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Abstract: Background/Objectives: During pregnancy, physiological changes in maternal circulating
glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major
changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance
and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women,
this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM),
a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during
the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies
globally, and it is often associated with short- and long-term adverse health outcomes in both mothers
and offspring. Although recent studies have highlighted the role of genetic determinants in the
development of GDM, research in this area is still lacking, hindering the development of prevention
and treatment strategies. Methods: In this paper, we review recent advances in the understanding
of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions:
Our review highlights the need for further collaborative efforts as well as larger and more diverse
genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address
research gaps, and further improve diagnostic and treatment strategies.

Keywords: gestational diabetes; glucose metabolism; pregnancy; diagnosis; genetics

1. Pathophysiology of GDM

In a healthy pregnancy, metabolic changes are essential to meet the energy expenditure
required to support the growing fetus, with maternal glucose metabolism in particular
providing necessary nutrition for healthy fetal growth. Changes in maternal glucose
metabolism during pregnancy are characterized by elevated postprandial blood glucose
levels, increased insulin resistance, and a compensatory increase in the secretion of insulin
(Figure 1) [1–12]. These adaptations are essential to prepare the mother’s body for the
metabolic demands of fetal growth, which includes transfer of nutrients from the mother to
the developing fetus, as well as the provision of additional energy storage for both lactation
and delivery [12].
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metabolic demands of fetal growth, which includes transfer of nutrients from the mother 
to the developing fetus, as well as the provision of additional energy storage for both lac-
tation and delivery [12]. 

 
Figure 1. Illustration depicting key changes in glucose metabolism that occur during a healthy preg-
nancy based on the literature reviewed and summarised above. Throughout pregnancy, the body 
undergoes a dynamic adjustment to maternal insulin resistance through β-cell compensation. This 
shift in insulin resistance is influenced by placental growth hormone, which acts locally to induce 
insulin resistance in maternal peripheral tissues. To counterbalance this, gestational β-cell compen-
sation begins in the second trimester, marked by increased insulin secretion, and reaches its peak 
level in the third trimester, ensuring adequate glucose regulation despite increased insulin re-
sistance. GDM, however, might occur if glucose utilization and the compensatory increase in insulin 
secretion are not sufficient to reduce and maintain blood glucose levels within the regulated range. 
GDM: gestational diabetes mellitus. 

Fasting glucose (FG) levels decrease in the first trimester of pregnancy, likely as a 
result of increased plasma volume induced by early hormone changes, with these values 
stabilizing in the second trimester largely due to fetal utilization, before further decreasing 
during the third trimester [11,13]. An increased resistance to the action of insulin (com-
pared with pre-pregnancy levels) is also observed in healthy pregnancies, resulting in 
higher postprandial glucose levels during gestation [1,6,7,11,14–16]. This insulin re-
sistance increases as the pregnancy progresses through the second and third trimesters 
due to the influence of placental hormones (prolactin, human placental lactogen, and hu-
man placental growth hormone) and pro-inflammatory cytokines [1–5,11,17–24]. Addi-
tionally, this state of insulin resistance enhances endogenous glucose production and 
breakdown of stored fat, which consequently leads to a further increase in blood glucose 
and free fatty acid levels [23]. 

Although insulin resistance is a common and essential physiological change during 
pregnancy, gestational diabetes mellitus (GDM) manifests when the concomitant com-
pensatory increase in insulin secretion that occurs during pregnancy does not counterbal-
ance insulin resistance and, consequently, is unable to maintain glucose homeostasis [5]. 
This mechanism, known as β-cell compensation, is characterized by β-cell mass expansion 
and other key molecular changes that are necessary to increase insulin secretion and main-
tain normoglycemia [24–30]. As such, the inability of β-cells to produce more insulin can 
lead to maternal hyperglycaemia and increased levels of glucose crossing the placenta, 
causing the fetus to produce excess insulin, a known fetal growth factor, which can lead 
to excessive fetal growth and associated perinatal complications [30–34]. 

Figure 1. Illustration depicting key changes in glucose metabolism that occur during a healthy
pregnancy based on the literature reviewed and summarised above. Throughout pregnancy, the
body undergoes a dynamic adjustment to maternal insulin resistance through β-cell compensation.
This shift in insulin resistance is influenced by placental growth hormone, which acts locally to
induce insulin resistance in maternal peripheral tissues. To counterbalance this, gestational β-cell
compensation begins in the second trimester, marked by increased insulin secretion, and reaches
its peak level in the third trimester, ensuring adequate glucose regulation despite increased insulin
resistance. GDM, however, might occur if glucose utilization and the compensatory increase in
insulin secretion are not sufficient to reduce and maintain blood glucose levels within the regulated
range. GDM: gestational diabetes mellitus.

Fasting glucose (FG) levels decrease in the first trimester of pregnancy, likely as a
result of increased plasma volume induced by early hormone changes, with these values
stabilizing in the second trimester largely due to fetal utilization, before further decreasing
during the third trimester [11,13]. An increased resistance to the action of insulin (com-
pared with pre-pregnancy levels) is also observed in healthy pregnancies, resulting in
higher postprandial glucose levels during gestation [1,6,7,11,14–16]. This insulin resistance
increases as the pregnancy progresses through the second and third trimesters due to the
influence of placental hormones (prolactin, human placental lactogen, and human placental
growth hormone) and pro-inflammatory cytokines [1–5,11,17–24]. Additionally, this state
of insulin resistance enhances endogenous glucose production and breakdown of stored
fat, which consequently leads to a further increase in blood glucose and free fatty acid
levels [23].

Although insulin resistance is a common and essential physiological change during
pregnancy, gestational diabetes mellitus (GDM) manifests when the concomitant compen-
satory increase in insulin secretion that occurs during pregnancy does not counterbalance
insulin resistance and, consequently, is unable to maintain glucose homeostasis [5]. This
mechanism, known as β-cell compensation, is characterized by β-cell mass expansion and
other key molecular changes that are necessary to increase insulin secretion and maintain
normoglycemia [24–30]. As such, the inability of β-cells to produce more insulin can lead
to maternal hyperglycaemia and increased levels of glucose crossing the placenta, causing
the fetus to produce excess insulin, a known fetal growth factor, which can lead to excessive
fetal growth and associated perinatal complications [30–34].

2. GDM Diagnosis and Screening

For GDM diagnosis, blood glucose levels during pregnancy are commonly measured
as overnight FG as well as one- and two-hour (and/or more rarely three-hour) glucose
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plasma values post oral glucose tolerance test (OGTT). This test is typically conducted at
24–28 weeks of gestation, a period historically observed to show the greatest variation in
glucose levels [35]. For pregnant individuals undergoing an OGTT, blood samples are first
taken after an overnight fast to measure fasting glucose levels. Then, additional blood
samples are collected at one, two, and/or three hours after the ingestion of a 75 g glucose
solution to further assess glucose levels. Although all these measurements can be used to
diagnose hyperglycaemia, higher FG levels are observed in response to insulin resistance
whilst post-load OGTT plasma glucose values have been reported to better reflect glucose
uptake in skeletal muscles and disturbances in insulin production and secretion (indicative
of β-cell function), respectively [36–38].

The screening strategies and diagnostic criteria employed to identify GDM cases vary
substantially across regions. These differences include variations in gestational age at
screening, whether screening is targeted solely at high-risk women or universally applied
as well as plasma cut-off levels used during the OGTT (for an overview of the variations in
GDM diagnostic criteria, see Table 1). Despite ongoing research and discussions within the
medical community, a consensus has yet to be reached regarding the optimal diagnostic
and screening criteria for identifying mothers with GDM. As can be seen in Table 1, not
only GDM screening approaches but also GDM diagnostic criteria vary considerably across
regions and have changed over time. The most recent international criteria, developed
by the International Association of Diabetes in Pregnancy Study Group (IADPSG) in 2010
and also supported by the World Health Organization (WHO), recommend a universal
75 g OGTT screening between 24 and 28 weeks of gestation. This recommendation is
based on the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study findings,
comprised of 23,316 women of multiple ethnic and geographic origins, which reported
clear linear associations between maternal plasma glucose levels after a 75 g OGTT and a
variety of maternal and fetal adverse outcomes such as large for gestational age, neonatal
hypoglycaemia, and frequency of Caesarean sections [39–42]. The IADPSG committee
suggested that prespecified odds of adverse outcomes should be used to set the thresholds
of glucose levels for defining GDM cases based on the average glucose values at which
odds for birth weight > 90th percentile, cord C-peptide > 90th percentile, and percent body
fat > 90th percentile reached 1.75 times the estimated odds of these outcomes at mean
glucose values (values based on adjusted logistic regression models) [39].

It is important to emphasize that although aiming to improve the diagnosis of GDM
and find the best approach to reduce adverse outcomes (given existing resources and
budgets), the thresholds set by IADPSG are arbitrary as there is no threshold effect (in the
HAPO results). Consequently, this has led to criticism with regards to the implementation
of a universal GDM screening using the IADPSG criteria as this approach could lead to
the misdiagnosis of women with moderate hyperglycaemia and unnecessary prescription
of medications in what was previously considered healthy pregnancies. Although seen
to reduce the risk of offspring large for gestational age, preterm birth, and neonatal hypo-
glycaemia overall, this lower diagnostic threshold has also been shown to provide limited
benefits to women without additional risk factors [43,44].
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Table 1. Summary of the different diagnostic criteria for gestational diabetes mellitus. OGTT: oral glucose tolerance test. FG: fasting glucose.

Initial Screening (Two-Step
Approach) Diagnostic Test

Region Organization Year Screening
Advice

Glucose
Load (g) Cut-off Glucose

Load (g)
Fasting
Glucose 1-h Glucose 2-h Glucose 3-h Glucose HbA1c

International

WHO (World
Health

Organization)
2013 Universal 75

FG ≥ 92 mg/dL
(5.1 mmol/L), or

1-h glucose ≥
180 mg/dL

(10.0 mmol/L)
or2-h glucose ≥

153 mg/dL
(8.5 mmol/L)

75 ≥92 mg/dL
(5.1 mmol/L) - ≥153 mg/dL

(8.5 mmol/L) - -

IADPSG
(International
Association of
Diabetes and

Pregnancy Study
Groups)

2010 Universal - - 75 ≥92 mg/dL
(5.1 mmol/L)

≥180 mg/dL
(10.0 mmol/L)

≥153 mg/dL
(8.5 mmol/L) - -

Americas

ADA (American
Diabetes

Association)
2020 Risk-based 50 ≥140 mg/dL

(7.8 mmol/L) 100 ≥92 mg/dL
(5.1 mmol/L)

≥180 mg/dL
(10.0 mmol/L)

≥153 mg/dL
(8.5 mmol/L)

≥140 mg/dL
(7.8 mmol/L) -

NDDG (National
Diabetes Data

Group)
1979 - 50 ≥140 mg/dL

(7.8 mmol/L) 100 ≥105 mg/dL
(5.8 mmol/L)

≥190 mg/dL
(10.6 mmol/L)

≥165 mg/dL
(9.2 mmol/L)

≥145 mg/dL
(8.0 mmol/L) -

C&C (Carpenter
and Coustan

criteria)
1982 - - - 100 ≥95 mg/dL

(5.3 mmol/L)
≥180 mg/dL

(10.0 mmol/L)
≥155 mg/dL
(8.6 mmol/L)

≥140 mg/dL
(7.8 mmol/L)

SOGC (Society of
Obstetricians and
Gynecologists of

Canada)

2019 Universal - - 75 ≥95 mg/dL
(5.3 mmol/L)

≥190 mg/dL
(10.6 mmol/L)

≥162 mg/dL
(≥9.0 mmol/L) - -
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Table 1. Cont.

Initial Screening (Two-Step
Approach) Diagnostic Test

Region Organization Year Screening
Advice

Glucose
Load (g) Cut-off Glucose

Load (g)
Fasting
Glucose 1-h Glucose 2-h Glucose 3-h Glucose HbA1c

ACOG (American
College of

Obstetricians and
Gynecologists)

2018 Risk-based 50 ≥140 mg/dL
(7.8 mmol/L) 100 ≥95 mg/dL

(5.3 mmol/L)
≥180 mg/dL

(10.0 mmol/L)
≥155 mg/dL
(8.6 mmol/L)

≥140 mg/dL
(7.8 mmol/L) -

CDA (Canadian
Diabetes

Association)
2018 Universal 50 ≥140 mg/dL

(7.8 mmol/L) 75 ≥95 mg/dL
(5.3 mmol/L)

≥190 mg/dL
(10.6 mmol/L)

≥162 mg/dL
(≥9.0 mmol/L) -

(BSD) Brazilian
Society of Diabetes 2010 Universal - FG ≥ 85 mg/dL

(4.7 mmol/L) 75 ≥92 mg/dL
(5.1 mmol/L)

≥180 mg/dL
(10.0 mmol/L)

≥153 mg/dL
(8.5 mmol/L) - -

Australasia

ADIPS (Australasian
Diabetes in

Pregnancy Society)
2014 Universal - - 75 ≥ 92 mg/dL

(5.1 mmol/L)
≥ 180 mg/dL
(10.0 mmol/L)

≥153 mg/dL
(8.5 mmol/L) - -

Queensland Clinical
Guideline 2015 Risk-based - - 75 ≥92 mg/dL

(5.1 mmol/L)
≥180 mg/dL

(10.0 mmol/L)
≥153 mg/dL
(8.5 mmol/L) -

≥41
mmol/mol

(5.95%)

NZSSD (New
Zealand Society for

the Study of
Diabetes)

2014 Universal -

HbA1c ≥ 50
mmol/mol treated
for GDM, HbA1c
41-49 mmol/mol

required a 75g
OGTT, HbA1c ≤

40 mmol/mol
required 50 g

OGTT

75 and 50 ≥99 mg/dL
(5.5 mmol/L) - ≥162 mg/dL

(9.0 mmol/L) -
≥50

mmol/mol
(7.15%)

Asia

DIPSI (Diabetes in
Pregnancy Study

Group India)
2009 Universal - - 75 - - ≥140 mg/dL

(7.8 mmol/L) - -

JDS (Japan Diabetes
Society) 2016 Risk-based - - 75 ≥126 mg/dL

(7.0 mmol/L) - ≥200 mg/dL
(11.1 mmol/L) -

≥48
mmol/mol

(6.5%)
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Table 1. Cont.

Initial Screening (Two-Step
Approach) Diagnostic Test

Region Organization Year Screening
Advice

Glucose
Load (g) Cut-off Glucose

Load (g)
Fasting
Glucose 1-h Glucose 2-h Glucose 3-h Glucose HbA1c

JSOG (Japan
Society of

Obstetrics and
Gynecology)

2010 Universal - - 75 ≥100 mg/dL
(5.5 mmol/L)

≥180 mg/dL
(10.0 mmol/L)

≥150 mg/dL
(8.3 mmol/L) - -

HKCOG (Hong
Kong College of

Obstetricians and
Gynecologists)

2016 Risk-based - - 75 ≥126 mg/dL
(7.0 mmol/L) - ≥199.72 mg/dL

(11.1 mmol/L) - -

Ministry of Health
(MOH) of China 2012 Risk-based - - 75 ≥92 mg/dL

(5.1 mmol/L)
≥180 mg/dL

(10.0 mmol/L)
≥153 mg/dL
(8.5 mmol/L) - -

Europe

EASD (European
Association for the
Study of Diabetes)

1991 - - - 75 ≥108.1 mg/dL
(6.0 mmol/L) - ≥162 mg/dL

(9.0 mmol/L) - -

SIGN (Scottish
Intercollegiate

Guidelines
Network)

2017 Risk-based -

HbA1c ≥ 6.5%, or
FG ≥126 mg/dL
(7.0 mmol/L) or

2-h glucose ≥
200 mg/dL

(11.1 mmol/L)

75 ≥92 mg/dL
(5.1 mmol/L)

≥180 mg/dL
(10.0 mmol/L)

≥153 mg/dL
(8.5 mmol/L) - -

GDA (German
Diabetes

Association)
2014 Risk-based - FG ≥ 92 mg/dL

(5.1 mmol/L) 75 ≥92 mg/dL
(5.1 mmol/L)

≥180 mg/dL
(10.0 mmol/L)

≥153 mg/dL
(8.5 mmol/L) - -

NICE (National
Institute for

Health and Care
Excellence)

2015 Risk-based - - 75 ≥101 mg/dL
(5.6 mmol/L) - ≥140 mg/dL

(7.8 mmol/L) - -
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3. Epidemiology of GDM

GDM presents a significant challenge to maternal health, being diagnosed in approxi-
mately 14.0% of all pregnancies or roughly one in six births worldwide [45], though these
figures are importantly influenced by marked variation in screening (i.e., universal vs.
risk-based) and the thresholds used to diagnose GDM. Globally, the reported prevalence of
GDM varies widely, with Middle Eastern and North African countries having the highest
prevalence (27.6%) and North America and Caribbean regions having the lowest (7.1%)
(Figure 2) [45]. Understanding the global burden of GDM has been challenging for decades
due to the lack of uniform screening strategies and diagnostic criteria for GDM, variations
in the prevalence of diagnosed type-I and II diabetes (as women with pre-existing diabetes
follow a different obstetric care-path and are not screened or tested for GDM), and the
diversity in antenatal health care practices across regions.
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A systematic review and meta-analysis including up to 136,705 women was per-
formed to compare the GDM prevalence after implementing the new IADPSG criteria 
with the GDM prevalence when older GDM criteria were used [46]. This study reported 
a 75% increase in the number of women diagnosed with GDM, with the overall effect 
estimates showing high heterogeneity in the pooled analysis. Subgroup analyses were un-
dertaken for maternal age, BMI, study design, screening method, early screening, and use 
of modified IADPSG criteria, with a possible suggestion of such differences; however, 
there was no exploration of these differences statistically.  

Figure 2. Estimated prevalence of gestational diabetes across global regions; prevalences taken from
Wang et al., 2022 [45] and visualised using MapChart. A fixed-effects meta-analysis of 57 studies cov-
ering 45 countries was performed, with the diagnostic criteria and universal OGTT strategy proposed
by IADPSG, as well as the age group of 25–30 years, serving as benchmarks for standardizing the
prevalence of GDM across various practices and age groups. The global standardized prevalence
was reported to be 14.2%, with the pooled prevalence in pregnant women around 25–30 years of
age being 27.6%, 20.8%, 14.7%, 14.2%, 10.4%, 7.8%, and 7.1% in the Middle East and North Africa
(MENA), South-East Asia (SEA), Western Pacific (WP), Africa (AFR), South and Central America
(SACA), Europe (EUR), and North America and Caribbean (NAC). Although the study controlled for
diagnostic criteria, screening approach, and age group, population characteristics were not taken into
account. Pooled prevalence should be interpreted with caution as it was calculated based on varying
and arbitrary cut points. OGTT: Oral glucose tolerance test; IADPSG: International Association of the
Diabetes and Pregnancy Study Group; GDM: gestational diabetes mellitus.

A systematic review and meta-analysis including up to 136,705 women was performed
to compare the GDM prevalence after implementing the new IADPSG criteria with the
GDM prevalence when older GDM criteria were used [46]. This study reported a 75%
increase in the number of women diagnosed with GDM, with the overall effect estimates
showing high heterogeneity in the pooled analysis. Subgroup analyses were undertaken for
maternal age, BMI, study design, screening method, early screening, and use of modified
IADPSG criteria, with a possible suggestion of such differences; however, there was no
exploration of these differences statistically.
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Whilst the adoption of a lower diagnostic threshold and recommendation of a uni-
versal screening have contributed to an increase in the number of identified GDM cases,
an upward trend in GDM prevalence was already evident prior to the implementation
of these new criteria [47–52]. Over the past few decades, for instance, the demographic
profile of pregnant women has changed significantly, with women having children at a
more advanced age in high- and some middle-income countries, and obesity rising globally,
both of which are likely to have further contributed to an increase in the prevalence of
GDM [47,53,54].

4. Aetiology of GDM

GDM has multiple genetic, lifestyle, and clinical risk factors contributing to disease
onset and progression. However, these risk factors have been mostly investigated in tra-
ditional observational epidemiological studies, which are often prone to confounding by
social, environmental, and behavioural factors. Genetics, however, provides an opportunity
to inform on potential causal relationships between traditional risk factors and disease
through the application of the genetic epidemiological technique “Mendelian random-
ization” (MR) [55]. In this method, genetic variants are used to proxy a traditional risk
factor and estimate the causal relationship between the risk factor and the disease. Because
genetic variants segregate independently of environmental confounders, the rationale is
that they and the causal estimates derived from them should be less affected by confound-
ing and other potential biases than traditional observational epidemiological studies. For
example, MR studies of type-II diabetes (T2DM) have suggested that higher BMI and
central fat distribution are key causes of T2DM, and that triglyceride-lowering drugs, as
well as population-level interventions to reduce obesity, could help prevent T2DM [56–58].
Adequately powered two-sample MR studies are becoming increasingly possible as the size
of GDM genome-wide association studies (GWASs) increases, enabling the investigation
of causal factors underlying the risk of GDM. For example, obesity/overweight and high
body mass index (BMI), conditions that are associated with both insulin resistance and
inflammation [59–68], have been examined via MR. Overall, the evidence from these studies
(and other designs involving, e.g., multivariable regression, paternal negative control, etc.)
is robust, supporting the notion that a higher maternal BMI is causal for increased risk of
GDM [69,70].

Another well-known risk factor for GDM is advanced maternal age at childbirth.
Studies, including one with nearly a million participants, have consistently reported a
progressive increase in GDM risk for mothers aged 25 years and older [45,47,71–73]. GDM
recurrence has also been observed in nearly half of the women previously diagnosed with
GDM in a Chinese cohort study (N = 10,151), with a recent and multi-ancestral meta-
analysis, (N = 19,053) further suggesting that multiparous women have a higher recurrence
rate of GDM compared to primiparous women (73% vs. 40%), although other factors like
age and obesity might influence this relationship [47,74–76]. Additionally, women with
a family history of diabetes are at increased risk of developing GDM, with a systematic
review and meta-analysis (including 2697 women with a family history of diabetes mellitus
and 29,134 women without) reporting up to 3.46 increased odds of developing GDM (95%
CI: 2.80–4.27) compared to those who do not [77–79].

GDM also varies considerably across ethnicities [45,47,80,81]. For instance, a large,
multiethnic, population-based study (N = 956,738) reported that South Asian women had
4.33 higher odds of developing GDM relative to Australian women [47]. Similarly, a study
in the United States (N = 123,040) also reported a higher prevalence of GDM in Filipina
and Asian women (10.9 and 10.2%, respectively), along with an intermediate prevalence
among Hispanics (6.8%) and a lower prevalence in white Europeans and African American
mothers (4.5 and 4.4%, respectively) [80]. Although this study had a large sample size, they
lacked information on important risk factors, such as weight and family history of diabetes,
which could influence the observed differences in prevalence across groups. Importantly,
the robustness of findings for maternal age and ethnicity across many diverse studies
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supports them being true risk factors, although MR and other causal methods are difficult
to implement for such characteristics.

5. Genetic Aetiology of GDM and Glycaemic Traits during Pregnancy

In addition to maternal lifestyle and environmental factors, genetics plays a role
in GDM susceptibility. GWASs test for statistically robust associations between genetic
variants and the trait of interest. In our review, we show how recent large-scale GWASs
have provided estimates of the degree to which genetic variation influences liability to GDM
and new insights into GDM disease aetiology; as mentioned previously, identified potential
targets for pharmacotherapy; and, using the principles of MR, informed on potential public
health preventive interventions [55,82,83].

5.1. Variation in Glycaemic Traits Explained by Genetics

Genetic variation is a ubiquitous contributor to individual differences in common
complex traits and diseases. However, the genetic variants identified through large-scale
GWASs that are robustly associated with glycaemic traits currently only explain a small
proportion of the overall variance in these phenotypes. For instance, in the general popula-
tion (i.e., outside of pregnancy), known genetic variants explain about 1.7% of the variance
in HbA1c, 3% of FG variance, and between 4% and 14% (depending on ancestry) of the
variance in 2-h glucose levels [84–86].

GWASs also permit the estimation of “SNP heritability” for common complex traits
and diseases [87,88]. SNP heritability represents the proportion of trait variance that is
tagged by SNPs on a microarray and consequently captures the sum total contribution of
genome-wide significant variants and genetic variants of smaller effect scattered across the
genome to overall trait heritability. It also represents that fraction of the phenotypic variance
that is amenable to genetic discovery with increasing GWASs’ sample size. Recently, the
SNP heritability for each of the glycaemic traits during pregnancy was estimated, with a
study on East Asian women reporting estimates of approximately 5.3% for FG at weeks
16–18, 9.6% for FG at weeks 24–28, 10.2% for 1-h, and 7.8% for 2-h glucose post-OGTT
at week 24–28 [83]. Interestingly, polygenic risk scores for FG during gestational weeks
24–32 in European mothers were previously reported to explain 4–7% of the variation in
this trait, with studies further showing that the same FG-associated variants explained a
similar proportion of variance both during and outside pregnancy [84,89,90]. Although
it is interesting to see this concordance, it is also important to remember that all of these
quantities (i.e., the proportion of phenotypic variance explained by a polygenic risk score,
SNP heritability, and overall heritability) are population-specific ratio measures, which
include environmental as well as genetic variation in the denominator and, thus, are
expected to vary across different populations and circumstances/environments.

5.2. Robustly Associated Genetic Variants

In order to robustly identify common variants of small to moderate effect underlying
common complex diseases with adequate statistical power, genome-wide association
studies need to involve at least 2,000 cases and controls [91]. To the best of our knowledge,
only six GWASs of GDM have been published to date [70,92–96], with the first study to
robustly detect genome-wide significant loci for GDM being a Korean study (cases = 1,399;
controls = 2,005) that identified genetic variants at the CDKAL1 and MTNR1B loci that were
significantly associated with risk of GDM [95].

More recently, another study attempted to gain novel insights into the genetic ar-
chitecture of GDM and address limitations associated with sample size by performing a
multi-ancestry GWAS meta-analysis, which included 5,485 GDM cases and 347,856 healthy
controls from various population groups, including Europeans, East Asians, South Asians,
Hispanics/Latinos, and Africans [70]. This research effort, led by the GENetics of Dia-
betes In Pregnancy (GenDIP) Consortium, identified five loci at genome-wide levels of
significance—three of them novel and two of them being the known CDKAL1 and MTNR1B
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loci [70]. Heterogeneity in estimated effect sizes across ancestries was present at two
loci, CDKAL1 and CDKN2A-CDKN2B, potentially reflecting differences in linkage dise-
quilibrium (LD) patterns between ancestries (although this might also indicate that the
pathophysiological mechanisms driving glycaemic dysregulation in pregnancy may vary
between ancestries, which needs to be further investigated) and emphasizing the need of
more studies on under-represented populations [70].

The largest GWAS of GDM to date was undertaken in FinnGen, a study that combined
genetic data with electronic health record data to support GWASs and other genetic anal-
yses for many health outcomes [97]. The FinnGen GWAS comprised 12,332 GDM cases
(i.e., with a GDM diagnosis listed in their health record) and 131,109 parous female controls
from Finland, along with an independent sample of 8,931 cases and 170,809 controls for
replication (from both Finland and Estonia). The study identified thirteen genome-wide sig-
nificant loci associated with GDM, with eight of the loci being novel [96]. Further analyses
were also performed to determine the extent to which each locus was associated with T2DM
and GDM based on their effect sizes for each condition. Loci showing GDM-predominant
effects were mapped to genes linked to islet cells, central glucose homeostasis, steroido-
genesis, and placental expression—these GDM-predominant effect loci include (GCKR,
SPC25-G6PC2, PCSK1, ESR1, MTNR1B, NEDD1, CMIP, and MAP3K15), whereas the loci at
CDKAL1, TCF7L2 and CCND2 involved T2DM predominant effects [96]. Nevertheless, the
estimates of allelic effects at these loci were almost entirely in the same direction [96].

As it is possible to see in Table 2, several possible loci have been implicated in
GDM [70,93–96]. However, it is important to note that while numerous genetic variants
associated with GDM have been identified through GWASs, the causal genes for most loci
remain unknown. Hence, this table lists candidate genes based on their proximity to the
association signal, along with any additional evidence supporting their potential causality,
with the caveat that these are not definitively proven causal genes but are considered
candidates pending further investigation.

Table 2. Overview of the candidate genes implicated by reported GWAS associations, describing their
respective function and previously reported associations. SNP; Single-Nucleotide Polymorphism.
* Associations reported in previous Genome-Wide Association Studies (GWASs) that reached the
genome-wide significance threshold of 5 × 10−8.

Candidate
Gene

Lead Associated
SNP Function of Likely Gene Known Associations Reported by *

GCKR rs780093

The Glucokinase regulator (GCKR)
gene encodes glucokinase regulatory
protein (GKRP), an inhibitor of the

glucose-metabolizing enzyme
glucokinase (GCK), which regulates

glucose disposal and storage [98–100].
GKRP also responds to increases in
circulating glucose concentration by
initiating a signalling cascade that

results in insulin secretion and
subsequent glucose uptake and

storage [98–100].

Polymorphisms in the
GCKR gene have been

implicated in the
susceptibility to T2DM and

fasting glucose levels
[101–110].

[96]
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Table 2. Cont.

Candidate
Gene

Lead Associated
SNP Function of Likely Gene Known Associations Reported by *

SPC25-
G6PC2 rs1402837

The Spindle pole body component 25
(SPC25) gene encodes a

mitosis-associated spindle-assembly
checkpoint regulatory protein

involved in kinetochore–microtubule
interaction [111]. SPC25 has been

further reported to play a role in DNA
repair, cell proliferation and regulation

of both plasma glucose levels and
β-cell function [112–117]. As for the

G6PC2 gene, it is predominantly
expressed in pancreatic islets and
encodes a glucose-6-phosphatase

enzyme involved in the conversion of
glucose-6-phosphate (G6P) to glucose

and inorganic phosphate, a crucial
step in glucose metabolism [117–120].

Although its role in
glucose metabolism still
needs to be elucidated,
genetic variation in the

SPC25 gene could
potentially indirectly affect
cellular functions related to

glucose metabolism
through its involvement in
cell proliferation processes.
Although SPC25 does not
have a clear role in glucose

regulation, genetic
variation in G6PC2 has
been associated with

fasting and random (i.e.,
glucose measurements

under non-standardized
conditions) blood glucose
levels, and HbA1c levels

[107,109,110,121–124]

[96]

CPO rs1597916

The carboxypeptidase O (CPO) gene
encodes an enzyme involved in

digestion of dietary proteins and
peptides, assisting in the absorption of

amino acids in the intestinal tract
[125–130].

The exact function of CPO
in glucose levels and

diabetes needs to be further
investigated; however,

carboxypeptidases have
been previously associated
with glucose metabolism
and the development of

T2DM [131–134].

[92]

ADCY5 rs6798189

The Adenylate cyclase 5 (ADCY5)
gene encodes an enzyme involved in
the production of cyclic AMP, a key

molecule involved in various cellular
processes, including glucose

metabolism [135–139].

Multiple studies have
associated variants in this
gene with β-cell function,
fasting, and 2-h glucose
levels, as well as T2DM

risk [109,110,113,140–147].

[96]

PCSK1 rs1820176

The Proprotein Convertase
Subtilisin/Kexin Type 1 (PCSK1) gene
encodes prohormone convertase 1/3,
which plays a role in the processing
and activation of prohormones and

precursor proteins [148–154]. PCSK1
was further reported to be involved in

the activation and cleavage of a
precursor to insulin (i.e., proinsulin) as

well as in the processing of
pro-opiomelanocortin (POMC),

pathways that affect glucose
metabolism [155–162].

Genetic association studies
have implicated PCSK1

variants in glucose
homeostasis, BMI, and
susceptibility to obesity

[109,113,162–166].

[96]
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Table 2. Cont.

Candidate
Gene

Lead Associated
SNP Function of Likely Gene Known Associations Reported by *

CDKAL1

rs34499031,
rs9348441,
rs7766070,
rs7754840

CDKAL1 (CDK5 Regulatory
Subunit-Associated Protein 1-Like 1)

encodes for methyl transferase (tRNA
modifying enzyme) and has been

reported to influence insulin
processing and secretion through

proinsulin conversion, which directly
affects β-cell function [167–170].

Studies have implicated
CDKAL1 variants in T2DM

risk and abnormal β-cell
function

[104,109,110,171–174].

[70,92,95,96]

ESR1 rs537224022

The Estrogen Receptor 1 (ESR1) gene
plays a crucial role in insulin

sensitivity and glucose metabolism
through its contributions to glucose

uptake and utilization [175–180].

Genetic association studies
have reported variants in

ESR1 to be associated with
T2DM and fasting plasma

glucose [181–185].

[96]

SLC30A8 rs13266634

SLC30A8 (solute carrier family 30,
member 8) gene encodes an islet zinc
transporter (ZnT8), involved in zinc

transport into β-cell insulin-secretory
granules and essential for insulin

packaging and secretion [186–189].

Studies have reported
associations between

SLC30A8 genetic variants
and plasma glucose levels,
and susceptibility to T2DM
[104,106,110,113,190–192].

[92]

CDKN2A-
CDKN2B

rs1333051,
rs7019437,
rs10811662

CDKN2A and CDKN2B
(Cyclin-Dependent Kinase Inhibitor
2A and 2B, respectively) are genes
controlling cellular proliferation

through their role in cell cycle
regulation [193–195].

Variants in the CDKN2A
and CDKN2B genes have

been associated with
susceptibility to T2DM,
β-cell proliferation, and

glucose levels
[109,110,145,196–198].

[70,96]

HKDC1 rs9663238

The hexokinase domain-containing 1
(HKDC1) gene encodes a hexokinase
protein and plays a crucial role in the

regulation of glucose homeostasis
through its effect on whole-body

glucose disposal and insulin
sensitivity [199,200].

Genetic association studies
have reported that variants

in HKDC1 are associated
with glucose homeostasis,

HbA1c, plasma glucose
levels in non-pregnant
individuals, and liver

enzyme alanine
aminotransferase levels

[84,110,201–206].

[70]

TCF7L2 rs34872471,
rs7903146

The TCF7L2 (Transcription Factor
7-Like 2) gene encodes a transcription
factor involved in cellular signalling
pathways and glucose metabolism,

playing an important role in the
synthesis and maturation of
proinsulin, as well as β-cell

proliferation [207–209].

Variants in TCF7L2 have
been implicated in insulin
secretion and resistance,
plasma glucose levels,
β-cell function, and

susceptibility to T2DM
[109,110,140,198,210–218].

[70,96]

MTNR1B rs10830963,
rs10830962

The Melatonin Receptor 1B (MTNR1B)
gene encodes melatonin receptors,
which are involved in modulating

insulin secretion and glucose
metabolism in pancreatic β-cells [219].

Variants in the MTNR1B
gene are associated with
insulin response, plasma

glucose levels, risk of
T2DM, and offspring

birthweight
[109,110,112,141,220–233].

[70,92,95,96]
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Table 2. Cont.

Candidate
Gene

Lead Associated
SNP Function of Likely Gene Known Associations Reported by *

NEDD1 rs74628648

The NEDD1 (Neural precursor cell
expressed, developmentally

down-regulated gene 1) gene encodes
a protein that interacts with γ-tubulin
and forms a complex that is targeted

to the centrosome for spindle
assembly and centriole duplication;

hence, it is involved in mitosis
[234–237].

Although the role of
NEDD1 in diabetes still

needs to be elucidated, it is
speculated that the protein

encoded by this gene
might be linked to glucose

metabolism through its
involvement in cellular

division which could, for
instance, affect β-cells.

[96]

CCND2 rs76895963

The CCND2 (Cyclin D2) gene encodes
a protein involved in cell cycle

regulation and proliferation, being
associated with β-cell replication and
expansion, which consequently affects
beta-cell mass and function [238–247].

It is hypothesized that
Cyclin D2 may indirectly

affect insulin secretion
through its role in
regulating β-cell

proliferation and function,
with studies also reporting

an association between
variants in CCND2 and

both blood glucose levels
and T2DM [109,110,248].

[96]

CMIP rs2926003

Encodes a c-Maf-inducing protein
involved in multiple signalling
pathways and associated with

inflammatory responses [249–251].

Variants in CMIP have
been reported to be

associated with T2DM,
obesity, and obesity-related

traits [252–260].

[96]

MAP3K15 rs56381411

The MAP3K15 (Mitogen-Activated
Protein Kinase Kinase Kinase 15) gene
encodes a protein kinase that regulates

apoptotic-mediated cell death and
stress response [261–265].

Other genetic variants
within this gene have

previously been associated
with risk of T2DM, blood
glucose, and glycosylated

haemoglobin (HbA1c)
levels possibly due to its

involvement in pancreatic
islet cell or stress response
pathways [140,266–268].

[96]

As glucose measurements can reflect changes in glucose metabolism across specific
timepoints, and GDM is diagnosed based on an arbitrary threshold applied to these
underlying quantitative traits, investigating the genetics of fasting glucose and post-OGTT
glucose levels can provide deeper insights into the genetic basis of GDM. Hence, the genetic
determinants of fasting and postprandial blood glucose during pregnancy have been
investigated in a few studies [89,92,202,204]. One of these studies investigated 4437 mothers
of different ancestries and identified five loci associated with FG (i.e., GCKR, G6PC2, PCSK1,
PPP1R3B, and MTNR1B) [202]. Additionally, an association between 1-h glucose post-
OGTT and variants in MTNR1B as well as 2-h glucose post-OGTT and variants in HKDC1
has also been detected. While these associations showed important genetic determinants
of glycaemic traits during pregnancy, subsequent studies have failed to replicate such
associations due to limited sample sizes [89,94,204].

A recent study, however, explored the association between genetic variants and both
GDM and several glycaemic traits (such as FG, 1-h post OGTT, and 2-h post OGTT glucose
levels) in up to 26,751 East Asian mothers [92]. Although the sample size for GDM was
significantly smaller than the ones from the two studies previously discussed (with solely



Metabolites 2024, 14, 508 14 of 32

3317 cases and 19,565 controls), the sample sizes for the quantitative traits analysed were
the largest to date, with FG measurements on 26,751 mothers at weeks 16–18 of gestation
along with information on FG (N = 24,929), 1-h glucose post OGTT (N = 24,931), and 2-h
glucose post OGTT (N = 24,931) values at gestational weeks 24–28. Overall, nine loci were
associated with FG at gestational weeks 16–18, ten with FG at gestational weeks 24–28,
seven with 1-h glucose post OGTT, and, finally, four genes associated with 2-h glucose
levels post OGTT (both at gestational weeks 24–28). The genetic determinants between
fasting (or baseline) glycaemic levels and glycaemic values after OGTT have been observed
to be substantially different—although it is important to note that FG was measured during
gestational weeks 16–18 and weeks 24–28 while 1-h and 2-h post-OGGT levels investigated
were measured solely during weeks 24–28. For instance, ABCB11, GCK, LOC101929710,
and FOXA2 were only detected in the baseline glycaemic level analyses but not after
OGTT. Additionally, CDKAL1, while not associated with FG at weeks 16–18, was seen
to be significant in FG, 1-h glucose, and 2-h glucose post OGTT analyses at weeks 24–28
and HKDC1, showing a strong association with FG and 2-h glucose values post OGTT at
weeks 24–28 but not with other glycaemic measurements. Further, MTNR1B was detected
in all analyses, although the strength of association differed across timepoints, showing a
stronger relationship with 1-h and 2-h post OGTT glucose values.

Interestingly, many genetic associations with glycaemic traits during pregnancy have
been detected in both non-pregnant individuals and in association with GDM (Figure 3
shows a summary of the shared and distinct genetic variants). For example, at the genome-
wide level, two loci associated with 2-h glucose post-OGTT (HKDC1 and CDKAL1) and
twelve loci associated with FG, including GCKR, G6PC2, PCSK1, MTNR1B, ABCB11, RFX6,
CDKAL1, CAMK2B, KANK1, GCK, and FOXA2, have been observed in both pregnant and
non-pregnant populations (although proper colocalization analyses are needed to assess
whether the same variants are implicated during and outside of pregnancy as this approach
uses GWASs data to identify shared genetic factors across multiple related traits, helping
pinpoint causal genes and mechanisms in complex diseases [269]) [66,92,95,96,110,202].
Similar trends were seen when comparing East Asian mothers in a large study on gly-
caemic traits in the general population (comprising up to 281,416 individuals): ABCB11
and FOXA2 were found in FG analyses but not in 2-h post-OGTT analyses, and CDKAL1
was associated with both FG and 2-h glucose values [92,110]. Differences between studies
included HKDC1 being linked to both FG and 2-h glucose in pregnant East Asian mothers
but only to 2-h glucose in the general population, and MTNR1B being significant in all
glycaemic trait analyses during pregnancy but only in FG analysis in the general popula-
tion [92,110]. The study of glycaemic traits in the non-pregnant population, however, only
investigated FG and 2-h post-OGTT glucose values, as it is not common practice to measure
1-h glucose values post-OGTT outside of pregnancy. Hence, it is still unclear whether the
genetic determinants of 1-h glucose values during and outside of pregnancy differ [110].
Although the genetic architecture of glycaemic traits during and outside pregnancy has
been suggested to be shared for the most part, the genetic determinants of 2-h post OGTT
glucose in pregnant women was reported to differ from the ones in the non-pregnant
population [89,90]. Overall, findings suggest that although FG levels remain relatively
stable outside and during gestation, the postprandial glucose levels tend to differ in order
to meet the metabolic requirements imposed by fetal growth [7,12].

Despite recent advances in this field, the current body of research on genetic associa-
tions with GDM and glucose measurements during pregnancy remains limited, especially
when compared to the extensive literature available on T2DM and glycaemic traits in the
general population. Efforts to increase the genetic diversity in GWASs of GDM, espe-
cially the inclusion of underrepresented groups, are a key priority as genetic effects may
vary between ancestries, a higher GDM prevalence is observed in some underrepresented
groups, and the majority of the findings to date are based on European or East Asian
populations [269]. Further, since identifying causal variants and the genes involved is a
challenge due to the complex correlational structure of the genome, the inclusion of other
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ancestries where LD patterns may vary provides opportunities for improved fine mapping
of genetic loci. Nevertheless, accurately addressing LD remains a challenge due to the
inherent complexity of genomic structures and the need for comprehensive, high-resolution
data across diverse populations.
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Figure 3. Venn diagram of genetic loci associated with gestational diabetes, 1-h glucose, fasting
glucose, and 2-h glucose. This Venn diagram depicts the genetic loci that harbour variants associated
with GDM, fasting glucose levels, 1-h glucose levels post OGTT, and 2-h glucose levels post OGTT, as
identified by multiple genome-wide association studies of pregnant women. Each circle represents
the genetic variants linked to one of the four traits. The distinct, non-overlapping areas of each
circle indicate genetic variants uniquely associated with each trait, while the overlapping regions
illustrate genetic variants shared between two or more traits. The central overlapping area represents
variants common to all four traits. All genetic variants included in this diagram reached genome-wide
significance (p < 5 × 10−8) in the studies of Kwak et al. [95], Hayes et al. [202], Pervjakova et al. [70],
Elliot et al. [96], and Zhen et al. [92]. Loci with GDM-predominant effects are highlighted in green,
whereas loci with type-2 diabetes mellitus predominant effects are highlighted in orange as reported
by Elliot et al. [96]. Loci not highlighted remain unclassified. Loci also detected by Chen et al. [110],
in the general, non-pregnant population can be distinguished based on the asterisks (*), with blue
asterisks indicating associations with fasting glucose values, yellow asterisks indicating associations
with 2-h post-OGTT glucose values, and red asterisks indicating associations with both fasting and
2-h post-OGTT glucose values. Colocalization analyses, however, are needed to properly compare
variants inside and outside of pregnancy [269]. GDM: gestational diabetes mellitus; OGTT: oral
glucose tolerance test.

5.3. Genetic Insights into the Relationship between GDM and T2DM

GWASs provide an opportunity to elucidate the degree to which diseases with different
clinical presentations (e.g., T2DM and GDM) represent the same underlying disorder
by examining the genetic similarity between them. This is typically performed on a
locus-by-locus basis, as well as genome-wide, using methods like LD score regression,
which estimates the overall genetic correlation between the traits [88]. The majority of the
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GWASs of GDM reported a substantial shared genetic aetiology between GDM and T2DM,
with only a few genome-wide significant loci for GDM not being significantly associated
with T2DM [66,92–96]. The largest GDM GWAS to date further used a new method
called SCOUTJOY (Significant Cross-trait OUtliers and Trends in JOint York regression) to
compare effect sizes of GDM-associated loci with those of T2DM. This approach evaluates
if observed effect sizes across top hits conform to a uniform relationship, or whether some
loci exhibit stronger associations with GDM or T2DM, while also accounting for sample
overlap and estimation errors specific to each phenotype [96]. Overall, the authors reported
significant heterogeneity in expected effect sizes across many of the loci, suggesting some
genetic differences between the two conditions.

Additionally, the two largest GWASs of GDM reported a genetic correlation between
GDM and T2DM of around 0.70, suggesting that whilst GDM and T2DM share much of
their aetiology, they may also have distinct components that contribute to their individual
genetic architectures [66,96]. However, it is worth bearing in mind that these genetic
correlation estimates are based on relatively small numbers of GDM cases (i.e., cases = 5485,
controls = 347,856 [66]; and cases = 12,332, controls = 131,109 [96]), which also include
potentially less reliable self-reported diagnoses (e.g., in the UK Biobank). This contrasts
with the very large sample sizes of recent T2DM GWASs, which involve up to 428,452 cases
and 2,107,149 controls [140,270–272]. Overall, the relatively small sample size of GDM
(compared to T2DM) and the degree to which the diagnoses of GDM can be trusted limit
current attempts to understand the extent to which they represent the same condition (i.e.,
the physiological stress of pregnancy unmasks a predisposition to T2DM that becomes
diagnosed as GDM), or whether there are distinct determinants of both.

6. Relationship between GDM and Short- and Long-Term Adverse Health Outcomes

GDM, like many other pregnancy complications, can negatively impact both maternal
and fetal health. Although a variety of short- and long-term adverse outcomes are associ-
ated with GDM, evidence is mostly based on observational epidemiological studies, and
so it is unclear whether these relationships represent causality or confounding through,
e.g., shared genetics. To the best of our knowledge, no studies to date have attempted to
examine potential causal relationships between GDM and either maternal or fetal long-term
outcomes using Mendelian randomization [55]. This is partly a consequence of the limited
number of genetic variants uniquely associated with GDM (i.e., as opposed to variants as-
sociated with both GDM and T2DM) and highlights the need for increasingly large GWASs
to detect such variants that could then be used in MR analyses. As such, in this section, we
briefly discuss the observational association between GDM and some adverse outcomes
with the caveat that these associations require validation using causal inference methods.

In the short-term, GDM (similar to T2DM and type-1 diabetes), is associated with
adverse obstetric and neonatal outcomes [273–284]. A multi-ancestry meta-analysis of
14,033,990 pregnancies highlighted the increased risk of hypertensive disorders of preg-
nancy, induction of labour, caesarean delivery, offspring large-for-gestational-age, preterm
birth, and admission to the neonatal intensive care unit in mothers with GDM [285].
Although this study was well-powered, there was substantial heterogeneity in the mag-
nitude of association across studies, likely reflecting different methods of GDM screen-
ing/diagnosis, diverse population demographics, and methodological variations [285].
These same adverse outcomes, however, were also reported by a recent meta-analysis of
7,506,061 pregnancies, with GDM being further associated with increased odds of low
one-minute Apgar score, macrosomia, respiratory distress syndrome, and neonatal jaun-
dice [286]. Further supporting these findings, a separate study demonstrated a consistent
graded linear association between both maternal fasting and post-OGTT glucose concen-
tration and clinically relevant perinatal outcomes—such as caesarean section, induction
of labour, large for gestational age, macrosomia, and shoulder dystocia—with no clear
evidence of a threshold effect, a trend also seen in the HAPO study [279,287]. Interestingly,
recent research has also emphasized the critical role of glucose in fetal growth, with various
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maternal and fetal proteins being involved in glucose homeostasis and energy metabolism
and having a potential effect on offspring birth weight [288].

As for the long-term impacts, the majority of the studies have focused on later-life
outcomes, often chronic conditions, displayed by mothers who have had a GDM diagnosis.
For example, it is well-established that GDM is associated with an increased risk of T2DM,
with studies showing that a previous diagnosis of GDM may carry an 8–10-fold higher
risk of T2DM, and the cumulative incidence can increase markedly in the first five years
after delivery [289–296]. However, as discussed previously, the discrepancy between
studies on GDM and T2DM further limits the important exploration of whether they are
the same or distinct conditions. Apart from T2DM, GDM has also been reported to be
associated with a variety of other maternal chronic conditions, including cardiovascular
diseases (CVDs) and metabolic syndrome [297–300], although causal evidence is lacking.
For instance, two large meta-analyses (one including 5,390,591 women and the other
3,417,020) reported that women diagnosed with GDM may have a 2-fold higher risk of
future cardiovascular events, with a 2.3-fold increased risk being observed in the first
decade postpartum [297,298]. In addition, a meta-analysis containing up to 5832 women
also reported that mothers with a history of GDM may have up to 4-fold increased odds of
developing metabolic syndrome compared to those without [299]. Another meta-analysis
(N = 13,390 participants) corroborated these findings and further reported that women may
be diagnosed with metabolic syndrome as early as one year postpartum [300]. The meta-
analyses of CVD and metabolic syndrome, however, all presented significant heterogeneity
potentially due to varying follow-up durations; geographic biases; inconsistent definitions
of GDM, CVD, and metabolic syndrome; age-related effects; potential inclusion of women
with pre-existing diabetes; and a small number of studies, which together hinder precise
estimation of the true risk of GDM for both CVD and metabolic syndrome [297–300].

Although the long-term impacts of GDM on offspring health have also been investi-
gated, research in this area continues to lack long-term follow-up into adulthood, for which
large trans-generational cohorts are required as well as causal analysis. The largest meta-
analyses have reported that GDM (or diabetes during pregnancy in general) is associated
with an increase in the child’s risk of metabolic syndrome (N = 4421) and leads to higher off-
spring systolic blood pressure (N = 62,344), blood glucose (N = 6423), and BMI (N = 27,311),
with these associations with BMI and systolic blood pressure also being observed in a recent
meta-analysis with up to 8759 participants [300–303]. In addition, studies have reported a
possible association with long-term hospitalizations with diagnoses of endocrine morbidity
such as diabetes mellitus and obesity in the offspring (N of the retrospective cohort study
= 231,271), as well as increased odds of childhood obesity (N of the cross-sectional study
= 4740)—although association with obesity was no longer significant after adjusting for
maternal BMI [304,305]. Impaired glucose tolerance and future risk of T2DM has also been
reported; however, the studies were extremely underpowered with sample sizes of 255
and 597, respectively [306,307]. The meta-analyses and epidemiological studies discussed
also contain limitations related to variations in phenotypic measurement (e.g., the age at
which offspring blood pressure was measured varied), differences in GDM definition, and
inability to properly control for confounders often due to lack of information on those fac-
tors. Causal evidence is limited, and it is important to emphasize that studies on long-term
health outcomes in offspring of mothers with GDM have not taken the correlation between
maternal and offspring genetics into account, and these associations could be due to genetic
pleiotropy [308–313].

7. Conclusions

GDM is a significant global health challenge, being diagnosed in approximately 14.0%
of pregnancies worldwide. Its prevalence varies widely across regions and is influenced
by factors such as maternal age, ancestry, obesity, and family history of diabetes. Early
diagnosis and management are crucial to mitigating the adverse outcomes associated with
GDM for both mothers and their offspring. However, challenges persist in understanding



Metabolites 2024, 14, 508 18 of 32

the underlying biological mechanisms underpinning this condition, hampering efforts
to identify affected women and further improve treatment strategies. Despite recent
advances and the use of GWASs to understand the genetic landscape of GDM and glycaemic
traits during pregnancy, further research is needed to fully elucidate the genetic factors
contributing to GDM onset and recurrence, as well as the degree to which these factors are
distinct from T2DM.

8. Future Directions

Despite recent advances, the current body of research on genetic associations with
GDM and glucose measurements during pregnancy remains limited, especially when com-
pared to the extensive research on T2DM and glycaemic traits in the general population.
To further understand the genetic influences on glucose metabolism during pregnancy,
larger pregnancy cohorts and international collaborative efforts are required, with a major
focus on increasing the genetic diversity within studies. Additionally, there is a growing
potential for drug target MR studies as seen in the context of T2DM, which could identify
medications for better treatment of GDM and test their safety, particularly as more pro-
teomic data become available in pregnancy. By harnessing the power of large-scale studies,
current limitations can be addressed, improving our understanding of GDM pathogenesis
and facilitating the development of more effective diagnostic and therapeutic strategies to
improve maternal and fetal outcomes.
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