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Genetic links between ovarian ageing, 
cancer risk and de novo mutation rates
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Thorunn Rafnar5, Vinicius Tragante5, Gardar Sveinbjornsson5, Asmundur Oddsson5, 
Unnur Styrkarsdottir5, Julius Gudmundsson5, Simon N. Stacey5, Daniel F. Gudbjartsson5, 
Breast Cancer Association Consortium*, Kitale Kennedy2, Andrew R. Wood2, 
Michael N. Weedon2, Ken K. Ong1,8, Caroline F. Wright2, Eva R. Hoffmann7, Patrick Sulem5, 
Matthew E. Hurles4, Katherine S. Ruth2, Hilary C. Martin4,10, Kari Stefansson5,10, 
John R. B. Perry1,9,10 ✉ & Anna Murray2,10 ✉

Human genetic studies of common variants have provided substantial insight into the 
biological mechanisms that govern ovarian ageing1. Here we report analyses of rare 
protein-coding variants in 106,973 women from the UK Biobank study, implicating 
genes with effects around five times larger than previously found for common 
variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association 
reinforces the link between ovarian ageing and cancer susceptibility1, with damaging 
germline variants being associated with extended reproductive lifespan and 
increased all-cause cancer risk in both men and women. Protein-truncating variants  
in ZNF518A are associated with shorter reproductive lifespan—that is, earlier age at 
menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 
8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that 
common genetic variants associated with earlier ovarian ageing associate with an 
increased rate of maternally derived de novo mutations. Although we were unable to 
replicate the finding in independent samples from the deCODE study, it is consistent 
with the expected role of DNA damage response genes in maintaining the genetic 
integrity of germ cells. This study provides evidence of genetic links between age of 
menopause and cancer risk.

Reproductive longevity in women varies substantially in the general 
population and has profound effects on fertility and health outcomes 
in later life1,2. Women are born with a non-renewable ovarian reserve, 
which is established during fetal development. This reserve is con-
tinuously depleted throughout reproductive life, ultimately leading 
to menopause3. Variation in menopause timing is largely dependent 
on the differences in the size of the initial oocyte pool and the rate of 
follicle loss. Natural fertility is believed to be closely associated with 
menopause timing, and it declines on average ten years before the 
onset of menopause4. The effect of early menopause on infertility is 
becoming increasingly relevant owing to the secular trend of delaying 
parenthood to later maternal age at childbirth, especially in Western 
countries. In addition, normal variation in reproductive lifespan is caus-
ally associated with the risk of a wide range of disease outcomes, such 
as type 2 diabetes mellitus, cancer and impaired bone health, further 

highlighting the need for better understanding of the regulators and 
physiological mechanisms involved in reproductive ageing1.

The variation in timing of menopause reflects a complex mix of 
genetic and environmental factors that population-based studies have 
begun to unravel. Previous genome-wide association studies (GWAS) 
have successfully identified around 300 distinct common genomic 
loci associated with the timing of menopause1. These reported variants 
cumulatively explain 10–12% of the variance in age at natural menopause 
(ANM) and 31–38% of the overall estimated single nucleotide polymor-
phism (SNP) heritability1,5,6. Two-thirds of the GWAS signals implicate 
genes that regulate DNA damage response (DDR), highlighting the 
particular sensitivity of oocytes to DNA damage due to the prolonged 
state of cell cycle arrest across the lifetime1,7–13. Genetic studies for 
ANM to date have focussed largely on assessing common genetic vari-
ation, with little insight into the role of rarer, protein-coding variants.  
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Initial whole-exome sequencing (WES) analyses in the UK Biobank 
identified gene-based associations with ANM for CHEK2, DCLRE1A, 
HELB, TOP3A, BRCA2 and CLPB1,5. Here we aimed to explore the role 
of rare damaging variants in ovarian ageing in greater detail through 
a combination of enhanced phenotype curation, better-powered 
statistical tests and assessment of different types of variant class at 
lower allele frequency thresholds (Supplementary Information). Using 
these approaches, we identify five genes harbouring variants with large 
effects, highlighting ZNF518A as a major transcriptional regulator of 
ovarian ageing. Furthermore, we extend these observations to provide 
initial evidence that women at increased genetic risk of earlier meno-
pause have increased rates of de novo mutations in their offspring.

Exome-wide gene burden associations
Previous studies have focused largely on assessing the role of common 
genetic variation on ovarian ageing. We sought to better understand 
the role of rare coding variation in ovarian ageing using WES data avail-
able in 106,973 post-menopausal female UK Biobank participants of 
European genetic ancestry14. We conducted individual gene burden 
association tests by collapsing genetic variants according to their pre-
dicted functional categories. We defined three categories of rare exome 
variants with minor allele frequency (MAF) < 0.1%: high-confidence 
protein-truncating variants (HC-PTVs), missense variants with com-
bined annotation-dependent depletion (CADD) score ≥ 25, and ‘damag-
ing’ variants (DMG, defined as combination of HC-PTVs and missense 
variants with CADD ≥ 25). We analysed 17,475 protein-coding genes 
with a minimum of 10 rare allele carriers in at least one of the masks 
tested. The primary burden association analysis was conducted using 
BOLT-LMM15 (Fig. 1 and Supplementary Table 1). The low exome-wide 
inflation scores (Fig. 1b–d) and the absence of significant association 
with synonymous variant burden for any gene indicate that our statisti-
cal tests are well calibrated (Extended Data Fig. 1).

We identified rare variation in nine genes associated with ANM at 
exome-wide significance (P < 1.08 × 10−6; Figs. 1 and 2, Extended Data 
Fig. 2 and Supplementary Tables 1 and 2). These were confirmed by 
an independent group of analysts using different quality control and 
analysis pipelines (Supplementary Tables 1 and 2). Three of these genes 

have been previously reported in UK Biobank WES analyses5, and we 
confirm the associations of CHEK2 (beta = 1.57 years (95% confidence 
interval (CI): 1.23–1.92), P = 1.6 × 10−21, n = 578 damaging allele carriers) 
and HELB (beta = 1.84 years (95% CI: 1.08–2.60), P = 4.2 × 10−7, n = 120 
HC-PTV carriers) with later ANM and a previously borderline associa-
tion of HROB with earlier ANM (beta = −2.89 years (95% CI: 1.86–3.92), 
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Fig. 1 | Exome-wide associations with ANM. a, Manhattan plot showing gene 
burden test results for ANM from BOLT-LMM in 106,973 female participants. 
Genes passing exome-wide significance (P < 1.08 × 10−6) are indicated, with the 
shape signifying the variant class tested and colour indicating the novelty.  

MS, missense. b–d, QQ plots of P values from BOLT-LMM against expected P 
values for high-confidence PTVs: λ = 1.047 (b), CADD ≥ 25 missense variants: 
λ = 1.050 (c) and damaging variants: λ = 1.050 (d).
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Fig. 2 | Forest plot for gene burden associations with ANM. Exome-wide 
significant (P < 1.08 × 10−6) genes (filled circles) are displayed; an unfilled circle 
indicates a nonsignificant association. Points and error bars indicate beta and 
95% CI, respectively, for the indicated variant category. Beta values, CIs, minor 
allele counts (MACs) and P values are derived from BOLT-LMM (values are given 
in Supplementary Table 2). n = 115,051 individuals with ANM are included in the 
analysis.
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P = 1.9 × 10−8, n = 65 HC-PTV carriers). In addition, our previous ANM 
GWAS analyses1 identified an individual low-frequency PTV variant 
in BRCA2, which we now extend to demonstrate that, in aggregate, 
BRCA2 HC-PTV carriers exhibit 1.18 years earlier ANM (beta = −1.18 
years (95% CI: 0.72–1.65), P = 2.6 × 10−7, n = 323). Rare variants in the 
remaining five genes (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1) 
have not previously been implicated in ovarian ageing. Effect sizes of 
these associations range from 5.61 years earlier ANM for HC-PTV car-
riers in ZNF518A (95% CI: 4.04–7.18, P = 2.1 × 10−12, n = 28), to 1.35 years 
later ANM for women carrying damaging alleles in SAMHD1 (95% CI: 
0.81–1.89, P = 2.4 × 10−7, n = 235). This contrasts with a maximum effect 
size of 1.06 years (median 0.12 years) for common variants (MAF > 1%) 
identified by previous ANM GWAS1.

We next attempted to replicate these findings using two independ-
ent datasets. First, from the Icelandic deCODE study16,17. Despite the 
substantially smaller sample size (n = 27,678 women with ANM), rarity 
of the alleles we were testing, and minor differences in allele frequency 
and variant classification, we observed consistent effect estimates for 
all nine genes that we identified (Supplementary Table 3). This included 
nominally significant associations at BRCA2, CHEK2, ETAA1, HROB, 
HELB, SAMHD1 and ZNF518A. Second, we used data in up to 26,258 
women with ANM from the BRIDGES study18. As this study used a tar-
geted sequencing approach of suspected breast cancer genes, it was 
informative for only BRCA2, PALB2 and CHEK2. Despite the small sam-
ple size, for each of these genes we found effect estimates consistent 
with our discovery analyses, which were maintained when adjusting 
for cancer status and within women not diagnosed with breast cancer 
(Supplementary Table 4). Notably, we replicated the novel association 
with PALB2, where the 78 women carrying PTVs experienced meno-
pause 1.78 years earlier on average (P = 4.6 × 10−4). Differences in allele 
frequency cut-offs had minimal effect on variants included in burden 
tests, because we only tested predicted deleterious variants and these 
were mostly rare (less than 0.1%).

We next sought to understand why previous analyses of UK Biobank 
WES data missed the associations that we report here, and conversely 
why we did not identify associations with other previously reported 
genes. Of the seven genes identified by Ward et al.5, three were also iden-
tified by our study (CHEK2, HELB and HROB), three were recovered when 
we increased our burden test MAF threshold from 0.1% to 1% (DCLRE1A, 
RAD54L and TOP3A), and an additional gene fell just below our P value 
threshold when considering variants with <1% MAF (CLPB; P = 1.2 × 10−5). 
By contrast, our identification of novel associations that were not 
reported by Ward et al. (BRCA2, ETAA1, PALB2, PNPLA8, SAMHD1 and 
ZNF518A) is probably explained by differences in phenotype prepara-
tion, sample size, variant annotation and the statistical model used 
(see Supplementary Information and Supplementary Table 5).

Overlap with common variant associations
To explore the overlap between common and rare variant associa-
tion signals for ANM, we integrated our exome-wide results with data 
generated from the largest reported common variant GWAS of ANM1.

Five of our nine identified WES genes (CHEK2, BRCA2, ETAA1, HELB 
and ZNF518A) mapped within 500 kb of a common GWAS signal (Sup-
plementary Table 6). Notably, we previously reported a common, 
predicted benign, missense variant (rs35777125-G439R, MAF = 11%) 
in ETAA1 associated with 0.26 years earlier ANM1. By contrast, our 
WES analysis showed that carriers of rare HC-PTVs in ETAA1 show 
a nearly 10-fold earlier ANM (beta = −2.28 years (95% CI: 1.39–3.17), 
P = 5.30 × 10−8, n = 87). Furthermore, three independent non-coding 
common GWAS signals around 150 kb apart (MAF: 2.8–47.5%, beta: 
−0.28 to 0.28 years per minor allele) were reported proximal to 
ZNF518A, whereas gene burden testing finds that rare HC-PTV car-
riers show nearly 20-fold earlier ANM than common variant carri-
ers (beta = −5.61 years (95% CI: 4.04–7.18), P = 2.10 × 10−12, n = 28). 

ZNF518A is a poorly characterized C2H2 zinc-finger transcription 
factor, which has been shown to associate with PRC2 and G9A–GLP 
repressive complexes along with its paralogue ZNF518B, suggesting 
a potential role in transcriptional repression19. By integrating chro-
matin immunoprecipitation with sequencing (ChIP–seq) data20,21, we 
demonstrate that common variants associated with ANM are enriched 
in the binding sites of ZNF518A (Supplementary Table 7 and Supple-
mentary Information), providing further support for the role of this 
gene in ovarian ageing.

In addition, there were two genes within 500 kb of GWAS loci (BRCA1 
and SLCO4A1) that were associated with ANM by gene burden testing at 
P < 1.7 × 10−5. Effect sizes for common variant associations ranged from 
0.07–0.24 years per allele at these loci, whereas gene burden tests for 
rarer variants at these same loci revealed much larger effect sizes: for 
BRCA1, 2.1 years earlier ANM for PTVs (95% CI: 1.2–3.0, P = 2.4 × 10−6) 
and for SLCO4A1, 1.13 years earlier ANM for damaging variants (95% CI: 
0.6–1.64, P = 1.1 × 10−5), with non-overlapping 95% CI between common 
and rare variant associations for BRCA1.

Non-reproductive health and disease effects
Our genetic studies have previously shown that the genetic mecha-
nisms that regulate the end of reproductive life are largely distinct 
from those that determine its beginning22,23. However, it is noteworthy 
that the largest reported GWAS for age at menarche identified a com-
mon variant signal at the ZNF518A locus for later puberty timing in 
girls (rs1172955, beta = 0.04 years (95% CI: 0.03–0.05), P = 6.6 × 10−12), 
which appears nominally associated with earlier ANM22 (beta = −0.04 
yeaers (95% CI: 0.01–0.06), P = 6.6 × 10−3). To extend this observation, 
we found that our identified ZNF518A PTVs were also associated with 
later age at menarche (0.56 years (95% CI: 0.14–0.98), P = 9.2 × 10−3). 
Furthermore, using functional genome-wide association analysis24 and 
signed linkage disequilibrium profile25 (SLDP), we found that similar 
to ANM, common variants that associate with puberty in girls were 
enriched in transcriptional targets of ZNF518A (Extended Data Fig. 3 
and Supplementary Table 7). These data suggest that loss of ZNF518A 
shortens reproductive lifespan by delaying puberty and reducing age 
at menopause.

We next explored the effect of ANM-associated genes on cancer 
outcomes, replicating previously reported associations with PTVs 
in BRCA2, CHEK2 and PALB2 and cancer outcomes in male and female 
subjects1,10 (Supplementary Tables 8–10). We also identified a novel 
association of SAMHD1 damaging variants and HC-PTVs with ‘all 
cancer’ in both males (odds ratio (OR) = 2.12 (95% CI: 1.72–2.62), 
P = 4.7 × 10−13) and females (OR = 1.61 (95% CI: 1.31–1.96), P = 4 × 10−6; 
Fig. 3 and Supplementary Tables 8–10).

SAMHD1 associations with cancer appear to be driven by increased 
risk for multiple site-specific cancers, notably prostate cancer in men, 
mesothelioma in both men and women, and suggestive evidence for 
higher breast cancer susceptibility in women (Fig. 4 and Supplemen-
tary Table 11). Although the numbers of mutation carriers diagnosed 
with each site-specific cancer was small, the majority of these findings 
persisted using logistic regression with penalized likelihood estima-
tion, which is more robust to extreme case–control imbalance26 (Sup-
plementary Table 11). To replicate this association, we interrogated 
genetic data in up to 49,981 cancer cases and 337,946 controls from 
the Icelandic deCODE study16,17. We observed highly similar results 
(Supplementary Table 12) to those from the UK Biobank, demonstrat-
ing increased all-site cancer susceptibility in male (OR = 1.67 (95% CI: 
1.18–2.37), P = 0.004), female (OR = 1.57 (95% CI: 1.15–2.15), P = 0.005) 
and sex-combined models (OR = 1.61 (95% CI: 1.28–2.03), P = 6 × 10−5). 
Significant associations were also seen for a number of site-specific 
cancers, including haematological cancers in men (OR = 4.18 (95% 
CI: 1.90–9.21), P = 3.9 × 10−4) and prostate cancer (OR = 2.36 (95% CI: 
1.14–4.87), P = 0.02).
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Cancer risk-increasing alleles in SAMHD1 were associated with later 
ANM, following a similar pattern demonstrated previously for CHEK2. 
This finding is consistent with a mechanism of disrupted DNA damage 
sensing and apoptosis, resulting in slowed depletion of the ovarian 
reserve1. We note, however, that there are other mechanisms of ovar-
ian reserve depletion, and future experimental work should seek to 
better understand this specific association. In addition, we provide 
robust evidence for a previously described rare variant association 
for SAMHD1 with telomere length27, highlighting that rare damaging 
variants cause longer telomere length (P = 1.4 × 10−59) (Extended Data 
Fig. 4 and Supplementary Table 10).

Effects on de novo mutation rate
Of the nine genes that we identified in our exome analysis as associated 
with ANM, seven are involved in DNA damage repair, further supporting 
the role of these pathways in ovarian ageing (Supplementary Table 13). 
For genes that inhibit DNA double-strand break repair, the hypothesis 
is that they cause premature depletion of the ovarian reserve owing 
to a failure to repair oocytes with DNA damage1. This is evidenced by 
the reported increased numbers of DNA double strand breaks in the 
oocytes of Brca1-deficient mice and of women with BRCA1 mutations 
who underwent elective oophorectomy28–30. Our current study adds 
further support for this hypothesis, with heterozygous BRCA1 and 
BRCA2 loss-of-function alleles being associated with 2.1 and 1.18 years 
earlier ANM, respectively.

We sought to build on these observations by testing the hypothesis 
that inter-individual variation in these DDR processes would influence 
the mutation rate in germ cells and thus in the offspring. More spe-
cifically, we hypothesized that genetic susceptibility to earlier ovarian 
ageing would be associated with a higher de novo mutation (DNM) 
rate in offspring. To test this, we analysed whole-genome-sequenced 
parent–offspring trios from the 100,000 Genome Project (100kGP)31 
(n = 8,809 with European ancestry) and followed up in trios from the 
deCODE study32,33 (n = 6,042) (Extended Data Fig. 5). We calculated a 
polygenic score (PGS) for ANM in the parents by combining the effect 
estimates from our previously identified 290 common variants1 and 
tested this for association with the phased DNM rate in the offspring, 
adjusting for parental age and quality control-related covariates. In 
the 100kGP dataset, we found that maternal genetic susceptibility to 
earlier ANM was associated with an increased rate of maternally derived 
DNMs in the offspring (Poisson regression; meta-analysis beta = −0.082 
DNMs per s.d. increase in the PGS (95% CI: −0.126, −0.037), P = 0.00033; 
Supplementary Table 14). However, this association was not replicated 
in the deCODE dataset (beta = 0.018 (95% CI: −0.038, 0.073), P = 0.53), 
and the estimates from the 100kGP and deCODE data were inconsistent 
(heterogeneity P = 0.006). A meta-analysis of the results across the two 
cohorts gave a significant effect of maternal ANM PGS on maternally 
derived DNMs (beta = −0.0426 (95% CI: −0.0772, −0.0079) DNMs per s.d. 
increase in the PGS; standard error = 0.018, P = 0.016). The 100kGP find-
ing was consistent in sensitivity analyses using a two-sample Mendelian 
randomization framework that can better model the dose–response 
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Fig. 3 | Forest plot for ANM WES genes with significant gene burden 
associations for cancer phenotypes. Exome-wide significant (P < 1.08 × 10−6) 
genes are displayed, showing sex-stratified and combined results from BOLT-LMM 
analysis. Hormone-sensitive cancers only were tested in male and female 
subjects separately (Methods). The presented masks were selected on the basis 
of the most significant association per gene and cancer type. Points and bars 

indicate odds ratio and 95% CI, respectively, for specific genes and their variant 
categories for each cancer type (values are given in Supplementary Table 10).  
A filled circle indicates that a result passes a Bonferroni-corrected significance 
threshold of P < 1.08 × 10−6; an unfilled circle indicates a nonsignificant association. 
n = 421,064 (228,517 female and 192,547 male participants).
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relationship of these variants (Supplementary Table 15). These 100kGP 
Mendelian randomization results were highly concordant, with all mod-
els showing a significant result (minumum P value = 6.3 × 10−5) and no 
heterogeneity in effect for ANM genetic variants used as instrumental 
variables (Methods). In both 100kGP and deCODE data, the paternal 
PGS was not associated with paternally or maternally derived DNMs 
(P > 0.05), or the maternal PGS associated with paternally derived 
DNMs (P > 0.05). Finally, we tested whether rare damaging variants 
in the nine ANM-associated genes (Fig. 2) were associated with DNM 
rate in the 100kGP and deCODE study (Supplementary Table 16). After 
meta-analysis and following multiple testing correction (P > 0.05/
(2 × 9)), none of the nine genes showed significant rare variant asso-
ciations with DNM rate in either mothers or fathers.

Discussion
Our study extends the number of genes implicated in ovarian ageing 
through the identification of rare protein-coding variants. Effect sizes 
ranged from 5.61 years earlier ANM for HC-PTV carriers in ZNF518A, to 
1.35 years later ANM for women carrying damaging variants in SAMHD1 
compared with a maximum effect size of 1.06 years (median 0.12 years) 
reported for common variants1 (MAF > 1%). Several of these effect esti-
mates were comparable to those conferred by FMR1 premutations, which 
are currently used as part of the only routinely applied clinical genetics 
test for premature ovarian insufficiency34. Deleterious variants in three 
genes (CHEK2, HELB and SAMHD1) were associated with an increase in 
ANM and therefore represent potential therapeutic targets for enhanc-
ing ovarian stimulation in women undergoing in vitro fertilization treat-
ment through short-term apoptotic inhibition. Seven out of the nine 
ANM genes identified have known roles in DNA damage repair, and—to 
our knowledge—three of these are linked to ANM for the first time (PALB2, 
ETAA1 and HROB). PALB2 is involved in BRCA2 localization and stability, 
and PALB2 compound heterozygous mutations result in Fanconi anaemia 
and predispose to childhood malignancies35. ETAA1 accumulates at DNA 
damage sites in response to replication stress36,37, and HROB is involved 
in homologous recombination by recruiting the MCM8–MCM9 helicase 
to sites of DNA damage to promote DNA synthesis38,39. Homozygous 
loss of function of HROB is associated with premature ovarian insuf-
ficiency40 and infertility in both sexes in mouse models38.

Novel biological mechanisms of ovarian ageing were revealed by 
finding associations with two non-DDR genes (PNPLA8 and ZNF518A): 
PNPLA8 is a calcium-independent phospholipase41,42 and a recessive 
cause of neurodegenerative mitochondrial disease and mitochondrial 
myopathy43–45; to our knowledge, an association with reproductive 
phenotypes has not been described previously. ZNF518A belongs to the 
zinc-finger protein family and is likely to be a transcriptional regulator 
for a large number of genes19. We found that female carriers of rare 
PTVs in ZNF518A have shorter reproductive lifespan owing to delayed 
puberty timing and earlier menopause. Enrichment of GWAS signals 
at ZNF518A binding sites suggests that ZNF518A regulates the genes 
involved in reproductive longevity by repression of regulatory elements 
distal to their transcription start sites. ZNF518A has also recently been 
demonstrated to have a role in forming heterochromatin at pericentro-
meric regions, which is essential for proper chromosome segregation 
during mitosis and meiosis46.

Whereas mutation in SAMHD1 is a common somatic event in a variety 
of cancers47, we demonstrate here that it is also a germline risk factor. 
Recessive inheritance of SAMHD1 missense variants and PTVs have been 
associated with Aicardi–Goutières syndrome, a congenital autoim-
mune disease48. The damaging variants in SAMHD1 that we identified 
are associated with increased risk of ‘all cancer’ in men and women, 
as well as in sex-specific cancers, highlighting SAMHD1 as a novel risk 
factor for prostate cancer in men and hormone-sensitive cancers in 
women. Recent studies have demonstrated association of germline 
SAMHD1 coding variants with having two or more primary cancers in 
the UK Biobank49 (P = 2.4 × 10−7), and with breast cancer susceptibil-
ity50 (P < 1 × 10−4). SAMHD1 has a role in preventing the accumulation 
of excess deoxynucleotide triphosphates (dNTPs), particularly in 
non-dividing cells51. A regulated dNTP pool is important for the fidel-
ity of DNA repair, thus highlighting additional roles of this gene in 
facilitation of DNA end resection during DNA replication and repair51–56. 
SAMHD1 deficiency leads to resistance to apoptosis57,58, suggesting 
that delayed ANM might originate from slowed depletion of ovarian 
reserve due to disrupted apoptosis, analogous to the mechanism for 
CHEK2 that has been reported previously.

Previous studies have demonstrated that parental age is strongly 
associated with the number of de novo mutations in offspring59, 
with the majority of these mutations arising from the high rate of 
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Fig. 4 | Genetic susceptibility to premature ovarian ageing and increased 
risk for diverse cancer types. Association between loss of ANM genes identified 
in this study and risk of 90 site-specific cancers among UK Biobank participants. 
Summary statistics for cancer associations were obtained using a logistic 
regression with penalized likelihood estimation that controls for case–control 

imbalance33 (Methods). Associations highlighted with text labels passed an 
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spermatogonial stem cell divisions that underlie spermatogenesis 
throughout the adult life of men60. We investigated whether women 
at higher genetic risk of earlier menopause transmit more de novo 
mutations to offspring. Whereas we found significant evidence for 
this in 100kGP data, we could not replicate the association between 
ANM PGS and maternally derived DNMs in deCODE data. We cannot 
currently explain this finding, other than with the possibility that our 
result from 100kGP is inflated by ‘winner’s curse’ and that the true 
effect size is lower than our point estimate. Power calculations sug-
gest that the deCODE dataset is well-powered to replicate the effect if 
it is equal to our point estimate in 100kGP (>90% power) but has only 
modest power (around 40%) if the effect is at the lower bound of our 
95% CI from 100kGP. Future large studies of whole-genome sequence 
data in trios will be important to further explore this relationship. If 
confirmed, this finding could have direct implications for the health 
of future generations, given the widely reported link between de novo 
mutations and increased risk of psychiatric disease and developmental 
disorders61–64. If genetic susceptibility to earlier menopause influences 
de novo mutation rate, non-genetic risk factors for earlier ANM, such 
as smoking and alcohol intake, would probably have the same effect, 
and there is some evidence to support this65. Our observations make 
conceptual sense given that menopause timing appears to be primarily 
driven by the genetic integrity of oocytes and their ability to sustain, 
detect, repair and respond to acquired DNA damage1. These obser-
vations also build on earlier work in mice and humans that BRCA1/2 
deficiency increases the rate of double strand breaks in oocytes and 
reduces ovarian reserve28–30.

A limitation of our work is that a small proportion of maternally 
phased DNMs could be postzygotic mutations in the child, which did 
not originate in the maternal germline. We were unable to differentiate 
between these owing to the modest sequencing coverage of a single 
tissue per child. A further limitation is that, owing to data availability, 
analyses have been restricted to women of European ancestry, making 
it difficult to evaluate how generalizable these findings may be to other 
populations, as average age of menopause in women from different 
ancestry groups varies66. We anticipate that this will be addressed in 
future studies as relevant data become available.

Our study of rare coding variation across the genome expands our 
understanding of the genetic architecture of ovarian ageing. Future 
genomic studies incorporating rare non-coding variation in addition 
to experimental work will build on our identified genetic associations 
to help further our understanding of the underlying biological mecha-
nisms governing ovarian ageing.
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Methods

UK Biobank data processing and quality control
To conduct the rare variant burden analyses described in this study, we 
obtained WES data for 454,787 individuals from the UK Biobank study67. 
Participants were excluded on the basis of excess heterozygosity, auto-
somal variant missingness on genotyping arrays (≥5%), or inclusion 
in the subset of phased samples as defined in Bycroft et al.68. Analysis 
was restricted to participants with European genetic ancestry, owing 
to the unknown influence of rare variants on population stratification 
and limited non-European sample size, leaving a total of 421,065 indi-
viduals. Variant quality control and annotation were performed using 
the UK Biobank Research Analysis Platform (RAP; https://ukbiobank.
dnanexus.com/), a cloud-based central data repository for UK Biobank 
WES and phenotypic data. Besides the quality control described by 
Backman et al.67, we performed additional steps using custom applets 
designed for the RAP. First, we processed population-level variant call 
format (VCF) files by splitting and left-correcting multi-allelic variants 
into separate alleles using ‘bcftools norm’69. Second, we performed 
genotype-level filtering applying ‘bcftools filter’ separately for single 
nucleotide variants (SNVs) and insertions–deletion mutations using a 
missingness-based approach. Using this approach, we set to missing (./.) 
all SNV genotypes with depth <7 and genotype quality <20 or insertion–
deletion genotypes with a depth <10 and genotype quality <20. Next, we 
applied a binomial test to assess an expected alternate allele contribu-
tion of 50% for heterozygous SNVs; we set to missing all SNV genotypes 
with a binomial test P value ≤ 1 × 10−3. Following genotype-level filtering 
we recalculated the proportion of individuals with a missing genotype 
for each variant and filtered all variants with a missingness value > 50%. 
The variant annotation was performed using the ENSEMBL variant 
effect predictor (VEP) v10470 with the ‘--everything’ flag and plugins 
for CADD71 and LOFTEE72 enabled. For each variant we prioritized the 
highest impact individual consequence as defined by VEP and one 
ENSEMBL transcript as determined by whether or not the annotated 
transcript was protein-coding, MANE select v0.97, or the VEP canoni-
cal transcript. Following annotation, variants were categorised on the 
basis of their predicted impact on the annotated transcript. PTVs were 
defined as all variants annotated as stop-gained, frameshift, splice 
acceptor and splice donor. Missense variant consequences are identi-
cal to those defined by VEP. Only autosomal or chromosome X variants 
within ENSEMBL protein-coding transcripts and within transcripts 
included on the UK Biobank ES assay67 were retained for subsequent 
burden testing.

Exome-wide association analyses in the UK Biobank
To perform rare variant burden tests, we used a custom imple-
mentation of BOLT-LMM v2.3.615 for the RAP. Two primary inputs 
are required by BOLT-LMM: (1) a set of genotypes with minor allele 
count >100 derived from genotyping arrays to construct a null lin-
ear mixed effects model; and (2) a larger set of variants collapsed on 
ENSEMBL transcript to perform association tests. For the former, 
we queried genotyping data available on the RAP and restricted to 
an identical set of individuals included for rare variant association 
tests. For the latter, and as BOLT-LMM expects imputed genotyping 
data as input rather than per-gene carrier status, we created dummy 
genotype files where each variant represents one gene and individu-
als with a qualifying variant within that gene are coded as heterozy-
gous, regardless of the number of variants that individual has in  
that gene.

To test a range of variant annotation categories for MAF < 0.1%, 
we created dummy genotype files for high confidence PTVs as 
defined by LOFTEE, missense variants with CADD ≥ 25, and damag-
ing variants that included both high confidence PTVs and missense 
variants with CADD ≥ 25. For each phenotype tested, BOLT-LMM 
was then run with default parameters other than the inclusion of 

the ‘lmmInfOnly’ flag. To derive association statistics for individual 
markers, we also provided all 26,657,229 individual markers regard-
less of filtering status as input to BOLT-LMM. All tested phenotypes 
were run as continuous traits corrected by age, age2, sex, the first 
ten genetic principal components as calculated in Bycroft et al.68 
and study participant ES batch as a categorical covariate (50k, 200k  
or 450k).

For discovery analysis in the primary trait of interest, ANM, we 
analysed 17,475 protein-coding genes with the minimum of 10 rare 
allele carriers in at least one of the masks tested using BOLT-LMM 
(Supplementary Table 1). The significant gene-level associations for 
ANM were identified applying Bonferroni correction for the number of 
masks with MAC ≥ 10 (n = 46,251 masks) in 17,475 protein-coding genes  
(P: 0.05/46,251 = 1.08 × 10−6) (Supplementary Table 2). Furthermore, to 
compare and explain potential differences between our WES results 
and the previously published one5, we ran the above approach using 
MAF < 1%, a cut-off applied by Ward et al. (Supplementary Table 5 and 
Supplementary Information).

To generate accurate odds ratio and standard error estimates for 
binary traits, we also implemented a generalized linear model using 
the statsmodels package73 for Python in a three-step process. First, a 
null model was run with the phenotype as a continuous trait, corrected 
for control covariates as described above. Second, we regressed car-
rier status for individual genes on the residuals of the null model to 
obtain a preliminary P value. Thirdly, all genes were again tested using 
a full model to obtain odds ratios and standard errors with the family 
set to ‘binomial’. Generalized linear models utilized identical input to 
BOLT-LMM converted to a sparse matrix.

ANM phenotype derivation
ANM was derived for individuals within the UK Biobank, who were 
deemed to have undergone natural menopause—that is, not affected 
by surgical or pharmaceutical interventions, as follows.

First, European female participants (n = 245,820) who indicated 
during any of the attended visits having had a hysterectomy were 
collated (fields 3591 and 2724) and their reported hysterectomy ages 
were extracted (field 2824) and the median age was kept (n = 47,218 
and 46,260 with reported ages). The same procedure was followed 
for participants indicating having undergone a bilateral oophorec-
tomy (surgery field 2834 and age field 3882, n = 20,495 and 20,001 
with reported ages).

For individuals having indicated the use of hormone-replacement 
therapy (HRT; field 2814), HRT start and end ages were collated 
(fields 3536 and 3546, accordingly) across the different attended  
visits (n = 98,104). In cases where the reported chronological HRT 
age at later attended visits was greater than that at previous visits, 
the later instances were prioritised, i.e. as they would potentially indi-
cate an updated use of HRT. In cases where different HRT ages were 
reported, but not in chronologically increasing order, the median age  
was kept.

Menopausal status was determined using data across instances 
(field 2724) and prioritizing the latest reported data, to account 
for changes in menopause status. For participants indicating hav-
ing undergone menopause, their reported ages at menopause 
were collated (field 3581) using the same procedure as for HRT ages  
(n = 158,264).

Exclusions were then applied to this age at menopause, as follows:
•	 Participants reporting undergoing a hysterectomy and/or oopho-

rectomy, but not the age at which this happened (n = 958 and 494, 
accordingly).

•	 Participants reporting multiple hysterectomy and/or oophorectomy 
ages, which were more than 10 years apart (n = 38 and 23, accordingly).

•	 Participants reporting multiple HRT start and/or end ages, which 
were not in chronologically ascending order and were more than 10 
years apart (n = 124 and 137, accordingly).

https://ukbiobank.dnanexus.com
https://ukbiobank.dnanexus.com
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•	 Participants reporting multiple ages at menopause, which were not in 

chronologically ascending order and were more than 10 years apart 
(n = 73) and participants who reported both having and not having 
been through menopause and no other interventions (n = 98).

•	 Participants having undergone a hysterectomy or oophorectomy 
before or during the year they report undergoing menopause.

•	 Participants starting HRT prior to undergoing menopause and par-
ticipants reporting HRT use, with no accompanying dates.

The resulting trait was representative of an ANM (n = 115,051) and was 
used in downstream analyses. Two additional ANM traits were also cal-
culated, winsorized one by coding everyone reporting an ANM younger 
than 34, as 34 used in the discovery analysis as the primary phenotype 
(n = 115,051 total, reduced to 106,973 after covariate-resulting exclu-
sions), and one by only including participants reporting ANM between 
40 and 60, inclusive (n = 104,506), treated as a sensitivity analysis.

All manipulations were conducted in R (v4.1.2) on the UK Biobank 
RAP (https://ukbiobank.dnanexus.com/).

Replication of rare variant associations
Replication was performed using two study populations: the Icelandic 
deCODE study16,17 and the BRIDGES study18.

deCODE. The burden test associations are shown for three categories 
of rare variants with MAF < 2%; (1) loss-of-function (LOF) variants; 
(2) combination of LOF variants and predicted deleterious missense 
variants; and (3) combination of LOF variants and missense variants 
with CADD score ≥ 25. We furthermore show results for category 3  
using a more stringent frequency threshold, 0.1%. We included 
missense variants predicted to cause LOF by two meta-predictors, 
MetaSVM and MetaLR74, using variants available in dbNSFP v4.1c75. 
We used VEP70 to attribute predicted consequences to the variants 
sequenced. For case–control analyses, we used logistic regression and 
an additive model to test for association between LOF gene burdens 
and phenotypes, in which disease status was the dependent variable 
and genotype counts as the independent variable. Individuals were 
coded 1 if they carry any predicted LOF in the autosomal gene being 
tested and 0 otherwise. Age, sex and sequencing status of individu-
als was used as a covariate in the associations. For the analyses, we 
used software developed at deCODE genetics and we used linkage 
disequilibrium (LD) score regression intercepts76 to adjust the χ2 
statistics and avoid inflation due to cryptic relatedness and stratifi-
cation. Quantitative traits were analysed using a linear mixed model 
implemented in BOLT-LMM15. To estimate the quality of the sequence 
variants across the entire set we regressed the alternative allele counts 
(AD) on the depth (DP) conditioned on the genotypes (GT) reported 
by GraphTyper77. For a well-behaving sequence variant, the mean 
alternative allele count for a homozygous reference genotype should 
be 0, for a heterozygous genotype it should be DP/2 and for homozy-
gous alternative genotype it should be DP. Under the assumption of 
no sequencing or genotyping error, the expected value of AD should 
be DP conditioned on the genotype, in other words an identity line 
(slope 1 and intercept 0). Deviations from the identity line indicate 
that the sequence variant is spurious or somatic. We filter variants 
with slope less than 0.5. Additionally, GraphTyper employs a logistic 
regression model that assigns each variant a score (AAscore) predict-
ing the probability that it is a true positive. We used only variants that 
have a AAscore > 0.8.

BRIDGES. The BRIDGES study included women from studies par-
ticipating in the Breast Cancer Association Consortium (BCAC; v14) 
(http://bcac.ccge.medschl.cam.ac.uk/). The subset of population 
or hospital-based studies sampled independently of family history,  
together with population-matched controls (25 studies) were included 
in the analyses. ANM (years) was obtained from baseline questionnaire 

data. Women were considered as having experienced natural meno-
pause if they indicated that the reason for menopause was reported as 
‘natural’ or ‘unknown’. Women were excluded from the analysis if the 
reason was indicated as either oophorectomy, hysterectomy, chemo-
therapy, stopping oral contraception or ‘any other reason’. Only stud-
ies with information on year of birth and age at menopause, and only 
women with reported age at menopause between ages twenty-five years 
and sixty years were included. All studies were approved by the relevant 
ethical review boards and used appropriate consent procedures.

Targeted sequencing of germline DNA from participants for 35 
known or suspected breast cancer genes was performed, including  
the coding sequence and splice sites. Details of library prepara
tion, sequencing, variant calling, and quality control procedures are 
described in Dorling et al.18. Carriers of PTVs in more than one of five 
main breast cancer susceptibility genes (BRCA1, BRCA2, ATM, CHEK2, 
PALB2) were excluded. Carriers of pathogenic missense variants  
(as defined by Dorling et al.18) in BRCA1 or BRCA2 were also excluded.

We carried out burden analyses, assessing the associations between 
rare variants in aggregate and ANM using linear regression, adjusting 
for country of origin, breast cancer case-control status and year of 
birth (categorized as up to 1935, 1936–1945, 1946–1955 or after 1956), 
and for some analyses body mass index (BMI). For each gene we con-
sidered PTVs in aggregate. The primary analyses included covariates to 
adjust for population, which was defined by country, with the exception 
of Malaysia and Singapore, in which the three distinct ethnic groups  
(Chinese, Indian and Malay) were treated as different strata and the UK, 
which was treated as separate strata (SEARCH, from East Anglia and 
PROCAS from north-west England). Sensitivity analyses were carried 
out adjusting for BMI in women with recorded age at BMI, and among 
women without a diagnosis of breast cancer. Sensitivity analyses were 
also carried out defining non-carriers as women not harbouring PTVs 
in the five main genes or pathogenic MSVs in BRCA1 and BRCA2.

WES sensitivity analysis using REGENIE
To replicate the primary findings and account for potential bias that 
could be introduced by exclusively using one discovery approach,  
a second analyst independently derived the age at menopause pheno-
type using a previously published method78 and conducted additional 
burden association analysis using the REGENIE regression algorithm 
(REGENIEv2.2.4; https://github.com/rgcgithub/regenie). REGENIE 
implements a generalized mixed-model region-based association test 
that can account for population stratification and sample relatedness 
in large-scale analyses. REGENIE runs in two steps79, which we imple-
mented on the UK Biobank RAP. In the first step, genetic variants are 
aggregated into gene-specific units for each class of variant, called 
masks. We selected variants in CCDS transcripts deemed to be high 
confidence by LOFTEE72 with MAF < 0.1% and annotated using VEP70. 
We created three masks, independently of the primary analysis group: 
(1) LOF variants (stop-gain, frameshift, or abolishing a canonical splice 
site (−2 or +2 bp from exon, excluding the ones in the last exon)) or 
missense variants with CADD score >30; (2) LOF or missense variants 
with CADD score >25; and (3) all missense variants. In the second step, 
the three masks were tested for association with ANM. We applied an 
inverse normal rank transformation to ANM and included recruitment 
centre, sequence batch and 40 principal components as covariates. 
For each gene, we present results for the transcript with the small-
est burden P value. We performed a sensitivity analysis, excluding 
women who had any cancer diagnosis before ANM (ICD10 C00-C97 
excluding C44, ICD9 140-208 excluding 173; n = 2,585). The results 
for the sensitivity analyses performed via REGENIE are available in 
Supplementary Tables 1 and 2.

Common variant GWAS lookups
Genes within 500 kb upstream and downstream of the 290 lead SNPs 
from the latest GWAS of ANM1 were extracted from the exome-wide 
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analysis. There were a total of 2149 genes within the GWAS regions. 
Burden tests in these genes with a Bonferroni corrected P value of 
<2.3 × 10−5 (0.05/2,149) were highlighted. The results are available in 
Supplementary Table 6.

Phenome-wide association analysis
To test the association of ANM identified genes in other phenotypes, 
we processed additional reproductive ageing-related phenotypes, 
including age at menarche, cancer, telomere length and sex hormones. 
All tested phenotypes were run as either continuous (age at menarche, 
telomere length and sex hormones) or binary traits (cancer) corrected 
by age, age2, sex, the first ten genetic principal components as calcu-
lated in Bycroft et al.68, and study participant ES batch as a categori-
cal covariate (either 50k, 200k or 450k). Phenotype definitions and 
processing used in this study are described in Supplementary Tables 8 
and 9. Only the first instance (initial visit) was used for generating all 
phenotype definitions unless specifically noted in Supplementary 
Table 8. In case of cancer-specific analysis, data from cancer registries, 
death records, hospital admissions and self-reported were harmo-
nized to ICD10 coding. If a participant had a code for any of the cancers 
recorded in ICD10 (C00-C97) then they were counted as a case for 
this phenotype. Minimal filtering was performed on the data, with 
only those cases where a diagnosis of sex-specific cancer was given 
in contrast to the sex data contained in UK Biobank record 31, was a 
diagnosis not used. For more information on cancer-specific analysis 
refer to Supplementary Tables 9 and 11.

Cancer PheWAS associations
To test for an association between genes we identified as associated 
with menopause timing (Fig. 2 and Supplementary Table 2) and 90 
individual cancers as included in cancer registries, death records, 
hospital admissions and self-reported data provided by UK Biobank 
(for example, breast, prostate, etc.) we utilised a logistic model with 
identical covariates as used during gene burden testing (n = 2430 tests) 
(Supplementary Tables 9 and 11). As standard logistic regression can 
lead to inflated test statistic estimates in cases of severe case/control 
imbalance80, we also performed a logistic regression with penalised 
likelihood estimation as described by Firth26 (Supplementary Table 11). 
Models were run as discussed in Kosmidis et al.81 using the brglm2 
package implemented in R. brglm2 was run via the glm function with 
default parameters other than “family” set to “binomial”, method set 
to “brglmFit”, and type set to “AS_mean”.

Expression in human female germ cells
We studied the mRNA abundance of WES genes during various stages 
of human female germ cell development using single-cell RNA sequenc-
ing data. We used the processed single cell RNA resequencing datasets 
from two published studies (Extended Data Figs. 6 and 7 and Supple-
mentary Tables 17 and 18). This included single-cell RNA sequenc-
ing data from fetal primordial germ cells of human female embryos 
(accession code: GSE8614682), and from oocyte and granulosa cell 
fractions during various stages of follicle development (accession 
code: GSE10774683). A pseudo score of 1 was added to all values before 
log transformation of the dataset. The samples from fetal germ cells 
were categorized into sub-clusters as defined in the original study. The 
study by Li et al.82 identified 17 clusters by performing a t-distributed 
stochastic neighbour embedding analysis and using expression profiles 
of known marker genes for various stages of fetal germ cell develop-
ment. In our analysis we have included four clusters of female fetal germ 
cells (mitotic, retinoic acid-responsive, meiotic and oogenesis) and 
four clusters containing somatic cells in the fetal gonads (endothelial, 
early_granulosa, mural_granulosa and late_granulosa). Software pack-
ages for R—tidyverse (https://www.tidyverse.org/), pheatmap, (https://
CRAN.R-project.org/package=pheatmap) and reshape2 (https://github.
com/hadley/reshape)—were used in processing and visualising the data.

De novo mutation rate analyses in 100kGP
Constructing PGSs. We calculated PGSs in participants from the rare 
disease programme of the 100kGP v14. There are 77,901 individuals 
in the aggregated variant calls (aggV2) after excluding participants 
whose genetically inferred sex is not consistent with their phenotypic 
sex. We restricted the PGS analysis to individuals of European ancestry, 
which was predicted by the Genomics England bioinformatics team 
using a random forest model based on genetic principal components 
generated by projecting aggV2 data onto the 1000 Genomes phase 3 
principal component loadings. We removed one sample in each pair 
of related probands with kinship coefficient > 1/(24.5)—that is, up to 
and including third-degree relationships. Probands with the highest 
number of relatives were removed first. Similarly, we retained unrelated 
mothers and fathers of these unrelated probands. It left us with 8,089 
mother–offspring duos and 8,029 father–offspring duos.

We used the lead variants (or proxies, as described below) for 
genome-wide significant loci previously reported for ANM1 to calculate 
PGS in the parents. In 100kGP, we removed variants with MAF < 0.5% or 
missing rate >5% from the aggV2 variants prepared by the Genomics Eng-
land bioinformatics team. For lead variants that did not exist in 100kGP, 
we used the most significant proxy variants with LD r2 > 0.5 if available in 
100kGP. This resulted in a PGS constructed from 287 of the 290 previously 
reported loci. We regressed out 20 genetic principal components that 
were calculated within the European subset from the PGS and scaled the 
residuals to have mean = 0 and s.d. = 1. Higher PGS indicates later ANM.

Calling de novo mutations. De novo mutations (DNMs) were called 
using the Platypus variant caller in 10,478 parent offspring trios by 
the Genomics England Bioinformatics team. The detailed analysis 
pipeline is documented at: https://research-help.genomicsengland.
co.uk/display/GERE/De+novo+variant+research+dataset. Extensive 
quality control and filtering were applied as described previously31. In 
brief, multiple filters were applied, including the following:
•	 the child had a heterozygous genotype and parents were homozygous 

reference.
•	 the parents had <2 reads supporting the alternate allele.
•	 read depth >20 in child and parents.
•	 variant allele fraction (VAF) >0.3 and <0.7 in the child.
•	 no DNMs were clustered (within 20 bp).

Autosomal de novo SNVs (dnSNVs) were phased using reads or 
read pairs that contained both the dnSNV and heterozygous variants 
located within 500 bp of it. A DNM was phased to a parent when the 
DNM appeared exclusively on the same haplotype as its nearby het-
erozygous variant. About one third of the dnSNVs were phased, of 
which three quarters were paternally phased (Extended Data Fig. 5 
and Supplementary Table 14).

Associating the ANM PGS with DNMs in 100kGP. In association 
models, we accounted for parental age, the primary determinant of 
the number of DNMs, and various data quality metrics as described31:
•	 Mean coverage for the child, mother and father (child_mean_RD, 

mother_mean_RD, father_mean_RD).
•	 Proportion of aligned reads for the child, mother and father (child_

prop_aligned, mother_prop_aligned, father_prop_aligned).
•	 Number of SNVs called for child, mother and father (child_SNVs, 

mother_SNVs, father_SNVs).
•	 Median variant allele fraction of DNMs called in child (median_VAF).
•	 Median Bayes factor as output by Platypus for DNMs called in the 

child. This is a metric of DNM quality (median_BF).

We first tested the association between parental PGSs and total 
de novo autosomal SNV count in the offspring in a Poisson regression 
with an identity link:

https://www.tidyverse.org/
https://cran.r-project.org/package=pheatmap
https://cran.r-project.org/package=pheatmap
https://github.com/hadley/reshape
https://github.com/hadley/reshape
https://research-help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset
https://research-help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset
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We also fitted Poisson regression models to test the association  
between the PGS of one of the parents and the dnSNVs in the offspring 
that were phased to the relevant parent. We supplied 0.5 as the starting 
value for all coefficients when running the glm() function in R with an 
identity link. Using a different starting value (for example, 0.2 and 10) 
did not change the coefficient estimates.

The paternal model included paternal PGS, age and data quality 
metrics that are related to the proband and the father:
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Similarly, the maternal model was as follows:
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Finally, as a check, we assessed the association between the mater-
nal PGS and paternally phased dnSNVs, and vice versa, using a Poisson 
regression with an identity link where the same starting value for 
coefficients were supplied:
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Rare variant burden in ANM genes in 100kGP

We tested for association between the burden of rare coding variants 
in ANM-associated genes in mothers and fathers with phased de novo 
SNVs in their offspring. We extracted high-confidence PTVs annotated 
by LOFTEE in the nine genes associated with ANM at the exome-wide 
significance (Fig. 2), as well as damaging missense variants with 
CADD > 25 in CHEK2 and SAMHD1. Annotations were extracted from 
VEP105. All variants had MAF < 0.1% in the 100kGP aggV2 dataset and 
in all sub-populations in gnomAD. We set to missing genotypes with 
depth <7 and genotype quality <20 or heterozygous genotypes with a 
binomial test P < 0.001.

We first regressed out the same covariates as described above in 
the PGS analysis from maternally phased DNMs using a linear regres-
sion. We applied a rank-based inverse normal transformation on the 
residuals and fitted a linear regression model of the adjusted DNMs on 
carrier status in unrelated mothers for each of the 9 genes that were 
associated with ANM, adjusting for 20 genetic principal components. 
We adjusted paternally phased DNMs and regressed it on gene burden 
similarly in unrelated fathers.

Mendelian randomization
Instrumental variable selection. Mendelian randomization analy-
sis was applied to test whether the common variants associated 
with ANM1 have a causal effect on DNM rates in the offspring (Sup-
plementary Table 15). In this approach, genetic variants that are sig-
nificantly associated with an exposure, in this case ANM, are used as 
instrumental variables to test the causality of that exposure on the 
outcome of interest, in this case DNM rate84–86. For a genetic variant 
to be a reliable instrument, the following assumptions should be met: 
(1) the genetic instrument is associated with the exposure of inter-
est; (2) the genetic instrument should not be associated with any 
other competing risk factor that is a confounder; and (3) the genetic 
instrument should not be associated with the outcome, except via 
the causal pathway that includes the exposure of interest84,87. Geno-
types at all variants were aligned to designate the ANM PGS-increasing 
alleles as the effect alleles as described above and this was used as a 
genetic instrument of interest. The effect sizes of genetic instru-
ments (genotypes in the mother) on maternally phased de novo 
SNVs in the offspring estimated in 8,089 duos were obtained from  
Genomics England.

Mendelian randomization frameworks. The Mendelian randomiza-
tion analysis was conducted using the inverse-variance weighted (IVW) 
model as the primary model due to the highest statistical power88. How-
ever, as it does not correct for heterogeneity in outcome risk estimates 
between individual variants89, we applied a number of sensitivity Men-
delian randomization methods that better account for heterogeneity90. 
These include Mendelian randomization Egger to identify and correct 
for unbalanced heterogeneity (‘horizontal pleiotropy’), indicated by 
a significant Egger intercept (P < 0.05)91, and weighted median (WM) 
and penalized weighted median (PWM) models to correct for balanced 
heterogeneity92. In addition, we introduced the Mendelian randomi-
zation radial method to exclude variants from each model in cases 
where they are recognized as outliers93. The results were considered 
as significant based on the P value significance consistency across dif-
ferent primary and sensitivity models applied. The results are available 
in Supplementary Table 15.

Analyses of DNMs in deCODE
Identifying DNMs. The genome of the Icelandic population was char-
acterised by whole-genome sequencing of 63,460 Icelanders using 
Illumina standard TruSeq methodology to a mean depth of 35 × (s.d. 8×)  
with subsequent long-range phasing16. Analyses of DNMs were restrict-
ed to individuals with at least 20× coverage.

DNM candidates were called in 9,643 trios in a similar manner to that 
described previously32,33, by comparing the genotypes of the parents 
and offspring. In brief, we defined a DNM candidate with permissive 
cut-offs for the genotype of the proband requiring that allele balance 
is greater than 25% and that there be at least 12 reads at the position 
(supporting either the reference or alternative allele). For the genotypes 
of the parents, we required at least 12 reads, maximum of one read sup-
porting the alternative allele and the allelic balance to be less than 5%. 
Likely (NLIK) and possible carriers (NPOSS) of the DNM allele outside the 
descendants of the parent pair were defined as before32. We restricted 
to DNM candidates with fewer than 50 likely carriers and either fewer 
than 10 possible carriers or with a ratio NLIK/NPOSS greater than 80%.



We tuned the DNM candidate filtering by using segregation of DNM 
candidates in three-generation families (2,042 probands), following32. 
We restricted to instances of the DNM candidates where we see both 
of the proband’s haplotypes at a locus transmitted to the offspring of 
the proband (see fig. 1c in ref. 32). In brief, if the DNM is a true germline 
variant then the allele of the DNM candidate should be present in the 
offspring who inherited the haplotype on which it lies. On the other 
hand, if it is absent from the children, despite both the haplotypes of the 
proband having been transmitted to at least one offspring, this suggests 
that the DNM candidate is a false-positive DNM call (see more detailed 
description in ref. 32). As before32, we fitted the generalized additive 
model with a logistic link using the mgcv R package94, using various 
functions of the following quality metrics as covariates, as indicated 
in the code:
•	 AAScore: prediction probability from Graphtyper that the variant 

is a true positive.
•	 Carrier_regression_beta: slope from the alternative allele depth 

regression for the sequence variant (described in the burden method 
section from deCODE).

•	 Carrier_regression_alpha: intercept from the alternative allele depth 
regression for the sequence variant (described in the burden method 
section from deCODE).

•	 Proband_het_AB: the allelic balance of the proband.
•	 MaxAAS: the maximum read support for the sequence variant across 

all individuals.
•	 Alignment_Alt_Reads: the number of reads supporting the alternative 

allele. This covariate and the following covariates were derived by 
identifying the reads in the BAM files supporting the de novo allele.

•	 Alignment_Alt_Unique_Positions: the unique number of starting posi-
tions for the reads supporting the alternative allele.

•	 Alignment_Alt_Soft_clipped: the number of soft clipped bases (S in 
CIGAR string).

•	 Alignment_Alt_Matched_bases: the number of matched bases (M in 
CIGAR string).

•	 Alignment_Alt_Score_diff: the difference in the alignment score 
between the best and the second best hit as reported by BWA mem.

•	 Alignment_Alt_Pair_sw_nm: the pairwise mismatches between reads 
supporting the alternative allele using the Smith Waterman imple-
mentation in SeqAn95.

•	 Alignment_Alt_Pair_align: the number of bases in the pairwise  
alignments.

We fitted the following formula within the gam() function in the 
mgcv R package94:

threegen_Consistent_hs~
I(cut(alignment_Alt_Unique_Positions,c(−1,2,4,8,10,Inf)))+
s(I(AAScore))+
s(Carrier_regression_beta)+
s(Carrier_regression_alpha)+
I(ifelse(alignment_Alt_Reads>0,
(alignment_Alt_Score_diff/alignment_Alt_Reads)>10,
FALSE))+
I(ifelse(alignment_Alt_Pair_align>0,
(alignment_Alt_Pair_sw_nm/alignment_Alt_Pair_align)>0.05,
TRUE))+
I(ifelse(alignment_Alt_Matched_bases>0,
alignment_Alt_Soft_clipped/alignment_Alt_Matched_bases>0.5,
TRUE))+
s(Proband_het_AB)+
s(ifelse(MaxAAS>15,
16,
MaxAAS))+
I(NPOSS = = 0)
We then took the model learned using informative DNMs in 

these three-generation families and applied it to all remaining DNM 

candidates. We retained candidate DNMs for which the predicted 
probability of being a real DNM based on this model was at least 50%.

To validate the false-positive detection rate of the DNMs, we also 
used the genotype consistency between pairs of monozygotic twins. 
We found that 3.8% of DNMs are unobserved in the monozygotic twin 
of the proband. These could either be false-positive DNM calls or high 
frequency post-zygotic mutations that differ between pairs of monozy-
gotic twins96.

To mirror the analysis of 100kGP, we phased the DNMs using 
read-backed phasing as previously described32.

Associating the ANM PGS with DNMs in deCODE. We calculated 
the raw ANM PGS per individual by multiplying the effect estimate by 
the count of the effect allele and summing the product across SNPs. 
We rank-transformed the raw PGS distribution across individuals to 
a standardized normal distribution. We fitted the following Poisson 
regression with identity link to assess the association between the 
mother’s PGS and the number of maternally phased DNMs:

dnSNVs_maternal ~ maternal_PGS + maternal_age

+ paternal_coverage + maternal_coverage

+ child_coverage + GAM_Predict_Mean

where GAM_Predict_Mean is the average probability of the DNMs in the 
probands being real, calculated using the method described above.

We also fitted the following models as negative controls:

dnSNVs_paternal ~ paternal_PGS + paternal_age

+ paternal_coverage + maternal_coverage

+child_coverage + GAM_Predict_Mean

dnSNVs_paternal ~ maternal_PGS + paternal_age

+ paternal_coverage + materna_coverage

+child_coverage + GAM_Predict_Mean

To fit these models, we randomly chose one offspring per family.

ANM genetic variants and DNMs in deCODE. We analysed variants 
with MAF < 2%. This was a higher threshold than had been used in 
100kGP since our analyses of ANM associations indicated that this 
threshold appeared to be better powered within deCODE, possibly 
because some deleterious variants have risen to a higher frequency  
due to the Icelandic bottleneck. We focused on PTVs in the nine genes 
associated with ANM at the exome-wide significance (Fig. 2), as well as 
damaging missense variants with CADD > 25 in CHEK2 and SAMHD1.

For maternally and paternally phased DNMs, we adjusted the number 
of DNM for parental ages at conception and normalized the trait using 
rank-based inverse normal transformation. A linear regression model 
was used to test for association between the transformed DNM rate 
and the burden genotypes, assuming the variance-covariance matrix 
to be proportional to the kinship matrix.

We used an inverse-variance weighted approach to meta-analyse the 
results from 100kGP and deCODE. A Bonferroni correction of 18 tests 
(9 genes and 2 parents) was applied.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in discovery analyses are available upon application 
from the UK Biobank study and Genomics England. Research on the 
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de-identified patient data used in this publication can be carried out 
in the Genomics England Research Environment subject to a collabora-
tive agreement that adheres to patient led governance. All interested 
readers will be able to access the data in the same manner that the 
authors accessed the data. For more information about accessing the 
data, interested readers may contact research-network@genomic-
sengland.co.uk or access the relevant information on the Genomics 
England website: https://www.genomicsengland.co.uk/research. The 
deCODE dataset was used for replication purposes and only summary 
level results for the specific findings are provided.
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Extended Data Fig. 1 | Exome-wide association results for synonymous variants. Plotted are per-gene burden results for synonymous variants. The red line 
indicates the exome-wide significant P value after Bonferroni correction of 1.08*10−6.
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Extended Data Fig. 2 | Lollipop plots show the variants, clustered for the 
best performing functional mask in a gene, which went into the gene burden 
test for ANM using BOLT-LMM. The arrows pointing upwards represent the 
variants positively associated with ANM, while the ones pointing downwards 
show the negatively associated variants. The size of the point indicates the 
allele count in carriers. Panel 1: Variant level associations for ANM decreasing 
WES genes. (A) BRCA2 HC PTV mask (genomic size = 84,761 bp, coding 
sequence = 10,254 bp); (B) ETAA1, HC PTV mask (genomic size = 14,757 bp, 
coding sequence = 2,778 bp); (C) HROB, HC PTV mask (genomic size = 20,547 bp, 

coding sequence = 1,938 bp); (D) PALB2, HC PTV mask (genomic size = 38,146 bp, 
coding sequence = 3,558 bp); (E) PNPLA8, HC PTV mask (genomic size = 55,719 bp, 
coding sequence = 2,346 bp); and (F) ZNF518A, HC PTV mask (genomic size = 
33,463 bp, coding sequence = 4,449 bp). Panel 2: Variant level associations 
for ANM increasing WES genes. (A) CHEK2, damaging mask (genomic size = 
54,078 bp, coding sequence = 1,629 bp); (B) HELB, HC PTV mask (genomic size = 
35,707 bp, coding sequence = 3,261 bp); and (C) SAMHD1, damaging mask 
(genomic size = 61,480 bp, coding sequence = 1,878 bp).



Extended Data Fig. 3 | Functional analysis of ZNF518A bound loci.  
(a) Histogram of log10-scale distances between ZNF518A and nearest gene 
transcription start site (TSS). (b) Proportion of ZNF18A peaks falling proximal 
to TSS (TSS < 2 kb), within gene bodies and in intergenic regions. (c) Boxplots 
showing total normalised reads per million (RPM) for every peak for categories 
TSS < 2 kb, gene body and intergenic - ZNF518A peaks have greater signal at 
proximal to TSS. (d) SLDP association between ANM GWAS variants and ZNF518A 
peaks, stratified by all peaks, proximal (<2 kb) from a TSS, and distal (>5 kb) 
from a TSS. The association between ANM variants and ZNF518A peaks appears 
due to distal ZNF518A peaks (either gene body or intergenic, >5 kb TSS) and not 
proximal TSS binding. Numerical results are reported in Supplementary Table 7. 
(e) De novo motif discovery recovers unvalidated JASPAR motif for ZNF518A 
UN0199.1. Homer enrichment statistics: all sites P = 10−6451 motif in 31.2% of 
targets (1.15% background); distal sites P = 10−4590 motif in 47.3% of targets (1.81 % 
background). (f) Proportion of maximal scoring instances of UN0199.1 (sequences 

that exactly match motif consensus) by ZNF518A peak category. Many distal 
peaks contain multiple perfect instances of the motif. (g) Boxplots, violin plots 
and dot plots depicting the relationship between ZNF518A ChIP-seq peak 
height and number of maximal scoring motifs present in peak. A strong 
relationship between peak height and number of motif instances can be observed. 
(h) Heatmaps depicting ZNF518A ChIP-seq, H3K27ac ChIP-seq in hPGCLCs, and 
chromatin accessibility by ATAC-seq in hPGCLCs. Signal shown over all ZNF518A 
peaks in RPM + /− 1 kb of ZNF518A peak summit. ZNF518A bound promoters 
(TSS < 2 kb) are accessible and are marked with H3K27ac, distal regions either 
in gene bodies or intergenic regions show no H3K27ac or chromatin accessibility, 
suggestive that ZNF518A represses these regulatory regions. (i,j) Association 
shown in odds ratios of ChromHMM states over 833 tissues/cell types from 
Epimap; boxplots with outliers shown, with each boxplot summarising the 
distribution of associations over all tissues/cell types for a given chromatin 
state. (i) All ZNF518A peaks; ( j) ZNF518A peaks distal from TSS.
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Extended Data Fig. 4 | ANM gene burden associations with reproductive 
ageing-related traits of interest in females only. The coefficients and 95% CIs 
were female-specific and plotted for the quantitative traits only. The association 

was tested using BOLT-LMM. Male-specific and sex combined associations 
could be found in Supplementary Table 10.



Extended Data Fig. 5 | Distribution of de novo single nucleotide variants 
(dnSNVs). The histogram shows the number of (A) total dnSNVs, includes both 
phased (maternal + paternal) and unphased DNMs, (B) paternally derived 

dnSNVs and (C) maternally derived dnSNVs in unrelated probands with 
European ancestry from the 100,000 Genomes Project. (D–F) show similar 
distributions in individuals from deCODE.
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Extended Data Fig. 6 | Expression levels of genes across various stages of 
female germ cell development. In the X-axis, genes are ranked according to 
their average expression at each stage (Y-axis) (A) in human foetal primordial 
germ cells and (B) in granulosa cells in adult follicles. Genes identified as novel 

ANM genes in WES analysis are coloured in green and all other genes in the 
genome are in grey. ZNF518A is depicted in orange for the ease of comparison 
with other genes (Supplementary Table 17).



Extended Data Fig. 7 | mRNA expression of WES genes during foetal stages 
and folliculogenesis. Box and whisker plots of mRNA expression of the WES 
genes at different stages of germ cell development. The plots represent the 
interquartile range of TPM values, the line at the centre of the box represents 
the median, error bars indicate the 95% CI and outliers are shown as dots.  

(A) Sub-clusters from single foetal cells from week 5 to 26 post-fertilisation are 
on the X-axis with the average TPM expression values log2(TPM + 1) on the 
Y-axis. (B) Different stages of folliculogenesis in oocytes and granulosa cells are 
represented on the X-axis with their average expression values log2(FPKM + 1) 
on the Y-axis (Supplementary Table 18).
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