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Abstract

The pulsatile activity of gonadotropin-releasing hormone neurons (GnRH neurons) is a key

factor in the regulation of reproductive hormones. This pulsatility is orchestrated by a net-

work of neurons that release the neurotransmitters kisspeptin, neurokinin B, and dynorphin

(KNDy neurons), and produce episodic bursts of activity driving the GnRH neurons. We

show in this computational study that the features of coordinated KNDy neuron activity can

be explained by a neural network in which connectivity among neurons is modular. That is, a

network structure consisting of clusters of highly-connected neurons with sparse coupling

among the clusters. This modular structure, with distinct parameters for intracluster and

intercluster coupling, also yields predictions for the differential effects on synchronization of

changes in the coupling strength within clusters versus between clusters.

Author summary

Since the discovery of a small population of hypothalamic neurons that secrete kisspeptin,

neurokinin B, and dynorphin (KNDy neurons), there has been interest in their role as a

pacemaker for the pulsatile release of key reproductive hormones. A fundamental ques-

tion is what mechanism coordinates KNDy neuron activity to generate population bursts.

Optical imaging of the KNDy network at single-neuron resolution has revealed that indi-

vidual KNDy neurons participate in many, but not all, population bursts. It has also

shown that the order in which the neurons are recruited in each burst could be highly

determined in some animals but not in others. We demonstrate here that these observa-

tions can be explained by a neural network with a modular structure, and that one benefit

of the structure is the ability to differentially modulate the level of synchronization by

changes in key coupling parameters.
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Introduction

The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) play

key roles in fertility through their actions on other hormones and gamete development [1].

The gonadotropins are secreted by gonadotrophs located in the anterior portion of the pitui-

tary gland. Secretion of these key reproductive hormones is controlled by hypothalamic

gonadotropin-releasing hormone (GnRH) neurons [2, 3], which release GnRH into the hypo-

physeal portal bloodstream in males and females in pulses [4, 5], driven by bursts of electrical

activity [6, 7]. GnRH must be delivered in a pulsatile manner since continuous delivery desen-

sitizes gonadotropin release [8, 9]. The mechanism for the synchronous release of GnRH from

the GnRH neurons has been a matter of investigation for many years, pushed forward by the

discovery in 2003 that mutations in the gene encoding the G protein-coupled receptor for kis-

speptin led to hypogonadotropic hypogonadism [10, 11]. We now know that pulsatile GnRH

activity is coordinated by a small population of kisspeptin (Kiss)-releasing neurons in the arcu-

ate nucleus of the hypothalamus that also release neurokinin B (NKB), and dynorphin (Dyn),

and are known as KNDy neurons [12–18]. In short, the pulsatility of GnRH neuron activity

reflects pulsatility in KNDy neuron activity, with kisspeptin serving as the output of the KNDy

network to the GnRH neurons [17]. The obvious next question is what mediates the synchro-

nous episodic activity in the population of KNDy neurons? These neurons are interconnected,

and the “KNDy hypothesis” suggests that release of the stimulatory neurotransmitter NKB

from KNDy neurons to neighboring KNDy neurons starts an episode of electrical activity,

while a delayed action by Dyn terminates an episode [19–21]. There is substantial evidence

supporting this hypothesis, reviewed in [17, 19], but recent data supports an alternate hypothe-

sis in which coupling among KNDy neurons through glutamate is the essential ingredient for

the coordinated rhythmic activity of the neurons [22, 23]. According to this hypothesis, gluta-

mate provides the excitation responsible for initiating each episode of electrical activity

through actions on AMPA receptors, while either synaptic depression or the buildup of intra-

cellular Ca2+ acting on Ca2+-activated K+ channels within the cells ends each episode. NKB

and Dyn then serve as modulators of the rhythmic activity of the population of neurons [22],

with NKB being particularly important in brain slice studies from female mice [23]. In addi-

tion to receptors for NKB and Dyn, KNDy neurons have been shown to express AMPA recep-

tors [24], and to release glutamate onto KNDy neurons [25], which are essential elements of

this “glutamate hypothesis”.

The goal of this article is not to weigh in on the validity of either the KNDy or glutamate

hypothesis. Instead, through mathematical modeling, it aims to demonstrate how an imple-

mentation of the glutamate hypothesis along with a modular network structure can account

for experimental findings reported in two recent studies [22, 26]. In so doing, we also show

how apparent discrepancies in some results of these studies can be explained by heterogeneity

in the modular network. The experimental findings were obtained using GCaMP transfection

to measure Ca2+ fluorescence in individual KNDy neurons either in vivo [22, 26] or in brain

slices containing a portion of the arcuate nucleus [22, 23]. With these measurements, it was

possible to examine the activity of many KNDy neurons simultaneously. The findings we wish

to explain with the model are the following:

1. Why do many neurons participate in some episodes of activity, called “synchronization

events” (SEs), but not all [22, 26]?

2. Are there “leader cells” that consistently fire first during SEs [26], or is the temporal order

more random [22]?

3. How do changes in the structure of the network impact the frequency of SEs?
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Modular networks are characterized by clusters of highly-connected nodes with sparse cou-

pling among the clusters. In the context of neural networks in which coupling is through excit-

atory glutamatergic synapses, this structure leads to a high degree of coordinated activity

among cells in a cluster, and some weaker coordination among the clusters. This structure

gives rise to two qualitatively different types of connections: the intracluster connections

(intraCC) and the intercluster connections (interCC). While the two are implemented in the

same way in the model, we show that their roles on the synchronisation behavior of the popu-

lation of neurons are different. This characteristic of modular networks provides simple

answers to the three questions above.

Methods

We do not assume any special properties (such as rhythmic bursting) for the KNDy neurons,

so we model them using a reduced Hodgkin-Huxley model, as we used in previous studies

[27–30]. In Ca2+ measurements from intact animals, SEs occur once every 5-20 min [15, 22,

26]. Since the time scale for electrical impulses is in milliseconds, replicating the long intervals

between SEs would require very long computations. Our focus is on the impact of a modular

network structure, and not on accurately reproducing the time scale of KNDy network behav-

ior, so we simulate SEs with a much smaller inter-SE interval of approximately 1 s. We first

describe the single-cell model, then the way that the network is implemented. All parameter

values are given in Table 1.

The single-cell model

The intrinsic behavior of cell j is described by two differential equations, one for the cell’s

membrane potential (Vj) and one for the activation variable of a delayed rectifying K+ current

(nj):

C
dVj

dt
¼ � ½INaj þ IKj

þ Ilj þ Isynj � Ibkgj � ð1Þ

Table 1. Parameters of the network model.

Parameter Description Value

gl Leak conductance 0.1 mS/cm2

Vl Leak reversal potential -49.4 mV

�gNa Sodium conductance 36 mS/cm2

VNa Sodium reversal potential 55 mV

�g k Potassium conductance 12 mS/cm2

Vk Potassium reversal potential -72 mV

�g syn Max. synaptic conductance 3.6 mS/cm2

Vexc Excitatory reversal potential 10 mV

Ibkg Constant background current -10 to 5 μA/cm2

αa Synaptic activation rate 1 ms−1

βa Synaptic decay rate 0.1 ms−1

αs Synaptic recovery rate 0.0015 ms−1

βs Synaptic depression rate 0.12 ms−1

Vth Threshold for activation -20 mV

Parameter values used in model simulations.

https://doi.org/10.1371/journal.pcbi.1011820.t001
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dnj

dt
¼ anðVjÞð1 � njÞ � bnðVjÞnj : ð2Þ

The Na+ current is simplified to assume instantaneous activation and utilizes the almost-linear

relationship between its inactivation variable and the activation variable for K+, as described in

[31]:

INaj ¼ �gNam3
1
ðVjÞð0:8 � njÞðVj � VNaÞ : ð3Þ

The K+ and leak currents are, respectively:

IKj
¼ �gKn4

j ðVj � VKÞ ð4Þ

Ilj ¼ glðVj � VlÞ : ð5Þ

Each model neuron receives excitatory synaptic input from one or more other neurons:

Isynj ¼ gsynjðVj � VexcÞ ð6Þ

where Vexc is the excitatory reversal potential. The synaptic conductance is the sum of input

from all neurons innervating neuron j. Finally, the synaptic conductance onto neuron j is

gsynj ¼
�g syn

N

X

k6¼j

aksk ð7Þ

where the summation is over all neurons innervating neuron j, �g syn is the synaptic conductance

strength parameter, and N is the total number of neurons in a cluster (N = 50). Each of these

neurons has an activity level, ak 2 [0, 1], and a synaptic efficacy sk 2 [0, 1]. The activity level

increases with each presynaptic spike and represents the “synaptic drive” from neuron k to

other neurons. The synaptic efficacy reflects synaptic depression, so it declines with frequent

presynaptic activity. The differential equations are:

dak
dt

¼ PðVkÞaað1 � akÞ � baak ð8Þ

dsk
dt

¼ asð1 � skÞ � PðVkÞbssk: ð9Þ

The increasing sigmoidal function PðVkÞ ¼ 1=ð1þ eðVth� VkÞ=kvkÞ reflects the synaptic release

process that occurs when the presynaptic voltage Vk goes past a threshold Vth during an action

potential. When this happens, P(Vk) increases from a value� 0 to a value� 1 for a short

period of time, before returning to� 0. The α and β parameters are rate constants.

The final current in the voltage equation is a constant background current, Ibkg, that sets the

excitability of the cell. For each cell, this is drawn once randomly from a uniform distribution

over the range -10 to 5 μA/cm2, ensuring the heterogeneous activity of the network (on aver-

age, 10% of the cells spike in the absence of synaptic input).

The modular network

For all simulations, we use a population of 250 model neurons. We form 5 cell clusters of 50

neurons with a high degree of interconnectivity within each cluster (Fig 1A). Cells within these
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clusters are connected to cells in other clusters with many fewer links (Fig 1B). To generate a

cluster, we first set the coupling parameter for the fraction of cells within the cluster that a neu-

ron should connect to (called “intraCC” for intracluster coupling). The same value is used for

all 5 clusters. Then pseudo-random numbers are generated to determine which connections

are actually made. A similar process is done for intercluster coupling. The coupling parameter

“interCC” is then the fraction of all possible connections between clusters that are actually

made. The extent of coupling within each cluster is large in our model, but the coupling

strength of each connection is small, so that stimulation of any one neuron so that it fires toni-

cally is typically insufficient to evoke firing in neurons that it synapses onto. This is consistent

with the brain slice experiments of Han et al., in which they found that stimulating one neuron

rarely had an effect on the behavior of the other neurons that they were examining [22].

The network activity (denoted as hai) is calculated by averaging over all cell activities ak
(Fig 1, black traces). When all clusters fire together, hai rises to� 0.6, and we define a synchro-

nization event to occur when 3 of the 5 clusters are simultaneously active, so when hai � (0.6)

(0.6) = 0.36 (Fig 1, gray shading).

The model and simulations were implemented using the Eclipse IDE for C and C++ with

the MinGW gcc v12.2.0 compiler. Ordinary Differential Equations (ODEs) were solved using

the Runge-Kutta fourth-order (RK4) method with time step 0.01 ms. The output .txt files were

processed using Python (v3.10.9) and Matplotlib (v3.7.0) to generate the figures. The graph in

Fig 1. Cluster events and synchronization events in the modular network. The model neural network has 5 highly

connected cell clusters (left). Each of these is capable of producing population bursts of activity or “cluster events” (CE),

as seen in the raster plots (right), color-coded to indicate the cluster that the cells are part of. The bottom black curve is

the activity averaged hai over all 250 cells in the population. When overlapping events occur in 3 or more clusters, hai is

above the threshold for what we refer to as a synchronization event (illustrated with gray shading) A: Without

interconnections among the clusters (intraCC = 100%, interCC = 0%). B: Interconnections among the clusters, though

sparse, can synchronize the cluster events (intraCC = 100%, interCC = 0.1%). We have sped up the synaptic efficacy

variable to decrease the simulation time scale for producing synchronized events from hours to seconds.

https://doi.org/10.1371/journal.pcbi.1011820.g001
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Fig 1 was created using Gephi [32]. Source code can be downloaded from www.math.fsu.

edu/~bertram/papers/neuron.

Results

The modular network exhibits a mix of partially and fully synchronized

events

The model modular network consists of 5 cell clusters with extensive intracluster coupling (Fig

1A left) quantified by the coupling percentage “intraCC”, and much less extensive intercluster

coupling (Fig 1B left) quantified by the coupling percentage “interCC”. Each cluster contains

50 neurons described by Hodgkin-Huxley-like models. Although the clusters have the same

intraCC, the intracluster network structure is determined randomly, so will differ from cluster

to cluster. In addition, the background currents in the model neurons are determined ran-

domly from a uniform distribution (see Methods), so neurons in the network have different

excitability. For these reasons, some clusters are more active than others. The raster plots in

Fig 1A, where there is no intercluster coupling, illustrate this. The top (pink) cluster has cells

that are tonically active, and those that are inactive. However, there are three instances when

the entire cluster is active, i.e., there is a population burst that we refer to as a “cluster event”

(CE). The onset is triggered by a few initiating cells that spike and, due to the extensive cou-

pling, cause others in the cluster to spike [28]. An episode terminates due to the buildup of

synaptic depression that reduces the coupling between the cells to a level that is eventually too

low to continue the regenerative activity [28, 33].

The second (cyan) cluster exhibits a quite different activity pattern. Although there are

some tonically active cells, at no point during the 2 s simulation is there a CE. The fourth

(green) and fifth (red) clusters, on the other hand, exhibit 5 CEs over the 2 s simulation time.

Clearly then, with the randomness in the coupling and distribution of background currents,

the cluster activity is very heterogeneous.

The bottom panel shows the activity variable, ak, averaged over the population of 250 cells,

denoted as hai. The time course of hai shows the timing of bursts within a cluster, and when

bursts occur in two or more clusters simultaneously this is reflected in the amplitude of the hai
deflection. Thus, hai can be used as a metric to determine whether the bursts in the clusters are

synchronized. There were several occasions in which bursts in two clusters overlapped in Fig

1A, even though the clusters are not coupled, and this is reflected in larger deflections in hai.
When a low level of intercellular coupling is added (interCC = 0.1%) there are, not surpris-

ingly, more instances of coordinated bursting. In the 2 s simulation shown in Fig 1B, there are

instances of coordinated bursting in 3, 4, or all 5 clusters. When three or more clusters exhibit

overlapping bursting we call this a “synchronization event” (SE), since the majority of cells in

the population are spiking simultaneously. These SEs are highlighted in gray in the time course

for hai. In this case, a cell is receiving, on average, 0.001*200 = 0.2 synapses from clusters other

than the one it belongs to, so a cluster receives about 10 connections from the four other clus-

ters—this is enough to produce synchronized cluster events.

An observation made in [22, 26] in Ca2+ imaging studies of KNDy neurons in vivo is that

many of the neurons participated in some, but not all, of the synchronization events. We

examine this in the modular network in Fig 2, which shows activity traces (the variable a) for 3

randomly-chosen neurons from each of the 5 clusters. In this network, there is complete cou-

pling within each cluster (intraCC = 100%) and weak coupling among clusters

(interCC = 0.4%). Over a period of 5 sec, this network produces 9 SEs. All 15 cells participated

in the first SE. However, only 12 participated in the fifth SE; cells in the blue cluster did not

exhibit a CE, and so remained inactive (indicated by a red X). In the seventh and eighth SEs,
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different clusters of cells did not participate, from the magenta and cyan clusters. An interest-

ing case is SE 6, where cells in the green cluster had a burst immediately before, but not during,

the SE. These likely contributed to the SE initiation. Also, one of the cells in the cyan cluster

was active during the SE (orange circle), while the other two from the same cluster were inac-

tive. This illustrates that cells sometimes participate in SEs even though their cluster does not

produce a CE. Overall, the figure shows that many cells in the modular network participate in

some, but not all, of the SEs, as reported in [22, 26].

Another phenomenon shown in Fig 2 is that the averaged activity of the population has a

mix of large increases, the SEs, and smaller ones (marked with orange arrows). These smaller

Fig 2. Synchronization events and miniature synchronization events in the modular network. The activity time

courses (the variable a) for 3 model neurons selected randomly from each of the 5 clusters. Most cells participate in

some, but not all, of the synchronization events. A red X highlights an instance in which a cell did not participate, and

an orange circle highlights an instance in which a cell did participate, but other cells in its cluster did not. The bottom

panel shows the average activity across the network, with SEs indicated by gray bars. Arrows in the bottom panel

highlight a few (but not all) instances of mini-SEs, where one cluster (light orange arrow) or two clusters (dark orange

arrow) produced bursts of activity. IntraCC = 100%, interCC = 0.4%.

https://doi.org/10.1371/journal.pcbi.1011820.g002
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events reflect burst activity of only one or two clusters. Smaller events in the population activity

were referred to as “miniature synchronization events” in [22], and we use this nomenclature

for the smaller events that occur in the modular network.

Leader cells are possible, but not guaranteed

Are there leader cells that consistently fire near the beginning of SEs and therefore serve as

triggers for the SEs? This question was addressed in vivo by both Moore et al. [26] and Han

et al. [22]. The former found that there was indeed a set of KNDy neurons for which the Ca2+

level consistently reached its peak at the beginning of an SE in which it participated. Other

KNDy neurons consistently fired in the middle of an SE, and others consistently fired at the

end, indicating that they were recruited to fire by other neurons (Fig 4 of [26]). The latter

study showed much more flexibility in the firing order of KNDy neurons. In some animals

there appeared to be a similar preferred firing order of KNDy neurons as in [26], while in

other animals there was no consistent temporal ordering (Fig 1 of [22]). Similar results were

shown for SEs that occurred in vitro in brain slices (Fig 2 of [22]). How can these conflicting

data be reconciled?

We examined this question in the modular network using different combinations of the

connectivity parameters. Fig 3A shows one example with intraCC = 55% and interCC = 0.6%.

Fig 3. Network connectivity parameters determines whether there are leader cells. A: Activity time courses of 15 neurons selected

from all 5 clusters during two SEs (left, SE01 and SE02). The left table shows the temporal order of firing of the 15 neurons in 8 SEs; light

shading indicates that the cell fired early in an SE. The right table is a reorganization of the left table so that cells that typically fire early

are placed in the top rows. The scatter plot indicates spike timing with those cells spiking early in the SEs placed on the bottom. There is

a strong correlation (R = 0.84), indicating the presence of leader cells. The data points are color-coded according to the cluster that the

corresponding neurons are part of. IntraCC = 55%, interCC = 0.6%. B: With a different value of the intracluster coupling parameter

there is much less consistency in the temporal order of spiking during SEs (R = 0.5). IntraCC = 75%, interCC = 0.6%.

https://doi.org/10.1371/journal.pcbi.1011820.g003
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We examined the activity of 15 neurons (3 from each cluster) as this is a typical number of

neurons recorded simultaneously [22, 26]. Activity traces for the 15 neurons were analyzed,

starting with time courses of the neurons during two SEs. From these, it is apparent that cells

in the green cluster began firing first in the two SEs, while those in the blue or magenta cluster

began last. The firing order for 8 SEs is shown in the left table. Each entry of this table gives the

order that firing began, and the boxes with light coloring represent firing near the beginning

of an SE and dark coloring represents firing late in the SE. From this, we see that the cells in

the green cluster consistently began firing first, they are leader cells, while those in the blue

and magenta clusters mostly began near the end of the SEs. To bring out the temporal ordering

more clearly, the table was reorganized so that the ordering of the rows is based on the typical

order when firing began during SEs; cells that typically began firing first are placed in the top

row, and those that typically began last are placed in the bottom. In this rightmost table, the

shading variation from top to bottom clearly demonstrates consistency in the temporal order

of spiking during SEs. Finally, the data are shown as scatter plots, with the order in which spik-

ing began on one axis and the cell ID on the other, with cells that typically began first placed

on the bottom and those that typically began last placed on the top. The data are color-coded

to correspond to the cluster that the corresponding neuron is part of. When organized this

way (as was also done in [22] and [26]), the consistency of the temporal order of firing can be

quantified with the Spearman’s rank correlation coefficient (R). The large value of the R (0.85)

demonstrates that there is consistency in the temporal order in which spiking began during

SEs in this example network. Also, with the color coding, it is clear that neurons in the green

cluster consistently fired first, they are leader cells, while those in the magenta and blue clusters

consistently fired last and so are follower cells. This ordering reflects the level of activity pro-

duced by the clusters without intercluster connections. That is, without any intercluster con-

nectivity the neurons in the green cluster produce the most frequent bursts of activity,

followed by neurons in the red cluster, with neurons in the magenta and cyan clusters not

active at all without intercluster coupling.

Another example network, with a larger value of intraCC, produced different results (Fig

3B). While neurons in the red cluster often began to fire early in an SE, they also sometimes

began much later. Cells in the magenta cluster most often began to fire toward the end of an

SE, but sometimes began at the start of an SE. The lack of consistency in the temporal order of

spiking is seen most clearly in the scatter plot, where the R (0.5), is much lower than in the pre-

vious example. This value is very similar to what was reported in most of the data from [22]. In

addition, it is evident from the color coding that there are no clusters that consistently fired

first. This likely reflects the fact that when intraCC is increased all the clusters produce bursts

of activity, even without intercluster coupling, making it more likely that any cluster can start

an SE by recruiting other clusters to fire.

The last figure raises the question of whether consistent temporal firing is more likely with

some network coupling parameters than others. To investigate this, we examined the temporal

order R for a grid of coupling values (intraCC 2 [50, 100]% and interCC 2[0.2, 2]%) using

heat maps in Fig 4. The top, left panel of Fig 4A shows, in each element, the average R value

over 6 different simulations using fixed values for the coupling parameters. The coupling pat-

tern among neurons is different in each simulation, but intraCC and interCC values are the

same. The sampling is from 15 neurons, chosen randomly from the network. Light colors cor-

respond to high temporal order values. The panels labeled Sample1 through Sample4 show

similar information, but with different samplings of neurons. The final panel shows the means

of these five grids of simulations. All simulation grids show a trend in which R is highest for

small values of intraCC and large values of interCC. This result is consistent with the simula-

tion of single networks in Fig 3.
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What happens to the temporal order if all 15 neurons examined are selected from the same

cluster? This is shown in Fig 4B, where each heat map corresponds to neuron sampling from

one of the five clusters. In each simulation, 15 neurons were chosen randomly from a single

cluster and the temporal order R was calculated. The networks used in all simulations were

identical to those used in panel A; only the neurons used in the sampling differed. In all of

these cases, the temporal order R is high, with much less variation across coupling parameters

than was seen when neuron sampling came from all clusters in the network.

Differential effects of changes in the coupling parameters

In [22], small “miniature SEs” (mSEs) were distinguished from SEs as being significantly

smaller and therefore reflecting a smaller degree of synchronous neural activity. Following this

nomenclature, in the simulations it is natural to categorize events in which a majority of the

clusters (3 or more) fire together as SEs, and events in which one or two clusters fire together

as mSEs. Hence, if we define NCEk as the number of events in which k clusters were simulta-

neously active (i.e., in which there were k “cluster events”), then the number of mSEs through-

out a simulation is NCE1+NCE2 and the number of SEs (which we refer to as NSE) is

NSE = NCE3+NCE4+NCE5. Fig 5 A shows the number of cluster events for different values of

the interCC parameter in simulations of 40 s duration. For example, with interCC = 0.25%

(top left histogram, with tan shading), 62 events were single-cluster events (NCE1), while all

clusters fired together in only 22 events (NCE5). The number of synchronization events is

Fig 4. Changes in coupling parameters and cell sampling can alter the consistency of temporal recruitment order.

Each element of the heat map corresponds to a specific choice of the intraCC and interCC parameters. The element

value is the average of the temporal order correlation coefficient (R) for six instances of a network. Light colors

indicate high R (see scale bar). A: Each panel corresponds to a different sampling of 15 cells, chosen randomly from the

network. The last heat map is the average of the 5 grids of simulations. B: In this case, in each panel all 15 cells are

chosen from a single cluster. The last panel is the mean of these.

https://doi.org/10.1371/journal.pcbi.1011820.g004

PLOS COMPUTATIONAL BIOLOGY Population bursts in a modular neural network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011820 July 31, 2024 10 / 17

https://doi.org/10.1371/journal.pcbi.1011820.g004
https://doi.org/10.1371/journal.pcbi.1011820


NSE = 39 (3+14+22). The top panel of Fig 5B shows the average activity of each cluster during

5 s of the simulation corresponding to this same coupling parameter value. The number of

CEs is shown on the right. Several CEs do not recruit all the other clusters into full-blown SEs.

When the intercluster coupling is increased there is a clear shift in the histogram, so that by

interCC = 0.35% the vast majority of events are SEs, and most of these have all clusters firing

in synchrony. With interCC = 0.60% almost all CEs are in SEs with all clusters firing together.

This increase in the degree of synchrony is also evident in the average activity time courses in

panel B. Increasing interCC is therefore a very effective way of increasing the number of CEs

that are part of SEs. As network synchronization increased with higher interCC values, the

number of CEs also increased, as illustrated in the left panel of Fig 5C. In addition, the stan-

dard deviation in the number of CEs among the clusters decreased with an increase in

interCC, again indicating that the cluster activity became more uniform when interCC was

increased. Finally, the mean fraction of synchronization events in which all 5 clusters partici-

pated (frequency of NCE5) increases and the standard deviation decreases with increases in

the interCC (right panel of Fig 5C), again demonstrating the tendency of intercluster coupling

to increase the degree of synchronization between clusters.

We next followed the same procedure, but this time keeping the intercluster coupling

parameter fixed and varying the intracluster coupling. Fig 6A shows histograms of the number

Fig 5. The number of cluster events and the degree of synchronization increases with an increase in the

intercluster coupling. A: Histograms showing the number of events in which 1, 2, . . ., 5 clusters fired together during

simulations with 40 s duration. The interCC is increased moving from top to bottom. B: Average activity time courses

of the 5 clusters during 5 s of simulation time, corresponding to the histograms with tan shading in the previous panel.

The number of CEs is shown on the right. C: (left) Mean number of CEs, along with standard deviation, for the range

of interCC values explored in the histograms and over simulations with 40 s duration. (right) The mean fraction of

synchronization events (events with 3 or more clusters active) in which all 5 clusters are active, NCE5/NSE, along with

standard deviation. IntraCC = 60%.

https://doi.org/10.1371/journal.pcbi.1011820.g005
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of clusters participating in events during 40 s simulations, with intraCC from 60% (top) to

95% (bottom). As intraCC is increased, there are more events with some level of synchronized

activity. However, for all values of the parameter investigated, there were more mSEs than SEs.

Panel B shows average activity time courses over 5 s for three cases (tan shading in the histo-

grams) that show that while synchronous events occur, there are many instances in which sin-

gle clusters fire alone. Increasing intraCC does increase the number of CEs, but the standard

deviation across the clusters changes little (Fig 6C, left), again indicating that increasing

intraCC is not particularly effective at bringing all clusters into synchrony. Interestingly,

increasing the intraCC led to a reduction in the mean fraction of SEs in which all 5 clusters

participated, with little change in the standard deviation (Fig 6C, right). That is, increasing the

intracluster coupling lowers the degree of synchrony among the SEs.

Discussion

This study was motivated by recent data describing neuronal activity within the arcuate

nucleus KNDy neuron network in vivo, at single-cell resolution [22, 26]. The data described

how single neurons coordinate to generate the synchronized network events that drive pulsa-

tile LH release. It led Han et al (2023) to propose a new paradigm for the synchronization

events, where glutamate transmission provides the main synchronization drive, and Dyn and

NKB play supporting roles, amplifying the synchronization. The single-cell resolution also

Fig 6. Increasing intracluster coupling has a weak effect on the number of cluster events, and weakly decreases

cluster synchronization during SEs. A: Histograms showing the number of events in which 1, 2, . . ., 5 clusters fire

together during simulations with 40 s duration. The intraCC is increased moving from top to bottom. B: Average

activity time courses of the 5 clusters during 5 s of simulation time, corresponding to the histograms with tan shading

in the previous panel. C: (left) Mean number of CEs, along with standard deviation, for the range of intraCC values

explored in the histograms. (right) The mean fraction of SEs in which all five clusters participate, NCE5/NSE, and

standard deviation. InterCC = 0.2%.

https://doi.org/10.1371/journal.pcbi.1011820.g006
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enabled the observation of leader cells that activate first during synchronization events, with a

consistent order of recruitment over synchronization events [26]. At the same time, some net-

works exhibited more variability in the order of firing. We have demonstrated here that these

experimental findings can be explained by a network of neurons that has a modular structure

consisting of clusters of highly connected neurons with sparse intercluster coupling.

We provide an explanation for why temporal ordering could be seen as fixed or variable in

different studies, or different animals. The findings of Moore et al. suggest that there are dis-

tinct leader and follower cell populations [26]. The consistency of firing order between groups

of cells suggests a cluster organization in the KNDy network, like the one we have adopted.

This experimental study, and our simulations that exhibit a high correlation between cell ID

and firing order, show “blockiness” in the ID versus order scatter plot (Fig 4Bii in [26] and our

Fig 3A). This suggests that the same groups of cells are consistently activated around the same

time relative to the start of a synchronization event. In our simulations, this is due to the con-

sistent recruitment of clusters to an active state occurring during each synchronization event.

This happens when intercluster connectivity is high and intracluster connectivity is low. In

other words, we get a consistent order of firing between cells when the coupling between clus-

ters is sufficiently strong that the most active cluster can consistently evoke episodes of activity

in less-active clusters, establishing a leader-follower hierarchy. Also, the coupling within a clus-

ter is sufficiently weak so that while some clusters are active even without intercluster coupling,

other clusters are silent without the influence of other clusters. Paradoxically, this reveals the

cluster organization.

On the other hand, when the network is more modular (high intracluster connectivity and

low intercluster connectivity), the consistency in the order of cell activations is lower. This is

because the clusters are more independent and any cluster can generate a CE that then may

trigger a more global SE. Because each cluster is as likely as another to trigger a synchroniza-

tion event, the ordering of cell activations is variable. This more variable temporal ordering is

consistent with results from Han et al. [22]. We point out, however, that relatively small con-

nectivity parameter manipulations were sufficient to go from consistent to variable temporal

ordering, suggesting that minor connectivity differences in the experiments from Han et al.

versus Moore et al. can explain the difference in their results. Such differences could reflect the

sex difference between animals used in the experiments. Male mice were used in Han et al.

and ovariectomized female mice were used in Moore et al. In a subsequent study of KNDy

neurons in brain slices from female mice, there was little consistency in the order of spiking

during mSEs [23], consistent with the findings from male mice by the same lab [22].

Our final finding is that increasing the inter-cluster connectivity increased the level of syn-

chronization among the clusters, while increasing the intra-cluster connectivity had the oppo-

site effect (Figs 5 and 6). This has similarities to the finding reported in [22] that blocking

receptors for either NKB or Dyn reduced the size of the SEs, indicating that these neurotrans-

mitters both act to increase synchrony among KNDy neurons, even though one is excitatory

and the other inhibitory [34]. This experimental finding could be explained with our modular

model if one effect of NKB is to increase intercluster coupling and one effect of Dyn is to

decrease intracluster coupling. The neurotransmitters Kiss, Dyn, and NKB are packaged into

separate vesicles [35], so the proportion of neurotransmitter type released at synapses could

vary from synapse to synapse. It is possible that NKB is preferentially secreted at intercluster

connections and Dyn at intracluster connections. To date, however, there is no experimental

evidence that this is the case.

One notable difference between the SEs produced by our model network and those

observed in actual KNDy neuron populations [22, 26] is the much shorter time between SEs

and SE duration in the simulations. Replicating the much slower SEs reported in the
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experiments would greatly increase the time required for computer simulations, without

changing the results of interest to us, such as the order of spiking during SEs and participation

of neurons in some, but not all SEs. Indeed, as reported in [22], the SEs recorded in brain slices

had much shorter inter-SE intervals than those recorded in vivo, but the basic properties of the

SEs were the same.

The simulations were performed with a version of the Hodgkin-Huxley model, with only two

voltage-dependent ion channel types. The actual KNDy neurons are almost certainly more com-

plicated, but to date no biophysical model of KNDy neurons based on single-cell data has been

published. We do not believe, however, that the use of more complete single-cell models would

impact the findings of this study, which are determined primarily by the network structure.

A more fundamental assumption that we made is that the coupling between neurons is

through glutamate. This is consistent with recent results from [22], but is contrary to the pro-

posal that the episodes of activity are started by the actions of NKB and terminated by the

actions of Dyn [17]. In our model, the excitatory action of glutamate declines over time due

to synaptic depression, which is responsible for terminating each activity episode, as in

developing networks [27]. Another possibility is that the buildup of some intrinsic hyperpo-

larizing current or currents could cause episode termination [27]. Indeed, [22] found evi-

dence for Ca2+-activated K+ current in KNDy neurons that could play such a role. The

presence of these currents does not, however, discount the potential role of synaptic depres-

sion in episode termination.

The key property of the networks used in our study is that they are modular, consisting of

clusters of highly-coupled neurons with sparse coupling between clusters. Our key findings

cannot be replicated in a non-modular network. When looking at a homogeneous network

(i.e., a single cluster), we found that all neurons consistently participate, or not, in synchroniza-

tion events. This is contrary to the finding that KNDy neurons participate in some, but not all,

SEs [22]. We also found that the temporal order of spiking during a CE is similar from one

event to the other; there are definite leader cells and follower cells (Fig 4C). This order is set by

the background current in each cell, i.e., their level of excitability. Thus, with a single cluster

we do not capture the variable order of spiking during SEs reported by [22].

In homogeneous networks the order of recruitment is mostly determined by cell excitabil-

ity: the more excitable cells fire before the least excitable cells. In the modular network, the

cells that consistently fire first are the ones that belong to the most excitable clusters. So

recruitment order does not depend on cell excitability, it depends on cluster identity. That is,

for neurons in a modular network, it is not “who they are” that determines recruitment order,

but “who they know”. Thus we predict that in networks with consistent recruitment order, the

cells that are recruited first are not necessarily the most excitable cells.

Conclusion

A mathematical model of the KNDy network with a modular structure elegantly explains key

features of KNDy population activity observed experimentally. In particular, individual neurons

participate in some SEs, but not all, since different SEs are generated by different combinations

of neuron clusters. In addition, the balance between intra- and inter-cluster connectivity deter-

mines whether the recruitment order of cells during SEs is consistent or not. When recruitment

is consistent across SEs, this is because the order of cluster recruitment is consistent.
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