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Mechanisms and functions of multiciliary coordination
Kirsty Y. Wan and Rebecca N. Poon

Abstract

Ciliated organisms are present in virtually every branch of the
eukaryotic tree of life. In diverse systems, cilia operate in a
coordinated manner to drive fluid flows, or even propel entire
organisms. How do groups of motile cilia coordinate their ac-
tivity within a cell or across a tissue to fulfil essential functions
of life? In this review, we highlight the latest developments in
our understanding of the mechanisms and functions of multi-
ciliary coordination in diverse systems. We explore new and
emerging trends in bioimaging, analytical, and computational
methods, which together with their application in new model
systems, have conspired to deliver important insights into one
of the most fundamental questions in cellular dynamics.
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Introduction

The Last Eukaryotic Common Ancestor (LECA) was
likely ciliated and motile. In fact, it is hypothesised to have
possessed two cilia with morphological traits resembling
modern-day excavate flagellates [1]. In most extant fla-
gellates, cilia on the same cell have unequal lengths and
distinct beat patterns and can be coordinated dynamically
to fulfil distinct roles such as for feeding, surface attach-
ment, and swimming. For over one billion years, cilia and
ciliated organisms have diversified significantly to occupy
many phyla across the tree of eukaryotes [2].

While some solitary cells such as choanoflagellates and
diverse sperm cells actuate just a single cilium (or fla-
gellum), most ciliated systems possess between two and
up to hundreds of thousands of cilia that are organised in
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patches, arrays and circular bands. Wherever multiple
cilia occur, they invariably exhibit some form of coordi-
nation that may be essential for maintaining normal
function in locomotion or transport [3,4]. This includes
propelling mucociliary flows across ciliated epithelia in
vertebrates, or enabling microorganisms and small
plankton to swim and navigate through aquatic habitats
[5,6]. Despite a long and rich history of investigation
into the phenomenology of ciliary coordination [7,8], we
still have only a limited understanding of the key
mechanisms and biophysical rules that underlie coordi-
nation, except in a few isolated systems.

In this topical review, we identify and dissect the main
ciliary coordination states that have been encountered
in different organisms, and discuss the key strategies
involved in each case. We consider how conserved pat-
terns can emerge at different spatial scales, and
conversely how distinct mechanisms may operate
simultaneously in the same organism. Finally, we high-
light the importance of accessing new biological models,
experimental platforms, and emerging quantitative tools
for understanding and exploring the functional and
evolutionary benefits resulting from different ciliary
coordination phenomena.

Hallmarks of ciliary coordination across
scales

The concept of coordination is remarkably broad. Co-
ordination describes the ability of multiple agents to
work together effectively and robustly towards a
common purpose, often displaying some form of tem-
poral correlation or patterning. In the case of oscillators,
the existence of coordination also gives rise to their
possible entrainment and control by external influences.

The coordinated activity of motile cilia is manifest in a
number of different ways and often in a species or
context dependent manner, extending beyond the basic
realisation of perfectly synchronously beating cilia [9].
The primary purpose of natural ciliated surfaces is to
create fluid flows for motility, feeding or transport. Un-
surprisingly, the mechanism of interaction between cilia
depends strongly on the lengthscale over which these
cilia operate (Figure 1).

At the cellular or even sub-cellular scale, multiple cilia
can bundle together to beat similarly to the other cilia
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Mechanisms of ciliary coordination across scales. (a) At the cellular or subcellular scale: physical coupling of cilia basal bodies (as in Chlamydo-
monas), physical linkages along the length of the cilia (as in ctenophore comb plates), and steric interactions, generally lead to synchronised (or anti-
synchronised) ciliary beating. (b) At intermediate scales: hydrodynamic interactions between neighbouring cilia give rise to synchrony and metachrony,
while rheological properties of the bulk fluid, flows, and planar cell polarity signalling pathways result in alignment of the ciliary beat direction. (c) At the
whole-body or tissue scale: intracellular signalling through membrane potential or second messengers can rapidly change the frequency and direction of
multiple cilia (here shown in the unicellular Paramecium and multicellular Platynereis larvae). Small circles show representative phase relationships

between the neighbouring cilia.

within the group (Figure 1a). Notable examples include
the complex ciliary organelles of ciliated protists, the
cirri — specialised walking appendages of spirotrich cil-
iates comprising ~ 50 individual cilia bundled together
[10], and the oral (or buccal) membranelles — two of
three rows of densely-packed compound cilia used for
‘wafting the food down the gullet’ of such cells [11]. These
specialised cilia remain structurally united or in very
close association throughout development and often
beat as a single entity. In some cases, individual basal
bodies of the compound ciliary structures may be
connected physically by accessory fibres. In the cteno-
phore Bolinopsis, among the largest organisms that
use cilia for self-propulsion, a specialised protein
(CTENO64) localised to structures connecting the
adjacent cilia in a comb plate was shown to be indis-
pensable for coordinated ciliary beating and effective
paddling of the large comb plates [12,13].

Many auxiliary cytoskeletal structures are associated
with cilia and basal bodies, forming orderly patterns or
lattices which provide further mechanical coupling and
stability (Figure 1a). Fibrous interconnections between
cilia, sometimes extending beyond the ciliary field, may
be both active or passive, and can be stimulated

mechanically or biochemically. This type of basal
coupling has been demonstrated in small algae and cil-
iates including Chlamydomonas [14] and Tetrakymena [15].
The putative role of these filaments in functionally
coupling nearby cilia has been explored in recent theo-
retical studies [16—18].

In this regime, nearby cilia experience local repulsion
due to their inability to occupy the same space, leading
to physical contact and steric interactions (Figure 1a). As a
possible mechanism of cilia coordination, this type of
interaction has received little attention until recently
[19,20], but may be important in establishing the co-
ordination state of ciliary arrays in the limit of very high
cilia density. In collectives of undulatory robotic fila-
ments (comprising rigid rods and servo motors), gait
synchronisation can indeed result from purely contact-
induced interactions/collisions [21].

At intermediate scales, signatures of coordinated activ-
ity in ciliary arrays include metachronal waves, where
cilia in successive rows display a constant phase offset
from the neighbouring row (see next section). Various
scenarios have been proposed to explain the emergence
of ciliary metachronism. The earliest of these suggest
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that cilia interact hydrodynamically (through the fluid)
(Figure 1b), leading to the synchronous swimming of
nearby sperm [22] and coordinated group dynamics
[23,24]. This mechanism of Aydrodynamic synchronisation
has also been studied extensively through computa-
tional modelling [25—28]. Direct proof of this phe-
nomenon was provided using pairs of Jolvox cilia, that
were isolated from colonies, and held on separate mi-
cropipettes at varying distances [29]. At these scales,
mechanical or basal coupling may resist hydrodynamic
interactions to establish the requisite coordination state
for a given organism [14,15].

Even when the cilia are patchy or otherwise distributed
heterogeneously, ciliary beating can still be entrained by
fluid flows [30], for example in the ciliated epithelium
of Xenopus [31], and in cultured mouse ependymal cilia
[32]. In these cases there may not be global synchrony or
phase waves, but instead coordination may only result in
entrainment of beat frequency and/or beat direction.
The latter constitutes a weaker form of coordination
(Figure 1b). In vertebrates, placement and orientation
of cilia are important co-determinants of tissue-scale
alignment and coordination, involving a feedback be-
tween planar cell polarity signalling and external flows
[33,34], though the molecular mechanism is not uni-
versally clear.

Figure 2
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Sometimes, mucus — which has non-trivial rheological
properties — is indispensable for proper ciliary function
[35,36]. Mucus, when deposited above cultured lung
epithelial cells, can alter the upper boundary condition
of the ciliated surface, and thus the propagation direc-
tion of ciliary metachronal waves [37]; steric effects may
also be present. In Paramecium, the ciliary wave direction
can vary with viscosity [38], though this response is not
necessarily physiological.

Finally, cilia can also be coordinated over the whole-body
or tissue scale (Figure 1c). In some ciliates, rapid whole-
body changes in ciliary beat frequency and orientation
can be triggered by membrane electrical depolarisations
[39]. This is the mechanism of fast-reversals in the
Paramecium escape reaction. In planktonic larvae,
neuronal circuits coordinate whole-body ciliary arrests,
where all the cilia simultaneously stop beating in
response to calcium elevation [5,40].

Patterns of multiciliary structure and
coordination

Cilia are often found in multiciliated arrays, in a variety
of geometries (Figure 2a). Cilia in such arrays normally
do not beat either randomly or synchronously but coor-
dinate into a metachronal wave (Figure 2b). This
pattern comprises rows of synchronously beating cilia,
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Natural configurations of ciliary arrays and their metachronal coordination. (a) Ciliary arrays occur in many geometries and topologies, including:
uniformly distributed over a convex body; on the outer or inner surface of a tube; localised into rings or bands on a larger swimmer; running along an edge
of a conical body. These arrays perform various functions including: linear (v) and rotational (€2) swimming; clearance of unwanted fluids; and generating
feeding flows. (b) a representative ciliary waveform; (antiplectic) ciliary metachrony with rows of synchronously beating cilia with a constant phase offset
between each row. At a time At after the initial snapshot, the wave pattern has moved along in the opposite direction to the power stroke; snapshots of cilia

performing the four basic wave directions.
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with a constant offset between the beat phase of each
successive row. Wave ‘crests’ (a row of cilia in the middle
of the power stroke) propagate as the cilia beat. Ciliary
metachronism is a robust condition in many ciliates
[41,42] and marine larvae [40,43].

The wave can travel in different directions with respect
to the ciliary power stroke direction, which is generally
fixed. The four principal wave directions are symplectic,
antiplectic, lacoplectic and dexioplectic (Figure 2b),
and intermediate wave directions are also observed.
Phylogenetically related organisms tend to exhibit
metachronal waves of the same type, but this has not
been analysed systematically.

How waves emerge is still subject to debate. In this
intermediate regime, multiple physical mechanisms
dictate the final coordination state. In addition to hy-
drodynamic and basal coupling, steric effects likely
promote synchronisation in the beat-direction [43—45].
Geometrical and topological constraints, boundary con-
ditions, and whether cilia emanate from the interior or
exterior of a closed surface, also contribute (Figure 2a).
Experiments in Paramecium show that a wave continues
to propagate between two halves of a cell that are hy-
drodynamically isolated from each other by a physical
boundary, implicating elastic compliance of the cell
membrane as another mechanism of wave transmission
[41]. Meanwhile metachronal solutions can still arise in
some parameter regimes in simulations of linear chains
or arrays of cilia that interact only hydrodynamically,
[26,28,46,47]. Regarding wave directionality, a recent
theoretical/computational study found that the wave
propagation direction varies when the ciliary beat plane
is tilted from the vertical [48], indicating that inter-
species variation in beat patterns - and particularly the
3D nature of many ciliary beats — may contribute to the
variety in observed wave directions. Experimental
characterisation of beat chirality has been achieved for
Paramecium and Chlamydomonas, but is generally chal-
lenging [49,50].

Robustness and heterogeneity

Since form is coupled to function, and function to sur-
vival, the global patterning of cilia comes under strict
developmental control in many species. In the ciliate
Stentor, regeneration and remodelling of the oral
membranellar band cilia after loss or injury follows a
stereotyped sequence, leading to a diaplectic meta-
chronal wave [42,51]. The infraciliature of Zetrahymena is
also robustly reproduced at each round of cell division,
but exhibits plasticity during environmental dispersal
[52], where to achieve faster swimming cells become
shorter so that the density of basal bodies (and cilia)
increases, while conserving the overall basal body
number [53]. In vertebrates, while PCP proteins bias
the basic structural alignment of the basal bodies, cilia

respond to fluid flows which further refine the beat di-
rection [34].

However, a degree of disorder can sometimes be ad-
vantageous. Most vertebrate ciliated tissues do not
present uniformly with cilia, but instead with multi-
ciliated cells (with ~100 cilia each) assuming a het-
erogeneous, sometimes patchy distribution. Ciliated
cells in the mouse trachea are only well-aligned locally,
and this stochasticity is conjectured to enhance the
global clearance rate [30]. Similarly, cilia in the zebrafish
nose are synchronised only locally, with heterogeneous
beat frequencies, yet exhibit stable tissue-scale meta-
chrony [45]. The somatic cilia of Vao/kox, a colonial alga,
exhibits symplectic metachronal waves [47,54], which
may rely on an intrinsic anterior-posterior gradient in
ciliary beat frequencies [55].

Impact on physiological function

The patterning and coordination modes of cilia are
strongly linked to function. Disruption of this can be
detrimental, for example in human ciliopathies
including primary ciliary dyskinesia [56]. For single cells
with few cilia, such as flagellate algae or zoospores, co-
ordination ensures an effective swimming gait and fast
dispersal [57—59]. In aquatic organisms with simple or
even no nervous systems, such as the sponge, ciliated
choanocytes lining the canal system of the adult animal
pump large volumes of fluid for filter feeding [60].

The ability for multiciliary arrays to perform various
functions including propulsion and fluid transport has
been evaluated in depth by several biophysical studies.
In water, fully multiciliated swimmers were maximally
efficient (i.e. obtaining a maximum velocity for a given
rate of energy dissipation) when their cilia performed
antiplectic waves, compared to symplectic or synchro-
nous beating [61,62]. For ciliary sheets resembling cili-
ated tissues or epithelia, all types of metachronal waves
improve fluid transport efficiency compared to syn-
chronous beating [26]. In artificial ciliary arrays, the
antiplectic wave can be optimal for fluid transport, but
other wave directions produce higher fluid mixing [63].
In simulations of two-phase flows (mucus on water),
antiplectic waves were maximally efficient for both
transport and mixing [64], although experiments have
suggested that a diaplectic wave, which minimises
power dissipation by the cilia, appears when the mucus
dries and becomes ‘stuck’ [37].

Thus, antiplectic waves are widely considered optimal.
However, this is not the preferred state in many bio-
logical systems, which instead display diaplectic waves
[43]. It is possible that different ciliary waveforms are
optimal for different functions, e.g. pumping versus
swimming, so efficiency may also depend on the wave-
form [65]. Furthermore, the limit of very dense ciliary
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arrays found in many organisms remains challenging to
reproduce even for current simulation methods [44].
Optimisation for physiological functions is therefore
non-trivial, but some form of metachrony or coordina-
tion is always better than none.

Outlook: Emerging models and approaches
In recent years, the study of multiciliary coordination
has entered a new interdisciplinary era. Here, we have
highlighted universal mechanisms that exist across
scales to couple and coordinate ciliary activity, and across
a variety of organisms. It is clear that while we owe much
of our understanding of cilia biology and the biophysics
of the coordination dynamics to such model species such
as Chlamydomonas and Xenopus [34,66], important in-
sights can be gained from studying diverse and emerging
non-model systems, and even non-animal models.
Embracing and appreciating this diversity of form and
function across the entire eukaryotic tree could help us
establish a more comprehensive picture of all possible
natural functions of motile cilia assemblages. Indeed,
several other specialised functions of cilia remain largely
unexplored, for example, their collective role in driving
Planarian gliding motility [67], or in the selective filter-
feeding habits of various ciliates and marine organisms
[60], or the metachronal coordination of compound cilia
for inertial swimming in ctenophores [68]. All of these
examples rely on dynamic integration of local activity,
self-organisation, and global, systems-level control.

Our review has emphasised the value of integrating
multiple approaches. Now more than ever, it is possible
to establish the precise, nearly i situ patterns of 3D
multiciliary organisation across an entire tissue or or-
ganism using electron-microscopy, and as well to observe
and quantify the dynamic activity of cilia with advanced
live-imaging, optical, and analytical methods [44,69]. In
parallel, next-generation modelling and computational
methods [19,70] enable  siico experiments and
hypothesis-testing, particularly with respect to patterns
or behaviours of cilia that are not readily accessible or
measurable in living organisms. There has also been
increasing interest in harnessing the capabilities of
natural cilia using synthetic mimics, such as magneti-
cally actuated ciliary arrays [71,72]. Even if these latter
approaches might not always help explain the emergence
of various coordination strategies nor how organisms
implement these in real-time, they can provide useful
quantitative insights into downstream function. These
advances, both tangible and conceptual, are central to
shaping our understanding of how this remarkably
conserved structure, the cilium, came to acquire such
diversity and sophistication of function.
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