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The rapid advancement of machine learning (ML) technology across diverse domains has provided a
framework for discovering and rationalisingmaterials and photovoltaic devices. This study introduces
a five-step methodology for implementing ML models in fabricating hole transport layer (HTL) free
carbon-basedPSCs (C-PSC).Our approach leverages various prevalentMLmodels, andwecurateda
comprehensive dataset of 700 data points using SCAPS-1D simulation, encompassing variations in
the thickness of the electron transport layer (ETL) and perovskite layers, along with bandgap
characteristics. Our results indicate that the ANN-based ML model exhibits superior predictive
accuracy for C-PSCdevice parameters, achieving a low rootmean square error (RMSE) of 0.028 and a
highR-squared valueof 0.954. The novelty of thiswork lies in its systematic use ofML to streamline the
optimisation process, reducing the reliance on traditional trial-and-error methods and providing a
deeper understanding of the interdependence of key device parameters.

Over the past decade, the perovskite solar cell (PSC) become a promising
candidate for the next generation photovoltaics technology1. The expo-
nential growth of PSC’s power conversion efficiency (PCE) from 3.8% in
2009 to 26.1% in 2024 and the unique characteristics likeflexibility, bandgap
tenability, long career diffusion lengths and low-cost fabrications attracted
solar manufacturers across the world2,3. For the commercial silicon solar
cells, manufacturing process requires an annealing temperature facility over
1000 °C for the silicon wafer purification. The complex texturing and other
coatings need special facilities, which adds to the fabrication cost of silicon
cells4. Meanwhile, in the PSC fabrication, the solution-processed perovskite
materials enable the usage of existing low-maintenance commercial coating
technologies5,6. Even though thePSC’s highest performancewas recordedby
using lab-scale manufacturing techniques like spin coating, screen printing
or blade coating, scalable approaches like slot-die coating or spray coating
illustrated a consistent and better performance for the PSCs6–8.

Although the PSC generally has two architectures, planar (n-i-p) and
inverted (p-i-n) structures, both follow comparable energy conversion9. In
the perovskite device, photon absorption, exciton generation and dis-
sociation occur due to the perovskitematerial, whereas ETL andHTL layers
account for the electron and hole transfer. Finally, the metal electrodes are
responsible for collecting charges10,11. The PSC performance varies with the

optical and electrical properties of the layers regulated by bandgap, carrier
mobility, grain size and crystallinity of the materials12,13.This process is
governed by changes in the material’s bandgap, which are influenced by
factors such as layer thickness, morphology, and porosity. These variables
significantly impact the device’s swift performance, enhancing both effi-
ciency and stability14. Subsequently, it affects the PSC performance, and it
marks the importance of the optimisation of PSC layers according to the
fabrication techniques14–16.

However, while aiming for the large-scale developments of PSC, it
must overcome various barriers like stability and automated consistent
pathways for scalable technologies17. Although scalable technologies
have been used widely in industries like automotive, batteries and
building sectors, PSC manufacturing needs careful control in printing
cell layers17,18. The coating quality of the deposited films affects the PSC
performance due to the structural defects, pinhole formation, and
interface conditions19,20. While the homogeneity of the absorber or the
perovskite layer deteriorates, the defects significantly increase, affecting
the electron transport layer (ETL) and hole transport layer (HTL)
interaction with the perovskite layer21,22. The physics underlying each
coating technique is intricate and distinct; typically, the optimisation
process relies on a trial-and-error methodology. However, due to its
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time-intensive nature and the resultant increase in material wastage,
integrating new scalable technology into PSC fabrication generally
requires approximately a year or more to finalise optimisation and attain
reproducibility23,24. This is mainly due to the different ejecting and curing
mechanisms, precursor solution rheology and other physical factors like
speed, temperature and humidity25–27.

Alternately, a data-driven approach through the Machine Learning
(ML) approach can significantly reduce the optimisation time and the
wastage28,29. The ML-driven approach scans the data and predicts the
relationship with less human intervention28,30. As the prerequisite for ML
applications is a consistent and coherent dataset, higher quality or reliable
prediction results need a large dataset31,32. Concerning theMLapproach and
the dataset parameters, various ML techniques like linear regression (LR),
artificial neural network (ANN) and random forest (RF) can be used33,34.
Recently, there has been a noticeable increase in the publications related to
ML integration for PSC advancements, and this field starts from the new
material identification to the PCE predictions31,35. Considering the advan-
tages of the ML approach, a trained model only takes a few seconds for the
prediction, and a massive dataset provides higher accuracy results than the
DFT analysis36,37. In 2023,Mahmood et al. exhibited theMLmodel analysis
of the molecular descriptors and fingerprint for selecting suitable green
solvents for organic solar cells38. Also, the work demonstrated the potential
of fast and easy models in Ml as compared to the DFT/thermodynamic
approach38.Moreover, theML analysis can summarise the relationshipwith
various factors difficult to interpret for humans39. Liu et al.40 demonstrated a
rapid optimisation technique for the commercialisation of the PSC and the
proposed ML framework guided a route for achieving power conversion
efficiency (PCE)of 18.5%40. Recently Salah et al.41 provided a comprehensive
analysis of various ML model integrations towards the fabrication of PSC
and examined ML model’s behaviour with the dataset41. Perovskite solar
cells represent intricate physicochemical systems encompassing perovskite
materials, transport layer materials, and electrodes. The predictive model-
ling of physicochemical properties and the systematic screening of con-
stituent materials pertinent to perovskite solar cells constitute a notable
strength of ML. While the ML modelling offers numerous benefits, repli-
cating the complexities of the layer structure and material behaviour in the
ambient atmosphere within the ML model is challenging42.

Considering the commercialisation aspect of the PSC, lowering the
production cost is as important as the faster optimisation techniques43.
While the HTL-free PSC is gaining attention due to its comparatively low
production cost, in this work, we focussed on the HTL-free PSC design43,44.
Since the counter electrode plays a critical role on determining the PSCs
performance, we used carbon as the counter electrode for this study. The
characteristics such as cost-effectiveness, environmental superiority and
abundance make carbon a perfect choice for the PSC45. Moreover, the
flexibility of adding the HTL characteristics into the carbon layer enhances
the PCE and stability of the C-PSC46. In 2021, Ye et al. demonstrated a
modified carbon-based HTL-free PSC with a PCE of 18.90% and they
introduced perfluorotetradecanoic acid with a carbonyl bond to suppress
the ion migration and reduce the crystal defects in perovskite47.

This work introduces a novel approach by developing an ML model
that predicts the performance parameters of HTL-free C-PSCs’ (carbon-
based Perovskite solar cells) performance parameters with a planar (n-i-p)
structure. Our proposedMLmodel predicts the performance parameters of
the C-PSC based on the thickness and bandgap for the ETL and perovskite
layers, thus easing the optimisation process of these layers. The model also
delivers the optimal parameters for the higher-performing HTL-free PSCs.
We constructed a database of 700 data points from the SCAPS-1D (Solar
Cell Capacitance Simulator) software simulation results48.We also analysed
the dataset with various ML models to check the trends and performance
variation. This work emphasises the effect of the composition of ETL and
perovskite layers fabrication parameters on the device performance,
enabling an efficient reverse experimental design towards a highly per-
forming C-PSC. This innovative methodology represents a significant
advancement in the rational design and fabrication of high-performance
PSCs, potentially accelerating their commercialisation.

Methods
In this work, we followed a five-step approach to creating the ANN-based
ML model. As shown in the Fig. 1, at first, we identified the C-PSC para-
meters such as ETL thickness, ETL bandgap, perovskite thickness and
perovskite bandgap. Thenwe set out the range of each parameter needed for
the dataset creation. In step 2, we focussed on preparing the dataset through
the SCAPS-1D simulation, which has around 790 data points with the

Fig. 1 | Five-step approach for creating an ML model which predicts C-PSC performance.
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device performance characteristics. Subsequently, for step 3, dataset clean-
ing was performed with data pre-processing techniques and finalised with
700 data points. Finally, in the last steps, the datasetwas testedwith different
ML algorithms and further analysis was carried out using the better-
performing ML algorithm.

Device modelling
In this study, we adopted a planar heterojunctionHTL freeC-PSC structure
and used the configuration for the SCAPS-1D simulation. As Fig. 2 depicts,
the device consists of a layered configuration of FTO (Fluorine-doped Tin
Oxide)/ ETL/ Interface Defect Layer (IDL)/ absorber layer (perovskite –
CH3NH3PbI3)/ Carbon as an electrode. The model optimisation in the
SCAPS-1D software is based on applying a continuity and Poisson’s
equation for each charge carrier49. The physical parameters used for each
layer in the SCAPS -1D simulation are defined in Table 1, and all these
simulations were under the condition of 300 K room temperature and AM
1.5 G solar spectrum. In this structure, the transparent conductive layer
FTOacts as the front contact electrode and the carbonas the back contact. In
the simulation analysis, the work function of 5.0 eV is used for the carbon
layer50. Also, an IDL layer is added to the ETL/Perovskite interface to
compensate for the charge recombination due to the variation of the
thickness and bandgap50,51.

Dataset generation
To generate the datasets for the ML modelling, assorted configurations of
thickness and bandgap ranges for the perovskite and ETL have been used.
The range is taken from the previously reported performance behaviour of

the HTL free C-PSC52,53. The perovskite thickness and the bandgap range
used in this study range from 350 nm to 500 nm and 1.5 eV to 1.7 eV,
respectively. Similarly, the ETL’s thickness and bandgap are from155 nm to
165 nm and 3.2 eV to 3.6 eV, respectively. Various arrangements of these
range combinations were used for developing PSC samples in the SCAPS
software version 3.3.2021. Considering theMLmethod’s accuracy based on
the data’s quantity and quality, the dataset has to be free from the clones and
the sparsity. The dataset includes eight cell characteristics, in which four
characters act as input variables, and the other four are the prediction
parameters. The input characteristics will include perovskite thickness,
perovskite bandgap, ETL thickness, and the ETL bandgap. The output
parameters include efficiency, fill factor (FF), short circuit current density
(JSC) and open circuit voltage (VOC).

Machine learning methods
We analysed our dataset with various techniques to find the best ML
method for the model. The most recognised techniques, such as Linear
regression (LR), Random Forest (RF), K-nearest neighbour (KNN) and
Artificial NeuralNetworks (ANN), have been used for the initial analysis.
Then, the accuracy parameters like RMSE (root mean square error) and
R2 (R-squared) values were generated to compare the techniques. The
RMSE value directly indicates the error between the predicted and
labelled values, and the smaller RMSE value denotes better prediction
results51. In contrast, a more considerable R-squared value represents
better prediction results44. The R-squared value denotes the proportion
of variability in the dependent variable to the independent variables in
the model54,55.

Fig. 2 | Ordinary PSC and HTL Free C-PSC struc-
ture, carbon-based structure used for the SCAPS
simulation and the dataset generation.

Table 1 | Prior research on machine learning methods in perovskite solar cell studies

No Dataset acquisition ML method Prediction parameter Ref

1 Previous published papers—333 dataset ANN • Perovskite material bandgap
• Output performance of the cell

54

2 Previous published papers—regular PSC
structure—289
Inverted PSC structure—117

Decision tree model • Partial stability analysis 65

3 Previous published papers—bandgap
database—696
performance database—613

Random forest • Perovskite materials bandgap
• PCE prediction

66

4 Previous published papers—hysteresis
database—387
reproducibility database—several small sets

Association rule learning • Hysteresis analysis for inverted cells
• PSC reproducibility analysis

67

5 From experiments:
UV−vis spectra database—80
J-V database—90

Random forest • Bandgap prediction of halide perovskite
• Optical properties prediction
• Performance evaluation

63

6 From SCAPS simulation:
HTL free C-PSC performance dataset—700

ANN • Performance prediction—Voc, Jsc, PCE and FF
• Co-relation between the C-PSC fabrication parameters and
performance characterestics.

Current work
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Results and discussion
Data pre-processing
Initially, the dataset had around 790 data points with some cloned PSC
sample results. Largely, the homogeneity of the results occurred from the
minor changes in the ETL thickness and bandgap combination. Con-
sidering the homogeneity or the sparsity in the dataset causes a curse of
dimensionality, which enhances the complexity of themodelling process56,57

The cloned samples and the null data were removed from the dataset to
boost the accuracy of theMLmodels. Finally, the dataset remainedwith 700
data points and was used for further modelling. The ML models’ dataset is
divided into training and testing data. Figure 3 indicates the RMSE and
R-squared values for different ML models after the data processing. As
indicated in the Python script in the Supplementary Reference, 560 data
points are used for training theMLmodel and140datapoints are for testing.

ML analysis
TheLR is usually considered the simplestmodel in theML, and it uses linear
equations tofit the data using the relationship between the independent and
dependent variables of the observed data55,58. Primarily, LR focuses on
finding the best fitting line to reduce the gap between the actual and pre-
dicted values58. The fitting of this model into the dataset provides a
R-squared value of 0.882 and RMSE of 0.28. RF is classified as a tree-based
model and is well known for avoiding over-fitting efficiently by enhancing
the accuracy of the individual decision trees59. Even though the RF is flexible
and able to manage a wide variety of data, it lacks the capability to predict
data outside the training range55. By evaluating this algorithm, the RMSE
and R-squared values are 0.145 and 0.917, respectively. KNN is catalogued
as an instance-based learning algorithm, and the predictions depend on the
similarity between the existing data points and the new data points in the
training dataset60. This model has demonstrated an RMSE and R-squared
value of 0.890 and 0.873, respectively. Considering the other three techni-
ques, the ANN model’s popularity has increased exponentially in the last
few years due to the wide acceptance and usage of deep learning. While
applying the ANN algorithm, the model shows the R-squared and RMSE
values as 0.954 and 0.028, respectively.While comparing these values for the
other algorithms, the ANN demonstrates better results. Subsequently, fur-
ther device prediction performance analysis was done through the ANN-
based ML model.

The ML model was designed to demonstrate the optimisation cap-
ability with four key physical properties of perovskite and ETL layers as
input and predicting five PSC output parameters. The input parameters are
the ETL and perovskite layer’s bandgaps and thicknesses. The output
parameters are open circuit voltage (Voc), short circuit current density (Jsc),
fill factor (FF) and PCE. Different combinations of bandgap and thickness
data were used for the SCAPS and PSC performance obtained from the
simulation results.

The thickness and bandgap of the electron transport layer (ETL) and
perovskite layer significantly impact the efficiency of charge extraction,
transport, light absorption, and charge carrier generation within the solar
cell14,61,62. Thicker ETL layers can reduce charge recombination, while the
ETL bandgap determines the energy levels for electron transport51. Simi-
larly, a thicker perovskite layer enhances light absorption and charge gen-
eration, and its bandgap influences the Voc and energy conversion
efficiency51,62. Performance metrics such as Voc are influenced by the per-
ovskite bandgap and interface quality, with a higher bandgap generally
leading to a higher Voc63. The Jsc depends on both layers’ optimal thickness
and bandgap alignment, ensuring maximum light absorption and efficient
charge transfer. The FF is affected by charge transport properties and
recombination rates, which are influenced by the ETL and perovskite
properties21,35,62. PCE is a comprehensive performance measure determined
by the interplay between Voc, Jsc, and FF, with optimised ETL and per-
ovskite layers leading to higher PCE.

A correlationmatrix is used as a statistical analysis tool for quantifying
the degree of relationship between the variables60,64. Figure 4 shows the
generated correlation matrix from the ANN-based ML model and depicts
the correlation insights among the input and output features of the dataset.
It provides the features’biases and canoffer anunderstandingof the features
more influential on the device’s performance. The value represented in this
correlation matrix is the Pearson coefficient, and the signs (±) depict the
positive (+) and negative (-) correlation54,64. The FF and Voc indicate the
strongest negative correlation, the same as the Jsc andperovskite bandgap.A
similar influence is evident with the efficiency of the cell and perovskite
parameters.

In contrast, the ETL thickness and ETL bandgap show less correlation
to the device performance features. Even though the Pearson correlation
analyses the linear relationship between the variables, ANN considers the

Fig. 3 | Compares the parameterisation of pro-
cessed data across various ML models. The RMSE
and R² values represent the ML model's testing
accuracy measurements.
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complex non-linear relationships60,64. In the context of neural networks in
the ANN ML model, the model’s performance is not solely based on the
linear relationships between the variables.However, the Pearson correlation
analysis highlights the need for an effective strategy and guidance of the
performance characteristics for PSC fabrication.

The decreased RMSE and increased R² value within the model signify
heightened accuracy and reliability. RMSE and R² values for individual
input parameters are delineated in Table 1. Figure 5 portrays a scatter plot
elucidatingminimal deviations and errormargins between predicted values
and actual values within the test dataset. In Fig. 5, vertical coordinates
representpredictedvalues, horizontal coordinates depict actual values, anda
red line delineates the ideal curve. While the majority of blue data points
disperse proximate to the ideal curve, themodel showcases diminished error
alongside augmented predictive efficacy. However, concerning the para-
meter Voc, the dispersion percentage notably exceeds that of other pre-
dictiveparameters.AsperTable S2,RMSEandR²values standat 0.0047and
0.7037, respectively, markedly lower than those of other parameters.

In the ANN basedMLmodel, we investigated the dependency of each
characteristic towards the C-PSC performance rather than predicting the
performance parameters of the C-PSC. Figure 6 represents the 4D scatter
plot of the predicted performance concerning the C-PSC input parameters.
As shown inFig. 6a, the higherVocprediction values are implied around the
combination of lower ETL thickness and higher perovskite thickness with
the bandgap of 1.56 eV. This trend is similar to the Jsc and PCE predictions
with the thickness and bandgap parameters, as demonstrated in the Fig. 6b
andd. In contrast to that, a betterFF is shown in the rangeof higher values of
perovskite thickness, bandgap and ETL thickness; Fig. 6c indicates the
pattern of the relationship between the parameters and the performance.
For higher bandgap perovskite, electron diffusion length is expected to be
higher and reduces the possibility of recombination; in turn, this property
enhances the fill factor of the C-PSC49.With these comparisons, it is evident
that several features modify the device performance, and a single-
dimensional approach is nearly impossible to control the device optimisa-
tion. In this setting, device performance prediction through ML models
enumerates all the feasible values for the parameters and gives a multi-
dimensional approach to optimisation. However, the ML model optimi-
sations are based on a mathematical model rather than an experimental
model, so the rationality of explainingMLmodel application into the device

parameter optimisation canbe doneby investigating theunderlying reliance
of each parameter.

Numerous antecedent investigations have relied upon experimental
data from diverse published literature or exhibited a paucity of data points.
Table 1 delineates the data acquisition strategy, machine learning (ML)
methodology, and the predicted parameters inherent to antecedent inqui-
ries. The absence of a standardized testing protocol in fabricating perovskite
devices engenders a performance divergence across disparate research
endeavours. Furthermore, the efficacy of each device is intricately linked to
fabrication methodologies, external variables, and assorted influencing
factors. Consequently, assimilating data from prior investigations exacer-
bates disparities in predictive outcomes, introducing intricacy into the
applicability of the ML model for optimization methodologies. Given the
present study’s focus on a theoretical dataset characterized by a significantly
augmented data volume, this model is a more formidable augmentation to
optimization techniques for fabricating high-performance HTL-free
carbon-based perovskite solar cell (C-PSC) devices. In pursuit of a nuanced
understanding of the variations in the properties of ETL and Perovskite
layers, it is imperative to delve deeper into additional influencing factors to
facilitate a comprehensive performance analysis. Acknowledging the
foundational role of the ML prediction dataset, rooted in theoretical cal-
culations, it becomes evident that external variablesor fabrication intricacies
exert notable influence on experimental outcomes. Thus, a holistic inves-
tigation integrating practical observations and experimental data is essential
to refine the predictive accuracy of the proposedMLmodel. By synthesising
both empirical and theoretical insights, this model aims to streamline the
optimisation processes inherent in PSCs, thereby expediting the transition
from laboratory prototypes to commercial viability.

Complexity analysis
The algorithm complexity depends on the number of input parameters
required for the algorithm to perform the prediction41. In this work, the
algorithm designed for four input features and subsequently four output
features. As the ANN algorithm consist of different layers, we modified the
layers selection to achieve better prediction results. The Figure S1depicts the
layer structure used for the ANN analysis, it consists of three hidden layers
with first, second and third layer consists of 128, 64 and 32 neurons,
respectively. Both the input and output layers, which is the entry and last

Fig. 4 | Pearson correlation of all the variables in the
ANN-based ML model C-PSC performance
prediction.
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later consist of four neurons each. These layers arrangement provides a
flexibility and adaptability in enhancing the prediction accuracy. The pro-
gressive reductionofneurons in each layer enables the algorithm to learn the
hierarchical representation of the input data. Each parameter’s influence on
the output prediction were analysed, and Fig. 7 demonstrates the depen-
dency of each parameter in the output prediction. Form the analysis, the
perovskite bandgap has the highest influence, followed by the perovskite
thickness and ETL layer characteristics. This insight provides a better
understandingof theperovskite layer optimisationprocess in the fabrication
of the C-PSC.

In conclusion, an artificial neural network (ANN) machine learning
(ML) model was constructed utilizing 700 data points derived from SCAPS-
1Dsimulations toprognosticateparametersof thehole transport layer (HTL)-
free carbon-based perovskite solar cells (C-PSCs). These predictions were
based on the bandgap and thickness variations of the electron transport layer
(ETL) and perovskite layers. The ANN-based ML model exhibited notable
predictive prowess for C-PSC device parameters, yielding a low root mean
square error (RMSE) value of 0.028 and a high R-squared value of 0.954.

Alternative ML models, including random forest (RF), linear regres-
sion (LR), and K-nearest neighbours (KNN), were considered for device
performance prediction. Given the superior performance of the ANN
model, subsequent analyses were exclusively conducted employing the
ANN algorithm. Despite utilising simulation-derived data for device per-
formance prediction, this model is a practical guide for the optimisation
process before experimental execution.

A comprehensive examination of each parameter’s influence and its
correlation to device performance was undertaken. Furthermore, the
ML model’s predictions on device performance unveiled intricate
insights challenging for human validation from randomly generated
data. The model delineated perovskite and ETL layer combinations
conducive to heightened device performance. Effects of these combi-
nations on device performance parameters, such as Voc, FF, Jsc, and
PCE, were scrutinised, streamlining the device optimisation process, and
mitigating the time and cost associated with traditional trial-and-error
research methodologies.

The interpretable nature of this ML model elucidated the impact of
slight variations in thickness and bandgap values on C-PSC performance.
Although the ETL bandgap exhibited minimal influence on the C-PSC’s
power conversion efficiency (PCE), a perovskite bandgap around 1.56 eV
yielded superior results compared to higher bandgap perovskite devices.
Conversely, higher perovskite bandgap values correlated with diminished
device performance, attributable to the sluggish transport of photogenerated
carriers.

In contrast to commonly employed device optimisation techniques
involving interface layers and additive engineering, which are often
benchmarked against standard devices and exhibit variability across
research groups or batches, this ML model’s swift and reliable predictions
facilitate its application across diverse C-PSC fabrication methods. This
expedites the device fabrication process and streamlines the commerciali-
sation trajectory of HTL-free C-PSCs.

Fig. 5 | Comparison ofANNprediction results with true value and predicted value for each variable. aRepresents the open circuit voltage (Voc) results. bCurrent density
(Jsc) values (c) Fill Factor (FF) values. d Efficiency values.
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Fig. 6 | ANN output parameters prediction data interpretation through the 4D-
plots. aVoc concerning the perovskite layer thickness, ETL thickness and perovskite
layer bandgap. b Jsc concerning the perovskite bandgap, ETL and perovskite layer

thickness. c FF concerning the perovskite bandgap, ETL and perovskite layer
thickness. d PCE concerning the perovskite bandgap, ETL and perovskite layer
thickness.

Fig. 7 | Input parameters contribution and impor-
tance on the C-PSC performance – according to the
ANN model.
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Data availability
The dataset is available on request.
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