
Computers & Security 148 (2025) 104153 

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Dealing with uncertainty in cybersecurity decision support
Yunxiao Zhang a,∗, Pasquale Malacaria b

a University of Exeter, United Kingdom
b Queen Mary University of London, United Kingdom

A R T I C L E I N F O

Keywords:
Robust optimization
Decision support
Uncertainty
Cyber-security
Stackelberg games
Security games
Attack graphs

A B S T R A C T

The mathematical modeling of cybersecurity decision-making heavily relies on cybersecurity metrics. However,
achieving precision in these metrics is notoriously challenging, and their inaccuracies can significantly
influence model outcomes. This paper explores resilience to uncertainties in the effectiveness of security
controls. We employ probabilistic attack graphs to model threats and introduce two resilient models: minmax
regret and min-product of risks, comparing their performance.

Building on previous Stackelberg game models for cybersecurity, our approach leverages totally unimodular
matrices and linear programming (LP) duality to provide efficient solutions. While minmax regret is a
well-known approach in robust optimization, our extensive simulations indicate that, in this context, the
lesser-known min-product of risks offers superior resilience.

To demonstrate the practical utility and robustness of our framework, we include a multi-dimensional
decision support case study focused on home IoT cybersecurity investments, highlighting specific insights and
outcomes. This study illustrates the framework’s effectiveness in real-world settings.
1. Introduction

As technology advances, so do the threats that come with it, making
the need for accurate data and statistics on cybersecurity more critical
than ever. However, obtaining reliable data in this domain is challeng-
ing (Pendleton et al., 2016; Verendel, 2009; Fielder et al., 2018; Rass
et al., 2015). Many organizations are reluctant to disclose information
about security breaches due to concerns about reputational damage
and legal repercussions. Also, cyber-attacks are continuously evolving,
making it difficult to categorize and quantify them accurately (Banga,
2020). New types of malware and attack vectors regularly emerge,
making existing data quickly outdated. There is no universally ac-
cepted standard for reporting cyber incidents, and different countries
have different laws and regulations regarding cybersecurity, making
international data aggregation a complex task.

One of the biggest challenges in cybersecurity is quantifying the
security risk and effectiveness of security controls. Cybersecurity of-
ten deals with unknown quantities, unlike other fields where perfor-
mance metrics are straightforward to define and measure. For instance,
how does one measure a firewall’s effectiveness that has never been
breached? Is it 100% effective, or has it simply not been tested by
a sophisticated enough attack? The absence of incidents does not
necessarily indicate effectiveness, creating a paradox in measurement.
On the whole, cybersecurity metrics rely heavily on expert judgment.
These challenges are well known and considered among the most
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important in cybersecurity, as illustrated by the recent UK’s National
Cyber Security Centre (NCSC) research problems book (The National
Cyber Security Centre, 2023) where ‘‘How do we create and adopt
meaningful measures of cyber security?’’ is one of the five big problems.
There is no agreed answer to the above question and relatively little
work on the topic; this work contributes to this research area.

Cybersecurity metrics are extensively used in mathematical models
of cybersecurity investment (Cavusoglu et al., 2008; Fielder et al., 2016;
Gordon and Loeb, 2002; Khouzani et al., 2019). These models aim
to support organizational cybersecurity decision-making by indicating
which set of security controls is optimal in the sense of reducing the
security risk against a specific threat scenario.

In this work, we accept that these metrics are intrinsically imprecise,
and we therefore focus on developing cybersecurity models that are
resilient to such imprecisions. We consider two possible models for
resilience: the first, minmax regret, is a powerful tool from robust opti-
mization (Ben-Tal et al., 2009; Pita et al., 2012) for managing risk and
uncertainty. Regret measures the ratio or difference between the chosen
security portfolio’s risk and the lowest achievable risk in a scenario.
Given a set of scenarios (i.e. possible values for the effectiveness of
controls), minmax regret will compute the set of controls 𝑥∗ of minimal
maximal regret across all possible scenarios.

The second model is the min-product of security risks: in this
model, the portfolio chosen is the one that minimizes the product of
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Table 1
Main symbols used in the paper and their description.

Symbol Description

𝐺,  ,  Attack graph, set of nodes in attack graph, set of edges in attack graph
𝑠, 𝑡 Source and target nodes in attack graph
ℎ(𝑒), 𝑡(𝑒) Head and tail nodes of edge 𝑒
,(𝑒),(𝑐) Set of security controls, set of controls for edge 𝑒, levels of control 𝑐
𝑥, 𝑥𝑐 𝑙 Security portfolio, indicator variable for control 𝑐 at level 𝑙
𝑝𝑒(𝑥) Probability of a successful attack step associated with edge 𝑒 given 𝑥
𝜋𝑒 Probability of a successful attack step when 𝑒 is unprotected
𝐵𝐷 , 𝐵𝐼 Budgets for direct and indirect costs
Cost𝑐 𝑙 , InCost𝑐 𝑙 Direct and indirect costs of control 𝑐 at level 𝑙
𝑝𝑒𝑐 𝑙 , (𝑝𝑔𝑒𝑐 𝑙) Effectiveness of control 𝑐 at level 𝑙 on edge 𝑒 (in scenario 𝑔)
𝑝𝑒𝑐 𝑙 (𝑝

𝑒𝑐 𝑙) Upper (lower) bound of the control effectiveness interval
𝜔𝑠→𝑡 A path from the source node 𝑠 to the target node 𝑡
𝜆 (𝜆𝑔) Dual variables (in scenario 𝑔) of the maximization problem in (4)
,, 𝑔 Set of scenarios, sampled set of scenarios, a scenario
𝑥∗𝑔 An optimal security portfolio in scenario 𝑔
𝑟𝑔 (𝑥), 𝑟∗𝑔 Security risk with security portfolio 𝑥 in scenario 𝑔, minimal security risk in scenario 𝑔
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risks across all scenarios. Comparing the min-product with minmax
egret notices that the latter offers worst-case guarantees, but in many

cases, it may be over-pessimistic compared to the former: The key
takeaway from this work is that min-product provides a more balanced
optimization that reduces the overall risk across all scenarios.

1.1. Outline of the paper and contributions

This work contributes to the general area of mathematical modeling
f cybersecurity. In particular, it contributes to addressing questions
bout the resilience of such models and their extension with robust
ptimization techniques.

Section 2 introduces the attack graphs used to model threat scenar-
os and the optimization which is used as a basis for the minmax regret
nd min-product.

Section 3 contains the main contributions, i.e., minmax regret and
in-product optimization. Starting with developing the minmax regret

ramework, it is shown how the original bi-level minmax regret prob-
em can be converted to an efficient single-level MILP (mixed integer
inear programming).

We then introduce min-product: To the best of our knowledge, this
is the first use of this kind of optimization in this decision support
context. Technically, we derive it as a modification of a minmax regret
constraint, inheriting the efficient MILP properties previously derived
or minmax regret. The non-linearity of the product is addressed with
he standard sum-log-exp conversion.

Section 4 reports on experiments comparing minmax regret, min-
roduct, and other possible defensive strategies. The experiments show

that min-product provides the highest security (measured as average
ecurity risk over all scenarios). The section also reports on further

experiments about the scalability of min-product and minmax regret,
showing that min-product offers in general, better time performance
than minmax regret.

Section 5 illustrates how the min-product can be used in multi-
imensional cybersecurity decision-making contexts: Here, it is used
ot only to select an optimal set of controls but also for more complex
ecisions involving different investment options. As an example of
his modeling, a case study based on choosing IoT home bundles is

provided. To the best of our knowledge, this is the first application of
this kind of optimization to this decision-making context.

1.2. List of symbols

See Table 1.
2 
2. Background

2.1. Related work

Security games are a special class of game theory problems for
addressing security challenge (Korzhyk et al., 2011; Pita et al., 2008;
Yin and Tambe, 2012; Fang et al., 2016; Paruchuri et al., 2008), in
particular extensively used in cybersecurity (Pita et al., 2008; Yin and
Tambe, 2012; Fang et al., 2016; Paruchuri et al., 2008; Zhang and
Malacaria, 2021a; La et al., 2016; Żychowski and Mańdziuk, 2021a;
Zhang and Malacaria, 2021b; Fielder et al., 2016; Durkota et al., 2015;
Sawik, 2013; Zhang et al., 2023; Zhang and Malacaria, 2023; Khouzani
et al., 2016, 2019). These games are typically Stackelberg games: The
defender acts as the leader, anticipating the attacker’s response and
committing to a defence strategy. Attackers (the follower in the game)
can usually observe this strategy and respond accordingly.

In a Stackelberg game, the attacker is often assumed to be ra-
tional and knowledgeable of the defender’s strategy. This represents
a worst-case scenario where rational attackers optimally respond to
the underlying defensive strategy to maximize their payoffs. How-
ver, attackers can exhibit bounded rationality in many real-world
pplications, having limited observation or acting irrationally. While
uch irrational attackers typically result in suboptimal payoffs, they
ould degrade the underlying defence performance depending on the
roblem setting and solutions. Work in Pita et al. (2009, 2012) provides

robust approaches to address bounded rational attackers, and work
in Żychowski and Mańdziuk (2021b) and Yang et al. (2011) studies
learning-based models for the interactions between attackers and de-
fenders. In particular, Zhang and Malacaria (2023) provides an efficient
olution for security investment games with bounded rational attackers.

Cybersecurity investment problems have been studied in several
papers. One initial work is Gordon and Loeb (2002), which considers
the costs and benefits of determining the cybersecurity investment. The
uthors in Cavusoglu et al. (2008) apply a game-theoretical framework

to evaluate a firm’s IT security investment levels and compare this
with a decision theory approach. Subsequent research in Sawik (2013)
applies financial engineering tools to IT security planning and extends
his to optimizing safeguards for Industry 4.0 supply chains in Sawik

(2022). Recently, the work in Abdallah et al. (2021) studies human bi-
ses in security investment decision-making. The study in Uuganbayar

et al. (2021) offers a cost-efficient strategy for allocating cyber security
investments, providing an exact algorithm for selecting optimal security
controls and comparing it with other methods. In addition, various
studies have investigated both theoretical and practical aspects of
cybersecurity investment (Chronopoulos et al., 2017; Khouzani et al.,
2016; Fielder et al., 2016; Smeraldi and Malacaria, 2014; Scott et al.,
2022; Tsiodra et al., 2023; Zhang et al., 2023).
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The closest work to this paper is Khouzani et al. (2019), which mod-
els the cybersecurity investment problem as a multi-objective bi-level
Stackelberg game, using a probabilistic attack graph to represent an
organization’s security risk. The optimization objective is to minimize
he security risk by selecting an optimal portfolio of security controls

with specified security budgets. Subsequent research in Zhang and
alacaria (2021b,a, 2023) extends the efficient solution in Khouzani

et al. (2019). These works integrate a Markov chain with a probabilistic
attack graph to model the cybersecurity resilience of an organization,
introduce an efficient Bayesian Stackelberg game when the defender
is uncertain about the attacker’s position within the organization, and
focus on improving security against bounded rational attackers using
residual budgets, respectively.

The cybersecurity problem investigated in Khouzani et al. (2019)
nd the subsequent work is a generalization of network interdiction prob-
lems (Letchford and Vorobeychik, 2013; Nandi et al., 2016; Bhuiyan
et al., 2016; Smith and Song, 2020), which also belong to Stackelberg
games. While most interdiction solutions apply absolute edge removal
to stop the adversary’s actions, it is not always feasible to eliminate
a vulnerability in cybersecurity problems. For example, one cannot
simply remove a router due to its potential security vulnerability with-
out disrupting an organization’s operations. Hence, Khouzani et al.
(2019) uses the probabilistic attack graphs, where the effectiveness of
nderlying security controls is represented as a probability.

The solutions in Khouzani et al. (2019) and Zhang and Malacaria
(2021b,a, 2023) depend on the placement of controls within the organi-
zation (attack graph topology), their effectiveness in mitigating security
isks (cybersecurity metrics), and the rationality of attackers. Control
lacement within an organization is deterministic, and the rationality
f attackers has been extensively addressed in the aforementioned
orks; however, we often lack statistical data or quantitative analysis

o determine precise security metrics (Pendleton et al., 2016). In other
words, the defender needs to make decisions with uncertainties of
control effectiveness.

To address uncertainties in decision-making, we explore theoretical
solutions to make existing strategies robust. First, the optimization
an model control effectiveness as an interval coefficient, with the
ctual value lying within closed intervals (Steuer, 1981; Charnes et al.,

1977; Ahmad et al., 2013; Wu, 2008). Next, in particular, we adopt
the scenario-based approach in Kouvelis and Yu (2013). Each sce-
ario represents a specific realization of control effectiveness values.
he regret for a security portfolio in a scenario is the ratio between
he security risk from the selected portfolio and the optimal risk the

defender could have attained with prior knowledge of the scenario’s
actual control effectiveness. Then, the relative robust decision is the
security portfolio that can minimize the maximal regret for all possible
cenarios, namely minmax regret. Work in Kiekintveld et al. (2013)
ses similar conceptual approaches for handling uncertainty in security
ames and also considers the distributional uncertainty.

To the best of our knowledge, there is no related work that uses
in-product.

Previous cybersecurity works (Fielder et al., 2018; Rass et al., 2015)
ave investigated the natural difficulty of quantifying security risk.
owever those works do not consider minmax regret nor min-product

of risks; moreover, they are based on ‘‘single-steps’’ game matrices,
while our approach deals with more complex multi-stage attacks.

2.2. Attack model

We use probabilistic attack graphs to model an organization’s secu-
ity risk, as denoted in Khouzani et al. (2019). Such a graph is a directed

multi-graph, represented as 𝐺 = { ,  , ℎ, 𝑡, 𝑝𝑒, 𝑠, 𝑡}. Here,  and  define
nodes and edges, respectively. Nodes are an attacker’s privilege state,
while edges represent exploitable vulnerabilities that allow the attacker
to change its privilege states. A multi-stage attack is modeled as a path
from source node 𝑠 to the target node 𝑡. An edge 𝑒 is directed from
3 
node 𝑖 to node 𝑗, with functions ℎ(𝑒) and 𝑡(𝑒) return the head node and
tails of edge 𝑒. Function 𝑝𝑒 returns the attacker’s success probability
of exploitation on edge 𝑒, which is determined by both the attacker’s
aseline success rate 𝜋𝑒 and the control effectiveness.

The defender aims to find a security portfolio to minimize the
rganization’s security risk within budget constraints. Such a security

portfolio can be expressed using binary indicators 𝑥𝑐 𝑙 as follows:

𝑥𝑐 𝑙 ∈ {0, 1},∀𝑐 ∈ , 𝑙 ∈ (𝑐);
∑

𝑙∈(𝑐)
𝑥𝑐 𝑙 ≤ 1,∀𝑐 ∈ , (1)

where  and (𝑐) denote the set of controls and the set of intensity
levels of control 𝑐. If 𝑥𝑐 𝑙 = 1, control 𝑐 at intensity level 𝑙 is selected
into the security portfolio; otherwise 𝑥𝑐 𝑙 = 0. In addition, for control 𝑐,
the defender can only select one intensity level, i.e., making the sum
of levels for control 𝑐 no greater than 1. Moreover, a control can be
effective on multiple edges, and an edge may be affected by multiple
controls.

Defenders can ‘‘purchase’’ controls to reduce the attacker’s proba-
ility of success. Each control at each level has specific costs and an

effectiveness coefficient.
We follow the model (Khouzani et al., 2019) for the costs to include

irect cost Cost𝑐 𝑙, indirect cost InCost𝑐 𝑙. Direct cost represents the mon-
tary investment in security controls, and indirect cost represents the
ndirect (negative) costs or side-effects on normal operations. Budgets
re denoted as 𝐵𝐷 and 𝐵𝐼 .

In addition, 𝑝𝑒𝑐 𝑙 denotes a control effectiveness coefficient. For
example, if control 𝑐 at level 𝑙 is applied with 𝑝𝑒𝑐 𝑙 = 0.5, the attacker’s
uccess probability of exploiting on edge 𝑒 is halved. Given a security
ortfolio 𝑥, the overall success probability of the attacker on edge 𝑒 is
xpressed as follows:

𝑝𝑒(𝑥) = 𝜋𝑒
∏

𝑐∈(𝑒),𝑙∈(𝑐)
(𝑝𝑒𝑐 𝑙𝑥𝑐 𝑙 + (1 − 𝑥𝑐 𝑙)), (2)

where (𝑒) is the subset of controls affecting the vulnerability associ-
ated with edge 𝑒.

2.3. Optimal defensive strategy

Recall the defender’s objective is to find the optimal security portfo-
lio to minimize the organization’s security risk, defined as an attacker’s
highest success probability. We model the interactions between defend-
rs and attackers as a Stackelberg security game (Korzhyk et al., 2011).
n this game, defenders act as leaders who anticipate the attacker’s
est response and commit to the optimal security portfolio that min-
mizes the risk. Subsequently, as followers, the attacker’s best response
s to choose a path that maximizes their success rate based on the
mplemented security portfolio. Deviation from this optimal response
ould result in a lower success rate for the attacker. Formally, the game
etting leads to the following optimization problem:

min
𝑥

𝑟,

s.t.: (1),
∑

𝑐∈,𝑙∈(𝑐)
𝑥𝑐 𝑙 ⋅ Cost𝑐 𝑙 ≤ 𝐵𝐷;

∑

𝑐∈,𝑙∈(𝑐)
𝑥𝑐 𝑙 ⋅ InCost𝑐 𝑙 ≤ 𝐵𝐼 , (3)

𝑟 ≥ max
𝜔𝑠→𝑡

∏

𝑒∈𝜔𝑠→𝑡

𝑝𝑒(𝑥), (4)

where 𝜔𝑠→𝑡 represents a complete path from the source to the target.
Maximization in (4) represents the attacker’s optimal response to find
an attack path that maximizes its success rate. Constraints (3) ensure
that the total direct costs and indirect costs do not exceed budgets 𝐵𝐷
and 𝐵𝐼 , respectively.

This optimization is bi-level non-linear, which is NP-hard to solve
Sinha et al., 2017). Here, we provide a high-level summary of how
his optimization is solved in Khouzani et al. (2019). Given that a

logarithm function log(𝑥) is strictly monotone for 𝑥 > 0, we can
transform the maximization objective in (4) from a product to a sum,
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Fig. 1. Example of attack graph.

i.e., log(∏𝑒∈𝜔𝑠→𝑡
𝑝𝑒(𝑥)) =

∑

𝑒∈𝜔𝑠→𝑡
log(𝑝𝑒(𝑥)). Moreover, the path 𝜔𝑠→𝑡 can

be mapped into new binary variables, each indicating if the attacker
includes the corresponding edge in their attack path. The additional
flow conservation constraints ensure the selected edges must form a
complete path. This converts the non-linear maximization problem in
(4) into an ILP (integer linear programming) problem. In addition, due
to Lemma 2 on totally unimodular matrices in Khouzani et al. (2019),
these binary variables can be relaxed to real numbers between 0 and
1. As a result, the ILP can be exactly relaxed into an LP problem.

Finally, we can dualize the original maximization to a minimization
because of LP’s exact relaxation and strong duality. As a result, the
original optimization is transformed into a tractable MILP:

min
𝑥,𝜆

𝜆𝑠 − 𝜆𝑡,

s.t.: 𝜆𝑡(𝑒) − 𝜆ℎ(𝑒) ≥ log(𝜋𝑒) +
∑

𝑐∈(𝑒)
𝑥𝑐 𝑙 log(𝑝𝑒𝑐 𝑙),∀𝑒 ∈  , (5)

(1), (3),

where 𝜆 are dual variables of the maximization problem in (4).
This approach has been shown to be efficient (Khouzani et al.,

2019). In particular, optimization on a random attack graph consisting
of 20,000 nodes (i.e., 50,000 edges on average) and 37 controls can be
solved in under four minutes.

2.4. Example

To demonstrate the concepts of optimal security defensive strate-
gies discussed above, let us consider the example in Fig. 1. Node
0 represents the source of attacks, e.g., the external network, while
Node 3 represents the target, e.g., a database. Nodes 1 and 2 are
two privileged states: for example, a router and a workstation, respec-
tively. An attacker can directly exploit the database. Alternatively, the
attacker could first take control of the workstation or the router to
establish a foothold within the organization and then escalate to the
database via the foothold. Controls 𝑐1 to 𝑐4 are countermeasures to
mitigate the security risk of the corresponding attack steps (edges).
They could be patch management, access controls, education against
social engineering attacks, firewalls, etc.

We assume each control costs one and has one intensity level. The
available budget is two. We assume the effectiveness of controls 𝑐1 to
𝑐4 is 0.4, 0.5, 0.2, 0.1, and the baseline probabilities of edges is 1.

The optimal defender then returns the security portfolio 𝑐1, 𝑐3 with
a security risk of 0.4.

The attacker’s probability of success for each path is as follows:
path 0 → 3 has a probability of 0.2, path 0 → 1 → 3 has 0.4, path
0 → 1 → 2 → 3 has 0.032, and path 0 → 2 → 3 has 0.4. We
observe that the paths 0 → 1 → 3 and 0 → 2 → 3 have the highest
probabilities of a successful attack, which represents the organization’s
security risk. We use the term weakest path to denote the path with the
highest probability of success.
4 
Here is the decision-making process: the optimal defender should
select control 𝑐3 to protect path 0 → 3. Without 𝑐3, the attacker’s success
probability would be 1, resulting in a security risk of 1. Next, one
more control can be added from 𝑐1, 𝑐2, or 𝑐4. While 𝑐4 is effective, its
selection would leave path 0 → 1 → 3 unprotected, again resulting in
a security risk of 1. Therefore, the final choice should be between 𝑐1
and 𝑐2. Control 𝑐1 provides a lower security risk compared to control
𝑐2. Hence, the optimal security portfolio is 𝑐1, 𝑐3.

While the decision-making in the example is quite simple, the
complexity increases with the number of controls and the size of the
attack graph.

2.5. Extensions

For more comprehensive modeling, several extensions are incorpo-
rated into the optimal defender model (Khouzani et al., 2019). First,
the model can accommodate non-independent controls by introducing
a ‘‘combination control’’ with customized effectiveness. For instance,
if controls 𝑐𝑎 and 𝑐𝑏 are dependent, a combination control 𝑐𝑎𝑏 can
be introduced, with specific combined effectiveness and an additional
constraint 𝑥𝑎 + 𝑥𝑏 + 𝑥𝑎𝑏 ≤ 1.

Moreover, the model can have multiple targets by adding a ‘‘sink
node’’ for these targets. The model can also extend to accommodate
various measurements, such as the product of impact and probability
of success across multiple targets. This can be achieved by assigning
suitable weights to the edges connecting the target nodes to the sink
node.

Several follow-up studies were developed based on this model.
First, Zhang and Malacaria (2021b) combines the model with a Markov
chain to evaluate system resilience against repeated attacks. Next,
Zhang and Malacaria (2021a) extends the Stackelberg game model to
a Bayesian setting that allows the defence strategy to consider uncer-
tainty about the attacker’s state. More recently, Zhang and Malacaria
(2023) extends the model by introducing a strategy for spending resid-
ual budgets on less-protected paths. A decision-making tool (Zhang
et al., 2023) has also been developed based on this approach in the
context of smart home cybersecurity.

3. Modeling uncertainty

In this section, we consider two approaches to deal with uncertainty:
Minmax regret and min-product.

Minmax regret is often used in robust optimization for decision-
making under uncertainty. The approach aims to minimize the largest
regret associated with the decision across all scenarios.

With min-product, we propose a new approach to deal with un-
certainty: Instead of minimizing the largest regret, the min-product
approach aims to minimize the product of risks across all scenarios.

We model a control effectiveness as a random number within a sub-
interval of [0,1]. For example, when we say a control’s effectiveness is
between 0.4 and 0.6, we mean it can take any value between 0.4 and
0.6. The amount of uncertainty is the distance of the bounds of the
interval from the mid-point of the interval. For example, if the mid-
point is 0.5 and the uncertainty is 20%, we are referring to the interval
[0.4, 0.6].

Formally for control 𝑐 at level 𝑙, we assume that the effectiveness
of the control on edge 𝑒 is a random number within an interval: 𝑝𝑒𝑐 𝑙 ∈
[𝑝

𝑒𝑐 𝑙 , 𝑝𝑒𝑐 𝑙]. We define a scenario as a map 𝑔, where 𝑔 selects a point
in each interval associated with each control. We denote the set of all
possible scenarios by .

3.1. Minmax regret

In minmax regret, the optimization aims to find a security portfolio
that returns the minimal largest regret (i.e., minmax regret) across all
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possible scenarios in . Technically, the approach followed in this work
combines the framework from Khouzani et al. (2019) with the robust
mathematical programming framework (Kouvelis and Yu, 2013).

Minmax Regret criterion. Given a scenario and a portfolio, the
regret is defined as the ratio between the security risk from the se-
lected portfolio and the optimal risk the defender could have achieved
with prior knowledge of the scenario’s actual effectiveness. The secu-
rity portfolio that minimizes the largest regret among all scenarios is
referred to as relative robust decision (Kouvelis and Yu, 2013).1

The problem is formulated as follows:

ar g min
𝑥

max
𝑔∈

𝑟𝑔(𝑥)∕𝑟𝑔(𝑥∗𝑔) (6)

where 𝑥∗𝑔 denotes the optimal security portfolio for scenario 𝑔. Notice
hat, in general, the number of scenarios is infinite; however, we will
se sampling techniques to generate a finite number of scenarios,
enoted as .

3.2. Converting minmax regret to a MILP

The bi-level problem in (6) can be expressed as a single-level
roblem by introducing an auxiliary real number, 𝛼:

min
𝑥,𝛼

𝛼 ,

s.t.: 𝛼 ≥ 𝑟𝑔(𝑥)∕𝑟∗𝑔 , ∀𝑔 ∈ , (7)

(1), (3), (4),

where 𝑟∗𝑔 represents the minimal security risk using the optimal security
ortfolio 𝑥∗𝑔 for scenario 𝑔. Note that 𝑟∗𝑔 are constants that can be
omputed in advance before the optimization process.

We can convert the above problem to a MILP. First, let 𝛽 = log(𝛼).
Notice then that (7) is equivalent to 𝛽 = log(𝛼) ≥ log(𝑟𝑔(𝑥)) − log(𝑟∗𝑔).
Moreover, recall that the attacker’s maximization problem in (4) can
be relaxed to
log(𝑟𝑔(𝑥)) ≥ 𝜆𝑔𝑠 − 𝜆𝑔𝑡 , (8)

subject to
𝜆𝑔𝑡(𝑒) − 𝜆𝑔

ℎ(𝑒)
≥ log(𝜋𝑔

𝑒 ) +
∑

𝑐∈(𝑒)
𝑥𝑐 𝑙 log(𝑝𝑔𝑒𝑐 𝑙),∀𝑒 ∈  . (9)

This is based on the relaxation presented in Section 2.3. In particular,
the optimization variables 𝜆𝑔 are the dual variables of the attacker’s
maximization problem to find the weakest path given the scenario 𝑔.

Hence, inequality 𝛽 ≥ log(𝑟𝑔(𝑥)) − log(𝑟∗𝑔) is equivalent to
𝛽 + log(𝑟∗𝑔) ≥ 𝜆𝑔𝑠 − 𝜆𝑔𝑡 , ∀𝑔 (10)

subject to (9). Moreover, the optimizations min𝑥 𝛼 and min𝑥 log(𝛼) will
eturn the same security portfolio, given that the log() function is

monotonic. Hence, the minmax regret problem can be formulated as
the following MILP:

min
𝑥

𝛽 ,
.t.: {(10), (9)} ∀𝑔 ∈ , (1), (3).

3.3. Examples of minmax regret

Let us consider the simple graph with 4 nodes and four edges in
Fig. 2: where the four controls 𝑐1, 𝑐2, 𝑐3, 𝑐4 have effectiveness 0.4, 0.3,
.3, 0.4. Then, with an uncertainty of 10% the minmax regret solution
s 𝑐2, 𝑐3 and the regret is 1, indicating that in all scenarios, the solution
ill always be 𝑐2, 𝑐3. However, with an uncertainty of 50% there will
e scenarios where the optimal solution will select 𝑐2, 𝑐3 (e.g., scenarios

1 If the regret is based on difference rather than ratio, it is the robust
eviation decision.
5 
Fig. 2. A simple attack graph.

where all controls are at their upper bounds) and scenarios where the
ptimal solution will select 𝑐1, 𝑐4, e.g., with scenario 0.2, 0.45, 0.45, 0.2.
onetheless, the minmax regret solution will still be 𝑐2, 𝑐3 as it has

ower maximal regret than 𝑐1, 𝑐4. The minmax regret in this case is 2.25,
eflecting the fact that in some scenario 𝑐2, 𝑐3 is not optimal. In partic-
lar, the 2.25 comes from the fact that in the scenario 0.2, 0.45, 0.45, 0.2
he minmax regret solution 𝑐2, 𝑐3 security risk is 0.45 while the security
isk for 𝑐1, 𝑐4 is 0.2, and 0.45/0.2=2.25. Notice also how the solutions
1, 𝑐3 or 𝑐2, 𝑐4 are topologically impossible because they would leave
ome path totally undefended.

As a second example, let us consider again the attack graph in Fig. 1
from Section 2.4. At 50% uncertainty, the minmax regret with budget
2 will select the same portfolio 𝑐1, 𝑐3 as the optimization in Section 2.4.
However, in some scenarios, the optimal solution is 𝑐1, 𝑐3, whereas in
other scenarios, the optimal solution is 𝑐2, 𝑐3. This is reflected by the
fact that the minmax regret when uncertainty is 50% is 2.4.

Notice that the location of controls in the graph plays a crucial role,
which in many cases is more important than their effectiveness. For
xample, in the attack graph in Fig. 1 control 𝑐3 has to always be chosen

because it is the only one defending path 0 → 3, and if the budget is
2, the topology will restrict the choice of the second control to be 𝑐1
or 𝑐2. At budget 2, control 𝑐4 is never selected, because 𝑐4 leaves path
0 → 1 → 3 undefended.

Topological considerations over the attack graph are key to under-
standing the robustness of our framework.

3.4. Min-product of security risks

Let us revisit the crucial constraint (10) in the minmax regret, i.e.

𝛽 + log(𝑟∗𝑔) ≥ 𝜆𝑔𝑠 − 𝜆𝑔𝑡 , ∀𝑔 .
If we ignore the term log(𝑟∗𝑔) (which is the regret term) and we sum
the right-hand side over all possible scenarios we get the following
constraint:

𝛽 ≥
∑

𝑔∈
𝜆𝑔𝑠 − 𝜆𝑔𝑡 , (11)

With this change, the optimization will compute a security portfolio
that minimizes the product of risks over all scenarios.

To see why, recall that in all optimizations seen so far, the objective
function is the log of the function we seek. Hence, looking at the
bjective function implied by (11) as an exponent, we have:

min
𝑥

exp(𝛽) = min
𝑥

exp(
∑

𝑔∈
𝜆𝑔𝑠 − 𝜆𝑔𝑡 ). (12)

From Khouzani et al. (2019), the objective function min𝑥 𝜆
𝑔
𝑠 − 𝜆𝑔𝑡 is

quivalent to min𝑥 log(𝑟𝑔(𝑥)) for all 𝑔. Therefore,

min
𝑥

exp(𝛽) = min
𝑥

exp(
∑

𝑔∈
log(𝑟𝑔(𝑥))) = min

𝑥

∏

𝑔∈
𝑟𝑔(𝑥) (13)

As a result, the min-product optimization is formally formulated as
follows:

min
𝑥

∑

𝑔∈

𝜆𝑔𝑠 − 𝜆𝑔𝑡 ,

s.t.: (9) ∀𝑔 ∈ , (1), (3).
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Remark 1. In order to understand the min-product approach it may
be helpful to draw an analogy with Maximum Likelihood Estimation
(MLE).

In MLE, we look for the model parameters that best fit the data,
here ‘‘best fit’’ means that the product (over the data) of the condi-

ional probability prob(data ∣ parameter) is the highest. This means that
hat model parameter makes the observed data most likely.

In the min-product case, the portfolio solution is the one that best
fits the product of optimal risks (over the scenarios), i.e. it is the closest
to the optimal product of risks across the scenarios.

In contrast with the ‘‘worst-case analysis’’ of minmax regret, the
product portfolio does not provide ‘‘worst-case guarantees’’; however,
he experiments in Section 4 show it provides a more resilient portfolio

in statistical terms.
It is also worth comparing the minimization of the product of risk

with the minimization of the expectation of risks. One first observation
is that the product of risks is more sensitive to the higher risks than
the expectation; hence, from a security point of view, as we want to
prioritize the mitigation of the highest risks, minimizing the product
of risk makes more sense. A further observation is computational:
to the best of our knowledge, in this setting, the minimization of
the expectation of risks is conic programming (Zhang and Malacaria,
2021a). Hence, it does not scale to the graph sizes considered in this
work.

3.5. Mid-point portfolio

A simple way to deal with uncertainty in the effectiveness of con-
rols is to consider the optimization from Section 2.3 where the ef-

fectiveness of controls is given by the mid-point of the uncertainty
intervals.

This approach is well-known in the literature; an interesting result
about this approach is in Kasperski and Zieliński (2006), where it is
proven that the regret of a solution using the mid-point of uncertainty
intervals is bounded by two times any solution’s regret. In our setting,
it is easy to show that the regret of the mid-point solution is indeed
bounded, but it may not be two times any solution’s regret. As discussed
in the sensitivity analysis in Khouzani et al. (2019), the mid-point
olution also demonstrates some level of resilience against parameter
ncertainties. In the experiments, we will use the mid-point solution as
he benchmark to compare the performance of other approaches.

3.5.1. Comparing mid-point portfolio with minmax regret and min-product
To illustrate the difference between mid-point portfolio and minmax

regret, let us consider again the example shown in Fig. 1. Let us suppose
that the mid-point effectiveness of controls 𝑐1 to 𝑐4 is 0.6, 0.7, 0.65,
0.5. We assume the budget allows the defender to select at most three
controls.

The defender from Khouzani et al. (2019) returns the security
portfolio 𝑐1, 𝑐3, resulting in a security risk of 0.65. Control 𝑐3 has to
be included in the security portfolio, otherwise, path 0 → 3 would
be left unprotected. Control 𝑐1 protects the remaining paths. Replacing
ontrol 𝑐1 with control 𝑐4 would leave path 0 → 1 → 3 unprotected.
eplacing control 𝑐1 with control 𝑐2 would increase the security risk

o 0.7. Adding control 𝑐2 to 𝑐4 to the security portfolio cannot further
educe the security risk; therefore, they are not included.

Let us assume the uncertainty of control effectiveness is 30%; hence,
he effectiveness of control is in a range: 𝑝𝑐1 ∈ [0.42, 0.78], 𝑝𝑐2 ∈
0.49, 0.91], 𝑝𝑐3 ∈ [0.455, 0.845], and 𝑝𝑐4 ∈ [0.35, 0.65].

Both the minmax regret and min-product defenders select the secu-
ity portfolio 𝑐1, 𝑐2, 𝑐3, which provide more robust protection than the
id-point portfolio 𝑐1 and 𝑐3.

For example, if we take the scenario where the control effectiveness
of 𝑐1 through 𝑐4 is 0.78, 0.49, 0.455, and 0.35, then the security
portfolio 𝑐1, 𝑐3 returns a security risk of 0.78, whereas the security

portfolio 𝑐1, 𝑐2, 𝑐3 returns a security risk of 0.455.

6 
4. Experiments

This section reports experiments comparing various defensive strate-
gies, including minmax regret and min-product. The results indicate
that min-product offers the highest security, as measured by the aver-
age security risk across all scenarios. Additionally, Section 4.4 covers
further experiments on the scalability of min-product and minmax
regret, demonstrating that min-product generally provides better time
performance than minmax regret.

4.1. Evaluation metric

We will evaluate the security provided by minmax solution, min-
roduct solution, and the mid-point solution. In addition, we will
lso include, for comparison, the following defensive strategies: upper-
ound, lower-bound, greedy, random, and minmax-product solutions.

The upper-bound and lower-bound solutions represent pessimistic
nd optimistic defenders. They are similar to the mid-point solution but

use the optimization from Section 2.3 on the upper (or lower) bounds
f the controls’ effectiveness rather than the mid-point of intervals.
he greedy solution is a security portfolio that has the largest sum of
id-point controls’ effectiveness, subject to budget constraints: Hence,

he defender only considers the most effective controls and ignores the
lacement of controls. The random solution is a random portfolio of

controls, subject to budget constraints.
The minmax-product solution is an optimization combining both

minmax regret and min-product, and is obtained by adding the product
of risk, multiplied by a small value, into the objective function of the
minmax regret as a penalty factor. This multi-objective optimization
hence considers both the regret and the product of risks when selecting
the security portfolio.

Given all possible solutions described so far, we will evaluate their
verage risk over a set of scenarios. As mentioned, we use the mid-
oint solution as the benchmark. We denote the average risk of the
id-point solution as 𝑟𝑚𝑖𝑑 , and the relative risk of the other solutions

to the mid-point solution is computed using the following equation:

̂𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 = (1 − 𝑟𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛∕𝑟𝑚𝑖𝑑 ) × 100%. (14)

Note that a positive �̂�𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 indicates the solution outperforms the mid-
point solution (i.e., a lower average security risk); otherwise, a negative
̂𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 indicates the solution is worse than the mid-point solution
(i.e., a higher average security risk).

4.2. Layered random attack graphs

In these experiments, we generate random attack graphs based on
 parameter N, the number of nodes in the graph. Each graph includes

a source node (node 0) and a sink (node N-1, i.e., the last node). Apart
from the source and sink, nodes are distributed in multiple layers, each
representing one step in multi-stage attacks. This is inspired by the
ayers in the MITRE attack matrix, e.g: Reconnaissance, Resource De-
elopment, Initial Access, Execution, Persistence, Privilege Escalation,

and Defence Evasion, etc. (The MITRE Corporation, 2022).
All nodes within the first layer are connected to the source node,

nd all nodes in the final layer connect to the sink node. There are
wo types of edges within the graph: intra-layer and inter-layer. The
ntra-layer edges are edges within the same layer, representing lateral
ovement of attackers. We allow each layer to have one intra-layer

dge.
The inter-layer edges represent a typical attack step, with a higher

robability of 0.3 for edges between nodes in layer 𝑖 and 𝑖+ 1. Finally,
ach layer has a probability of 0.3 of having one edge with the sink
ode.

Each layer has its own set of controls, so controls are not repeated
along an attack path. Controls are randomly allocated to defend edges
in that layer.
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Table 2
Average risk and relative risk for the different defence strategies at 50% uncertainty.
Solution (Nodes, layers)

(50,5) (50,3) (100,5) (100,10)

mid-point 0.0710; 0% 0.223; 0.0% 0.154; 0.0% 0.0223; 0.0%
minmax regret 0.0629; 9.9% 0.206; 5.8% 0.139; 5.7% 0.0191; 9.8%
min-product 0.0622; 11.6% 0.206; 5.8% 0.136; 7.0% 0.0191; 11%
minmax-product 0.0628; 9.9% 0.206; 5.8% 0.137; 6.7% 0.0191; 9.8%
lower bound 0.0706; 0.1% 0.223; −0.9% 0.154; −2.4% 0.0237; −15%
upper bound 0.0999; −39.1% 0.245; −10.5% 0.163; −8.9% 0.0257; −18%
greedy 0.418; −557% 0.647; −187% 0.499; −281% 0.112; −1528%
random 0.300; −646% 0.647; −214% 0.657; −393% 0.170; −2811%
u
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Each control has one intensity level with an effectiveness between
0.2 and 0.6. The direct cost of implementing a control is an integer
etween 1 and 2, and the direct budget is 70% of the total costs. The
ndirect budget is large. For simplicity, we let the baseline probability
e 1 for each edge.

All computations in the experiments were run on a MacBook Pro,
ith an Apple M2 Pro processor and 16 GB of RAM. The optimization
as programmed in Python using the PuLP modeler and Gurobi solver.

4.3. Comparing defence strategies: results

We conduct four sets of experiments with 50% uncertainty in the
effectiveness of controls. In each experiment, we generate 20 random
attack graphs with different numbers of nodes and layers. For each
raph, we randomly generate 500 scenarios: These scenarios are used
n the optimization to determine the defensive portfolio. After that,
or the evaluation, we generate another 1000 scenarios to compute
he average risk returned by each solution across these scenarios. The
verage risk across 20 graphs is the mean of the average risks for each
ndividual graph. Similarly, the average relative risk of each solution

to the mid-point is the mean of the relative risks for each individual
graph.

Table 2 shows the results of the experiments: the average risk and
verage relative risk across all attack graphs. As the table shows, the

min-product provides the best security, with an improvement between
5.8% and 11.6% over the baseline, followed by the minmax-product
and then the minmax regret. Notice also the dramatic improvement
in security when comparing it with ‘‘non-optimization based’’ defences
(e.g. mid-point results in an improvement compared to greedy defence
of up to 1528%).

4.4. Scalability of min-product and minmax regret

We use random attack graphs with a similar topology to those
in Khouzani et al. (2019) and Zhang and Malacaria (2021a) to test
he scalability of minmax regret and min-product. These are Erdős-
ényi random attack graphs where the probability that two nodes
re connected is 𝑝 = 3∕||. The maximal number of edges between
wo edges is 3. In addition, we modify the random graph to prevent
ncomplete attack paths that fail to reach the target node. In total,

we consider 37 controls, each with two intensity levels. Each edge is
associated with one or two controls. The security portfolio can select
around 7 controls within the budget.

We conducted two sets of experiments, in the first set using 100
cenarios and in the second set using 500 scenarios. For the 100-
cenario experiments, we used 20 graphs with node sizes of 10, 30, 50,
00, 500, 1000. For the 500-scenario experiment, we used 20 graphs
ith node sizes from 10 to 100 nodes. For 500 nodes, we used 5 graphs.

The running times of the minmax regret are shown in Fig. 3(a) and
3(b). As illustrated, the minmax regret requires a median time of 10 min
to find the solution for a random attack graph with 1,000 nodes and
100 scenarios. With 500 nodes and 500 scenarios, the median running
time triples.
7 
The running times of the min-product are shown in Fig. 3(c) and
3(d). Min-product is generally more efficient than minmax regret apart
from the largest graphs (1000 nodes with 100 scenarios and 500 nodes
with 500 scenarios).

5. Multi-dimensional decision support for cybersecurity

In this section we show that the framework we introduced can be
sed not only to choose controls against a specific threat but also in a
ore general context of evaluating different cybersecurity investment

ptions and choosing the option of minimal risk.
In this multi-dimensional decision problem, there are 𝑛 options to

choose from, where each option consists of a mixture of products and
services. Each option has an associated threat scenario (modeled as
n attack graph), where, as usual, for each attack step there are some
ossible security controls whose effectiveness is given as an uncertainty
nterval. Also, for each option, there is an associated impact if the
orresponding attack is successful.

The objective here is to determine which option and security port-
folio to choose with the aim of minimizing the security risk (as usual,
subject to budget constraints).

Technically, we model this problem by adding to our framework
controls 𝛾1,… , 𝛾𝑛 i.e., one control for each option, with the following
property: Each new control 𝛾𝑖 is effective on the initial edge incoming
to the attack graph associated to option 𝑖; each 𝛾𝑖 has cost 0 and
has maximal effectiveness, i.e., ≃ 0. Cost 0 means that these controls
can always be chosen and maximal effectiveness means that if 𝛾𝑖 is
chosen, that option is eliminated as the incoming edge to that option
is ‘‘blocked’’ by deploying 𝛾𝑖.

We then add to the optimization the following constraint: ∑𝑖 𝑥𝛾𝑖 =
− 1. The role of the above constraint is to force the optimization to

elect exactly one option: That option is the one for which the minimal
bjective value is achieved.

5.0.1. Unsuitability of minmax regret for multi-dimensional modeling
Before moving on to the case study, we ought to observe that there

s a problem with using minmax regret for this multi-dimensional mod-
eling. The problem arises from the fact that regret is a ratio between
the security of a portfolio in a scenario and the optimal security in that
cenario. However, it could happen that the portfolio at the nominator
nd the one at the denominator select different options: in that case,

since the options are mutually exclusive the regret is meaningless and
ence the whole minmax regret (and also the minmax regret combined

with min-product) result makes no sense. For this reason, in the case
study, we will only focus on the min-product and mid-point solutions.

5.1. Case study: IoT home bundle options

Let us consider a decision-making scenario where a home user
evaluates three options for a home IoT bundle. The user objective is
to choose the security-optimal combination of a home IoT bundle and
security controls within budget constraints.

Fig. 4 illustrates the case study with the three home IoT bundle
options, each option consists of buying some app-controlled smart LED
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Fig. 3. Scalability results for minmax regret and min-product across 100 and 500 scenarios.
Fig. 4. Case study.
and smart thermostats. Each option also includes a legacy device (an
old security camera) which is more vulnerable than the LED and ther-
mostat. Each bundle option shares a similar attack graph topology: In
each of the three cases, the attacker can begin the attack by exploiting
vulnerabilities in the home router to gain a foothold in the network.
Next, the attacker can exploit the apps to access the smart home
devices or directly exploit the smart home devices from the router.
Alternatively, the attacker can launch social engineering attacks to get
valid credentials for the apps and so access the smart home devices.
The attacker could also choose to attack the more vulnerable legacy
device.

Let us take a closer look at each possible option:
8 
Option 1 (left): In this option, the home user buys LEDs and
thermostats, which are controlled by different apps (e.g., they may
come from different companies using different standards). In addition,
in this option, the user does not buy a cybersecurity insurance plan to
compensate for losses in case of a security breach. This option however
includes the possibility of buying a very effective, yet expensive, custom
intrusion detection system (IDS).

Option 2 (middle): The attacker graph structure is similar to op-
tion 1, but the smart home devices are here controllable within one
integrated app. In addition, option 2 offers security insurance to hedge
the risk of a security breach. However, the IDS is not provided.
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Table 3
Range of control effectiveness.
Control Option 1 Option 2 Option 3
Ed 𝐿 - 𝐻 𝐿 - 𝐻 𝑀 - 𝑉 𝐻
FiW 𝐿 - 𝐻 𝐿 - 𝐻 𝐿 - 𝐻
PaM 𝑀 - 𝑉 𝐻 𝐿 - 𝐻 𝐿 - 𝑀
AnT 𝐿 - 𝐻 𝐿 - 𝐻 𝐿 - 𝐻
AuT-L1 𝑀 - 𝐻 𝑀 - 𝐻 𝑀 - 𝐻
AuT-L2 𝐻 - 𝑉 𝐻 𝐻 - 𝑉 𝐻 𝐻 - 𝑉 𝐻
UpD 𝑉 𝐿 - 𝑉 𝐻 𝑉 𝐿 - 𝑉 𝐻 𝑉 𝐿 - 𝑉 𝐻
IDS 𝐻 - 𝑉 𝐻 n/a n/a
Ins n/a 𝐻 𝐻

Option 3 (right): This is similar to the middle option and offers
users security insurance. However, in this option, every family member
children included) is allowed to have access to the app controlling the
mart home devices. In addition, the device can store more sensitive
sers’ data.

In addition, allowing every family member to have access to the
app makes option 3 more vulnerable to social engineering attacks.
Furthermore, security patch management can be challenging for option
1; for example, updates for one app may be missed while another has
been updated. However, in option 1, the IoT devices have strong patch
management support.

Security Controls: there are multiple security controls that can
mitigate the security risk. We use five levels indicating the security
control effectiveness of reducing risk 𝑉 𝐿 = 0.9, 𝐿 = 0.7, 𝑀 = 0.5,

= 0.3, 𝑉 𝐻 = 0.1 (the lower the value, the higher the effectiveness).

• User Education (Ed): security awareness training and education.

• Firewall (FiW): a firewall protects all devices on a home network
by blocking harmful traffic.

• Patch Management (PaM): regularly managed updates and
patches for the apps.

• Antivirus Software (AnT): a software that detects, prevent and
remove malware.

• Authentication (AuT):

– Level 1: passwords for the apps.
– Level 2: two-factor authentication (2FA) for the apps.

• Intrusion Detection System (IDS): a security tool to detect
anomalies within the network.

• Firmware Update (UpD): updates firmware regularly if possible.

• Cybersecurity Insurance (Ins): a cybersecurity plan to compen-
sate for losses in case of a security breach.

Table 3 shows the range of the controls’ effectiveness for each
option; these may differ based on the product and configuration.

The baseline probability of edge 3 → 9 is 𝑉 𝐿, since option 3, which
allows all family members to use the app, is more vulnerable to social
engineering attacks. The baseline probability of edges 1 → 7, 2 → 8,
4 → 13, 5 → 14, 6 → 15 is 𝐿, i.e., Social engineering attacks with
a large number of attempts make users vulnerable, and the out-dated
security camera has little security support from the manufacturer. The
baseline probabilities of edges 4 → 7, 5 → 8, and 6 → 9 are 𝐻 , with
secure communication between the router and the apps. The baseline
probability of 0 → 1, 0 → 2, 0 → 3, 13 → 16, and 14 → 17, 15 → 18 are
set to 1, as they are ‘‘auxiliary’’ edges that do not represent an actual
attack step. The remaining edges have a baseline probability of 𝑀 .

We categorize the impact in two levels: 𝐻 𝐼 = 1 and 𝐿𝐼 = 0.5,
.e., the greater the value, the greater the impact. The impact of a
ecurity breach for option 3 is considered high (𝐻 𝐼), as the devices may
tore more sensitive users data, resulting in a more significant impact if
ompromised. The remaining two options are low 𝐿𝐼 . Applying control
ns can hedge the impact of a security breach.
9 
We assume the direct budget is sufficiently large. The indirect cost
f security controls is as follows: each control costs one budget, except
FA (level 2 authentication) which costs two. In addition, control IDS
n option 1 costs four.

In the experiments, we compare the min-product and mid-point
ortfolios subject to the indirect budget in a range from 2 to 8. As men-

tioned, we exclude from the comparison minmax regret and minmax
regret with product because the nominator and denominator of regret
may be in different options. We randomly generate 500 scenarios to
etermine the portfolios and test the solutions on a different set of 1000
cenarios (both sets of scenarios use the same uncertainty intervals as

from Table 3). The solutions of mid-point and min-product portfolios
for budgets in the range [2,8] are presented in Table 4: As the table
hows, option 2 is the better option for lower budgets, with appropriate
ontrols available to mitigate the risks on all attack paths. At higher
udgets, i.e. when control IDS can be purchased, option 1 becomes the
etter option.

6. Conclusions and further works

This paper explored the resilience of cybersecurity decision-making
models to uncertainties in security controls’ effectiveness. We intro-
duced and compared minmax regret and min-product of risks, finding
that the latter offers better resilience. A case study on home IoT
cybersecurity investments demonstrated the practical utility of our
approach.

Integrating real-time data with machine learning to refine security
ontrol metrics, applying the framework to different domains, and
onsidering human factors in decision-making processes are potential
reas for further study. Developing user-friendly tools for practitioners
ould also enhance practical adoption.
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Table 4
Solutions at budgets 2,. . . ,8.
Budget Solution Portfolio Avg. Risk

2 mid-point Option 2: Ins, UpD 0.0314 (0%)
2 min-product Option 2: FiW, Ins 0.0287 (8.72%)

3 mid-point Option 2: Ins, UpD 0.0316 (0%)
3 min-product Option 2: PaM, Ins, UpD 0.0271 (13.98%)

4 mid-point Option 2: Ed, FiW, Ins, UpD 0.0165 (0%)
4 min-product Option 2: FiW, AuT, Ins, UpD 0.0153 (7.22%)

5 mid-point Option 2: FiW, AuT, Ins, UpD 0.0151 (0%)
5 min-product Option 2: FiW, PaM, AuT, Ins, UpD 0.0135 (10.62%)

6 mid-point Option 2: FiW, AuT, Ins, UpD 0.0150 (0%)
6 min-product Option 2: FiW, PaM, AuT-L2, Ins, UpD 0.0133 (11.34%)

7 mid-point Option 1: Ed, FiW, UpD, IDS 0.0108 (0%)
7 min-product Option 1: FiW, PaM, UpD, IDS 0.00938 (13.14%)

8 mid-point Option 1: Ed, FiW, UpD, IDS 0.0109 (0%)
8 min-product Option 1: FiW, PaM, AuT, UpD, IDS 0.00891 (18.84%)
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