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Precipitation variability is forecast to increase under climate change but its impacts on vegetation
productivity are complex. Here, we use generalised additive models and remote sensing-derived
datasets to quantify the effect of precipitation amount, distribution, and intensity on the gross primary
productivity of dry rangelands across sub-Saharan Africa from 2000 to 2019 and differentiate these
effects fromother variables.We find that total precipitation is the primary driver of productivity, but that
more variable rainfall has a small negative effect across vegetation types and rainfall regimes.
Temperature and soil nitrogen also have strong effects, especially in drier rangelands. Shrublands and
grasslands are more sensitive to environmental variability than savannas. Our findings support a
model inwhich themain constraints on productivity aremaintenanceof soilmoisture andminimisation
of plant water stress. This highlights the risks of climate warming and increasing variability for
productivity inwater-limited grass and shrublands but suggests savannasmay have greater resilience
in Africa.

African rangelands harbour iconic wildlife, support the livelihoods of
hundreds ofmillions of people through livestock pastoralism, and underpin
a substantial fraction of the continent’s meat and milk production. Ran-
gelands occupy between half and two thirds of Africa’s land area1,2, and are
home tomore than 60% of the continent’s ruminant livestock3,4. More than
200 million people in sub-Saharan Africa practise pastoralism5.

Most African rangelands experience low and often variable patterns of
precipitation that present challenges to crop-based agriculture. Many pas-
toralist communities who rely on rangelands have developed resilient
livestock systems, often involvinghighlymobile herds, to copewith and take
advantage of this natural variability6,7. Nevertheless, forage productivity in
rangelands depends to a large degree on climatic factors such as rainfall and
temperature and is therefore potentially vulnerable to changing conditions
under climate change.

Both precipitation variability and extremes are expected to increase
under climate warming8–10. While global mean precipitation rates are
expected to increase by only 1–2% per °C of warming11, both observational
and modelling research suggest that the intensity of extreme precipitation
events worldwide may increase by 6–7% per °C12–14. Within sub-Saharan
Africa, models suggest that overall rainfall will increase under climate
change scenarios, but that the sign of the change in many areas is uncertain

and varies between regions15,16. In contrast, there is greater agreement that
the variability and intensity of rainfall will increase across most of sub-
Saharan Africa, with the region experiencing longer, more arid dry spells,
punctuated by more frequent and more intense rainfall16–18. How these
simultaneous changes affect vegetation productivity is not well understood.

Previous research has shown complex and context-specific links
between precipitation variability and dryland primary productivity. Mean
annual precipitation has long been known to control productivity19,20.
However, the impact of greater variability depends on the climatic context,
vegetation community composition and the degree of the variability19,21–23.
While greater inter-annual variability has been generally associated with
reduced productivity22,24, intra-annual variability has more complex effects,
depending on the timing of precipitation, the vegetation type and the
ambient rainfall regime21,25–27.

Process modelling and ecological theory indicate that these effects are
mediated by the availability of root-zone soil moisture: plant growth is
maximisedwhen availablemoisture ismaintained in a critical zone between
the wilting point and field capacity25,27. Precipitation variability affects the
temporal profile of soil moisture within and between years, as well as the
degree to which rainfall infiltrates to deeper soil layers25,27,28. For example,
heavier rain events can increase infiltration to deeper soil layers, but
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extremely heavy rain can increase water loss through run-off27. These
processes are further modulated by soil texture, temperature, topography
and vegetation, as well as the antecedent soil moisture at the time of a rain
event21,27.How these interacting dynamics translate to ecosystem- or biome-
level responses is not straightforward.

The complexity of these relationships has hindered attempts to gen-
eralise from experimental studies to a broader understanding of precipita-
tion impacts at the continental scale21,27. For example, findings from rainfall
manipulation experiments, which intercept and redistribute rainfall over
experimental plots, can be difficult to generalise to larger spatial scaleswhere
vegetation, soil or other climatic factors may vary21. Similarly, most such
manipulation experiments last for between one and four years23; however,
plant physiological adaptation and changes in community composition can
occur over many years or even decades, leading to differences between
short- and long-term responses19,27.

At larger scales, dynamic global vegetation models (DGVMs) have been
used to fill this role25,26,29. DGVMs can simulate vegetation response at large
spatial and temporal scales to different rainfall regimes that can be precisely
specified. Many different scenarios can be compared and their effects char-
acterised, providing a valuable tool to explore alternative scenarios and probe
causal pathways. However, the results are sensitive to themodel chosen and to
uncertainties in key model parameters, and different models can disagree
widely30,31. Some studies have also found that process-based models tend to
overestimate the role of total or mean rainfall in driving productivity differ-
ences, especially on annual timescales30,32. Analysis of observed, empirical
datasets therefore remains important to test and validate model results.

A third approach is to infer general relationships fromanalysis of large,
aggregated empirical datasets, such as field observations, eddy covariance
measurements or remote sensing data22,24,32–35. This greatly increases the
possible spatial and temporal scale of analysis, but the lack of controlled
experimental settings makes it difficult to isolate the causal effect of any
single variable21,27. As a result, most such studies have focused on one or two
variables24,34–36. Furthermore, many such studies of precipitation variability
have not fully accounted for potential confounders, such as total rainfall
amount, air temperature or soil properties, which complicate
interpretation22. Finally, most studies rely on simpler statistical tools such as
ordinary least squares linear regression24,32,34,36 or pairwise statistical testing
of grouped data22,35, neither of which readily allow for nonlinearities and
asymmetries in vegetation response.

Here, we extend this third approach to address these limitations for
application todry rangelands in sub-SaharanAfrica.We construct statistical
models of vegetation productivity derived from remote sensing using
multiple environmental covariates for three major land cover types com-
monly considered rangelands: grasslands, savannas and shrublands. This
approach allows us to robustly evaluate the contribution of each dimension

of environmental variability in different ecosystem types while controlling
for confounding variables. We use generalised additive models (GAMs) to
model the effects of precipitation amount, seasonality, intensity, and timing,
as well as other environmental variables, on productivity across the con-
tinent, using gridded, remote sensing-derived datasets. GAMs are a semi-
parametric, nonlinear extension of generalised linear models, where cov-
ariates are allowed to have smooth nonlinear relationships with themean of
the variables being modelled37. GAMs therefore allow flexible modelling of
both linear and nonlinear relationships without the need to specify a priori
the form of these relationships.

We focus on the role of precipitation variability, calculating seven
relevant metrics (Table 1) from the Climate Hazards Group InfraRed
Precipitation with Station observations (CHIRPS) daily precipitation
dataset38. To explicitly account for potential confounding factors such as
temperature, soil, and disturbance, we include gridded data on mean air
temperature, soil properties and fire occurrence (seeMethods). Tomeasure
productivity, we use the state-of-the-art gross primary productivity (GPP)
dataset PML_V239,40. PML_V2 accounts for vegetation type, photosynthetic
leaf area and stomatal response to atmospheric conditions, and has been
shown to outperform other datasets against dryland eddy covariance flux
towermeasurements31,39. Figure 1 shows the spatial distribution of GPP and
key environmental variables across the study region. See Supplementary
Figs. S2–S12 for maps of further covariates and scatter plots showing
bivariate relationships.

In addition, the vegetation–rainfall relationship evaluated across spa-
tial gradients is known to differ to that evaluated at a single location through
time19,32. We address this dimension of timescale by comparing the role of
both multi-year mean annual precipitation and the annual anomaly in
contributing to observedGPP.Quantifying both these dimensions supports
allows inferences about the likely response of dryland vegetation to envir-
onmental change.

Our results show the relative sign and magnitude of vegetation
response to precipitation variability and other environmental drivers across
the continent and identify important nonlinearities, thresholds, and inter-
actions in that response. We find that GPP of grasslands and shrublands
shows greater sensitivity to environmental variability than that of savannas.
For all cover types, total precipitation remains the most important driver of
GPP both across space and through time. Increased variability on multiple
timescales has a small but consistent negative effect on vegetation; in par-
ticular, rainfall distributed in fewer, more intense events, as expected under
climate change, tends to reduce productivity relative to rainfall distributed
more evenly. We also show that higher temperatures substantially reduce
productivity for a given rainfall for all land cover classes, especially in drier
rangelands, highlighting the importance of rising temperatures in exacer-
bating plant water stress.

Table 1 | Summary of variables used in regression modelling. See Methods and Table 2 for details of calculation and datasets

Variable name Definition Units

Precipitation covariates

1. MAP Long-term mean annual precipitation over the study period. mm yr−1

2. % precipitation anomaly Annual precipitation anomaly as a percentage of the long-term mean over the study period %

3. Intensity Mean intensity of precipitation on wet days mm day−1

4. F95w Fraction of annual precipitation falling on days that exceed the annual 95th percentile of wet days; ameasure of extreme rainfall unitless

5. UGi Unranked Gini index of daily precipitation; a measure of the temporal distribution of rainfall through the year unitless

6. Season length Duration of the rainy season days

7. Inter-annual CV Coefficient of variation of inter-annual precipitation (modelled separately) unitless

Other covariates

8. Mean air temperature Mean air temperature at 2m above ground °C

9. Soil nitrogen Soil nitrogen content in the top 20 cm. g kg−1

10. Soil sand fraction Sand fraction in the top 20 cm. %

11. Fire frequency Fraction of grid cell burned per year unitless

https://doi.org/10.1038/s43247-024-01664-5 Article

Communications Earth & Environment |           (2024) 5:500 2

www.nature.com/commsenv


Results
Models for grassland and shrubland points explainedGPP variability better
than those of savannas. Using covariates alone (i.e., without including a
separate spatial term), the model achieved adjusted R2 values of 0.75 and
0.78, respectively, compared to 0.58 for savannas (SupplementaryTable S1).
Adding a spatial term (a two-dimensional smooth of x-y coordinates)
substantially improved theoverallmodelfit in all cases by10–15%, reflecting
the spatial structure of the data. Diagnostic plots for model fit are shown in
Supplementary Figs. S13–S15. Since all covariate partial effects were found
to be significant at a p < 0.001 level (reflecting the large size of the dataset),
we used partial effect sizes to determine the relative importance of variables.

We show the effect of each covariate using partial effects plots, which
showhow the contribution of each term to predictedGPP (the y-axis) varies
across the range of that variable (the x-axis). Figures 2–4 shows themean of
the partial effects of the covariates with the greatest effect sizes across the
threemodels including the spatial term.Thepartial effects of the non-spatial

models are not shown, since they may be biased by large-scale spatial pat-
terns unrelated to the covariates, especially in parts of the covariate dis-
tributionwith fewdata points. Since ourmodels use a log-link, the predicted
GPP is given by the exponent of the sum of the partial effects of variables.
The y-axis values in Figs. 2–4 below thus indicate the proportional change in
GPPfor a given change in the x-axis. For example, a partial effect value of 1.5
represents a 50% greater expected GPP than for a value of 1, all other
covariates remaining equal. Figures 2 and 3 show the six covariates with the
strongest effects; full results are shown in Supplementary Figs. S16–S21.

Model results by land cover class
Different land cover classes exhibited distinct responses to environmental
variability. Grasslands and shrublands tended to show stronger and steeper
relationships with environmental parameters than savannas. For all cover
classes, mean annual precipitation (MAP) andmean air temperature showed
the strongest effect sizes across the dataset, with grasslands and shrublands

Fig. 1 | Spatial distribution of key variables across African rangeland ecosystems used as the study region (2001-2019 average values). aMean annual gross primary
productivity; bMean annual precipitation; c Mean air temperature; dModal land cover class. Grey regions indicate pixels masked due to land cover or aridity criteria.
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(but not savannas) also strongly influenced by soil nitrogen. Grasslands
showed apositive response to increasingMAPacross the range, showing signs
of plateauing above 1000mmyr−1. Shrublands showed equal or greater sen-
sitivity to MAP differences up to around 500mmyr−1, with very low con-
fidence at higherMAP. Savannas showed a weaker positive response toMAP
above 500mmyr−1 (the range containing 99.4% of savanna points).

The annual precipitation anomaly had a positive and close to linear
relationshipwithGPPfor grasslands and savannas,with grasslands showing
the greatest response and savannas the least. All else remaining equal, a
grassland receiving 50%more than the mean rainfall had 28% higher GPP,
while a 50% reduction in rainfall was associated with 26% lower GPP.
Shrublands, in contrast, showed an asymmetric response, with similar slope
to grasslands for negative anomalies but a reduced response to positive
anomalies. Savannas showed the weakest relationship, albeit with steeper
slopes as the absolute size of the anomalies increase.

Shrubland GPP was strongly affected by mean air temperature, with
meanGPP at 30 °C less thanone quarter of that at 20 °C. Savannas showed a
consistent, but weaker, negative relationship, with GPP declining strongly
above 28 °C. Grasslands, on the other hand, showed an inverted U-shape
response to temperature, with an apparent optimum range between around
17 and 23 °C.

Precipitation intensity was the only intra-annual variabilitymetric that
showed a substantial effect size, and this varied among land cover classes.

Both grasslands and savannas showed increasedGPP at low intensities, with
mean productivity at 5mmday−1 11%and14%greater, respectively, than at
10mm day−1. Shrublands showed lower sensitivity to precipitation inten-
sity, with no comparable increase at very low intensity and only slightly
lower GPP as intensity increased. The Unranked Gini index (UGi) had a
slight positive effect on grasslands, but a neutral effect in shrublands and
savannas (Supplementary Fig. S16). Rainy season length also had a slight
positive effect in shrublands, but not noticeably in other land covers.

Within the range of themajority of the data, no substantial effects were
seen for the prevalence of extreme rainfall (F95w) or fire occurrence for any
land cover class (Supplementary Fig. S16).

Model results disaggregated by mean annual precipitation
The three land cover classes differed in mean annual precipitation, with
shrublands on average receiving lower MAP than grasslands and savannas
receiving higher MAP (Supplementary Fig. S10). To distinguish the effects of
rainfall regimeand landcover class,we thereforefitted sub-models to each land
cover for three 400mm MAP bins (Fig. 3). MAP-land cover combinations
containing less than0.1%of thewhole dataset (shrublandswith> 800mmyr−1

and savannas at < 400mmyr−1) were excluded, since they did not represent
sufficiently large areas to support meaningful inferences.

Of the main variables considered, both mean air temperature and soil
nitrogen showed effects on GPP that differed strongly across the MAP

Fig. 2 | GAM partial effect plots for the combined model. The y-axis scale
represents the proportional increase or decrease in predicted GPP associated with a
change in each covariate relative to its mean value. Curves represent the mean of
three models with different degrees of complexity in the spatial term. Density plots
above each sub-plot show the distribution of data points (pixels) for each covariate

and land cover class. Curves are limited to the central 99% of the data range for each
panel and cover type to reduce the impact of outlier values. Only curves with sig-
nificant nonzero effect sizes are shown; see Supplementary Fig. S16 for full results.
MAPMean Annual Precipitation. Shaded areas represent the outer envelope of 95%
confidence intervals from the three spatial models.

https://doi.org/10.1038/s43247-024-01664-5 Article

Communications Earth & Environment |           (2024) 5:500 4

www.nature.com/commsenv


gradient regardless of land cover type. In the lowest rainfall bin
(0–400mm yr−1), shrublands and grasslands showed a strong negative
response to temperature above 18 and 21 °C, respectively, with an increase
from 20 °C to 30 °C associated with a 74–78% reduction in GPP. As MAP
increased, the impact of temperature became less severe for all cover types:
the average slope became shallower and the inflection point, above which
steep declines in productivity were apparent, occurred at warmer tem-
peratures. Savannas tended to have smaller responses than grass and
shrublands up to around 28 °C, above which they showed steep declines.

A similar pattern was observed for soil nitrogen, with extremely strong
relationships in the driest bin and smaller effects in wetter pixels. Again,
savanna pixels showed a weaker response to soil nitrogen than grass and
shrublands.

In contrast, the responses of each land cover class to annual pre-
cipitation anomaly,mean precipitation intensity and soil sand fractionwere
not substantially different between MAP bins. Grasslands consistently
showed the greatest sensitivity to these variables, and savannas the least.
However, since precipitation anomaly is defined as a percentage of the long-
term mean annual precipitation, a constant slope as mean rainfall increa-
ses suggests a decreasing sensitivity to absolute annual differences.

Of the remaining variables, UGi showed a slight positive relationship
for dry and intermediate grasslands and shrublands, while season length
showed the strongest positive relationship for shrublands and wet grass-
lands (Supplementary Fig. S20). Fire occurrence had a slightly positive effect
in the driest grasslands, diminishing as rainfall increased.

Inter-annual precipitation variability
We also assessed the effect on mean GPP of inter-annual precipitation
variability, measured by the coefficient of variation of total precipitation in
each year in the dataset (Fig. 4). Across all rainfall bins and land cover

classes, therewas not a clear or consistent effect of inter-annualCVexcept in
the most variable environments (CV > 0.4). Above this value, both shrub-
lands and grasslands showed a negative effect; no savanna areas in the
dataset had CV values above this threshold.

Discussion
Overall, our results are broadly consistent with root zone soil moisture
availability and plant water stress being the primary drivers of GPP differ-
ences. Total precipitation, mediated by soil texture, is the primary deter-
minant of soil moisture replenishment. More infrequent, intense rainfall
events may increase infiltration, but also increase water stress in the inter-
vening periods27, leading overall to a small negative effect of intensity on
mean GPP. Higher temperatures have a detrimental effect on GPP through
increasing evapotranspiration, leading both to reduced soil moisture and
plant physiological responses that reduce stomatal conductance, and ulti-
mately by inhibiting photosynthesis41. Savannas, defined by the presence of
trees with deeper and more complex root structures42, tend to be less sen-
sitive to precipitation and temperature variability than grasslands or
shrublands. However, we do not find evidence for strong effects of season
length or of extreme rainfall events posited by some studies25,27,28, nor do we
find that the driest ecosystems benefit from more variable rainfall. In the
following sections, we examine each of these results in more detail.

Our analysis identifiedmean annual precipitation as a key predictor of
average gross primary productivity across African rangelands. This con-
firms extensive previous research on the ecological importance of total
precipitation in drylands20,43. For example, a recent study32 found that
MAP explained 66% of the spatial variation in normalised difference
vegetation index (NDVI) across global drylands. This reflects the impor-
tance of cumulative seasonal precipitation in controlling available soil
moisture21,43.

Fig. 3 | GAMpartial effect plots for three subsets of the data with different ranges
ofmean annual precipitation.The y-axis scale represents the proportional increase
or decrease in predicted GPP associated with a change in each covariate relative to its
mean value. Curves represent the mean of three models with different degrees of

complexity in the spatial term. Curves are limited to the central 99%of the data range
for each panel and cover type to reduce the impact of outlier values. Shaded areas
represent the outer envelope of 95% confidence intervals from the three spatial
models.
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Shrublands and grasslands showed the greatest sensitivity to MAP,
while savannaGPP showed a smaller increase withMAP. Thismay reflect a
feedback in savannas by which higher rainfall increases tree-grass compe-
tition. In drier savannas, trees tend to grow deeper roots and draw water
from lower soil layers than grasses, while in wetter savannas, trees and
grasses share shallow rooting depths44. In dry areas, trees may therefore be
better able to access to more stable groundwater resources; in contrast,
competition from grasses for soil moisturemay reduce the ability of trees to
benefit from higher rainfall in wetter savannas45,46.

Our results suggest a weakly asymmetric response to annual rainfall
anomalies, with moderate negative anomalies having a stronger effect than
moderate positive anomalies. The results of the binned analysis suggest that
this effect is stronger for drier regions, and for shrublands and grasslands
more than savannas. Taken together, this broadly supports previous find-
ings of a concave-down relationship to annual rainfall, in which dry years
harm plant productivity more than wet years enhance it21,22,35; however, the
results suggest the asymmetry is small once mean annual precipitation and
other factors are accounted for. The neutral or weakly negative relationship
between inter-annual variability and mean GPP below a CV of 0.4 (Fig. 4)
also suggests that this asymmetry is a minor driver of spatial patterns in
mean GPP, in contrast to previous findings24,35. In addition, while some
studies have suggested an opposite, concave-up effect in very dry
grasslands22,24, our results do not support this rainfall-dependence, finding
linear or concave-down relationships in all precipitation bins.

This result also does not support the double asymmetry model19 in the
case of the semi-arid rangelands. This model posits that the increase in
productivity in greater-than-average rainfall years is larger than the decrease
in response to below-average rainfall years (positive asymmetry), but that
this relationship is reversed in the case of extreme wet and dry events
(negative asymmetry). While our analysis suggested a possible nonlinear
response of grasslands and shrublands in the 400–800mm yr−1 rainfall bin,
in generalwe foundnoconsistent evidence of anegative response toextreme
wet years, suggesting that vegetation is generally able to take advantage of
additional rainfall47.

Within-year variability had a secondary effect on GPP.We found that
higher average rainfall intensity consistently reduced GPP for both grass-
lands and savannas, but less so for shrublands. This suggests that, for a given
mean annual rainfall, GPP tends to be greater if that rainfall is distributed
evenly overmanywet days, rather than falling in a few events. This supports
previous findings that primary productivity and rain use efficiency in
grasslands are on average reduced as rainfall is repackaged in fewer, larger
events, since this leads to larger fluctuations in soil moisture and longer
periods where shallow soil layers can dry out28,33,48. Some studies have
suggested that, in drier grasslands, this relationship may be reversed as
heavier rainfall events are needed to infiltrate soils22,27,49; our findings do not
support this, showing a consistent negative effect of intensity in pixels with
MAP < 400mm year−1. Overall, this result is consistent with a model in
whichprecipitation intensity and frequency interact to control soilmoisture:
for most environments, receiving precipitation little and often through a
growing season maximises the total time when near-surface soil moisture
levels are sufficient to support plant growth25,28. A second possible
mechanism involves plant responses. Fewer, heavier rain events imply
greater intervening periods of higher vapour pressure deficit and solar
radiation, both of which can cause isohydric plants to limit stomatal
conductance50, thereby reducing GPP.

In contrast, other measures of variability showed weaker effects.
Increasing temporal clustering of precipitation (UGi) across the year had a
slight positive effect on grasslands, but a neutral effect in shrublands and
savannas (Supplementary Fig. S16). Together with the result for intensity,
this suggests concentration of rainfall in one distinct wet season allows
greater utilisation of water than a more dispersed rainfall regime, but the
effect is small compared to other metrics. Similarly, the proportion of pre-
cipitation arriving in extreme rainfall events (F95w) had a negligible effect on
meanproductivity. This is surprising given conceptual and empirical studies
that suggested extreme rainfall would be associated with a loss of
productivity28,51. However, extreme rainfall as conceived in most such stu-
dies is perhaps better captured by the metric of rainfall intensity; after
accounting for average intensity, our result suggests that occasional very
large events do not have a disproportionate effect on GPP.

High temperatures were robustly associatedwith reduced productivity
across all three ecosystem types, with shrublands and grasslands more
sensitive than savannas. The effect of temperature on all cover classes is
stronger in the driest rangelands, suggesting that temperature primarily
affects productivity through its impact on evapotranspiration and plant
water stress. This supports the findings of Huang et al.52, who found that the
effect of ambient temperature on plant water stress placed a stricter con-
straint on photosynthesis than the direct effects of leaf temperature on
photosynthetic rates. High temperatures are associated with more rapid
evaporationof soilmoisture andwithgreater vapourpressuredeficit, bothof
which can induce stomatal closure as ameans of conservingwater, reducing
plants’ ability to take up CO2. Savanna and wet grassland GPP
(MAP > 800mm yr−1) appeared less sensitive to temperature at inter-
mediate air temperatures, but dropped off sharply at mean temperatures
above 28 °C. This may reflect a shift in the mechanism by which tempera-
ture affectsGPP: at intermediate temperatures, water stress can be alleviated
by higher rainfall or the deeper roots of savanna trees; at the warmest
temperatures, however, the physiological impacts of high temperaturesmay
limit photosynthesis regardless of moisture availability53.

Fig. 4 | GAM partial effect plots for inter-annual variability in precipitation. The
y-axis scale represents the proportional increase or decrease in predicted GPP
associated with a change in each covariate relative to its mean value. Curves
represent themean of threemodels with different degrees of complexity in the spatial
term. Curves are limited to the central 99% of the data range for each panel and cover
type to reduce the impact of outlier values. Shaded areas represent the outer envelope
of 95% confidence intervals from the three spatial models.
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Grasslands exhibited an inverted U-shaped response to temperature,
with reduced productivity at both low and high temperatures compared to
intermediate values. This apparent optimal range of mean annual air tem-
perature for grasslands from 17 to 23 °C matches previous findings of
ecosystem-level optimum photosynthetic temperatures52–54. Up to a point,
warmer air temperatures tend to promote enzymatic andmetabolic activity,
enhancing photosynthetic rates; however, this is increasingly offset by the
detrimental impact of higher temperatures onwater stress, stomatal closure
and ultimately enzyme inactivation54. This consistent response suggests that
the capacity of grasslands to acclimate to climate warming by shifting their
thermal optima53 may be limited unless accompanied by increases in
rainfall.

Among non-climatic variables, soil nitrogen concentration had a
strong positive relationship with productivity in grass and shrublands but
only a weak effect in savannas. This implies that most shrublands and
grasslands are somewhat nitrogen-limited55. Nitrogenhad a greater effect in
dry compared to wet rangelands, perhaps reflecting the role of nitrogen
supply in increasing plant water use efficiency56. In contrast, the low
influence of soil nitrogen in savannas likely reflects the prevalence of
nitrogen-fixing leguminous trees such as Vachellia species (acacias) in
African savannas, which improve nitrogen cycling and increase its avail-
ability to both trees and grasses even in nitrogen-poor soils57,58. In fact, it has
been argued that the ability to fix nitrogen provides a competitive advantage
indry conditions primarily by improvingwater use efficiency59; the presence
of leguminous trees may therefore also contribute to the observed insensi-
tivity of savanna GPP to rainfall compared to grass and shrublands. An
important caveat is that spatial estimates of soil nitrogen content were
derived fromamachine learning pipeline that includedvegetation indices as
well as geological, topographic and climatic predictors60, so these findings
may require further verification.

Soil texture (sand fraction) had a consistent positive effect across land
cover types and across the MAP gradient. This contrasts with other recent
findings for dry grasslands61, but is consistent with the inverse-texture
hypothesis for arid and semi-arid ecosystems: sandy soils allowmore rapid
infiltration of rainfall to the root zone, reducing bare soil evaporation and
increasing the fraction of rainfall available to plants27,62,63. The weaker effect
seen in savannas supports this interpretation, since deeper rooted trees are
able to draw water from a wider range of soil depths than shallow-rooted
grasses and forbs42.

Fire had a neutral effect overall but a slightly positive effect in dry
grasslands. This suggests that fire may play a role in enabling grass pro-
ductivity in these systems, perhaps by clearing dead material that is not
readily decomposed in arid environments64–66. The lack of negative effects
from fire also implies that rangeland ecosystems in fire-prone regions are
sufficiently resilient to the effects of fire that the annual and multi-annual
mean productivity are not substantially affected.

Our results have implications for the future of African rangelands
under climate change. TheClimateModel Intercomparison Project Phase 6
(CMIP6) ensemble of global climatemodels suggests that the climate of sub-
Saharan Africa is likely to become warmer, wetter andmore variable under
climate change15,16. The strength and sign of these changes, however, varies
by region and depends on the timescale and greenhouse gas emissions
scenario considered. An analysis of 27 CMIP6 models15 forecast robust
increases in average air temperature across sub-SaharanAfricaby2100,with
a median increase across models of 1.4–4.4 °C, depending on the emissions
scenario.

There is less consistency in forecasts for mean annual precipitation,
with models disagreeing about the sign and magnitude of changes in total
wet seasonprecipitation16. TheCMIP6 ensemble projects anoverall increase
in annual rainfall, with median values of 4.8–15.2% relative to the late 20th
century for different emission scenarios15. However, this change is spatially
variable: greater increases are predicted in the Sahel and East Africa, while
much of Southern Africa is likely to experience reduced rainfall. Both fine
and coarse-scale models nonetheless agree that precipitation is likely to
become more variable, infrequent and intense across sub-Saharan Africa

under climate change, with the strength and robustness of the change
growing with cumulative CO2 emissions15–18.

The results presented here do not directly reflect how rangelands will
respond to climate change. Vegetation response to climate change over
years or decades will be the product of both short-term plant responses and
slower changes in vegetation and soil composition, as well as local feedbacks
not captured by broad-scale variables19. In addition, rising atmospheric CO2

will also affect plant metabolisms through CO2 fertilisation, leading to
greater photosynthetic rates and improved water use efficiency relative to
today67,68, as well as changes in vegetation composition towards woody
plants69–72. All of these changes will affect ecosystem response to rainfall in
ways not captured in this analysis.

However, certain inferences can be made from our results about the
long-term ability of ecosystems to adapt to future climate regimes. First, this
analysis suggests that total precipitation remains the most important con-
straint on gross primary productivity across African rangelands both across
spatial gradients and from year to year. Forecasts of reduced rainfall in
SouthernAfrica suggest anegative effect onGPP,while an increase inoverall
rainfall in dry regions such as the Sahel and theHorn of Africa could benefit
mean vegetation growth. Yet, while the influence of changingmean rainfall
remains uncertain, increased inter-annual variabilitywill very likely increase
the frequency of very high or very low productivity years. Second, the
dramatic effect of temperature onGPP supports the idea that this may have
a greater effect on rangeland GPP than changes in precipitation, and may
place a limit on GPP that exceeds the capability of plants to adapt. The
strengthening of this temperature constraint at lower mean precipitation
also shows the vulnerability of drier rangelands to this increase in water
stress, which may become a key mechanism limiting primary production
under climate change. Third, the lower sensitivity of savanna regions to
environmental conditions suggests that climatic shifts such aswarmingmay
be expected to affect grass and shrublands more than savannas, potentially
leading to expansion of tree cover and other shifts in community compo-
sition. In particular, our findings suggest that nitrogen-fixing savanna trees
may play an important role in enhancing the resilience of rangelands to
climatic variability. Finally, the expected increase in average intensity of
rainfall events can be expected to have amodest negative effect on rangeland
GPP, most likely by increasing within-season water stress and reducing the
number of growing days each year.

This research employed the flexibility of GAMs to identify robust
patterns in large, gridded datasets of gross primary productivity and
environmental covariates. Use of gridded datasets allows broad spatial
coverage across Africa, including in regions where field or weather station
data are scarce, and minimises the influence of local contextual factors.
However, coarse-resolution datasets inherently average out local variations
in vegetation productivity and other drivers, reducing the apparent variance
in the data andoverstating the extent towhichproductivity is determinedby
large-scale environmental variables (themodifiable areal unit problem73). In
addition, the accuracy ofGPPand rainfall datasets is limited by the relatively
lower density of flux towers and rain gauges in Africa compared to some
other regions74,75.

A similar challenge has been identified in the temporal domain
regarding satellite-based precipitation datasets. Such datasets, including
CHIRPS, are known to underestimate themagnitude of extreme rain events
and perform better at estimating multi-day or monthly rainfall totals than
daily values76,77. Gridded datasets may therefore lead to underestimation of
short-term variability in precipitation or the fraction of precipitation falling
in extreme events. While our study has suggested that these second-order
processes have minor effects on GPP compared to total precipitation,
temperature or soil nutrients, this could also be due to the limitations of
CHIRPS in resolving individual precipitation events. Comparison with
point weather station data could improve assessment of these dimensions at
the cost of spatial coverage. However, CHIRPS has been shown to perform
very well at estimating the longer-term rainfall totals (annual and multi-
annual) for which we find the greatest effects in this study76,78–80, providing
confidence in our main conclusions.
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Ourproductivity dataset also has characteristics that potentially reduce
the sensitivity of our analysis. PML_V2has been shown toperformverywell
for multi-monthly or multi-annual mean values, as used here39; however,
since GPP values are estimated primarily based on leaf area index and
vapourpressuredeficit, theymaynot capture shorter-termprocesses such as
stomatal response to changing soil moisture81. As with precipitation data
above, it is possible that such dynamic changes in plant GPP may
underlie stronger responses to short-termvariability that our analysiswould
be unable to detect. We recommend further studies evaluate the role of
dataset selection on the inferences drawn from large-scale observational
analysis.

By analysing the full dataset within a single model, our approach was
unable to explore spatial differences in the relationships between pre-
cipitation and GPP and may not have fully captured differences between
spatial and temporal responses to different dimensions of rainfall regimes.
The large number of variables considered also limited our ability to explore
interactions between factors such as soil texture and rainfall intensity, which
may affect vegetation response. The timescale of our study meant we were
also unable to consider the impact of particular extreme events, such as
droughts, or the importance of legacy effects, by which unusually wet or dry
periods can continue to influence vegetation response in subsequent years82.
Future work applying this GAM framework on shorter timescales would
allowmore insight into these dynamic effects. In addition, partitioningother
variables, such as precipitation intensity, between spatial mean values and
annual anomalies may better illuminate short-term vegetation responses27.

Finally, it remains important to recognise that productivity is far from
the only metric of importance for the health and ecosystem services pro-
vided by rangelands. Changes in plant community composition and
available surface water are as important as vegetation growth for wildlife,
livestock and pastoralist livelihoods83,84. In addition, variability of forage
production, as well as the availability and nutritional quality of forage at key
locations and times, are all critical to the resilience of rangeland pastoralism
and wildlife populations85, none of which is captured by the annual mean.
Lastly, the impact on wildlife and pastoralist communities will depend on
the degree towhich theyprove resilient and able to adapt to rising variability
due to climate change, which in turn depends on a wider set of ecological,
social, economic and governance factors such as herbivore mobility, land-
scape connectivity, conflict and diversification of livelihoods86–88.

The aim of this study was to disentangle the effects of precipitation
variability on rangeland productivity in the dry rangelands of sub-Saharan
Africa. We used generalised additive models to quantify the links between
gross primary productivity and multiple metrics of precipitation, tem-
perature, and other environmental drivers across three major land cover
classes. The flexibility and robustness of our modelling framework allowed
us to assess simultaneously the influence of multiple environmental vari-
ables and to explicitly quantify nonlinearities, better reflecting the

complexity of real ecosystems. We found that GPP in grasslands and dry
shrublands was strongly influenced by climate and soil conditions, while
savannas showed lower sensitivity to environmental variation. We con-
firmed that mean annual precipitation, mean air temperature and soil
nutrient availability were the strongest predictors of GPP. We also found
evidence of a secondary link betweenvariability andGPPthrough the effects
of inter-annual anomaly, rainfall intensity and inter-annual CV, as well as a
substantial role of soil texture.

Overall, our results are consistent with a model in which vegetation
productivity in African rangelands is determined primarily by the avail-
ability of soil moisture and minimisation of plant water stress, but where
these effects play out differently in different land cover classes. Our findings
suggest that rising temperatures andmore variable rainfall will substantially
affectGPP inAfrican rangelands under future climate change, but that these
effects will not be distributed evenly: dry grass and shrublandsmay bemost
at risk, while wetter grasslands and savannas with leguminous trees may
show greater resilience to environmental change.

Methods
Study region
We analysed arid, semi-arid and dry sub-humid rangelands in Sub-Saharan
Africa.Wedefinedour study areawith three spatialmasks. First,weused the
Global Aridity Index v2 dataset to exclude pixels with an aridity index of
<0.05 (hyper-arid)or>0.65 (humid)89, to focusonwater-limited ecosystems
that are widely used for pastoralist agriculture. Second, since our primary
interest is the response of herbaceous rather thanwoody vegetation, we used
the MODIS MCD12Q1 V6 500m land cover product90 to select rangeland
ecosystems, defined as International Geosphere-Biosphere Program land
cover classes 6 to 10 (open and closed shrublands, open and woody
savannahs, and grasslands). We further excluded pixels containing more
than 25% cropland, built up land, snow/ice, wetland, mangrove or open
water, or more than 50% trees, in the high-resolution European Space
AgencyWorldCover v100 10mproduct for 202091. The remaining grid cells
(N = 246,790) were used in the analysis. Of these, 99.6% were classed as
Open Shrublands (16.6%,N = 41,690), Open Savannas (16.0%,N = 39,328)
and Grasslands (67.0%, N = 164,888). We fitted separate models to each of
these classes in order to explore the differences in response between
vegetation types.

Datasets
Table 2 details the geospatial datasets used. To measure vegetation pro-
ductivity, we used the PML_V2 dataset of gridded GPP estimates39,40.
PML_V2 uses a coupled model of carbon and water fluxes in vegetation
canopies to estimate GPP and evapotranspiration at 500m resolution. GPP
is estimated from MODIS-derived leaf area index, ambient CO2 con-
centration, land cover class and vapour pressure deficit from the Global

Table 2 | Spatial and temporal resolutions and extents of datasets used in the study

Dataset Variables Spatial resolution Spatial extent Temporal resolution Temporal range

PML_V2 Gross primary productivity 500m Global 8 days 2000–2020

CHIRPS Precipitation covariates (Table 1) 0.05°
(~5.5 km at equator)

Global
50° N to 50° S

Daily 1981–present

ERA5-Land Mean air temperature 0.10°
(~11 km at equator)

Global Hourly
(original dataset)
Daily aggregate
(used in this study)

1950–present

MCD64A1.006 MODIS monthly burned area Fire frequency 500m Global Monthly 2000–present

iSDAsoil Soil sand fraction
Soil clay fraction
Soil nitrogen
Soil extractable phosphorus

30m Africa-wide Static Static

MCD12Q1.006 MODIS land cover class Land cover classification 500m Global Annual 2001–present

All datasetswere resampled to the resolutionofCHIRPS (0.05°) usingbilinear interpolationor area-weightedmeanbeforebeing aggregated to annual values. The studyperiod (01.01.2001-31.12.2019)was
that of PML_V2 excluding the years 2000 and 2020, which had only partial data
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LandData Assimilation System v2.1,meaning it is relatively independent of
our precipitation dataset.

To calculate precipitationmetrics, we used theClimateHazardsGroup
InfraRed Precipitation with Station observations (CHIRPS) daily pre-
cipitation dataset38. CHIRPS is derived from a synthesis of satellite and
weather station data, achieves a relatively high spatial resolution (0.05°) and
has been shown to outperform many other products in regions of sparse
weather station coverage such as Sub-Saharan Africa, showing lower error
and bias in estimating monthly, decadal and daily precipitation totals than
other commonly applied datasets across multiple studies76–80,92–94.

We also examined the role of air temperature, fire frequency and soil
properties in controlling productivity. For temperature, we used ERA5-
Land monthly averaged air temperature95. For fire, we calculated average
annual percentage burned of a pixel over the study period from MODIS
MCD64A1.006monthly burned area96. For soil variables, we extracted sand
fraction, soil nitrogenand soil extractable phosphorus in the top 20 cm from
the iSDAsoil dataset60. iSDAsoil is a 30-m gridded soil dataset for Africa
produced using an ensemble of machine learning methods from 150,000
African soil samples and a range of environmental and remote sensing
covariates. We did not include soil moisture as a covariate; since soil
moisture is a key mediator of the effect of precipitation and soil texture on
vegetation, including it would have been likely to bias the estimate of the
effects of these variables97.

Defining the hydrological year for each pixel
Individual rainy seasons often fall across more than one calendar year. To
account for this, and tominimise the influence of precipitation from one year
on vegetation in the following year, we defined a mean hydrological year for
each pixel in the study region. To do this, we calculated the mean onset date
of the main rainy season in each pixel as described by Liebmann et al.98 and
Dunning et al.99. First, the mean rainfall for each day in the calendar
year across the study period was calculated for each pixel, Qi, along with the
overall daily mean rainfall �Q. The mean climatological cumulative daily
rainfall anomaly on each day of the calendar year, C dð Þ, was then calculated:

C dð Þ ¼
Xd

i¼1

Qi � �Q ð1Þ

CðdÞ forms a smooth annual curve in which periods of above-average
rainfall days show a positive slope, and periods of below-average rainfall a
negative slope. The onset date of themain rainy season is defined as one day
following the minimum in this curve.

We define the start date of the hydrological year as 30 days prior to this
onset date, to ensure seasons with early onsets are captured. See Supple-
mentaryMethods formore detail on how the hydrological year was defined.

Variable preparation
Annual values of GPP, precipitation variables, mean temperature and fire
frequency were then calculated for the 365-day period beginning on the
hydrological year start date for each pixel. Unless otherwise specified,
equivalent values for the spatial model were calculated as the arithmetic
mean of annual values over the study period.

All covariates were processed and resampled to the coordinate refer-
ence systemand resolution ofCHIRPS (0.05°) using an area-weightedmean
approach in Google Earth Engine100. Variable rasters were further prepared
and masked to the study area in R V4.3.1101 using the ‘tidyverse’102, ‘terra’103

and ‘sf’104 packages. Figures were prepared with the ‘tmap’105, ‘ggplot2’106,
‘gratia’107 and ‘patchwork’108 packages.

We initially calculated eleven metrics of precipitation designed to
capture distinct dimensions of quantity, timing, intensity, and variability.

First, we decomposed total annual precipitation per grid cell into two
components: long-termmean annual precipitation (MAP), calculated over
the whole study period, and the annual precipitation anomaly, given as a
percentage of the MAP.

Next, we calculate four metrics of precipitation timing and seasonality
within the year:
(i) The UnrankedGini index (UGi) of precipitation22, an index between 0

and 1 that quantifies the degree to which daily precipitation totals are
clustered within the year.

(ii) The average fraction of dry days per year.
(iii) The average length of the rainy season(s) in days.
(iv) The estimated deviation in rainy season onset date each year99.

See Supplementary Methods and Supplementary Fig. S1 for more
details on how seasonal variables and the Unranked Gini index were cal-
culated. We subsequently excluded the deviation in annual rainy season
onset date, since (a) the algorithm failed to definitively identify onsetdates in
approximately 4% of the dataset and (b) exploratory analysis showed
minimal relationship between season onset date and GPP.

We also calculate four metrics of extreme precipitation, based on
indices defined by the Expert Team on Climate Change Detection and
Indices109:
(i) Intensity, themean amount of precipitation falling ondayswith at least

1 mm of rainfall.
(ii) F95 w, the fraction of total annual precipitation falling on extremely wet

days, defined as thosewhere precipitation exceeds the 95th percentile of
all wet days in each year110.

(iii) D10 mm and D30 mm, the average number of days per year exceeding
10mm or 30mm of precipitation.

Finally, we quantified the importance of inter-annual precipitation
variability for multi-annual mean GPP by calculating the coefficient of
variation of annual precipitation (or, equivalently, the standard deviation of
the annual anomaly). This was used instead of annual anomaly in a sec-
ondary set of models predictingmulti-annual mean GPP, in order to better
understand the response of ecosystems to inter- as well as intra-annual
variability. Supplementary Table S2 details the full set of variables
considered.

Exploratory data analysis and covariate selection
We used Generalised Additive Models (GAMs) to predict mean GPP as a
function of rainfall metrics and other environmental variables for each land
cover class. GAMs are a semi-parametric extension of Generalised Linear
Models in which the assumption of linearity is relaxed, and covariates are
allowed to have smooth nonlinear relationships with the mean of the
variables being modelled37. GAMs allow flexible modelling of both linear
and nonlinear relationships without the need to specify a priori the form of
these relationships. Each term ismodelledas the sumof several simpler basis
(e.g., polynomial) functions, such that an arbitrarily complex smooth
function is produced.

GAMs can be sensitive to high degrees of concurvity, the nonlinear
analogue of collinearity in linear models in which one covariate can be
approximated by a smooth function of others. As with collinearity, high
concurvity can lead to poorly constrained variable effects and inflated
variances111,112. Thefitting algorithms used in the ‘mgcv’package37 are robust
tomoderate to severe concurvity112; nevertheless, we also calculated pairwise
Spearman rank correlation coefficients (Supplementary Fig. S22) between
covariates used in the multi-annual analysis. For any pair with correlation
greater than 0.7, only one of the two was retained113. The analogous set of
variables was also used for the annual model to aid comparison of results.
The retained variables are reported in Table 1. We also calculated pairwise
concurvity metrics for the final models and report them in Supplementary
Figs. S23–25.

Regression modelling
Statistical modelling was conducted in R using the ‘mgcv’ package version
1.8.4237,101. GAMs implemented in ‘mgcv’ avoid overfitting by penalising the
degree of complexity in the non-linear terms37,114.Wemodel GPP assuming
a Gamma distribution with a log link, since GPP is a non-negative
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continuous variable, and since the variance of GPP was found to increase
with the mean. The general form of the model is as follows:

log E GPPð Þð Þ ¼ β0 þ
X

i

f i Xi

� �
;GPP∼ Γðk; θÞ ð2Þ

whereE GPPð Þ is the conditionalmeanGPP,β0 is a constant termand f iðxiÞ
is a smooth function of covariate xi, and where Γðk; θÞ is a gamma dis-
tribution with shape and scale parameters k and θ, respectively.

The smooth functions of the covariates were constructed using thin
plate regression splines, which have been shown to perform well for both
simple smooth and interaction terms115. We used the Restricted Maximum
Likelihood method (REML) within the ‘mgcv::gam()’ function to estimate
the optimal smoothing parameters for each term. For each term, we set the
number of basis functions (the maximum amount of wiggliness) high
enough to eliminate significant patterns in residuals as determinedusing the
‘mgcv::gam.check()’ function. This ensures that no part of associations
between GPP and the covariates is missed.

Spatial or temporal autocorrelation in model residuals can violate
the assumption of independence underlying model fitting, potentially
leading to biased parameter estimates and falsely narrow confidence
intervals116. In fitting the final models, we thus included a two-
dimensional spatial smooth function of latitude and longitude to better
account for underlying spatial structure in the GPP dataset. Models with
different degrees of allowed complexity in the spatial term, including a
model without the spatial smooth term, are reported, to explore the
sensitivity of model results to the degree of spatial structure in the
dataset. We also included a smooth term of year to account for temporal
autocorrelation.

Interaction terms between the variables with the greatest effect sizes
were also tested but did not increase the explanatory power of the models.
To elucidate interactions between MAP and other variables, we thus fitted
additional sub-models to the grid cells falling in three 400mm yr−1 bins of
precipitation (up to 1200mm year−1). Savannas receiving < 400mm yr−1

and shrublands receiving > 800mm yr−1 accounted for only 0.03% and
0.02% of the dataset, respectively, and were therefore excluded from
modelling.

Data availability
All data used in this study are freely available and can be accessed in online
repositories. The latest PML_V2product39 is available throughGoogleEarth
Engine from https://github.com/gee-hydro/gee_PML. CHIRPS daily pre-
cipitation data38 is available at https://www.chc.ucsb.edu/data/chirps.
ERA5-Land reanalysis data95 are available from the European Centre for
Medium-Range Weather Forecasts at https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land-monthly-means. The following
MODIS datasets are available from the Land Processes Distributed Active
Archive Center (LP DAAC): land cover classes90 (https://lpdaac.usgs.gov/
products/mcd12q1v006/) and burned area96 (https://lpdaac.usgs.gov/
products/mcd64a1v006/). The iSDAsoil dataset60 can be accessed at
https://isda-africa.com/isdasoil. All datasets are also available through
Google Earth Engine (Google account required) and are linked to in the
Google Earth Engine repository detailed below. Processed data used for
fitting the annual and multi-annual GAMs, as well as model output data
used to generate Figs. 1–4, are available at https://doi.org/10.5281/zenodo.
13294238.

Code availability
Data preparation and analysis code is available at https://doi.org/10.5281/
zenodo.7024961. The Google Earth Engine repository for data pre-
processing can be accessed by registered Earth Engine users at https://
code.earthengine.google.com/?accept_repo=users/guylomax01/africa_
rangeland_ppt_gpp_analysis. Intermediate data pre-processing Earth
Engine assets can also be accessed at https://code.earthengine.google.com/?
asset=projects/ee-guylomax01/assets/africa_rangeland_precipitation_gpp.
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