems that involve optimizing multiple objec-
tives are referred to as multi-objective optimization problems.The
mathematical definition for a multi-objective optimization prob-
lem can be expressed as follows:

minimize/maximize fn (x), n = 1, . . . , N .

subject to gi (x) ≤ 0, i = 1, . . . ,m.

h j (x) = 0, j = 1, . . . , p.

Where:

• n ≥ 2, number of objectives
• fn (x), objective functions
• gi (x), inequality constraints
• hi (x), equality constraints

In the equation, x= [x1, x2, x3, ....xN ] represents the vector of de-
cision variables, where each point in the decision space speci-
fies a set of values for these variables. Conversely, the objective
space is where the objectives (criteria to be optimized) are eval-
uated, with each point in this space corresponding to the objec-
tive values achieved by a solution in the decision space. To analyze
trade-offs between solutions, we map solutions from the decision
space to the objective space. fn (x) represents the objective func-
tion that needs to be minimized or maximized. In a multi-objective
optimization framework, solutions must satisfy two types of con-
straints: inequality and equality constraints. Inequality constraints
restrict the acceptable values within the decision space, represent-
ing regions where the constraint function is less than or equal
to zero. Equality constraints, on the other hand, define functions
that must be exactly equal to zero. The multi-objective optimiza-
tion problem aims to identify the optimal set of solutions that ef-
fectively balance conflicting objectives while satisfying the con-
straints.
For this paper, we implemented our experiments on a Python
framework that utilizes an NSGA-II algorithm [15] known as py-
moo [8]. The Pymoo framework can support many Evolutionary
Algorithms [17], such as NSGA-II, MOEAD, PSO, etc. The frame-
work requires three arguments: 1. problem definition, 2. algo-
rithm used (NSGA-II algorithm), and 3. the termination criteria.
For configuring the multi-objective approach in pymoo, we used
the following parameters: i) Population size: 40, Offspring size: 10,
Crossover Probability: 0.9, Crossover: Simulated binary crossover



[50], Mutation: Polynomial Mutation [17], Number of Iterations:
50000 and eliminate duplicates: True. Evolutionary Algorithms [17]
are inspired by natural selection, which utilizes the evolutionary
process of crossover, selection, and mutation to generate new so-
lutions in each generation. The figure 1 provides an overview of
our multi-objective experiment aimed at uncovering the trade-offs
between fairness and accuracy in the training process. In any clas-
sification task within a machine learning model, certain parame-
ters are crucial for guiding the algorithm’s learning process dur-
ing training. These parameters include weights (w) and bias (b).
Weights indicate the contribution of each input feature to the out-
put, while bias aids in prediction even when input features are
zero. The number of weights corresponds to the number of input
features in the dataset. In a simple logistic regression model, we
represent the linear combination of weights and bias with the in-
put data as z = (Σn

i=1wi .xi )+b [52]. This linear combination is then
fed into the sigmoid function to make predictions. Subsequently,
the algorithm employs optimization techniques, such as gradient
descent, to minimize the difference between the prediction and
the actual output. In our research, we altered this process so that
the weights and bias evolve directly using the Evolutionary Algo-
rithm. The next step is to define our objectives for accuracy and
fairness notions. Finally, we utilize the pymoo framework and the
NSGA-II algorithm to convert our problem statement into a multi-
objective problem. This approach helps us to examine the trade-
offs between accuracy and fairness for the sensitive attributes in
the dataset.

7 Results

In this section,we explore the trade-offs between accuracy and
each of the six different fairness notions using a multi-objective
approach to maximise accuracy and fairness.
In this experiment, we seek to understand the following two cases:

• In the first scenario, if we do not identify a trade-off, it sug-
gests that both objectives are optimized simultaneously, indi-
cating that we have achieved maximum fairness and accuracy
in a model.

• Conversely, if we discover a trade-off between the two objec-
tives, it provides decision-makers with a range of models that
can meet their requirements and aids in identifying which fair-
ness notion they should prioritize in the given context.

Each Figure in our experiment plots a set of non-dominated solu-
tions for accuracy and fairness differences between sensitive and
insensitive groups. A model can be interpreted as fair in the figures
when the fairness difference between the sensitive groups is close
to 0. Since pymoo can be adopted only for minimisation problems,
we minimise our problem while defining our problem statement,
which leads to negative accuracy in the figures. For example, -0.78
indicates 78% of model accuracy. As discussed in the above sec-
tion, sex is considered a sensitive attribute, and the goal is to min-
imise the fairness difference while achieving maximum accuracy.
Achieving both objectives in a problem is challenging since accu-
racy and fairness conflict with each other [9]. While running the
experiments, our results discovered some cases where a trade-off
between accuracy and fairness metrics exists. In other cases, the
approach does not lead to a trade-off; instead, it gives rise to a
model that is both accurate and fair simultaneously, which was not
achievable using a single-objective approach.

To understand the significance of each figure, let us first exam-
ine Figure 2, where we analyse the trade-off between group fair-
ness and accuracy. As the accuracy improves, the fairness differ-
ence increases from 0% to a maximum of 2%. The increase in fair-
ness difference is insignificant with an increase in accuracy, sug-
gesting the fairness difference to be insignificant. Thus, we iden-
tify no substantial trade-off between the two objectives. It im-
plies that the model is accurate and fair simultaneously. Figure
3 presents a similar trend for equal opportunity. As accuracy in-
creases, the fairness difference increases from 0% to a maximum
of 0.07%. This shows that the trade-off is not significant, satisfy-
ing our problem statement. When we consider predictive equal-
ity, we find that as accuracy improves from 70% to 72%, there is
a significant increase in the difference in predictive equality from
0% to a maximum of 7%. It suggests the presence of a trade-off
between the two objectives. Figure 4 illustrates that up to a cer-
tain point, there is a minimal increase in fairness difference with
accuracy. However, beyond that point, as accuracy increases, the
fairness difference also increases. This complex relationship be-
tween accuracy and fairness in the context of predictive equality
highlights the need for decision-makers to explicitly target fairness
during training to meet their accuracy and fairness requirements.
For Figure 5, as accuracy increases, the increase in fairness differ-
ence is negligible. Once again, this shows no significant trade-off
between the two objectives and satisfying our problem statement.
Similarly, for Figure 6, the increase in accuracy is inversely propor-
tional to the increase in fairness difference. As accuracy increases
from 75% to 77%, fairness difference increases from 0% to 1%. The
evidence shows no trade-off between accuracy and predictive par-
ity. In Figure 7 as well, as accuracy increases, fairness difference
rises from 0% to a maximum of 2%. It indicates that as the accuracy
increases, the rise in fairness difference is negligible, indicating
the absence of a significant trade-off between accuracy and treat-
ment equality. Therefore, achieving high accuracy and fairness in
the model. A noteworthy observation across all the graphs is that
despite maintaining a uniform population size for all the observa-
tions, the number of instances on the non-dominated set varies.
For example, 5 displays only three points in the objective space,
whereas Figure 3 displays a higher density of instances. Due to the
complexity of the problem, a varied number of points are on the
Pareto front in each graph.

Figure 2: No significant trade-
off is discovered between
Group fairness and Accuracy

Figure 3: No significant trade-
off is discovered for Equal Op-
portunity and Accuracy



Figure 4: A significant trade-
off is discovered for Predictive
Equality and Accuracy

Figure 5: No significant trade-
off is discovered for Overall Ac-
curacy and Accuracy

Figure 6: No significant trade-
off is discovered for Predictive
Parity and Accuracy

Figure 7: No significant trade-
off is discovered for Treatment
Equality and Accuracy

Fairness Definition Baseline
Experiment

Multi- objective
Experiment

Group Fairness # !
Predictive Parity # !

Predictive Equality # Trade-off

Equal Opportunity # !
Overall Accuracy # !

Treatment Equality # !

Table 4: Summary of our multi-objective results, comparing them
with the baseline results from single-objective training across all

fairness notions.#indicating the presence of bias, while!indi-
cates when the model is fair.

8 Analysing The Results

Table 4 compares our multi-objective results with our baseline re-
sults across six fairness notions. The table records our decisions
for six fairness notions for both experiments, giving a holistic re-
view regarding our baseline experiments and multi-objective ap-
proach. When we implemented fairness analysis on the standard
ML models and conducted the statistical tests on the experiments,
the results showed that these techniques led to biased predictions.
By incorporating a multi-objective approach in the training pro-
cess, apart from predictive equality, which suggests a tradeoff be-
tween accuracy and fairness, all the other five definitions satisfy
our objectives, suggesting a fair and accurate model. It shows that
by employing fairness in a multi-objective approach, when a trade-
off was assumed, we discovered no tradeoff between the two con-
flicting objectives, satisfying our problem, which was missing in
the single-objective approach. The tradeoffs for predictive equality
against accuracy provide information regarding the relationship
between the two objectives. This indicates that even by explicitly
targeting fairness during training to meet their accuracy and fair-
ness requirements, we could not optimize the two objectives for

predictive equality. Therefore, this allows decision-makers to un-
derstand the relationship better and prioritize the need.
Predictive equality calculates those instances when the model’s
prediction is positive, but the actual outcome is negative. Our ex-
periment studies the relationship between accuracy and fairness;
the tradeoff provides vital information in the context of predictive
equality. A tradeoff for predictive equality means that improving
the model’s accuracy (i.e., its ability to correctly predict whether
an individual will be approved for the loan) comes at the cost of in-
creasing disparity in the false positive rates between the sensitive
group (e.g., women) and the insensitive group (e.g., men). This in-
dicates a bias in the model where increasing accuracy may lead to
one group being unfairly misclassified more often.

9 Discussion

We began by conducting a fairness analysis by training a standard
machine learning algorithm on the loan prediction dataset, which
revealed the presence of biased predictions. Subsequently, we ap-
plied our framework to enhance fairness and accuracy with respect
to sex attributes in the German Credit datasets. These baseline ex-
periments underscore the existence of bias in conventional ML
models. While several approaches are available to mitigate bias,
our research aims to demonstrate that Multi-Objective Optimiza-
tion can also effectively balance accuracy and fairness. Instead
of comparing the efficiency of different methods, our focus is on
providing an alternative solution that can aid decision-makers in
aligning model outcomes with their specific requirements.

10 Conclusion

Our research investigates the relationship between six distinct fair-
ness notions and accuracy within a multi-objective framework.
The fairness analysis performed on the dataset reveals existing dis-
parities in machine learning systems. Given that accuracy and fair-
ness are often conflicting objectives, our goal is to maximize both
within this framework. In certain cases, achieving both objectives
simultaneously proves challenging, leading to a trade-off between
fairness and accuracy. Experiments conducted on the German
Credit Dataset demonstrate that our approach successfully opti-
mizes both objectives in most scenarios. These findings provide
decision-makers with a deeper understanding of the relationship
between accuracy and fairness across various problem domains,
allowing them to select models that align with their specific accu-
racy and fairness criteria. There are several points we would like
to investigate in our future work. First, we intend to examine the
relationship between fairness and accuracy with respect to other
sensitive attributes, such as race, ethnicity, and religion, beyond
gender. Second, future work will focus on analyzing fairness across
different demographic groups rather than on individual attributes.
Third, We aim to investigate the relationships among various defi-
nitions of fairness. Understanding these relationships will help us
select conflicting fairness metrics and explore trade-offs between
different fairness definitions within a multi-objective framework.
As research on fairness in AI is still emerging, addressing these
points will contribute significantly to advancing our understand-
ing of fairness in machine learning systems and will be valuable to
the AI research community.
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