
M
f
A
M
a

b

c

d

e

f

A

K
C
R
U
H
L
L

1

b
e
o
C
w

(

h

Transportation Research Part A 190 (2024) 104260 

A
0
(

Contents lists available at ScienceDirect

Transportation Research Part A

journal homepage: www.elsevier.com/locate/tra

ulti-disruption resilient hub location–allocation network design
or less-than-truckload logistics
hmad Attar a,b, Chandra Ade Irawan c,d, Ali Akbar Akbari e, Shuya Zhong f,∗,
artino Luis a,b

Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
Exeter Digital Enterprise Systems Laboratory, University of Exeter, Exeter, United Kingdom
Nottingham University Business School China, University of Nottingham, Ningbo, China
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
Department of Industrial Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
School of Management, University of Bath, Bath, United Kingdom

R T I C L E I N F O

eywords:
argo transportation
outing policy
nreliable roads
ub location problem
ess-than-truckload
inearization method

A B S T R A C T

Less-than-truckload (LTL) logistics presents an interesting and often overlooked practice area
of hub location–allocation problems, with its variable discount rates playing a game-changing
role. Vulnerability of the roads is another critical factor that has often been neglected when
designing hub networks. In this paper, a novel integrated model is designed to solve the LTL
hub network design problem, incorporating a practical stepwise discount function. The proposed
model is further extended to a reliability-oriented version that can resiliently withstand multiple,
simultaneous road disruptions. We use the failure mode and effect analysis (FMEA) technique to
encompass the likelihood of experiencing each failure mode, together with the monetary and
service-level effects. Coupled with probability theory, it leads to the introduction of a novel
closed form for serviceability under multiple concurrent failures. Having such a function enables
us to deploy exact optimization methods. Given the natural complexity of the problem, we also
present effective linearization approaches. Numerical benchmarks demonstrate the superiority
of the novel reliability-oriented approach over the basic version, successfully realizing desired
serviceability levels as high as 80%. It also benefits from avoiding unnecessary rerouting,
making it even more attractive for policymakers to design efficiently resilient transportation
networks, especially if low-range, zero-emission trucks are incorporated.

. Introduction

The hub-based network structures are widely applied in different areas and industries. These structures are universally adopted
y commercial corporations in the fields of transportation, distribution, and telecommunication (Alumur and Kara, 2008; Chen
t al., 2010; Adler et al., 2018). In general, these systems are networks of connected centers in which data and material exchange
ccur solely through a set of preset nodes known as hubs (Martin and Román, 2003; Qu and Weng, 2009; Mohammadi et al., 2013).
ompared to a fully interconnected network, such a structure brings about a significant reduction in the number of necessary links
ithin the network (Qu and Weng, 2009). Since the creation of links in a network and the maintenance consume both time and

∗ Corresponding author.
E-mail addresses: a.attar@exeter.ac.uk (A. Attar), chandra.irawan@nottingham.edu.cn (C.A. Irawan), a_akbari@azad.ac.ir (A.A. Akbari), sz2195@bath.ac.uk

S. Zhong), m.luis@exeter.ac.uk (M. Luis).
ttps://doi.org/10.1016/j.tra.2024.104260

vailable online 19 September 2024 
965-8564/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/tra
https://www.elsevier.com/locate/tra
mailto:a.attar@exeter.ac.uk
mailto:chandra.irawan@nottingham.edu.cn
mailto:a_akbari@azad.ac.ir
mailto:sz2195@bath.ac.uk
mailto:m.luis@exeter.ac.uk
https://doi.org/10.1016/j.tra.2024.104260
https://doi.org/10.1016/j.tra.2024.104260
http://creativecommons.org/licenses/by/4.0/


A. Attar et al.

t
e
i
a
i
m
2
2
i
e

w
s
s
r
h
d
a
o
m
u
m
a

e
d
a
t
a
B
d
(
p
r

o
o
i
a
c
a
e
e
t
i
w
c
l

r
m
i
o

Transportation Research Part A 190 (2024) 104260 
budget, any reductions in the required links result in a more budget-friendly network with faster deployments. This highlights the
impact of the hub structure on companies’ market share in a competitive delivery market. (Martin and Román, 2003). To benefit from
these features, an informed and tactful design of the system is essential to avoid unnecessary routing, both in normal and disruptive
situations. The severe consequences of incorrect routing policies span from monetary loss to reputation damage to increments in
the network’s carbon footprint.

In a hub location problem (HLP) model, cost minimization is the typical objective, and this problem is primarily concerned with
wo parts of the network design: (i) establishing the hubs, and (ii) assigning the nodes to the hubs (Alumur and Kara, 2008; Farahani
t al., 2013; Azizi et al., 2016). One of the most common types of such models is a single-allocation HLP, where each non-hub node
n the network is assigned to just one hub, and all incoming and outgoing flows of the node must pass through that single hub (Meier
nd Clausen, 2018; Contreras and O’Kelly, 2019). Thus the hubs usually have a considerable amount of flow between them, and that
s where the economies of scale can lower the transfer cost rates in the network. This concept is commonly considered in the HLP
odeling by using a discount factor (𝛼) which only affects the inter-hub transportation (Mohri and Thompson, 2022; Alumur et al.,
021). This factor is dominantly considered as a fixed value, independent to the decisions made by the network administrator (Yang,
009; Takano and Arai, 2009; Adler et al., 2018; Takebayashi, 2018). However, the widely neglected variable discount factor is an
nherent natural property of some real-world systems. Truck shipping and, more specifically, less-than-truckload (LTL) systems are
xamples of such cases in which the transportation cost per item fluctuates based on the volume of the shipment.

Despite all advantages of the hub network structures, the main drawback of deploying them in the industry is their vulnerability
hen exposed to any failure or unavailability issues in the hubs themselves or the network links. This can cause over-stacked

hipments in one hub that – unless resolved quickly – will epidemically spread to the rest of the hubs, and the entire network will
oon be down. For instance, issues like natural disasters, floods, severe weather, employees’ strikes, or even terroristic operations can
esult in a serious disturbance in the transportation and telecommunication networks. In this field of study, the term ‘‘unavailability’’
as generally referred to the unavailability of hubs, while the connecting routes are always considered to be ‘‘serviceable’’. This
efinition might fit airport hubs or the telecommunications industry, but the LTL transportation network is more likely to encounter
single road blockage while the entire city or hub is still accessible by other routes. Construction operations on roads, restrictions

r traffic bans on trucks applied by local authorities on certain roads of a particular city, rockfalls, landslides or snowslides in
ountain roads, and serial car accidents, can all block a route to a specific hub while the other routes to the same hub are still
p and functioning (Jenelius and Mattsson, 2012; Bíl et al., 2015; Zhang et al., 2020). All of these disruptive situations on roads
ake it implausible to assume that the hub as a whole is inaccessible, rendering existing models unsuitable for many real systems

nalogous to LTL.
The significance of this issue is clearly exposed when considering a logistics network like Fig. 1. Despite being a schematic

xample, this typical hub system considers the major cities in the United Kingdom, which should logically be close to the existing
istribution systems in the nation, and can give us a more realistic sense of the issue. In this network, the cities of Norwich
nd Ipswich, for example, are allocated to a hub in London. In case the links between these cities and their hub get disrupted,
hey might still be accessible from a nearby hub, say Birmingham, at an extra cost. Considering the hub to be entirely down and
llocating all of its cities to a backup hub will be exaggerated because the hub can still serve other cities, e.g., Reading, Oxford, and
righton. According to our approach, the flow from Aberdeen to Norwich will be delivered through Edinburgh and Birmingham hubs
uring the disruption of the London-Norwich road. Meanwhile, Aberdeen keeps sending its items to Oxford via the normal route
i.e., Aberdeen-Edinburgh-London-Oxford). Hypothetically, in the optimal solution, the normal route has the lowest cost among all
ossible routes. So, applying this new approach will save the system from unnecessary usage of the more costly backup hubs or
outes.

Neglecting the reliability of the routes significantly affects some key performance indices (KPIs) of the system, such as (i) the
verall service level of the network, (ii) the reputation of the transportation company, (iii) the generated revenue, and (iv) the
verall contractual penalties paid for unsuccessful deliveries. Unnecessary rerouting to backup hubs, on the other hand, will merely
ncrease the total cost and reduce the competency of the transportation company. Since the network is truck-based, more mileage
lso means more fuel consumption and higher emissions. If the carbon footprint is considered as a factor in the company’s future
ontracts, this may cause additional threats to its position in the market. With these in mind, in this paper, we develop a realistic
nd efficiently resilient model for HLP and customize it for the LTL industry so as to minimize the total cost of the network. We also
mbrace the conceivable scenario in which several roads might be unavailable at the same time, allowing the possibility of having
ven the backup hubs be inaccessible. Here, we seek to guarantee a minimum level of successful delivery of the flow throughout
he system. Considering the contribution of our study to fuel consumption and emissions, it can be considered an endeavor to
mprove the sustainability of truck-based logistics. Our approach can be an attractive alternative when intermodal road-rail hub
orkarounds (similar to Mohri and Thompson, 2022) are not implementable. In addition, optimizing the mileage with this method

an enhance the practicality of utilizing green trucks running on electricity, fuel cells (hydrogen), liquefied petroleum gas (LPG), or
iquefied natural gas (LNG) by reducing the number of required charges per delivery (Siskos and Moysoglou, 2019).

To mitigate the challenge of handling all combinations of road conditions, we utilize a group of advanced techniques from the
eliability theory, including failure mode and effect analysis (FMEA) and redundancy allocation. Moreover, hub location–allocation
odels with reliability are known to be of high degrees of nonlinearity (Barahimi and Vergara, 2020), and the LTL concept (added

n this paper) drastically amplifies this characteristic. Therefore, a set of linearization methods is also proposed. The contributions
f the paper are outlined in five folds:
• Development of a resilient model by consolidating HLP, LTL, and reliability concepts.

2 
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Fig. 1. A schematic illustration of a typical logistics network with single hub allocation in urban delivery of the United Kingdom. Magnified part: our proposed
strategy upon multiple failures.

• Consideration of road disruption, and multiple concurrent road blockages or failures in the logistics network.
• Integration of the stepwise discounts with the LTL-HLP.
• Proposing a closed-form function for the serviceability of the system using reliability theory.
• Effective linearization of the complex resilient model.

The rest of the paper is organized as follows: A brief review of the related literature is presented in the following section. In
Section 3, we introduce a mathematical model for the simple less-than-truckload hub location model (LTL-HLP) and further develop
it into a novel reliability-oriented model. The reliability formulations, along with the linearization methods, are also included in
this section. In Section 4.1, the performance of the new model is numerically analyzed under different scenarios. Finally, some
concluding remarks and future research directions are presented in Section 5.

2. Literature review

Studies presented by Hakimi (1964) and Toh and Higgins (1985) are among the first works that were accomplished in the HLP
area. These were followed by a number of studies by Aykin (1988, 1994, 1995a, 1995b) and Bryan (1998) that developed different
models for this field. Alumur and Kara (2008), Farahani et al. (2013), and Azizi et al. (2016) have conducted a thorough review
on the diverse types of hub location problems, and concluded that cost minimization is observably the main objective. One of the
main characteristics of such problems is the number of hubs to which each mode is allocated. It may appear to be restrictive, but
allocating each node to only a single hub benefits from significant consolidation in the inter-hub flow, which has been the focus of
numerous studies (e.g., Kim and O’Kelly, 2009; Mohammadi et al., 2013; Meier and Clausen, 2018; Contreras and O’Kelly, 2019;
Kara and Tansel, 2000). This assumption implies that in order to deliver goods from one node to another, at least one and at most
two hubs are involved (Alumur et al., 2021). This favorable consolidation made the discount factors applied to the inter-hub flow
an essential constituent of such transportation systems that lowers the overall cost in accordance with economy-of-scale.

Toh and Higgins (1985), Aykin (1995b), Kara and Tansel (2000), Yang (2009), Takano and Arai (2009), Adler et al. (2018),
and Takebayashi (2018) are all among single-allocation HLP studies that successfully considered this factor in their models. However,
similar to other studies in this area, they have exclusively considered a fixed 𝛼, that makes these models diverge significantly from the
truck-based shipping industry. Cunha and Silva (2007) and Lin and Lee (2010) are among the few studies that addressed this issue
3 
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by proposing variable discount factors. Cunha and Silva (2007) proposed a simple nonlinear model of HLP for the LTL systems in
order to minimize the total cost. In this model, the discount factor was assumed to be a load-correlated function. Due to the NP-hard
characteristic of the HLP models, the authors proposed a genetic algorithm-based metaheuristic method. Even though addressing
the LTL together with HLP was a considerable advantage for this study, their mathematical model was too generic and they did not
consider any specific function for their discount factors.

Lin and Lee (2010) considered the LTL hub problem from a competition game perspective for maximizing the total profit of
he players in an oligopolistic market. They provided an integral-constrained game theoretic model assuming time-definite less-
han-truckload freight services to determine the demand, hub location, and routes. The diagonalization algorithm and Lagrangian
elaxation method were used to solve this problem to optimality. More recently, they further studied the time-definite less-than-
ruckload (LTL) in the delivery industry allowing multiple allocation (Lin and Lee, 2018). Considering the delivery time window,
heir study explored the behavior of the optimization model for two main scenarios: cost minimization, and profit maximization.
olving their nonlinear capacitated hub model using a Lagrangian relaxation revealed that distinct optimal designs are achieved
or these two scenarios. It is worth noting that studies in the LTL industry did not necessarily include hub location–allocation.
or example, the very recent research by Tang et al. (2024) viewed this industry from truck-cargo matching and scheduling, and
eported impressive benefits for online and on-demand allocation of cargo to the available capacity of trucks. Another attempt is the
ybrid hub-and-spoke policy that Hernández et al. (2012) customized for the LTL systems, allowing the customers to subjectively
pt out of using the hubs, and consequently, deliver their shipments directly. Undoubtedly, however, such a modified approach
uffers from a noticeably limited generality.

As explained in the introduction, a major vulnerability in the hub network is the availability of its components that may
ause anything from a local delivery delay to a widespread failure in the system. This challenge stimulated the studies looking
t reliability in HLP. As the pioneers in the reliable HLP, Kim and O’Kelly (2009) discussed the reliability of hub networks in the
elecommunications industry. Afterwards, this model was further developed for the same industry by Davari et al. (2010) using
he fuzzy theory. Both models are mixed integer programming (MIP) with a reliability objective function and considered single-
ub allocations. The former, however, used an exact MIP solver (i.e., CPLEX), while the latter solved their model using simulated
nnealing (SA). An et al. (2015) are among the first researchers who studied the reliable hub location with applications in the logistics
rea. However, they still assumed that multiple hubs could not fail at the same time. The mixed integer nonlinear programming
MINLP) models provided were solved using a set of Lagrangian relaxation or branch-and-bound algorithms both for single and
ultiple allocation hub problems.

Azizi et al. (2016) tested another scenario for the hub problems where backups were allocated to the hubs themselves rather than
llocating one primary hub and one backup hub to each node. Their model aimed at minimizing the weighted sum of regular and
xpected transportation costs of the system. It was linearized and solved by using an exact method (CPLEX) for the small instances,
nd genetic algorithm (GA) for large benchmark problems from the U.S. Civil Aeronautics Board (CAB) and Turkish Postal System
TR) datasets. One of their main findings is that a hierarchical approach to the reliable hub (i.e., the backup assignment problem
olved after optimizing the standard hub location–allocation problem) is not as efficient as the concurrent allocation approach. This
tudy was followed by a very similar attempt by Rostami et al. (2018) with the difference of a benders decomposition method
n the latter. Azizi and Salhi (2022) investigated a capacitated hub and spoke network problem with disruptions in the hubs and
low-dependent discounts. Unlike other studies that used backups, however, they restricted the system to one backup hub per origin–
estination (O–D). In other words, the flow would be forced to pass through only one hub in case of any failures in either the origin
r the destination hubs. What makes this type of backup allocation less realistic is that, for example, if only the origin hub is
isrupted, not only would the decision maker use a backup hub in place of the failed hub, but they will also deprive the destination
ode of its normally functioning hub. Azizi and Salhi (2022) also offered a linearized version of the MINLP model, and eventually,
or large instances, solved it using reduced variable neighborhood search (RVNS) which did not require a local search.

In most of the studies mentioned above, only half of the flow matrix is considered. Such a symmetrical flow implies that the flow
ill face the same disruptions when coming back from the destination node towards the origin node (Azizi et al., 2022). Even though

his assumption reduces the number of constraints and decision variables significantly, it can be unrealistic in many cases especially
f we aim at assigning backup hubs to the nodes. To avoid such limitation, Eydi and Nasiri (2019), Yahyaei et al. (2019), Momayezi
t al. (2021), and more recently, Wang et al. (2023) considered the full flow matrix from or to the O–Ds. Successful applications of
he described backup assignment can also be found in multiple allocation HLPs (Barahimi and Vergara, 2020; Wang et al., 2023).
oreover, it is worth noting that a hierarchical distribution of flow between multiple assigned hubs is a substitute for the backup

ssignment strategy. This hierarchical method was introduced recently by Mohammadi et al. (2019) for the multiple allocation HLP
here the hub network can fail partially by only passing part of the flow. In this new approach, all assigned hubs may be used even

n normal situations and the concept of reserving a backup hub for the disruptions has completely faded. As we are considering road
lockage in a truck-based transportation network, this approach does not fit our context. Therefore, we consider a more realistic
ssumption that when a road is blocked, it will be unavailable for all passing trucks regardless of the amount of load they are
arrying.

A summary of the most related hub and LTL problems in the literature is provided in Table 1. To the best of our knowledge,
ur study is the first one that focuses on a reliability-based HLP in the context of LTL logistics — it consolidates the LTL, HLP,
nd reliability concepts concurrently. Comparing the studies reported in Table 1 reveals that almost all models in the reliable hub
iterature are naturally MINLP, and some studies like Barahimi and Vergara (2020) reported very high degrees of nonlinearity.
his has led to the introduction of a wide range of linearization methods in the literature, and thus our study involves some
inearization reformulations for its novel model. Furthermore, from the reliability perspective, our study can be categorized as a

4 
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notable assumptionsb

etaheuristic

Hybrid GA

Lagrangian relaxation, Game theory,
Diagonalization algorithm, Oligopolistic market
Lagrangian relaxation, Branch-and-bound

Linearization, CPLEX, GA

Benders Decomposition

Lagrangian relaxation, Delivery time-window

Linearization, MA

Linearization

Chance constraint, Linearization, SGV-II,
Multiple Failures
Multiple hub failures

Scenario-based, ALNS

Flow-dependant, Linearization, RVNS

Liner Shipping Ports, Benders decomposition

Multiple concurrent failures, FMEA,
Linearization, GAMS

S), failure mode and effect analysis (FMEA), general algebraic
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Table 1
A summary of the related literature in logistics hub location problem and LTL..

Reference Network design Disruption
area

Asymmetrical
flow
disruptions

Backups
assignment

Hub
allocation

Model
typea

Objective Solution
method

LTL HLP Hub Route/
Links

Single Multi-
ple

Exact Heuristic M

Cunha and Silva (2007) ∗ ∗ – – N/A N/A ∗ MINLP Cost ∗

Lin and Lee (2010) ∗ ∗ – – N/A N/A ∗ MINLP Profit ∗

An et al. (2015) ∗ ∗ No Node ∗ ∗ MINLP Cost ∗

Azizi et al. (2016) ∗ ∗ No Hub ∗ MIP Cost ∗

Rostami et al. (2018) ∗ ∗ No Hub ∗ MINLP Cost ∗

Lin and Lee (2018) ∗ ∗ – – N/A N/A ∗ MINLP Profit/Cost ∗

Eydi and Nasiri (2019) ∗ ∗ Yes Node ∗ MIP Reliability ∗

Yahyaei et al. (2019) ∗ ∗ Yes Node ∗ MIP Multi ∗

Mohammadi et al. (2019) ∗ ∗ No - ∗ MIP Multi ∗

Barahimi and Vergara (2020) ∗ ∗ No Node ∗ MINLP Cost ∗

Momayezi et al. (2021) ∗ ∗ Yes Node ∗ MIP Cost ∗

Azizi and Salhi (2022) ∗ ∗ Yes O-D ∗ MIP Cost ∗

Wang et al. (2023) ∗ ∗ Yes Node ∗ MIP Cost ∗

This Paper ∗ ∗ ∗ Yes Node ∗ MIP Cost ∗

a After any linearization attempt (if applicable).
b Abbreviations: memetic algorithm (MA), self-adaptive non-dominated sorting genetic algorithm-VNS (SGV-II), adaptive large neighborhood search (ALN
modeling system (GAMS).
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customized instance of the reliability-redundancy allocation problem (RRAP) (Attar et al., 2017, 2023b). That is because, based on
the above description of this study, selecting components with higher reliability characteristics (i.e., linked roads) and redundancy
(i.e., backup hubs) are considered simultaneously. With reference to the definitions provided by Attar et al. (2023b), our approach
is an active-standby strategy as the backup roads may experience failures even if they are not used.

When approaching complex systems with reliability and resiliency factors, other studies typically rely on case-specific estimations
r simulation (Barabadi et al., 2014; Attar et al., 2017, 2023a; Shahabi et al., 2022; Tordecilla et al., 2021), which are laborious to
mplement/use and may not be applied and generalized for other system settings. That is all due to the fact that deriving a closed-
orm equation for such complex systems is generally very difficult. Nonetheless, it has been demonstrated that a closed-form formula
rovides a consistent estimator for system indices in a variety of situations (Buccheri et al., 2020; Collin-Dufresne and Harding, 1999;
hao et al., 2024). As we are targeting decision-makers and policymakers in the logistics field, we aim to introduce an easy-to-use
alculation method with a closed-form function to help the implementation of the approach in various logistics settings with minimal
ffort. Such a function facilitates the use of exact optimization methods, and can also be helpful when studying the sensitivity of
he network to fluctuations in its parameters. To achieve this function effectively, we take advantage of probability theory together
ith the well-known failure mode and effect analysis (FMEA). This method is a systematic process that uses reliability analysis to
stimate the performance of the system under known causes of disruptions or risks, which has been applied successfully to various
ndustries such as logistics, food, etc. (Tsai, 2006; Scipioni et al., 2002; Kudláč et al., 2017).

. Mathematical models

The logistics system designed in this paper integrates three major concepts, namely, hub location–allocation, less-than-truckload,
nd reliability. In this section, we first present a basic optimization model that integrates HLP in LTL transportation networks
i.e., LTL-HLP). It is followed by the enhanced mathematical model where reliability concepts are injected into the basic model to
ffer the comprehensive reliability-oriented LTL hub location model (Ro-LTL-HLP).

.1. Less-than-truckload hub location model (LTL-HLP)

Throughout our modeling phase, we denote 𝐶 as the set of nodes (cities), with 𝐶 = {1, 2,… , 𝑛}. Let 𝐾 be the set of candidate
hubs. It is common in the HLP literature to assume that this set of locations is identical to the set of nodes, i.e., 𝐾 = 𝐶. An 𝑖− 𝑗 flow
represents the flow from source node 𝑖 ∈ 𝐶 to destination node 𝑗 ∈ 𝐶, which can be denoted by a 4-tuple (𝑖, 𝑘, 𝑚, 𝑗), where 𝑘 and

represent the first and the second hubs on the route with (𝑘, 𝑚) ∈ 𝐾. It is assumed that each node 𝑖 ∈ 𝐶 is allocated to exactly a
ingle hub 𝑘 ∈ 𝐾. Let the traffic volume of the 𝑖 − 𝑗 flow be 𝑇𝑖𝑗 , with 𝐶𝑖𝑗 be the unit transportation cost between a pair of nodes 𝑖
nd 𝑗. When hub 𝑘 ∈ 𝐾 is used, the operating cost of this hub is incurred, denoted by 𝑓𝑘. Due to the economies of scale, there is a
iscount factor for the inter-hub links (𝑘 − 𝑚 links). In this study, the value of the discount factor depends on the total volume of
low from hub 𝑘 to hub 𝑚 (𝑇 𝑘𝑚). We apply a stepwise function to determine the LTL discounts. Let 𝐷 be the set of positive discount
evels, with 𝐷 = {1, 2,… , |𝐷|}. Including the cases with zero discount, we define set 𝐸 = {0} ∪𝐷 representing the set of all possible
iscount levels. Parameters 𝛼𝑒 and 𝐿𝑒 (𝑒 ∈ 𝐸) are provided to represent the discount factor for the 𝑒th level of discount and its
inimum required volume of flow between the two hubs, respectively.

The binary variable 𝑋𝑖𝑘, (𝑖, 𝑘) ∈ 𝐶 is the main decision variable of the problem, where 𝑋𝑖𝑘 = 1 when node 𝑖 is assigned to hub
, and 𝑋𝑖𝑘 = 0 otherwise. The decision on the opening of hub 𝑘 ∈ 𝐾 is represented by 𝑋𝑘𝑘, 𝑘 ∈ 𝐾, where 𝑋𝑘𝑘 = 1 if hub 𝑘 is used,
𝑘𝑘 = 0 otherwise. Another main binary decision variable is denoted by 𝑌 𝑘𝑚

𝑒 , where 𝑌 𝑘𝑚
𝑒 = 1 if the total amount of flow from hub

𝑘 to hub 𝑚 qualifies for the 𝑒th discount level.
One of the main characteristics of LTL-HLP is its variable discount factors. In this study, this factor is considered as a discrete

tepwise function of the total volume of transactions between a pair of hubs. As explained in Section 1, a stepwise approach for the
iscount factor provides a realistic functionality and is often remarkably close to the common routine in the LTL industry. For each
air of hubs 𝑘 and 𝑚, the applied discount factor (i.e., 𝛼𝑘𝑚) is calculated by:

𝛼𝑘𝑚 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛼
|𝐷|

, if 𝑇 𝑘𝑚 ≥ 𝐿
|𝐷|

𝛼
|𝐷|−1, if 𝐿

|𝐷|

> 𝑇 𝑘𝑚 ≥ 𝐿
|𝐷|−1

⋮

𝛼2, if 𝐿3 > 𝑇 𝑘𝑚 ≥ 𝐿2

𝛼1, if 𝐿2 > 𝑇 𝑘𝑚 ≥ 𝐿1

𝛼0(= 1), otherwise,

(1)

where 𝑇 𝑘𝑚 is the total amount of transactions from hub 𝑘 to hub 𝑚. For the 𝑒th level of this function, 𝐿𝑒 is the minimum amount of
low between the two hubs to qualify for the discount factor 𝛼𝑒 (0 < 𝛼(𝑒+1) < 𝛼𝑒 < 𝛼(𝑒−1) < 1). As seen in Eq. (1), if the flow between

the two hubs does not satisfy the conditions of any discount level, then 𝛼𝑘𝑚 = 1 (i.e., no discount is applied to the flow from 𝑘 to
𝑚). Here is where we use set 𝐸 which includes the no-discount situation (𝑒 = 0); i.e., |𝐸| = |𝐷| + 1. In summary, the mathematical
notations used in the model are listed in Table 2.

Our proposed integrated LTL-HLP is designed based on MINLP, which is formulated as follows: LTL-HLP Model:

Minimize
∑

𝑖∈𝐶

∑

𝑗∈𝐶

∑

𝑘∈𝐾
𝑋𝑖𝑘𝐶𝑖𝑘𝑇𝑖𝑗 +

∑

𝑘∈𝐾

∑

𝑚∈𝐾
𝑇 𝑘𝑚𝐶𝑘𝑚𝛼

𝑘𝑚 +
∑

𝑖∈𝐶

∑

𝑗∈𝐶

∑

𝑚∈𝐾
𝑋𝑗𝑚𝐶𝑚𝑗𝑇𝑖𝑗 +

∑

𝑘∈𝐾
𝑋𝑘𝑘𝑓𝑘 (2)
𝑘≠𝑖 𝑚≠𝑗

6 
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Table 2
The notations used in the LTL-HLP and Ro-LTL-HLP.
Sets:

𝐶 Set of nodes (cities), 𝐶 = {1, 2,… , 𝑛}
𝐾 Set of potential hubs, where 𝐾 = 𝐶
𝐷 Set of positive discount levels 𝐷 = {1, 2,… , |𝐷|}
𝐸 𝐸 = {0} ∪𝐷

Parameters:

𝑇𝑖𝑗 The volume of the flow to be delivered from node 𝑖 to city 𝑗
𝐶𝑖𝑗 Unit cost of transfer from node 𝑖 to node 𝑗
𝑓𝑘 Cost of using a hub in node 𝑘
𝛼𝑒 The discount factor for the 𝑒th level of discounts
𝐿𝑒 The minimum required amount of flow between a pair of hubs to qualify for the 𝑒th level of discounts

Decision variables:

𝑋𝑖𝑘 1 ∶ if node 𝑖 is assigned to hub 𝑘; 0 ∶ otherwise
𝑋𝑘𝑘 1 ∶ if hub 𝑘 is used; 0 ∶ otherwise
𝑌 𝑘𝑚
𝑒 1 ∶ if the total amount of flow from hub 𝑘 to hub 𝑚 qualifies for the 𝑒th discount level; 0 ∶ otherwise

Auxiliary variables:

𝑇 𝑘𝑚 Total amount of flow from hub 𝑘 to hub 𝑚
𝑇 𝑘𝑚
𝛼 Auxiliary variable for discounted flow from hub 𝑘 to hub 𝑚

𝛼𝑘𝑚 The applied discount factor for the flow between hub 𝑘 and hub 𝑚

Subject to: 𝑇 𝑘𝑚 ≥ 𝑌 𝑘𝑚
𝑒 𝐿𝑒, ∀{𝑘, 𝑚} ∈ 𝐾, 𝑒 ∈ 𝐷 (3)

∑

𝑒∈𝐸
𝑌 𝑘𝑚
𝑒 = 1, ∀{𝑘, 𝑚} ∈ 𝐾 (4)

𝑋𝑖𝑘 ≤ 𝑋𝑘𝑘, ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐾 (5)
∑

𝑘∈𝐾
𝑋𝑖𝑘 = 1, ∀𝑖 ∈ 𝐶 (6)

𝑋𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐾 (7)

𝑌 𝑘𝑚
𝑒 ∈ {0, 1}, ∀{𝑘, 𝑚} ∈ 𝐾, 𝑒 ∈ 𝐷 (8)

where:

𝑇 𝑘𝑚 =
∑

𝑖∈𝐶

∑

𝑗∈𝐶
𝑋𝑖𝑘𝑋𝑗𝑚𝑇𝑖𝑗 , ∀{𝑘, 𝑚} ∈ 𝐾 (9)

𝛼𝑘𝑚 =
∑

𝑒∈𝐸
𝛼𝑒𝑌

𝑘𝑚
𝑒 , ∀{𝑘, 𝑚} ∈ 𝐾. (10)

The objective function (Eq. (2)) consists of four parts: (i) First part is the costs of transactions from the origin node to the assigned
hub, (ii) Second comes the inter-hub flow cost (i.e., travel cost between the origin hub and destination hub), (iii) The third part is
the transportation cost of the flow between the destination hub and destination node, and finally (iv) The last part of the function
is the hub establishment cost in the selected locations. The first set of constraints (Eq. (3)) determines the discount level for the
inter-hub routes based on the total amount of flow between each pair of (𝑘, 𝑚) hubs. Here, 𝑌 𝑘𝑚

𝑒 is a Boolean variable that equals 0
unless the flow from hub 𝑘 to 𝑚 qualify for the 𝑒th discount level. Constraint (4) guarantees that one and only one discount level
is applied for each inter-hub road. Assigning each origin or destination node to one hub is done by constraints (5)–(6) that are
the common sets of equations for this purpose in the single-allocation HLP literature (check for instance Kim and O’Kelly, 2009;
Mohammadi et al., 2013; Meier and Clausen, 2018; Contreras and O’Kelly, 2019; Alumur et al., 2021).

The above integer programming model is currently of degree 3, and that is because of the multiplication of 𝑇 𝑘𝑚 and 𝛼𝑘𝑚 in the
objective function. So as to lower the degree of the model by one and transform it into a quadratic model, we apply an existing
technique from the literature (Kim and O’Kelly, 2009). For this purpose, a new Boolean variable, namely 𝛩𝑖𝑗𝑘𝑚, is defined that
replaces the expression 𝑋𝑖𝑘𝑋𝑗𝑚 in the above model. Here, 𝛩𝑖𝑗𝑘𝑚 is 1 if the flow from node 𝑖 to 𝑗 is assigned to the path 𝑖𝑘𝑚𝑗
(𝑖 → 𝑘 → 𝑚 → 𝑗), 0 otherwise. That is, 𝛩𝑖𝑗𝑘𝑚 becomes 1 if and only if nodes 𝑖 and 𝑗 are allocated to hubs 𝑘 and 𝑚. After rewriting
Eq. (9), we will have:

𝑇 𝑘𝑚 =
∑

𝑖∈𝐶

∑

𝑗∈𝐶
𝛩𝑖𝑗𝑘𝑚𝑇𝑖𝑗 ,∀{𝑘, 𝑚} ∈ 𝐾, (11)

and linking the new auxiliary variable to the rest of the model is done through the following constraints:
∑

𝑚∈𝐾
𝛩𝑖𝑗𝑘𝑚 −𝑋𝑖𝑘 = 0, ∀{𝑖, 𝑗} ∈ 𝐶, 𝑘 ∈ 𝐾 (12)

∑

𝑘∈𝐾
𝛩𝑖𝑗𝑘𝑚 −𝑋𝑗𝑚 = 0, ∀{𝑖, 𝑗} ∈ 𝐶,𝑚 ∈ 𝐾. (13)
7 
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Table 3
The extra notations used in the Ro-LTL-HLP.
Parameters:

𝑟𝑖𝑗 The reliability of the connecting road between nodes 𝑖 and 𝑗
𝜇𝑓 Probability of facing failure mode 𝑓
𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(𝐹 ,𝑆) Probability of delivering the flow from node 𝑖 to node 𝑗 under failure mode 𝐹 and
sub-mode 𝑆 considering 𝑘 and 𝑚 as the main hubs for 𝑖, 𝑗 with 𝑞, ℎ as backups

𝑄𝑖𝑗
𝑘𝑚𝑞ℎ The overall reliability of the flow from 𝑖 to 𝑗 with 𝑘, 𝑚 the main hubs and ℎ, 𝑞 backups

𝛺 The desired reliability threshold

Auxiliary variables:

𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 1 ∶ if nodes 𝑖 and 𝑗 are respectively assigned to hubs 𝑘 and 𝑚 and backups are 𝑞 and ℎ;

0 ∶ otherwise.
𝜃𝑖𝑗𝑘𝑚 Binary variable used in linear reformulation
𝑊 𝑞ℎ𝑒,𝑅

𝑖𝑗𝑘𝑚 Binary variable used in linear reformulation

This has now resulted in a quadratic model for the LTL-HLP that is considered as the base for other models proposed in this
aper and will be further developed in the following sections to include other realistic characteristics.

.2. Reliability-oriented less-than-truckload hub location model (Ro-LTL-HLP)

In general, a normal HLP model tends to select the shortest possible path to transfer the flow between the origin and destination
odes (Alumur and Kara, 2008; Farahani et al., 2013; Contreras and O’Kelly, 2019). In fact, in HLP models, a shorter road (i.e., lower
ransportation cost) with low reliability is by default preferred to all available roads; even to exceptionally reliable ones. But, as
iscussed in Section 1, the roads to the selected hubs may encounter failures. The base LTL-HLP model proposed in the previous
ubsection aims at balancing this desire by considering the discounts that the network can receive by consolidating the inter-hub
lows. Nevertheless, that model still has the same reliability weakness.

In this section, we introduce a new model that is built upon the base LTL-HLP and takes into account the unreliability of each
oad in the network. In the following model, we also add the choice to allocate each node to a backup hub that handles the flow
rom or to the node in case of any failure in the main hub or its connecting roads. This is all done to find the optimum network
esign that not only has the minimum total cost but also satisfies the desired minimum service level threshold. The system under
tudy may be described by the following major characteristics and assumptions:

• Each node is allocated to exactly a single main hub, and all incoming (or outgoing) flow to (or from) this node should pass
through that hub in normal situations.

• For the case of disturbance, each node may be allocated to at most one backup hub.
• The system incurs a fixed establishment fee when a hub is located in any node.
• Road-blockage applies to all trucks crossing the roads and it is independent of the amount of load carried by the vehicle.
• Roads are failure-prone and have pre-known reliability values.
• Roads of each node are independent in failures.
• Multiple roads may be blocked simultaneously in the network.
• Flow of each origin–destination pair must pass through at least one and at most two hubs.
• The flow matrix can be asymmetrical.
• Road reliability matrix can be asymmetrical, i.e., road form node 𝑖 to 𝑗 can be distinct from that of 𝑗 to 𝑖.

The notations used in this new model include the same ones in the previous model (see Table 2), as well as the additions in
able 3.

.2.1. Reliability functions and route identification
In this subsection, we identify the possible routes in the network, discuss the differences of the current approach with the existing

nes, and finally define the reliability functions of the available routes. Fig. 2 presents a schematic view of an LTL hub network
ith main and backup hubs for two origin nodes (i.e., 𝑖 and 𝑢) and two destinations (i.e., 𝑗 and 𝑤). In this figure, 𝑞 and ℎ are the
ackup hubs for 𝑖 and 𝑗, respectively. The flow goes through the route 𝑖−𝑘−𝑚−𝑗 if all three of the connecting roads are up: Fig. 2.2
i.e., 𝑖 − 𝑘, 𝑘 − 𝑚, and 𝑚 − 𝑗). In case node 𝑖 loses access to the road 𝑖 − 𝑘 (Fig. 2.3), the flow is redirected to the backup route 𝑖 − 𝑞
hen depending on the availability of the roads to the destination the least expensive path is chosen, i.e., either 𝑞−𝑚− 𝑗 or 𝑞−ℎ− 𝑗.
he most significant difference of the current approach with those HLP models that have considered unreliable hubs (e.g., Kim and
’Kelly, 2009; Davari et al., 2010; An et al., 2015) can be noticed in this figure. The proposed approach lets the network use the
ub on some partial failure to deliver the flow from or to other parts of the network. That is, when 𝑖 − 𝑘 was blocked and the hub
as no longer able to handle the flow from 𝑖, node 𝑘 was not deactivated and it is still used to handle the flow from node 𝑢 in a

ompletely normal way. If this partial failure happens under an unreliable hub approach, the entire hub is set to be unavailable
oth nodes 𝑖 and 𝑢 must use their backups. Depriving other nodes, here node 𝑢, from using their default route will obviously merely
ncrease the total cost and is unrealistic.
8 
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Fig. 2. Schematic structure of a hub network with two origins, two destination nodes, backup hubs, and single disruption.

In order to further explore this network, different graphs are provided in Fig. 3 where two or more links are blocked. We can see
that only two situations (Figs. 3.3–3.4) have led to the complete deactivation of hub 𝑚, and in the rest, it is still needed. In general,
from the above illustrations, we can conclude that the former reliable hub approach is only a special case of the proposed approach
where all incoming or outgoing links fail together. Unlike the studies with an unreliable hub approach, the process of including
the reliability factor as defined in the current unreliable route approach is not as simple as multiplying a fixed coefficient. Here,
reliability theory must be used to derive the reliability of the network. If we reconsider Fig. 2, we can break all possibilities for the
flow from 𝑖 to 𝑗 into 4 distinct routes:

𝑅1 ∶ (𝑖 → 𝑘 → 𝑚 → 𝑗) 𝑅2 ∶ (𝑖 → 𝑘 → ℎ → 𝑗)

𝑅3 ∶ (𝑖 → 𝑞 → 𝑚 → 𝑗) 𝑅4 ∶ (𝑖 → 𝑞 → ℎ → 𝑗)

By default, the flow passes through 𝑅1 if all three of 𝑖−𝑘, 𝑘−𝑚, and 𝑚− 𝑗 routes are up. The probability of such a case is simply
the multiplication of the elements in the series (i.e., 𝑟𝑖𝑘𝑟𝑘𝑚𝑟𝑚𝑗). The other routes, however, may be selected on various occasions
with regard to the network conditions. Thus, the status of other roads in the network must be taken into account to calculate their
probabilities. In LTL networks under study, we define the following logical routing policy rules:

(a) In case the road between one node and its main hub is accessible, the flow from or to this node never gets redirected to its
backup hub, i.e., the main hub is always given preference.

(b) In case the connection between the main origin hub and main destination hub is lost, but both origin and destination nodes
still have a connection with their main hubs (Fig. 3.2), the backup hub of the origin node will not be used, i.e., the main hub
of origin node is given preference.
9 
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Fig. 3. Schematic view of multiple concurrent failures in different routes in a hub network with backups.

In order to calculate the probability of passing through routes 𝑅2-𝑅4, we leverage the FMEA techniques from the reliability
theory (Carlson, 2014). Among the 23 distinct modes that are possible for the elements in the default route (𝑅1), the route is only
up in 1 mode (i.e., mode 0: all three of its elements are up at the same time), and as discussed earlier, calculation of the survival
probability of the system under this mode is straight forward (Eq. (14)). Thus, for 𝑅2-𝑅4, we have 7 different modes of failure.
Table 4 includes all possible cases in which the system can successfully deliver the flow from 𝑖 to 𝑗 under each possible failure mode
and declares the selected route for each case.

This table is meant to disclose the survival probability of the system under each mode of failure. The effect of these modes on
the total performance of the network will be discussed in the next subsection while defining new functions for the total flow and
cost of the network. Considering the probabilities of 𝑅2-𝑅4 in each mode (Table 4), the overall probability with which the flow
from node 𝑖 to node 𝑗 passes through each of the distinct routes of 𝑅1-𝑅4 are as follows:

𝑃 𝑖𝑗,1
𝑘𝑚𝑞ℎ = 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(0) = 𝑟𝑖𝑘𝑟𝑘𝑚𝑟𝑚𝑗 , (14)

𝑃 𝑖𝑗,2
𝑘𝑚𝑞ℎ = 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(2,1) + 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,1) + 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(5,1), (15)

𝑃 𝑖𝑗,3
𝑘𝑚𝑞ℎ = 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(1,1) + 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,2) + 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(3,3) + 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,4) + 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(4,1), (16)

𝑃 𝑖𝑗,4
𝑘𝑚𝑞ℎ = 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(1,2) + 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(2,2) + 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(3,5) + 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(4,2) + 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(5,2) + 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(6,1) + 𝑆𝐹 𝑘𝑚𝑞ℎ

𝑖𝑗,(7,1), (17)

where for each pair (𝑎, 𝑏), 𝑟𝑎𝑏 and 𝑟′𝑎𝑏 are reliability and unreliability of the road from 𝑎 to 𝑏, respectively. According to reliability
theory, reliability and unreliability of 𝑎𝑏 segment of the network are both probability values which means 0 ≤ 𝑟𝑎𝑏, 𝑟′𝑎𝑏 ≤ 1, and
they also complement one another; in other words, 𝑟𝑎𝑏 + 𝑟′𝑎𝑏 = 1 (Navarro, 2022; Attar et al., 2015). The survival function of the
system under each mode (𝑆𝐹 ) is already defined in Table 4. It is noteworthy that all the computations above are predicated on the
logical supposition that the main and backup hubs for each node in the system are distinct from one another, i.e., 𝑘 ≠ 𝑞 and 𝑚 ≠ ℎ.
That is because it would be completely ambiguous to let a hub serve as a backup upon its own failure. Furthermore, all diagonal
elements in the 𝑟 matrix are equal to 1, which means that the reliability of delivering the goods from each node to itself is always 1
(i.e., practically they are already there). With this in mind, it is straightforward to prove that the above calculations also completely
cover the case where the same node, say city 𝑘, serves as both origin and destination hubs simultaneously. In such a case, 𝑟𝑘𝑘 = 1
(𝑟′𝑘𝑘 = 0) and thus the (virtual) link between the origin and destination hubs is completely effectless.

Furthermore, given the fact that the connection of the origin–destination (𝑖, 𝑗) is up only in the distinct modes and sub-modes
that are discussed above, the overall reliability of the flow from 𝑖 to 𝑗 with 𝑘, 𝑚 the main hubs and ℎ, 𝑞 backups, will be the sum of
the survival probability of this connection in each mode:

𝑄𝑖𝑗
𝑘𝑚𝑞ℎ =

∑

(𝐹 ,𝑆)∈𝐹

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(𝐹 ,𝑆). (18)

Here, the set 𝐹 includes all combinations of failure modes (𝐹 ) and sub-failure modes (𝑆). The formula that we introduced for the
first time in Eq. (18) is, in fact, a general closed-form for the serviceability level of each O–D which may be used for other types of
analysis in the HLP research area.
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Survival probability
under each failure mode

𝑅3 Rule (a) 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(1,1) = 𝜇1(𝑟𝑖𝑞𝑟𝑞𝑚)

𝑅4 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(1,2) = 𝜇1(𝑟𝑖𝑞𝑟𝑞ℎ𝑟ℎ𝑗 )(𝑟′𝑞𝑚)

Rule (a) 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(2,1) = 𝜇2(𝑟ℎ𝑗𝑟𝑘ℎ)

𝑅4 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(2,2) = 𝜇2(𝑟𝑖𝑞𝑟𝑞ℎ𝑟ℎ𝑗 )(𝑟′𝑘ℎ)

𝑅2 Rule (b) 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,1) = 𝜇3(𝑟ℎ𝑗𝑟𝑘ℎ)

𝑅3 Rule (a) 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,2) = 𝜇3(𝑟𝑖𝑞𝑟𝑞𝑚)(𝑟ℎ𝑗𝑟′𝑘ℎ)

𝑅3 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,3) = 𝜇3(𝑟𝑖𝑞𝑟𝑞𝑚)(𝑟′ℎ𝑗𝑟𝑘ℎ)

𝑅3 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,4) = 𝜇3(𝑟𝑖𝑞𝑟𝑞𝑚)(𝑟′ℎ𝑗𝑟

′
𝑘ℎ)

𝑅4 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(3,5) = 𝜇3(𝑟𝑖𝑞𝑟𝑞ℎ𝑟ℎ𝑗 )(𝑟′𝑞𝑚𝑟

′
𝑘ℎ)

𝑅3 Rule (a) 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(4,1) = 𝜇4(𝑟𝑖𝑞𝑟𝑞𝑚)

𝑅4 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(4,2) = 𝜇4(𝑟𝑖𝑞𝑟𝑞ℎ𝑟ℎ𝑗 )(𝑟′𝑞𝑚)

𝑅2 Rule (a) 𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(5,1) = 𝜇5(𝑟ℎ𝑗𝑟𝑘ℎ)

𝑅4 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(5,2) = 𝜇5(𝑟𝑖𝑞𝑟𝑞ℎ𝑟ℎ𝑗 )(𝑟′𝑘ℎ)

𝑅4 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(6,1) = 𝜇6(𝑟𝑖𝑞𝑟𝑞ℎ𝑟ℎ𝑗 )

𝑅4 No other
routes

𝑆𝐹 𝑘𝑚𝑞ℎ
𝑖𝑗,(7,1) = 𝜇7(𝑟𝑖𝑞𝑟𝑞ℎ𝑟ℎ𝑗 )
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Table 4
The specification of each failure mode, their probability, and selected route for keeping the system up.

Mode index Roads status in
failure mode

Probability of facing
the failure mode

Sub-mode
index

Backup links conditions
for flow (𝑖, 𝑗) to be up

Selected
route

ik km mj iq qh hj qm kh

1 Da Ua U 𝜇1 = 𝑟′𝑖𝑘𝑟𝑘𝑚𝑟𝑚𝑗 1 U U 𝑖𝑞𝑚𝑗
2 U U U D 𝑖𝑞ℎ𝑗

2 U U D 𝜇2 = 𝑟𝑖𝑘𝑟𝑘𝑚𝑟′𝑚𝑗 1 U U 𝑖𝑘ℎ𝑗 𝑅2

2 U U U D 𝑖𝑞ℎ𝑗

3 U D U 𝜇3 = 𝑟𝑖𝑘𝑟′𝑘𝑚𝑟𝑚𝑗 1 U U 𝑖𝑘ℎ𝑗
2 U U U D 𝑖𝑞𝑚𝑗
3 U D U U 𝑖𝑞𝑚𝑗

4 U D U D 𝑖𝑞𝑚𝑗

5 U U U D D 𝑖𝑞ℎ𝑗

4 D D U 𝜇4 = 𝑟′𝑖𝑘𝑟
′
𝑘𝑚𝑟𝑚𝑗 1 U U 𝑖𝑞𝑚𝑗

2 U U U D 𝑖𝑞ℎ𝑗

5 U D D 𝜇5 = 𝑟𝑖𝑘𝑟′𝑘𝑚𝑟
′
𝑚𝑗 1 U U 𝑖𝑘ℎ𝑗

2 U U U D 𝑖𝑞ℎ𝑗

6 D U D 𝜇6 = 𝑟′𝑖𝑘𝑟𝑘𝑚𝑟
′
𝑚𝑗 1 U U U 𝑖𝑞ℎ𝑗

7 D D D 𝜇7 = 𝑟′𝑖𝑘𝑟
′
𝑘𝑚𝑟

′
𝑚𝑗 1 U U U 𝑖𝑞ℎ𝑗

a D: down, U: up.
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3.2.2. Mathematical model of the Ro-LTL-HLP
Just as we explained in Section 3.1, the discount level of inter-hub transfer is determined based on the total amount of flow that

asses from one hub to another. For this reason, the calculation of the total flow between each pair of hubs is a fundamental step
n modeling LTL-HLPs. Reliability calculations offered in the last subsection assumed that the origin–destination pair (𝑖, 𝑗) both had

a main and a backup hub. However, in real networks, we do not want to assign backup hubs (or even to establish ones) without
them being necessary for achieving the desired service level. That is, the mathematical model must be free to decide whether or
not the node needs a backup hub. Thus, without loss of generality, we add ‘‘node 0’’, which is a dummy node to the network with
the following characteristics:

• No flow is assumed from or to this node, i.e., 𝑇𝑖0 = 𝑇0𝑖 = 0,∀𝑖 ∈ 𝐶.
• No roads are ever available to this virtual node, i.e., 𝑟𝑖0 = 𝑟0𝑖 = 0,∀𝑖 ∈ 𝐶.
• No fixed establishment cost is assumed for it, i.e., 𝑓0 = 0.
• If chosen as a hub, the cost of sending flow to or from it is huge, i.e., 𝐶𝑖0 = 𝑀,∀𝑖 ∈ 𝐶.

These specifications guarantee that the new node does not change the definition and conditions of the problem, and is completely
lifeless. When a node in the network chooses this dummy node as the backup hub, it will neither get any benefit of this choice,
nor cost the network — exactly equivalent to choosing no backups. Accordingly, two new sets, namely, 𝐾 ′ and 𝐶 ′ are defined that
include this dummy node together with all existing cities from sets 𝐶 and 𝐾, respectively (i.e., 𝐶 ′ = {0} ∪𝐶 and 𝐾 ′ = {0} ∪𝐾). The
expected value of 𝑇 𝑘𝑚 for this novel model (after including the dummy node) is derived by Eq. (19):

𝑇 𝑘𝑚 =
∑

𝑖∈𝐶

∑

𝑗∈𝐶
𝑇𝑖𝑗 ×

∑

𝑞∈𝐾′

∑

ℎ∈𝐾′
[𝑍𝑞ℎ

𝑖𝑗𝑘𝑚(𝑃
𝑖𝑗,1
𝑘𝑚𝑞ℎ) +𝑍𝑞𝑚

𝑖𝑗𝑘ℎ(𝑃
𝑖𝑗,2
𝑘ℎ𝑞𝑚) +𝑍𝑘ℎ

𝑖𝑗𝑞𝑚(𝑃
𝑖𝑗,3
𝑞𝑚𝑘ℎ) +𝑍𝑘𝑚

𝑖𝑗𝑞ℎ(𝑃
𝑖𝑗,4
𝑞ℎ𝑘𝑚)]. (19)

ere, 𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 = 𝑋𝑖𝑘𝑋𝑗𝑚𝑋𝐵

𝑖𝑞𝑋
𝐵
𝑗ℎ, and the new variable 𝑋𝐵

𝑖𝑎 is a binary decision variable which equals 1 only if node 𝑎 is the backup
ub of node 𝑖. The first term in the square brackets reflects the situation where both 𝑘 and 𝑚 are the main hubs. The 2nd and 3rd

arts are related to cases in which only one of them is a backup hub; and in the last part, 𝑘 and 𝑚 are both backup hubs. The other
mportant aspect of the new model is its cost function. Eq. (20) presents the new estimated cost function of the network with respect
o the reliability of the routes.

Cost=
∑

𝑖∈𝐶

∑

𝑗∈𝐶
𝑇𝑖𝑗 ×

∑

𝑘∈𝐾
𝑘≠𝑖

∑

𝑚∈𝐾
𝑚≠𝑗

∑

𝑞∈𝐾′

𝑞≠𝑖

∑

ℎ∈𝐾′
ℎ≠𝑗

𝑍𝑞ℎ
𝑖𝑗𝑘𝑚𝛷 +

∑

𝑘∈𝐾

∑

𝑚∈𝐾
𝑇 𝑘𝑚𝐶𝑘𝑚𝛼

𝑘𝑚 +
∑

𝑘∈𝐾
𝑋𝑘𝑘𝑓𝑘, (20)

here 𝛷 = 𝑃 𝑖𝑗,1
𝑘𝑚𝑞ℎ(𝐶𝑖𝑘+𝐶𝑚𝑗) +𝑃 𝑖𝑗,2

𝑘𝑚𝑞ℎ(𝐶𝑖𝑘 +𝐶ℎ𝑗 ) +𝑃 𝑖𝑗,3
𝑘𝑚𝑞ℎ(𝐶𝑖𝑞 +𝐶𝑚𝑗 ) +𝑃 𝑖𝑗,4

𝑘𝑚𝑞ℎ(𝐶𝑖𝑞 +𝐶ℎ𝑗 ) and the definitions in Eqs. (10) and (19) are used
or calculating 𝛼𝑘𝑚 and 𝑇 𝑘𝑚, respectively. Eventually, the mathematical model for the Ro-LTL-HLP can be provided as below:
Ro-LTL-HLP Model:

Minimize Cost (21)

Subject to: 𝑇 𝑘𝑚 ≥ 𝑌 𝑘𝑚
𝑒 𝐿𝑒, ∀{𝑘, 𝑚} ∈ 𝐾, 𝑒 ∈ 𝐷 (22)

∑

𝑒∈𝐸
𝑌 𝑘𝑚
𝑒 = 1, ∀{𝑘, 𝑚} ∈ 𝐾 (23)

𝑋𝑖𝑘 +𝑋𝐵
𝑖𝑘 ≤ 𝑋𝑘𝑘, ∀𝑖 ∈ 𝐶 ′, 𝑘 ∈ 𝐾 ′ (24)

∑

𝑘∈𝐾
𝑋𝑖𝑘 = 1, ∀𝑖 ∈ 𝐶 ′ (25)

∑

𝑘∈𝐾′
(𝑘≠𝑖)

𝑋𝐵
𝑖𝑘 = 1, ∀𝑖 ∈ 𝐶 ′ (26)

∑

𝑘∈𝐾

∑

𝑚∈𝐾

∑

𝑞∈𝐾′

∑

ℎ∈𝐾′
𝑍 𝑖𝑗

𝑘𝑚𝑞ℎ𝑄
𝑖𝑗
𝑘𝑚𝑞ℎ ≥ 𝛺, ∀{𝑖, 𝑗} ∈ 𝐶 ′, 𝑗 ≠ 𝑖 (27)

𝑋𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝐶 ′, 𝑘 ∈ 𝐾 ′ (28)

𝑋𝐵
𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝐶 ′, 𝑘 ∈ 𝐾 ′ (29)

𝑌 𝑘𝑚
𝑒 ∈ {0, 1}, ∀{𝑘, 𝑚} ∈ 𝐾 ′, 𝑒 ∈ 𝐸. (30)

The above model assigns each node to one main and one backup hub (Eqs. (25)–(26)) and ensures that the hub is established
before assignment (Eq. (24)). Choosing the main hub as a backup is not logical. It would also contradict the underlying assumptions
of our reliability calculations in Section 3.2.1. Thus, constraint (24) is defined in such a way that along with its mentioned role in
hub establishments, prevents the model from a duplicate assignment. Note that, doing the summation in constraint (25) on set 𝐾
(i.e., 𝑘 = 1, 2, 3,… , 𝑛), keeps the model from choosing node 0 as the main hub. In an effort to maintain a minimum service level of
𝛺 for the flow between origin and destination nodes, inequality (27) is added to the model in which 𝑄 is the overall reliability of
the flow and has already been defined in Section 3.2.1.

Earlier in Table 4, we used the FMEA concept for our reliability formulations. If we reconsider constraint (22) along with (19),

we can see that the modes defined in that table directly affect the ability of the entire LTL network to take advantage of the

12 
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economies of scale on different links. In fact, unreliable roads will have lower values of expected flow passing through them and the
expected received discounts for the passing flow will be downgraded as such. On the other hand, the total cost function in Eq. (20)
demonstrates two effects that the modes can have on the system: (i) it considers the reliability of the roads while calculating the
inter-hub transfer cost, which in fact is the effect of allocated discount level and total flow, and (ii) in the first part of the cost
function, we have the direct effect of the survival probability of the routes in the flow between the hubs and the origin or destination
node. Another effect of the defined failure modes is the overall service level of the network, which is controlled using constraint
(27). The service level can also be interpreted as the reputation of the company or even as a positive leverage that will be used in
negotiations for future contracts.

3.2.3. Linear reformulation for the Ro-LTL-HLP
Substituting 𝑇 𝑘𝑚 and 𝛼𝑘𝑚 in the cost function of the Ro-LTL-HLP Model (from Eqs. (10) and (19), respectively) results in a

athematical model of degree five. In provision for its transformation to a quadratic model (similar to the LTL-HLP Model), we
eed to reduce the degree of the new 𝑇 𝑘𝑚 by 3. In the linearization literature, various techniques have been introduced for linearizing
he product of several binary variables. The general method offered by Ghezavati and Saidi-Mehrabad (2011) was shown to be much
ore efficient in comparison with the other techniques in the literature, including the one provided by Chang and Chang (2000).
he main advantage of Ghezavati and Saidi-Mehrabad’s method is its significantly reduced number of auxiliary constraints that
hould be added to the model for linearization purposes. In this study, we present a customized version of their method in which
nly two new sets of constraints are required.
Linearization Method 1. In place of the product style definition for 𝑍, the proposed method links this variable to the hub

llocation variables by using the following sets of constraints:

𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 ≥

(

𝑋𝑖𝑘 +𝑋𝑗𝑚 +𝑋𝐵
𝑖𝑞 +𝑋𝐵

𝑗ℎ

4
− 3

4

)

, ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑞, ℎ} ∈ 𝐾 ′, {𝑘, 𝑚} ∈ 𝐾 (31)

𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 ≤

(

𝑋𝑖𝑘 +𝑋𝑗𝑚 +𝑋𝐵
𝑖𝑞 +𝑋𝐵

𝑗ℎ

4

)

, ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑞, ℎ} ∈ 𝐾 ′, {𝑘, 𝑚} ∈ 𝐾 (32)

𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 ∈ {0, 1}, ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑞, ℎ} ∈ 𝐾 ′, {𝑘, 𝑚} ∈ 𝐾. (33)

Proof. (a) if for a unique set of (𝑖, 𝑗, 𝑘, 𝑚, 𝑞, ℎ), we have 𝑋𝑖𝑘 = 𝑋𝑗𝑚 = 𝑋𝐵
𝑖𝑞 = 𝑋𝐵

𝑗ℎ = 1, then the above two constraints become
𝑍𝑞ℎ

𝑖𝑗𝑘𝑚 ≥ 1∕4, and 𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 ≤ 1; consequently, the binary variable 𝑍𝑞ℎ

𝑖𝑗𝑘𝑚 equals 1. (b) otherwise, if at least one of the 𝑋 variables in
the summation is 0, then the constraints become 𝑍𝑞ℎ

𝑖𝑗𝑘𝑚 ≥ 𝑒(−3∕4 ≤ 𝑒 ≤ 0), and 𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 ≤ 3∕4; then with 𝑍𝑞ℎ

𝑖𝑗𝑘𝑚 being a 0 − 1 variable,
t gets 0. □

It is notable that this method is completely general and is not dependent on the other constraints for it to be correct. This makes
t fully adaptable to any other problems with functions in the form of binary product. With the above method, we have a linear
efinition for 𝑇 𝑘𝑚. This means that the model is linear except for the objective cost function (Eq. (20)) which is now quadratic. In
he following method, we take another step forward in order to achieve a fully linearized version of the Ro-LTL-HLP Model by trying
o linearize the second part of the cost function, i.e., ∑𝑘∈𝐾

∑

𝑚∈𝐾 𝑇 𝑘𝑚𝐶𝑘𝑚𝛼𝑘𝑚 (the only remaining nonlinear part of the model).
Linearization Method 2. Here, we define the auxiliary variable 𝑊 𝑞ℎ𝑒,𝑅

𝑖𝑗𝑘𝑚 in which 𝑅 = {1, 2,… , 4} and for the 4 possible 𝑅 values,
e have:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑌 𝑘𝑚
𝑒 𝑍𝑞ℎ

𝑖𝑗𝑘𝑚 → 𝑊 𝑞ℎ𝑒,1
𝑖𝑗𝑘𝑚

𝑌 𝑘𝑚
𝑒 𝑍𝑘ℎ

𝑖𝑗𝑞𝑚 → 𝑊 𝑞ℎ𝑒,2
𝑖𝑗𝑘𝑚

𝑌 𝑘𝑚
𝑒 𝑍𝑞𝑚

𝑖𝑗𝑘ℎ → 𝑊 𝑞ℎ𝑒,3
𝑖𝑗𝑘𝑚

𝑌 𝑘𝑚
𝑒 𝑍𝑘𝑚

𝑖𝑗𝑞ℎ → 𝑊 𝑞ℎ𝑒,4
𝑖𝑗𝑘𝑚

, 𝑊 𝑞ℎ𝑒,𝑅
𝑖𝑗𝑘𝑚 ∈ {0, 1}. (34)

In order for these variables to be linked to their new substitute, we can use Ghezavati and Saidi-Mehrabad’s method just as we
id in Method 1, which would add 8𝑛4(𝑛+1)2|𝐸| new auxiliary constraints to our model. Since number of constraints is substantial
or the solution time of linear models, we propose the following sets of constraints that linearize the above relations and only require
fraction of this number of constraints to be added:

∑

𝑞∈𝐾′

∑

ℎ∈𝐾′
𝑊 𝑞ℎ𝑒,𝑅

𝑖𝑗𝑘𝑚 ≤ 𝑌 𝑘𝑚
𝑒 , ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑘, 𝑚} ∈ 𝐾, 𝑒 ∈ 𝐸,𝑅 ∈ {1, 2, 3, 4} (35)

∑

𝑒∈𝐸
𝑊 𝑞ℎ𝑒,1

𝑖𝑗𝑘𝑚 = 𝑍𝑞ℎ
𝑖𝑗𝑘𝑚, ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑞, ℎ} ∈ 𝐾 ′, {𝑘, 𝑚} ∈ 𝐾 (36)

∑

𝑒∈𝐸
𝑊 𝑞ℎ𝑒,2

𝑖𝑗𝑘𝑚 = 𝑍𝑞𝑚
𝑖𝑗𝑘ℎ, ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑞, ℎ} ∈ 𝐾 ′, {𝑘, 𝑚} ∈ 𝐾 (37)

∑

𝑒∈𝐸
𝑊 𝑞ℎ𝑒,3

𝑖𝑗𝑘𝑚 = 𝑍𝑘ℎ
𝑖𝑗𝑞𝑚, ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑞, ℎ} ∈ 𝐾 ′, {𝑘, 𝑚} ∈ 𝐾 (38)

∑

𝑊 𝑞ℎ𝑒,4
𝑖𝑗𝑘𝑚 = 𝑍𝑘𝑚

𝑖𝑗𝑞ℎ, ∀{𝑖, 𝑗} ∈ 𝐶 ′, {𝑞, ℎ} ∈ 𝐾 ′, {𝑘, 𝑚} ∈ 𝐾. (39)

𝑒∈𝐸

13 
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The total number of constraints in Eqs. (35)–(39) is only 4𝑛4((𝑛 + 1)2 + |𝐸|)), which for realistic networks with 𝑛 significantly
reater than |𝐸|, is 1∕2|𝐸| of the number of constraints required by the above-mentioned method of Ghezavati and Saidi-Mehrabad
2011).

roof. Step One: First, we check whether the new variables get zeroes when they should.

(i) For 𝑘 = 𝑘′, 𝑚 = 𝑚′, and 𝑒 = 𝑒′, if 𝑌 𝑘𝑚
𝑒 = 0, then given the binary nature of 𝑊 , the set of constraints in (35) forces 𝑊 𝑞ℎ𝑒,𝑅

𝑖𝑗𝑘𝑚 = 0
for all 𝑖, 𝑗, 𝑞, ℎ, 𝑅 values. Note that, from Eq. (23), we know that there exists one and only one 𝑌 that equals 1 for each pair
𝑘, 𝑚 (which of course has an 𝑒 value other than 𝑒′); this means that Eqs. (36)–(39) will still hold even after zeros are forced
for the above variables.

(ii) On the other hand, for an arbitrary pair of 𝑖, 𝑗, if 𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 = 0 (𝑘 = 𝑘′, 𝑚 = 𝑚′, 𝑞 = 𝑞′, and ℎ = ℎ′) : then Eq. (36) sets all 𝑊 𝑞ℎ𝑒,1

𝑖𝑗𝑘𝑚
variables to 0 regardless of the 𝑌 values. A similar reasoning easily proves the respective relation between 𝑊 𝑞ℎ𝑒,2

𝑖𝑗𝑘𝑚 , 𝑊 𝑞ℎ𝑒,3
𝑖𝑗𝑘𝑚 ,

𝑊 𝑞ℎ𝑒,4
𝑖𝑗𝑘𝑚 values and the corresponding 𝑍 variables.

rom (i) and (ii), we can conclude that each 𝑊 is forced to get 0 if a 0 is set for at least one of the corresponding 𝑌 or 𝑍 variables,
.e.,

{𝑌 𝑘𝑚
𝑒 = 0 ∨ 𝑍𝑅

𝑖𝑗 = 0} ≡ {𝑊 𝑞ℎ𝑒,𝑅
𝑖𝑗𝑘𝑚 = 0}, (40)

here ∨ is the inclusive disjunction symbol and 𝑍𝑅
𝑖𝑗 denotes 𝑍𝑞ℎ

𝑖𝑗𝑘𝑚, 𝑍𝑞𝑚
𝑖𝑗𝑘ℎ, 𝑍𝑘ℎ

𝑖𝑗𝑞𝑚, 𝑍𝑘𝑚
𝑖𝑗𝑞ℎ for 𝑅 values 1–4, respectively.

Step Two: What we have left for the proof to be complete is only showing how the right variable gets 1. For this purpose, let
, 𝑗 be an arbitrary pair of nodes, if both 𝑌 𝑘𝑚

𝑒 = 1 and 𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 = 1 (𝑘 = 𝑘′, 𝑚 = 𝑚′, 𝑞 = 𝑞′, ℎ = ℎ′, and 𝑒 = 𝑒′) then Eqs. (35) and (36)

an be rewritten as ∑

𝑞∈𝐾′
∑

ℎ∈𝐾′ 𝑊 𝑞ℎ𝑒,𝑅
𝑖𝑗𝑘𝑚 ≤ 1 and ∑

𝑒∈𝐸 𝑊 𝑞ℎ𝑒,1
𝑖𝑗𝑘𝑚 = 1, respectively. We also know that only one 𝑍 for each pair of 𝑖, 𝑗

s 1 and this has already been guaranteed using Eqs. (24)–(26) and (31)–(33). Thus, 𝑍𝑞ℎ
𝑖𝑗𝑘𝑚 = 0 if 𝑘 ≠ 𝑘′ OR 𝑚 ≠ 𝑚′ OR 𝑞 ≠ 𝑞′ OR

≠ ℎ′; that is 𝑍𝑘ℎ
𝑖𝑗𝑞𝑚 = 𝑍𝑞𝑚

𝑖𝑗𝑘ℎ = 𝑍𝑘𝑚
𝑖𝑗𝑞ℎ = 0. Consequently, from the first step, we have 𝑊 𝑞ℎ𝑒,2

𝑖𝑗𝑘𝑚 = 𝑊 𝑞ℎ𝑒,3
𝑖𝑗𝑘𝑚 = 𝑊 𝑞ℎ𝑒,4

𝑖𝑗𝑘𝑚 = 0 for all 𝑘, 𝑚, 𝑞, ℎ, 𝑒
alues other than 𝑘′, 𝑚′, 𝑞′, ℎ′, 𝑒′.

Additionally, for 𝑅 = 1, Eq. (23) ensures that only one 𝑌 is set to 1 for each pair (𝑘, 𝑚). Consequently, as we showed earlier,
ll 𝑊 𝑞ℎ𝑒,𝑅

𝑖𝑗𝑘𝑚 variables (including all 𝑊 𝑞ℎ𝑒,1
𝑖𝑗𝑘𝑚 ) are forced to 0 by constraint set (35) except for the ones with 𝑒 = 𝑒′. This means that

q. (36) can be further simplified as 𝑊 𝑞ℎ𝑒,1
𝑖𝑗𝑘𝑚 = 1 for 𝑘 = 𝑘′, 𝑚 = 𝑚′, 𝑞 = 𝑞′, ℎ = ℎ′, only when 𝑒 = 𝑒′. Proofing this relation for other

values is straightforward. In turn, this step of the proof can be summarized as:

{𝑌 𝑘𝑚
𝑒 = 1 ∧ 𝑍𝑅

𝑖𝑗 = 1} ≡ {𝑊 𝑞ℎ𝑒,𝑅
𝑖𝑗𝑘𝑚 = 1}, (41)

here ∧ is the logical conjunction symbol. By considering Eqs. (40)–(41), the proof is complete. □

For future reproduction of this linearization method, it should be noted that Method 2 (unlike Method 1) is problem-specific
nd cannot be used for other problems unless other constraints that were used in the proof also hold; i.e., already exist in the new
odels or should be added as well. By substituting 𝑊 𝑞ℎ𝑒,𝑅

𝑖𝑗𝑘𝑚 in Eq. (20), it can be reformulated in the following linear form which
esults in a fully linearized model:

Cost=
∑

𝑖∈𝐶

∑

𝑗∈𝐶
𝑇𝑖𝑗 ×

∑

𝑘∈𝐾
𝑘≠𝑖

∑

𝑚∈𝐾
𝑚≠𝑗

∑

𝑞∈𝐾′

𝑞≠𝑖

∑

ℎ∈𝐾′
ℎ≠𝑗

𝑍𝑞ℎ
𝑖𝑗𝑘𝑚𝛷 +

∑

𝑘∈𝐾

∑

𝑚∈𝐾
𝑇 𝑘𝑚
𝛼 𝐶𝑘𝑚 +

∑

𝑘∈𝐾
𝑋𝑘𝑘𝑓𝑘, (42)

here 𝛷 is just as defined for Eq. (20) and the auxiliary variable 𝑇 𝑘𝑚
𝛼 is calculated by:

𝑇 𝑘𝑚
𝛼 =

∑

𝑖∈𝐶

∑

𝑗∈𝐶
𝑇𝑖𝑗 ×

∑

𝑞∈𝐾′

∑

ℎ∈𝐾′

∑

𝑒∈𝐸
𝛼𝑒[𝑊

𝑞ℎ𝑒,1
𝑖𝑗𝑘𝑚 (𝑃 𝑖𝑗,1

𝑘𝑚𝑞ℎ) +𝑊 𝑞ℎ𝑒,2
𝑖𝑗𝑘𝑚 (𝑃 𝑖𝑗,2

𝑘ℎ𝑞𝑚) +𝑊 𝑞ℎ𝑒,3
𝑖𝑗𝑘𝑚 (𝑃 𝑖𝑗,3

𝑞𝑚𝑘ℎ) +𝑊 𝑞ℎ𝑒,4
𝑖𝑗𝑘𝑚 (𝑃 𝑖𝑗,4

𝑞ℎ𝑘𝑚)].

It is important to note that, as demonstrated by the mathematical proofs of our linearization methods, the solution space of the
inearized version remains precisely the same as the original Ro-LTL-HLP. As a result, the fully linearized model benefits from an
xact solution identical to that of the non-linear version of Ro-LTL-HLP.

. Computational experiments and result analysis

.1. Evaluation on the proposed model

In this section, a set of numerical experiments is designed to help demonstrate the functionality of the proposed Ro-LTL-HLP
odel under different possible scenarios. For this purpose, we assume an LTL network with 𝑛 nodes and 2 positive discount levels
|𝐸| = 3) for which the basic specifications are given in Table 5. Some of these distributions are selected in accordance with the
umerical cases explored by Niknamfar et al. (2017).

With the aim of performing the analysis of this section, the proposed mathematical model is coded in the general algebraic
odeling system (GAMS) 32.2, and it is examined against 42 configurations in six distinct scenario groups. Fig. 4 graphically

llustrates the configuration of these scenario groups (hereinafter scenarios) and their corresponding sub-scenarios. The first three

cenarios are defined with 𝜎𝛼 = 0 for which the results of our model are presented in Table 6. These are mainly for analyzing the
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Table 5
Parameter settings for the LTL network under study.

Parameter Value

𝑟𝑖𝑗 Uniform(0.6, 0.8)
𝑇𝑖𝑗 Uniform(500, 700)
𝐶𝑖𝑗 Uniform(10, 20)
𝑓𝑘 Uniform(100𝜎𝐹 , 150𝜎𝐹 )
𝐿𝑒[𝛼𝑒] 0[1.0], 800[0.9 − 𝜎𝛼 ], 1000[0.8 − 𝜎𝛼 ]

Fig. 4. Definition of scenarios and sub-scenarios in the performed experiments.

Table 6
Optimal design for Scenarios 1-3.

𝛺 Hubs # Nodes
with
backups

# Hubs
as
backup

Flow reliability Total
discount

Cost

Min Mean Max Fixed Variable Total

Scenario 1 (𝜎𝐹 = 20, 𝜎𝛼 = 0)

– 1,2,3,4 – – 0.671 0.740 0.796 – 9049.27 83897.28 92946.55
0.3 1,2,3,4 – – 0.671 0.740 0.796 – 9049.27 83897.28 92946.55
0.4 1,2,3,4 – – 0.671 0.740 0.796 – 9049.27 83897.28 92946.55
0.5 1,2,3,4 – – 0.671 0.740 0.796 – 9049.27 83897.28 92946.55
0.6 1,2,3,4 – – 0.671 0.740 0.796 – 9049.27 83897.28 92946.55
0.7 1,2,3,4 2 1 0.700 0.881 0.961 – 9049.27 107119.69 116168.97
0.8 1,2,3,4 3 3 0.846 0.925 0.979 – 9049.27 115011.13 124060.40

Scenario 2 (𝜎𝐹 = 50, 𝜎𝛼 = 0)

– 2 , 4 – – 0.352 0.590 0.781 7372.73 10444.49 90281.35 100725.84
0.3 2 , 4 – – 0.352 0.590 0.781 7372.73 10444.49 90281.35 100725.84
0.4 2 , 4 – – 0.509 0.627 0.781 6188.77 10444.49 94013.56 104458.05
0.5 2 , 4 – – 0.509 0.627 0.781 6188.77 10444.49 94013.56 104458.05
0.6 1,2,3,4 – – 0.671 0.740 0.796 – 22623.18 83897.28 106520.46
0.7 1,2,3,4 2 1 0.700 0.881 0.961 – 22623.18 107119.69 129742.87
0.8 1,2,3,4 3 3 0.846 0.925 0.979 – 22623.18 115011.13 137634.30

Scenario 3 (𝜎𝐹 = 70, 𝜎𝛼 = 0)

– 2 , 4 – – 0.352 0.589 0.781 7372.73 14622.29 90281.35 104903.64
0.3 2 , 4 – – 0.352 0.589 0.781 7372.73 14622.29 90281.35 104903.64
0.4 2 – – 0.509 0.627 0.781 – 7254.69 100202.32 107457.01
0.5 2 – – 0.509 0.627 0.781 – 7254.69 100202.32 107457.01
0.6 1,2,3,4 – – 0.671 0.740 0.796 – 31672.45 83897.28 115569.73
0.7 1,2,3,4 2 1 0.700 0.881 0.961 – 31672.45 107119.69 138792.14
0.8 1,2,3,4 3 3 0.846 0.925 0.979 – 31672.45 115011.13 146683.57

sensitivity of the optimal solution of the Ro-LTL-HLP model to the desired reliability threshold under different distribution properties
for the fixed establishment cost.

For each scenario, Table 6 includes the index of nodes chosen as hubs, number of nodes that were assigned a backup hub, number
of nodes that have dual functions (i.e., both as primary and backup), min, max, and average level of the reliability of the flow
between each origin–destination pair, total discount achieved by the network, and details on the cost function values. Each section
of this table comprises 6 rows for a range of 𝛺 values, and one row for the case where no restriction is imposed on the reliability
(i.e., the traditional approach with no serviceability mandates). The time elapsed for solving most of these scenarios is less than 30 s
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Table 7
Optimal design for Scenarios 4-6.

𝛺 Hubs # Nodes
with
backups

# Hubs
as
backup

Flow reliability Total
discount

Cost

Min Mean Max Fixed Variable Total

Scenario 4 (𝜎𝐹 = 20, 𝜎𝛼 = 0.1)

– 2 , 4 – – 0.352 0.590 0.781 11059.10 4177.80 86594.98 90772.78
0.3 2 , 4 – – 0.352 0.590 0.781 11059.10 4177.80 86594.98 90772.78
0.4 1,2,3 – – 0.517 0.670 0.796 10556.06 6944.24 85447.08 92391.32
0.5 1,2,3 – – 0.517 0.670 0.796 10556.06 6944.24 85447.08 92391.32
0.6 1,2,3,4 – – 0.671 0.740 0.796 – 9049.27 83897.28 92946.55
0.7 1,2,3,4 2 1 0.700 0.881 0.961 5213.02 9049.27 106440.58 115489.85
0.8 1,2,3,4 3 3 0.846 0.925 0.979 2049.24 9049.27 114711.48 123760.75

Scenario 5 (𝜎𝐹 = 50, 𝜎𝛼 = 0.1)

– 2 , 4 – – 0.352 0.590 0.781 11059.10 10444.49 86594.98 97039.47
0.3 2 , 4 – – 0.352 0.590 0.781 11059.10 10444.49 86594.98 97039.47
0.4 1 , 2 – – 0.404 0.623 0.796 13233.23 10493.98 90224.66 100718.64
0.5 2 , 3 – – 0.509 0.627 0.781 10908.96 12048.55 89293.37 101341.91
0.6 1,2,3,4 – – 0.671 0.740 0.796 – 22623.18 83897.28 106520.46
0.7 1,2,3,4 2 1 0.700 0.881 0.961 5213.02 22623.18 106440.58 129063.75
0.8 1,2,3 3 3 0.832 0.900 0.98 17620.39 17360.60 119375.80 136736.41

Scenario 6 (𝜎𝐹 = 70, 𝜎𝛼 = 0.1)

– 2 , 4 – – 0.352 0.590 0.781 11059.10 14622.29 86594.98 101217.27
0.3 2 , 4 – – 0.352 0.590 0.781 11059.10 14622.29 86594.98 101217.27
0.4 1 , 2 – – 0.404 0.623 0.796 13233.23 14691.57 90224.66 104916.23
0.5 2 , 4 – – 0.509 0.627 0.781 9283.15 14622.29 90919.17 105541.46
0.6 1,2,3,4 – – 0.671 0.740 0.796 – 31672.45 83897.28 115569.73
0.7 1,2,3 3 2 0.700 0.856 0.946 13207.697 24304.85 113255.65 137560.50
0.8 1,2,3 3 3 0.832 0.900 0.98 17620.39 24304.85 119375.80 143680.65

considering our proposed linearization methods using CPLEX solver. In order to test the effectiveness of our proposed linearization
approach, we attempted to use a well-known nonlinear solver (i.e., BARON) to solve the same scenarios on the initial (nonlinear)
version of Ro-LTL-HLP model. For all scenarios, no feasible solution was found by BARON after the default maximum allowable
time elapsed (1000 s). Time-wise, this observation by itself attests to the significant effectiveness of the introduced linearization
techniques. Speed superiority together with other significant features of the proposed linearization are further demonstrated in the
detailed comparative results of Appendix considering few alternative exact and metaheuristic benchmark techniques.

According to the results provided in Table 6, it is observed that when the fixed cost is low (Scenario 1) the model tends to
stablish as many hubs as possible and it never consolidated the flow (i.e., no discounts). By looking at the reliability columns,
owever, we clearly see that the model has completely been successful in complying with the desired threshold and all reliability
ndices have increased accordingly in the last two rows of this scenario by assigning backup hubs to the nodes. It is also noticed
hat even in the base condition with no reliability threshold, the optimal solution is exemplary and its reliability is around 70% for
ll origin–destinations in the network.

But, as we increase the fixed establishment cost in Scenario 2, the minimum reliability falls to 35.2% for the base case, with
he average being 59%. It was predictable that the base optimal solution will be optimal for other cases until 𝛺 becomes greater

than 35%. Unlike the earlier scenario, the optimal design only has two hubs and has acquired a significant amount of discount for
its traffic consolidations. In 𝛺 = 0.6 (which seems to be the knee point in all scenarios), the base combination of hubs no longer is
capable of satisfying the desired service level and the model moves towards more hub establishments. For a reliability threshold of
70% and higher, the model uses the backup assignments, and the higher the reliability threshold, the more backups are required.

When we increase the average establishment cost of the system in Scenario 3, the model was expected to opt for a smaller
number of hubs. This is what happened in 𝛺 = 0.4 and 0.5, where the model preferred to establish only one hub (i.e., node 2) and
successfully satisfied the desired 𝛺 even without backup assignments. It is notable that in this case, the total discount is zero. That
is because the origin and destination hubs are both the same, and practically there is no inter-hub traffic to charge a fee on. But
we see that the fixed cost in the new network is less than half of the base solution which by itself has resulted in about 7300 unit
cost and it is almost the same as the amount we have for the discount in the base case. Nevertheless, even with the zero inter-hub
transfer cost that this design benefits from, the one-hub design has a higher variable cost. The reason behind this must be the higher
transfer costs from or to node 2 in the random input data. This can also explain the reason why the one-hub design has been avoided
in the first two cases. Altogether it shows that the model has sufficiently done a trade-off between the fixed cost and the variable
cost, and the final decision was made based on the total cost of the design. Table 7 provides the optimal solution for Scenarios 4–6
and includes the same indices as we had for the first three scenarios.

Here, we intend to analyze the sensitivity of the model to changes in the discount factors of the LTL system. To avoid any bias in
the outcome of our analyses, 𝐿𝑒 values are fixed to the same amounts we had in the previous scenarios. Comparing these scenarios
with their counterparts in Table 6 shows that the model has completely appreciated the decrement in the discount factor and has
gone towards more consolidations, even from the very first case. For a more thorough comparison of the scenario sets, we visualize
the data presented in Tables 6–7 via three sets of charts in Figs. 5–7. The amount of fixed and variable costs that constitute the

total cost in the six scenarios are plotted in Fig. 5 under an assortment of levels for the desired reliability. This figure suggests that

16 



A. Attar et al. Transportation Research Part A 190 (2024) 104260 
Fig. 5. Sensitivity of the Fixed Cost and Total Cost of the optimal design to increments in the desired service level threshold (𝛺) for the six scenarios.

Fig. 6. Sensitivity of the Total Cost of the optimal design to variation in discount factors.

the optimal design in the scenarios with smaller discount factors has significantly less fixed costs in comparison to the respective
scenarios from Table 6. However, the overall reduction in the total cost of the system is not as large (check for instance Fig. 6 for
𝜎𝐹 = 20). That is mainly because, even in Scenarios 3 and 6, the fixed cost of the network accounted for a small proportion of
the overall costs of the network. From the reliability perspective, the proposed model performed sufficiently, especially when the
desired reliability was significantly high.

To investigate the performance of the proposed model in realizing the desired serviceability levels, Fig. 7 compares the average
reliability (serviceability) of the flow between each pair of origin–destination, accompanied by its distribution under all cases of
each scenario. Although the model was successful in complying with the defined service level threshold in all scenarios, the range
of the reliability values becomes smaller as we pass the knee point of 0.6 for the parameter 𝛺. Especially, in the last case with
the maximum desired reliability, we observe that the difference between the first and third quantile is less than 10%. In general,
despite some slight changes in the distribution of the optimal reliability from one scenario to the neighbor one, it does not seem to
be significantly sensitive to the fixed establishment cost. The only visible fluctuation of the reliability average is when we transit
17 
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Fig. 7. The achieved reliability (𝑦-axis) in the optimal design vs the desired service level threshold (𝑥-axis), i.e., 𝛺 (solid line represents mean value).

from 𝜎𝐹 = 20 to 𝜎𝐹 = 50 in Scenarios 1 to 2 and this decrement in the reliability is limited to 𝛺 values before the aforementioned
knee point.

For further analysis, we provide the following graph (Fig. 8) for the total discount in the optimal solution of each scenario
and compare the effect of changes in the fixed cost, reliability threshold, and discount factor on the overall performance of the
proposed model. Fig. 8 unveils a clear distinction between the first group of scenarios in Table 6 and those in Table 7. In fact, when
the discount factor was reduced, the final solution experienced more consolidation to take advantage of the more considerable
discounts. Generally speaking, the figure suggests that in order to benefit from the discount in the LTL network, the discount factor
for them must be low enough to compete with the other options available in the LTL-HLP. It is seen that the fixed cost of the
establishment must also be significant (here, 𝜎𝐹 ≥ 50) to avoid excessive hub establishment.

Here, we see a more noticeable effect of the previously observed knee point on the discounts accumulated by the system. As
mentioned earlier, this change in the model behavior shows that on this level of serviceability, the model can no longer satisfy the
desired serviceability using the existing number of hubs, and thus sacrifices the discounts and flow consolidation by establishing
more hubs. However, it still does not need to force rerouting to the most reliable hubs as the desired reliability is not high yet.
This leads to having the flow level in the network fall below the minimum required amount to qualify for the discounts. In other
words, at this point, the network is completely impartial to the discount percentage offered (i.e., 𝛼𝑒), thus there is no difference
between the defined scenarios, so all achieve no discounts (see point 0.6 for all lines in Fig. 8). As the desired level of reliability is
increased to 70% and 80%, the consolidation is financially reasonable again, and the system starts shifting towards configurations
with more significant discount accumulation levels. As a future work, it seems to be interesting to investigate the possibility of
precise mathematical prediction of this knee point.

The results in Tables 6–7 and the provided analyses support the functionality of the proposed model in achieving the goal of
balancing the variable and fixed costs while minimizing the total cost of the network. The model has also completely adapted itself
to the various levels of vulnerability in network links to maintain a steady level of serviceability. On the other hand, the model
proposed in this study has the ultimate freedom in choosing backup hubs and even deciding on whether to consolidate the flow
for LTL discounts. Therefore, it could choose to stay on the no-backup scheme for all parameter settings if the backup strategy was
not more cost-efficient. But, we see that under elevated levels of desired reliability, the optimal solution involved backup hubs in
all six scenarios. This can prove the superiority of the current approach to the pure hub location problem with no backup. We also
observed that the LTL discount system has not been met by the model in many cases, and it has opted out of this cost reduction
scheme in favor of other interesting options. This is evidence of the superiority of the proposed method to the pure LTL network
design. However, the last two cases of Scenario 6 proved the necessity of considering discount factors, backup hubs, and flow
consolidation in only two hubs, simultaneously. The proposed approach is graphically summarized in Fig. 9.

4.2. Cost-resiliency trade-off and managerial insights

In this subsection, we explore the feasibility and benefits of the proposed resilient approach against the traditional approach in
which reliability is not a factor in decision-making. For this purpose, we summarize the results of the six scenarios from another
18 
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Fig. 8. Performance of the model in achieving discounts under different scenarios.

Fig. 9. A schematic view of the steps of the proposed framework.

angle considering only the case in which no reliability requirement is imposed and the last case in each scenario where 𝛺 is set
to the highest value (i.e., 0.8). Table 8 compares the reliability range achieved by the traditional approach with the corresponding
values from the resilient case while Table 9 contrasts the associated costs.

In Table 8, the lower bound of the reliability represents the minimum level of serviceability that can be guaranteed by the logistics
system. For example, when the range is [0.352, 0.781] for the traditional policy, the company is likely to deliver at least 35.2% of
their shipments successfully on-time under the considered vulnerabilities in the road conditions. The reliability shifts reported in
the table indicate that by applying the proposed modeling process, policymakers can achieve a drastic raise of around 50% in their
guaranteed successful on-time delivery. When compared to the original value, this shows a considerable relative improvement of
over 140%. Moreover, the cost comparison reported in Table 9 shows that this shift in resiliency only results in up to 42% increase
in the overall cost. Even when a very low cost of hub establishment is accompanied by uninteresting discount rates (e.g., Scenario
1), the proposed resilient approach still brings about a very significant improvement in serviceability (over 26%). This is because,
in this particular scenario, the maximum possible number of hubs has already been established due to the low establishment cost.
Therefore, the fixed cost of the system remains unchanged, and the improvement is attributed solely to more efficient management.
19 
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Table 8
Reliability comparison between the resilient model and its traditional counterpart.

Scenario Reliability range Amount of change in
Min | Max Reliability

Relative
Improvement (%)

Traditional Resilient

1 [0.671, 0.796] [0.846, 0.979] 0.175 | 0.183 26.08 | 22.99
2 [0.352, 0.781] [0.846, 0.979] 0.494 | 0.198 140.34 | 25.35
3 [0.352, 0.781] [0.846, 0.979] 0.494 | 0.198 140.34 | 25.35
4 [0.352, 0.781] [0.846, 0.979] 0.494 | 0.198 140.34 | 25.35
5 [0.352, 0.781] [0.832, 0.980] 0.480 | 0.199 136.36 | 25.48
6 [0.352, 0.781] [0.832, 0.980] 0.480 | 0.199 136.36 | 25.48

Table 9
Cost comparison between the resilient model and its traditional counterpart.

Scen. Traditional Resilient Cost Increment (%)

Fixed Variable Total Fixed Variable Total Fixed Variable Total

1 9049.27 83897.28 92946.55 9049.27 115011.13 124060.40 0.0 37.1 33.5
2 10444.49 90281.35 100725.84 22623.18 115011.13 137634.30 116.6 27.4 36.6
3 14622.29 90281.35 104903.64 31672.45 115011.13 146683.57 116.6 27.4 39.8
4 4177.80 86594.98 90772.78 9049.27 114711.48 123760.75 116.6 32.5 36.3
5 10444.49 86594.98 97039.47 17360.60 119375.80 136736.41 66.2 37.9 40.9
6 14622.29 86594.98 101217.27 24304.85 119375.80 143680.65 66.2 37.9 42.0

As a further advantage, considering the scenario definitions alongside these findings indicates that the aforementioned mod-
fications can be consistently archived notwithstanding potential variations in the fixed establishment costs of the hubs (𝜎𝐹 ) or
djustments to the LTL system’s discount levels (i.e., 𝜎𝛼). This feature inherently enhances the resiliency of the proposed approach,
ffering policymakers increased confidence when switching to using it. All combined, the noted characteristics of the suggested
pproach have the potential to revolutionize the competitive logistics market, particularly if rivals start placing a higher priority on
imely delivery. For instance, many companies in the urban delivery industry focus on guaranteed successful delivery in the promised
ime. When introducing its services and products, Saia Inc., a major player in the LTL freight industry in North America, draws
ustomers’ attention to its successful delivery rate of over 80% (Saia Inc., 2024). From the competitors’ viewpoint, the maintenance
f a high reliability index is challenging and costly, especially considering vulnerabilities in road conditions and disruptions. Our
esults reveal that entering such a serviceability competition will be more affordable by substituting the traditional approach with
he proposed one, enabling the achievement of any desired reliability level at the lowest possible cost.

Digging deeper into the reason behind the cost increments after applying the new approach, we notice that the base model lacked
penalty for unsuccessful delivery. In other words, the missed shipment would be overlooked without any financial consequences.
his seems to have virtually kept the variable cost lower than the resilient version. Thus, if policymakers consider the penalties and
onsequences of missed shipments in their systems, they might even see cost reductions after switching to the resilient approach.
enalties imposed on a company greatly depend on the market it operates in. For instance, in a very competitive market, using the
raditional approach and failing to deliver a small portion of the shipments (e.g., 30%) might lead to losing the customers — let
lone around 70% as in the traditional results of Scenarios 2–6.

Furthermore, even in a single company, the mentioned penalty might be significantly high for specific sets of O–Ds while being
egligible for others. The estimation of penalty requires quantifying many factors including but not limited to the loyalty of the
ustomers, the direct penalty in the contracts, the effect of competitors in the market, customers’ chance of finding a new service
rovider, and reputation cost. Consequently, we believe that this type of penalty has to be considered on a case-by-case basis, thus
n this study, only the plain cost is reported with no penalties imposed. A great extension to this paper can be a case study focusing
n deriving and quantifying these penalties and exploring their effects on the decision-making process.

. Conclusions

In this paper, we studied a practical integration of the well-known hub location problem with truck-based freight logistics
etworks. Road availability and route-related disruptions are other concerns that are addressed in the current study. One advantage
f the LTL is its discount factor that banks on the economies of scale of the inter-hub transportation. Combining such a disposition
ith the LTL scheme expands these benefits to the shipment of small loads as well. However, with the disruptions caused by unstable

oad conditions in mind, the overall service level may suffer from significant fluctuations unless a backup plan is considered. Thus,
ur mathematical model now includes the option to designate a backup hub for each origin or destination node. This backup hub
an be utilized in the event that the primary route is unavailable. In order to calculate the overall reliability of the network after the
ackup assignment, we explored all possible failure modes and their corresponding effects on the overall service level. A general
losed form for the serviceability of the HLP network during multiple link disruptions was introduced that is substantially more
ractical and realistic compared to other approaches (e.g., chance constraint). Eventually, an integrated mathematical model is

resented with the objective of minimizing the total cost of the system, which satisfies a service level threshold.
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The proposed model inherits its complexity from both hub location problems and the LTL models. In order to mitigate this
omplexity, we presented a fully linear version by proposing advanced linearization methods. Results of the suggested linearization
pproach proved its distinction over alternative techniques in terms of speed, solution quality, and consistency in achieving the
lobal optima. The new model was then investigated through a series of benchmark scenarios. The numerical results reported in
his paper showed the superiority of the proposed integrated approach over its counterparts. It was also shown that the model
uccessfully realized the desired service level in all scenarios even when it was set as high as 80%. This, by itself, manifests a great
pplication potential and attractiveness of the current approach for practical usage. The sensitivity analysis provided in this study
lso suggests that the backup assignment is crucial for such systems if we target attaining a network with reliability levels greater
han or equal to 70%. Trade-offs between the system cost and resiliency levels show that the new approach can help newcomers
n the urban delivery industry compete more easily with existing players. Existing companies, on the other hand, can utilize its
eatures to enhance their customer satisfaction and market share at an affordable cost.

Based on the proposed framework, in order to implement this approach in real cases, decision-makers should acquire data about
he linking roads between the cities of their network coverage. It is worth noting that this is an overlooked link in the literature,
nd any attempt to propose structured frameworks for collecting such reliability data can be valuable for putting this strategy
as well as other future resilient approaches of a similar nature – into practice. The first step of the framework is concluded by

pplying the suggested failure mode and effect analysis technique and deriving the system’s service level as a function of the decision
ariables. Given that serviceability is a key performance index of many systems, even if managers decide not to move on to the
ubsequent mathematical phases, this function can still be highly helpful in assisting them in making better-informed empirical
ecisions to achieve higher resiliency for their systems. As a second step, we suggest framing the discount policies of the market
n a stepwise format. This can then be fed into a mathematical model (similar to the one in this study) that replicates the desired
nd environmentally fixed characteristics of the company. Once this stage is reached, gaining a fairly resilient system design with
ll the mentioned benefits is very straightforward using the investigated solution methods.

Given the promising results reported in this study, a possible extension may involve case studies in the logistics industry and
urther analysis of practical data sets, especially in low-emission freight transportation networks. When looking at the current study
olely from the perspective of a reliable hub location problem, the proposed approach with road unavailability is far more practical
han the prevalent viewpoint that considered hub unavailability. Our new rerouting policy avoids unnecessary backup route usage.
ypothetically, the main routes are often shorter than the backups, thus this feature of the proposed approach may contribute

owards better implementation of battery or fuel-cell operated green trucks that suffer from a limited mileage per single charge.
urthermore, applying the proposed findings on a hybrid intermodal rail-road network and studying the optimal network policies
or that case are other interesting possible extensions of this paper for future works.
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Appendix. Linearization verification

In order to verify the validity of the proposed linearization methods, we selected some of the scenarios presented in Table 6
and solved them in three different ways, i.e., using (i) our proposed linearized version of Ro-LTL-HLP, (ii) the original nonlinear
Ro-LTL-HLP via an Exact method, and (iii) the original nonlinear Ro-LTL-HLP via a meta-heuristic algorithm. The exact solvers used
in this comparison are the well-known GAMS/CPLEX and BARON for linear and nonlinear models, respectively. For the nonlinear
exact solver, however, because of the initial experiments reported in Section 4.1, we extended the maximum allowable time of each
run to 72 h. On the other hand, the Genetic Algorithm (GA) was chosen as a representative of the metaheuristic category due to its
numerous successful applications in logistics problems (Min, 2015; Azizi et al., 2016; Jauhar and Pant, 2016). The results of these
methods for each of the selected scenarios are reported in Table A.1. To have a fair time comparison between the methods, time
measurements reported in this section are all done on a Linux-operated computer with a 4-core CPU (2.5 Gigahertz) and 16 GB of
RAM.

In Table A.1, we can observe that the proposed linear model using CPLEX successfully found the global optimal solution in
all scenarios. Looking at the results of the original nonlinear model, BARON failed to obtain the solutions within a maximum
computational time of 72 h. This is a considerable drawback for this MINLP method as it never assured us of global optimality. We
suspect that this is mainly because of the very large number of possible combinations for the decision variables. Based on the gap

values between BARON and the global optima, its only positive side is that, in some cases, its local optima was in fact the global
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Table A.1
Performance comparison between the proposed linearization method and other available options (sample scenarios from Table 6).

Scenario Spec. Ro-LTL-HLP Model + Proposed Linearization
(Exact Method — GAMS/CPLEX Solver)

Ro-LTL-HLP Model (MINLP)

Exact Method — BARON Me

𝜎𝐹 𝛺 Total cost CPUtime(s) Termination
[ Sol. Type ]

Total cost CPU
Time(s)

Termination
[ Sol. Type ]

Gap To
be

20 0.3 92946.55 13.49 Normal
[ Global ]

92946.55 259217.16 Time Limit
[ Local ]

0 92
[9

20 0.7 116168.97 19.31 Normal
[ Global ]

119284.63 265748.27 Time Limit
[ Local ]

3115.7 11
[1

50 0.6 106520.46 23.18 Normal
[ Global ]

106520.46 259219.03 Time Limit
[ Local ]

0 10
[1

50 0.4 104458.05 26.87 Normal
[ Global ]

106520.46 259225.79 Time Limit
[ Local ]

2062.41 10
[1

70 0.5 107457.01 11.84 Normal
[ Global ]

115569.73 259227.77 Time Limit
[ Local ]

8112.72 10
[1

70 0.8 146683.57 181.17 Normal
[ Global ]

146683.57 260080.26 Time Limit
[ Local ]

0 14
[1
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solution. We expect this solver to converge in a few more days. Nevertheless, we did not test this theory (i.e., very long run) any
further as it does not seem to contribute to our current research.

The genetic algorithm used in this section is the standard GA for which the population size, crossover rate, and mutation rate
ere all set experimentally to 50, 75%, and 30%, respectively. Furthermore, our experiments showed acceptable results when the
aximum number of iterations was set to 100. The algorithm is coded using Python programming language and all the runs are
one on a computer with the abovementioned specifications. For further information about the procedure of GA and its parameters,
ne may refer to Min (2015), Azizi et al. (2016), and Jauhar and Pant (2016). Due to the random nature of the search in GA, we
an the algorithm 30 times and reported the best and worst solutions in Table A.1 accompanied by the average time consumed per
un.

It is revealed that GA successfully found the optimal solution in all scenarios as the gap between the global solution and the
est solution found in the 30 runs is 0 for all explored settings. Still, the worst solution occasionally had a significant gap from the
lobal optima. This indicates that even though, in some cases, the average time consumed in each run of GA is slightly shorter than
PLEX (e.g., last scenario in Table A.1), GA will require a sample of multiple runs. As a result, the actual computational time for
ssuring global optimality in GA is multiple times the reported average, whereas CPLEX requires a single run only. This weakness
as also reported by other studies for GA family and other metaheuristic algorithms (Attar et al., 2015, 2017, 2023b). Therefore,
e can conclude that the linearization method can be more time-efficient than the metaheuristic approach.

By summarizing the above observations, not only can we conclude the validity of the proposed exact linearization approach,
ut also confirm its significant superiority from multiple aspects including the overall speed, quality of solution, and consistency in
chieving the global optima.
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