
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tssc20

Systems Science & Control Engineering
An Open Access Journal

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tssc20

Drone motion prediction from flight data: a
nonlinear time series approach

Shuyan Dong, Saptarshi Das & Stuart Townley

To cite this article: Shuyan Dong, Saptarshi Das & Stuart Townley (2024) Drone motion
prediction from flight data: a nonlinear time series approach, Systems Science & Control
Engineering, 12:1, 2409098, DOI: 10.1080/21642583.2024.2409098

To link to this article:  https://doi.org/10.1080/21642583.2024.2409098

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 06 Oct 2024.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tssc20
https://www.tandfonline.com/journals/tssc20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/21642583.2024.2409098
https://doi.org/10.1080/21642583.2024.2409098
https://www.tandfonline.com/action/authorSubmission?journalCode=tssc20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tssc20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/21642583.2024.2409098?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/21642583.2024.2409098?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2024.2409098&domain=pdf&date_stamp=06 Oct 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2024.2409098&domain=pdf&date_stamp=06 Oct 2024


SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL
2024, VOL. 12, NO. 1, 2409098
https://doi.org/10.1080/21642583.2024.2409098

Dronemotion prediction from flight data: a nonlinear time series approach

Shuyan Dong, Saptarshi Das and Stuart Townley

Centre for Environmental Mathematics, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK

ABSTRACT
In this paper, we explore the application of data-driven predictive systems in enhancing unmanned
aerial vehicle (UAV) control capabilities. We introduce a new model for predicting the motion of
individual drones by utilizing fundamental flight control data. Themodel aims to improve the auton-
omy of individual drones and circumvent the complexity of traditional flight control systems, thus
eliminating intricate nested controls. The proposed model lays the foundation for studying collec-
tive behaviours within a cluster of drones, thereby advancing the research into swarm behaviour
exhibited by drones. The research findings demonstrate the potential of data-drivenmethods in the
construction of UAV control systems. In particular, we here show a comparison of the prediction
performances between twoneural network architectures using real drone flight data involved in var-
ious kinds of motions. We explore the utility of using long short termmemory (LSTM) and nonlinear
autoregressive with exogenous inputs (NARX) family of nonlinear time series models in developing
a virtual drone model using real experimental data.
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1. Introduction

1.1. Drone control and technology support

As an emerging technology, unmanned aerial vehicles
(UAVs) are increasingly being used across various fields,
including power infrastructure inspection, security and
fire protection, agriculture and farming, industry and the
media (Deng et al., 2014; Skorput et al., 2016; Van der
Merwe et al., 2020; Laghari et al., 2023). Autonomous
drones enable closer, safer and more precise inspection
of large industrial sites or hazardous equipment, espe-
cially offering the capability to gather visual or other
survey data in extreme or perilous environments more
effectively than humans (Deng et al., 2014; Nooralishahi
et al., 2021; Samiappan et al., 2017).

Although the application of UAVs is expanding pro-
gressively, traditional control systems face difficulties in
adequately addressing the dynamic nature of real flight
conditions, resulting in limited autonomy and adapt-
ability (Guzmán & Hägglund, 2024; Jembre et al., 2021).
Traditional control systems are typically reliant on pre-
determined flight plans and a global perspective, mak-
ing it hard for UAVs to adapt to the inherent complex-
ity in real-world environments (Gunetti, 2012; Ippolito
et al., 2023), which then struggle to achieve optimal
autonomy. Therefore, there is a pressing need for inno-
vativemethods to address these challenges and enhance
the control capabilities of UAVs. Introducing data-driven
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approaches, models utilize a combination of theoretical
principles and empirical data to adapt to various flight
conditions andmission scenarioswhilemaintaining com-
putational efficiency. By capitalizing on the scalability
and efficiency of data-driven techniques, predictive sys-
tems can optimize flight paths and resource utilization,
thereby improving mission effectiveness and reducing
operational costs.

The advancement of machine learning and artificial
intelligence has inevitably influenced drone research.
One notable application area is the development of data-
driven control systems (Ding, 2008; Freeman et al., 2013;
Guo et al., 2021; Li et al., 2016). These systems utilize
actual historical flight data for trajectory prediction and
optimization thus contributing to improvements in both
autonomy and safety (Ding, 2008; Li et al., 2016).

The autonomous operation of drones relies heavily
on their adaptive and real-time predictive capabilities,
enabling swift responses to rapidly changing mission
demands and intricate environments. Data-driven pre-
dictive systems enable UAVs to adapt in real-time by
continuously analyzing sensor data and predicting future
states. By integrating data-driven approaches into UAV
control systems, these adaptivemodels not only enhance
responsiveness to dynamic environmental changes but
also facilitate autonomous decision-making and trajec-
tory adjustments, thereby bolstering overall mission effi-
ciency and safety (Chen et al., 2021).
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Data-driven predictive systems represent a potential
method for enhancingUAVcontrol capabilities. Our study
aims to address a significant gap in UAV trajectory predic-
tion research, where reliance on simulation results pre-
vails over actual flight data, by developing innovative
methods that utilize real flight data to enhance UAV con-
trol capabilities in dynamic environments. Anticipating
the utilization of the data-driven predictive system, we
expect to achievemore efficient and adaptive flight oper-
ations in dynamic environments. With access to historical
flight data and advanced machine-learning techniques,
these systems can refine trajectory prediction, optimize
flight paths, and elevate overall mission efficiency and
safety. We expect that this autonomous control system
is able to replace the usage of controllers that are nor-
mally used for integrated planning inmulti-agent control
systems so that the individual drones in a flock can coop-
erate to attain a target without any additional controller
involved.

This paper uses data analysis techniques to statisti-
cally learn drone motion and control variables, delving
into the correlations between Pulse Width Modulations
(PWMs),poses, andpositions. PWM is anelectronicmethod
employed to represent the information through a chang-
ing signal. It involves the simulation of an analogue sig-
nal through the creation of a sequence of digital pulses,
with the adjustment of pulse width serving as a means
to communicate information. Correlation-based feature
selection is carried out on the data and, based on the cor-
relation coefficients, a newNonlinearAutoregressivewith
Exogenous inputs (NARX) model for position prediction
is designed. Specifically, it explores the innovative con-
cept of aneural network-baseddrones’motionprediction
model in the realms of drone control and trajectory pre-
diction.With the advanceddata processing capabilities of
theNARX model, this study aims to establish a new drone
motion prediction system.

The core of this new technique lies in utilizing exten-
sive historical trajectory data and the internal data of
the drone to train the drone’s motion-predicting model.
These datasets cover multiple factors, including motor
outputs, poses, and three-dimensional positional infor-
mation of the drone. The NARX network aims to decipher
the intricate relationships within this data, enabling it to
forecast the subsequent motion of a drone when given a
particular set of PWMs or poses.

The NARX-based prediction of drone motion is not
only an innovative approach but also shows potential
value. This new designed model holds promise for pro-
viding new solutions to optimize flight efficiency and
enhance UAV autonomy, potentially aiding the aviation
industry in achieving greater autonomy and sustainabil-
ity. Through interdisciplinary collaboration and ongoing

research efforts, we believe that data-driven predictive
systems will play a pivotal role in shaping the future of
UAV technology.

1.2. Research content and significance

This paper is an extension of our previous work (Dong
et al., 2023), with additional data analysis results. The pre-
vious paper explored the shortcomings of both central-
ized and decentralized systems and discussed whether it
would be possible to overcome existing problems in the
centralized control system and the decentralized system
by introducing swarm intelligence to the control system.
By harnessing the adaptive and self-organizing nature
of swarm algorithms (Blum & Roli, 2003; Dorigo et al.,
2006; Gao, 2020; Hassanien & Emary, 2016; Liu et al., 2021;
Procaccini et al., 2011; Teodorović, 2008), a new flocking
system may be designed with minimal human interven-
tion. The envisioned framework seeks to transcend exist-
ing limitations, promising breakthroughs in UAV cluster
control and performance optimization. With this primary
blueprint for a swarm intelligence-inspired drone flock-
ing control system, we conducted an initial exploration
of individual flockmembers’ basic autonomy.We present
two nonlinear time-series modelling methods, namely
Long Short-Term Memory (LSTM) and NARX, applied to
actual drone flight data, and compare the performance of
each class of model.

In contrast to the previous paper, here we carried out
a further exploration of predictive modelling and model
optimization based on real flight data. We embark on a
comprehensive investigation by initially applying Spear-
man correlation to the dataset for nonlinear analysis. Sub-
sequently, we revisit the comparative results of LSTM and
NARX models in terms of predictive capabilities. Remark-
ably, it is observed that, despite undergoing identical
training durations, theNARX model exhibits superior pre-
dictive performance.

Expanding on this, we delve into the nuances of the
NARX model’s effectiveness, dissecting its ability to cap-
ture intricate patterns within flight data and adapt to
dynamic environmental conditions. Furthermore, we elu-
cidate the potential implications of these findings for
enhancing UAV control systems and optimizing mission
performance in real-world scenarios.

Considering the shortcomings in the experimental
results of the closed-loop NARX, we delve further into
the design and construction of the predictive model
structure. By reconsidering the features of the model,
we establish that incorporating the Stabilizers as the
input yields improved model performance. This model is
named ‘Sta_POSNARX ’. To explore the impact of different
input delays and the feedback delays of the NARX model,



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 3

we construct 144 variations of the Sta_POS NARX model
by altering the delay parameters. Each model repeated
the training for five times to mitigate for the effects of
training randomness, resulting in a total of 720 models.
These 720 trained models are subsequently applied indi-
vidually to various types of flight data. Based on their
predictive performance, the optimal models for each set
of flight data are selected.

The optimal NARX models are chosen for each tra-
jectory to integrate them into the closed-loop control
system we are developing to enhance the autonomy
of drone motion. This new closed-loop control system
design is a novel autonomous control approach for
drones, eliminating the need for nested complex control
loops. Additionally, the new control system facilitates the
accumulation of a large volume of reference datawithout
incurring the costs and losses associated with collecting
data through actual flight experimentation.

Key contributions of the paper are:

• an innovative method for predicting drone move-
ments by projecting their future flight positions based
on essential data such as PWMs and Pose, circumvent-
ing the intricate computations associated with con-
ventional flight control systems;

• a comparative assessment between the newly intro-
duced NARX model and the commonly employed
LSTMmodel in autonomous flight technology, demon-
strating that the NARX model offers quicker training
and superior fitting;

• a formulation of the ‘Sta_POS NARX ’ model to capital-
ize on the time-dependent characteristics of data and
so improving predictive precision.

2. Material andmethods

2.1. Experimental setting and data collection

To implement the data-driven control system, we recor
ded a large amount of flight data, including, but not con-
fined to, small regular patterns, different unidirectional
flying patterns such as going left, going right, taking off,
landing, flying forwards, flyingbackwards, alongwith ran-
dom walks limited within a specific range.

Our experiments used the Crazyflie (see Figure 1),
an open-source flying development platform known for
its versatility and weighing a mere 27g. Due to its
lightweight construction, the drones have been utilized
in small robotics or multi-robotics research and applica-
tions (Giernacki et al., 2017; Lambert et al., 2019; Preiss
et al., 2017).

Based on the aforementioned flight data, we mod-
elled themotion of the drones within amachine-learning

Figure 1. Authentic photographs of the drone, used to generate
experimental data for modelling.

framework. This may help perform experiments such
as obstacle avoidance on a virtual model. With the
data-driven virtual model, we are able to digitize the
motion of the drones frommanual control to quantitative
control. Thiswill lead theoretically to smoother flights and
improved controllability. Upon a successful run of the vir-
tual experiment, the model outputs are assigned to the
real drone so that it can be controlled directly. Remark-
ably, the results obtained from the test are observed to
closely match those derived from the virtual experiment.

According to the mentioned experimental setup, data
pertinent to the robotic control system, motor input data
or pulse width modulation (PWM), 3D positional coor-
dinates (X , Y , Z), and four features (Roll, Pitch, Yaw, and
Thrust) from the robotic control system of the drone are
recorded during the drone’s operation. Comprehensive
descriptions and sizes of these recorded data points are
detailed in Table 1.

PWM inputs of themotors are recorded as the features
of control technology for electronic power applications
(Blaabjerg, 2018; W. Liu, 2013). PWM stands as an irre-
placeable link in a stable and flexible method of control-
ling the speed of a DC motor (W. Liu, 2013). The three
dimensions representing the position of the drone are
recorded every 50 milliseconds. Roll, pitch, and yaw are
terms used to describe the rotational movements of an
object or body in three-dimensional space. Roll refers to
the rotation around the longitudinal axis of an object.
Pitch refers to the rotation around the lateral axis of an
object. Yaw refers to the rotation around the vertical axis
of an object. In the field of robotics, roll, pitch, and yaware
fundamental components for movement descriptions.

Flight data acquisition during drone operations inher-
ently exhibits a temporal nature gathered over distinct
time intervals. The inherent temporal and spatial depen-
dencies in-flight data may result in adjacent data points
being interrelated and potentially influencing each other.
Moreover, flight data demonstrates spatial correlation,
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Table 1. Flight data types used in the experiments and corresponding detailed
descriptions with sizes.

Data name Data description Data size

Small Circle A small circular motion including take-off and landing 300 × 11
Large Circle A large circular motion including take-off and landing 325 × 11
Taking Off 100 repetitions of taking off and landing 5081 × 11
Going Forward 100 repetitions of going forward and backwards 720 × 11
Going Left 100 repetitions of going to the left direction 6441 × 11
Going Right 100 repetitions of going to the right direction 2802 × 11
Small Random Multiple times of limited steps (50) randomwalk 7290 × 11

Figure 2. Variable arrangements and schematic of data generated to train the virtual drone model. (a) Data description and (b) Model
organized.

wherein diverse flight paths and altitudes can signifi-
cantly impact the characteristics of the data. In this study,
we collected multi-dimensional flight data, consisting of
motor data, flight position, and robotic control parame-
ters. The specific parameters recorded and the schematic
of data application to model structure are shown in
Figure 2. Thesemultiple dimensions of data are intricately
related and require sophisticated analysis and modelling
techniques to extract meaningful insights.

2.2. Data preparation andwrangling

Throughout flights, the recorded data encounters instan
ces of noise and outliers, which can introduce inaccura-
cies and instabilities in data analysis and modeling. This
instabilitymight affect the flight data in certain scenarios.
Hence, data processing is of crucial significance in model
design.

First, we addressed missing data and smoothed out-
liers using a sliding window approach. This method
involves calculating the average of data points within a
fixed-size window (where we use 2 as the window’s size
in outlier replacement), that moves across the dataset.
This technique helps fill in missing values and smooth
outlier values by leveraging the local neighbourhood of
each data point. Moreover, we normalized three distinct
parameter groups to ensure that the data was on a com-
parable scale, facilitating better analysis and model per-
formance.

We considered the outlier as yi, and the replacement
value y′

i is calculated as the average of the non-outlier

neighbours. Thus, the y′
i = (yi−1 + yi+1)/2. If yi−1 or yi+1

is also an outlier, we continue to find the next valid non-
outlier neighbour.

In the flight experiments, drones experienced an
uncontrollable lateral offset that became more severe
with each repetition of the flying pattern. Treating this
offset as a discernible trend, we utilized Matlab’s built-in
function detrend to reduce the effect of the offset.

After an initial analysis of the position data, a notable
discrepancy in magnitude between PWM and POS be
came apparent. Given our intention to employ the NARX
model for POS prediction, understanding neural network
characteristics became imperative. A significant magni-
tude gap between input and output values might bias
the network toward learning larger magnitude outputs,
potentially neglecting smaller ones, which will lead to
considerable inaccuracies in predicting the smaller mag-
nitudeoutputs. Furthermore, thismagnitudediscrepancy
might result in increased errors and reduced precision in
forecasting POS with smaller magnitudes, consequently
affecting the overall model accuracy.

To address this significant magnitude disparity bet
ween PWMs and POS, while maintaining feature correla-
tion, we implemented data rescaling. In MATLAB, rescal-
ing typically involves adjusting data to specific ranges
or standardizing it for improved model training or data
processing.

Rescaling PWMs to the range [0, 1], aided in miti-
gating dimensional differences between PWM and POS.
This ensured a more balanced weight distribution dur-
ing model training, which improved model stability and
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Figure 3. Feature correlations between 11 variables on the data including Taking Off experiment. This correlation matrix shows the
correlations between pulse width modulation of four motors (PWM1−4), drone’s altitude (Roll and Pitch), heading angle (Yaw), reaction
force (Thrust) and position (X, Y , Z).

convergence speed. Simultaneously, it aligned the gen-
eral data within similar ranges, ensuring relative equi-
librium in their influence on the model and preventing
PWMs from dominating the model’s training due to the
larger numerical range.

2.3. Exploratory data analysis

To better understand the relationships between features,
we investigated correlation metrics. The correlation met-
rics betweenpairs of features of the general flight data for
multipledetrended flight trajectorieswere analyzed.How-
ever, when integrating flight data from different flight
paths and performing data correlation analysis, it was
found that the data recorded on Taking off would signif-
icantly impact the analysis. The schematic diagram of the
correlation analysis of elements with and without Taking
off data is shown in Figures 3 and 4, respectively.

It can be seen in Figure 3 that the position features
(X , Y , Z) exhibit weak correlations with the majority of

other features and among themselves. Notably, a signif-
icant correlation is evident among PWMs (PWM1, PWM2,
PWM3, PWM4 shown in Figure 3) when the dataset incor-
porates the taking off and the variable thrust demon-
strates a high correlation with PWMs.

However, when only considering the rest of the data
from the trajectories, the correlations of motors’ output
are not significantly high. Although Thrust shows a cor-
relation of approximately 0.5 with the motors’ output,
the correlations are comparatively lower than that when
including Taking off data (Figure 4).

It is interesting to see when modelling this specific
behaviour of Takingoff , we can exclude the output of cer-
tain motors as features, or use thrust as a substitute. This
operation will not be performed for other behaviours.
This is primarily because during take-off, maximum thrust
and lift are required to overcome gravity and air resis-
tance, resulting in a high correlation between PWM sig-
nals and thrust. In contrast, during other flight phases,
the vehicle maintains equilibrium with balanced forces,
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Figure 4. Feature correlations between 11 variables on the data without Taking Off experiment.

requiring only the necessary thrust to maintain speed
and altitude, with specific engines adjusting rotation per
minutes (RPMs) during maneuvers.

In the realm of flight control systems, PWM signals are
utilized to regulate the motor speed of UAVs, thereby
controlling the UAV’s flight altitude and position. How-
ever, the relationship between PWM signals and Stabilizer
(such as pitch, roll, and yaw) and POS is not always a sim-
ple linear correlation. This complexity arises due to intri-
cate interactions between control algorithms, notably
proportional integral derivative (PID) controllers within
the flight controller system, and the dynamic behaviour
of the UAV during flight.

Meanwhile, in traditional robotics control theory,
through a series of computations involving altitude trans-
formations, it is possible to deduce the current direc-
tional vector of the aircraft. This directional vector, com-
bined with previously known positional information of
the aircraft, can be integrated to compute the current
coordinates of the UAV. Based on this, it can be broadly
stated that the transformation between Pose and position
involves multiple iterations of integral changes.

Therefore, we conducted the Pearson and Spearman
correlation coefficient tests separately. The Pearson cor-
relation coefficient assesses the strength of the linear
relationship between two variables within a range of
[−1, 1]. This measurement is ideally suited for continu-
ous, normally distributed, and highly consistent linear
data. Unlike this, the Spearman correlation is adept at
measuring the strength of the non-linear relationships
between two variables, upto a certain degree. Consider-
ing the inherent characteristics of drones, we expected
to observe a lower correlation coefficient between the
PWMs and POS, as well as between the Stabilizers and
the POS. The specific correlation matrices are illustrated
below (Figure 5).It shows a higher Spearman correlation
coefficient between the Stabilizers and the positions than
that between the PWMs and the X and Y directions.While,
unlike the others, when providing Small Random to the
drone, the Z direction position shows higher relevance
with the PWMs. This observation implies that modelling
based onNARX, focusing on the Stabilizers variables could
yield greater accuracy in capturing and predicting posi-
tional changes.
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Figure 5. Spearman correlation coefficient of Small Random.

We also conducted the same data analysis with Spear-
man correlation for the more regular motions, which are
Going Left, Going Right and Going Forward. Comparing
Figures 5 and 6, the PWMs, positions, and Stabilizer perfor-
mances during regular flights exhibited a similar correla-
tion to those observed in the case of the Small Random.

The positive correlation coefficient between a drone’s
Thrust and PWMs is indicative of how Thrust in flight con-
trol is typically achieved by adjusting the output power
of the motor. PWMs are a common method used to con-
trol the power of the motor. Generally, as PWMs increase
(which means an increase in the pulse width of the
motor’s output), the motor’s speed or output power also
increases, resulting in greater Thrust.

The Yaw and two motors of the drone show a pos-
itive correlation, with the other two motors showing a
negative correlation affirming the flight control system
and power distribution of the quadcopter. In this type
of drone, the control of flight direction and stability is
achieved by adjusting the output of the fourmotors. Yaw,
which involves rotation around the vertical axis of the
drone, requires two pairs of symmetric motors to gen-
erate opposing torques. Consequently, changes in the
speed of these two motors directly affect the direction

of the motor’s Yaw, which results in a positive correla-
tion. On the other hand, the other two motors are situ-
ated differently, and variations in their speeds produce
torques in the opposite direction to the Yaw, leading to
the observed negative correlation between them. This
intricate correlation pattern emerges due to the dynamic
balance and torque distribution inherent in this system.

3. Motion prediction with nonlinear time series
models

Time series forecasting focuses on inferring future val-
ues by utilizing patterns and trends present in historical
data. It involves analyzing the cyclic, trending, and other
influential factors within the data to establish mathemat-
ical models for predicting future changes. In this process,
correlation analysis provides valuable insights, serving as
a guide for constructing time series models and aiding
in the identification of variables that could substantially
impact predictive outcomes.

Combining the findings from the earlier correlation
analysis, we concentrated the drone motion predic-
tion with two separate approaches: LSTM and NARX
separately.
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Figure 6. Spearman correlation coefficient of Going LeftandRight.

3.1. Motion prediction of LSTMmodels

Considering the characteristics of the data, firstly, we
build our model based on the LSTM deep neural net-
works. LSTM is a kind of Recurrent Neural Network (RNN)
that is suitable for processing sequencial data such as
speech, text, and time series (Greff et al., 2016; Hochreiter
& Schmidhuber, 1997). Each unit of LSTM can continu-
ously store and update information over multiple time
steps, enabling solution of problems related to long-
term and short-term dependencies. LSTMs are widely
applied in fields such as natural language processing
(NLP), speech recognition, time series forecasting, and
action recognition. The application of LSTM is also found
in autonomous driving by enabling the modeling and
prediction of various aspects such as vehicle trajectories,
behavioural patterns, and the surrounding environment.
Through historical driving data, LSTM analyzes and learns
from the vehicle’s past movement patterns, enabling the
anticipation of the vehicle’s subsequent actions under
specific circumstances. These actions encompassmaneu-
vers like turning, lane changing, acceleration, or deceler-
ation. By employing LSTM to learn from past experiences,
autonomous vehicles are able to foresee and respond
adeptly to diverse driving scenarios.

When examining the data associated with lateral
movement (Going Left), the predicted results differ from
the real ones, which can be easily noticed from Figure 7.
While the model exhibits considerable precision in pre-
dicting movement along the y-direction, it displays a
pronounced bias when forecasting the z-direction. More-
over, considering the diminutive scale of the experimen-
tal drones, the prediction accuracy is expected to be no
more than 10 centimetres, which raises a challenge for
the LSTM. The limitationmay stem from LSTM’s inclination
towards sequenceswith extendeddependencies, render-
ing it susceptible to interference from noise.

To address this challenge, we explored the use of
an NARX architecture as an alternative framework. NARX
exhibits superior capabilities in predicting nonlinear time
series, showcasing enhanced resilience against noise and
outliers inherent in input data. Additionally, leveraging
multiple time series as external inputs, NARX facilitates
more adaptable modelling of diverse time series data.

In contrast to LSTM, NARX demonstrates accelerated
computational efficiency when learning patterns from
the drone flight data. This characteristic highlights the
potential of NARX to overcome noise interference, lead-
ing to more accurate predictions.
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Figure 7. The LSTMmodel trained and tested on Going Left. The top left image displays the true trajectory and the predicted trajectory
in 3D. The remaining three images show the true and predicted trajectory on different combinations of dimensions.

3.2. Motion prediction of NARXmodels

The NARX model represents a hybrid architecture com-
bining auto-regression and exogenous input compo-
nents. It integrates the concepts of autoregression (AR)
andexternal inputs (X), allowing for theeffectivehandling
of non-linear relationships and prediction issues within
dynamic systems. The specific model structure is shown
in Figure 8. This schematic illustrates the NARX model
designed formotionprediction, structured in three layers.
The model processes two input sequences: the stabiliz-
ers sequence and the initial positions sequence. The ini-
tial positions sequence undergoes preprocessing, includ-
ing detrend and normalize operations, to remove linear
trends and scale the data to a standard range. A crucial
componentof thismodel is the feedback loop,which con-
nects the output back to the input, particularly to the
feedback delay. This loop enables themodel to use previ-
ous outputs to inform and improve future predictions.

The NARX model can be written as:

y(t) = f (y(t − 1), y(t − 2), . . . , y(t − m),

x(t − 1), x(t − 2), . . . , x(t − n)),

where,m - feedback delays; n - input delays.
The distinctive feature of NARX models is their ability

to capture complex nonlinear patterns within time series
data. Unlike traditional linear models, NARX can accom-
modate external factors, enabling more accurate and

adaptable predictions. Its recurrent structure facilitates
themodelingof timedependencies,making itwell-suited
for scenarios involving dynamic and interrelated data. By
incorporating exogenous inputs, NARX can better adapt
to diverse, real-world scenarios, making it a compelling
choice for predictive analytics and forecasting tasks. With
the growing demand for predictive models, NARX has
been increasingly utilized across various domains, includ-
ing weather forecasting (Bukhari et al., 2020), energy
demand prediction (Ruiz et al., 2016), and many other
areas (Raptodimos & Lazakis, 2020; Wunsch et al., 2021).

As a new approach, we proceeded tomodel the Going
Left data using NARX methodology. The model takes a
sequence of positions (X, Y, Z) as inputs and recurrent
inputs which are 11-dimensional. After training, we com-
pared the predicted trajectory as well as the predicted
Stabiliser data (Roll, Pitch, Yaw, and Thrust), against their
respective true values. Figure 9 shows the true and pre-
dicted trajectories across various dimension combina-
tions.

When contrasting the trajectories predicted by the
LSTM model, as depicted in Figure 7, with those derived
from the NARX model, a markedly superior level of accu-
racy is evident in the latter. The detailed comparison of
results is delineated in Table 2, illustrating the substan-
tial improvement achieved by theNARXmodel over LSTM
predictions. Additionally, Table 3 presents the goodness-
of-fit (R2) for individual variables, demonstrating the
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Figure 8. The schematic of the NARX structure. Themodel shown comprises three layers, themarked numbers ‘3’ in each block stand for
the size of the hidden layers in each block. Before being fed into themodel, detrend and normalize operations are applied to the position
inputs.

Figure 9. The NARX trained and tested on Going Left. The top left image displays the true trajectory and the predicted trajectory in 3D.
The remaining three images show the true and predicted trajectory on different combinations of dimensions.

Table 2. Model validation (MSE and R2) of LSTM and NARX on
going left.

Model name Validation topic
Mean square
error (MSE) General R2

Going Left LSTM POS 0.094 −1.28 × e−5

Going Left NARX POS 0.073 0.58
PWM 0.435 -
Stabilizer 0.142 -

overarching trend of superior predictive performance
exhibited by the NARX model across various metrics.

Moreover, the NARX model shows a reasonable accu-
racy rate, reaching 70% in predicting path errors within
a margin of 0.15 meters, while achieving an even
higher accuracy rate of 90% for errors confined within
0.25 meters. These findings underline the heightened

precision and reliability inherent in the NARX model’s
predictions, solidifying its efficacy in forecasting trajecto-
ries with enhanced accuracy.

The comparative analysis between predicted and
actual positions on individual dimensions is shown in
Figure 10. After visualizing the predicted Stabilizer and
the true stabilizers, as shown in Figure 11, it becomes
apparent that the NARX model adeptly accommodates
the variations in Roll, Pitch, and Thrust. However, con-
cerning the comparatively steady data attribute, Yaw, the
predicted values exhibit notable fluctuations.

To comprehensively assessing the model’s perfor-
mance,we examined the auto-correlationof the error.We
found that the auto-correlation of the error of the model
slightly deviates from the delta function, indicating that
the model struggles to capture the underlying trends or
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Table 3. Model validation (R2 of different variables) using LSTM and NARX on going left.

Model name
Validation

variables’ name
R2 of all

predicted data
R2 of the predicted data (from

the 200th sample)

Going Left LSTM X Direction −0.37 −0.38
Y Direction −1.2 −1.13
Z Direction −1.5 −1.52

Going Left NARX X Direction 0.76 0.92
Y Direction 0.98 0.99
Z Direction −3.89 0.71

Roll 0.84 0.87
Pitch 0.75 0.89
Yaw −12.26 −0.85
Thrust −3.05 0.54

Figure 10. The comparison between the predicted and actual trajectory on a single dimension generated by theNARX applied onGoing
Left is shown. The true trajectory and thepredicted trajectory are shown in the 3D imageon thebottom right. The remaining three images
show the true and predicted trajectory on separate dimensions.

seasonal factors of the data. This discrepancy could be
indicative of under-fitting. Typically, improving the com-
plexity, expanding the dataset, or reducing the number
of features can alleviate this issue. Then we increased
the size of the training set and observed a persistent
auto-correlation in the error, although the correlation has
slightly decreased.

This observation highlights the complexity of the
underlying dynamics and indicates the need for fur-
ther refinement in the model architecture or the inclu-
sion of additional relevant features. While the model
demonstrates competence in capturing certain varia-
tions, the persistence of auto-correlated errors implies
an incomplete grasp of the intricate patterns gov-
erning the system’s behaviour, particularly in relation

to yaw stability. Thus, subsequent iterations involving
an expanded dataset, meticulous feature selection, or
adjustments in the model’s complexity are essential to
address the persistent under-fitting issue and improve
the accuracy of NARX model’s prediction over all dimen-
sions.

Comparing the experimental results, it can be seen
that digitizing the flight of the drones with the NARX
model generated relatively better results than that of
LSTM. However, upon visualizing the output and analyz-
ing the autocorrelation of the errors, we found that the
model is under-fitting. Therefore, we further modify the
current NARX model. The purpose of this model is data-
driven learning of the flight pattern of the drone, which
will provide us with a more stable and precise method of
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Figure 11. The comparison between predicted and actual Stabilizers generated by the NARX applied on Going Left.

automatic control of the drone. We refer to this model as
a Virtual Drone.

4. The refinement of the NARX model structure

Considering the further application of this model for
obstacle avoidance in unknown environmental condi-
tions and its utilization for cooperative obstacle avoid-
ance among multiple Virtual Drones, it becomes impera-
tive to refine the model’s structure. We opted to recon-
figure the input and output structure of the virtual drone
as an initial attempt to improve the fit of the model. This
modification is aimed to better capture the encountered
environmental information during the drone’s flight.

After considering the drone’s operational theory, our
hypothesis centered on the notion that the motor oper-
ations induce position alterations. Therefore, we aimed
to determine the feasibility of using PWMs or Stabiliz-
ers as external inputs for the model. Simultaneously,
we anticipated the model’s capability to forecast the
drone’s position. To evaluate these modifications, we
conducted trainingand testing sessionsusing the restruc-
tured second-generation virtual drone model within a
simulated environment referred to as the ‘Small Ran-
dom walk’. Batch training is conducted separately on
the model architectures utilizing Stabilizers (Sta_POS)
and PWMs (PWM_POS) as inputs within the Small Ran-
dom. This approach aimed to identify which attributes

contribute most significantly to crafting a more high-
performing model. The foundational structure of the
model, characterized by the number of nodes in each
hidden layer, was initially configured as [3, 3, 3].

We conducted training sessions involving varying
numbers of input delays and feedback delays, ranging
from 4 to 15 steps which are 720models in total. The per-
formance metrics, including Mean Squared Error (MSE)
and coefficient of determination (R2) scores were eval-
uated on the entire dataset as well as specifically the
initial 200 steps, serving as validation metrics. Based on
predictive visualization and the model’s MSE and R2, we
observed that for the NARX model, a single R2 or MSE
value alone does not adequately reflect the model’s pre-
dictive capability. Even if the model gives a high R2 but
if the corresponding MSE is high, it does not necessar-
ily imply accurate predictions by the model. Therefore,
for NARX model validation, we predominantly utilized
validationNARX = R2/MSE as a validation metric. Higher
validationNARX values corresponded to better predictive
performance. Figure 12 compares the performance of
PWM_POS and Sta_POS NARX based model in three vali-
dation methods intuitively. From the figure, it is evident
that regardless of the methods used for the model val-
idation, the Sta_POS model consistently demonstrates a
higher degree of fit compared to the PWM_POSmodel.

Considering the performance comparison, we further
delved into the internal structure of Sta_POS. As the
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Table 4. Model validation (MSE and R2) of general position of the best four model in batch training on Small Random.

Model Input delays Feedback delays MSE general R2 general MSE the first 200 steps R2 first 200 steps

Model 89 5 9 3.24 -2.2 0.73 0.59
Model 207 8 15 2.74 -1.77 0.70 0.75
Model 407 10 13 2.77 -1.78 0.55 0.80
Model 642 14 12 3.50 -2.53 0.68 0.71

Figure 12. The figure illustrates the comparison of performance
between the PWM_POS model and the Sta_POS model. (a) dis-
plays the MSE and R2 scores for the predictions with each model
over the initial 200 steps, while (b) shows the comparison of the
validationNARX .

predicted position and the MSE and R2 values of the
models being visualized, we identified the top four per-
forming models. The structures of the Sta_POS models
and their respective validation results are presented in
Table 4. The error chart of these four models across var-
ious dimensions is individually shown in Figure 13. It can
be observed that Model 407 exhibits superior regression
performance on the data, particularly noticeable in the y-
direction. Compared to other models, Model 407 shows
a notably more stable prediction trajectory. Additionally,
when visualizing the predictive paths, we observedwhen
confronted with abrupt changes in the data, Model 407

demonstrates a remarkable ability to predict this trend
accurately. Upon examining the fitting of these fourmod-
els, it becomes apparent that compared to actual flight
data, the predictions given by the NARX model provide a
smoother curve.

Predictions weremade for 720models across different
datasets. We further explored the accuracy and fitting of
predictions for these 720models at different step lengths
and conducted additional experiments. The 720 models
were tested for variance step predictions, which ranged
from 2 steps to 200 steps on multiple trajectories such
as Small Random, Going Left, Going Right, and Taking
Off.

After testing the models on Small Random, the four
models (378, 176, 407, and 642) demonstrated the best
validationNARX are further visualized. Model 378 gener-
ated the best validationNARX among the 720 models. To
gain an intuitive understanding of the trajectory predic-
tion, we visualized the predicted results separately for
the x-direction, y-direction, and z-direction (Figure 14).
Additionally, we presented the visualization of the pre-
dicted results in Figure 15 across combined directions.
From Figure 14, it is evident that the model provides
more accurate predictions in the y and z directions, with a
notable improvement, particularly in the y direction. This
highlights themodel’s ability to capture themotion trend
along the y-axis. From Figure 14, we can observe that
Model 378 exhibits a high degree of fitting for the first 40
steps of the predicted trajectory, as compared to the real
trajectory. Analyzing the data, we found that R2 reaches
99%, and validationNARX achieves 99 (Table 5).

The visualizations of predictions for the remaining
three optimalmodels under the Small Random trajectory,
namely models 407, 176, and 642, are illustrated in Fig-
ures 16, 17, 18, 19, 20, and 21. The predictions from the
four models are notably more accurate in the y-direction.
When considering a direct prediction for 200 steps, we
find that Model 407, emerges as optimal for the 200-step
prediction in the previous section, remaining the best
among models 378, 407, 176, and 642. However, in the
case of predicting 120 steps in the z-direction, the pre-
diction error of Model 407 has increased by almost 50%
compared to Model 378. Even though Model 642 demon-
strates a trajectory prediction trend very similar to the
real path, the overall prediction error is significantly high.
In the x-direction, the predicted range extends from its
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Figure 13. The error chart of the best four performing NARX models on Small Random walk. The error chart of each model on every
dimension is shown in the subplots separately.

Figure 14. This figure shows the comparison between predicted and real trajectory on separate directions generated by theModel 378
applied on Small Random. The bottom right image displays the real trajectory and the predicted trajectory in 3D. The remaining three
images show the real and predicted trajectory on separate dimensions.

Table 5. Model validation (MSE and R2) when testing on Small Random.

Model Input delays Feedback delays MSE R2 validationNARX Predicted steps for comparison

Model 378 10 7 0.015 0.99 99 40
Model 407 10 13 0.02 0.97 48.5 40
Model 176 6 15 0.02 0.98 49 40
Model 642 14 12 0.11 0.76 6.91 40
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Figure 15. Model 378 tested on Small Random. The upper left image displays the true trajectory and the predicted trajectory in 3D. The
remaining three images show the true and predicted trajectory on different combinations of dimensions.

Figure 16. This figure shows the comparison between predicted and real trajectory on separate directions generated by theModel 407
applied on Small Random. The bottom right image displays the real trajectory and the predicted trajectory in 3D. The remaining three
images show the real and predicted trajectory on separate dimensions.
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Figure 17. Model 407 tested on Small Random. The upper left image displays the true trajectory and the predicted trajectory in 3D. The
remaining three images show the true and predicted trajectory on different combinations of dimensions.

Figure 18. This figure shows the comparison between predicted and real trajectory on separate directions generated by theModel 176
applied on Small Random. The bottom right image displays the real trajectory and the predicted trajectory in 3D. The remaining three
images show the real and predicted trajectory on separate dimensions.
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Figure 19. Model 176 tested on Small Random. The upper left image displays the true trajectory and the predicted trajectory in 3D. The
remaining three images show the true and predicted trajectory on different combinations of dimensions.

Figure 20. This figure shows the comparison between predicted and real trajectory on separate directions generated by theModel 642
applied on Small Random. The bottom right image displays the real trajectory and the predicted trajectory in 3D. The remaining three
images show the real and predicted trajectory on separate dimensions.
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Figure 21. Model 642 tested on Small Random. The upper left image displays the true trajectory and the predicted trajectory in 3D. The
remaining three images show the true and predicted trajectory on different combinations of dimensions.

original 0.2m to 0.6m, while, the prediction of z-direction
showed a larger error when doingmore than 100 steps of
prediction.

We applied the model to various flight paths, includ-
ing Going Left, Going Right, Going Forward, and Taking
Off . Simultaneously, we validated the prediction results
for different step counts to assess the model’s predictive
capabilities across diverse flight trajectories. The follow-
ing section presents a comparisonbetween thepredicted
paths and the real paths for the models that demon-
strated superior performance on distinct datasets. Model
207 and Model 176 emerged as the top-performing pre-
diction models for the Going Left and Going Right flight
trajectories, respectively.

There was significant fluctuation in the early pre-
dictions, stabilizing gradually after forecasting 20 steps.
Upon comparing the predicted values in the three direc-
tions, we observe that these models exhibit greater
accuracy in predicting the x and z directions while

encountering larger errors in the y direction. This
phenomenon contrasts sharply with the substantial-high
regression observed in the y-direction predictions during
the Small Random, indicating potential overfitting issues
in the y-direction for the model ensemble.

Regarding predictions for different underlying paths
in the environment besides Going Left and Going Right,
the specific optimal models and their corresponding
structures, MSE (Mean Squared Error), R2 values, and
validationNARX are detailed in the Table 6. It is notable
that predictions for Going Right and Going Left are not as
accurate as those for other simpler trajectories. This dis-
crepancy arises from the inherent challenge of maintain-
ing the drone’s stability in the x and z directions during
actual flight conditions. To sustain lateral motion only,
the drone’s motors require additional outputs. Despite
detrending the data in the initial stages, fluctuations
generated during flight still exert a non-negligible impact
on the model predictions.
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Table 6. Model validation (MSE and R2) when testing on Going Left, Going Right, Going Forward and Taking Off .

Dataset Model Input delays Feedback delays MSE R2 validationNARX Best Predicted steps

Going Left Model 207 7 9 4.25 0.45 0.12 30
Gong Right Model 176 6 15 80 – – –
Going Forward Model 594 13 14 13.315 0.52 0.04 62
Taking Off Model 338 9 11 15 0.67 0.04 42

These findings provide promising strides toward refin-
ing the virtual dronemodel for enhancedpredictive accu-
racy and stability, crucial for its deployment in real-world
scenarios involving autonomous flight control and obsta-
cle avoidance. Further iterations and refinements can be
pursued to optimize model performance across diverse
environmental and operational conditions.

Based on our findings, each pathway presents its dis-
tinctive applicable model. When we endeavour to apply
Model 378, which exhibited optimal performance on
the Small Random pathway, to various scenarios such as
Going left, Going Right, Going Forward, and Taking Off ,
we observe that the Model 378 adequately predicts data
trends in the Taking Off experiments. However, its pre-
dictive performance on the other three pathways falls
short of expectations. Similarly, the optimal models for
Going left, Going Right, Going Forward, and Taking Off
also exhibit analogous behaviours when applied to the
remaining datasets. Considering these observations, we
are confronted with the question of model selection for
the virtual drone to be incorporated into our subsequent
closed-loop control system research. However, consider-
ing the complexity of the pathways and the adaptability
to the environment, we will initially employ Model 378
as the embedded virtual drone in the closed-loop control
system.

In the upcoming research, we intend to leverage
trained drone models extensively to establish a closed-
loop control system for the autonomous control of air-
craft motion paths. The traditional closed-loop control
system, also known as the feedback control system, is a
common system design in the engineering and control
domains, characterized by the integration of a feedback
loop within the system. This feedback loop allows the
system tomonitor its output in real time andmake adjust-
ments based on this output information, ensuring that
the system’s behaviour aligns more closely with or meets
the expected performance requirements. By integrating
virtual drones and feedback loops, our objective is to con-
struct a control system for aircraft flight paths, enabling
the aircraft to closely adhere to the desired trajectory,
enhance overall performance, and reduce resource con-
sumption associated with extensive repetitive flights.

This research direction not only holds the potential
to advance drone technology but also carries signifi-
cant theoretical and practical implications for exploring

the application of closed-loop control systems in com-
plex environments. Our innovative approach aims to
fully exploit the intelligence and adaptability acquired by
drones during model training, allowing the closed-loop
control system to flexibly adapt to changes and uncer-
tainties in real-world environments.

5. Conclusion

In this study, we designed a novel method for predict-
ing the position of drones by directly forecasting the next
flight location based on experimental data such as PWMs
and Pose. This approach circumvents the complex com-
putations and nested control loops typically found in tra-
ditional flight control systems (Ogata, 2009). To achieve
this, we devised a dynamic time series model, termed
the Sta_POS NARX model, based on the temporal nature
of the data. Subsequently, we conducted a comparative
analysis with the LSTM model which is widely utilized in
self-driving vehicle technology for position prediction.

Our findings demonstrate that, when applied to the
drone dataset, the NARX model exhibited faster train-
ing speeds and relatively better fitting, as compared
to the LSTM model. Specifically, the LSTM model often
required longer training times and performed compara-
tively poorly in terms of regression model fitting. These
results hold significant implications for UAV control and
position prediction. In particular, the rapid training pace
of the NARX model contributes to a more efficient real-
time response capability within drone systems. This is
crucial for real-time decision-making and flight path
adjusting, particularly in situations requiring rapid adap-
tations to dynamic environments and task requirements.
Moreover, the relatively higher degree of fitting of the
NARX model indicates that it is better suited to the
temporal characteristics present in data from drones.
This improved ability to capture temporal patterns con-
tributes to improved prediction accuracy, thereby rein-
forcing the stability and safety of the drones’ auto-
matic control systems. However, it is essential to note
that although we observed the advantages of the NARX
model over the LSTM model, this does not imply that
the LSTMmodel is inapplicable in all scenarios. The LSTM
model may demonstrate distinct advantages in partic-
ular contexts and possesses the capability to manage
more intricate temporal data structures or data that is
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comparatively stable or exhibits regular patterns. Follow-
ing further refinement in the model’s structure, we dis-
covered that the Sta_POS model yielded comparatively
superior predictions. Furthermore, through batch train-
ing, we identified the most optimal configuration for the
Sta_POS NARX model in the closed-loop scenario. The
detailed weight and structure of the optimal models on
multiple simple trajectories are attached to the paper.

In conclusion, our study provides a fresh perspective
on UAV position prediction and underscores the bene-
fits of the data-driven NARX model in terms of speed and
fitting accuracy. This provides valuable insights anddirec-
tions for optimizing and advancing drone navigation sys-
tems. Nevertheless, furthermeticulous research andprac-
tical validation remain necessary for precise model selec-
tion in specific scenarios.

6. Future research plans

Due to complex goals as well as the uncertainty of
the environment, the cooperative control of swarms of
drones is one of the enduring hot topics in UAV research.
Research on UAV cooperative control initially focused
on fundamental concepts and theoretical aspects (Yu
et al., 2019).

Currently, the most prevalent controlling methods
for UAVs involve either centralized control systems or
distributed control systems (Cajo et al., 2019; Kada
et al., 2020; Maza et al., 2015; Ying Ani Hsieh et al., 2004).
Additionally, dynamic programming is utilized for opti-
mal flocking, often necessitating at least one remote con-
troller with residential, reactive capabilities, and a com-
prehensive view of the environment.

In a centralized control system, computation primar-
ily occurs within a centralized control centre, while
agents execute instructions without interacting with one
another. This approach tends to result in lower overall
costs. However, one drawback of centralized systems is
that as the number of agents increases, the response
speed can significantly diminish due to computational
overload at the control centre. Furthermore, if communi-
cation between the command centre and the individual
agents is compromised, the entire cluster’s functionality
can be affected.

In contrast, distributed control systems for UAVs, like
animal flocks and swarms, do not require a centralized
controller; they share information and work coopera-
tively. One of the most important advantages of dis-
tributed computing systems is reliability: the failure of
one server’s system will not affect the rest of the servers,
so the systemcan still provide services normally. The com-
puting power of multiple computers makes distributed
control faster than other system structures. However,

distributed controls are often designed to be complex
to ensure data consistency and avoid the data hazards
caused by machine failure.

In the crucial initial steps to achieve swarm control
without main controllers, our focus lies in construct-
ing a closed-loop control model. This model enables
drones to predict motion based on trajectory memory,
thereby enhancing their autonomy in trajectory forecast-
ing. In future research, we will transform the path pre-
diction system of virtual agents into a closed-loop sys-
tem, enabling theenhancementof autonomouspathpre-
diction for drones in dynamic environments. Ultimately,
the improvement in this autonomous capability not only
enhances the accuracy of motion prediction but could
also play a pivotal role in optimizing overall coordination
within aerial vehicle swarm. Ultimately, individual enti-
ties will possess fundamental autonomy, while the group
can rely on these individuals to collectively achieve the
objectives of group behaviour (Krause & Ruxton, 2002;
Ouellette & Gordon, 2021; Ward & Webster, 2016).
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